
DISS. ETH NO. 26905

TOWARDS GENERIC CALIBRATION FOR MOBILE ROBOTS

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

HANNES SOMMER

Dipl.-Math.

born on December 29, 1980
citizen of Germany

accepted on the recommendation of

Prof. Dr. Roland Siegwart, Examiner
Prof. Dr. Stephan Weiss, Co-examiner

2020



Autonomous Systems Lab
Department of Mechanical and Process Engineering
ETH Zurich
Switzerland

© 2020 Hannes Sommer. All rights reserved.



Abstract

Every robotic system has a set of parameters — scale factors, sensor locations, link lengths,
communication latencies, etc. — that must be known with some accuracy for state estimation,
planning, and control to perform well. After construction of such a system, some parameters
are typically not known accurately enough due to the high cost of both accurate and precise
production. Furthermore, some will change over the lifetime of a robot due to normal wear
and tear or accidents. The effects of assuming poor parameter values range from degraded
performance to critical safety issues.

The big calibration dream for mobile robots would be that the systems calibrated themselves
after their assembly and while being operational without requiring any supervision or special
environments. Unfortunately, this goal is inherently hard to achieve, mostly due to inaccurate
or incomplete knowledge of the environment the sensors perceive, which cannot be easily
improved on without accurate calibration. This circular dependency leads to a problem type
similar to Simultaneous Localization and Mapping (SLAM), called Simultaneous Calibration,
Localization, and Mapping (SCLAM). In a way, it is a truly bigger problem, because it has
SLAM as a subproblem. In contrast to SLAM, there are typically less computational resource
constraints and a calibration solution may restrict itself to smaller maps. It is also more difficult,
because — in contrast to SLAM — self-calibration cannot build on something like a sufficient
calibration that already mitigates many of the production flaws and unknowns before SLAM
takes place. This is no surprise considering that one key purpose of calibration is to make SLAM
more accurate and easy.

This thesis contributes to the dream of lifelong self-calibration for mobile robots by focusing
on some of the generic sub-problems which make the development of such powerful calibration
systems hard to realize today. Specifically, it contributes (i) to a potential deprecation of a second
quaternion multiplication introduced in the 1980s that causes significant confusion and failures
until today in the practice of state estimation, control, and calibration by means of a thorough
comparison and principled analysis, (ii) to the continuous-time state estimation / calibration for
non vector space Lie-group valued variables such as SO(3), by making an idea for unit-length
quaternion valued B-splines accessible for nonlinear optimization, (iii) an efficient, easy to use,
and safe automatic differentiation of differentiable models, by proposing the Block Automatic
Differentiation (BAD) technique, (iv) an efficient way to gain accurate and detailed information
on timing of global shutter cameras and time-of-flight LIDARs, (v) a novel way to associate
observations of LIDAR-like sensors for the purpose of calibration.

In addition to the above theoretic contributions, several c++ libraries, usually with python
exports, were developed, maintained, extended, and used for the experiments and evaluations of
the corresponding contributions. These were mainly, a library for fast and optimizable Lie-group
valued b-splines based on (ii), a BAD library and a prototype for a much faster library both
based on and evaluated in (iii), a tiny library for automatic propagation of kinematic quantities
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Abstract

such as angular velocity through a kinematic chain while supporting automatic differentiation
with respect to all quantities involved building on the BAD concept, a timestamp translation
library to be used in sensor drivers required for (iv), a library for modular layered parameter
trees to assemble multiple parameter trees in an unified and transparent way, and a modular
c++ continuous-time calibration framework, Object-Oriented Modular Abstract Calibration
Toolbox (OOMACT), based on all the libraries and contributions before.

OOMACT was primarily developed to serve as a basis for the lifelong self-calibration and
fault-detection system developed for the European Robotic Pedestrian Assistant 2.0 (EUROPA2)
project, which was simultaneously developed on top of it. Additionally, it was used to realize the
local calibration step in a new library dedicated to the hand-eye calibration problem. This local
calibration step — yielding highly accurate results quickly even for poor initial guesses — could
be realized with only a few lines of c++ code thanks to the highly configurable and modular
nature of the toolbox.

Within these applications we could confirm that the contributions of this thesis could indeed
greatly simplify several of the otherwise very tedious or difficult tasks necessary to develop high
quality automatic calibration systems.
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Zusammenfassung

Jeder Roboter hat eine Reihe von Parametern - Skalierungsfaktoren, Sensorpositionen, Verbin-
dungslängen, Kommunikationslatenzen usw. —, die mit einer gewissen Genauigkeit bekannt
sein müssen, damit Zustandsschätzung, Planung und Steuerung gut funktionieren. Nach der
Konstruktion eines solchen Systems sind einige Parameter typischerweise nicht genau genug
bekannt, was an den hohen Kosten für eine genaue und präzise Produktion liegt. Außerdem
werden sich einige im Laufe der Lebensdauer eines Roboters aufgrund von normalem Ver-
schleiß oder Unfällen ändern. Die Auswirkungen von zu schlechten Parameterwerten reichen
von verminderter Leistung bis hin zu kritischen Sicherheitsproblemen.

Der große Kalibrierungstraum für mobile Roboter wäre, dass sich die Systeme nach ihrer
Montage und während ihres Betriebs selbst kalibrieren, ohne dass eine Überwachung oder
spezielle Umgebungen erforderlich sind. Leider ist dieses Ziel von Natur aus schwer zu erreichen,
meist aufgrund ungenauer oder unvollständiger Kenntnis der von den Sensoren wahrgenommenen
Umgebung, die sich ohne genaue Kalibrierung nicht einfach verbessern lässt. Diese zirkuläre
Abhängigkeit führt zu einem ähnlichen Problemtyp wie Simultaneous Localization and Mapping
(SLAM), genannt Simultaneous Calibration, Localization, and Mapping (SCLAM). In gewisser
Weise ist es ein wirklich größeres Problem, weil es SLAM als Unterproblem hat. Im Gegensatz
zu SLAM gibt es typischerweise weniger Beschränkungen bei den Rechenressourcen und eine
Kalibrierungslösung kann sich auf kleinere Karten beschränken. Sie ist auch schwieriger, weil —
im Gegensatz zu SLAM — die Selbstkalibrierung nicht auf so etwas wie einer ausreichenden
Kalibrierung aufbauen kann, die bereits viele der Produktionsfehler und Unbekannten abmildert,
bevor SLAM stattfindet. Dies ist keine Überraschung, wenn man bedenkt, dass ein Hauptzweck
der Kalibrierung darin besteht, SLAM genauer und einfacher zu machen.

Diese Arbeit leistet einen Beitrag zum Traum von lebenslanger Selbs-Kalibrierung für mobile
Roboter, indem sie sich auf einige der generischen Teilprobleme konzentriert, die die Entwicklung
solch leistungsfähiger Kalibrierungssysteme heute schwer zu realisieren machen. Insbesondere
trägt sie bei, (i) zu einer potentiellen Aufgabe einer alternativen Quaternionenmultiplikation,
die in den 1980er Jahren eingeführt wurde und bis heute in der Praxis der Zustandsschätzung,
Steuerung und Kalibrierung für erhebliche Verwirrung und Fehler sorgt, durch einen gründlichen
Vergleich und eine prinzipielle Analyse, (ii) zu der zeitkontinuierliche Zustandsschätzung /
Kalibrierung für Lie-gruppenwertige Variablen wie SO(3), indem eine Idee für einheitslängen-
quaternionenwertige B-Spline Kurven für die nichtlineare Optimierung zugänglich gemacht wird,
(iii) eine effiziente, einfach zu handhabende und sichere automatische Differenzierung differen-
zierbarer Modelle, indem die Block Automatic Differentiation (BAD)-Technik vorgeschlagen
wird, (iv) einen effizienten Weg, um genaue und detaillierte Informationen über das Timing von
Global-Shutter-Kameras und Time-of-Flight-LIDARs zu erhalten, (v) eine neuartige Möglichkeit,
Beobachtungen von LIDAR-ähnlichen Sensoren zum Zweck der Kalibrierung zuzuordnen.

Zusätzlich zu den oben genannten theoretischen Beiträgen wurden mehrere C++-Bibliotheken,
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Zusammenfassung

meist mit Python-Export, entwickelt, gepflegt, erweitert und für die Experimente und Auswer-
tungen der entsprechenden Beiträge verwendet. Diese waren hauptsächlich, eine Bibliothek für
schnelle und optimierbare Lie-gruppenwertige B-Spline Kurven basierend auf (ii), eine BAD-
Bibliothek und ein Prototyp für eine viel schnellere Bibliothek, die beide auf (iii) basieren und
evaluiert wurden, eine winzige Bibliothek zur automatischen Propagierung kinematischer Größen
wie z. B. der Winkelgeschwindigkeit durch eine kinematische Kette bei gleichzeitiger Unterstüt-
zung der automatischen Differenzierung in Bezug auf alle beteiligten Größen, aufbauend auf
dem BAD-Konzept, eine Bibliothek für die Übersetzung von Zeitstempeln zur Verwendung in
Sensortreibern, die für (iv) benötigt werden, eine Bibliothek für modular geschichtete Parameter-
bäume, um mehrere Parameterbäume auf einheitliche und transparente Weise zusammenzustellen
und ein modulares C++-Framework für die zeitkontinuierliche Kalibrierung, Object-Oriented
Modular Abstract Calibration Toolbox (OOMACT), das auf allen vorherigen Bibliotheken und
Beiträgen basiert.

OOMACT wurde in erster Linie entwickelt um als Grundlage zu dienen für das System zur
lebenslangen Selbstkalibrierung und Fehlererkennung, das gleichzeitig für das Projekt European
Robotic Pedestrian Assistant 2.0 (EUROPA2) entwickelte wurde. Darüber hinaus wurde es
verwendet, um den lokalen Kalibrierungsschritt in einer neuen Bibliothek zu implementieren,
die dem hand-eye-Kalibrierungsproblem gewidmet ist. Dieser lokale Kalibrierungsschritt — der
auch bei schlechten Ausgangswerten schnell zu hochgenauen Ergebnissen führt — konnte dank
der hochgradig konfigurierbaren und modularen Natur der Toolbox mit nur wenigen Zeilen
C++-Code realisiert werden.

Innerhalb dieser Anwendungen konnten wir bestätigen, dass die Beiträge dieser Arbeit in
der Tat mehrere der sonst sehr langwierigen oder schwierigen Aufgaben, die zur Entwicklung
hochwertiger automatischer Kalibrierungssysteme erforderlich sind, stark vereinfachen können.
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Preface

This is a cumulative doctoral thesis which comprises 4 published papers and one technical report.
It begins with an introduction, Chapter 1 which first motivates the work and then explains the

overall scope and fundamental calibration approach that orients and motivates the individual
contributions. In Chapter 2, we briefly go through all the papers and explain their context
within the overall scope, their contribution, and mutual interrelation. The last chapter, Chapter 3,
provides conclusion and outlook.

In Part A the conceptual papers are provided while the applied papers and the technical report
are composing Part B. In the Part C various proofs and derivations are collected that did not fit
into the publications.
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Chapter1
Introduction

1.1. Motivation and Objectives

Every robotic system has a set of parameters — scale factors, sensor locations, link lengths,
communication latencies, etc. — that must be known with some accuracy for state estimation,
planning, and control to perform well. Some parameters will not be given accurately enough due
to production inaccuracies and some will change over the lifetime of a robot due to normal wear
and tear or accidents. In the best case, incorrect parameter values degrade performance. In the
worst case, they cause critical safety issues.

1.1.1. The dream and drama of calibrating robots
In theory, a powerful calibration system is beneficial for almost any robotic system: it allows
higher accuracy in performing motion or interaction tasks or allows reducing a systems costs by
tolerating lower quality sensors or less accurate manufacturing, and it can make the difference
between a task being feasible, and safe, or not.

However, a modern (mobile) robotic application easily asks for a set of traits for its calibration
solution that is very difficult or impossible to realize in practice, given the currently available
building blocks and limited resources. The following defines predicates representing some of
these attractive traits of a calibration system or concept. A calibration system is called:

• target-less: iff it can be applied in the robot’s normal operation environment rather than
an environment specifically prepared with objects of well known geometry – so called
calibration targets,

• unsupervised: iff it does not need supervision by an external system or a human,

• intrinsic: iff it can calibrate parameters which are purely intrinsic to a component that
gets mounted to the robot as a whole, such as sensor, or actuator (for instance the lense
distortion of a camera’s lense),

3



1. Introduction

• extrinsic: iff it can calibrate parameters between components such as mutual location (e.g.,
relative pose) or differences in their individual clocks,

• incremental: iff it can incorporate new information over time while gaining certainty or
updating calibration,

• lifelong: iff it can handle changes in calibration parameters over time,

• accurate: iff it can provide accurate estimates given sufficient data,

• global: iff it does converge globally and therefore does not require an initial guess close
enough to a correct calibration given enough data,

• computation / data efficient: iff it can deliver useful results given a relatively small amount
of computation / data,

• conservative: iff calibration parameters only get updated when there is sufficient evi-
dence to justify a change considering the cost for a calibration update (this is a stronger
requirement than being a robust estimator),

• easy to develop: iff the difficulty and complexity of it is well manageable for the developer
of a concrete solution,

• generic: iff a wide range of sensors / actuator configurations can be calibrated with it or at
least integrated conceptually.

The ultimate calibration approach for most applications would in fact combine all of the
above traits. Unfortunately, such a solution is very far away from the state of the art because
combining even small subsets of them becomes very difficult with the methods and techniques
currently available. For instance, being global and efficient are natural opponents and so are
being target-less and accurate, or being easy and generic and many more.

One consequence of the inherent difficulty of the overall problem is that typically a given
practical approach only combines a few of these traits. Another consequence is that most
contemporary mobile robotic systems lack a truly satisfying calibration system. Some of the
conflicts can be reduced by developing good tools and building blocks. The goal of this thesis is
to contribute some building blocks and tools that bring potential applications at least a bit closer
to this big dream of calibration, mostly by reducing the practical tradeoff between some of the
attractive traits.

1.1.2. Scope of this thesis
To limit the large scope of making calibration easier we leave out some of the attractive traits
from the last section early on.

One attractive trait which causes significant conceptual conflicts with most of the other traits
is being global. Local approaches can be widely used in practice because today’s design and
manufacturing processes typically provide rather good initial guesses for all the calibration

4
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parameters. Furthermore, accidents that render the calibration from before useless as initial guess
for a local calibration approach are likely to violate operational or safety requirements beyond
pure calibration requirements.

At the same time computational efficiency is considered a rather soft requirement because
computational power can be safely assumed to be increasingly available and energy efficient in
the future, in particular since the calibration problem allows highly parallel solutions. We allow
our approach to require moderately powerful computers at the level of a powerful laptop.

One of the dominant problem separations (in the sense of the divide and conquer method) in
calibration is the one between extrinsic and intrinsic calibration. The underlying assumption is
that intrinsics can be calibrated separately per component and consequentially do not need being
calibrated in the assembled robotic system or can be calibrated individually while being mounted.
Purely extrinsic calibration approaches expect the intrinsic calibration parameters as a given and
static input. Most generic approaches aim at extrinsic calibration because the intrinsic parameters
are highly specific. A lifelong calibration approach cannot ignore that some intrinsic calibration
parameters might also change over time, such as the wheel diameter of a wheel-odometry. This
thesis is further excluding parameters that can safely be considered static intrinsics of individual
components and focuses mostly on the spatiotemporal extrinsic calibration of complex systems.

Overall the scope of this thesis can now be stated as making unsupervised, local, incremental,
lifelong, target-less, multi-sensor, extrinsic calibration for mobile robots, more easy while
keeping the system configuration rather open and expecting only moderately high computational
and memory resources available for the calibration task. More specifically, the goal is to
contribute to reducing some of the current conflicts between the attractive traits from Section 1.1.

This scope is well aligned with one of the work packages of the European Robotic Pedestrian
Assistant 2.0 (EUROPA2) project.

Within this high level scope, the specific theoretic endeavors shall be motivated and guided by
an imaginary prototypical practical goal, also inspired by EUROPA2. Namely, the development
of a Maximum Posteriori Estimation (MPE) based, generic and efficient calibration software
library / tool with the following features:

• Capable of lifelong online operation

• Full spatiotemporal extrinsic calibration for sensors and actuators, incorporating hand
measurement or manufacturing specifications as initial calibration

• Supporting the integration of all popular sensors types: wheel odometry, gyroscopes,
accelerometer, vision and range finder type, as well as locomotion and simple joint
actuations

• Easy setup and input / modification of system model, calibration strategies, and failure
case detection

In fact, a prototype of such a calibration library, Object-Oriented Modular Abstract Calibration
Toolbox (OOMACT), was developed in parallel to this thesis along with various other libraries
serving it as smaller building-blocks. This library served greatly as a device to find practical
challenges with the selected approach and as a test bench for potential solutions.

While developing and employing it, we faced various conceptual challenges. Some of those
challenges are specifically addressed in this thesis:

5



1. Introduction

1. supporting non-flat continuous-time state spaces components (e.g. orientations),

2. supporting easy prototyping of differentiable measurement and kinematic models through
suitable software design,

3. accurate and high frequency inspection of temporal extrinsic calibration for cameras and
time of flight LIDARs,

4. overwhelming and prohibitive conventional chaos regarding rotation quaternions,

5. associating LIDAR measurements with one another with support for a probabilistic
measurement model.

In addition to these conceptual contributions, the thesis contains contributions applying the
approach outlined in Section 1.3 to classical hand-eye calibration in Section 2.2.1, and to the
automatic self-calibration work package of the EUROPA2 project in ReportV.

1.2. Relevance

Calibration appears to be a notoriously underestimated problem. Prototypes in industry and
research are often calibrated manually by specialist with tedious and slow procedures. This cannot
scale to mass production because every single robotic system must be calibrated individually.
Another common practice is avoiding to fuse data of sensors to save the effort of extrinsic
calibration. This can never unfold the full potential of the hardware and hence will have a sub-
optimal cost performance ratio compared to a system with an affordable high quality calibration
solution. To make this bad situation worse there is only a small fraction of robotic engineers
interested or even specialized in calibration. This is probably because from further away
calibration seems to appear to be a mere nuisance. From a little bit closer it starts appearing as a
very difficult nuisance that cannot easily be solved satisfyingly with machine learning approaches,
because of its purely definition based interface to the rest of the system using the calibration. As a
result, industry will face significant costs for (not properly) calibrating mass products. Reducing
costs by employing an insufficient calibration solution may even have negative safety implications
and could cause accidents. At the same time robotics research is wasting considerable time by
employing tedious calibration methods or by chasing after performance problems ultimately
caused by bad calibration. Given this situation, every contribution to making useful calibration
approaches more accessible and ready to adapt to a given problem with less effort and pitfalls
may be considered a valuable contribution of practical relevance for society.

The contributions of this thesis, that all aim at making some typical subproblems of calibration
easier to solve in practise, are explained in Chapter 2.

1.3. Approach

1.3.1. Theoretical
For the remainder of this document we adopt the following calibration notation. A system’s
parametrized model shall define a calibration space, C , of possible values for the calibration
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1.3. Approach

estimate, ĉ, a state space, X , of all possible state estimates and an input space, U , of possible
(control) inputs to the systems — each at a given instant in time. For simplicity’s sake, we
will write as if there was a true calibration and state within these spaces at any time, knowing
that the model is artificial and with it all quantities expressed with respect to it and that the
truth will almost surely lie outside what the model can express. The “true calibration” shall
mean the elements of the calibration space that – interpreted according to the model – come
closest to reality. The split between calibration and state space is not a natural one and must be
considered part of a given model. However, the key difference shall be their modeled temporal
development. The calibration part is typically modeled to be not at all or very slowly changing or
rarely jumping (e.g. through accidents). The state part is its complement. It is often co-estimated
with the calibration out of conceptual necessity. The calibration space may also contain hyper or
noise parameter components.

As fundamental calibration approach, given such a model, we choose the principled and
powerful Bayesian continuous-time MPE of k ∈ N mini-batches over non-overlapping time
intervals Tk

i=1. It shall jointly estimate the calibration tuple, c ∈ C k, providing one calibration
per mini-batch, and the state trajectory tuple, x ∈×k

i=1 FX (Ti), constrained to finite dimen-
sional function sub spaces1, given a calibration prior density, p(c1), observations, Zk

i=1, input
trajectories u ∈×k

i=1 FU (Ti), and process models providing p(x|c,u) and p(c|c1,Tk
i=1).

ĉ, x̂ = argmax
c∈C k ,x∈×k

i=1 FX (Ti)

p(c1)p(c|c1,Tk
i=1)p(x|c,u)

k

∏
i=1

p(Zi|ci,xi).

In non-lifelong calibration systems, usually no changes over time in calibration are considered
and p(c|c1,Tk

i=1) is assumed to be concentrated on c1 for ∀k
i=2ci. Otherwise less trivial stochastic

process models must be assumed to derive p(c|c1,Tk
i=1) as approximation and the Ti must be

kept short enough to keep the approximation error low. If rare but significant jumps of the
calibration parameters are expected, e.g. through accidents, then one should exclude the intervals
that probably contain the jumps.

1.3.2. Implementation
Following this mathematical approach we developed a modular and abstract calibration system
design that can be realized as a set of software libraries. It resembles a data flow as depicted in
Figure 1.1 (overview) and Figure 1.2 (calibration core).

For such a design to be generic in practice it must be very modular. For instance, the input
processor of a single data source, e.g. a LIDAR, depends on the middleware (communication)
and the sensors (data format) while at the same time sensors of similar type should be modeled
with the same code to avoid duplication. Hence there should be input processors modules that
connect for instance a generic LIDAR model with a given sensor through a given middleware.
Similarly, the preferred representation of state trajectories might depend on the typical dynamics
of the system and should be therefore provided by trajectory modules that allow being composed
to represent trajectories of composed state spaces. The clients of a state representation, like

1The usual continuous-time approximation: ∀k
i=1FX (Ti) ⊂ Ti →X ∧dim(FX (Ti)) ∈ N. This can be achieved for

instance by using B-splines, as we do in this thesis.
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1. Introduction

Human Operator /
outer system

Hardware /
outer system

Parameters Input data

Calibration core:
calibration logic + data associator

+ model + initializer

Optimization problem:
Cost function + initial calibration and state

Optimizer

Estimated parameters

Figure 1.1.: Calibration system data flow. Round and sharp cornered rectangles represent data
(including functional data) and processing entities respectively.

Parameters System model Input data

Calibration logic Input processorVariable factory

Variables for
state and calibration

Processed
input data

Database of
former cost functions

Error term factory Initializer

Cost function Initial calibration
and state

Figure 1.2.: Calibration core

the functions that generate measurement error terms (depending on the state) should be further
modules independent of the trajectory choice, requiring an unified access to the relevant state
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1.3. Approach

at the measurement time. The measurement time itself might be unknown and required to be
estimated due to unknown or random latencies. This requires introducing additional latency
variables, possibly per measurement. Their treatment should not be part of the measurement
error generator, because otherwise it would need to be implemented for all of them individually.

This level of modularity can be achieved with a toolbox system and a rich set of interfaces
between them such that they can be easily composed. A calibration toolbox should contain
pre-implemented modules for common tasks but also support easy integration of user provided
modules since covering all needs that could be satisfied with this generic approach is unrealistic.

Our prototype corresponding design-wise to Figure 1.2 consists of various types of building
blocks. One group is representing sensors, actuators, joints, and frames that compose the system
model. This model is used by the error term factory to automatically build up the cost function,
i.e. the negative log-likelihood of the input data to be minimized. It utilizes generic error terms
representing individual latent variables (e.g. measurement errors) with their assumed probability
distributions. These error terms depend on state and calibration variables introduced by the
variable factory based on the model and the input data. To create these variables the variable
factory is assembling further building blocks, namely trajectories to represent state-trajectory
space components and calibration variables of various types to represent calibration space
components. Both calibration and state spaces are here assumed to be Cartesian products of such
components. The calibration logic is also an extension point with existing implementations for
batch MP and a multi stage MP. The task of the calibration logic is to control which data should
be used and which variables get estimated at which stage of the overall optimization. Choosing
the right calibration logic for a given problem is a challenge, because a simple full batch single
stage approach typically only works for sufficient data with rather good initial guesses for the
calibration variables and rather low noise levels. How to pick one of the many alternatives is a
very open question that is typically answered in practice based on experience and intuition of
experts. For a generic library the question is how to provide a flexible input form for the user to
specify this logic. The way we implemented this was by providing an easy to use programming /
scripting interface with which users can program their calibration logic and give rich automatic
feedback to support the user in iterating quickly to improve their calibration logic.
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Chapter2
Contribution

In this chapter the scientific context and contribution of each publication contained in this thesis
is presented. Additionally, their mutual interrelations and their relation to the overall goal of
this thesis is explained. All represented research and development was conducted in strong
collaboration with the co-authors.

We start with the more conceptual contributions, then go through their applications, and finish
with a list of all publications I (co-)authored. With conceptual I mean developing concepts and
tools that are useful for and motivated by the calibration task or some of its many subproblems
while typically not being specific to calibration. That does not mean being particularly theoretical
in nature. For instance, the last conceptual work, PaperIV, is very practical in comparison to the
first three while still developing a concept and tools, which are not only usable for calibration.

2.1. Conceptual contributions

Fully automatic calibration is a very valuable feature for real world mobile robotic systems.
However, in practice it is rarely deployed because of the significant investment currently necessary
to reach a reliable and useful solution. This is acceptable for short-term research prototypes or
small series installation, where one can work instead with semi-automatic calibration conducted
only once by experts. However, it is not acceptable for mass production of long-term deployed
robots, such as autonomous cars, which even need some form of lifelong calibration in particular
if the calibration is safety relevant.

Important reasons for the high cost of automatic calibration are a severe lack of easy to use
generic building blocks that could reduce the implementation effort and the lack of robust methods
that can promise useful performance in advance without much further research. This thesis
contributes to mitigating a few typical stumbling stones that make automatic self-calibration too
expensive or unrealistic in practice.

The developed concepts and tools are motivated by but not at all limited to self-calibration. In
fact, most of them provide benefits to other problems in robotics such as planning, control, state
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2. Contribution

estimation, mapping or supervised factory calibration. This is also why all the conceptual papers
do not directly discuss any applications to self-calibration but instead more immediate and less
complex applications serving as test bench for the tools.

2.1.1. Paper I
Hannes Sommer, Cédric Pradalier, and Paul Furgale, “Automatic Differentiation on Differentiable
Manifolds as a Tool for Robotics”. In Robotics Research. Springer Tracts in Advanced Robotics,
2016.

Context

A concrete calibration problem typically comprises variables with small and or highly nonlinear
effects on the observed data. Small effects often require the joint consideration of much data
to achieve satisfying accuracy. Self-calibration requires joint estimation of the calibration and
state and map variables increasing the problem much further. This leads to large optimization
problems to be solved in high accuracy calibration. A popular and very efficient generic way
to reduce computational complexity for local optimization is to provide analytic derivations
with respect to the variables where possible (partial differentiability) in order to compute local
updates.

Here an unfortunate tradeoff appears: More accurate calibration of complex systems requires
more complex models and more data. But using derivative based optimization in the prototyping
phase of the calibration system is the harder and more error-prone and time consuming the more
complex the model is. The latter is particularly true if some of the variables live in a non vector
space Differentiable Manifold (DM), which typically requires special expertise to be treated
correctly. In mobile robotics, at least one such DM is very likely to be part of the calibration
problem, for instance S2, or SO(3).

Contribution

This paper develops one particular well suited approach to automatically provide derivatives
for the calibration model prototyping phase for mobile robots. It finds a good compromise
between introduced workflow complexity and runtime efficiency while at the same time helping
the developer greatly to write correct and modular implementations of the model in at least
two ways: first, the derivatives are generated automatically with a pretested procedure out of
pretested building blocks, and second, the type system of statically typed languages, such as c++,
allows for libraries to elegantly prevent invalid operations that make no sense mathematically, for
instance operations that would change the magnitude of an unit-length quaternion. Effectively,
such a library can employ the compiler to do mathematical type checks.

We call this approach Block Automatic Differentiation (BAD). It is an extension of the
traditional dual number approach to Automatic Differentiation (AD) that incorporates complex
(not in the sense of complex numbers but in the sense of value-tuples) variables (blocks) that
traditionally would be represented by multiple variables, e.g. 4 real numbers instead of one
unit-length quaternion.
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2.1. Conceptual contributions

It allows an user of a BAD-library to assemble complex functions, such as the maximum
a posteriori density of a calibration problem, at runtime by writing typical mathematical ex-
pressions, like a+b or q.rotate(v), while possibly looping over input data of a size determined
at runtime (difficult for traditional code generators for derivatives). Internally, it maintains an
acyclic directed evaluation graph that can then be traversed behind the scenes to compute values
and derivatives as needed while caching intermediate values that otherwise would need to be
computed multiple times.

Interrelations

An experimental implementation of the BAD concept is used for almost all experiments and
applications mentioned in this thesis. It was a great help in the process of adapting the differen-
tiable models and allowed to try out modified models quickly without the burden of deriving
the derivatives or employing tedious code generation procedures that typically create a lot of
interfacing overhead. As users of this system, we never had to evaluate the chain-rule ourselves.
Only new elemental operations required determining their derivative once to make it available.
The error-prone work of combining them was taken care of by the library. Effectively it allowed
to explore models that would normally have been avoided simply to save the effort a human
would need to put in deriving and debugging them.

The presented runtime performance comparison with a well-tuned traditional AD implementa-
tion shows big potential (up to 14 times faster) – when looking at computing individual Jacobians
of some test functions. The advantageous effect is rather small (∼ 13%) when comparing the
timings for solving the bigger problem of allocating and assembling the entire (sparse) Jacobian
of the batch attitude estimation problem we presented in the paper as application. This is because
the part done by BAD only has a small share of this particular problem, mostly because comput-
ing the Jacobians of the many invocations of rather simple measurement functions is very quick
in both ways compared to the allocation and assembly of a big matrix containing all the individ-
ual Jacobians. This can change drastically when individual measurement models and the state
representation get more complex – for instance, when doing continuous-time (self-)calibration
for mobile multi sensor systems as in ReportV. In this sense, the example in the paper sadly fails
to showcase the full runtime performance potential of BAD in the calibration domain. However,
its performance advantage is not the most important contribution to calibration. Instead, it is the
gain in ease of use and failure safety in the prototyping and maintenance phases of a calibration
system – while providing sufficient runtime speed for complex models at the same time. Together
these advantages enable faster development iterations with more complex models.

2.1.2. Paper II

Hannes Sommer, Igor Gilitschenski, Michael Bloesch, Stephan Weiss, Roland Siegwart, and Juan
Nieto , “Why and How to Avoid the Flipped Quaternion Multiplication”. In MDPI Aerospace,
2018.
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2. Contribution

Context

Unit quaternions are the state of the art representatives of SO(3), typically modeling attitude, in
state estimation and calibration. They are efficient to use and almost isomorphic — merely a
double cover of the target Lie group. More specifically, q and −q always represent the same
element of SO(3).

Surprisingly, the biggest challenge for beginners when employing quaternions to represent
rotations is that there is a whole family of competing conventions associated with them, which
are often not made explicit. This makes combining formulas and results from different sources
error-prone, in particular, when one is not aware of the multitude of conventions.

One binary choice distinguishing two halves of the conventions is particularly troublesome.
The difference is very easy to overlook because many formulas are effectively invariant under the
change. Almost no source stresses the choice explicitly. Yet, mixing formulas of both choices
can easily lead to great failures that are hard to find and understand. It is the choice between the
original quaternion multiplication, �1, as introduced by Hamilton, and its alternative, ⊗, with
flipped arguments, i.e. q⊗p := p�q, which is actually a different multiplication since � is not
commutative.

Contribution

Our contribution was to make aware of this conventional split and to show that it is superfluous
and wasteful. Furthermore, we explain how it is linked to the problem which to solve ⊗ was
introduced for. For this problem, we promote a widely unknown alternative solution, which is
inverting all employed quaternions while using the original multiplication, and show its advantage
through a thorough comparison.

The fact that today’s conventional situation regarding rotation quaternions feels like a dan-
gerous battlefield for engineers might root in the fact that this almost forgotten solution was
overlooked or ignored for so long. This is because three possible, attractive features of rotation
quaternion-matrix conventions, being (i) passive world to body, (ii) homomorphic2, and (iii)
in sync with the quaternion definition in mathematics, are incompatible as shown by the very
influential [146] in 1993. Authors and teachers influenced by this publication had to decide
which of the three to sacrifice for the other two. However, the derivation was flawed in the sense
that it did not declare all its relevant assumptions. The undeclared binary choice which made the
triple incompatible was a single sign in the conversion from rotation vector to rotation quaternion.
However, it is one choice that is almost irrelevant in modern applications and should therefore
readily be questioned if it can unlock the attractive feature triple — even despite the fact that this
inverts the value of all quaternions.

Consequentially, that is what we propose. As an additional incentive, we show that this sign
flip yields a level of form similarity with the corresponding matrix formulas that is impossible to
achieve with the problematic quaternion multiplication, ⊗.

1The notation is non-standard and only adopted for this discussion for clearer distinction.
2Rotation quaternions multiply the same order as corresponding rotation matrices
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2.1. Conceptual contributions

Interrelations

We suffered from the problem early on, while working on the BAD concept, PaperI, and the unit-
length quaternion valued B-splines, PaperIII. The publications, experiments, and implementations
of both confirm that our alternative solution works flawlessly in theory and practice.

We believe this publication can help to ultimately heal a conventional wound that caused a lot
of trouble in the state estimation and calibration community for far too long.

2.1.3. Paper III
Hannes Sommer, James Richard Forbes, Roland Siegwart, Paul Furgale, “Continuous-Time
Estimation of attitude using B-splines on Lie groups”. In Journal of Guidance, Control, and
Dynamics, 2015.

Context

State or calibration space components that are not of vector space type are a well known
difficulty for estimation algorithms. Finding good representations for such quantities is non-
trivial. For continuous-time state representation this adds additional difficulty because it requires
the representation of entire non vector space valued curves, typically with time as curve-parameter.
The common interpolation or spline techniques readily available for vector spaces typically make
great use of the vector space properties and cannot be carried over easily to more general spaces.

Contribution

In the field of computer graphics the idea to construct unit-length quaternion valued B-splines
of arbitrary spline order is already well known ([86]). However, employing this construction
for estimation comes with additional problems. In particular, it requires efficient optimization
techniques. We found practical solutions for all the additional problems that come with optimizing
such B-splines. At the same time we formulated the theory for more general Lie-groups in order
for it to be usable beyond unit-length quaternions and to understand where specific properties of
quaternions need replacements.

The paper also contains results from simulation based experiments with spacecraft attitude
estimation. This problem is much smaller than our calibration approach from Section 1.3 but
very well suited to study the usability of the approach for the sub-problem of continuous-time
state estimation.

Future work

Some of the questions we investigated empirically with simulated data should allow for more
analytic answers. Most notably the following questions:

• Within which bounds will the initialization method work as intended? It should be
possible to prove within some suitable bounds that given some requirements the proposed
initialization will do its intended work. One promising approach could be to assess the
maximal difference between the Lie group valued B-spline and the corresponding B-spline
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in the ambient algebra that is used for the initialization. After all, we are using the very
same initialization, except for the succeeding projection onto the embedded Lie group. It
should be possible to to bound the change caused by the projection by constraining the
velocity of the original signal and the knot spacing.

• How big is the typical approximation error given a system model and a B-spline? Given the
knots of a B-spline and the system model and inputs an upper bound for the approximation
error of unperturbed solutions could be derived. The existing work on Rn (e.g. [44]) could
be a good starting point but would of course require the transfer to Lie groups. Of course,
this would loose applicability the bigger the process noise. Deriving similar (probabilistic)
bounds for the stochastic system model would require deeper knowledge of stochastic
differential equations on differentiable manifolds.

• How does the measurement noise influence the expected estimation quality?

The answer will depend on the spline parameters, knots and order, the Lie group, the
measurement density and functions, and the actual trajectory and the system model and its
input if used.

Assuming a problem and an estimator of the kind presented in the paper, an interesting
non-sampling based approach could be to propagate the uncertainty in the measurements,
Z, through the estimator using the fact that through the argmin an implicit function is
defined (assuming a unique solution). It is also a differentiable function assuming smooth
enough measurement models. This should allow applying the implicit function theorem to
compute the necessary Jacobian of the spline control vertices X with respect to Z. The
invertibility precondition of the theorem should correspond to X being weakly observable
(in the sense of distinguishable from some neighborhood). Unfortunately, this will require
second order Jacobians with respect to the control vertices which could be prohibitive in
particular when on a non-vector space Lie group.

Additionally, this will yield only an approximative answer regarding the estimator’s
variance induced by the sensor noise. For its actual accuracy, there is the additional
problem to consider that the B-splines will not be able to match the true trajectory. It
should be possible though, to analyse that error contribution separately similarly to a
numerically introduced variance. See the last question for an ideas on how to do that.

Interrelations

The theoretical solutions and implementations from this work are employed throughout the
work described in Part B. They enabled us to use the continuous-time approach for representing
attitude within complex calibration problems, which in turn enabled us to implement temporal
extrinsic calibration with exceptional simplicity and genericity.

2.1.4. Paper IV
Hannes Sommer, Raghav Khanna, Igor Gilitschenski, Zachary Taylor, Roland Siegwart, and Juan
Nieto, “A Low-Cost System for High-Rate, High-Accuracy Temporal Calibration for LIDARs
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and Cameras”. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2017.

Context

Validating calibration accuracy is a general problem due to the lack of accurate external measure-
ment options. For instance, it is impossible to tell where the optical frame of non-pinhole camera
is physically located. In fact, it is more an artifact of the interface between intrinsic and extrinsic
camera calibration. Similar problems exist with other sensors and actuators.

However, for temporal calibration, in some circumstances, there is an opportunity to rely
on the physical measurement process of active sensors, such as LIDARs, or to manipulate the
environment quickly and with well known latency in order to assign verifiable timestamps to the
sensors detections of the changes in the environment. For example, one can generate illumination
changes for cameras or mechanical shocks for accelerometers. If the opportunity can be exploited
at a high rate, ideally once per sensor timestamp, and at a high accuracy, then it allows to not
only retrieve the mean latency — typically an important calibration parameter — but also the
actual random delays in the sensor to processor communication as well as their correlation to
other observable parameters, such as system load or temperature. This allows to develop noise
models and specialized timestamp translators that can incorporate additional observables for a
given sensor, or simply decide whether to use the timestamps of the sensor’s clock or to ignore
them and rely on receive times only. Timestamp translators are required for operating most
current sensors when timing is critical – due to the unfortunate scarcity of support for clock
synchronization.

Contribution

We developed novel methods to detect the measurement time of time-of-flight LIDARs, using
photodiodes, and to locate camera images of a specialized LED array accurately in the time
of the LED controller. Additionally, we proposed an overall low cost solution to realize this
methods in situ for existing robotic systems, involving simple electrical devices specialized for
the task. The results of the experiments we conducted on five different LIDARs and two cameras
with our prototypical devices clearly confirmed the usefulness of the entire setup for the intended
use cases. Additionally, we discovered very surprising peculiarities of the analyzed LIDARs’
timestamps. These specific peculiarities are not very valuable knowledge in themselves because
they typically do not generalize to other sensors but the possibility to detect them easily per
sensor is of great value since they can diminish the performance of a system and are very hard to
find otherwise.

Interrelations

This work produced valuable tools to pin down some of the many unknowns when doing
calibration of multi sensor systems. They clearly allow us to answer some of the questions that
came up while we were applying our self-calibration to systems as described in the application
part, Section 2.2. Most importantly these were:
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• How to explain poor repeatability of the temporal calibration across different occasions?
When calibrating the EUROPA2 platform we discovered by overlaying LIDAR points on
camera images of dynamic scenes that what was a good temporal extrinsic calibration on
one occasion was actually poor on another occasion. Potential sources for the problem
were the assignment of timestamps inside the sensors and our understanding of it, the
performance of the sensors’ clocks, and the necessary translation of the sensor timestamps
into the system’s time. They all must be good enough to allow for a useful temporal
calibration. The lack of tools to validate any of these aspects was the very reason for this
research and publication. We developed tools which allowed us to analyse the sensor
clocks and the timestamping of the LIDARs and cameras and found a weakness in the
timestamp translation that we employed: The convex hull based translation was reducing
the jitter very well but could sometimes drift significantly off over a longer period –
effectively altering the required temporal extrinsic calibration. This can be mitigated
by periodically switching over to a fresher translator that has only seen the more recent
timestamps.

• How to validate temporal calibration? Validating the accuracy of temporal calibration
is generally hard due to the lack of more accurate and reliable methods to retrieve the
exact same quantities. With the tools developed here we can retrieve temporal extrinsic
calibration between some (important) sensor pairs in a very immediate way to validate the
calibration method in question. Also, their respective validations concepts allowed us to
quantify their accuracy with high certainty.

• How long does it take for the sensor clocks to become steady and reliable e.g. during warm
up? Since our tools also allow to continuously estimate the measurement timestamps we
can use them to assess how features of the timestamps develop over time and in relation
with other observables. In particular, we can observe correlations with the uptime of a
sensor or its temperature. Unfortunately, we did not have the resources to follow up on
this idea in practice. But at least, we now have the tools to do it – for some sensors.

• Can we trust / improve on the manufacturer specification regarding timestamping seman-
tics and our understanding of them? Typically, the manufacturer specification is unclear or
incomplete. In PaperIV we analyzed many sensors in this regard including the LIDARs
and camera of the EUROPA2 platform and found surprising and unspecified behavior
in about half of them. Being able to quantify the temporal errors introduced by these
deviations we could easily decide which needed consideration in the system. Among them,
only the undocumented and very unexpected assignment of start timestamps inside the
LMS151 was big enough in effect (∼ 20ms) to justify special treatment for the EUROPA2
application.

• Which is the best way to retrieve measurement timestamps for a given sensor? Translate
hardware timestamps (with which algorithm) or rather rely on receive timestamps? For
most sensors and connection technologies (USB, Ethernet, ..) receive timestamps have too
much randomness for many applications. Therefore, the device timestamps sent alongside
the measurements and not corrupted by transport or processing delays are typically relied
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upon. However, this often requires translating the device timestamps into system time
which always comes with some design choices, additional risks, and extra complexity.
Hence, it is important to know about the quality of the device timestamps compared
to receive times and about how the design choices affect the accuracy. We show how
to retrieve the necessary data to make an informed decisions regarding these questions.
Regarding EUROPA2, we switched to receive times for its nose, the Hokuyo UTM-30LX,
after finding that its hardware timestamps were inferior in quality.

2.2. Applications

2.2.1. Hand-eye calibration
Introduction

One famous and important calibration problem is the spatiotemporal extrinsic calibration of a
rigidly connected pair of pose sensors, i.e., sensors that can observe changes in position and
attitude, called hand-eye calibration. In principle, two sufficiently dissimilar, abrupt, and jointly
observed displacements are enough to globally retrieve the spatiotemporal extrinsic calibration
with accuracies bounded from below by the individual spatial accuracies and measurement rates
respectively. However, the need for higher accuracy asks for fusing the observation of many or
continuous displacements. The traditional approaches collect many displacement pairs per sensor,
align the timestamps with a suitable preprocessing, compute the spatial extrinsic calibration for
each corresponding pair of observed displacement pairs, and finally employ sample statistics to
retrieve a more accurate estimate of the calibration.

The recent [17] proposes new and efficient versions of the traditional approach for hand-eye
calibration by prefiltering intelligently the candidates of pose displacement pairs and evaluates
the gain in performance. As a co-author, I contributed a post optimization step, the refinement
step, realizing the idea of fusing all measurements to improve the calibration accuracy.

The non-linear refinement step

The paper solves the global spatiotemporal extrinsic hand-eye calibration problem in three
steps. In the first step, the two measurement series (from hand and eye) are aligned in time by
correlating the angular velocity norms of both (relative) pose signals. In the second, they are
aligned in space using a majority voting scheme for individual spatial analytic solutions to the
classical hand-eye calibration problem. Together, this solves the global spatiotemporal extrinsic
hand-eye calibration problem. However, the expected and experienced accuracy is limited mostly
due to the facts that the errors of individual measurements are not modeled and that much of
the data is rejected to find a consistent solution. A joint maximum likelihood optimization of
calibration and trajectory given the measurements allows higher accuracy. This optimization
is hard to solve as global problem but using the results from the first part as an initial guess a
local likelihood maximization can improve the accuracy of the calibration. We perform this joint
batch estimation as a third step, the refinement step, with a continuous-time representation for
the trajectory, as described in 1.3 – with a single batch and the global approach from the paper’s
first part for initialization. More specifically, we model the joint problem with one trajectory
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Figure 2.1.: The transformations relevant for the hand-eye calibration. Black are the trans-
formations of the first pose pair and in grey the second pose pairs. Solid lines indicate static
transformations, where dashed lines indicate transformations that change over time.

for the moving hand frame, H, TBH(t) =: X(t). The eye-frame, E, is assumed to be rigidly
connected to the hand frame by the spatial calibration, THE , as depicted in Figure 2.1. The pose
measurement timestamps for H and E are assumed to be connected through a fixed time-offset
∆t. Their errors we assume to be generated from isotropic multivariate Cauchy distributions3

with three degrees of freedom independently for both translation (with zero mean) and rotation
(with identity mean)4 with respect to body-, B and world-frame, W , respectively. Or, if the eye is
only emitting relative pose estimates (as, e.g., in visual inertial odometry), the same type of error
source is assumed but with respect to the pose of the last measurement event. This yields the
following negative log likelihood function, l, which we minimize:

l
(

TWE ,THE ,∆t,X
∣∣∣(TWE i, tE i)

k
i=1 ,(TBH i, tH i)

l
i=1

)
=

kE

∑
i=2

ρ(‖dE (TWE i−1,TWE i,TWE (tE i−1),TWE (tE i))‖2
ΣE
)

+
kH

∑
i=2

ρ(‖dH (TBH i−1,TBH i,TBH(tH i−1),TBH(tH i))‖2
ΣH

), (2.1)

where (TWE i, tE i)
k
i=1,(TBH i, tH i)

l
i=1 denote the measurement sequences, TBH (t) :=X(t), TWE (t) :=

TWBTBH(t −∆t)THE , ρ(s) = log(1+ s) the Cauchy-loss, and dE and dH are either relative,
(A′,A,B′,B) 7→ d(A′−1A,B′−1B), or absolute (A′,A,B′,B) 7→ d(A,B) 5. As displacement
vector d(A,B) ∈ R6 on SE(3) we use coordinates of (logSO(3)(R),u) with respect to a fixed
positive orthonormal basis, where u is a translation and R a proper rotation such that (uniquely)
u◦R := A−1B. Please note that l becomes independent of TWB iff dE is relative because then it

3This is equivalent to least squares with a Cauchy loss function.
4Approximated with zero-mean Cauchy distributions in the Lie algebra projected to SO(3) using the exponential map.
5For absolute dE ,dH the corresponding first measurements, i = 1, are assumed to be dummy variables while the real

measurements start with i = 2.
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cancels out in B′−1B. If not, it must be co-estimated.

Results concerning the refinement step

Evaluating any calibration accuracy is difficult due to the usual lack of ground truth informa-
tion. However, for hand-eye calibration there is a nice trick to get just that for a very special
arrangement of sensors: using three pose sensors rigidly connected the hand-eye calibration
can be performed on all three unordered pairs and the resulting three Euclidean transformations
should compose to identity because of the circular topology of the three pairs. The deviation
from this ideal result, the circular calibration error, is therefore a direct measure of the methods
accuracy over the three problem instances.

We conducted an evaluation using two datasets with three Google Tango tablets [61] that are
rigidly mounted on an aluminum profile. Sample statistics of the circular error is plotted in
Figure 2.2 for both datasets. The refinement step is labeled with O. All other labels refer to the
competing approaches for the first, global step. For their details see Section 3.3.1 of [17]. The
samples for these approaches are 20 runs of the randomized algorithms. The samples for the
deterministic refinement step are the various initializations generated by the different approaches
and all their runs. After the refinement step we get a mean circular position and orientation error
of 4.02 mm and 0.091◦ for the Tango 1 dataset, and 7.19 mm and 0.139◦ for the Tango 2 dataset.
Please note, that this is the accumulated error over all three device pairs.

The very small spread of the results after the refinement step indicates for those experiments
that the approach is not very sensitive to the quality of its initialization and that even the simplest
and fastest approach among the candidates is good enough. The significantly smaller mean error
suggest that adding the refinement step is indeed a valuable addition.
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Figure 2.2.: The circular error of the individual methods and the combined results after applying
the refinement step to the other methods, denoted with O.

Implementation

This paper uses the calibration library, OOMACT, developed alongside this thesis and building
on the contributions of the papers PaperI, and PaperIII, to perform the refinement step. To solve

21



2. Contribution

the non-linear optimization we use an extension of Levenberg-Marquardt to Lie groups (as
introduced e.g. in PaperIII).

Thanks to the generic and modular design of the library this application requires about 10 well
readable lines of c++ code to setup and solve this calibration problem:

const auto c o n f i g = l o a d C o n f i g F i l e ( ) ;

FrameGraphModel model ( c o n f i g . g e t C h i l d ( " model " ) ) ;
P o s e S e n s o r p o s e 1 _ s e n s o r ( model , " pose1 " ) ;
P o s e S e n s o r p o s e 2 _ s e n s o r ( model , " pose2 " ) ;
P o s e T r a j e c t o r y t r a j ( model , " t r a j " ) ;
model . addModulesAndIn i t ( p o s e 1 _ s e n s o r , p o s e 2 _ s e n s o r , t r a j ) ;

const auto c a l i b = c r e a t e B a t c h C a l i b r a t o r (
c o n f i g . g e t C h i l d ( " c a l i b r a t o r " ) , model ) ;

readPosesFromCsv ( FLAGS_pose1_csv , p o s e 1 _ s e n s o r , * c a l i b ) ;
readPosesFromCsv ( FLAGS_pose2_csv , p o s e 2 _ s e n s o r , * c a l i b ) ;

c a l i b −> c a l i b r a t e ( ) ;

w r i t e C a l i b r a t i o n R e s u l t ( FLAGS_outpu t_f i l e , model ) ;

Here, the only functions not provided by OOMACT and its support libraries are l o a d C o n f i g F i l e ,
readPosesFromCsv, and w r i t e C a l i b r a t i o n R e s u l t , which purely adapt to the spe-
cific input and output data format and location. All the remaining specifics for this calibration
problem are provided through the configuration.

2.2.2. Report V
Hannes Sommer, Zachary Taylor, “Life-Long Self-Calibration and Fault Detection”. In EU 7th
framework programme deliverables, 2016.

Context

The EUROPA platform is almost the perfect environment for developing a high quality generic
calibration system because it has rather high computational resources and many kinds of sensors
crucial for modern mobile robots. They are one 3d and five 2d LIDARs, one actuated, two stereo
camera systems, wheel odometry, and a high quality IMU.

Contribution

The report presents the details of our approach for and implementation of the life-long self-
calibration system that we developed for the EUROPA2 platform estimating the spatiotemporal
extrinsic calibration of all its sensors and actuators (wheels locomotion system + LIDAR tilting
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mechanism) and intrinsics of the wheel odometry. In particular, it presents a novel approach
to perform LIDAR-LIDAR (where up to one may be a 2d-LIDAR) and LIDAR-stereo-camera
extrinsic self-calibration. It also contains an extensive, experimental evaluation of the system for
offline and online calibration in in-laboratory conditions.

Interrelations

The calibration system presented in the report is the primary application of the prototypical cali-
bration libraries developed in parallel to this thesis. It provided the demand and the opportunity
for developing and testing these tools. It builds on the contributions from PaperI, PaperIII, and
[4]. and it provided the motivation and opportunity for PaperII and PaperIV.
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Chapter3
Conclusion and Outlook

This concluding chapter provides a brief summary of the most important findings and suggest
some potential directions for future research.

The dream of easy lifelong self-calibration is a big dream and we are still quit far away from
it — despite the fact that the required statistical knowledge and problem understanding has
been available for a long time already. This work contributes to some of the more fundamental
practical problems which make this dream hard to achieve in practice:

• Quaternion multiplication: Educating about the background of and problems with the
flipped quaternion multiplication once introduced by NASA’s JPL and providing an
alternative solution to the original problem will hopefully help with future decisions for a
quaternion convention and help preventing some expensive and painful confusion when
dealing with rotation quaternions. One of the two main authors of the flipped quaternion
multiplication, Dr. Landis Markley, agreed mostly with our critique even publicly, and
gave his valuable support to publishing our work. Some libraries and paper already refer
to our argumentation when explaining their choice of quaternion convention. The latter
was precisely our aim and hope.

• The block automatic differentiation (BAD) has great potential to save development time
and increase software flexibility and correctness. Unfortunately our fast prototype could
not (yet) mature into something that can be used practically. However, our publication
inspired at least two great developments building on the concept: the GTSAM expressions
– an important new feature of the recent version 4.0 –, which we helped to implement, and
[91] which was strongly influenced by our work and even exceeds the performance of our
fast prototype in some aspects, while lacking some of the flexibility oriented features.

• The Lie group valued B-splines enables the great simplification for temporal calibration
through adequate continuous-time state representation also for attitude without sacrificing
the important rotational bi-equivariance. The paper demonstrated the superior estimation
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performance of this approach compared to state of the art EKF and first order batch
estimation for some example cases of orbital space-craft attitude estimation. It is at the
functional heart of the calibration library we developed. There it excels in representing
attitude trajectories – in particular when delays must be estimated. The open source,
prototypical implementation is to the best of our knowledge still the only available library
providing hand optimized Jacobians computations (up to second temporal derivative) for
arbitrary order unit-length quaternion B-splines.

• Our novel method regarding sensor timestamping analysis provides the means to inspect
the timestamping of LIDARs and cameras in a high rate and high accuracy fashion. This
supports designing, validation, and debugging of timestamp translation, clock synchroni-
sation, and temporal calibration. It was very valuable in finding the roots of the difficulties
we experienced with sensor delay estimation and revealed various interesting unspecified
behaviors of several LIDAR sensors’ timestamp generation.

• The evaluation of self-calibration within the EUROPA2 project demonstrates the ap-
plicability of the overall concept and the developed algorithms and software libraries.
Furthermore, it introduces a novel concept to do self-calibration for 3d point cloud sensors.

Together these contributions make developing calibration software for a complex multi-sensor
system such as the EUROPA2 platform significantly easier to realize. Some further building-
block developed and implemented for this task were never separately evaluated and published due
to the lack of resources and time, such as the extremely useful automatic kinematic chain library
(prototypical code available as open source), and the novel point cloud registration concept for
calibration described in the ReportV (code not (yet) available). Nevertheless, some of the useful
blocks were published and hopefully aid future work in this domain and some of these have been
picked up by others already.

In fact, there is a lot of future work to do on the paths we started on:

• Thanks to BAD, the batch oriented approach, and Lie-group valued B-splines it would be
easy to represent the temporal uncertainty of each individual measurement with a scalar
variable plus a factor to model the uncertainty distribution for each measurement and
study the effect on the calibration quality.

• The Lie-group valued B-splines we used are based on the Lie-group exponential and there-
fore build on one-parameter subgroups as primitives (which at the same time resemble a
concept of geometric straightness if there is a compatible Riemannian geometric structure).
However, typically this structure has little to do with physical laws which should ideally
determine the shape of trajectory candidates. As a consequence, it could be promising
(but computational expensive) to directly use the Lie-group structure induced by the
unperturbed (deterministic) dynamic system as action space on the physical configuration
instead. In particular, if the actual process model noise is small and the configuration
space is rather simple, this should improve trajectory estimates significantly even with
low knot rate.

• For some systems vibrations while moving are a serious problem for extrinsic calibration
since they are hard to observe or model accurately. It could be worth to try giving the
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poses at a measurement instance some pose-slag w.r.t. the trajectory with some uncertainty
of its deviation from zero.

• Using a compiler to perform mathematical type checking as done in our BAD concept
for manifolds can and should be extended to physical modeling such as by checking the
correct choice of reference frames and units. The latter ideas are not new but they are
particularly valuable in a model based calibration framework and still lacking in this
domain to the best of our knowledge.

• In order to support debugging the models our calibration framework is keeping track of
where all the factors originate from and which calibration variables they depend on — all
with human readable labels — to allow an extremely useful group-wise error statistics per
iteration. This concept should be integrated into general purpose optimizers (for research
and development) so that they can provide the developers with semantic labels and
statistics based on such labels. This should be helpful in any domain using optimization
with complex models.

• Adding noise parameters, such as sensor measurement variance, to the optimizable
variables should be fairly straight forward in our design and could contribute greatly to the
practical problem of finding realistic noise parameters as well as to finding problematic
sensors in a given system.
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PaperI
Automatic Differentiation on Differentiable

Manifolds as a Tool for Robotics

Hannes Sommer, Cédric Pradalier, and Paul Furgale

Abstract
Automatic differentiation (AD) is an useful tool for computing Jacobians of functions
needed in estimation and control algorithms. However, for many interesting problems
in robotics, state variables live on a differentiable manifold. The most common example
are robot orientations that are elements of the Lie group SO(3). This causes problems
for AD algorithms that only consider differentiation at the scalar level. Jacobians
produced by scalar AD are correct, but scalar-focused methods are unable to apply
simplifications based on the structure of the specific manifold. In this paper we extend
the theory of AD to encompass handling of differentiable manifolds and provide a
C++ library that exploits strong typing and expression templates for fast, easy-to-use
Jacobian evaluation. This method has a number of benefits over scalar AD. First, it
allows the exploitation of algebraic simplifications that make Jacobian evaluations more
efficient than their scalar counterparts. Second, strong typing reduces the likelihood of
programming errors arising from misinterpretation that are possible when using simple
arrays of scalars. To the best of our knowledge, this is the first work to consider the
structure of differentiable manifolds directly in AD.
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PaperI: Automatic Differentiation on Differentiable Manifolds as a Tool for Robotics

1. Introduction

Computation of the Jacobian matrix of a nonlinear function is an essential part of many estimation
and control algorithms and, as such, it is a ubiquitous task within robotics and computer vision.
When faced with the task of implementing Jacobian computation within a computer program,
there are essentially four choices1. First, one can hand-compute the analytical expression. This
is easy for simple functions, careful attention may be paid to the correct handling of singularities
in the operations, and the computations may be hand-optimized for speed. However, it may
become arduous to compute and verify Jacobians every time a small change is needed. Second,
one may approximate the derivatives numerically. This is easy to implement but the resulting
Jacobians may be inaccurate for highly nonlinear functions and finite differencing schemes can
fail completely when the functions include conditional statements. Third, one may use symbolic
differentiation tools to generate code from the nonlinear functions. The resulting Jacobians are
accurate and highly efficient to evaluate but this method involves a pre-processing step and there
is no guarantee that the automatically generated code correctly handles singularities. Finally, one
may use Automatic Differentiation (AD) to compute the Jacobian matrices algorithmically. AD
algorithms compute derivatives by exploiting the deterministic nature of derivative computation.
The derivatives of atomic operations are implemented by the AD toolkit. The derivatives of more
complex functions are constructed by applying the chain rule at each operation and bookkeeping
the results. The application of AD is extremely easy using one of the many tools available2.
Jacobians computed by this method are as accurate as their hand-coded counterparts but they are
less efficient to compute and, again, may not handle all singularities.

In terms of accuracy and evaluation speed, hand coding or code generation are the clear
choices. However, they share the common drawback that any change in the original function
requires the Jacobian computation to be updated in lockstep. When prototyping, AD alleviates
this requirement as changes in the nonlinear function are automatically reflected in the Jacobian
computation. In our experience, researchers live continually in the prototyping phase and so, for
problems in robotics focusing on estimation and control, AD is a tool to accelerate research.

However, for many interesting problems in robotics, state variables live on a Differentiable
Manifold (DM). In robotics the most important DMs are the proper rotation and Euclidean
groups in two- and three-dimensional Euclidean space ({SO(2), SO(3) } and {SE(2), SE(3) }
respectively) for rigid-body kinematics, as well as the two-dimensional sphere, S2, (e.g. for
bearing vectors in sensor models [93]). Unit-length quaternions (elements of S0(H)) are another
popular choice for representing orientations.

The handling of state variables on DMs within estimation and control has been the subject of
active research for many years in robotics and aerospace [19, 27, 65, 73, 146], but this analysis
has not made it into the AD literature. The theory and implementation of AD is decidedly
focused on the derivatives of scalar operations as the computational atoms [133]. It is possible
to coax AD packages to compute the correct Jacobians for functions that operate on elements of
a DM, but this involves lifting the derivative computations to the outer space. Working in the

1This paper will focus on the scale of problem generally encountered in estimation and control algorithms in robotics and
not deal with methods used for larger-scale problems such as finding the Jacobian of a fluid simulation with respect to airfoil
parameters (c.f. [109]).

2See http://www.autodiff.org/ for an extensive list of AD tool-kits spanning many popular programming
languages.
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outer space precludes the possibility to utilize the special structure of the manifold to simplify
derivative computation.

In this paper we extend the theory of AD to DMs by considering block operations as the atoms
of computation, and exploiting the specific structure of the manifold to increase the efficiency of
computation. Throughout this paper we will use expressions involving unit-length quaternions
as our main example but the method is applicable to any DM. A pictorial representation of our
contribution is presented in Figure 4.1. This figure compares scalar AD with our approach by
plotting the computation graph for a simple example in which an unit-length quaternion, q, is
used to rotate a point, v.
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Figure 4.1.: A simple example in which an unit-length quaternion, q, is used to rotate a point, v.
Left: The computational graph associated with the calculation from the point of view of standard
scalar-focused AD algorithms. Right: The computational graph from the point of view of our
method. Although the evaluation of these two graphs is the same, computing the Jacobian from
the left graph with a dual-number approach requires 168 multiplication and 156 additions,
whereas only 3 multiplications are required by taking advantage of the DM structure on the
right (see section 2.3 for details). Note, that because our framework knows about the underlying
DM, it effectively only need to differentiate this very simple graph on the right, when the normal
AD needs to differentiate the large complex graph on the left because it works at the scalar level.

We see the contributions of this work to be the following:

• We extend the theory of AD to operate on DMs. Because the atoms of computation
become block operations, we call this Block Automatic Differentiation (BAD). To the
best of our knowledge, this is the first work to make this extension.

• We present a prototype C++ implementation of BAD with a number of desirable properties.
First, it is faster than AD that does not explicitly consider differentiation with respect to
the underlying manifold. Second, rather that simply overloading operators on scalar or
matrix types (a standard method of developing AD), we develop a type-safe system where
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every value belongs to a specific mathematical type with a well-defined tangent space for
differentiation. This makes the system easier to use than standard scalar AD and guards
against coding errors possible from the accidental misinterpretation of arrays of scalar
types.

• We perform a rigorous comparison of our method against the dual-number approach to
AD implemented in the Google Ceres optimization package [20].

The rest of the paper is organized as follows. Section 2 reviews the background theory and
presents the basis for our BAD algorithm. Section 3 describes our prototype implementation of
BAD as a C++ library. Our experimental results are presented in Section 4 and we conclude in
Section 5.

2. Theory

This section reviews the relevant theory on AD and DMs, and then describes our extension to
bring the two concepts together.

2.1. Automatic Differentiation
An excellent introduction to Automatic (or Algorithmic) Differentiation is presented in [133] and
[132]. This section attempts to summarize the content therein to bring the minimum of context
on the topic. The interested reader is referred to these documents and the references therein for
further details.

In the realm of computer science, AD is an ancient field, first developed to compute derivatives
on specialized computers in the late 1960s. Widespread application of the technique came with
the development of numeric tools in Fortran in the last two decades of the 20th century.

The basic idea of AD is easy to explain by imagining the evaluation of mathematical ex-
pressions represented by a computation graph. When interpreted by a compiler, a numeric
expression is represented as a computation tree, with constants or variables as leaves and opera-
tors (‘+’,‘−’,...) and functions (cos, sin, exp, ...) as interior nodes. Because of sub-expressions
being reused or compiler optimization, this tree becomes a computation graph (more precisely, a
directed acyclic graph). Figure 4.1 depict such computation graph for rotating a 3D point with a
quaternion.

The foundation of AD stems from the fact that the rules of differentiation are deterministic and
they can be applied mechanically and recursively to the computation graph. Rather than deriving
a formula for the derivative of an expression, the derivative is computed algorithmically by
traversing the graph and using a combination of the chain rule and known operator differentiation
rules. Traversing the graph from the leaves to the root is known as ‘forward’ AD and traversing
it from the root to the leaves is known as ‘backward’ AD. Backward AD is more complex to
implement and requires more storage but typically requires fewer operations, whereas forward
AD can be implemented in a straightforward manner with operator overloading and/or dual
numbers. In the latter case, the AD system evaluate the expression of interest, initially designed
for numeric values, on a specific data structure grouping the expression value and its derivative(s)
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Figure 4.2.: Computation graph corresponding to expression 6(y+z)
4sin(y+z) . Nodes circled in bold

line represent operators or functions.

at each node of the graph. A recent example of such dual-numbers is the Jet class used by Google
Ceres[20] to implement its AD feature.

In traditional languages not supporting operator overloading (e.g. Fortran 77), AD has been
implemented by a pre-processor stage that would parse an expression in the original language
and generate code to compute the expression and its derivative(s), to be compiled and linked in
the final program.

Our contribution lies in the fact that adding knowledge about the underlying DM, we can
dramatically simplify the computational graph (e.g. Figure 4.1). By considering differentiation
and the chain rule at the block level, we are able to exploit specific problem structure and
increase computational efficiency. We compare our approach to the “dual-number” AD [127]
implemented in Google Ceres[20].

The basic idea of the dual-number concept to do AD for scalar functions is to calculate the
derivatives value alongside the functions values through the computation graph from the leaves to
the root. This is done by applying all scalar operations to pairs of value v and derivative’s value
d 〈v,d〉. The derivative’s value starts with 1, while the values start with the value the function is
evaluated at. The scalar operations apply normally on the value parts, but a special corresponding
operation to the derivative. For example 〈v1,d1〉 ∗ 〈v2,d2〉 := 〈v1v2,d1v2 +d2v1〉. To calculate
gradients of functions in multiple scalar variables one simply keeps one second number for each
variable and initializes each variable with the corresponding second number as 1 and the others
as zero. For example a∗b one would then calculate the value and gradient at a = 2,b = 3 as
follows : 〈2,1,0〉+ 〈3,0,1〉= 〈2∗3,1∗3+0∗2,0∗3+1∗2〉= 〈6,3,2〉. The gradient can then
be extracted as the row vector of all the resulting second numbers (3,2).

2.2. Differentiable Manifolds and Jacobians
The concepts of differential geometry have been adopted by the robotics community as the
mathematical underpinnings of kinematics and dynamics. An excellent introduction is available
in Murray et al. [120] but we will provide a brief overview of the concepts necessary to
understand the idea of BAD.
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For the scope of this paper a m-dimensional DM (with m ∈ N) is a set, M , together with
an m-atlas, AM , inducing a second-countable Hausdorff topology on M . To precisely define
the notion of an atlas is beyond the scope of this paper, but informally AM is a collection of
charts, where each chart, ϕ : Uϕ →M , is an invertible mapping defined on an open subset Uϕ

of Rm onto a subset of M . The atlas provides a differentiable structure to the manifold M .
Using these charts, we can do differential calculus for functions between DMs, which include all
finite dimensional vector spaces (by assigning DMs that reproduce the usual calculus on vector
spaces).

Defining a Local Jacobian

Consider a mapping f : M →N between the m-dimensional DM M and the n-dimensional
DM N . At a point p ∈M , for f there exist a notion of differentiability and a formal local
linearization, the differential, denoted with dp f . Its rigorous definition is also beyond the scope
of this paper. Informally it plays the role of a derivative in a DM context. For algorithmic
treatment, one requires a matrix representing this differential, but the usual Jacobian of nonlinear
functions is only defined for mappings between vector spaces.

However, after choosing charts ϕM and ϕN around p and f (p) respectively, one may define
f̂ := ϕ

−1
N ◦ f ◦ϕM at p̂ := ϕ

−1
M (p), a mapping Rm ⊃ dom(ϕM )→Rn, where dom(ϕM ) denotes

the domain that ϕM is defined on. We call f differentiable at p iff f̂ is differentiable at p̂ and
define f ’s Jacobian in these charts with,

Jp f := Jp̂ f̂ = J
ϕ
−1
M (p)(ϕ

−1
N ◦ f ◦ϕM ). (4.1)

These Jacobians can then play the same role in algorithms dealing with manifolds as the usual
Jacobians do for nonlinear mappings between vector spaces. The algorithmic complexity to
calculate them depends not only on f but also on the chosen charts. The latter feature is one of
the underlying principles that BAD tries to exploit.

Defining a Global Jacobian

Usually manifolds are algorithmically represented as embedded sub-manifold of an outer R-
vector space OM := ROM , with OM > m. This means informally that M is represented
by a subset of OM for which the differentiable structure inherited from OM makes it a DM
diffeomorphic to M . Hence, points of M can easily be represented as the corresponding
elements of OM . A simple example is the Lie group of unit-length quaternions, a three-
dimensional manifold that is often stored and manipulated as the S3 sub-manifold of R4. In
the following, we will assume that M and N are embedded sub-manifolds of ROM and RON

respectively.
This situation allows for a special way to acquire a Jacobian for f . One can choose a mapping

f̃ : V → ON defined on an open environment V ⊂ OM of p such that f |M∩V = f̃|M∩V and
calculate the Jacobian Jp f̃ ∈ RON ×OM of f̃ instead. Here, F |A denotes the restriction of a
mapping F on a set A. We will call Jp f̃ a global Jacobian of f . Note that it does not require
a choice of charts but depends on the choice of f̃ instead. For some applications this global
Jacobian is already usable but for many it introduces instabilities and performance loss because
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it calculates a matrix that is bigger than necessary (recall that the local Jp f ∈ Rn×m) introducing
extra degrees of freedom. In those cases one can calculate Jp f in a second step after choosing
charts from Jp f̃ by exploiting,

ϕ
−1
N ◦ f ◦ϕM |U = ϑ ◦ f̃◦ϕM |U (4.2)

=⇒ Jp f = J f (p)ϑ · Jp f̃ · Jp̂ϕM , (4.3)

for an open set U ⊂ dom(ϕM ) ⊂ Rm containing p̂, small enough, and a differentiable ϑ :
f̃(ϕM (U))→ Rn, such that ϑ |dom(ϕ−1

N )∩dom(ϑ)
= ϕ

−1
N |dom(ϕ−1

N )∩dom(ϑ)
.

Even though this introduces an unnecessary step in the algorithm, it is precisely the path
suggested by a scalar-based AD. Because the manifolds are represented as embedded sub-
manifolds and thus the algorithm evaluating f maps, in practice, elements of OM to elements
of ON . Hence, applying a scalar-based AD approach directly on this evaluating algorithm will
calculate a global Jacobian, Jp f̃, typically concealing the fact that a choice of f̃ does happen in
this step.

The missing two Jacobians in (4.3) can either be calculated using scalar-based AD or by
manually supplied algorithms. The latter is exactly the concept behind the current Ceres
implementations when one uses its local parametrization, which plays here the role of the
chosen chart ϕM . As Ceres does not currently support manifold-valued error terms it can only
be used in cases where N is a vector space and thus ϑ can be chosen trivial.

2.3. Block Automatic Differentiation
This section provides an overview of the BAD concept and a simple worked example showing
the magnitude of speedup that is possible.

Overview

The motivation behind the development of BAD is to be able to inject knowledge from the
specific structure of a DMs into the AD process in order to speed up the calculation of Jacobian
matrices. The speedups gained by this approach will be specific to each manifold.

To enable an AD library to do that, it needs to know which DMs are involved in a mapping
f : M →N that should be differentiated. To achieve that, the primary idea is to consider a
computation graph on a mathematically higher level. Instead of primitive scalar operations
(+,∗, . . . ) on a single scalar type, we consider a set of basic operations that operate on points
in manifolds. For example, this encompasses the usual vector and matrix operations, but also
geometric operations like exponential maps, or special operations like rotation of a 3D point by
an unit-length quaternion.

In practice most differentiable functions of interest between DMs can be deconstructed into a
computation graph compounding such basic operations. These are the computational atoms that
we think in when building up mathematical models and, in robotics, there is a surprisingly small
set of such basic operations needed to implement many fundamental algorithms.

Such a high level computation graph can then be grouped by a BAD library into sub-blocks
for which there is optimized (Jacobian) evaluation code. This optimized code can be either be
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manually written or the output of a code generator of a symbolic toolkit.
In this way, the BAD concept is a mixture of manual, symbolic, and automatic differentiation,

allowing a series of novel opportunities to optimize the computational complexity:

• to derive a suitable intermediate value-cache structure for the evaluation of the compound
function and Jacobian evaluation;

• to automatically apply mathematically simplified algorithms for whole compound func-
tions;

• to choose, based on the expression, the Jacobian evaluation direction or even mixtures of
forward and backward steps; and

• to use highly optimized matrix manipulation libraries to do the final calculations.

However, there is one important obvious drawback when compared to AD: there are many more
combinations of manifolds and basic operations on them than scalar operations. While it is easily
possible to make a scalar AD library complete, a BAD library will never be. Because of this
it is very important for a BAD library to be user extensible and to grow over time, eventually
reverting to scalar AD as a last resort. To address this, our implementation efforts have been
focused on building up a core framework that tries to make it as easy as possible to add support
for manifolds and operations.

Ultimately, a BAD library will be less optimal than the output of an ideal symbolic tool
optimizing the whole function f . Nevertheless, current symbolic tools have many important
drawbacks compared to the BAD concept:

• the work flow from the mathematical model to the running code involves extra steps (i.e.
code generation during the compilation phase) that may take much more processing time,
especially when the expressions get quite complex;

• they are bad in factoring out repeated blocks to functions and thus produce huge code that
is impossible to read and hard to maintain;

• they don’t allow dynamic (at run-time) construction of the function f , which can be
essential for special problems; and

• they usually do not incorporate matrix manipulation libraries and thus neglect a very
important intermediate level of optimization.

Example

Here we provide the simple example of the rotation of a 3×1 vector, v, by a rotation, C, repre-
sented by an unit-length quaternion, q, to illustrate the potential of mathematical simplification
of the Jacobian evaluation by exploiting knowledge about the underlying structures. Let v denote
the pure imaginary quaternion corresponding to v. The function we will analyze can then be
defined as,

r : S0(H)→ R3, q 7→ Im(qvq̄), (4.4)
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where multiplication of non-bold quantities is quaternion multiplication, the overbar denotes the
quaternion conjugate operation, and Im(·) extracts the imaginary components of the quaternion
as a 3×1 vector. Here, r(·) is only defined on the unit-length quaternions.

To be able to write an algorithm that evaluates this function or its Jacobian, we have to define
how to represent the involved quantities. We will represent q with a 4-tuple (q0,q1,q2,q3)
identified with q’s coordinates in default ordered basis of H, (1, i, j,k). v and r(q)’s value will be
represented by the usual 3-tuples. To evaluate (4.4), the scalar calculations shown in Listing 4.1
can be executed (taken directly from the Ceres source code). (see Figure 4.1 for the equivalent
computation graph).

These are 21m+18a Floating Point Operation (FLOP)s for a single evaluation3.

Listing 4.1: Algorithm evaluating r(q) defined in eq. (4.4)

1 t1=-q3*q3; t2= q0*q1; t3= q0*q2; t4= q0*q3; t5=-q1*q1;
2 t6= q1*q2; t7= q1*q3; t8=-q2*q2; t9= q2*q3;
3 r0=2*((t8+t1)*v0+(t6-t4)*v1+(t3+t7)*v2)+v0;
4 r1=2*((t4+t6)*v0+(t5+t1)*v1+(t9-t2)*v2)+v1;
5 r2=2*((t7-t3)*v0+(t2+t9)*v1+(t5+t8)*v2)+v2;

To calculate the local Jacobian matrix Jqr at an arbitrary q ∈ S0(H) using a dual-number
approach, we follow the method utilizing the outer vector space encompassed by (4.3)). To
start we analyze the complexity of the first step in which one would calculate the Jacobian of
r̃ : H→ R3, defined by the pseudo code in Listing 4.1 (corresponding to f̃ in Section 2.2). Using
the dual-number approach, it is necessary to propagate four extra variables through each operation
(one partial derivative per component of (q0,q1,q2,q3)) (see 2.1). For each extra variable, a
multiplication in the original code requires an extra 2m+1a and each addition requires an extra
1a. This results in 21(2m+1a)+18a = 42m+39a FLOPs per variable and 4(42m+39a) =
168m+156a for the full 4x3 global Jacobian matrix. To build the local Jqr we have to choose a
chart around q. We will use the common exponential chart ϕq : U ⊂R3→ S0(H),w 7→ exp(w)q,
where w denotes the pure imaginary quaternion with vector part w and U is an environment
of 0 small enough to make the map injective. Its Jacobian at w = 0 can be calculated from q
with negations only. The remaining step is to multiply these matrices, making the total cost
9(4m+3a) = 36m+27a, assuming a straightforward implementation.

Our approach would exploit the following simplification of the general directional derivative
in direction w ∈ R3 to calculate Jqr = J0(r◦φq).

J0(r◦ϕq) ·w = (dqIm(qvq̄))(wq) (4.5a)

= Im(wqvq̄+qvwq) (4.5b)

= Im(wqvq̄+qvq̄w̄) (4.5c)

= Im(wqvq̄−qvq̄w) (4.5d)

= Im([w,qvq̄]) (4.5e)

= 2w× Im(qvq̄) (4.5f)

3Here, m represents multiplication operations and a represents addition operations. We ignore negations.
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= 2w× r(q) (4.5g)

In the above, [·, ·] is the commutator of quaternions and × represents the cross product of 3×1
vectors. Note that the equations above just sketch the proof, sometimes taking advantage of
concepts requiring more in-depth knowledge of DM and specifically of H. For the sake of brevity
we will stay at this level of details here.

To calculate the columns of r’s Jacobian matrix, one would evaluate the last expression for
w substituted with each default basis vector of R3. In these evaluations, the cross product
becomes trivial (i.e. only requiring negations), reducing the FLOP count to 3m needed to scale
the components by a factor 2.

The example above shows how we can go from 204m+183a FLOPs to 3m FLOPs to calculate
the Jacobian by choosing a beneficial local chart and injecting knowledge about the underlying
DM and the outer space at the block level. Any manifold has the potential to benefit from this
method based on its specific structure, or by choosing advantageous embeddings or tangent
space basis vectors. For unit-length quaternions representing rotations, one would implement
multiplication and inversion, along with the log and exponential map, resulting in a full-featured
BAD system for manipulation of expressions for this specific DM. For any other manifold of
interest, one would follow the same procedure, writing down the operations to be supported,
deriving some efficient analytical expressions for the Jacobians induced by these operations, and
implementing these as operations supported by the library.

3. Implementation

This section describes the usage of our implementation and compares it to the AD package
provided by the Ceres optimizer.

Using the Ceres AutoDiffCostFunction to calculate the local Jacobian of the expression r(q),
one would write the C++ code presented in Listing 4.2. Please note the necessary extra step on
line 27-29 to convert the Jacobian in global coordinates (of the embedding space) to the Jacobian
in local parametrization.

Listing 4.3 illustrates how our approach could be used to solve the same problem. In this
example, we use the “auto” keyword from C++ 2011 to simplify the code and let the compiler
deduce the type of an expression4.

In line 6, the values pQ is converted into something one can later take a derivative with respect
to (=Diffable). The Ref template only enforces capturing per reference (as also in line 7 with v a
pV).
In line 9, the high-level computation graph converted to a type and becomes (thanks to auto) the
type of r. The data of r will only contain the references to pQ and pV.
In line 11, an intermediate derived-value cache will be created. Its type will depend on r’s type
and essentially include storage to store intermediate values that could be needed repeatedly
in the (Jacobian) evaluation (e.g. the conjugate of q or its rotation matrix counterpart). The
resulting storage is embedded per reference into the cache, to have an unified storage for all

4In fact without “auto” the whole concept would become quite cumbersome to use because the type names quickly become
huge and unreadable. To allow the use of the library without knowing about these generated types is one of the big implementation
challenges.
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Listing 4.2: Calculating the local Jacobian of the function r(·) with Ceres AutoDiffCostFunction

1 using namespace ceres;
2 struct Cv {
3 const double *v;
4 Cv(const double *v) : v(v) {}
5
6 template <typename T>
7 bool operator()(const T* const q, T* residuals) const
8 {
9 UnitQuaternionRotatePoint(q, v, residuals);

10 return true;
11 }
12 };
13
14 QuaternionParameterization quaternionParameterization;
15
16 void calcJacobian(const double *q, const double *v,
17 double *result, double *qJ)
18 {
19 const double *parameters[] = {q};
20 double qGlobalJ[3 * 4];
21 double *jacobians[] = {qGlobalJ};
22 double qLocalParamJ[4 * 3];
23
24 AutoDiffCostFunction<Cv,3,4> r(new Cv(v));
25
26 r.Evaluate(parameters, result, jacobians);
27
28 quaternionParameterization.ComputeJacobian(q, qLocalParamJ);
29 internal::MatrixMatrixMultiply<3, 4, 4, 3, 0>(
30 qLocalParamJ, 3, 4, localParamJ, 4, 3, qJ, 0, 0, 3, 3);
31 }

values, without the need to copy the result data back.
In line 13, intermediate values that are needed will be calculated (e.g. always the final evaluation
result — here the rotated vector). In line 14, the Jacobian is computed directly into the provided
storage qJ.

Because the mathematical types of all variables and operations in the expression are encoded
in their C++ types, it is possible to do the following:

• to derive a suitable intermediate and derived value cache structure for the evaluation of
this expression and especially its Jacobian;

• to automatically apply mathematically simplified algorithms (using template specialization
and overload resolution to look them up) to evaluate the expression and especially its
derivatives using this cache structure;

• to implement the Jacobian evaluation using (block) forward or backward evaluation (or
some mixture of the two), whatever is the fastest for this particular fragment of the
computation graph.
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Listing 4.3: Using the BAD to calculate the local Jacobian of the function r(·).
1 using namespace tex; using namespace Eigen;
2 void calcJacobian(const UnitQuaternion & pQ,
3 const EuclideanPoint<3> & pV,
4 EuclideanPoint<3> & result, Matrix3d & qJ)
5 {
6 Diffable<Ref<UnitQuaternion>, 0> q(pQ);
7 Ref<EuclideanPoint<3>> v(pV);
8
9 auto r = q.rotate(v);

10
11 auto cache = createCache(r, result);
12
13 cache.update(r);
14 evalFullDiffInto(r, q, cache, qJ);
15 }

4. Experiments

In this section we describe two experiments comparing our BAD prototype implementation with
the dual-number approach implemented by Ceres. In the first experiment, we compare the timing
of Jacobian evaluations on increasingly large problems. In the second experiment, we use our
approach on real-world data in a nonlinear optimization problem whose goal is to estimate the
time-varying orientation of an elephant seal in a wildlife monitoring context.

4.1. Comparison with state-of-the-art Automatic Differentiation
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Figure 4.3.: Performance comparison for evaluating the value and Jacobian of ∏
N
i=1 Civ, as

a function of N. The red line (dual n. AD) refers to the dual-number approach implemented
by Ceres, the green line corresponds to BAD and the blue line is a hand-tuned version of the
evaluation.

In the first experiment, we compared the AD implementation of Ceres to our prototype BAD
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implementation. To measure performance on an increasingly complex problem, we measured
the time required to calculate the value and the Jacobian of expressions of the form,

C1v
C2C1v
CN . . .C1v,

for N ∈ 1 . . .20 (4.6)

where Ci is a rotation (represented in our case by an unit-length quaternion), and v is a 3×1
vector. The time required by Ceres (denoted as dual-number AD) and by our approach, as a
function of the problem size, is shown in Figure 4.3. On these artificial problems, there is an
obvious benefit for using the specific structure of the DM to compute the Jacobian. However, we
also compared it with a hand-tuned implementation of the Jacobian calculation. This results in
the lowest curve (blue) in Figure 4.3. Numerically, on this specific example, we find that BAD is
12 times faster than Ceres, but still 4 time slower than the hand-tuned evaluation, independently
of the problem size.

4.2. Application: Elephant-Seal Attitude Estimation
In this section, we will compare the performance of the different optimization solutions on
a specific application: the estimation of the attitude of elephant seals (Fig. 4.4) based on
accelerometer and magnetometer recording collected over weeks or months with sensors attached
to the animals while they are at sea. Although the data-set is peculiar and might seem far outside
the field of robotics, the problem of batch attitude or position estimation from initial measurement
unit is a common issue for underwater and flying robots.

G

Body Frame
P

Figure 4.4.: Left: Elephant seal and attached body frame. Right: typical 3D dive reconstructed
by integrating an estimated velocity vector.

The sensors attached to the animals record the following data at 1Hz: depth, acceleration,
magnetic field. A sound-based system estimates the animal linear velocity but due to energy
saving considerations, this is switched on only for 3 hours every 12 hours. At the surface, global
positioning is retrieved from the ARGOS satellites. To illustrate the point of this paper, we will
focus on using the accelerometer and the magnetometer to retrieve the animal attitude. In a
later stage, this could be used in combination with the velocity measurement to estimate a 3D
trajectory (Fig. 4.4), or in combination with GPS data to estimate sea currents. In a real situation,
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it is also necessary to use the batch estimation process to estimate some sensor calibration
parameters. All these extensions will be kept out of scope for this paper.

Problem Statement

Formally, the state we are estimating is the seal attitude as a rotation matrix Ct at time t and the
propulsion force Pt it applies along the x axis in its body frame (see Fig. 4.4). To this end, we have
the measurements of two constant vectors in the world frame: the acceleration G = [0,0,9.81]T

and the magnetic field B = [Bx,By,Bz]
T . The exact value of the magnetic field can be found

using the IGRF5 magnetic field model, which depends on the time, the latitude and the longitude.
For sake of simplicity, we will assume here that the reference magnetic field is constant between
two GPS fix. We will denote bt the magnetic field reported by the sensor in the body frame, and
at the accelerometer output. Note that the measured acceleration results from the combination of
gravity and the propulsion force Pt ·~x applied by the seal, where~x is the longitudinal axis of the
animal.

Figure 4.5.: Left: measured acceleration corrected for attitude and propulsion. Right: measured
magnetic field corrected for attitude. In both graphs: the black curves represent the shape of the
depth profile (scaled), the red, green and blue curves represent the x, y and z axis of the signal.

With these variables we can build the following error terms for the accelerometer and magne-
tometer:

Facc(t) =Ct · [at −Pt ·~x]−G and Fmag(t) =Ct ·bt −B (4.7)

In addition, we can make some continuity hypothesis on the attitude and the propulsion and
express them as the following error terms:

Fp(t) = Pt −Pt−1 and FC(t) =Ct ·Ct−1 (4.8)

The initial values used for the optimizer is propulsion at zero and Euler angles (roll, pitch and
yaw) estimated independently from the accelerometer and magnetometer.

5http://www.mathworks.fr/matlabcentral/fileexchange/28874-igrf-magnetic-field

46

http://www.mathworks.fr/matlabcentral/fileexchange/28874-igrf-magnetic-field


5. Conclusions

Optimization Results

Figure 4.5 illustrates a selection of 10’000 seconds of the optimization result, out of the 1.1e6
seconds (approx. 13 days) of the complete data-set. On the left, the measured acceleration
corrected for attitude and propulsion is displayed. As expected, the value is nearly constant except
when unmodelled forces are applied on the animal. This happens when the seal is breathing
at the surface and moves up and down with the swell, or when the seal brutally accelerates to
catch a prey. The former is seen as regular and constant length high vertical acceleration every
approximately 1800s, the latter is seen as more irregular event with stronger peak accelerations.
On the right, the corrected magnetic field is shown. The signal is more noisy but approximately
constant over these 10’000 seconds.

Comparison of optimization performance

Figure 4.6a and 4.6b shows the time, t, required to calculate the Jacobians necessary to solve the
simplified seals optimization problem using single-threaded execution on a benchmark PC after
loading the first N input lines of the measured data. In Figure 4.6a, we measure the time (using
the x86 RDTSC instruction) in total spent in the Jacobian calculation function per error term. In
Figure 4.6b, we show the time measured by the Ceres optimizer for the whole Jacobian evaluation
step (with the clock used in Figure 4.6a disabled). The solid line represents our implementation
of BAD and the dashed one shows Ceres implementation of the dual-number approach. Both
show the performance improvement by BAD. In Figure 4.6a, BAD is approximately 2.5-times
faster, in Figure 4.6b it is only about 13.5%. The explanation for this example is that Ceres
spends a relatively large amount of time constructing the overall Jacobian for the complete
optimization problem from the Jacobians of the individual error term, which are rather simple
error terms. Ceres includes the full sparse Jacobian matrix construction in what it reports as the
Jacobian calculation time.

To be complete, we must state here that the comparison here is slightly unfair in favor of Ceres
for two reasons. Ceres expects global Jacobians (the natural output of a scalar AD) instead of the
local Jacobians that they later calculate from these global ones by multiplying by the Jacobian of
the local parametrization (see (4.3)). To fit with this requirement, we calculate n×4 matrices
from our n×3 Jacobian and Ceres then calculates the n×3 back (n is the dimension of the error
term). Each of these conversions requires a matrix multiplication (first 3×4 then 4×3). The
first multiplication delays our implementation in Figure 4.6. It would be fairer to skip these
artificial steps but it would require changes in the Ceres code, which would further improve the
performance of BAD in Figure 4.6b. In addition, Ceres uses non-aligned Eigen::Vectors, while
our implementation needs aligned ones, which requires us to copy the data into aligned vectors.
The time spent copying these vectors is also counted in the data depicted in Figure 4.6.

5. Conclusions

In this paper we have brought together the concepts of AD and DM to develop a block AD
approach that we cal BAD. This approach has the potential to be much more computationally
efficient than traditional scalar AD by exploiting the specific structure of the DM. We presented
a worked example of an unit-length quaternion rotating a 3×1 vector and showed how it can
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Figure 4.6.: Time required to compute the Jacobian as a function of the number of error terms
for the simplified seal problem. On the left, only Jacobian computation time is included, on the
right, the time for the creation of the full sparse Jacobian matrix is also included. See text for
details.

greatly reduce the number of instructions needed for Jacobian computation. Finally, we presented
experimental results on simulated and real data that show that our prototype implementation of
BAD is indeed faster than a state-of-the-art AD approach.

Our next step will be to finalize the interface and implement a full-featured BAD library in
C++ encompassing the most common DMs and operations needed in robotics.
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Abstract
Over the last decades quaternions have become a crucial and very successful tool for
attitude representation in robotics and aerospace. However, there is a major problem
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Nomenclature
Rk×1 ' Rk implicitly identified ∀k ∈ N
·× · cross product
·× : R3→ R3×3,∀x,y ∈ R3 : (x×)y = x×y
g◦ f : dom( f )→ codom(g),x 7→ g( f (x)), g after f
〈·, ·〉 inner product (also called scalar or dot product)
H 4D Euclidean R-vector space of quaternions (without quaternion-multiplication)
BH := (1, i, j,k), orthonormal standard basis for H
U := {q ∈H |‖q‖= 1}, unit-length quaternions
� Hamilton’s quaternion multiplication, i.e. i� j�k =−1
⊗ Shuster’s flipped quaternion multiplication [146]: ∀p,q ∈H : q⊗p = p�q
I (q) : H→ R3,q 7→ (〈q, i〉,〈q, j〉,〈q,k〉), imaginary components of q
−→q := I (q) (shorthand)
I ∗(x) : R3→H,(xi)

3
i=1 7→ x1i+ x2j+ x3k⇒I ◦I ∗ = idR3

qr := 〈q,1〉 ∈ R, real component of q
·̄ : H→H,q 7→ qr1+ 〈q, i〉i+ 〈q, j〉j+ 〈q,k〉k, conjugation
SO(3) := ({M ∈ R3×3 |M−1 = MT ∧det(M) = 1}, ·)

1. Introduction

“The quaternion [146] is one of the most important representations of the attitude in spacecraft
attitude estimation and control.” With these words Malcolm D. Shuster opened his introduction of
[147], “The nature of the quaternion” (in 2008). It details on a conventional shift from Hamilton’s
original quaternion multiplication, �1 , to its flipped version, ⊗, Shuster had successfully
advocated for in the 1990s—in particular with the very influential [146].2 Shuster called ⊗ the
natural multiplication, and called the � traditional. We will refer to the former as Shuster’s
multiplication and to the latter as Hamilton’s multiplication, because we consider “natural”
too biased and because Shuster’s labels are generally rather unknown. Back then, the goal of
the introduction was to prevent confusion and mistakes when dealing with chains of rotations
(compositions) motivated by the application of spacecraft attitude estimation and control [147].
However, the introduced conventional split from other fields (e.g., mathematics, physics, or
computer graphics/visualization) caused a great deal of confusion and is a source for mistakes in
practice (see Section 1.2). Therefore, in this paper, we advocate to undo this split and return to
only using Hamilton’s original multiplication. At the same time, we show how an alternative
approach can be used to solve the original problem addressed in [146].

1Hamilton used the symbol · instead. We use � in this paper to better contrast ⊗ and stress the symmetry. For documents
using Hamilton’s multiplication only we recommend to just use the plain · or the default operator (omitted symbol), because
they are the default multiplication symbols (for quaternions) in mathematics, which should not be needlessly questioned as the
standardizing authority. See also Section 2.

2For example, the well known JPL-convention chooses ⊗ but it also includes other conventional decisions [150].
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1.1. Original Problem and Shuster’s Solution
The historical problem with Hamilton’s multiplication only appeared in connection with an
arguably arbitrary, specific convention on how to assign direction cosine matrices (DCM)3,
CS : U → SO(3) to unit-length quaternions. When using this assignment, as in [146], the
product of two quaternions, p�q, would correspond to the product of the two corresponding
DCMs, but with reversed order:

∀p,q ∈U : CS(p�q) = CS(q) ·CS(p), (5.1)

i.e., the mapping, CS, was not a homomorphism (U ,�)→ (SO(3), ·) but an antihomomorphism,
which is generally more uncommon and confusing and therefore more error-prone. Introducing
⊗ is Shuster’s solution to this problem [146]:

p⊗q := q�p ⇒ CS(p⊗q) = CS(p) ·CS(q). (5.2)

1.2. The Problem Today with Shuster’s Solution
Since its introduction, a great fraction of spacecraft literature has adopted ⊗ [147]. On the other
hand, virtually the entire rest of the scientific community dealing with quaternions is apparently
not following, and partially not even aware of this transition in the spacecraft community, as
we will show in Section 5. Having two different quaternion multiplications in use comes at
a significant and ongoing cost: formulas and implementations need translation or adaptation,
let alone the fact that one must first identify which multiplication is used in a given formula
or algorithm. The latter can be particularly tedious if the authors are not aware of the two
possibilities and hence do not mention which one they use4. If a reader is unaware of the split,
the discovery that two different quaternion multiplications are in use, and that in fact “the other”
was employed, might be made only after several failures.

The troubles may be little per subject but they are continuously affecting a significant number
of scientists and engineers, causing delays in the best case. This accumulated cost is particularly
large for interdisciplinary domains such as robotics that lean on publications from both conven-
tional worlds, for instance aerospace and computer vision. In fact, in robotics, there are several
recent publications for each of the two multiplications (see Section 5). It is also a pressing matter
because the effort to correct becomes larger with every new implementation or publication using
a convention different from what the community will agree on eventually.

1.3. Contribution
Given this current situation, it is an interesting question whether the proposed switch was
necessary or at least the best of all available options. Motivated by this question, this work
provides the following contributions5:

3Equivalent in value to a corresponding coordinate transformation matrix (between oriented orthonormal bases).
4As a small self experiment, the reader in doubt is invited to try to figure out which quaternion multiplication the popular

c++ template library for linear algebra, Eigen, is using.
5An extended version of this paper with in-depth arguments, derivations, proofs, and more additional material can be found

in [151].
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• give an overview over the two quaternion multiplications and their consequences for
representing SO(3);

• identify the problem with commonly using both;

• investigate and refute the necessity of the flipped multiplication defined in Equation (5.2)
to resolve the antihomomorphy problem expressed in Equation (5.1);

• promote and explain a neglected alternative solution;

• demonstrate that this alternative yields a more formal similarity to corresponding formulas
using matrices;

• advocate to discontinue Shuster’s multiplication;

• provide recipes to detect and migrate between quaternion multiplication conventions.

To the best of our knowledge, this is the first work explicitly addressing the ambiguity of
quaternion multiplication as a problem and proposing a potential solution.

1.4. Outline
We start with introducing our notation in Section 2 and important background information in
Section 3. Next, we propose an alternative solution to the original problem in Section 4. In
Section 5, we summarize relevant contributions on quaternion multiplication related conventions,
and tabulate their popularity in recent or influential publications. Then we argue for discontinuing
Shuster’s multiplication in Section 6. Lastly, we provide recipes for detecting and migrating
rotation quaternion related conventions in Section 7.

2. Notation

In this section, we introduce our nonstandard notation. An outline of the entire notation can be
found in the nomenclature on page 50.

Regarding quaternion notation this paper has two major challenges: First, we must distinguish
two different quaternion multiplications and consequentially two different quaternion structures
having most of their structure in common. Second, we do not want to load most readers with a
representation of quaternions different from what they are used to.6 We approach these challenges
purely axiomatically by assuming H to be only a 4D R-vector space of quaternions with inner
product 〈·, ·〉 and an orthonormal standard basis BH := (1, i, j,k). Pairing H with Hamilton’s
quaternion multiplication, �, yields Hamilton’s quaternions, (H,�), a skew field (also division
ring), with multiplicative identity 1 and additional defining relations:

i� i = j� j = k�k = i� j�k =−1.

We use� instead of Hamilton’s original · in this paper to better contrast⊗ while at the same time
stressing the symmetry. For documents using Hamilton’s multiplication only, we recommend

6For instance, by assuming the real part to be the first component of a real quadruple instead of its last component.
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using the plain · or the default operator (omitted symbol), because they are the default multiplica-
tion symbols (for quaternions) in mathematics, which should not be needlessly questioned as the
standardizing authority.

Pairing H instead with Shuster’s quaternion multiplication, ⊗, the flipped version of �, yields
Shuster’s quaternions, (H,⊗), a similar skew field, but with slightly different additional relations:

i⊗ i = j⊗ j = k⊗k = k⊗ j⊗ i =−1.

The real and imaginary coordinates/components of a quaternion q ∈ H we denote with
qr := 〈q,1〉 ∈R and −→q := I (q) := (〈q, i〉,〈q, j〉,〈q,k〉) ∈R3, respectively. The right-inverse of
I , mapping an imaginary coordinate triple into a purely imaginary quaternion we denote with
I ∗ : R3→H,(xi)

3
i=1 7→ x1i+ x2j+ x3k. The quaternion conjugation of q we denote with q̄.

3. Background: Duality of Rotation Representations

Physical rotations are conceptually rather unambiguous. However, when it comes to describing
them, there are two popular ways to do so. The active way is to describe what happens to the
rotated body’s points from a fixed world frame’s perspective. The passive way is to describe how
coordinates of fixed world points change from the perspective of the rotated body frame (the two
ways are also distinguished as alibi for active and alias for passive). The passive way comes in
two flavours, world-to-body (PWTB) and body-to-world (PBTW). The first describes the change
from before rotation to after and the second from after to before7. We call these options the usage
of the mathematical model to describe the physical rotation.8 Mathematically, the described
actions on the observed points have identical properties in all three cases matching precisely
the actions of the special orthogonal group (SO)9. However, because, given the same physical
rotation, PWTB describes the inverse compared to PBTW, they yield mutually inverse group
elements. Despite being conceptually very different, the active usage always yields the same
group element as PBTW. Consequentially, we will often not distinguish these two.The crucial
consequence is that, while every parametrization of the SO can be employed for all usages,
switching usage from or to PWTB corresponds to an inversion. The main target audience of this
paper are those who favour the PWTB usage because the problem represented by Equation (5.1)
is exclusive for the PWTB usage.

4. The Proposed Alternative Solution

The alternative solution for the original problem represented by Equation (5.1) we suggest is
the use of a different correspondence rule, CH : U 3 q 7→ CS(q̄). 10 Assuming we keep fixed
how rotation matrices represent rotations, this new correspondence inverts the corresponding
quaternion. It also yields the desired homomorphy from quaternions to rotation matrices together

7The names stem from assuming that body and world frame are initially aligned. Alternative: local to global vs. global to
local as in [150].

8In [150], the authors use “function” for active vs. passive without flavours.
9This paper only deals with SO(3).

10Explicit forms for CS and CH would only detract from our argument here, but can be found in Table 5.2.
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with � and the usual matrix multiplication:

∀p,q ∈U : CH(p�q) = CH(p) ·CH(q). (5.3)

This suggestion might falsely give the negative impression of an “additional” inversion. In
fact, it could equally well be that for CS the “wrong” (inverted) quaternions were chosen. And
our observations in Section 6.4 support this interpretation. Please note that both solutions yield
the usual way to apply the rotation represented by a quaternion11 (see also Example 7.2):

∀x ∈ R3,q ∈U :
CH(q)x = I (q�I ∗(x)�q−1)
CS(q)x = I (q⊗I ∗(x)⊗q−1)

. (5.4)

5. Literature Review

5.1. Literature on or Introducing Relevant Conventions
Aerospace

According to [40], Shuster’s multiplication, ⊗, was introduced in [94]. According to [157], it
was later proposed as a standard in [33]. Unfortunately, the exact details are impossible for us
to reconstruct as NASA has never published [33]. In [81], the authors derive a homomorphic
composition rule for the Euler (symmetric) parameter (ESP)12, effectively equal to ⊗, and infer
a required conjugation from ESP to Hamilton’s quaternions. In Section 4, we propose the same
quaternion values but with different derivation.

In [147], the author describes the transition from Hamilton’s � to Shuster’s ⊗ for “spacecraft
attitude estimation and control” literature, citing [146] as “probably, more than any other work”,
responsible for the conventional shift. In [146], ⊗ is indeed derived as necessity given some
requirements, of which one was the correspondence CS. At the same time, Shuster already
speculated why mathematicians had no reason to reform the quaternions: “The concern of pure
mathematics is not in representing physical reality efficiently but in exploring mathematical
structures . . . As engineers, our interest is in “im-pure” mathematics, contaminated by the
needs of practical application.” A major struggle with the quaternion conventions within NASA
that led to a conventional switch from the Space Shuttle program (STS) to the (American)
International Space Station (ISS) software standard is reported in [162]. According to the author
both conventions use PWTB quaternions, but with mutually inverse values. Hence, one must use
CS (ISS) and one CH (STS). Both use Hamilton’s multiplication, yielding an antihomomorphic
quaternion-to-matrix conversion for ISS. Apparently, this drawback was preferred over using
⊗, which would yield the homomorphic convention from [146]. The author compares these
two conventions with a third convention that he calls Robotics, which uses PBTW quaternions.
Neither [146] nor [147] are mentioned in [162] despite their apparent relevance. Similarly,
the problem of antihomomorphy is entirely left out. The only easily accessible reference for
quaternions in [152, 162] uses Hamilton’s multiplication and also does not mention Shuster’s
work. Sadly, its reference for the STS quaternions, [34], is not publicly available. Therefore,

11This fact is actually equivalent to both being homomorphic.
12Usually treated as equal to the rotation quaternion components
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we cannot verify the impression that the STS quaternions are exactly what we are proposing
in Section 4. If this is the case, something in the line of the argument quoted in [162] must
have been the reason to abandon the STS quaternion convention: “Define the application’s
fundamental quaternion with no negative signs.”13. Again, this is impossible for us to verify
due to NASA’s lack of publications on the matter. For the same reason, we neither know the
foundation of the quoted rule nor how it translates to other circumstances.

The Navigation and Ancillary Information Facility (NAIF), a sub-organization of NASA’s Jet
Propulsion Laboratory (JPL), uses Hamilton’s multiplication and CH everywhere in their primary
software suite called SPICE [122]. The authors use the short terms SPICE quaternions, using �,
and Engineering quaternions, using ⊗, and describe the first as “Invented by Sir William Rowan
Hamilton; Frequently used in mathematics and physics textbooks” and the second as “Widely
used in aerospace engineering applications” (e.g., cspice/qxq_c).

In [104, pp. 37,38] both multiplications are introduced, but the authors focus on ⊗ because
it “has proven to be more useful in attitude analysis”, while being aware of the trouble with
quaternion conventions: “Care must be taken to thoroughly understand the conventions embodied
in any quaternion equation that one chooses to reference.”

Robotics

In [150], the author proposes a classification of rotation quaternion-related conventions based on
four binary choices leading to “12 different combinations” (only 12 instead of 16 because one
binary choice, body-to-world vs. world-to-body is only distinguished in the passive case). The
author also points out two most commonly used conventions, one using Shuster’s and one using
Hamilton’s multiplication, which the author calls JPL-convention and Hamilton-convention,
respectively. He chooses to use the latter because it “coincides with many software libraries
of widespread use in robotics, such as Eigen, ROS, Google Ceres, and with a vast amount of
literature on Kalman filtering for attitude estimation using IMUs ([36, 92, 108, 126, 139], and
many others).” We discourage the usage of the name Hamilton-convention, because only one
decision of the four is associated with the name Hamilton, namely the multiplication (or algebra
as it is called in [150]) and there are many very different conventions using this multiplication.
The conversions between rotation vector, matrix, and quaternion are not among the four choices.
Instead, they are consequences and are only presented for the chosen convention (for quaternion,
matrix, and vector) and not for the other possible quaternion conventions. Since the chosen
convention includes PBTW (passive + local-to-global) as two further choices, the problem
represented by Equation (5.1) is circumvented and not discussed as a potential problem for other
combinations of the four choices (antihomomorphy occurs only when combining � with PWTB
usage of quaternions; see Section 3).

5.2. Popularity in Influential and Recent Literature
In Table 5.1, we group publications, which are recently dealing with rotation quaternions, by
(i) which quaternion multiplication is used, (ii) the type of publication, and (iii) the scientific
community. Of course, this is merely a small selection of corresponding publications in the

13It is referring to the conversion from rotation vector to quaternion; see Section 6.1.
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respective fields.
Within these constraints the table shows that all relevant online general purpose or mathemat-

ical encyclopedias, which we could find, use Hamilton’s multiplication (without mentioning
any alternatives)—and so do all major software packages. Most of them also use precisely the
quaternion-to-matrix mapping we suggest as part of an alternative solution to Equation (5.1) in
Section 4. The only scientific communities we could find using Shuster’s multiplication are those
of aerospace and robotics. Both seem to be divided to this day, including even NASA itself and
its substructure JPL. Please note that only [81] (from 1986) and probably [34] (from 1975; not
publicly available; only indirect and incomplete knowledge through [162]) combines � with
the PWTB usage and homomorphic quaternion-to-matrix conversion. All other users of this
multiplication either accept the antihomomorphy, or use PBTW or active quaternions (indicated
in the table by the non-B flags in parentheses). The frequent use of PWTB (all except such with
-, a, or w-flag) indicates that this is not due to a general lack of popularity or usefulness of the
PWTB usage. To the contrary, it can be considered state of the art in aerospace (only two, from
1987 and 2004 and with little influence, do differently among our 17 samples). Additionally,
it was used for the Space Shuttle program and is still used on the International Space Station
[162]. We believe that precisely this popularity of PWTB together with a lack of examples or
understanding how to combine it with � still poses an unsolved problem for many who prefer or
only know �. The alternative solution we propose in Section 4 solves this problem and unlocks
PWTB for all proponents of � without leading to an error-prone antihomomorphism.

6. Rationale against Shuster’s Multiplication

6.1. Overview

First of all, it is important to emphasize that the question of which quaternion multiplication
to use should be considered a pragmatic question. Conceptually, there is no problem with any
of the two multiplications nor with having both commonly used. Having said that, our main
argument is as follows.

Both Multiplications Are Equally Capable and Interchangeable for Every
Application

As we explain in Section 6.2, one multiplication is as good as the other in terms of applicability—
importantly also when representing 3D rotations.

One of the Two Multiplications Should Be Discontinued

Having two quaternion multiplications in formulas and software comes at a significant and
ongoing cost (see Sections 1.2 and 5), and does not provide benefits (see Section 6.1). It is also
not necessary to accept or maintain everything that is consistent and sound, as we explain in
Section 6.3. Hence, we should discontinue one multiplication, i.e., at least avoid using it in future
educative material, books, and software libraries.
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Table 5.1.: Popularity of the two multiplications 1

Type/Community Hamilton 2 Shuster

Online encyclope-
dias

Encyclopedia of Math., Wolfram Math-
world, Planetmath, Britannica, Wikipedia

Mathematics [92](B!), [70](Ba), [62](Ba), [96](Baw),
[138](B-)

Aerospace [34], [81](B), [29](Bw), [92](B!),
[152](B!), [143](w), [23](!)

[94], [146], [40],
[43], [26], [21],
[104], [129], [60],
[112]

Robotics [125](a), [36](aw), [121](Bw), [139](w),
[108](w),[150](w), [56](w)

[157], [46], [26],
[98], [100]

Mechanics [141](w), [142](w), [75](Baw), [71](Ba),
[53](Ba) [110](Ba)

Control [143](w), [31](!), [56](w), [64](!)

Computer vision [125](a), [119](aw), [139](w)

Computer graphic-
s/visualization

[144](!), [119](aw), [68](aw), [159](B!),
[96](Baw), [90](-)

Applications and
software libraries

Wolfram Mathematica, Matlab’s
aerospace (!) and robotics toolbox, C++
library Eigen, Google Ceres, Boost, GNU
Octave, ROS, NASA’s SPICE (qxq_c,
m2q_c)

Microsoft’s DirectX-
Math Library3

1The references are roughly in chronological order.
2Parentheses decorate differences from a default (article, passive world-to-body usage): (B) book, (-) no rotations

used, (a) active usage, (w) passive body-to-world usage, (aw) ' (a) or (w), (!) antihomomorphic QM-convention
(i.e., using CS in the Hamilton column).

3This is an unclear case since the documentation of the multiplication function states: “Returns the product of
two quaternions as Q2*Q1”, where the multiplication function arguments are in the order Q1, Q2; i.e., Shuster’s
multiplication is implemented, while the documentation uses Hamilton’s multiplication (all implicitly).

57

http://www.encyclopediaofmath.org/index.php?title=Quaternion
http://mathworld.wolfram.com/Quaternion.html
http://mathworld.wolfram.com/Quaternion.html
http://planetmath.org/hamiltonianquaternions
http://www.britannica.com/topic/quaternion
http://en.wikipedia.org/wiki/Quaternion
http://reference.wolfram.com/language/Quaternions/tutorial/Quaternions.html
http://ch.mathworks.com/help/aerotbx/ug/quatmultiply.html
http://ch.mathworks.com/help/robotics/
https://github.com/ceres-solver/ceres-solver/
http://www.boost.org/doc/libs/1_64_0/libs/math/test/quaternion_test.cpp
https://octave.sourceforge.io/quaternion/overview.html
https://octave.sourceforge.io/quaternion/overview.html
http://docs.ros.org/jade/api/tf2/html/Quaternion_8h_source.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/qxq_c.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/m2q_c.html
https://msdn.microsoft.com/en-us/library/microsoft.directx_sdk.quaternion.xmquaternionmultiply(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/microsoft.directx_sdk.quaternion.xmquaternionmultiply(v=vs.85).aspx


PaperII: Why and How to Avoid the Flipped Quaternion Multiplication

Hamilton’s Multiplication Is Preferable

Hamilton’s multiplication is predominant over all existing publications. This is because (i) it is
about 150 years older and (ii) Shuster’s multiplication has not spread to mathematics or theoretical
physics and probably never will. The latter arises from the fact that both disciplines have very
different needs that typically do not even lead to the original problem expressed in Equation (5.1)
as already observed in [146]. To the best of our knowledge, Shuster’s multiplication only spread
from aerospace to parts of robotics, which has similar needs and is strongly influenced by
aerospace literature. Additionally, Hamilton’s multiplication is used by the vast majority of
current software (see Table 5.1). These observations make it extremely difficult to discontinue
Hamilton’s multiplication instead. Even more so, pure mathematics should be almost impossible
to influence in that respect because it is against the very nature of mathematics to change such
a definition without an inner-mathematical reason. Additionally, as we show in Section 6.4,
Hamilton’s multiplication has its benefits over Shuster’s from a formal point of view. These
benefits make it less error-prone if combined with CH , which is at least as old and well-known
as CS (CH is usually referred to as the Euler–Rodrigues formula). It is typically used whenever
rotations are represented actively or PBTW (see Section 3). Because of that, CH is also already
predominant among existing software implementations (see Table 5.1).

Employing CH also for the very popular PWTB usage, as we suggest, has a consequence
that one could consider its biggest drawback: It introduces the comparatively rarely seen
passive quaternion (see Table 5.2, Figure 5.1), and thus induces an unusual conversion from an
active rotation vector, φφφ : q(φφφ) = exp(−0.5φφφ). Eventually, the original problem, expressed by
Equation (5.1) leaves two options besides not solving it: (i) introducing an unusual quaternion
multiplication (Shuster’s solution) and (ii) introducing an unusual conversion from the active
rotation vector to the (passive) rotation quaternion (used, e.g., in [81]). Having only these
two options is probably the very difficulty behind the overall struggle and what prevented a
standardization so far (see Section 5). Our position, in favour of (ii), emerges from rephrasing
the question equivalently: What should be specific for the PWTB usage of quaternions when
compared to the active usage, their multiplication, or the conversion to the active14 rotation
vector? It reveals an immediate argument for (ii) the conversion from the active rotation vector
to the PWTB quaternion should even be expected to be different from its conversion to an
active quaternion (compare also Section 3). An argument against (i) is that the multiplication
is used much more often, because conversions are merely interface operations and usually do
not appear where the heavy lifting is done. Additionally, if we have to choose the multiplication
depending on the usage of quaternions to represent rotations, which multiplication is right for
other applications? Furthermore, it is very unusual and therefore unexpected that a fundamental
algebraic operation such as multiplication is a matter of dispute and convention, while it is quite
common for representations. Finally, the very same question for rotation matrices was answered
historically: there is no flipped matrix multiplication in regular use. Instead, it is fully accepted
that there is an active and a passive rotation matrix which relate differently to an active rotation
vector. Why not accept the exact same for rotation quaternions when employing them for exactly
the same purpose?

14There is good reason to call the usual rotation vector active. However, it is not required here. Our argument works as well
for a neutral rotation vector notion.
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6.2. Equal Capability Argument

In this section, we provide support for Section 6.1 by arguing why both multiplications are
equally capable. The migration recipes in Section 7.2 show that any algorithm or formula can
be migrated between the two multiplications in very simple steps: just introduce quaternion
conjugation at some places and exchange all multiplications. This already shows that both
multiplications can provide the same service to the user (writer, reader, or programmer), as the
migration concepts work in both directions.

The question remains whether one implementation could be computationally more efficient
than the other. However, one should easily be convinced that the extra cost for some additional
conjugations is negligible for most use cases since it only involves scalar negations. Furthermore,
for very performance-critical parts of an implementation, the negations can almost always be
statically merged into other operations or eliminated through algebraic simplification.

6.3. Why Consistency Is Not Enough

One could counter argue against Section 6.1 that what ever is mathematically sound and consistent
should or even must be accepted out of principle. However, this is a disastrous position, because
when taken to the extreme that would mean that every publication should be allowed to introduce
or refer to its own version of mathematics or even use its own private language! However, the
immense power and usefulness of mathematics and language comes not only from its consistency
but very much from how much it is shared. Especially as engineers or scientists, we benefit
from the effort put into standardization and unification by, e.g., mathematicians on a daily basis.
It is only due to this effort that we can readily use answers from a mathematical software or
encyclopedia. Furthermore, it would work even better if we all cared more about standardization.
For example, imagine engineers chose freely, albeit in a consistent manner, between the standard
matrix product and its flipped version in their implementations and publications. What pain and
massive economic drawback would this little additional freedom cause? Every paper would need
to introduce its matrix multiplication before using it—just as it is now with quaternions. We are
not in that situation only because there is an accepted standard matrix product and it is treated as
such.

When it comes to representation of 3D rotations, we are used to having many conventions and
this might reinforce this false idea that we must accept any consistent convention. In this case,
one of the underlying reasons is that there are in fact conventional options that have benefits
and drawbacks given an application, such as the usage (see Section 3), and others that do not.
It is important to distinguish these two cases. The position of this paper is that the quaternion
multiplication is of the second type.

In summary, we should not adopt the simplistic position from above. Instead, we must invest
in the assessment for every consistent convention candidate whether it is unnecessary or useful
and worth its additional (future) cost. And unfortunately, sometimes we must even do that for a
convention that is already widely used.
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6.4. Formal Differences
In this section, we are going to investigate the formal differences of the two alternative solutions
to the original problem expressed in Equation (5.1) to support parts of Section 6.1. Please
note that this does not contradict our observation of equal capability in Section 6.2, because
neither similarity nor symmetry affect the practical capability of a mathematical tool. Instead, it
affects mostly the probability of human error when dealing with the tool, which can be a strong
argument, too. In fact, it is the very type of argument with which [146] justifies the introduction
of Shuster’s multiplication.

We start without any assumptions about how unit quaternions and proper orthogonal matrices
are conceptually used for modeling rotations15 and only focus on how quaternions are converted
to matrices. This conversion must be at least implicitly determined by all consistent rotation
conventions involving rotation matrices and rotation quaternions. The benefit is that our abstract
observations automatically apply to all such conventions. In particular, the C in CS and CH no
longer stands for the direction cosine matrix, but for any rotation matrix concept.

QM-Conventions

We call a convention that determines a specific conversion, C : U → SO(3), and a particular
quaternion multiplication, ?, a QM-convention and represent it with (C,?). In this way, many
common conventions collapse to a single representative. However, this is an intended abstraction.
The ignored details do not impact the following analysis, i.e., it holds equally for all conventions
collapsing to a given representative. We call a QM-convention homomorphic iff the multiplication
order is preserved when switching between quaternions and matrices, as in Equation (5.3),
antihomomorphic iff the order flips, as in Equation (5.1), and inconsistent otherwise. There
are only four options for consistent QM-conventions, namely all pairs in {CH ,CS}×{�,⊗}.
It seems commonly accepted that a homomorphy is preferable and less error-prone reducing
the good candidates to the two homomorphic QM-conventions, (CH ,�) and (CS,⊗), with their
homomorphy given in Equation (5.3) and Equation (5.2), respectively.

Formal Comparison Independent of the Usage

In Table 5.2, we compare the two homomorphic conventions. Here φφφ denotes a rotation vector
in R3. The convention-factors αC,αφφφ ∈ {−1,1}16 encode the usage of rotation matrices (αC)
and rotation vectors (αφφφ ). The usage of the quaternion follows from αC given the chosen (C,?)
and is identical to αC for homomorphic QM-conventions. We’ll look deeper into their effect in
Section 6.4. The indices A and B for the angular velocities, ωωω , indicate differences stemming
from frame assignments for ωωω and the usage of C. Depending on these choices one of the two
formulas is correct assuming another convention factor, αωωω ∈ {−1,1} is suitably chosen.17

The neutral differences are highlighted in blue. Green vs. red highlights the benefits of (CH ,�)
in terms of more similarity between corresponding rotation matrix and quaternion equations. The

15For instance, active/passive/DCM matrices.
16Both active and PBTW are represented by 1 and both PWTB and DCM by −1.
17To spell out further details would require the introduction of frames and physical meaning for the involved rotations.

Leaving out these details instead stresses the independence of our similarity arguments.
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Table 5.2.: Comparing homomorphic QM-conventions

Expression = Equal Expression Given QM-Convention

(C,?) = (CH ,�) (CS,⊗)
C(p)C(q) = CH(p�q) CS(p⊗q)

C(q)x = I (q?I ∗(x)?q−1)
I (p?q) = pr

−→q +qr
−→p +−→p ×−→q pr

−→q +qr
−→p−−→p ×−→q

i? j = +k −k
C(q) = q2

r 1+2qr
−→q ×+Q(q) 1 q2

r 1−2qr
−→q ×+Q(q) 1

C(φφφ) = exp(+αCαφφφ φφφ
×)

⇒2 q(φφφ) = ±exp(+αCαφφφ φφφ/2) ±exp(−αCαφφφ φφφ/2)

αωωω αCĊ =
+CωωωA

×

+ωωωB
×C

⇒2 αωωω αCq̇ =
+ 1

2 q�I ∗(ωωωA) − 1
2 q⊗I ∗(ωωωA)

+ 1
2 I ∗(ωωωB)�q − 1

2 I ∗(ωωωB)⊗q

1 Q(q) := (−→q ×)2 +−→q−→q T .
2 C(φφφ),q(φφφ) and C(t),q(t) are coupled here through C(q).

table clearly shows that (CH ,�) yields more formal similarity with the rotation matrices when
related to rotation vectors or angular velocities: The alternative, (CS,⊗), introduces a difference
in sign for the expressions involving φφφ or ωωω (− instead of +) compared to the matrix cases.
This difference in similarity with the corresponding rotation matrix formula does not depend on
the interpretation/usage (encoded in αC, αφφφ , A,B) but only on the choice of the homomorphic
QM-convention.

Table 5.2 also indicates that additionally flipping the cross product (negating the ·×) would
change the similarity argument in favour of (CS,⊗). In fact, it seems probable that this lack of
formal similarity was one reason to introduce the matrix valued operator [[φφφ ]] :=−φφφ

× in [146,
p. 445]. Unfortunately, this is hard to verify because it was introduced only on the grounds that
this “matrix turns out to be more convenient overall”. In [147], this matrix was abandoned again.

Formal Comparison Distinguishing Active and Passive Usage

A further symmetry aspect in favor of Hamilton’s multiplication becomes apparent if we compare
both active and passive usage of matrices and quaternions (see Section 3 and Figure 5.1). This
yields Table 5.3, again using the factor αφφφ to encode the usage of a given rotation vector φφφ .
In contrast to Table 5.2, which assumes an arbitrary but single usage for rotation matrices and
quaternions, it compares both usages (corresponding values in columns 2 and 3). Each row
corresponds to a rotation representation: rotation matrix and three different flavours of rotation
quaternions, each yielding homomorphic conversion to the rotation matrix in Row 1. The table
shows that neither using Shuster’s multiplication for the passive and Hamilton’s for active usage
(Row 3), nor a full switch to Shuster’s multiplication (Row 4) can yield the same level of form-
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similarity, when compared to the rotation matrices, as our proposed option, using � in all cases
(Row 2). Similarity flaws are marked in red vs. green. A graphical illustration of the comparison
between the pure Hamilton and the mixed multiplication scenarios is depicted in Figure 5.1.
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Figure 5.1.: Active (or passive body-to-world; outer ring) and passive world-to-body (=:PWTB;
inner ring) representations of a single physical rotation with the three common parametrizations:
rotation matrix, C, rotation vector φφφ , and rotation quaternion q. Their mutual conversions are
represented by arrows pointing to the codomain of the associated expression/function name
(nearby and the same color). On the left, Hamilton multiplication only: Black arrows represent
conversion between active and PWTB usage while keeping the parametrization, green arrows
represent conversion between different parametrizations while keeping the usage, and red arrows
represent additional switching of the usage. The bold arrows constitute the homomorphic
convention suggested in this paper. It is suitable for everybody preferring PWTB for q and
C. The rare users of PWTB rotation vectors would instead entirely remain in the inner circle.
Clinging to the green conversion from the common active φφφ to q even if q is intended to
be employed PWTB, as done in [146] leads to the situation on the right, using Shuster’s
multiplication for quaternions used passively. The colors are kept for conversion functions
that also appear on the left (all except the identity conversion between Hamilton and Shuster
quaternions). This conventional branch neglects the option of the highlighted inverted q (on the
left) and thus requires the flipped multiplication, ⊗, and inevitably breaks the symmetry between
C and q on the right compared to the left, i.e., there is no coloring of conversion functions that
achieves the same level of symmetry.

7. Recipes

In this section we give some practical advice to a) identify QM-conventions and b) migrate
between them.
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Table 5.3.: Active vs. passive usage given a rotation vector φφφ .

Rot. rep. Active Passive Composition

1) C(φφφ) = exp(+αφφφ φφφ
×) exp(−αφφφ φφφ

×) ·
Homomorphic rotation quaternion options:

2) q(φφφ) = exp(+αφφφ φφφ/2) exp(−αφφφ φφφ/2) �
3) q(φφφ) = exp(+αφφφ φφφ/2) exp(+αφφφ φφφ/2) �(act), ⊗(pass)
4) q(φφφ) = exp(−αφφφ φφφ/2) exp(+αφφφ φφφ/2) ⊗

7.1. How to detect which QM-convention is used
QM-conventions are fully determined by two binary choices: the quaternion to matrix map, C,
and the quaternion multiplication, ?. These choices can be ascertained as follows:

For the quaternion multiplication

one of the easiest ways is to find out the result of the product i? j. If the result is k then ?=�
otherwise it is −k and ?=⊗.

The quaternion to matrix conversion

can be identified by applying it to a suitable test quaternion, e.g. qT :=
√

0.5(1+k). It holds

CH(qT ) = CT :=
(0 −1 0

1 0 0
0 0 1

)
and CS(qT ) = CT

T . This test can also be performed on a matrix to
quaternion conversion. It maps CT to ±qT if CH is used and to ±qT in case of CS.

7.2. Migrating from one QM-convention to another
There are several efficient ways to migrate a tool (e.g. formulas, proofs, publications or al-
gorithms and implementations) between QM-conventions, where migration shall refer to a
transformation after which the tool does exactly the same job but with all quaternions going in or
out being compatible with the target convention. We introduce two powerful migration proce-
dures, translate and interface, that are applicable to all types of tools. Both procedures migrate
between the two homomorphic QM-conventions18. It can be very helpful to first decompose a
tool into smaller sub-tools and migrate each with the most advantageous procedure.

The two migration procedures

For both procedures a successive mathematical simplification step is recommended.

18To migrate a non homomorphic QM-convention first replace all multiplications with the other and flip their arguments.
This is an equivalence transformation yielding a tool using a homomorphic convention.
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Translate Replace all quaternion constants, c ∈H, within the tool with their conjugated
value, c̄, and all quaternion multiplications with their flipped version (⊗↔�).

Interface Conjugate all quaternion valued in- and outputs of the tool19. Components of a
partial quaternion (i.e. not constituting a complete quaternion) going in or out should be treated
as plain real numbers.

Examples

Next, we provide some examples:

i⊗ j =−k translates into −i�−j =−(−k), which simplifies to i� j = k. Interfacing it would
not change it since it has no inputs and only a logic output.

I (q) interfaces into I (q̄) = −I (q). When translating it, its implicit dependence on con-
stants must be respected: The right hand side of I (q) = (〈q, i〉,〈q, j〉,〈q,k〉) translates into
(〈q,−i〉,〈q,−j〉,〈q,−k〉) =−I (q).

q̇ =− 1
2 q⊗I ∗(ωωω) could be first decomposed in q̇ =− 1

2 q⊗ · and I ∗(ωωω). The first translates
into q̇ =− 1

2 q�·20. The second interfaces into I ∗(ωωω) =−I ∗(ωωω). Putting together yields the
expected q̇ = 1

2 q�I ∗(ωωω).

CS(q) interfaces into CS(q̄) = CH(q)21. It translates into the same, because CS must use
coordinates with respect to a basis (qi)

4
1 (constants) for its input and ∑αiq̄i = q⇔ ∑αiqi = q̄,

because αi ∈ R (compare 7.2).

I (q⊗I ∗(x)⊗q−1) could be first decomposed in I (·), interfacing into I (·̄) =−I (·), and
q⊗I ∗(x)⊗q−1, translating into q� (−22I ∗(x))�q−1. Putting together yields the expected
result, I (q�I ∗(x)�q−1).

Correctness of the migration recipes

It remains the question why these two migration concepts work. Unfortunately being intuitively
convinced of their correctness is much easier than to proof them. Formal proofs are far beyond
this paper. A rather detailed sketch can be found in our extended version [151]. Here we only
provide the proof ideas:

19Also suggested in [122].
20The variable q is an input and no constant.
21Hence, the matrix part of the QM-convention is indeed migrated.
22From translating constants in I ∗(x) = x1i+ x2j+ x3k
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Interfacing The interfacing strategy must yield a corresponding tool, i.e. having the same
input output behavior except for quaternion inputs and outputs, which are conjugated, because we
can interface it twice and yield the same tool as before (conjugation and identity are self inverse).
From this it follows immediately that the interfacing is loss and error free. The correspondence
follows the interfacing itself which is designed to achieve corresponding input output behavior.

Translation The translation strategy must yield a corresponding tool essentially because it
represents precisely the application of an isomorphism, namely quaternion conjugation, between
the isomorphic algebraic structures (H,+,�, ·̄,〈·, ·〉) and (H,+,⊗, ·̄,〈·, ·〉). Since this isomor-
phism also does not alter the real numbers embedded in H (as linear span of {1}), the input
output behavior is affected precisely as hoped. This can be seen as follows: First, there is no
other way to exchange information with the “quaternion world” than through quaternions or
real numbers because the axiomatic properties do not provide any other possibility. Second, all
quaternions get conjugated and real numbers remain the same if we apply conjugation to all
constants and inputs, which corresponds to using the translated tool with the target convention.

8. Conclusion

In this paper, we suggested an alternative solution to the antihomomorphy problem that led to
the introduction of the flipped quaternion multiplication. We further proposed to discontinue its
use in favour of Hamilton’s original definition combined with the suggested alternative solution.
To argue for this we gave evidence of the cost of maintaining two multiplications and showed
that for principal reasons there cannot be any significant capability benefit in using the flipped
multiplication for theory or algorithms. Additionally, we demonstrated that the formal similarity
between matrices and quaternions, when related to angular velocity or rotation vectors, is in
favour of the Hamiltonian multiplication independently of any other conventional decision as
long as the definition of the cross product is not additionally questioned. Furthermore, we
provided recipes for how to migrate formulas and algorithms from one quaternion multiplication
to the other as well as how to detect which convention is used in a given context.
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PaperIII
Continuous-Time Estimation of attitude

using B-splines on Lie groups

Hannes Sommer, James Richard Forbes, Roland Siegwart, Paul
Furgale

Abstract
Filtering algorithms are the workhorse of spacecraft attitude estimation but recent
research has shown that the use of batch estimation techniques can result in higher
accuracy per unit of computational cost. This paper presents an approach for singularity-
free batch estimation of attitude in continuous-time using B-Spline curves on unit-length
quaternions. It extends existing theory of unit-length quaternion B-splines to general Lie
groups and arbitrary B-spline order. It is show how to use these curves for continuous-
time batch estimation using Gauss-Newton or Levenberg-Marquardt, including efficient
curve initialization, a parameter update step that preserves the Lie group constraint
within an unconstrained optimization framework, and the derivation of Jacobians of
the B-spline’s value and its time derivatives with respect to an update of its parameters.
For unit-length quaternion splines, the equations for angular velocity, and angular
acceleration are derived. An implementation of this algorithm is evaluated on two
problems: spacecraft attitude estimation using a three-axis magnetometer, a sun sensor,
and (i) a three-axis gyroscope, and (ii) a continuous-time vehicle dynamics model based
on Euler’s equation. Its performance is compared against a standard multiplicative
extended Kalman filter (MEKF) and a recently-published batch attitude estimation
algorithm. The results show that B-splines have equal or superior performance over all
test cases and provide two key tuning parameters—the number of knots and the spline
order—that an engineer can use to trade off accuracy and computational efficiency
when choosing a spline representation for a given estimation problem.
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Nomenclature

‖ · ‖ = the Euclidean 2-norm in Rn, for any n ∈ N
A = associative algebra and ambient space of G
Ainv = the group of multiplicative invertible elements in A
ιιι = multiplicative identity element
G = general Lie group
g = G ’s Lie algebra
g = an element of G
H = the skew field of quaternions
I = the number of knots in the B-spline
K = I−O = the number of control vertices in the B-spline
O = B-spline order
q = an unit-length quaternion
R = the field of real numbers
Rotq = rotation associated with q
T = the end time
T = the time range [0,T ]

1. Introduction

Recent work on online state estimation in robotics has moved away from filtering algorithms
toward batch processing based on Gauss-Newton. Strasdat et al. [153] showed that, using modern
sparse matrix methods, batch processing results in higher accuracy per unit of computational
work. This move toward batch processing has resulted in a number of new approaches to state
estimation such as efficient and accurate iterative fixed-lag smoothing [97], and incremental
batch estimation [82]. The benefits of treating data in batch were clearly shown by Vandersteen
et al. [158] who presented a moving-horizon estimator for spacecraft attitude estimation based
on an efficient sparse matrix solution to the Gauss-Newton problem. While this method shows
excellent results when compared to filtering algorithms, it requires an estimate of the attitude at
each measurement time, limiting it to low-rate sensors.

The requirement to estimate the state at each measurement time is fundamentally tied to the
discrete-time approximation made by the vast majority of estimators. However, Furgale et al.
[59] proposed an alternate approach, leaving the batch estimation problem in continuous-time
and approximating the state as a weighted sum of a finite number of temporal basis functions
(such as a B-spline curve). A primary benefit to this approach is that it decouples the number of
parameters in the estimation problem from the number of measurements as the vehicle state may
be queried at any time.

In discrete time, the question of how to parameterize a three-degree-of-freedom orientation—a
member of the noncommutative group SO(3)—has been subject of decades of research and debate.
Algorithms such as the q-Method [161, pp. 426–428], the QUEST algorithm [148], and the more
recent ESOQ [116] and ESOQ2 [117], which are batch methods that are computationally light
and suitable for online and real time use, use unit-length quaternions. Although one of the first
applications of the Kalman filter employed Euler angles [51], the vast majority of Kalman-type
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filters (i.e., the extended Kalman filter (EKF) or unscented Kalman filter (UKF)) use unit-length
quaternions or a combination of unit-length quaternions and Gibbs parameters [24, 41, 95, 145].
The question is no less important in continuous-time, where we must decide how to parameterize
a continuously time-varying orientation. Furgale et al. [59] use the simple approach of defining a
3×1 B-spline of Cayley-Gibbs-Rodrigues parameters [30]. The B-spline provides analytical
formulas for parameter rates, allowing the computation of angular velocity at any point [77,
p. 30–31, Table 2.3].

However, analogously to the discrete-time case, any curve through the parameter space of
a minimal attitude parameterization will suffer from a number of problems. In the absence of
other information, a batch estimator will produce an answer that takes the shortest distance
in parameter space, which is not necessarily the same as the shortest distance in the space
of rotations. Consequently, the estimate produced may be dependent on the coordinate frame
in which we choose to express the problem, as this coordinate frame decides what part of
parameter space the answer lives in. Furthermore, every minimal parameterization of rotation
has a singularity and so, when using this approach, there may be a danger of approaching this
singularity during the estimation process.

Kim et al. [86] propose a method of generating B-splines on SO(3) using unit-length quater-
nions and their associated exponential map. The curves generated by this approach are valid
unit-length quaternions at every point, and time derivatives of the curve are found by a straight-
forward use of the properties of the exponential map. Consequently, we would like to evaluate
the approach proposed in Furgale et al. [59] with the one proposed in Kim et al. [86]. To do so,
we must further develop the theory presented in Kim et al. [86] to be suitable for estimation.
Specifically, we offer the following contributions:

1. we extend the unit-length quaternion B-spline approach of Kim et al. [86] to apply to any
Lie group and present all derivations needed to build an estimator for a broad subclass of
Lie groups;

2. we prove that this construction has the desirable property of bi-equivariance—applying a
group operation from the left and right to each control vertex applies this same operation
to every part of the curve—which ensures that the result of the estimation is independent
of the chosen coordinate system;

3. we present a method of including arbitrary nonlinear continuous-time motion models in
the estimator;

4. we develop a method of initializing the spline control vertices to act as an initial guess for
batch, nonlinear minimization;

5. we derive the specific equations for unit-length quaternion curves including:

a) the equation for angular velocity of a body,

b) the equation for angular acceleration of a body, and

c) analytical Jacobians that relate small changes in the (unit-length quaternion) spline
control vertices to small changes in orientation, angular velocity, and angular accel-
eration;

69



PaperIII: Continuous-Time Estimation of attitude using B-splines on Lie groups

6. finally, we compare a family of spline-based estimators to standard approaches on two
simulated spacecraft-attitude-estimation problems—one using measured dynamics from a
gyroscope, and the other using dynamics based on Euler’s equation. In both cases, we
compare against a standard Multiplicative Extended Kalman Filter (MEKF) and the batch
discrete-time estimator recently proposed by Vandersteen et al. [158].

2. Related Work

An increasing body of literature in robotics shows that state estimation based on batch optimiza-
tion has a higher accuracy than filtering approaches per unit of computational work. A primary
study in this is provided by Strasdat et al. [153] who show that, for the particular problem of
camera-based simultaneous localization and mapping, keyframe-based optimization that chooses
a subset of informative measurements outperforms filtering. Similar results have been shown
for other problems, especially the fusion of visual and inertial measurements. Leutenegger et al.
[97] directly use nonlinear optimization for online visual inertial sensor fusion showing higher
accuracy than an EKF approach while still running at sensor rate. Mourikis et al. [118] take a
different approach, proposing a filtering framework that keeps multiple clones of the state and
uses batch optimization of landmark locations as an efficient update step for spacecraft entry,
descent, and landing. Their follow on work shows the clear benefit of optimizing over temporally
consecutive state clones when compared to pure filtering [99].

These “online batch” algorithms follow the established formula for continuous-time filtering
with discrete measurements first proposed by Moore and Tam [115]. For the continuous system
dynamics, they use measured dynamics (from the inertial measurement unit) in the place of the
filter’s control input and implement an integration scheme between exteroceptive observations.
This inherently links the size of the state vector to the number of observations. For some problems,
there is no drawback to this coupling. For others, such as the alignment of pushbroom imagery
from satellites (see Poli and Toutin [128] and references therein), the processing of data from
rolling shutter cameras [72, 123, 137], or continuously-moving sweeping laser scanners [22, 32,
47, 155], an estimate of the state is required at such a high rate that a discrete-time formulation
becomes intractable for all but the smallest problems. To maintain a tractable estimation problem,
each of these papers uses a continuous-time state representation to decouple the size of the
state vector from the measurement times, either parametric curves [22, 32, 47, 123, 128, 137]
or Gaussian process (GP) regression [155]. These two competing approaches both consider all
measurements at once and they both use Gauss-Newton to derive a maximum likelihood estimate
for the state variables. The key difference is on the state representation.

Tong et al. [156] describe the Gaussian Process Gauss Newton (GPGN) algorithm, which
uses a finite set of samples of the state at different times as the set of parameters to estimate.
The GP prediction equation is used to look up the state in between the sample times. The GP
covariance function acts as a regularizer to keep the state estimate smooth. This approach has
three shortcomings. First, the GP prediction equations require one to build and invert a dense
matrix the size of the state vector, limiting the applicability to large problems. Second, the
covariance function of the GP which defines the smoothness of the solutions must be chosen
ahead of time, and doesn’t represent a physical process. Hence it is currently unknown how to
incorporate nonlinear continuous-time systems models into GPGN. Finally, it is not yet clear
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how to define a GP and a covariance function on a Lie group such as SO(3). For these reasons,
we pursue a parametric approach, which allows us to naturally handle each of these issues.

The parametric curve approach uses a weighted sum of known temporal basis functions to
represent the state. Although there have been many isolated publications using parametric curves
over the years, Furgale et al. [59] showed how it relates back to continuous-time maximum
likelihood estimation [79, Chapter 5], presented the mathematics in their most general basis-
function form, and expanded the derivation to include an arbitrary nonlinear continuous-time
system model. However, in this and follow-on work they limited their applications to problems
where it was possible to use curves in attitude parameter space and simple, white-noise motion
system models (c.f. Oth et al. [123] and Furgale et al. [58]).

Continuous-time representation of attitude has mostly used either curves through parameter
space [58, 59, 123, 128] or spherical linear interpolation on SO(3) [47, 72, 137]. Linear interpo-
lation is singularity free but curves are only C0 continuous, which is not a good fit for smooth
vehicle motion. Anderson and Barfoot [22] model the trajectory as a curve through velocity
space, which is able to represent attitude change with no singularities, but requires numerical
integration of the curve if the pose is required. Kim et al. [86] present a general approach for
cubic B-spline unit quaternion curves but their target was computer graphics. This approach
was adapted for state estimation by Lovegrove et al. [101], who use the same curve construction
technique to build curves on SE(3). In contrast, we extend this curve construction scheme to
arbitrary B-spline order (second order corresponds to spherical linear interpolation) and provide
general formulas for the time derivatives and Jacobians needed for optimization.

To the best of our knowledge, this is the first work to include an arbitrary nonlinear system
model into basis-function formulated state estimation. A similar optimization process was
previously proposed by [76] for trajectory generation for mobile robot planning on rough terrain.
They estimated a polynomial curve through the control inputs of a wheeled mobile robot that
would take the robot from the current pose to the goal pose. They forward-simulated the vehicle
dynamics using numerical integration, and used the error between the final pose and the goal
pose to iteratively update the polynomial coefficients until convergence. In contrast, we assume
the control inputs are known and use a numerical integration scheme to apply the system model
to the parameterized state.

Spacecraft attitude estimation is an ideal problem to test advances in the mathematical rep-
resentation of orientation and, for this reason, it has been at the center of attitude estimation
research for decades. Early spacecraft-centric batch attitude determination methods, such as the
q-Method [161, pp. 426–428] and QUEST [148], are solutions to Wahba’s problem [160]. The
q-Method and QUEST, as well as ESOQ [116] and ESOQ2 [117], employ unit-length quaternions
when estimating attitude. Other solutions to Wahba’s problem, such as Farrel et al. [50], Forbes
and de Ruiter [54], Markley [105], estimate the attitude rotation matrix rather than an attitude
parameterization. Wahba’s problem in SO(n) is considered in de Ruiter and Forbes [45]. There
is a vast literature devoted to spacecraft attitude estimation using Kalman-type filters such as
the EKF and the UKF [42]. Unit-length quaternions are the preferred attitude description when
Kalman filtering due to the absence of singularities; for example, see Bar-Itzhack and Oshman
[24], Bar-Itzhack and Reiner [25], Choukroun et al. [37], Crassidis and Markley [41], Lefferts
et al. [95], Shuster [145]. Often a three-parameter attitude representation, such as Gibbs parame-
ters, are used together with a quaternion in a multiplicative framework [41, 106, 107]. Rather
than trying to circumvent various issues associated the unit-length quaternion constraint within
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multiplicative filtering structure, Chee and Forbes [35], Zanetti et al. [163] revisit the derivation
of the discrete-time Kalman filter and directly incorporate the unit-length quaternion constraint
(which is in effect a norm constraint) into the derivation. Normalization of an unconstrained
estimate is shown to be optimal. Forbes et al. [55] presents a continuous-time generalization of
Zanetti et al. [163]. Various authors have also considered estimating the rotation matrix directly
in both stochastic and deterministic settings. Bar-Itzhack and Reiner [25], Choukroun et al.
[38, 39] consider rotation matrix estimation within a Kalman filtering framework. Firoozi and
Namvar [52], Khosravian and Namvar [85] consider rotation matrix estimation of a spacecraft
endowed with a rate gyro and one vector measurement, generalizing the SO(3) estimator structure
presented in [67, 80, 102, 103]. Similar rotation matrix estimators can be found in Grip et al.
[63], Kinsey and Whitcomb [88].

The closest work to our is that of Vandersteen et al. [158] who propose a batch discrete time
estimation framework for attitude estimation and spacecraft calibration. They show that batch or
moving horizon estimates outperform filters in terms of accuracy and convergence rate. However,
in this formulation, the number of states is tied to the number of measurement times. This limits
the approach to low-rate sensors.

3. Theory

This section will present theoretical background and contributions. We will assume that the
reader is familiar with the basics of B-splines and the very basics of Lie groups. For a thorough
introduction to B-splines, see Bartels et al. [28, chap. 4]. For a brief overview with a focus on
estimation, see Furgale et al. [59]. For a thorough introduction to Lie groups, see Kirillov et al.
[89, chap. 2–3], and for a more applied approach, see Hall [66, chap. 1–3].

3.1. Continuous-Time Batch State Estimation

This section will briefly review the continuous-time batch state estimation framework used in this
paper and originally presented in Furgale et al. [59]. The probabilistic derivation for estimation
of a continuous-time process, x(t), with discrete measurements seeks an estimate of the joint
posterior density, p(x(t)|u(t),z1:N), over the interval, T = [0,T ], where u(t) is a control input
to the system, and zi is a measurement taken at time ti ∈T , 1≤ i≤ N. Assuming the probability
density of the initial state, p(x(t0)), is known, this density is commonly factored as,

p(x(t)|u(t),z1:N) =
p(x(t)|u(t))∏

N
i=1 p(zi|x(ti))

p(z1:N)
, (6.1)

by using Bayes’ rule and assuming that the measurements’ distributions given the state (a) do
not depend on the control inputs and (b) are mutually independent.

By assuming that the densities involved are Gaussian, we can write the measurement model,

zi = hi (x(t))+ni, ni ∼N (0,Ri) , (6.2)
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and measurement distribution,

p(zi|x(t)) = N
(
hi
(
x(t)

)
,Ri
)
, (6.3)

where i refers to the ith measurement, hi(·) is a nonlinear measurement model, typically eval-
uating x and its derivatives at a measurement time ti, and Ri is the covariance matrix of the
measurement noise.

We may also write down the process model as a continuous stochastic dynamical system [79,
p. 143] described formally by the differential equation,

ẋ(t) = f
(
x(t),u(t)

)
+w(t), w(t)∼ G P

(
0,Qδ (t− t ′)

)
, (6.4)

where the over-dot represents the time derivative, f(·) is a deterministic function, w(t) is a
zero-mean, white Gaussian process with power-spectral-density matrix Q, and δ (·) is Dirac’s
delta function. The notation G P(·) denotes a Gaussian process in the same way that N (·)
denotes a Gaussian distribution [134, Chapter 2]. The process distribution may then be written
as [79, p. 156]:

p
(
x(t)|u(t)

)
∝ p
(
x(t0)

)
exp

(
−1

2

∫ T

0
eu(τ)

T Q−1eu(τ)dτ

)
, (6.5)

where
eu(t) := ẋ(t)− f

(
x(t),u(t)

)
. (6.6)

A batch estimator for x(t) may be derived by taking the negative logarithm of the posterior
likelihood,

{x(t)?}= argmin
x(t)

(− log(p(x(t)|u(t),z1:N)) . (6.7)

The key innovation presented in Furgale et al. [59] was to leave the problem in continuous-time
and make estimation of (6.7) tractable by modeling the process as a weighted sum of a finite
number of known analytical basis functions,

ΦΦΦ(t) :=
[
φφφ 1(t) . . . φφφ M(t)

]
, x(t) := ΦΦΦ(t)c, (6.8)

where each φφφ m(t) is a D×1 basis function, ΦΦΦ(t) is a D×M stacked basis matrix, and c is a M×1
column of coefficients. Hence, by making the substitution in (6.8), we have turned a difficult
problem—estimate a process at the infinite number of points in T —to a simpler problem that
we know how to solve: estimate the column of coefficients, c. We call this, the basis function
formulation,

{c?}= argmin
c

(− log(p(x(t)|u(t),z1:N))≈ argmin
x(t)

(− log(p(x(t)|u(t),z1:N)) , (6.9)

where the approximation sign indicates that we are approximating the process x(t) with (6.8).
This problem is easily solved using standard methods like Gauss-Newton or Levenberg-Marquardt.

The basis function formulation works very well when the process lives in a vector space.
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ti ti+1 tI�O+1tO

y = bs(i)(t) y = bi(t)

y = f(t)

cs(i)

ci

Figure 6.1.: Graph of a B-spline f : [tO, tI−O+1)→ R (with O = 4, I = 11, t j := j−1). It shows
basis functions, b j (solid bumps), knots, t j , (dashed lines), control vertices, c j , (black dots). Only
the highlighted basis functions contribute to f ’s value in the dark gray shaded area.

However, this does not cover common cases in spacecraft attitude estimation or robotics, where
vehicle states usually are of non-vector space type like the Lie groups SO(3) or SE(3). The next
section derives one approach to address this issue.

3.2. Construction of a Lie group-valued B-spline

In this section, we derive a method to construct a B-spline curve on a finite-dimensional Lie
group. Our derivation is based on the unit-length quaternion B-spline curve from Kim et al. [86].
They define a curve based on cumulative B-spline basis functions. Cumulative basis functions
represent an alternative but equivalent method of constructing a B-spline function on R-vector
spaces. The derivation presented below is valid for any nondecreasing knot sequence.

We will quickly motivate that alternative form. Let f be a B-spline function of order O defined
on a nondecreasing sequence of knots, (ti)I

i=1 with I ≥ 2O. At time t ∈ [ti, ti+1), f, when i≥ O
and i≤ K := I−O, may be written as

f(t) =
i

∑
j=s(i)

b j(t)c j, (6.10)

where s(i) := i− (O−1), (c j)
K
j=1 ∈ V denotes the control vertices in an R-vector space V , and

b j := B j,O denotes the j-th B-spline basis function, where B j,O is defined as in [86] or de Boor
[44, chap. IX]. The B-spline order, O, is precisely the spline’s polynomial degree plus one. This
construction, 6.10, is illustrated in Figure 6.1 for the case dimV = 1 and O = 4. For t < tO
and t ≥ tI−O+1 (outside the gray shaded area in Figure 6.1), there are fewer than O nonzero
basis functions and we treat the B-spline as undefined and assume for the rest of the paper that
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t ∈ [tO, tI−O+1). This expression may be rearranged into the cumulative form as follows

f(t) = cs(i)+
i

∑
j=s(i)+1

( i

∑
k= j

bk(t)
)
(c j− c j−1) = cs(i)+

O−1

∑
j=1

βi, j(t)(cs(i)+ j− cs(i)+ j−1), (6.11)

defining the cumulative basis functions βi, j(t) := ∑
i
k=s(i)+ j bk(t) for 1 ≤ j ≤ O−1. They are

related to the notation used in Kim et al. [86] according to βi, j(t) = B̃s(i)+ j,O(t) but only for t ≤
ti+1. Hence, they share for this t range also their derivatives : d

dt βi, j(t) = O−1
ti+ j−ts(i)+ j

Bs(i)+ j,O−1(t).

Note that the assumption t ∈ [tO, tI−O+1) (or equivalent O ≤ i ≤ I−O) is crucial for (6.10)
and (6.11) to hold in the given form. This assumption contrasts Kim et al. [86] where the first
summand in (6.11) does not depend on t for any admissible t. For (10) and (11) to hold without
this assumption the weight ∑

min(i,I−O)
j=1 b j(t) is needed and this weight is 1 if and only if i≥ O

given that t ∈ [ti, ti+1). The fact that this weight would prevent the B-spline from having the
bi-equivariance property proven in section 3.5 is an important reason for this assumption.

We will now generalize this form (6.11) to the Lie group, G , just as Kim et al. [86] do it
for unit-length quaternions. Let (G , ·) be a connected finite dimensional Lie group, with Lie
algebra g. Let ιιι ∈ G denote its identity element. Instead of vectors, ci, a Lie group-valued curve
is defined by a tuple of Lie group elements as control vertices, gi ∈ G . The sum of vectors
is naturally identified with the corresponding sequence of Lie group operations (written here
as multiplication) in the order given by the indices. The vector difference (ck− ck−1), where
k = s(i)+ j, is generalized to the left fraction (g−1

k−1gk). The scaling of these “differences” (by
the βi, j(t)) is done “in the Lie algebra” by exploiting the exponential and logarithm maps of G .
This way one gets the generalized form of (6.11) as

g(t) := gs(i)

O−1

∏
j=1

ri, j(t), where (6.12)

ri, j(t) := exp
(

βi, j(t)ϕϕϕs(i)+ j

)
, and ϕϕϕk := log

(
g−1

k−1gk
)
. (6.13)

This construction requires that the log function is defined on g−1
k−1gk. To guarantee this, one

has to make sure that there are enough intermediate points to have all g−1
k−1gk close enough to

identity. In a connected Lie group, this should always be possible with finite many gi. Note that
the vector space construction, (6.11), is equivalent to the Lie group approach, (3.2), when (G , ·)
is chosen as the additive group (V ,+) of the vector space V , which is always a commutative Lie
group. In that sense, these Lie group-valued B-splines are a true generalization of the traditional
vector space-valued B-splines.

3.3. Theoretical preparations

To facilitate the analysis of Lie group-valued B-splines we will start with some theoretical
preparations.
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The ambient algebra assumption

Assumption 1. We assume the Lie group (G , ·) to be an embedded differential manifold of an
unital associative R-algebra (A ,+, ·) 1 and a sub group of (Ainv, ·), the group of multiplicative
invertible elements in A .

Assumption 1 allows us to take derivatives of curves through G in the ambient algebra A ,
where we can easily use the product rule and benefit from a single global tangent space. All
real matrix Lie groups, the unit-length quaternions, the unit-magnitude dual quaternions, and the
unit-length complex numbers all naturally fulfill this assumption. Those who feel uncomfortable
with the abstract concept of an R-algebra are encouraged to think of the unit-length quaternions
as G and the quaternions as A , or the group SO(3) as G and R3×3 as A .

Matrix isomorphy

Given a vector a ∈ A , we will use special operators to retrieve the matrices that represent
the left, aL, or right, aR, multiplication by a (with respect to a fixed default basis for A ),
that is, Ψ(ab) = aLΨ(b) = bRΨ(a), for all b ∈A , where Ψ : A → RdimA maps the vectors
to their coordinate tuples. In the following we will implicitly identify A -vectors with their
coordinates. These operators, restricted to G , are injective Lie group-homomorphism, (·)L, and
antihomomorphism 2, (·)R, from G into GL(A ), the General Linear group over A . Hence,
these operators give us the opportunity to reduce computational complexity of Jacobian matrix
evaluation by choosing to apply the multiplication to elements of G rather than G L or G R. The
mapping (·)L also leads to the following theorem.

Theorem 1. A L is a sub R-algebra of RdimA×dimA , G L is a matrix Lie group embedded in
A L, and this pair is fully isomorphic to the pair of G and A .

We will use this theorem to import knowledge about matrix Lie groups to our general setting.
It also tells us that Assumption 1 restricts us—up to isomorphism—precisely to R-matrix Lie
groups. However, it is still of practical use to know that all derivations are correct in the nonmatrix
examples, such as the unit-length quaternions. A proof is provided in the appendix, proof of
Theorem 1.

The exponential maps

In both A and G there is a canonical definition of an exponential map. For the algebra, A , the
exponential map, expA , is defined by the usual power series. Applied to matrices, this yields
the matrix exponential map. The exponential map, expG , of a Lie group, G , is required to be
smooth, and, for all v ∈ g, the directional exponential map expv

G : R→ G , t 7→ expG (tv) must
fulfill two identities: the classical exponentiation identity, expv

G (α +β ) = expv
G (α)expv

G (β ),

for all α,β ∈ R, and the differential identity, d
dt expv

G (t)|t=0 = v.

1An unital associative algebra is an R-vector space equipped with an R-bi-linear associative vector multiplication and a
multiplicative identity element.

2And the anti prefix refers to the antihomomorphy identity, which one gets from the homomorphy identity by swapping the
arguments of one of the binary operations.
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Theorem 2. In our setting expG is a restriction of expA to g ⊂ A , employing the natural
identification of G ’s tangent spaces with sub vector spaces of A .

We exploit this property to simplify Jacobian calculation by interpreting our B-spline construc-
tion (3.2) as construction in A . A proof is provided in the appendix, proof of Theorem 2. From
now on we won’t distinguish anymore formally between both exponential maps and write just
exp.

3.4. Continuous-Time Batch State Estimation on Lie groups

In the section 3.2 we present a construction for Lie group-valued B-splines. We will now illustrate
how they can be exploited to extend continuous-time batch state estimation (see section 3.1) to
Lie groups.

To minimize the negative log-likelihood function, L, as given in (6.9), but with x(t) :=
g(t,(gk)

K
k=1) given as Lie group-valued B-spline, it is necessary to perform a nonlinear minimiza-

tion involving variables in the Lie group in question, namely the control vertices (gk)
K
k=1 ∈ G .

In the following formulation we assume L to be given in the form ‖e‖2, where e ∈ Rν , ν ∈ N.
We call e the error function because it typically consist of the normalized residuals. To implement
Gauss-Newton or Levenberg-Marquardt optimization algorithms to minimize the cost function L,
we must have access to an expression for the Jacobian of e with respect to small changes in the
estimated variables. For an estimated variable g ∈ G of Lie group type (e.g., one of the control
vertices) this requires a generalized Jacobian concept. It is usual to use a minimal perturbation,
φφφ ∈ Rm (with m = dimG ), in the Lie algebra, mapped to the Lie group via an exponential chart
Φḡ centered at the current guess, ḡ.

g(φφφ) = Φḡ(φφφ) := exp(Bgφφφ)ḡ, (6.14)

where Bgφφφ := ∑
m
k=1 φφφ kbk denotes the vector in g corresponding to the coordinates, φφφ , with

respect to Bg, denoting the default basis for g. This yields the concept of a Jacobian for a
function e : G → Rν at ḡ in the local chart Φḡ, which is defined to be the traditional Jacobian
at 000 ∈ Rm of the composed function e ◦Φḡ : Rm → Rν . Unfortunately, while the concept of
charts is well known from differential geometry, there seems to be no standard notation for
these generalized Jacobians. We will denote it in this paper as ∂e

∂φφφ
, while the local chart used is

specified based on context, for the sake of brevity.
This generalized Jacobian is used like a normal Jacobian in a Gauss-Newton or Levenberg-

Marquardt iteration except that after it produces an answer for φφφ , the current guess is updated
as ḡ← exp(Bgφφφ)ḡ. This update is constraint sensitive in that the updated ḡ is guarantied to
not leave G , even when a non-minimal representation such as a vector in A would theoretically
allow such a departure.

An outline of the algorithm is provided in Algorithm 1. The umbrella variable X comprises
of the current guesses for all the estimated variables. For example the state B-spline’s control
vertices (gk)

K
1 . In practice it can contain control vertices of multiple splines and other state
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variables.

Algorithm 1: Continuous-Time Batch State Estimation on Lie groups

1 Z← GETMEASUREMENTS
2 e← SETUPERRORFUNCTION(Z)
3 X← COMPUTEINITIALGUESSES(e,Z)
4 repeat
5 J←COMPUTEJACOBIANS(e,X)
6 U←COMPUTEUPDATES(e,X,J,Z) . Gauss-Newton or Levenberg-Marquardt
7 X← exp(U)X
8 until HASCONVERGED(e,X,Z) . Minimize quadratic negative log likelihood function,
‖e‖2

The error function e(X,Z), will typically depend on the state B-spline via its value and
derivatives (e.g., via the his in (6.2)), and integrals along the trajectory, (e.g., for (6.5)). Therefor
we need analytical expression for the Lie group-valued B-spline’s value (section 3.2), its time
derivatives (section 3.6), a concept how to evaluate integrals (section 3.8), and generalized
Jacobians (line 5 in Algorithm 1), for all involved expressions with respect to changes in its
control vertices(section 3.6). To initialize the control vertices (line 3 in Algorithm 1), we also
require an initialization strategy (section 3.7).

3.5. Bi-equivariance of this B-spline construction

In this section we will prove that this B-spline construction has an important property for a
Lie group-valued parameterized curve when used for physical modeling, called “bi-invariance”
by Park and Ravani [124] for the special case of SO(3). From our point of view, the term
bi-equivariance is a better fit because it requires the curve’s value to transform the same way
as its control vertices when transformed by left or right multiplication with a group element.
The term “invariant” would indicate no change in the curve’s value for the same operations,
but that is neither the case nor intended for our splines or for the curves presented in [124]. In
contrast equivariance of a map with respect to a group action is exactly that: the function’s
value changes according to the same group action as applied on its argument. First we
consider left-equivariance: equivariance with respect to left multiplication by any u ∈ Ainv,
Lu : A → A ,a 7→ ua. The expression for ri, j in (6.13) only depends on the control vertices
through expressions like g−1

k−1gk . Such expressions are invariant with respect to Lu, rendering all
the r invariant, too. It follows that

g((Lu(gk))
K
1 , t) = Lu(gs(i))

O−1

∏
j=1

ri, j(t) = Lu(g((Lu(gk))
K
1 , t)) (6.15)

Next we consider the right equivariance proof. For u ∈Ainv, the conjugation by u, πu : A →
A ,a 7→ uau−1 is an R-algebra automorphism. Therefore any (partial) function of type A k→A
for some k ∈ N is automatically equivariant with respect to conjugation by u if the function is
A -intrinsically defined. A function from A k →A is called A -intrinsically defined if and only
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if its definition is purely based on the structure of A ; informally this means that its value and its
domain can be defined by only referring to its arguments, real numbers, 000,111 ∈A , the operations
+, ∗, the limit in A , the identity relation, set or logical operators, or other A -intrinsically defined
functions. This implies that the exp and log mappings on A , and ultimately our whole B-spline
construction (3.2), are equivariant with respect to conjugation by u when the time parameter is
considered a constant real number. The B-spline’s right-equivariance immediately follows from
the simple fact that the right multiplication, Ru : A →A ,a 7→ au, is equal to a left multiplication
after a conjugation, Ru = Lu ◦πu−1.

These equivariances hold for any u ∈Ainv, but the transformed spline will remain G -valued
if and only if u ∈ G . Therefore, in practice, only the equivariances with respect to left or right
multiplication by u ∈ G will be of interest.

3.6. Derivatives

Time derivatives

We can calculate the B-splines derivatives with respect to t using the usual product rule supported
by Assumption 1, which allows us to interpret the whole B-spline construction (3.2) as defined
more generally in A .

dk

dtk g(t) =
dk

dtk gs(i)

O−1

∏
j=1

ri, j(t) = k! gs(i) ∑
ααα∈NO−1,

∑ααα=k

O−1

∏
j=1

1
ααα j!

dααα j

dtααα j
ri, j(t) (6.16)

To be complete it requires the time derivatives of ri, j up to order k. We will exploit the directional
exponential map’s well known differential identity (guaranteed in A by Theorem 1),

d
dt

expa(t) = aexpa(t), where expa(t) := exp(ta) (6.17)

where a ∈A and t ∈ R.
Using Theorem 2 to identify the exp and log in (6.13) with their extensions to A we get, with

k := s(i)+ j:

d
dt

ri, j(t) =
d
dt

expϕϕϕk (βi, j(t)) = β
′
i, j(t)ϕϕϕk expϕϕϕk (βi, j(t)) = β

′
i, j(t)ϕϕϕkri, j(t) (6.18)

d2

dt2 ri, j(t) = (β ′i, j(t)
2
ϕϕϕk +β

′′
i, j(t)ιιι)ϕϕϕkri, j(t) (6.19)

d3

dt3 ri, j(t) =
(
β
′
i, j(t)ϕϕϕk(β

′
i, j(t)

2
ϕϕϕk +β

′′
i, j(t))+2β

′
i, j(t)β

′′
i, j(t)ϕϕϕk +β

′′′
i, j(t)ιιι

)
ϕϕϕkri, j(t) (6.20)

We will not need higher order derivatives for our experiments. For how to compute the β

derivatives see our comment below (6.11) and de Boor [44, chap. X].
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Jacobians with respect to changes in the control vertices

In this section we will derive the partial Jacobians of the B-spline’s value and derivatives
with respect to small changes, φφφ l , while considering the control vertices, gl(φφφ l) := Φḡl (φφφ) =
exp(Bgφφφ)ḡl , as functions of φφφ k, as explained in section 3.4. Because the chart map Φḡ is
centered at ḡ all Jacobians will be implicitly at 000 ∈Rm. The value ∈ G ⊂A and time derivatives
∈ A of the B-spline will be implicitly identified with their coordinates with respect to A ’s
default basis.

Omitting the time parameter we get for l ∈ {1..K} :

∂g
∂φφφ l

=
∂

∂φφφ l
gs(i)

O−1

∏
j=1

ri, j =

(
O−1

∏
j=1

ri, j

)R
∂gs(i)

∂φφφ l
+gs(i)

L
O−1

∑
ĵ=1

(
ĵ−1

∏
j=1

ri, j

)L O−1

∏
j= ĵ+1

ri, j

R
∂ri, ĵ

∂φφφ l

(6.21)
For the first summand we get

∂gs(i)

∂φφφ l
=

∂

∂φφφ l
exp(Bgφφφ s(i))ḡs(i) = ḡR

s(i)
∂

∂φφφ l
exp(Bgφφφ s(i)) = δl,s(i)ḡR

s(i)V, (6.22)

where δ is the Kronecker delta and V the Jacobian matrix of G ’s exponential map in coordinates
at 000. Note that, because the differential of the exp map in A at zero is the identity map, this
V-matrix is also the Jacobian of the implicit identification g into A . We can use V to convert
coordinates with respect to Bg to coordinates in A .

Next, we derive the Jacobian ∂

∂φφφ l
ri, j , for any 1≤ j < O and with k := s(i)+ j. To begin, we

will use the exponential chart to decompose ri, j into a chain of maps between vector spaces
allowing application of the traditional chain rule:

ri, j = exp(βi, jϕϕϕk) = exp(βi, j log(g−1
k−1gk)) = exp︸︷︷︸

I

◦(βi, j·)◦ (log◦Φd)︸ ︷︷ ︸
II

◦(Φ−1
d ◦d)︸ ︷︷ ︸

III

, (6.23)

with d := g−1
k−1(φφφ k−1)gk(φφφ k), and d = g−1

k−1gk .
The the Jacobian for I, G ’s exponential map at v := βi, jϕϕϕk, is usually known for the specific

G . We label it with E(v) and assume it to be given. If it is instead available for the exponential
map in exponential chart, Φ

−1
exp(v) ◦ exp, here denoted with S(v), one can use the identity E =

exp(v)RVS(v) to retrieve it. It holds because exp(v)RV is the Jacobian of Φexp(v) at zero. In case
none is available, a general formula for this S-matrix is well known (Hall [66, p. 70]):

S(v) =
∞

∑
k=0

(−1)k

(k+1)!
(adv)

k, (6.24)

where adv denotes the matrix representing the adjoint action, w 7→ [v,w], where the Lie bracket
[v,w] equals vw−wv, using the algebra multiplication, in our assumed setting.

The Jacobian of II, the logarithm in the exponential chart, log◦Φd, we label with L(d) and
assume it to be given as well. If not it can be retrieved as the inverse of S(log(d)), because
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log◦Φd ◦Φ
−1
exp(log(d)) ◦ exp = Id.

The last piece is the Jacobian of III:

∂

∂φφφ l
Φ
−1
d (d) = (δl,k−δl,k−1)C(ḡ−1

k−1), (6.25)

as proven in the appendix, section 6.3, with

C(g) := WgLgRV, (6.26)

the Jacobian at identity of the adjoint operation of g on g, where W denotes the Jacobian of the
log at ιιι .

Altogether we have:

∂ri, j

∂φφφ l
= E(βi, jϕϕϕk)βi, j

∂ϕϕϕk
∂φφφ l

= ri, j
RVS(βi, jϕϕϕk)βi, j

∂ϕϕϕk
∂φφφ l

, (6.27)

with
∂ϕϕϕk
∂φφφ l

= (δl,k−δl,k−1)L
(
ḡ−1

k−1ḡk
)

C(ḡ−1
k−1) (6.28)

According to section 3.4 we also need the corresponding Jacobians for the time derivatives of
the B-spline. Starting with (6.16) and applying the same method as for (6.21), we have

∂

∂φφφ l

dk

dtk g = k!
∂

∂φφφ l
gs(i)ak,1,O (6.29)

= k!ak,1,O−1
R ∂gs(i)

∂φφφ l
+ k!gs(i)

L
O−1

∑
ĵ=1

∑
γγγ∈N3 ,
∑γγγ=k

aγ1 ,1, j−1
Laγ2, j+1,O

R ∂

∂φφφ l
Dγ3 ri, ĵ (6.30)

= k!ak,1,O−1
R ∂gs(i)

∂φφφ l
+ k!gs(i)

L
O−1

∑
ĵ=1

k

∑
γ1=0

aγ1 ,1, j−1
L

(
k−γ1

∑
γ2=0

aγ2 , j+1,O
R ∂

∂φφφ l
Dk−γ1−γ2 ri, ĵ

)
,

(6.31)

with ak, jF , jL := ∑
ααα∈N jL− jF ,

∑ααα=k

jL−1

∏
j= jF

Dααα j− jF+1 ri, j , if jL−1 > jF else ι ,and Dµ :=
1
µ!

dµ

dtµ
. (6.32)

The last transformation (6.31) is only to reduce computational complexity by exploiting the
distributive law of matrix multiplication. Combining (3.6) and (3.6), we have (not expanding the
derivatives of ϕϕϕk and only up to k = 2 for the sake of readability):

∂

∂φφφ l

d
dt

ri, j(t) = β
′
i, j(t)

∂

∂φφφ l
(Vϕϕϕk)ri, j(t) = β

′
i, j(t)

(
ri, j(t)

RV
∂ϕϕϕk
∂φφφ l

+(Vϕϕϕk)
L ∂ri, j(t)

∂φφφ l

)
(6.33)
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∂

∂φφφ l

d2

dt2 ri, j(t) =
(
β
′
i, j(t)

2Vϕϕϕk +β
′′
i, j(t)ιιι

)L
(

ri, j(t)
RV

∂ϕϕϕk
∂φφφ l

+(Vϕϕϕk)
L ∂ri, j(t)

∂φφφ l

)
+((Vϕϕϕk)ri, j(t))

R(β ′i, j(t)
2V

∂ϕϕϕk
∂φφφ l

) (6.34)

3.7. Rough B-spline fitting for initialization

To initialize the nonlinear optimization of a G -valued curve we will need a strategy to come to a
suitable initial guess. Formally, this is the problem of fitting a curve defined on T = [0,T ] to a
time series in G , α := (τk,gk)

K
k=1 ∈T ×G , while somehow penalizing high acceleration, and

preventing overfitting. For our experiments we used the following strategy to get a rough fit of
our B-spline by making use of Assumption 1. As we have g(t,(gk)

K
k=1) ∈ G ⊂Ainv ⊂A for all

times t ∈T and control vertices gk ∈ G we can consider the whole G -valued B-spline construct
as a Lie group B-spline in the Lie group (Ainv, ·), i.e. based on the multiplication in A . In A
we also have the R-vector space structure and we can define for each multiplicative g(t,(gk)

K
k=1)

the corresponding additive B-spline gadd(t,(gk)
K
k=1) as defined in the additive Lie group, (A ,+).

These are now traditional vector space-valued B-splines and we know how to efficiently fit them
to the time series α . This is a linear problem, even with the acceleration penalty as regularization
(see the solution of Schoenberg and Reinsch as described in Chapter XIV of [44]). After the
linear fit, we may need to modify the control vertices to make them elements in G . As long as
they are not too far off this can be done uniquely and for some common examples also efficiently.
For example in the case of unit-length quaternions this just means normalizing the resulting
vectors in R4 to unit-length.

To summarize, we get our initial guess for optimization using the following steps:

1. acquire control vertices gk ∈A by doing a least squares fit of gadd to α while keeping
the integral over the spline’s acceleration low (by introducing an appropriate, linear cost
scaled with an acceleration penalty factor),

2. project the gks into G , and

3. use the modified gk as control vertices for a multiplicative spline in G .

Despite being very simple, this method worked extremely well in all of our experiments up to
B-spline order 12, where the linear solution for the initialization fell into local likelihood maxima
for tight knot spacing when using our default acceleration penalty. This could be solved by rising
the acceleration penalty factor from 104 to 106. Automatic tuning of this parameter is out of the
scope of this paper.

Note that it is not equally good to just use a subset of the values in α as control vertices, even
though this would also result in a somewhat close to curve. This would leave us no means to
penalize high acceleration, which would allow outliers to badly affect the result.
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3.8. Integrals along curves
To deal with cost function (summands) that involve integrals along our B-splines (e.g. to impose
dynamic system models) we used the following approach. Given a time interval T = [0,T ] and
a cost functional J defined on continuous curves through G , γ : T → G such that

J(γ) =
∫ T

0
f (γ(t))TW (t) f (γ(t))dt,

where l ∈ N, W : T → Rl×l and f : G → Rl , each also continuous, we apply a nonadaptive
numeric integration scheme (w,ξ ) : {1 . . .k}→ R×T (e.g. Simpson’s, Trapezoidal rule, etc.)
such that

∀
g∈C (T ,R)

k

∑
i=1

wig(ξi)≈
∫ T

0
g(t)dt

to convert J into a sequence of quadratic error terms (to interface a Gauss-Newton optimization
package), this becomes

J(γ)≈
k

∑
i=1

wi f (γ(ξi))
TW (ξi) f (γ(ξi)).

3.9. The unit-length quaternions Lie group
In this section we will focus on aspects special for the Lie group of unit-length quaternions when
used as representative for SO(3). To be prepared for that we will shortly define some notation.
First, let H denote the skew field and R-algebra of quaternions and

S3 := {q ∈H||q|= 1}

denote the three dimensional R-Lie group of unit-length quaternions. We can make use of the
theory in section 3.3 using the following identification. In this setting, H is the ambient R-algebra
(A ) and S3 is the embedded Lie group (G ).

We will rely on the notation presented in Barfoot et al. [26]. Let ιιι denote the identity element
of S3, which is equal to the multiplicative identity element in H. By using (i, j,k, ιιι) as a basis
for H, we can write the coordinates of a quaternion, q, as

q =:
[

εεε

η

]
, (6.35)

where εεε is 3×1, η is a scalar. We will denote the product of two quaternions p,q ∈ H with
p ·q or just pq and assume Hamilton’s multiplication order, i.e. ij = k holds. The left and right
multiplication matrices, (·)L and (·)R, are

qL =

[
η1+ εεε× εεε

−εεεT η

]
and qR =

[
η1− εεε× εεε

−εεεT η

]
, (6.36)

where 1 is the 3×3 identity matrix, and εεε× denotes the matrix such that for all xxx ∈ R3, εεε× xxx =
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εεε×xxx. The quaternion compound operators, (·)⊕, (·)+ of Barfoot et al. [26], are precisely (·)L and
(·)R. Given an unit-length quaternion, q ∈ S3, the complex conjugate operator coincides with
multiplicative inverse operator,

q−1 =

[
−εεε

η

]
. (6.37)

The Lie algebra of S3 consists exactly of the pure imaginary quaternions. We pick the usual
basis, Bg := (i, j,k) and represent this Lie algebra’s vectors with coordinate vectors, φφφ ∈R3. To
convert from three to four vectors and back we use the matrices

V =

[
1

0T

]
, implying Vφφφ =

[
φφφ

0

]
, and W = VT , implying WV = 1, (6.38)

which correspond to the matrices introduced after (6.22) and (6.26) respectively as the Jacobians
of the exponential map, at zero, and logarithm map, at identity.

We will identify an unit quaternion q with the formal rotation

Rotq : R3→ R3,x 7→W(q(Vx)q−1). (6.39)

The proper orthogonal matrix, C ∈ SO(3), associated with the same rotation by ∀x∈R3 Cx =
Rotq(x) may be computed using

C = WqLq−1RV. (6.40)

This is precisely the matrix C defined in (6.26).
This unit-length quaternion’s log and exp functions can be calculated in the following way

exp(φφφ) =

 ιιι ,φφφ = 000[
sin(φ)a
cosφ

]
,φφφ 6= 000 , log(qqq) =


000 ,qqq = ιιι

arccosη√
1−η2

εεε ,qqq 6=±ιιι

undefined ,qqq =−ιιι

, (6.41)

where φφφ and the log’s value are 3× 1 coordinate vectors with respect to Bg, φ := ‖φφφ‖, and
a := φφφ/φ . A derivation of (6.41) can be found in the appendix of Kim and Nam [87].

3.10. Derivatives of quaternion B-splines
In this section we give the time derivative and Jacobian formulas specific to our formulation
for curves over S3. The B-spline time derivatives we calculated for the general case in (3.6)
apply immediately to an unit-length quaternion curve, q(t) = [εεε(t)T η(t)]T , giving us directly
quantities like ε̇εε(t), ε̈εε(t), η̇(t), η̈(t), etc. However, when we use such a curve to represent
rotations as part of a physical model, we also need expressions for the angular velocity, ωωω , and
angular acceleration, ααα , of a rotating frame.

To derive formulas for ωωω or ααα , as physical notions, we need to specify how we interpret the
formal rotation (6.39) in a physical context. We will identify the rotation from frame F−→a, an
inertial frame, to F−→b, one attached to a rigid body, by the unit-length quaternion, qba, such that

∀v∈E3 Rotqba (va) = vb, (6.42)
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where va and vb denote the coordinates of a vector v in Euclidean space (E) with respect to F−→a
and F−→b respectively. The quaternion, qba, is only uniquely defined up to negation and thus all
physical equations need to be invariant with respect to negation of this variable.

Angular velocity

For the angular velocity, ωωω , of F−→b with respect to F−→a given by a quaternion-valued curve
through time qba(t) = [εεε(t)T η(t)]T we get (omitting the time parameter for clarity):

ωωωa =−2W(q−1
ba ˙qba) =−2((ηε̇εε− η̇εεε)− εεε

×
ε̇εε), (6.43)

when expressed in F−→a, and

ωωωb =−2W( ˙qbaq−1
ba ) =−2((ηε̇εε− η̇εεε)− ε̇εε

×
εεε), (6.44)

when expressed in F−→b. Both equations are proven in the appendix, section 6.1.

Angular acceleration

It follows for the angular acceleration ααα , omitting the subscripts for qba for brevity:

αααb = ω̇ωωb =−2W(
d
dt
(q̇q−1)) =−2W( ˙q−1q̇+ q̈q−1) =−2W(q̈q−1) (6.45)

=−2((ηε̈εε− η̈εεε)− ε̈εε
×

εεε) (6.46)

Jacobians of quaternion B-splines with respect to the control vertices

To use the results from section 3.6 we will need the specific matrices for the unit-length quater-
nions. The Jacobian of the exponential map, S(φφφ), and of the logarithm map, L(q), using the
same variables as in (6.41), additionally assuming for L(q) that log(q) = φφφ . Both are 1 ∈ R3×3

in case φφφ = 0 and q = ιιι respectively. Otherwise

S(φφφ) = 1− 1
φ

sin2
φ a×+(1− 1

2φ
sin2φ)a×a×,and (6.47)

L(q) = 1+φφφ
×+

(
1− φ

tanφ

)
a×a× for q 6=±ιιι . (6.48)

These formulas are proven / derived in the appendix, section 6.2.

Jacobians of angular velocity

The Jacobians of the angular velocity with respect to minimal perturbations of the control vertices
are also required. For 1≤ j < O and l ∈ {1..K} we get,

∂ωωωa

∂φφφ l
=−2

(
∂η

∂φφφ l
ε̇εε +η

∂ ε̇εε

∂φφφ l
− ∂ η̇

∂φφφ l
εεε− η̇

∂εεε

∂φφφ l
+ ε̇εε
× ∂εεε

∂φφφ l
− εεε
× ∂ ε̇εε

∂φφφ l

)
. (6.49)
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Jacobians of angular acceleration

For the angular acceleration it yields analogously,

∂αααa

∂φφφ l
=−2

(
∂η

∂φφφ l
ε̈εε +η

∂ ε̈εε

∂φφφ l
− ∂ η̈

∂φφφ l
εεε− η̈

∂εεε

∂φφφ l
+ ε̈εε
× ∂εεε

∂φφφ l
− εεε
× ∂ ε̈εε

∂φφφ l

)
. (6.50)

3.11. Associating an unit quaternion time series to a rotation
time series

To fit an unit quaternion curve to a time series of noisy rotations can be a challenge. For the
fitting procedure described in 3.7 one has to first convert it to an unit quaternion time series. We
will refer to this step in the initialization process as the association step.

The association of unit-length quaternions to rotations is ambiguous as (6.39) maps any pair of
antipodal unit quaternions to the same rotation. Choosing the wrong quaternion of the pair during
association results in jumps in the unit-length quaternion curve and can cause the optimization
to diverge. The obvious solution is to retrieve the minimum-length sequence of corresponding
quaternions, measured as sum of distances of all adjacent pairs.

This can be approximated by iterating over the rotation time series starting from one side and
appending in each step to the target quaternion time series the one among the two unit-length
quaternions equally well corresponding to the current rotation, which has minimal distance to its
predecessor quaternion chosen in the step before. However, this strategy can perform badly in
the presence of outliers. Our current implementation iterates through the time series of rotations
choosing in each iteration the unit-length quaternion candidate that minimizes the total distance
to its (up to) three predecessors. This worked well enough in our experiments, with one exception
noted in Section 5.2.

4. Experiments

In this section we apply the state representation derived above to the spacecraft attitude estimation
problem. The goal is to estimate the attitude of a reference frame attached to the vehicle body,
F−→B, with respect to an inertial frame, F−→I , over a time interval of interest, T = [0,T ]. We would
like to estimate an unit-length quaternion trajectory describing the rotation from the inertial
frame to the body frame, qBI(t), over T .

The vehicle may have bearing sensors (we will consider one or two). A bearing sensor takes
measurements at discrete time instances, (tm)M

m=1 ∈T . The sensor’s frame F−→S is rigidly attached
to the vehicle body frame. We assume that the orientation of the sensor frame with respect to the
body frame, CSB, is known. Let bm`

I be the known bearing of beacon ` (in case of sun sensors
or star trackers) or the magnetic field (in case of a magnetometers) at time tm, expressed in the
inertial frame. An instantaneous measurement of this bearing (i.e. a discrete-time measurement),
written ym`, is modelled as

ym` = h
(

CSBCqBI (tm)bm`
I

)
+nm`, nm` ∼N (0,Rm`) , (6.51)
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where the bearing vector is first rotated into the sensor frame, h(·) is a nonlinear observation
model, Cq is the proper orthogonal matrix given by a quaternion, q, as in (6.40), here acting
as the direction cosine matrix from the inertial frame to the body frame, and nm` is zero-mean
Gaussian noise with covariance Rm`.

Following the standard practice of maximum likelihood estimation, we define the error term
associated with this measurement to be

em` := ym`−h
(

CSBCqBI (tm)bm`
I

)
. (6.52)

These errors contribute to the term Jy in our overall objective function,

Jy :=
1
2

M

∑
m=1

eT
m`R

−1
m` em`. (6.53)

Below we present simulated experiments using this common setup for the exteroceptive measure-
ments, they differ in terms of bearing sensors and dynamics model used. Based on the latter we
distinguish two types of experiments. In the first type of experiments, we use measured angular
velocities from a gyroscope. In the second, we use a dynamics model based on Euler’s equation
and the vehicle inertia matrix.

4.1. Attitude estimation based on gyroscope measurements

In Experiment 1, we consider an estimation problem that neglects analytical vehicle dynamics in
favor of measured dynamics from a three-axis gyroscope. For simplicity, we choose to place
our vehicle body frame at the center of our gyroscope measurement frame. The gyroscope
measurement model follows the one commonly used in robotics [83, 114],

ϖϖϖg = ωωω(tg)+b(tg)+ngω , ngω ∼N (0,Rgω ), (6.54)

ḃ(t) = wb(t), wb ∼ G P
(
0,δ (t− t ′)Qb

)
, (6.55)

where ϖϖϖg denotes the angular velocity measurement at tg and ωωω is the angular velocity of the
body as seen from the inertial frame but expressed in the body frame (see Section 3.1 for the
notation). It is related to the quaternion trajectory qBI(t) via (6.44). The gyroscope measurements
are assumed to be subject to both zero-mean Gaussian measurement noise, ngω , and a slowly
evolving bias, b(t). We will model the bias with a traditional B-spline function in R3 in every
experiment with the same order as the attitude unit quaternion B-spline. The error for a single
gyroscope measurement may be written as

egω := ϖϖϖg−ωωω(tg)−b(tg), (6.56)

which becomes a term, Jω , in our objective function:

Jω :=
1
2

G

∑
g=1

eT
gω R−1

gω egω . (6.57)
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The bias motion error may be written as

eb(t) := ḃ(t). (6.58)

This error contributes to our objective function as

Jb :=
1
2

∫ T

0
eT

b (t)Q
−1
b eb(t)dt. (6.59)

Together, (6.53), (6.57), and (6.59) define the combined objective function, J := Jy + Jω + Jb.
Let Q be the stacked matrix of quaternion control vertices and cb the stacked vector of bias spline
control vertices. The control vertices for the maximum likelihood estimate of the trajectories
qBI(t) and b(t), Q?,cb

?, can then approximately be found by minimizing J(Q,cb),

(Q?,cb
?) = argmin

Q,cb

J(Q,cb) . (6.60)

4.2. Attitude estimation based on Euler’s equation

In this type of experiments, we consider a spacecraft attitude estimation problem that uses a
vehicle dynamics model based on Euler’s equation. The dynamics model is, expressed in the
body frame,

Iω̇ωω(t)+ωωω
×(t)Iωωω(t) = u(t)+w(t), (6.61)

where t is time, I is the vehicle inertia matrix, ωωω(t) is again the angular velocity of the body as
seen from the inertial frame, u(t) is a known control input, and w is a zero-mean white Gaussian
process with covariance Qd ,

w∼ G P
(
0,δ (t− t ′)Qd

)
. (6.62)

Following Furgale et al. [59] (Section 3.1), we define the error for the dynamics model at time t
to be

ed(t) := Iω̇ωω(t)+ωωω
×(t)Iωωω(t)−u(t). (6.63)

The resulting term in our objective function is

Jd :=
1
2

∫ T

0
eT

d (t)Q
−1
d ed(t)dt. (6.64)

Together, (6.53) and (6.64) define the combined objective function, J := Jy +Jd . Let Q be, again,
the stacked matrix of quaternion control vertices. The trajectory estimate is then given by the
J-minimizing quaternion control vertices,

Q? = argmin
Q

J(Q). (6.65)
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4.3. Simulation configurations

We simulated the attitude trajectory of a spacecraft at 350 km altitude, with a 35 degree inclination,
and an initial angular velocity of square norm 0.5 deg/s. This configuration is intentionally
similar to those used in [158] and [41] so that the result can be directly compared. To stress
test the dynamic model based approach we also simulated trajectories with a sinusoidal thruster
turned on. The thruster’s sinusoidal torque, τττ , is simulated at a time t for a given thruster factor,
fτ , as follows,

aτ :=
[
0.001 0.0005 0.00075

]T Nm, (6.66)

ωωωτ :=
[
0.1 0.05 0.075

]T rad
s
, (6.67)

φφφ τ :=
[
0 π

2 − π

4

]T rad, (6.68)

τττ0 :=
[
0.005 −0.005 0.000

]T Nm, (6.69)

τττ(t) := fτ (aτ sin(tωωωτ +φφφ τ )+ τττ0) , (6.70)

where the sinus is applied componentwise. This torque is used as the input u in (6.61). The
angular acceleration induced by the thruster is determined by the assumed inertia tensor of the
spacecraft in the same frame:

I := diag([27 17 25])kgm2 (6.71)

ααατ (t) := I−1
τττ(t) (6.72)

We chose our system process noise, described in (6.62), to be defined by Qd = (1µNm)2 1
s 111.

We simulated a three-axis magnetometer (TAM), a sun sensor, and a rate gyroscope. They were
all sampled at 1Hz, as in [158] ([41] use 0.1Hz). We used the following parameters for the
sensors:

• Gyroscope : Rgωωω = (0.3µ
rad
s )2111, Qb = (3∗10−4µ

rad
s2 )2 1

s 111 (see (4.1))

• Magnetometer : RB = (50nT)2111 (see (6.51))

• Sun sensor: RS = (5m rad)2111 (see (6.51))

The simulated gyroscope bias was started at 0deg/h or 1000deg/h depending on the experiment.
To the best of our knowledge, these parameters are identical to [158] and [41], except that they
did not simulate a sun sensor. For some tests we introduced a noise factor F ∈ [1,100] applied to
the standard deviation of the sensor measurements and the gyroscope bias process noise. For
every simulation configuration we simulated an ensemble of 100 different seeds for the pseudo
random number generators used to simulate process and sensor noise.
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Figure 6.2.: A typical simulated attitude trajectory plotted as the three imaginary components of
qBI over the longest run time T = 2h and a zoomed plot of the first 0.2h.

The typical simulated attitude trajectory is depicted in Figure 6.2. It depicts the three imaginary
components of the attitude quaternion, qBI , over our maximal duration T = 2h and zooms in to
the first [0,0.2]h interval as used in most of the short experiments.

4.4. Estimators
For our comparison we have implemented the proposed spline estimators for continuous-time
estimation capable of integrating all sensor output, including the gyroscope, as described in
4.1, and the dynamics model, as described in 4.2 with arbitrary spline order (starting at 2
corresponding to a polynomial order of 1, i.e. a “linear spline”). We will refer to these estimators
with (label, marker) on all plots:

• (splXX, XX) : our quaternion spline implementation where XX is the B-spline order;

• (MEKF, K) : a multiplicative EKF implementation; and

• (splVan, V) a modified linear spline that uses the symplectic integration scheme described
in [158] to calculate its angular velocity. Although our optimization algorithm will
certainly use a different path through the parameter space of the spline the result should be
(up to the solver precision) the same as of a full implementation of the estimator described
in [158].

4.5. Estimator configurations
As estimator configurations we consider a specification of

• the prior attitude distribution as normal distribution on SO(3), N (µµµA,PA);

• the prior bias distribution as normal distribution on R3, N (µµµb,Pb);

• the observation duration T ;

• the sensor period—for all sensors (adjustable by subsampling the simulated sensor read-
ings);

• the knot spacing for the splines; and
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• the set of sensors used (rate gyro, sun, TAM).

The system dynamics model is used if and only if the gyroscope is not used.
To initialize the spline batch estimators we start with calculating a quaternion sequence using

different strategies, depending on the sensor configuration:

• If both bearing sensors are used, we use the q-Method [161, pp. 426–428] to get a
quaternion for each measurement time.

• Otherwise, if the rate gyroscope is available we integrate its angular velocity measurements
starting at the prior’s mean. To mitigate the drift of the gyroscope integration in long
experiments, we initialize the full spline in subbatches of about 10 minutes. For each
subbatch, we integrate the gyroscope, perform a full estimation with all sensor data, then
repeat the process for the next subbatch using the final value of the previous subbatch at
the start of the integration time.

• If neither are available, we use a constant sequence equal to the prior’s mean.

In each case, we roughly fit the quaternion spline to this sequence to initialize the nonlinear
optimization (Section 3.7), then run a full batch optimization.

To employ the system model in the second type of experiments we used Simpson’s rule and
twice as many evaluations for the numeric integration (Section 3.8) as knots in the spline.

For the prior attitude we chose the mean, µµµA, to be 120deg off ground truth. and the covariance
matrix PA = (180deg)2111 and Pb = (0.2deg/h)2111. The prior bias mean is always 000 ∈ R3. We
use T = 0.2h as the observation time and 1s as the default sensor period (corresponding to the
1Hz simulation frequency). As the default knot spacing we chose the sensor period for the linear
splines (B-spline and Vandersteen) and twice the sensor period for all other splines as this gave
the best results in each case. All experiment descriptions in the results section will be relative to
this default configuration.

5. Results

We defined several experiments, by picking a simulator configuration and an estimator configu-
ration up to one open parameter. This parameter will be varied in a specific interval and make
up the abscissa of the 2d-result plots. As ordinates, we plot mean and standard deviation over
the simulated ensemble for a temporally averaged angular distance between ground truth and
estimated attitude. To allow the different estimators time to converge, this temporal average is
taken over the last ∆T seconds of the observation time T . We will denote this measure with
MADE(∆T ) for mean angular distance error.

To compute the MADE(∆T ), we evaluate

MADE(∆T ) :=
1
|U | ∑

t∈U
dangle(q̂(t),q(t)), (6.73)

where dangle denotes the angular distance (in degrees) of two unit quaternions (:= Riemannian
distance of the represented rotations), q̂(t) the estimated attitude quaternion at time t, q(t) the
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simulated attitude quaternion, U ⊂]T −∆T,T ] the set of all time instances for which both q̂(t)
and q(t) are available and |U | its cardinality. For all continuous estimators U are the time
instances in ]T −∆T,T ] for which q(t) was simulated (at 10 Hz). The discrete MEKF always
runs on a regular subset (depending on the experiment) of the simulated times and hence defines
the U for its MADE evaluation.

This approximates a temporally averaged angular distance because U is always evenly spaced
which yields for two continuous unit quaternion-valued functions q1,q2 on [T −∆T,T ]

1
|U | ∑

t∈U
dangle(q1(t),q2(t))'

1
∆T

∫ T

T−∆T
dangle(q1(t),q2(t))dt. (6.74)

We decided to use the Riemannian distance (Euclidean norm of the relative rotation vector)
instead of the root sum squared (RSS) of roll, pitch and yaw used in Vandersteen et al. [158]
and Crassidis and Markley [41] because the latter is not isotropic and would render the result
dependent of the current pose of the space craft. For small errors they are very similar in
magnitude and thus the results are still comparable.

Except for this difference in the error metric at a point in time MADE(T ) is like the integral
cost J defined in Equation (46) of Crassidis and Markley [41].

5.1. Gyroscope based
First the experiments based on gyroscope measurements, corresponding to 4.1.
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Figure 6.3.: MADE(100s) over the observation time T given a simulated initial bias of 1000deg/h.
T ∈ [0,2]h. Sensors: rate gyroscope, magnetometer.

Figure 6.3 shows the results for the extreme initial bias test case of [158]. This experiment uses
an initial bias of 1000deg/h and only a gyroscope and magnetometer (no sun sensor). It shows
how the MEKF recovers very slowly from the bad prior (120deg away from ground truth) while
all spline estimators have good results after 0.5h, at the latest. The 4th-order spline has more
problems with the high bias error than the linear ones and the 6th-order. The former is probably
mainly an effect of the fact that the linear splines have twice as many knots. Qualitatively these
results fit the results of [158] as far as they overlap. However, there are two major differences.
First, in our experiment the MEKF was able to converge for all random seeds—just very slowly.
And second, the limiting accuracy was about 5 ∗ 10−3deg in our case and 10−3deg in theirs.
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These differences are most likely caused by differences in the simulated sensor data as we do not
know the initial angular velocity or the simulated system noise used in [158].
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Figure 6.4.: MADE(100s) over the distance of the prior mean to ground truth. T = 0.2h. Sensors:
rate gyroscope, magnetometer.

In Figure 6.4 we show the response of each estimator to a bad prior mean after T = 0.2h of
simulation time. Here, all batch estimators converge with essentially the same accuracy, while
the Kalman filter has trouble converging as the prior mean failure gets large. The low variance of
the MEKF measurements indicates that the MEKF’s estimate is not only spoiled by noise but
has systematic problems when facing a prior with a mean far off the truth.
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Figure 6.5.: MADE(100s) over a factor multiplying the standard deviation of all sensor noise.
T = 0.2h. Sensors: rate gyroscope, sun sensor, magnetometer.

In Figure 6.5 we test the effect of sensor noise on each estimator. The splines excel in low
noise range but are on par with the MEKF when sensor noise increases. The MEKF converges in
every case due to the high sensor rate.
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Figure 6.6.: MADE(100s) over the thruster’s power factor in percentage. T = 0.2h. Sensors:
rate gyroscope, sun sensor, magnetometer.

In Figure 6.6 we tested the effect on higher angular velocity and acceleration due to activated
thruster. Only the Kalman filter and the Vandersteen spline are noticeably affected by this
addition. In the case of the Vandersteen spline, we suspect that this is due to the use of the
symplectic integration scheme to approximate the angular velocity. In contrast, state derivatives
are exact and analytical for all B-spline solutions.
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Figure 6.7.: MADE( 1
8 T ) over the sensors’ period. T is determined by a fixed amount of 64

measurements per sensor. Sensors: rate gyroscope, sun sensor, magnetometer.

In Figure 6.7 we examined the effect of the sensor rate (defined by its period). Again the
Kalman filter and the Vandersteen spline are much more negatively affected. The similarity
between Figure 6.7 and Figure 6.6 (especially in the beginning) is because the accuracy of the
simulated sensor is not affected by the spacecraft’s velocity; increasing the sensor period has
virtually the same effect as speeding up the whole motion and leaving the period fixed. The effect
of the thruster at 100% power roughly corresponds to the sensor period of 20 s. The 4th and
6th-order spline become worse than the linear spline (spline order 2) because they have only half
the number of knots, and in this experiment they all reach their bounds of their expressiveness
(the frequency of motion they can represent), because they have to model a much longer trajectory
with a fixed number of knots.

5.2. Euler’s equation based
Next we present the experiments based on Euler’s equation. Here we cannot use the two linear
spline versions we used in former section because their angular acceleration is zero or undefined

94



5. Results

which does not allow a straightforward application of the system model. In this section, we skip
the first convergence experiment (corresponding to Figure 6.3 in the last section), as we do not
have an initialization method reliable enough for the extreme initial bias case. Apart from that,
we first follow roughly the same program as for the gyroscope-based experiments.

In Figure 6.8 we show the response of each estimator to a bad prior mean after T = 0.2h of
simulation time. It shows again how all splines perform superior to the MEKF.
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Figure 6.8.: MADE(100s) over the angular distance error of the prior. T = 0.2h. Sensors:
magnetometer.
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Figure 6.9.: MADE(100s) over a factor multiplying the standard deviation of all sensor noise.
T = 0.2h. Sensors: sun sensor, magnetometer.

In Figure 6.9 we test the effect of sensor noise on each estimator. The system-model-based
spline estimators excel in the low noise range. Their bad performance for the highest noise
case is caused by wrongly signed quaternions in the result of the quaternion association step
(Section 3.11). In the case of such a bad initialization the system model pulls strongly towards an
incorrect solution. When we use gyroscope measurements instead of the system model (Figure
6.5), the estimator is able to find its way back to the correct solution.
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Figure 6.10.: MADE(100s) over the thruster’s power factor. T = 0.2h. Sensors: sun sensor,
magnetometer.

In Figure 6.10 we compare the performance of the estimators with while varying the intensity
of the thruster. Only the Kalman filter and the 4th-order spline are noticeably affected. Here
the high order splines clearly excel. The poor performance of the 4th-order spline is caused by
its bad compatibility with the ODE given by the system model, especially when the thruster is
activated. This incompatibility pulls the estimator away from the good solutions as the low noise
on the dynamics makes the estimator trust the system model more than the sensors. When we
increase the noise w in the simulated system (6.61) this difference continuously decreases. We
will analyze that effect further in the discussion Section 5.3.
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Figure 6.11.: MADE( 1
8 T ) over the sensors’ period. T is determined by a fixed amount of 64

measurements per sensor. Sensors: sun sensor, magnetometer.

In Figure 6.11 we tested the effect of the sensor rate (as in Figure 6.7). Again, the Kalman
filter is much more negatively affected than the high order splines. Figure 6.10 is again quite
similar to the first 20 seconds. The bad effect on the 4th-order spline is more severe than in the
gyroscope experiment. We believe that this is again caused by the incompatibility between cubic
B-splines and the system model. This difference becomes small when we increase the system
noise.
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5.3. Discussion
Impact of the B-spline order

The most surprising discovery we had while evaluating these experiments was the strong influence
of the spline order on the estimation results. The numbers of parameters for a B-spline with
N usable segments (between the knots tO and tO+N ) and spline order O is proportional to
O+N. These parameters, N and O, are the control values through which one may influence the
expressiveness of a B-spline curve. Because the number of parameters increases linearly with
O+N, we could be led to believe that the assumption that the expressiveness is also proportional
to that. However, for a given system (represented mathematically by a stochastic ODE), the leap
from cubic to quintic polynomials (requiring only two more control vertices for any length curve)
may result in a much better fit to the actual motions produced by the system. B-splines are CO−1

continuous at the knots and infinitely differentiable everywhere else. This means that increasing
the number of knots, N, creates more times at which the curve is not infinitely differentiable,
whereas leaving N fixed and increasing the spline order, O, increases how often the curves are
differentiable everywhere. For our spacecraft dynamics, the 4th-order spline is a measurably
worse fit than a 6th-order spline.

To further investigate the role of spline order, we came up with the following series of
experiments.
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(a) with gyroscope
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(b) with system model

Figure 6.12.: MADE(T ) over the time between knots. T = 0.2h. Sensors: sun sensor, magne-
tometer.

In Figure 6.12 we assessed the estimation accuracy while changing the uniform knot spacing,
∆tknots, for different spline orders up to 13. This implies dividing the run time, T = 0.2h, into
different numbers of segments, N = ceil(720s/∆tknots), ranging from 115 to 8. The higher order
splines (≥ 12) were more difficult to initialize for high knot spacing (above 80s) as mentioned
in 3.7 and required to raise the acceleration penalty. The drastic effect of the order catches the
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eye. In the system model experiment, increasing the order from 4 to 5 (adding one quaternion
more to the parameters) corresponds roughly to reducing the number of segments from 20 to 10
yielding a reduction of parameters from 24 to 15 quaternions. In the gyroscope experiment the
effect is lower, but still significant; the step from 4 to 5 corresponds to a decrease in segments
from 20 to 12.

In the high-accuracy range the result is even more extreme. For example, in the gyroscope-
based experiment, a 4th-order spline requires at least 8 times more segments to achieve the same
accuracy as a 12th-order spline. In the system model experiment it is 16 times more.

In these plots, the linear splines seem even worse than in the other experiments because they
are using the same knot spacing as the other splines. Recall that in the other experiments, they
used twice as many knots.

Computational cost
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(a) with gyroscope
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(b) with system model

Figure 6.13.: Time for one iteration over knot spacing on a single Intel(R) Xeon(R) E5 core at
3.6GHz. T = 0.2h, yielding 720 readings per sensor. Sensors: sun sensor, magnetometer.

Of course the estimation accuracy needs to be compared with the corresponding computational
cost. As the Jacobian evaluation has a big impact it is hard to theoretically derive the computa-
tional complexity. Thus we only provide single core CPU time measurements on a workstation
in Figure 6.13. It shows surprisingly little effect of the number of segments on a single iteration.
The majority of time is spent on the evaluation of the Jacobians, which only depends on the
number of measurements (fixed here) and spline order, O.
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(a) with gyroscope
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(b) with system model

Figure 6.14.: MADE(T ) over iterations (0 = after initialization) after a very bad B-spline
initialization: constant, at 120deg off the initial attitude. T = 0.2h. Sensors: rate gyroscope,
magnetometer.

Convergence Behavior

In most of experiments the convergence behavior is as follows: there is typically a big step
after the first iteration followed by minor improvements in subsequent iterations, except for the
linear splines that converge slower and mutually very similar. That is why in Figure 6.14 we
show the convergence behavior in a very difficult setup instead. The B-spline gets initialized
with a constant value, which is 120deg off the simulated initial attitude, and the estimators are
only using the magnetometer and the rate gyroscope. In the gyroscope case the order seems
to heavily influence if and how long it takes to recover from the bad initial value but without
any obvious rule how. In the system model experiment the typical independence of the order is
clearly visible except for very high order B-splines (here 10th order). The sensor rates almost
have no impact on the convergence behavior. However, the assumed sensor noise has a surprising
big impact. Interestingly, increasing the sensor noise in the gyroscope case will first increase
the convergence speed, even in absolute accuracy. Further rising the noise magnitude results in
slower convergence and, eventually, the convergence behaviour will become independent of the
order.
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Under-determined case
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(a) with gyroscope
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(b) with system model

Figure 6.15.: MADE(T ) over the time between knots on a logarithmic scale. The sensor rate is
at 1 s. T = 0.2h. Sensors: sun sensor, magnetometer.

To demonstrate how well the system model can prevent the splines from overfitting we run
another experiment, very similar to Figure 6.12 by starting the knot spacing below the sensor
period (1s), and exponentially increasing the number of knots. The result is depicted in Figure
6.15. Obviously the gyroscope-based estimation becomes inaccurate and unstable when the
knot rate reaches the sensor rate (100s) while the system model based estimation keeps maximal
accuracy until the expressiveness of the spline is no longer able to represent the trajectory.

Approximation capacity analysis

In our estimation experiments we do not distinguish between estimation error and approximation
error. In a next step we therefore analyze the pure approximation error in a separate experiment.

Figure 6.16 shows the result of this experiment. A sinusoidal attitude trajectory, turning
around a fixed axis with amplitude, A ∈ {10,45,90,180}deg, and N = 5 periods of 1 s each is
approximated with evenly spaced until-length quaternion B-splines of various order, O ∈ {2..9},
and various number of valid segments S := I−2O+1. When increasing S, typically there is a
big leap to good accuracy between S = 2N and S = 6N. Both higher amplitude A and higher
order pushes this leap further towards 6N.

All our estimation experiments have S/N fractions above the maximum in this plot (∼ 15)
except for the experiments in Figure 6.12 and Figure 6.15 with very high knot spacing, which are
hybrids between estimation and approximation experiments. The typical accuracy for S/N = 15
is already < 10−3deg, except for the linear B-spline case, which therefore possibly have hit
the bounds of their expressiveness for some sub experiments. We can conclude that the rest of
the estimation experiments show mainly the estimation error, as for those the best accuracy is
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significantly worse than 10−3deg.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
S/N

A=180,O=6

A=180,O=2

A=90,O=6

A=90,O=2

A=45,O=6

A=45,O=2

A=10,O=6

A=10,O=2

10−6

10−5

10−4

10−3

10−2

10−1

100

101

M
AD

E
(T

) [
de

g]

Figure 6.16.: Approximation error when fitting B-splines with order, O ∈ {2..9}, and S uniform
segments to sinusoidal attitude trajectories with amplitudes, A ∈ {10,45,90,180}deg and N = 5
periods.

6. Conclusions

In this paper we extended an existing unit-length quaternion B-spline formulation to any order and
all Lie groups and derived all necessary Jacobian formulas needed for batch continuous-time state
estimation on Lie groups both in the general case, and in the specific case for attitude estimation
using unit-length quaternion splines, a singularity-free continuous-time attitude representation.
We evaluated the performance of these curves for estimating spacecraft attitude against a state-
of-the-art approach. We showed that B-splines have equal or superior performance over all test
cases and provide two key tuning parameters—the number of knots and the spline order—that
an engineer can use to trade off accuracy and computational efficiency when choosing a spline
representation for a given estimation problem.

Appendix

6.1. Proofs for angular velocity equations
Let r(t,v) := Rotp(t)(v) (see (6.39)) describe the rotation by the unit-length quaternion p(t) of
any coordinate triple v ∈ R3 expressed in the frame F−→a. Then the following equations defines
the angular velocity ωωωa(t) in the same frame F−→a for this rotation of the coordinates v:

∂r(t,v)
∂ t

= ωωωa(t)×r(t,v)

Please note that we introduced p to represent the rotation actively in F−→a as opposed to the
definition of qba, which passively describes the change of coordinates from F−→a to F−→b. We
start this way because the physical notion of angular velocity is conceptually closer to the active
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rotation concept. With ṽ := Vv we have:

∂r(t,v)
∂ t

=
∂

∂ t
W(p(t)ṽp−1(t)) = W(ṗ(t)ṽp−1(t)+p(t)ṽ ˙p−1(t)) (6.75)

= W(ṗ(t)p−1(t)p(t)ṽp−1(t)−p(t)ṽp−1(t)ṗ(t)p−1(t)) (6.76)

= W(ṗ(t)p−1(t)Vr(t,v))+W(−r(t,v)ṗ(t)p−1(t))︸ ︷︷ ︸
=W(ṗ(t)p−1(t)r(t,v))

(6.77)

= 2W(ṗ(t)p−1(t)Vr(t,v)) (6.78)

= 2W(ṗ(t)p−1(t))×r(t,v) (6.79)

As the latter equation has to be true for any v it follows that (omitting the time parameter)

ωωωa = 2W(ṗp−1). (6.80)

In the case that F−→b is F−→a rotated by p it holds that qba =±p−1. Inserting in (6.80) yields,
when omitting the subscript of qba

ωωωa = 2W(ṗp−1) = 2W( ˙q−1q) =−2W(q−1q̇), (6.81)

because ˙q−1 =−q−1q̇q−1. This proves (6.43).
Angular velocity expressed in F−→b can be acquired by transforming the coordinates using qba

by applying (6.42):

ωωωb = W(q(Vωωωa)q−1) =−2W(q(VW(q−1q̇))q−1) =−2W(q̇q−1), (6.82)

because VW acts as identity on the pure imaginary value q−1q̇. It must be pure imaginary because
complex conjugation - denoted with a hat in the following - negates it as q is of unit-length
(⇒ q−1 = q̂): ̂̂qq̇+ q̂q̇ = ˆ̇qq+ q̂q̇ = ˙̂qq+ q̂q̇ =

d
dt

q̂q = 000

The second equivalence follows from the fact that taking derivative commutes with complex
conjugation. And (6.82) proves (6.44).

6.2. Proofs for unit-length quaternion exponential and logarithm
maps’ Jacobian formulas

Let φφφ ∈ R3 \ {000} represent a purely imaginary quaternion and φ := ‖φφφ‖, φa := φφφ . First we
derive the exponential map’s Jacobian, S(φφφ), as given in (6.47) by starting with (6.24).

S(φφφ) =
∞

∑
k=0

(−1)k

(k+1)!
(adφφφ )

k (6.83)
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= (adφφφ )
0 +

∞

∑
k=1

(−1)2k−1

(2k−1+1)!
(adφφφ )

2k−1 +
∞

∑
k=0

(−1)2k+2

(2k+2+1)!
(adφφφ )

2k+2 (6.84)

= 1+
∞

∑
k=1

−1
(2k)!

((−1)k−122k−1
φ

2k−1a×)+
∞

∑
k=0

1
(2k+2+1)!

((−1)k(2φ)2k+2a×a×)

(6.85)

= 1− 1
φ

sin2
φa×+

−1
2φ

(
∞

∑
k=0

(−1)k

(2k+1)!
(2φ)2k+1−2φ

)
a×a× (6.86)

= 1− 1
φ

sin2
φa×+

(
1− 1

2φ
sin(2φ)

)
a×a× (6.87)

We use to get (6.85) that for all w ∈ H, also purely imaginary, adφφφ w = [φφφ ,w] = φφφw−φφφw =

2φφφ×w, which implies that 2φφφ
× is the matrix representation of φφφ ’s adjoint action in Bg = (i, j,k),

and that for the cross product it holds (a×)3 =−a×, which implies (φφφ×)2k+1 = (−1)kφ 2k+1a×
and (φφφ×)2k+2 = (−1)kφ 2k+2a×a× for k ∈ N. To get (6.86) and (6.87) we only use well known
power series expansions for sin2 and sin respectively.

Next, we prove (6.48) by showing that S(log(q))L(q) = 1 for q 6=± j. Let be φφφ := log(q),
then

S(φφφ)L(q) =
(

1− 1
φ

sin2
φa×+

(
1− 1

2φ
sin(2φ)

)
a×a×

)(
1+φφφ

×+

(
1− φ

tanφ

)
a×a×

)
(6.88)

= 1+
(

φ − 1
φ

sin2
φ +

1
φ

sin2
φ

(
1− φ

tanφ

)
−φ

(
1− 1

2φ
sin(2φ)

))
a× (6.89)

+

(
1− φ

tanφ
− sin2

φ +1− 1
2φ

sin(2φ)−
(

1− 1
2φ

sin(2φ)

)(
1− φ

tanφ

))
a×a×

(6.90)

= 1+
(
− sin2

φ

tanφ
+

1
2

sin(2φ)

)
a×+

(
1− sin2

φ − 1
2

sin(2φ)
1

tanφ

)
a×a× (6.91)

= 1 (6.92)

In the first step only (a×)3 = −a× is used. In the last step we used 1
2 sin(2φ) = cosφ sinφ ,

tan = sin
cos and 1 = sin2 +cos2.

6.3. Proof of (6.25)

∂

∂φφφ l
Φ
−1
d (d) =

∂

∂φφφ l
log(dd−1

) = W
∂

∂φφφ l
(dd−1

)

= W
∂

∂φφφ l
(ḡ−1

k−1 exp(−φφφ k−1)exp(φφφ k)ḡk(ḡ−1
k−1ḡk)

−1)
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= W
(
ḡ−1

k−1

)L
(ḡk−1)

R ∂

∂φφφ l
exp(−φφφ k−1)exp(φφφ k)

= W
(
ḡ−1

k−1

)L
(ḡk−1)

RV︸ ︷︷ ︸
=C(ḡ−1

k−1)

(δl,k−δl,k−1)111

6.4. Proof of Theorem 1
Theorem 1. A L is a sub R-algebra of RdimA×dimA , G L is a matrix Lie group embedded in
A L, and this pair is fully isomorphic to the pair of G and A .

Proof. It is enough to show that ·L is an algebra-monomorphism into RdimA×dimA because its
image, A L, is then a sub algebra and the mapping an algebra-isomorphism onto it. The existence
of this isomorphism yields already that A is isomorphic to A L, that G L is a multiplicative
subgroup in it and its restriction to G , ·L|G , must be a group isomorphism. As any vector
space isomorphism is also smooth with respect to the canonical differential structure of a finite
dimensional vector space we also have isomorphic Lie groups as we assumed the differential
structure on G to be identical with the one induced from A .

Let a,b ∈A be arbitrary vectors, 111 ∈A denote the multiplicative identity element, and Ψ

be again the coordinate map A → RdimA with respect to the default basis for A . We will now
prove the injectivity and homomorphy of ·L, which together implies it to be a monomorphism.

1. The injectivity basically follows from A having an one and Ψ being injective:

aL = bL⇒ aL
Ψ(111) = bL

Ψ(111)⇒
def

Ψ(a111) = Ψ(b111)⇒ a111 = b111⇒ a = b

2. Algebra-homomorphy:

Let α ∈ R be an arbitrary real number and v ∈A be a further arbitrary vector.

From the fact that A ’s vector multiplication, the matrix multiplication and Ψ are (bi)linear
follows then

(a+b)L
Ψ(v) =

def
Ψ((a+b)v) = Ψ(av+bv) =

def
aL

Ψ(v)+bL
Ψ(v) = (aL +bL)Ψ(v)

(6.93)
and

(αa)L
Ψ(v) =

def
Ψ((αa)v) =Ψ(a(αv)) =

def
aL

Ψ(αv) = aL(αΨ(v)) = (αaL)Ψ(v). (6.94)

From the associativity of both the A -vector multiplication and the matrix product it
follows that

(ab)L
Ψ(v) =

def
Ψ((ab)v) = Ψ(a(bv)) =

def
aL(bL

Ψ(v)) = (aLbL)Ψ(v). (6.95)
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Because v and with it Ψ(v) was arbitrary it follows from the last three equations by the
fact that two square matrices are identical if they always yield the same when multiplied
with arbitrary vectors that

(a+b)L = aL +bL, (αa)L = αaL and (ab)L = aLbL.

Because a and b were arbitrary it follows the homomorphy for the three algebra operations,
the addition, the scalar, and vectorial multiplications.

6.5. Proof of Theorem 2
Theorem 2. In our setting expG is a restriction of expA to g ⊂ A , employing the natural
identification of G ’s tangent spaces with sub vector spaces of A .

Proof. It is a well known fact for matrix Lie groups that Theorem 2 holds for the pair (G L,RdimA×dimA ).
The exponential map on A L is obviously a restriction of the matrix exponential on RdimA×dimA

to A L. Restricting expRdimA×dimA first to A L and then to G L yields the same as restricting di-
rectly to G L, and therefore the statement follows for the pair (G L,A L). Finally, due to Theorem
1, the statement also follows for the isomorphic pair (G ,A ) because both notions of exponential
maps are intrinsically defined.
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Abstract
Deployment of camera and laser based motion estimation systems for controlling
platforms operating at high speeds, such as cars or trains, is posing increasingly
challenging precision requirements on the temporal calibration of these sensors. In this
work, we demonstrate a simple, low-cost system for calibrating any combination of
cameras and time of flight LIDARs with respect to the CPU clock (and therefore, also
to each other). The newly proposed device is based on widely available off-the-shelf
components, such as the Raspberry Pi 3, which is synchronized using the Precision
Time Protocol (PTP) with respect to the CPU of the sensor carrying system. The
obtained accuracy can be shown to be below 0.1 ms per measurement for LIDARs and
below minimal exposure time per image for cameras. It outperforms state-of-the-art
approaches also not relying on hardware synchronization by more than a factor of 10
in precision. Moreover, the entire process can be carried out at a high rate allowing
the study of how offsets evolve over time. In our analysis, we demonstrate how each
building block of the system contributes to this accuracy and validate the obtained
results using real-world data.
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1. Introduction

Multi-sensor systems that involve cameras and LIDARs, e.g. for motion estimation, are ubiqui-
tous in robotics research. An easy to use, fast and reliable method to acquire accurate and high
frequency estimates about when sensors actually take measurements and the reliability of their
hardware timestamps, while being independent of any other spatial or intrinsic calibration, has
the potential to save a lot of tedious calibration work and errors. This is particularity true for
research systems that contain large numbers of different sensors. Furthermore, as the underlying
algorithms and concepts for such multi-sensor systems grow more mature, these systems are
about to hit the market in diverse end-user products. An example of this is in the automotive
field, where a combination of multiple cameras and LIDARs are typically used for autonomous
driving and advanced driver assistance systems. Furthermore, recent developments in LIDAR
technology and strong interest from industry, promise wider availability of this sensor type and
a further reduction in prices. This means that the availability of multi-sensor setups is likely
to significantly increase in the future. When these setups are utilized on high speed platforms

Photo diode

IR beam

LIDAR

Filter

RasPi Ethernet PC
PTP sync

Figure 7.1.: The setup for LIDAR-to-CPU temporal calibration. When a LIDAR beam hits the
photo diode a hardware interrupt is triggered on the Raspberry Pi and a low latency timestamp is
assigned and sent to the PC.
(such as cars, trains or multi-copters), or used to jointly perceive highly dynamic environments,
precise time synchronization becomes a critical aspect. Experience with multi-sensor fusion
shows that un-modeled delays can have a strong impact on the performance of motion estimation
systems [136]. Unfortunately, most multi-sensor systems are not always hardware synchronized,
particularly when low-cost sensors and commodity personal computers are used. And even if
hardware synchronization is available, there may still be unknown offsets with respect to the
synchronization signal.

The current state-of-the-art in multi-sensor timing calibration usually addresses the problem
either by exploiting co-observed motion [84, 154] within self-calibration approaches, or using
hardware synchronization signals [49, 136]. Motion based methods require a large amount of
data to achieve millisecond precision (down to about 0.1 ms with targets such as a checker
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board, in laboratory environments [136]) and their accuracy is highly dependent on the motion.
They also have no means to observe the offset between a sensor and the computer’s system
time. Hardware signal based methods demand suitable sensors that support this functionality
(excluding many low cost camera systems, among others) and additional wiring to every sensor.
Our work targets cases where hardware synchronization is not possible or too expensive, or
where additional means for validation or inspection are required. This work is motivated by
the observation that the use of simple external devices involving LEDs (for cameras) or photo
diodes (for LIDARs) can result in significantly improved performance in comparison to motion
based approaches. While this comes at the cost of an extra device, the gain in high rate and high
accuracy estimates of the timing offsets can be particularly useful to optimize the exploitation
of hardware or receive timestamps. Our approach can also serve as an accurate benchmark
(ground truth) for better / easier evaluation of self-calibration algorithms. The proposed device
is based on a Raspberry Pi 3 which is connected either to several LEDs for temporal camera to
CPU calibration or a photo diode for LIDAR to CPU calibration. PTP is used for precise time
synchronization between the calibration device and the CPU of the system to which the sensors
are attached. Overall, this work makes the following primary contributions

• A system for calibrating the time offset between the actual camera exposure taking place
and the corresponding image timestamp (hardware clock and arrival).

• A system for calibrating the time offset between LIDAR timestamps and actual measure-
ments.

• An evaluation of the accuracy and precision obtained using the two systems and 5 popular
sensors, and validation for both based on hardware signals.

• A free and open source, ROS compatible C++ library to simplify hardware time related
tasks for authors of device drivers, such as translating timestamps, and providing the user
with tuning and inspection options. Inspection tools and several modified device drivers
are also provided.1

2. Related work

To the best of our knowledge very little has been published about temporal sensor calibration
using external devices. The only example we are aware of is [140] in which the authors use a
single LED flashed at known system time (through a microcontroller) together with a high speed
camera recording at 100 Hz This could be considered a simpler version of our LED-signaler
device. The fundamental problems with a single LED are first, the achievable accuracy is limited
by the maximum of exposure time and LED flash duration - as for most simple approaches with
LEDs, and second the smaller this maximum is, the less probable it is that a LED is flashed
during the camera exposure.

Two-way synchronization methods like TICSync [69], PTP [48], or NTP perform well but
require support by the sensor’s firmware, which is rare and expensive.

1https://github.com/ethz-asl/cuckoo_time_translator/ (BSD-3-Clause)
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TriggerSync [49] operates by exploiting co-observation of simultaneous trigger signals. This
is a great practical solution for online sensor synchronization if the sensors have trigger or
synchronization inputs and very accurate when one of the sensors has very low latency or the
main CPU has low latency direct inputs such as a RS-232 port [130]. Unfortunately many setups
do not match these requirements. This is especially true in the case of LIDARs. Furthermore,
the estimation rate is limited for similar reasons to the single LED approach above, due to the
ambiguity that occurs when the trigger rate is high. This problem makes it a) even more restrictive
regarding the sensors that can be used, when they are supposed to take measurements at a higher
rate than the trigger rate, and b) less useful as a tool to analyze the statistical properties of the
individual delays. A further difference is that TriggerSync must rely on the sensors handling
hardware synchronization correctly, whereas our approach is directly based on the physical act
of taking a measurement.

Target-less self-calibration methods such as described in [154] or [84] rely on the same motion
being observed in different sensors to find their relative offsets. This typically require many
seconds of sensor data to reach a precision of milliseconds. This limitation means that these
approaches cannot analyze the short term stability of the transport and processing delays or
accuracy / stability of sensor’s hardware timestamps. Furthermore, they cannot provide insight
into the offset between CPU and sensor time.

The approach presented in [136] can achieve very high accuracy for temporal calibration
LIDAR to camera by supporting the motion estimates with a checkerboard in the camera’s field
of view. However, it still requires much more data (thousands of LIDAR measurements and
hundreds of images) to reach the precision for the average delays that our approach can yield
for each single image or LIDAR pulse / revolution. Given that much data, the variance of the
average offset estimate per measurement can be much smaller, bounded from below by the
variance of the physical delays within that data. For example, if we assume 20 s of data from
a LIDAR spinning at 50 Hz our method accumulates 1000 delay estimates, each of which has
a random error with a standard deviation (SD) of about σ := 1 µs. Assuming independence2

we get a theoretic SD of the estimated average delay of about σ/
√

1000' 32 ns. Typically, the
true average delays over 20 s are far less stable. However, this instability comes from variations
in the actual delays, something our method allows an user to inspect. Please note that this is
not about the method’s accuracy — only its precision. Nonetheless, is the right quantity to
compare with competing methods, for which typically only their precision is published due to
fundamental problem of obtaining precise ground-truth data for calibration. Another benefit of
the simplicity and immediacy of our method is that we can provide small upper bounds for the
actual inaccuracy.

Another typical problem most motion based approaches suffer from is that they do not have the
ability to analyze the delays and hardware clocks independently of other calibration parameters
such as spatial extrinsics or even sensor intrinsics. Solving the calibration problems jointly does
not prevent high precision, in fact it might even improve it [136]. But it typically makes the
problem more complex and fragile as well as making it more sensitive to the quality of the model
and of the prior calibration.

2Assuming independence is probably to coarse considering the Raspberry Pi we employ for our experiments. But slightly
more expensive hardware can almost diminish this source of inaccuracy — if needed.
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3. Design

The core idea of our sensor-to-CPU temporal calibration approach is to create a small, low cost
device that allows the CPU to a) detect the event of taking a measurement for active sensors, such
as LIDARs, or b) trigger physical events that can be detected and identified in the measurements
of a passive sensor, such as a camera. In order for the calibration to be accurate it is necessary
that the design of the device yields low unknown latency between an event and its detection. In
this paper we present two such devices: a LIDAR beam detector (3.1), and a LED signaler (3.1)
for laser-CPU and camera-CPU temporal calibration respectively. For both devices it is essential
to have accurate timestamps for edges of a digital electrical signal. We assume here that the
computer receiving the sensor measurements (PC) does not have an appropriate input. We solve
this by connecting a Raspberry Pi 3 Model B with 1200MHz ARM CPU (RasPi) via Ethernet,
and synchronize it’s clock with the PC using the Precision time protocol (PTP, see 3.2). We use
its general purpose input output (GPIO) pins to directly trigger an interrupt on its ARM CPU. In
order to handle these interrupts at low latency, we use a specifically developed kernel module on
the RasPi. In our setup Linux is utilized on both machines. In case the PC does have such an
input (e.g. the Data Carrier Detect line of a RS-232 port as used in [49]) the approach is even
easier to realize because no RasPi or PTP synchronization is required.

3.1. Calibration-devices
In the following sections we outline the two devices developed and used to perform the calibra-
tion.

LIDAR beam detector

The LIDAR beam detector, is a photo diode based detector of LIDAR pulses. This detector
is used as depicted in Figure 7.1 to allow highly accurate and high rate time of flight (TOF)
LIDAR-to-CPU temporal calibration.

Working principle Whenever a laser pulse of the TOF-LIDAR hits the photo diode the
impact gets detected through the filter circuit in the RasPi and a timestamp of the Linux system
time, or for this paper CPU-time (CT), is recorded and sent via TCP to the PC. As the RaspPi’s
CT is synchronized via PTP to the PC’s CT it is possible to align these timestamps directly
with the receive timestamps of the LIDAR for any particular measurement. For this to work
it is necessary to place the photo diode at a place where a beam hits it and the corresponding
beam’s bearing needs to be retrieved. To retrieve the bearing we manually selected a point in the
LIDAR’s point cloud using the live data visualization capability of RVIZ, a visualization tool
provided by the Robot Operating System (ROS)[131]. As the bearing stays constant over time
when both the LIDAR and the photo diode are stationary this step only has to be done once per
LIDAR for a series of delay estimations.

Circuit The entire detector circuit we used is an IR-photo diode, 900 nm, SFH 203 FA, Osram
Semiconductors connected with its anode to the base of a BC547 transistor, whose emitter is
grounded, while its cathode is pulled up to 5V through a 10 kΩ resistor. The transistor’s collector
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is pulled up with a 2 kΩ resistor to 5 V. The signal at the collector is sent through a Schmitt
trigger (74HCT14) and a 10 kΩ resistor to the GPIO of the RasPi to trigger the interrupt.

Data assignment The periodic nature of the measurements (e.g. per revolution of the
spinning LIDAR) yields an assignment problem, as the beginning of the two measurement series
(LIDAR and photo diode) may not coincide. This yields an ambiguous latency by multiples of
the time for one LIDAR revolution (typically & 20 ms). In order to resolve this ambiguity we
manually block the path from the LIDAR to the photo diode for a few periods. This blocking
event is easy to automatically detect, as it appears as gaps in the photo-diode time-series data
along with unusually short ranges measured by the LIDAR. Having detected this in both the
photo-diode and laser time series we compute a relative shift for the laser time series which
aligns its shorter range data to the gap in the photo diode time series. A shift is enough for the
entire data assignment after gaps in both series have been filled with placeholders for missed
packages from the LIDAR or undetected events on the photo diode. This can be done for both
the laser and photo diode time-series based on the approximate LIDAR revolution period. After
applying the correct shift to the dataset containing the blocking event a good first estimate for the
transport delay can be retrieved. This first estimate may then be used to resolve the ambiguity
for future datasets since it only needs to be accurate to within one revolution of the sensor. For
the same reason this step is unnecessary in case of sufficiently accurate prior knowledge.

Accuracy The detector itself is not without delay. However, is possible to retrieve bounds
for the delay. First an upper bound for the delay from when the diode the diode detects the
laser until the RasPi takes a timestamp can be found by employing an IR-LED to periodically
trigger the photo diode. This can then be compared to the trigger signal via the use of a GPIO
output of the RasPi. This is done by changing the output pins value whenever the RasPi receives
an interrupt and after taking the timestamp using a suitable oscilloscope. The oscilloscope is
only used here for validating our method, and is not necessary for application scenarios. With
our setup the overall delay from the positive edge of the IR-LED current to the RasPi feedback
was randomly distributed between 5 and 10 µs. Comparing the induced photo current in the
photo diode between when it was triggered with the IR-LED and when a LIDAR beam hits it
(Figure 7.2) using an oscilloscope clearly shows that the first signal edge is even steeper for
the laser beam. Therefore, we assume an upper bound for the delayed LIDAR pulse arrival
to RasPi timestamp of 10 µs. The synchronization error between RasPi and the PC is within
approximately ±20 µs according to the internal assessment of the ptpd3. In total we expect the
absolute error for our setup per single laser pulse to be within [−20,30]µs. The concept has the
potential for nanosecond accuracy when used with more expensive hardware.

LED signaler

The LED signaler, is comprised of a LED display with 10 large LEDs that are sufficiently bright
to be visible in the camera images, even with very short exposure time (e.g. 0.1 ms). These LEDs
constitute a digital “clock” employing a special redundant encoding to prevent false readings
through the camera images. The LED Signaler is employed as depicted in Figure 7.3 to allow

3https://sourceforge.net/projects/ptpd/
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Figure 7.2.: The photo current of the photo diode (yellow, measured as voltage at a 10 kΩ

resistor) caused by the impact of two consecutive laser pulses of a LMS151 spinning at nominal
50 Hz and the feedback signal of the RasPi after taking the timestamp (cyan). It shows the
typical delay about 3.2 µs of the feedback. The second valley of the yellow curve corresponds to
the subsequent laser pulse from the LIDAR. In the RasPi we prevent in software (based on the
temporal distance) to take another timestamp at the second (no feedback).

high rate camera-to-CPU temporal calibration with an expected accuracy per measurement of
approximately the minimal exposure time of the camera.

Working principle The principle here is to observe the state of the LED “clock” in the
camera images and use this state to associate the image timestamps with the RasPi timestamps
of a corresponding state. Our setup consists of a LED display comprised of 10 LEDs in a row.
The two outermost LEDs are always kept on in order to predict the locations of the inner LEDs.
The 8 inner LEDs (0..7) are driven by a digital 6-bit counter at an user defined frequency, and
define the state of the display. The 4 most significant bits directly control LEDs 4..7, while the
two least significant bits control the other 4 LEDs, such that exactly only one is on at a time
and its index corresponds to the binary number encoded with the two bits. Hence, the (4+4)
LED setup can display 26 = 64 states. The digital counter that controls the LEDs also triggers an
interrupt on the RasPi through one of its GPIO ports, whenever the LED starts showing a “0”.
Similar to the LIDAR beam detector setup, the RasPi assigns a timestamp to such events using
the Linux CT, which is recorded and sent via TCP to the PC. These “0” timestamps are then
used to compute timestamps for every state of the LED display, assuming a constant frequency
between two “0”s of the LED display. To generate the input signal for the clock-counter we used
our kernel module running on the RasPi, but it could be any source.

113



PaperIV: A Low-Cost System for High-Rate, High-Accuracy Temporal Calibration for
LIDARs and Cameras
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Camera

Counter

RasPi Ethernet PC
PTP sync

Figure 7.3.: The setup for Camera-to-CPU temporal calibration. Every image taken by the
camera can be located in time based on what LED state is displayed. The LED status is controlled
by the Raspberry PI with little unknown latency.

Data Assignment To determine the timestamp of an image to a precision of the camera
exposure time (τe), the LED display must be driven at a frequency of ( 1

τe
). However, this leads to

images where a transition in the state of the display takes place during an exposure. This leads to
a data assignment problem as the state transition with one LED turning OFF and another turning
on during an exposure may be incorrectly detected as a state with both LEDs ON. In order to
remove such frames from the data association we represent the two least significant bits of our
LED clock by 4 LEDs (see above). When 2 of them appear ON in a camera frame there is only
one possible transition that can cause this, and the time in the middle between the two states is
estimated for the image. In addition, frames showing the transitions between LEDs 0 and 3 are
skipped since these imply a change in state of one of the more significant bits, whose observed
state might then not be distinguishable from state transitions. The so encoded number on the LED
display in any given camera frame is calculated in an automated manner using a simple computer
vision blob detector algorithm. This allows us to align the camera timestamps with the clock
timestamps with an ambiguity of the period of the entire LED-clock (the duration after which it
repeats itself). In order to resolve this ambiguity, a box prior for the average total processing and
transmission delay per image is required with an uncertainty smaller than the period of the LED
clock. This poses no problem because the period is adjustable through the clock frequency and
one can start with a low frequency e.g. 500 Hz which requires the uncertainty to only be below
64/500 s = 128 ms. One pass with this frequency reduces the uncertainty to 2 ms. Such a prior
is good enough for our goal frequency of 10 kHz, which can be used in a next pass.

Circuit The schematic of the circuit driving the LED display is too much detail for the paper.
But it is very simple to design once the necessary LED pattern is known. For our prototype
we used two 74HCT191, 4-bit counters chained together to an 8-bit counter, a 74LS42 to
demultiplex the two least significant bits, and a HCF4069 to invert the output signals of the
74LS42. Additionally we use one BC547 transistor per LED to amplify the output current of
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the digital ICs and resistors to adjust the current through the transistors and LEDs, and some
capacitors to stabilize the signals. One input of the RasPi is connected to the 7-th bit of the
counter to notify about newly reached “0” display states.

Accuracy Our approach limits the accuracy of the estimated image timestamps to within the
exposure time of the camera. Hence, to obtain accurate measurements, the exposure time should
be set to a small value and the LEDs chosen should be bright and close enough to be clearly
visible in the image. The LED clock’s base frequency (rate of a single clock increment) should
be about the inverse of the camera’s exposure time. A higher clock frequency would observe
the average effect of multiple LED transitions during one exposure and a lower frequency limits
the accuracy achievable with a single image. For our setup we set the camera exposure time
to 0.1 ms and the LED clock frequency to 10 kHz leading to an absolute error for each image
timestamp to be within [−0.05,0.05] ms.

3.2. Precision time protocol (PTP)
The Precision time protocol (PTP, [48]) is a protocol for two-way synchronization between com-
puters or other network nodes and from the user perspective similar to NTP. In contrast to NTP it
is designed for local area networks and aims at much higher accuracy. Up to few nanoseconds
when used with hardware support in the network devices. Even without any hardware support it
typically maintains synchronization within a few microseconds. To synchronize the main PC
with the RasPi we used ptpd3 without using any hardware timestamping because the RasPi’s
Ethernet adapter does not support hardware timestamping.

3.3. One way clock translation
In order to exploit the device time (DT) measured by clocks within the sensors for sensor fusion
or control it is necessary to translate it into CPU-time (CT). The same is necessary in order
to use the calibration devices presented in this paper because they measure the sensor activity
effectively in the CT. This is typically done by a suitable filter / batch algorithm fusing the
receive CT-stamps with the DT-stamps in the received packages. Therefore we are referring to
the resulting time with translated device time (TDT). To filter the DT-stamps we used our free
software implementation4 of the convex hull algorithm presented in [164]. This is identical to
what was used in [136] and equivalent to the TICSync implementation used in [49] with the
difference that the latter’s authors are using an estimator switching periodically between two of
the convex hull filter, which get reseted whenever their turn is over to prevent relying on too
old data and therefore be more resilient against long term drifts. For our experiments we also
use a switching version of the convex hull algorithm. To retrieve the offset to this TDT with
respect to the CT (it is always lagging behind, roughly by the minimal unknown transport delay)
is typically the goal of temporal calibration.

With the devices presented here it is possible to go much further due to their high rate
high accuracy nature. They enable the user to monitor the performance of the hardware clock
filter itself on data generated from the real target hardware clock. This is useful for tuning,

4Available as part of https://github.com/ethz-asl/cuckoo_time_translator/
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developing and debugging hardware clock filters directly for a given sensor possibly taking
relevant influences such as sensor temperature into account. These tasks are typically hard
problems unless one is using hardware synchronization, which we assume to be no option.

In Section 4 we are going to show two versions of TDT for the same raw data for the reader to
better appreciate the problem.

4. Experiments and Results

4.1. Setup
We evaluate our method using the following sensors:

• two different Sick LMS151 LIDARs spinning at 50 Hz using a 100 MBit Ethernet
connection,

• two Hokuyo LIDARs, UTM-30LX (USB2; 2 hubs) and UTM-30LX-EW (100 MBit
Ethernet),

• a Point Grey BB2-08S2C-25 (Firewire; 1 hub),

• a Point Grey Chameleon3 CM3-U3-13Y3C (USB3; 1 hub).

We recorded data from these sensors while estimating the time until the measurements are
received on the main PC. All sensors connected via Ethernet communicate through two gigabit
Ethernet switches with the PC. All sensors are connected and running in parallel, together with
a Velodyne 32E and one more LMS151 within a complex robotic system. However, only one
sensor is analyzed at a time. Each LIDAR sensor is recorded for 60 s and each camera for 20 s
and the estimated arrival delays and offsets to their TDT are presented. The Chameleon3’s strobe
signal and the UTM-30LX’s “synchronous output” are additionally connected to GPIO ports
of the RasPi and the timestamps of their rising edges are recorded in parallel to provide ground
truth to validate our methods.

We use ROS [131] as the middleware to interface with the sensors. To our surprise all four
required open source ROS-drivers lacked the support for DT-stamps. In order to be able to
present the hardware clock offsets as part of our analysis, these drivers were extended to allow
the hardware clocks to be used. We made this work also publicly available1.

4.2. Evaluation
All the figures in the following section follow a common layout:

• The x-axis reflects the CT of the plotted events shifted such that the first measurement is
always at zero.

• The y-axis is a time offset between two CT-stamps associated with a common event, of
which the reference time is always a time determined with one of the calibration devices
by the synchronized RasPi.
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• Red points correspond to the overall transport and processing delay of a measurement
package (camera image / LIDAR ranges), i.e. the CT of arrival at the main PC (receive
time) of a sensor measurement minus the corresponding CT of the first measurement in
the data package.

• Green points correspond to offsets of TDT-stamps, i.e. the one way TDT minus the CT of
the corresponding detection.

• Optional blue points correspond to the offset of hardware signals coming directly from
the sensor (e.g. strobe) to the RasPi for validation of our method.

4.3. LIDAR-to-CPU
For the LIDAR-to-CPU temporal calibration experiments we use the LIDAR beam detector
device to generate timestamps in CT (by the means of PTP synchronization between the main
PC and RasPi) for the detection of LIDAR pulses on the photo diode. For all the experiments
one event is measured per revolution of the spinning sensor as one photo diode is used and only
the first detection per revolution is recorded (based on the roughly known sensor period)

Figure 7.4 shows results for the UTM-30LX and the UTM-30LX-EW, each spinning at 40 Hz.
The specific pattern of the TDT-stamps (green) is caused by the remainder of the sensor’s
revolution time modulo the milliseconds counted by their internal clocks. The UTM-30LX data
indicates a very stable revolution period. It yields almost a fixed fraction of a millisecond that it
looses every revolution until it has lost an ε > 0 more than a millisecond, which corresponds to
only ε — modulo the one millisecond resolution. The high stability of the revolution period can
be exploited to get timestamps of lower variance than a naive translation of the low precision
DT, as suggested by [136]. A very simple way to do this is to use the revolution counter as a
“sensor clock” instead of its timestamps. This clock’s “time” can be translated with the same type
of algorithms into CT. We show in Figure 7.4 (black) the offsets of the revolution counter after
translating it with the same convex Hull algorithm we use for the green plots. This method is not
reliable enough for real world application but it yields a good way to asses the stability of the
revolution time. The UTM-30LX-EM shows similar effects, with the differences coming from a
less stable revolution period.

To validate the performance of the LIDAR beam detector we retrieve additionally CT-stamps
for the rising edge of the UTM-30LX’s “synchronous output” (also in Figure 7.4, blue). This
demonstrates high precision. However, the mean (2.607 ms) only roughly corresponds to the
2.75 ms delay specified by the manufacturer (as given in [136]). Because of this significant
discrepancy, discrepancy, we must rely upon the oscilloscope (Figure 7.2) and the corresponding
camera test in Figure 7.6 for the accuracy. Furthermore, we found that this delay changes over
time between 2.56 and 2.62 ms, qualitatively corresponding to the drift in rotation frequency
from 40.2 to 39.9 Hz. This indicates that the specification of 2.75 ms is indeed inaccurate.

Figure 7.5 shows the result for 20 s of data from the LMS151(b), spinning at 50 Hz 5. These
sensors emit two timestamps from the same clock with each package. One timestamp for the
measurement start and one for the transmission start. The latter can be used to improve the

5The corresponding plot for the LMS151(a) is not included because it is very similar including the very surprising hardware
clock behavior (see caption).
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clock translation as it happens very close to the physical receive time. Using this improved
translation for the start timestamp yields better accuracy and a CT that is in deed close to the
actual measurement start, without relying on assumptions about the measurement and processing
duration as can be seen in Figure 7.5 (green). The remaining negative offset comes from the
fact that according to the specification, the start timestamp is taken internally at 14 degree
before the actual measurement start. This corresponds to −0.77 ms, which is very close to
the mean of the translated start time (−0.71). The remaining difference is probably due to the
random 1 ms jumping of the green signal. To our great surprise we had to assume here that the
start-timestamp delivered along with the measurements from one measurement phase actually
marks the beginning of the next measurement phase6.

Statistical data for all these datasets is presented in Table 7.1. Each is based on 60 s of data
per LIDAR, of which only the beginning may be plotted in the corresponding figures for the
sake of readability. The two numbers for the receive latency’s mean correspond to first and
last measurement of one package. Both are inferred based on the measurement for one beam,
its index, and the duration of a full measurement phase. Please note that all these numbers
will not translate well to other setups and systems because the sensors are only a part of the
communication. This holds in particular for the means. Furthermore, they depend on the
revolution period, which typically drifts significantly over time and possibly depends on the
motion / alignment of the sensor with respect to gravity. Additionally, for the Hokuyo sensors
it depends on how the internal bandwidth limit7 is overcome: skip revolutions or restrict the
measurement angles range. We use the latter, which also leads to smaller packages that typically
have less random transport delays than larger packages. Nevertheless, comparing the different
LIDARs, it becomes apparent that the two LMS151 are much quicker at delivering the data
through Ethernet than the UTM-30LX-EW (about 7 ms vs. 14 ms minimal latency). But at the
same time their delay is less predictable (0.14 ms vs. 0.04 ms). The UTM-30LX connected with
USB2 is even quicker (minimal latency mean 3.6 ms). However, on the USB2 bus we observed
quite frequent and rather severe outliers in the latencies, up to ∼ 10 ms. Without specialized
DT translators all presented LIDARs have more accurate receive time. However, a) more recent
/ expensive models are likely to have better DT-stamps (e.g. the Velodyne HDL-32E, whose
analysis is beyond the scope of this paper), and b) in applications where larger outliers must be
avoided it might still be better to utilize the DT-stamps as they can be more reliable, especially in
the case of a dedicated data connection.

Our results clearly indicate that to analyze the performance of a LIDAR’s hardware clock and
to tune, develop and evaluate new filters for it, the LIDAR beam detector is a very useful device
because it provides the user with the exact feedback needed: a reference timestamp to compare
with for a real device.

4.4. Camera to CPU
For Camera-to-CPU temporal calibration experiments we use the LED Signaler device to
generate timestamps in CT (by means of RasPi-CPU PTP synchronization) of each state of
the LED display. We obtain a delay or offset for each image coming from the free running

6Assumed it to mark the beginning of the same data the transmission of a package containing 15 ms measurements would
happen < 3 ms after the first measurement.

7The sensors are not able to deliver at full rate over the full angular range.
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Figure 7.4.: Time offsets for the UTM-30LX (top) and UTM-30LX-EW (bottom). The latency
(red) shows the typical pattern of random delays caused on the USB bus and in the OS kernel.
The translated hardware clock offset (green) nicely shows the effect of DT taken with too low
precision (1 ms; less precise than the revolution period). This lack of precision makes it less
accurate than the receive time (SD ' 50 µs) when used with a simple hardware clock translator
(green, SD' 290 µ). However, it is possible to improve on this by exploiting the precision: black
(SD ' 17 µ). The UTM-30LX-EW’s corresponding plot (bottom, black) shows the limitations
of this “trick”. It’s higher variance (SD ' 120 µs) indicates that this sensor’s revolution period
is less stable. The delay from the rising edge of the “synchronous output” of the UTM-30LX
until the first measurement as detected by the photo diode (blue) shows very low variance (SD
' 1 µs). This demonstrates the high precision of our method. It is not close to 0 because it is not
synchronized with the first measurement but with a specific angle before it. Please note the break
in the y-axis of the plot.
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Sensor receive latency trans. hw. clock off.
mean [ms] SD [ms] mean [ms] SD [ms]

UTM-30LX 21.9−3.9 0.085 21.3 0.289
. . . -EW 31.6−13.6 0.042 31.1 0.257
LMS151(a) 21.6−6.6 0.174 −0.7 0.498
LMS151(b) 21.6−6.6 0.142 −0.7 0.491
Chameleon3 13.8 0.712 11.6 0.020
Bumblebee2 51.7 0.116 51.3 0.023

Table 7.1.: Latency and Offset statistics for the tested sensors
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Figure 7.5.: The LMS151(b) receive latency’s (red) show the expected random delays (mean
' 21.6 ms and SD ' 0.14 ms). The TDT (green) shows very surprising behaviour. It seems to
jump between two hardware clocks that are almost precisely 1 ms apart. Each of these apparent
clocks is very precise (< 10 µs SD between the jumps; the DT resolution is 1 µs). Because of
these unpredictable jumps the overall randomness of the DT-stamps has a standard deviation of
approximately 0.5 ms, which is significantly larger than the SD. of the random transport delays.
Using the revolution counter as a clock (black) is no alternative. Instead it reveals significant
short term instability of the rotation period. The magenta plot shows the translated transmission
timestamp. Its existence allows the start timestamp (green) translated with the same model to be
close to the actual measurement start. Please note the break in the y-axis of the plot.
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camera (Chameleon3 or Bumblebee2) by detecting the state of the LED display in the image and
associating it to a corresponding state of the display as described in section 3.1. The camera
exposure times are set to 0.1 ms, which should limit absolute errors to within [−0.05,0.05] ms
for each measurement. Thanks to the short exposure time normal office lighting does not pose
any problem for the procedure. Typically only the LEDs are bright enough to be visible in the
images8.

Figure 7.6 shows the delay and offset plots for a 20 s dataset collected using the Chameleon3.
In addition to recording the image arrival and TDT-stamps, we also recorded the timestamp for
the strobe signal for each image directly in RasPi time. As seen from the figure, the difference
between estimated image timestamps using our method and the strobe signals (blue) has a mean
of only 10 µs (SD 19 µs), clearly validating our method. Furthermore, we can observe that the
variance of the image arrival timestamps (red) over the dataset is much greater than the translated
image DT-stamps (green), reflecting the variable delay in image transmission. Table 7.1 shows
statistics providing a comparison between image arrival timestamps and TDT-stamps for both
cameras studied during this work. Figure 7.7 shows similar plots for the delays and offsets of the
Bumblebee2 camera but without strobe signal. The offsets plotted in purple show the typical bad
performance of a freshly started convex hull filter. Only after some time it obtains steady values
for the delays (green), hence the particular switching concept described above, which allows a
filter to mature before being used. Long term clock drifts (acceleration / deceleration) are not
captured by the employed convex hull filter, and hence a gradual drift in the offset values can
sometimes be observed in longer datasets, such as the one shown in Figure 7.8. Against this
problem the reset part of the switching concept is a good remedy. Switching was disabled for
this last experiment.

Since our method provides an offset almost for each image in contrast to batch processing
based approaches [136, 154], it is an useful tool to study such effects for a variety of sensors.

5. Conclusions

We presented a novel approach for temporal calibration of LIDARs and cameras with respect to
a connected computer’s system time that offers high accuracies at a high rate. And we showed
with 5 different sensors that it can easily provide insights into the nature of the sensor delays
that are difficult to retrieve otherwise. The presented solution promises to be relevant to all
applications that require low timing uncertainty when utilizing these sensors, such as high speed
state estimation and control. The proposed methodology is particularly useful in the detailed
analysis of the temporal offsets to leverage optimal hardware time filters or investigate causes for
random transfer delays. We expect the contribution of this work to be most useful for robotic
researchers and industrial users relying on these sensor types without having the resources
for custom hardware development or hardware synchronization. To validate our methods we
compared our results with the hardware synchronization signals of a camera and a LIDAR and
measured the delays of the LIDAR beam detector using an artificial IR source to simulate laser
pulses from LIDARs.

8The LED display image in Figure 7.3 was taken in a bright office and behind the LEDs there was white plastic.
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Figure 7.6.: Chameleon3 time offsets estimated using the LED signaler. As hoped, the strobe
signal time offsets (blue) have almost zero mean (10 µs; SD 19 µs; both below exposure time,
0.1 ms). Hence they validate the method. The standard deviation of the receive latencies (red;
SD 0.7 ms) is observed to be much higher than the offsets of the translated image timestamps
from the camera hardware clock (green; SD 20 µs). Data collected over 20 s, 192 images (+66
skipped). Please note the break in the y-axis of the plot.
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Figure 7.7.: Bumblebee2 time offsets estimated using our method for received (red), and
hardware (green) timestamps. The statistics for this 20 sec dataset are tabulated in Table 7.1.
The offsets shown in purple are also obtained using DT-stamps. However, they are translated to
CT using a filter (Section 3.3) initiated at the beginning of the dataset as opposed to the green
offsets, which are translated using a filter which has been running for a while. This highlights
the effect of using one way clock translation, to learn the higher order terms of clock skew and
offset for the sensor hardware clock with respect to the CPU clock.

123



PaperIV: A Low-Cost System for High-Rate, High-Accuracy Temporal Calibration for
LIDARs and Cameras

0 50 100 150 200 250 300
time [sec]

50.8
51.0
51.2
51.4
51.6
51.8
52.0
52.2
52.4
52.6

of
fs

et
 [m

se
c]

Figure 7.8.: Bumblebee2 time offsets over a longer, 300 s dataset (1124 images, +374 skipped
due to LED transitions). The red points show the offsets of the image arrival timestamps. One
can also see the slow, drift of the camera hardware clock with respect to the CPU clock over time
(green). This is due to imperfection of the one way clock translation applied here (green; convex
hull without switching). Our setup is precise enough to highlight these effects, and provides a
stepping stone towards addressing them in application scenarios.
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Abstract
The EUROPA2 platform contains a large number of sensors and actuators to allow it to
perceive and interact with the surrounding world. However, to allow the combination
of readings from multiple sources, an accurate calibration of the sensors intrinsics
and extrinsic parameters are required. To allow the goal of long-life autonomy these
parameters also require continuous automatic calibration over the life of the robot while
it goes about normal operations in an unconstrained environment.
In working towards this goal of continuous lifelong calibration, ETH has developed
solutions for several of the major issues that limit current calibration approaches. The
major contributions were the development of a continuous-time method for obtaining
sensor information including orientation, a method for detecting the observability of a
system’s parameters that is robust to noise, a method that utilizes ICP in combination
with the measurement models of point cloud sensors to perform spatiotemporal cali-
bration of point-cloud sensors. All of these methods were finally combined in a batch
maximum likelihood estimator that finds the most likely configuration for the system
given its sensor readings.
Two different forms of this estimator were created, an offline and an online module.
The offline module incorporated additional external pose information and would be
used when first calibrating a new system. The online module then operates continuously
only using internal readings and would be used to correct for any small errors that
accumulate over the life of the EUROPA2 system. Experimental results of both system
demonstrate that the system can achieve calibration precision to within a range of
around 10 mm, 0.5 degrees and 20 ms for a large range of the given sensors.
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1. Introduction

Within the EUROPA2 project, one major focus is lifelong operation in urban environments
(WP5). In order to be able to achieve this, the capability to continuously self-calibrate the
robot sensors and detect failures during operation is required. This includes slow changes in the
sensors’ intrinsic or extrinsic calibration parameters as well as the detection of sensor failure
(task 5.1).

This document is the deliverable D5.1 on the lifelong self-calibration approach for the EU-
ROPA robot.

To accomplish the goal of lifelong self-calibration ETH has developed a new calibration
framework. Unlike most sensor calibration approaches, the technique requires no special markers
or other calibration aids to be placed in the scene, allowing the process to operate in environments
the robot encounters during its normal operation (self-calibration). At the heart of this framework
is a batch optimization method that is able to estimate the relevant calibration parameters of a
wide range of sensors and actuators. The approach is able to simultaneously consider, and solve
for all of the modeled extrinsic and intrinsic parameters of the system, as well as estimating any
temporal offsets present in the setup. To accomplish this task, the method utilizes the observations
of each sensor in combination with the confidence that can be placed in the measurements, to
formulate the calibration as a maximum likelihood problem. This principled estimation of the
most likely platform configuration including systematic delays requires that accurate estimates
of all sensor’s state can be formed at any point in time, not just when readings are observed. To
allow this we employ B-spline based continuous-time representation for the entire system state,
including 3d-orientation components for which we extended the necessary theory to employ
Lie-group valued B-splines in a Jacobian based nonlinear optimization context.

A second major contribution of the presented calibration approach is the exploration of methods
for handling unobservable and nearly unobservable parameters. Under a traditional maximum
likelihood approach, these parameters would obtain values unrelated to the actual properties
of the system, depending almost entirely on the noise present in the utilized measurements or
numeric errors. By considering the observability of properties in our approach, it is possible
to only update parameters when sensor measurements convey actionable information about the
underlying calibration of this component of the system. While the current method we have
developed for performing this observability identification cannot prevent all situations that would
result in erroneous updates, it acts to robustify the system in many cases.

The final element of research performed for this system was the development of a probabilistic
process via which a wide range of depth sensors could be accurately aligned. The approach
utilizes an ICP (iterative closest point) method that allows the formation of maximum likelihood
error terms from the point matches generated. This allows these sensors to be integrated into the
overall ML batch estimation.

From this theoretical framework, a calibration software library has been developed. The
library has been programmed in C++, with modularity and extendibility in mind. This means
that in many cases an user will be able to use the library to greatly reduce the time required
to generate a representation of a generic robotic setup, such as the EUROPA2 platform that
contains a large number and range of sensors and actuators. Sensor readings can then be provided
to this representation to assist in the calibration of a new and complex systems. This greatly
simplifies the daunting task of configuring a new platform. The library is now in its final stages
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(Wheel-odometry)

Figure 8.1.: EUROPA2 sensor and actuator setup. The green checks indicate which sensor /
actuator is already running and can be calibrated in the EUROPA2 configuration here shown on
the ETHZ platform. The question marks indicate sensors or sensor placement, which have not
been specified yet.

of development and an open-source version of it will be released shortly. This library has been
utilized in the development of offline and online self-calibration modules for the EUROPA2
platform.

Thorough evaluation of both the offline and online calibration procedures has been conducted,
with the reliability of their calibrations assessed through measuring the precision of the generated
calibration parameters.

The document is divided in two major parts. First, a description of the EUROPA2 calibration
problem and second, our approach and progress to solve it.

2. The EUROPA2 calibration problem

The EUROPA2 platform utilizes a wide variety of sensors, as depicted in Figure 8.1. It comprises
a Velodyne HDL-32E, a Bumblebee stereo camera, three Sick 2d-LIDARs, LMS-151, and a
Hokuyo, R314, actuated with a Dynamixel RX24F servo. To allow the platform to obtain a clear
representation of its state and that of the surrounding environment, the output of multiple sensors
will often need to be combined in an accurate manner. To facilitate this multi-modal sensor
fusion accurate intrinsic and extrinsic calibration of all the sensors must be performed. However,
the large number and verity of sensors the system possess makes this calibration a complex and
challenging problem.
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2.1. Required calibration parameters
This section gives an overview of the calibration parameters that are present in the EUROPA2
system and how their accurate estimation can be broken down into a series of subproblems.

Many of the sensors used by the EUROPA2 platform come with a pre-set factory calibration
for their intrinsic properties. These properties tend to be accurately estimated and do not change
significantly over the life of a well maintained system. This means that for these sensors no
further intrinsic calibration is required. On the EUROPA2 platform this was found to be the case
for the mounted GPS, IMU, Stereo-Camera and LIDARs. Of the sensors used, only the wheel
odometry sensor has intrinsics that require calibration. This is because its accurate operation
depends on parameters such as the wheel radius which will change due to tire pressure and wear.

In addition to this, the extrinsic pose of all of the sensors as well as their delays must be
estimated. To accomplish this we make use of a batch maximum likelihood estimator that
operates on the calibration parameters jointly with a time continuous state trajectory. This
is combined with highly accurate external position tracks of the platform and sensor specific
markers provided by a Vicon system. This procedure allows precise offline calibration while
keeping the redundant effort for the online implementation low.

This calibration problem can be broken down into four main challenges:

• Sensor delay calibration

• Observability aware calibration

• Incremental calibration

• Sensor data associations

In the following sections each of these areas will be examined in greater detail in the context
of both offline and online calibration.

2.2. Sensor delay calibration
One common loss of accuracy is due to the unknown delays that occur between a sensor taking
a reading and the data being timestamped. In order for readings from multiple sensors to be
accurately combined, precise knowledge of the relative time between these readings is required
[113]. This is especially important for accurately estimating the position of points observed while
the platform is turning and in SLAM systems where even a small offset can cause significant
drift in a systems position estimation.

Sensor readings are often acquired over unreliable channels (for example Ethernet), which
introduces unknown and random delays in the order of milliseconds. This renders the simple
solution of time-stamping sensor data when it is received by a central computer too inaccurate.
This is especially true for sweeping sensors or for sensors, such as IMUs that can perform
hundreds or even thousands of readings per second. This fundamental problem has led to the
introduction of hardware timestamps committed by the sensors alongside their measurements that
are based on an internal clock. This method of time-stamping drastically reduces the problem of
random delays. However, the internal clocks of different sensors are typically not synchronized
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and thus the problem of unknown sensor timing offsets remains. In both cases this problem
introduces important calibrations parameters to accurately associate sensor timestamps.

All discrete-time state representations have significant issues with the estimation of these
timing related parameters, as associating measurements with a certain time is fundamental to
how these discrete methods operate. For that reason we have chosen to employ continuous-time
state representations. In these continuous state trajectories, the estimated state given by the
sensor measurements is represented by a parametric family of differentiable functions, rather
than by a discrete time series of states. This method has been demonstrated to allow accurate
estimation of time delays [57]. While these families are well known and often easy to implement
for state space components in Euclidean spaces, difficulties can arise in non-Euclidean cases,
especially for higher (> 1) degree of differentiability. The most important example in robotics is
the Lie group SO(3), which is a crucial component if the attitude and extrinsic calibration of the
EUROPA2 platform are to be correctly modeled.

2.3. Observability aware calibration
When attempting to estimate the state and calibration parameters of a robot during normal
operation, some aspects of the state or calibration space may be unobservable. Informally, this
means that there is not enough information in the data to correctly estimate these parameters.
For example, when two cameras do not share an overlapping field of view, planar motion renders
the extrinsic calibration problem degenerate; the transformation between cameras only becomes
observable under general 3D motion. This can become an important issue because unobservable
or barely observable directions may appear well observable in the presence of noise. Even if our
hypothetical platform is piloted only on a plane (a degenerate case), noise in the measurements
can make unobservable parameters appear observable. We call these parameters numerically
unobservable to mirror the related concept of numerically rank-deficient matrices. This issue
has been largely ignored by the community. To the best of our knowledge, [111], is the first
published self-calibration algorithm able to cope with this issue.

2.4. Incremental calibration
Incremental calibration is a vital step for reaching our goal of a long lived calibration system.
This is because the more time a system spends operating, the more data it will have from which
it can calibrate. For a system equipped with a large array of sensors even a few minutes of
data can be many gigabytes in size, this means that any long lived system will not be able
to store all the raw information relevant for calibration, let alone process it in a reasonable
manner. However, a calibration system that only utilities short sections of the newest data would
ignore the information gained from all the previous observations of the system. In many cases,
parameters which were observable in some previous section of data could be unobservable in the
information the platform is currently limited to processing.

Incremental calibration overcomes these issues. In this process each calibration stage takes in
the previous calibration as well as the new sensor data when estimating the desired parameters.
Estimates of the confidence in each parameter are also calculated and stored to allow an update to
have appropriate influence over each parameter. This required knowledge of the confidence that
can be placed in a reading and its influence on the system results in a strong coupling between
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incremental calibration and the previously mentioned observability awareness.

2.5. Sensor data associations
A very different kind of challenge is to associate the sensor readings. This can either take the form
of cross-sensor associations or self associations, where the readings from one sensor at different
times are compared. Cross-sensor data associations are required to be able to automatically
determine the extrinsic calibration of sensors without relying on movement of the platform.
The self associations over time are essential to observe the sensors movement relative to an
environment assumed to be mostly static. For a complete extrinsic calibration it is necessary to
have potential associations between the sensors, such that all sensors are (indirectly) connected.

In the associations lies the big difference between self-calibration and in-laboratory calibration.
In-laboratory calibration is typically based on specific markers in the environment that are easy
to accurately detect and localize in the spatial sensor readings. While self-calibration needs to
work in the unmodified operation environment and therefor needs to find associations utilizing
nothing but the structure of the scene that the sensors are observing. Due to the large verity of
possible objects, configurations and potential sources of error this method of calibration poses a
greater challenge then the exploitation of known features for well chosen markers.

The extensiveness of the current literature covering these approaches is largely dependent
on the type of sensors being calibrated. The best studied case is that of camera-camera calibra-
tion followed by LIDAR-LIDAR. All forms of data association between sensors of differing
modalities are more difficult and in general have not been thoroughly explored.

3. Our Approach

In the following sections we will explain several parts of our approach in terms of the role and
progress with respect to offline and online self-calibration for the EUROPA2 platform.

3.1. Sensor data associations for self-calibration
Our concept concerning sensor data associations for the EUROPA2 self-calibration is as depicted
in Figure 8.2. The connecting edges in the Figure represent data associations found by the
point-to-plane variant of the Iterative Closest Point (ICP) algorithm (Section 3.4). The tip of the
arrow indicates to which side the plane role is assigned to.

For the extrinsic calibration of the IMU and Odometry relative to the 3D sensors (stereo
camera and LIDAR) the algorithm builds on the fact that all of them are able to at least partially
observe their own 3D motion due to their self associations. Assuming a suitable motion of the
platform, this yields the possibility to infer (partially) their mutual extrinsic calibration.

3.2. Estimating sensor delays using Lie-group valued B-splines
Our solution to the problem of time continuous estimation (Section 2.2) for non-vector-space
variables, is to generalize the concept of B-splines, so that it may be applied to Lie groups
[86]. This method allows finite dimensional parametric representation of SO(3)-trajectories
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stereo-camera 3D LIDAR 2d LIDAR

Figure 8.2.: Sensor data associations for the EUROPA platform.

that remain, by construction within the manifold. This representation also ensures that there
are no singularities or degenerated points in the parameter space. Furthermore, this method
has the added advantage of allowing a lower bound on the degree of differentiability (in time)
to be selected for an entire trajectory. This is especially important for physical modelling,
where velocities and accelerations need to be available for the state trajectories. We have also
developed the necessary analytical expressions to employ these generalized B-splines within
nonlinear optimization processes that rely on first order derivatives, such as Gauss-Newton or
Levenberg-Marquardt optimization. The accuracy of this approach has been evaluated for the
case of attitude estimation. The only comparable work we are aware of employing this for state
estimation is [101]. This work makes use of scalar based auto differentiation (part of Google’s
Ceres) to retrieve the necessary Jacobians. While effective, this approach is too computational
intensive for our goal of real-time use. We further extended our code base to allow estimation
of unknown time delays in batch estimations, using these B-splines to represent the state space
trajectories. Our preliminary work, completed before the EUROPA2 project started, [58] and
[135] uses traditional B-splines to represent a minimal parametrization of SO(3), and is therefore
limited by not being rotation invariant.

Further details can be found in the paper “Continuous-Time Estimation of attitude using
B-splines on Lie groups” [2], funded by the EUROPA2 project.

3.3. Observability aware and incremental self-calibration
To tackle the problem of unobservable variables that appear observable due to noise in the
measurements, we build upon and improve our former work as published in [111]. A journal
paper [4], partially funded by the EUROPA2 project, is attached to this document. Our approach
exploits the algebraic links between the Gauss-Newton algorithm, the Fisher information matrix,
and nonlinear observability analysis, to automatically detect directions in parameter space that
are numerically unobservable and avoid updating our parameters in these directions; at any given
time, directions in the parameter space that are observable will be updated based on the latest
information, while unobservable directions will remain at their initial guess. We achieve this
by constraining each Gauss-Newton step to the eigenspaces of the inverse Fisher information
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Figure 8.3.: A top view illustration of the grouping (illustrated via coloring) of LIDAR point
measurements base on their timestamp along the trajectory of a moving platform (big black dot).
The small colored rectangles represent the LIDAR measurements taken from the correspondingly
colored segments of the trajectory. The black association lines between them (found using
ICP) are used in a batch optimization step to introduce error terms for the state trajectory and
calibration parameters minimizing the point-to-plane distance between measurements of different
LIDARs and from different time segments.

matrix, that corresponds to eigenvalues of sufficient magnitude. This is done as these values
roughly correspond to how locally observable a given direction is.

Furthermore, measurements containing novel information about the calibration parameters are
detected using an information gain test and added to a working set that is used to estimate the
parameters. The result is an algorithm that listens to an incoming stream of data, automatically
accumulating a batch of data that may be used to calibrate a full robot system.

Thanks to the these properties we are already well prepared for lifelong self-calibration as
redundant information gets thrown away instead of constantly increasing the computational
demands of the calibration algorithm.

For further details behind the algorithm see the attached paper “Online Self-Calibration for
Robotic Systems” [4].

3.4. Novel extrinsic batch self-calibration algorithm for LIDARs
and stereo-cameras

Our LIDAR-LIDAR, LIDAR-stereo-camera, IMU, and odometry extrinsic calibration concept
was specifically developed for the EUROPA2. One of the most challenging problems inherent
to spinning LIDAR measurements, especially for multi-beam LIDAR like the Velodyne 32E,
is the fact that every point is measured at a different time, this is further complicated by the
exceptionally large number of points (up to 700,000 per second for the Velodyne) produced. This
results in a moving platform having a different pose for each laser point. An exact ML estimator
jointly estimating the platform’s trajectory is thus intractable for any practical system, especially
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Figure 8.4.: Sketch of the algorithm of iterative refinement of LIDAR-LIDAR and LIDAR-stereo-
camera associations to jointly calibrate IMU, odometry, the LIDARs and the stereo-camera

when the goal of online operation is considered. To overcome this limitation we approximate the
system in an iterative batch optimization.

The LIDAR measurements are first subsampled over a short duration (about a second each) into
consecutive point clouds, as depicted in Figure 8.3, taking a current best guess about the platforms
pose into account to transform all the measurement of a group into a single key-reference-frame.
The same process is then performed for the stereo imaging data after transforming it into 3d-point
clouds using the semi-global stereo-matching algorithm [74]. The current best guess for the
platforms state-trajectory is initialized based on IMU and odometry only. The corresponding
points between these point clouds are then found by using a point-to-plain ICP approach. These
associations are passed into our continuous-time batch estimator, taking IMU and odometry
measurements into account. The resulting improved trajectory is used as the next best guess to
recalculate the point clouds and point-to-point associations to be fed to the batch estimator. This
process is repeated until convergence. This outer loop is illustrated in Figure 8.4.

This process allows us to simultaneously calibrate the for the extrinsic transformations of all
the sensors (LIDARs, stereo cameras, IMUs and odometry) as well as the odometry intrinsic
calibration (wheel diameters and distance). This system is already functional and working well,
with the exception of some failure cases caused by the unforeseen problem of high frequency
shaking induced into the system by a passive base joint. See Section 3.4 for an explanation.
However, in spite of this issue we believe this method to be suitable and extendible with further
sensor data associations up to the full featured online self extrinsic and intrinsic calibration
system.
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Platform specific challenges and limitations

The EUROPA2 platform contains several properties specific to the system that detrimentally
affected the overall accuracy of the calibration. The issues caused by these parameters are
especially apparent in the context of online calibration, where no external sensing can be utilized
to provide additional information about the platform’s state.

The EUROPA2 platform rests upon two large drive wheels and two small caster wheels. The
caster wheels are passive, unobservable and reasonably elastic. The lower body is then connected
to the upper body through a passive revolute joint that allows the upper body to rotate relative to
the lower body. In combination these caster wheels and the revolute joint induce motions into
the system that are challenging to predict with any reliability for the following reasons:

• The caster wheels induce nonholonomic, non-linear dynamics into the system as some
maneuvers will cause one or both of them to flick directions, inducing a significant shock
on the system (can turn it rapidly by several degrees).

• The elasticity of the caster wheels in combination with the revolute joint induces high
frequency osculations on the upper body. This occurs whenever the vehicle moves. This
shaking is clearly viable to an observer and may displace sensors located near the top of
the body by several centimeters.

• The revolute joint will rock the system for several seconds after any acceleration, braking
maneuver or driving over slightly uneven ground.

These issues are further compounded by the difficulties attempting to observe them presents.
The only sensor located below the revolute joint on the EUROPA2 platform is the odometry
sensor and this provides measurements in terms of average rotational and translational velocities
at a rate of 10Hz with random delays and lacks timestamp information. There is also a brake that
an independent and unmonitored system activates and releases.

In order to overcome these challenges two possibilities were examined. The first was to
attempt to model the dynamics of the lower body and its connection to the upper body, however,
after careful consideration it was decided that this course should not be pursued for the following
reasons:

• The lack of accurate high speed sensing on the lower body would severely limit the
observability of any model proposed.

• Any model that could capture the dynamics and interaction of the system with sufficient
accuracy to predict its current state and motion would contain a large number of parameters
and would add significant complexity to the overall system.

• This model would likely be highly specific to the EUROPA2 platform and be of little use
in calibrating other systems.

Instead a second solution was implemented. During offline calibration the top and bottom
sections of the platform are calibrated allowing for independent trajectories due to the unknown
state of the link between them. External tracking via a Vicon motion capture system is used
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to ensure that the state of the bottom section remains observable. Then, in online calibration
simple constraints are placed on the link between these two sections. This reduces the number of
parameters that can be estimated in an online fashion, but ensures the system is observable and
can reasonably be expected to converge to a correct calibration in many environments.

3.5. In-laboratory offline calibration

Accurate state estimation is crucial for accurate self-calibration. However, as previously discussed
(Section 3.4), the limited sensor information on the systems lower body reduces the observability
of its pose. This means that any estimation of the full system state from onboard sensors alone
may contain significant uncertainties that will detrimentally impact the accuracy obtainable in
the sensor calibration stage.

To overcome this, in the case of in-laboratory offline calibration we employed an external
motion capture system (Vicon). This system separately tracks the lower and upper body’s motion.
This process assists the accurate offline calibration process, even though it introduces further
unknowns, namely the pose of the tracking markers on the platform and the alignment of the
motion capture reference frame with gravity. These unknown parameters can be estimated
jointly with the parameters for the platform itself. Aside from the setup of the motion tracking
system’s markers no special structure is required for the surrounding environment, though some
environments will result in poor observability of some parameters. The most significant issue is
that many man made environments have most of their surfaces either parallel or perpendicular to
the ground. This results in observability issues in predicting the position of the 2D LIDAR. This
was overcome in our laboratory tests by placing several surfaces (boards and cardboard boxes) at
a verity of angles around the room. These surfaces also contained sufficient texture to ensure
that stereo matching could be performed. Figure 8.5 shows the setup we used for the automatic
offline calibration.

Figure 8.5.: The calibration arena with Vicon motion capture system as seen from the onboard
Bumblebee camera
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Figure 8.6.: Two top views, before and after low quality self-calibration (25s), showing sub-
sampled point clouds of two horizontal 2d-Sick (green and red), Bumblebee stereo-camera
(magenta) and 3D-Velodyne (white) of 1 second of sensor data taken over about 10s of a slow
forward movement in a the offline calibration arena. A comparison shows the effect of our
self-calibration implementation: in the left image the clouds are less crisp and badly aligned,
after being transformed to the image coordinate frame based only on manual extrinsic calibration;
the clouds in the right image, after calibration, are crisper and much better aligned. The yellow
circles mark some areas where the improvements are particularly easy to spot.

4. Software

While working on the EUROPA2’s calibration task ETH put great effort in extending and
improving their calibration software.

Based on earlier state-of-the-art research that was continued for the EUROPA2project we
released, Kalibr, a camera-to-camera and IMU calibration toolbox as open source. While being
well suited for the tasks of offline, target based N-Camera to IMU calibration, Kalibr is lacking
any support for online or self-calibration or LIDARs. Furthermore, its design and operating
principles did not allow it to be easily extended to incorporate the required extensions and tasks.

Therefore it was decided to start, for the EUROPA2, the development of a much more
general, modular calibration framework entirely in c++ that would cover all use cases that were
envisioned for a platform like EUROPA2, namely automatic and continuous online and offline
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self-calibration.
The system currently comprises the following general features:

• Support observability aware and incremental or full batch calibration

• Modular and object oriented design that supports easy assembly of a specific setup and
extension with new sensors, joints, trajectories and data association algorithms

• Support for external sensors such as motion capture systems for higher accuracy or model
debugging

• Block automatic differentiation (BAD) for rapid differentiable model prototyping

• Continuous time state representation to support delay estimation and simplify modeling

• Inspection and analysis tools to support model debugging and evaluation

• Calibration-server mode in which the calibration algorithms can be triggered and con-
figured from a separate software module while it conducts specific maneuvers with the
platform

This work currently contains some coupling with EUROPA2 specific code, however it is
planned to remove this and release the code to the public as open source library.

On the EUROPA2 we integrated both the offline and online calibration modules as well as an
interactive calibration viewer (Figure 8.7) that allows for changing the calibration parameters
while showing a live image where LIDAR points are projected into the Bumblebee images such
that a human can easily inspect or manually tune the calibration.

5. Evaluation

The evaluation of the calibration modules with the ETH EUROPA2 platform were performed as
follows. The offline calibration was first evaluated by measuring its precision. The online cali-
bration was then conducted and the results compared to those obtained in the offline calibration
process. All results are presented as figures showing box-plots for the extrinsic parameters of a
given frame pair. We specify each spatiotemporal extrinsic calibration for evaluation with a set
of 7 parameters as follows:

• x,y,z for the three translations

• roll, R, pitch, P, and yaw, Y , for the rotation1,

• d for the delay (the temporal offset)

1Internally all estimation and analysis is done with unit quaternions; only for human readable plots and numbers we switch
to these Euler angles.
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Figure 8.7.: The interactive calibration viewer running on the ALU-FR platform. The sliders
on the left allow for changing calibration parameters while the image on the right immediately
shows the effects by overlaying live laser data on camera images. The spoiled Bumblebee yaw
(by −0.12 rad '−6.9 deg) is easy to detect for a human in the image.

We typically present the extrinsic calibration with respect to the Velodyne 32E’s frame as it is in
some sense the central sensor of the EUROPA2 platform. All estimations are done without using
any prior distribution. The hand calibration is only used as initial guess. This was done so that
the processes actual estimation precision could be evaluated without being artificially influenced
or reduced by a prior.

For a productive online estimation one would provide a prior together with the initial guess up
to some point where enough information is accumulated to increase the initial robustness.

5.1. Offline

For offline calibration, we repeatedly conducted procedures for specific calibration sub-goals
(typically 10 each) while the platform was located within a motion capture system (Vicon).
To achieve this we defined calibration plans for specific calibration goals. To ensure that the
parameters of interest would be observable some flat structures with visual texture were placed
in a verity of poses around the room in which calibration was performed.

Each calibration plan consists of a maneuver the platform has to execute and specifications for
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when each sensor should record data. This helps increasing accuracy as some sensor (LIDARs,
cameras) readings contain more sources of uncertainty when made from a moving platform,
while other sensors require motion (IMU, Odometry).

The offline calibration module for the EUROPA2 is able to repeatedly execute these calibration
plans, provided by humans using a script like specifically tailored c++ mini-language, in a safe
way without human intervention. This is possible because it can lean on EUROPA2’s local
planner with its collision preventing safety module and localization within the motion capture
system.

In the following we will report on different calibration plans used and the corresponding
results. These results can be merged together to an offline calibration of all pairwise extrinsic
calibrations as they are all connected through the Vicon marker poses. Only the odometry is
slightly detached because it is estimated w.r.t. the Vicon markers on the lower body while all the
other sensors are found w.r.t. the markers on the upper body. However, the default transformation
between the two marker sets (upper and lower body), when resting on flat ground orthogonal to
gravity direction we extracted directly from Vicon measurements while the robot was resting.

IMU offline calibration plan

To calibrate the IMU extrinsics w.r.t. to the upper body Vicon markers we conducted a separate
calibration routine. It consists of first rotating autonomously on the spot for about 15 seconds.
After this has been performed a human operator grabs and shakes the upper body back and forth
for 15 seconds. This was the only maneuver that required manual work. It was necessary
as exciting the IMU to this extent with driving is not feasible indoors on flat ground. A
full autonomous alternative could have been to build a ramp for it to drive on and excite
the accelerometers through changes in the gravity direction.

Figure 8.8 shows the result of 10 independent calibrations of the aforementioned 30 second
long datasets. Most of the calibration runs for this sensor fall within a range of around 20 mm
and 0.5 degrees. We consider this to be a highly accurate result given the length of the dataset
and the size and flexibility of the platforms body.

Static and dynamic offline calibration plans

In the static calibration plan the robot drives through several positions and headings in a stop
and go pattern and only considers sensor readings while the robot is not moving and not shaking
significantly. This allows estimating the spatial extrinsics without them being coupled to the
temporal extrinsics (delays). We conducted 10 experiments, with each experiment taking roughly
60s. However, for the point cloud (LIDARs, and the stereo camera) sensors only about 11×0.3
seconds of data are used while the robot is resting.

In the dynamic calibration plan the robot drives through several positions and records data
while slowly moving (forward turns). This allows observing delays between sensors while
inducing minimal shaking in the system. Furthermore, it yields more three dimensional point
clouds for the 2d LIDARs that are not scanning horizontally. This can deliver better matching
with the 3d point clouds from the Velodyne. We conducted 10 experiments of about 60s in total.
However, for the point cloud sensors only about 7×1 seconds of data are used while the robot is
performing the special slow motion for recording data.
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Figure 8.8.: The extrinsic calibration IMU to Vicon markers on the upper body based on 10×30
seconds IMU offline calibration maneuver.

Figure 8.9 shows the results for extrinsic calibration Velodyne to VICON markers on the upper
body and both, static and dynamic experiments. The delay is w.r.t. the Vicon system’s clock.
Figure 8.10 shows the corresponding results for Velodyne to the Bumblebee stereo camera. The
EUROPA2 platform has three 2d-Sick-LIDARs as indicated in Figure 8.1. Two scanning roughly
in the horizontal plane - one scanning in the front direction of the platform, one scanning in the
back direction and one located on the robot’s belly scanning downwards. Their offline calibration
results are shown in Figure 8.11 for the rear scanner, in Figure 8.12 for the front scanner and in
Figure 8.13 for the down facing scanner. It is quite satisfying that all three Sick-LIDARs are
found by the offline calibration to have similar delays (around 30 ms earlier than the Velodyne).
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Figure 8.9.: The extrinsic calibration Velodyne to Vicon markers on the upper body based on
10×60 seconds static and dynamic offline calibration maneuver with quite satisfying precision.
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Figure 8.10.: The extrinsic calibration Velodyne to the Bumblebee stereo camera based on
10×60 seconds static and dynamic offline calibration maneuver. The precision is as expected
due to the challenging alignment task. The rotation parameters for the dynamic experiments
are fixed here for Velodyne and Bumblebee as otherwise the delay would have lower precision
because the experiments do not allow perfect distinction.
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Figure 8.11.: The extrinsic calibration Velodyne to the rear 2d-Sick-LIDAR based on 10×
60 seconds static and dynamic offline calibration maneuvers. The height of a horizontally
scanning 2d-LIDAR is typically not very well constrained especially when moving and therefore
slightly shaking. However, to explain this large and consistent deviation would require further
investigation.
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Figure 8.12.: The extrinsic calibration Velodyne to the front 2d-Sick-LIDAR based on 10×60
seconds static and dynamic offline calibration maneuvers. The precision is slightly worse than
for the rear Sick (Figure 8.11 ). This is likely due to the smaller field of view of this sensor.
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Figure 8.13.: The extrinsic calibration Velodyne to the down facing 2d-Sick-LIDAR based
on 10×60 seconds static and dynamic offline calibration maneuvers. The precision based on
the dynamic experiments is quite surprising especially considering the apparently quite bad
hand calibration. The bad performance when based on the static experiments nicely shows how
beneficial for this down facing sensors it is to record in motion - at least with our method.
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Figure 8.14.: The extrinsic calibration Velodyne to the 2d-Hokuyo-LIDAR based on 10×60
seconds static and dynamic offline calibration maneuvers. Like for the down facing Sick (Figure
8.13) the dynamic offline experiment yields more precise results. The large variance of the
estimates is most likely due to the strong vibrations the Hokuyo-Nose is suffering from in its
current setup. The metal plate on which the Servo is mounted on is flexible and allows for an
unmodeled swinging motion - easily visible to a human.
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5.2. Online
The main difference of the evaluated online module to the offline calibration above is that no
motion capture system is used. Therefore the platform’s state is estimated purely by fusing
onboard sensors, namely Odometry, IMU and Velodyne. Because the calibration is initialized
with the same coarse hand calibration, the state estimates will initially suffer from the inaccurate
calibration. Only through joint estimation of state and calibration parameters this can be and
is solved in the EUROPA2 online calibration module. Unfortunately, the platforms shaking
behaviour makes state estimation very inaccurate and we believe this is the main limitation that
reduces the calibration precision.

The estimation algorithm is performing incremental calibration. Here based on mini-batches
of about 10 seconds data each. Figure 8.15 shows a former result for the online module in an

Figure 8.15.: Two top views, before and after LIDAR extrinsic self-calibration, showing sub-
sampled point clouds of the almost-vertical front 2d-Sick (cyan and yellow) and 3D-Velodyne
(green and white) taken over about 10s of a slow left turning forward movement in a room.
A comparison shows the effect of the current state of our self-calibration implementation: in
the left image the two clouds are less crisp and badly aligned, after being transformed to the
image coordinate frame based only on odometry and IMU measurements and manual extrinsic
calibration of the LIDARs; the two clouds in the right image, after batch optimization including
LIDAR-LIDAR data associations, are crisper and much better aligned.

office environment.
Figure 8.17 shows the extrinsic calibration Velodyne to the Bumblebee stereo camera.
As previously mentioned, the EUROPA2 platform has three 2d-Sick-LIDARs as indicated

in Figure 8.1. Their online calibration results are shown in Figure 8.20 for the rear scanner, in
Figure 8.19 for the front scanner and in Figure 8.18 for the down facing scanner.
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Figure 8.16.: The extrinsic calibration of the Velodyne to IMU, comparing the offline and online
approach against the hand calibration. Online 1 refers to the calibration after one accepted
mini-batch. Online 4 refers to the calibration after four accepted mini-batches. The y, d nicely
show the effect of accumulated information in the incremental calibrator through the reduction
in their variance. Parameters like R that seem to have an opposite trend are weekly observable
based on the first mini-batch. The big difference in z and yaw are due to the shaking of the upper
body. Without a good representation of the kinematics of the joint connecting upper body and
base the accelerometer measurements cannot be explained and typically push the IMU much
higher than it is.
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Figure 8.17.: The extrinsic calibration of the Velodyne to the Bumblebee. Offline and online
calibration are compared based on 10×60 seconds data from the dynamic offline calibration
maneuver. The accuracy for the translational extrinsics shows some significant variation due to
the difficulty of estimating these parameters solely from the onboard sensor information. The
rotation parameters for the dynamic experiments are manually locked here for Velodyne and
Bumblebee to the estimates from the static experiment because otherwise the delay estimate
would have lower precision because this experiment cannot identify the relative rotation as good
and a bad rotation estimate will degrade the delay estimate for which the dynamic experiment is
mostly for.
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Figure 8.18.: The extrinsic calibration Velodyne to the down facing 2d-Sick-LIDAR. Offline
and online calibration compared both based on 10×60 seconds data from the dynamic offline
calibration maneuver. An okay accuracy given the short amount of data. The variance reduction
due to more information is clearly visible.
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Figure 8.19.: The extrinsic calibration of the Velodyne to the front 2d-Sick-LIDAR. Offline
and online calibration are compared based on 10×60 seconds data from the dynamic offline
calibration maneuver. The horizontal 2d-LIDARs are the sensors that are most detrimentally
effected by the shaking upper body. The seeming consistent deviations are likely due to the
fact that the maneuvers were executed in a rather similar way causing quite similar shaking and
observability.
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Figure 8.20.: The extrinsic calibration of the Velodyne to the rear 2d-Sick-LIDAR. Offline and
online calibration are compared based on 10×60 seconds data from the dynamic offline calibra-
tion maneuver. The same explanations as for Figure 8.19 apply to the apparent inaccuracies.
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Figure 8.21.: The extrinsic calibration Velodyne to the Hokuyo-Nose. Offline and online
calibration compared both based on 10×60 seconds data from the dynamic offline calibration
maneuver. The deviations between offline and online are due to too conservative observability
assessment in the online algorithm. This shows the limitations of the current observability
analysis method.
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5.3. Odometry
To make the intrinsic odometry parameters, namely the two wheel diameters, Rl and Rr , and the
wheels distance L, observable the calibration plan comprised multiple right and left circles to
drive and several back and forth straight motions. Here, the rather limited area within the Vicon
motion capture system comes as a drawback. Figure 8.22 shows the results of 10 experiments
of around 60s in length for odometry calibration, as well as the corresponding results from the
online calibration experiment.
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Figure 8.22.: Odometry intrinsic parameters estimated based on an Odometry specific offline
maneuver (about 60 seconds each) and with incremental online calibration.

5.4. Update: improvements for the Hokuyo-Velodyne calibration
Here, we provide an update that shows evaluations of where we improved the system since
the state of the above sections. We investigated and improved on the offline calibration of the
tilting Hokuyo, which showed the least satisfying results back then. For that we added a specific
calibration plan for the Hokuyo with respect to the Velodyne and the tilting unit: In a suitable
environment, i.e. containing larger planar structures in proximity to the robot, such as a wide
corridors, the robot is standing still and only tilting the Hokuyo up and down with constant
velocity (except around the turning points). This introduces fewer vibrations, while still allowing
to observe the delay between the tilt angle encoders and the Hokuyo measurements. Experiments
with sinusoidal motions patterns for the tilting unit did not reduce the vibrations visibly and
yielded no significant improvements for the calibration stability.

Figure 8.23 shows the typical qualitative results of the self-calibration in a T-shaped corridor
environment. The automatic self-calibration routine (bottom) produces crisper and substantially
better aligned point clouds than manual calibration (top). Hereby, the self-calibration-algorithm
is initialized with the manual calibration routine.

We evaluated the accuracy of the approach by repeating the self-calibration 5 times for each of
three different locations in an office building environment. Each dataset is about 12 seconds long.
Figure 8.24 shows the statistics over the 15 spatiotemporal extrinsic calibrations of the tilting unit
with respect to the Velodyne sensor, which—for this type of stationary experiment—is considered
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(a) Manual and self-calibration, top view

(b) Manual and self-calibration, side view

Figure 8.23.: Top and side view in a T-shaped corridor environment before (top) and after
(below) self-calibration between Velodyne (white) and the tilting Hokuyo (yellow). The cyan
line represents the projection of the ground plane, used as a reference for the absolute Velodyne
pose. The side view, (b), also shows the improved time delay estimate: without the correction
there are two ground lines visible in the yellow cloud. The severe vibrations in the Hokuyo
mounting are easy to observe as deviations from ideal straight ground lines.
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Figure 8.24.: Left, middle: The spatial extrinsic calibration of the coordinate frame, in which the
Servo is tilting the Hokuyo, with respect to the Velodyne coordinate frame. Right: The delay of
the angle encoder output with respect to the Hokuyo measurements. A value of zero corresponds
to the initial calibration. The sample standard deviation of the delay estimate (about 0.6ms) is
quite good considering the precision of the internal Hokuyo timestamping (1ms).
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Figure 8.25.: The spatial extrinsic calibration of the tilted Hokuyo sensor with respect to the
coordinate frame, which it is tilted in.

to have no delay with respect to the Hokuyo. Figure 8.25 depicts the corresponding results for
the spatiotemporal extrinsic calibration of the Hokuyo measurement frame with respect to its
tilting unit. Despite the clearly improved accuracy compared to the state at deliverable 5.1, the
remaining variance is not fully satisfactory. In fact, the sample variances for each of the three
different locations are significantly smaller than for all locations together. This indicates that the
incorporated model does not generalize perfectly. We believe that the limiting factor here is the
consideration of only extrinsic parameters.

In order to further improve accuracy, we implemented two new features into the system:

i) Intrinsic calibration for the Velodyne 32E: beam-wise distance offsets and vertical angle
corrections

ii) Automatic extraction of larger planar patches from the environment

The motivation for i) is that a bad intrinsic calibration of the 32E basically prevents good

154



6. Unresolved issues

alignment with the 3d point clouds measured by the tilting Hokuyo. More precisely, this happens
because the individual beams of the Velodyne would lead to contradicting extrinsic calibrations
between the tilting Hokuyo and the Velodyne. The amount of contradiction corresponds directly
to the inconsistency between the individual beams. The reason for ii) is that when aiming
at intrinsic calibration for the Velodyne, it is no longer sufficient to rely on very local planar
assumptions. The local normal estimates would depend too much on very few individual beams
(typically two to three), and only the assumption of larger structures can lead to a consistent
correction for all beams. Of course, working with planar hypotheses only requires a suitable
environment that provides these planes. Luckily, this mostly holds for indoor environments, and
in principle one can reject bad planar patches as long as there are enough good planar patches in
an iterative procedure while estimating the intrinsic parameters.

Both features are not fully mature at the current stage, and still fail to improve the repeatability
of the latter calibration task (Hokuyo to Velodyne) in a reliable manner. However, they improve
the precision of the estimates for the Velodyne height (z) with respect to a gravity aligned ground
plane for an upright robot position and improve the generalization over different environments.
Figure 8.26 shows the improvement of jointly calibrating the intrinsics on the statistics over
five datasets for each of five different locations. With bad intrinsic calibration, the maximum
likelihood (ML) height estimate depends much more on how the beams touch the ground, because
the individual beams disagree about the distance to the ground. With good intrinsic calibration,
the beams tend to agree better on the distance to the ground, and the compromise gets less
dependent on which beams had to be considered. The remaining variance is presumably due to
the imperfection of the observed ground planes and to the unobservability of the total scale of
all beams. Being unobservable, the scale is determined by the initial calibration. But again, the
compromise for the scale is dependent on how much the individual beams are involved because
they disagree.

Figure 8.27 visualizes the point clouds of the two Sick LIDARs in the horizontal plane in
addition to the Velodyne and the Hokuyo after a calibration with intrinsic Velodyne calibration
and automatic planar patches extraction, ii). Here it becomes apparent that a more precise
alignment of the Velodyne especially with respect to the rear Sick LIDAR (red) is impossible
to achieve with the current model, because they disagree strongly on how straight the walls are.
Since the Hokuyo and the Velodyne quite nicely agree, we suspect the larger systematic error at
the Sick LIDAR. To correct for that, we would need to introduce further intrinsic parameters for
the Sick LIDARs.

6. Unresolved issues

While significant work has been performed towards the goal of lifelong calibration, several
significant challenges must still be overcome before a fully autonomous life long calibration
approach could be reliably implemented in a robotic system such as the EUROPA2 platform.

The current implementation has no high level failure detection implement. While a simple
calibration approach could be implemented by detecting severe changes in calibration parameters
with short periodic non incremental calibration runs, this method would have a lag of several
seconds.

Another shortcoming of the current implementation is that the incremental online calibration
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Figure 8.26.: The sample statistics of the extrinsic parameters of the Velodyne with respect to a
gravity aligned ground plane on which the platform rests. Activating the current capabilities of
intrinsic self-calibration reduces the sample standard deviation to almost a third. The parameters
with no visible spread are not observable and properly detected as such. The yaw angle (Y) has
very little spread because the statistics is not given in asymmetric Euler-angle parameters, but
rather based on the geometric logarithm around the Fréchet-sample-mean and yaw (Y), pitch (P),
and roll (R) only refer to the corresponding components.

module does not ever forget any informative data. The implemented information gain criterion
drastically limits the rate of accumulated data, however it will slowly increase over time increasing
the calibration processing time. There are some simple strategies that could be applied to correct
this issue (such as out-dating), however these were not implemented as we attempted to research
more sophisticated methods.

The evaluation in this report does not include the calibration of the two actuators present on
the platform, a locomotion system and a nose-tilting servo. Both are integrated in the estimators
and can be calibrated. However, the inclusion of the locomotion system currently jeopardize
the incremental online calibration due to random delays in its operation. These unmodelled
delays adversely impact the estimated trajectory. The second actuator also adversely impacts the
calibration as the large flexibility of its mounting violates the assumption of a rigid connection.
We could overcome this problem only partially for offline calibration with a special calibration
plan (motion) for the Hokuyo sensor as described in Section 5.4.

7. Conclusion

The EUROPA2 platform contains a large number of sensors and actuators to allow it to perceive
and interact with the surrounding world. However, to allow the combination of readings from
multiple sources, an accurate calibration of the sensors intrinsics and extrinsic parameters are
required. To allow the goal of long-life autonomy these parameters also require continuous
automatic calibration over the life of the robot while it goes about normal operations in an
unconstrained environment.

In working towards this goal of continuous lifelong calibration, ETH has developed solutions
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Figure 8.27.: The alignment of the two planar Sick LIDARs (red=rear, green=front) with the
Velodyne sensor (white) reveals the limitations of the currently supported model (not including
any intrinsics for the Sick LIDARs): The red cloud’s lower wall line, for instance, is bent such
that the center is significantly lower than the Velodyne’s white wall line. At the same time,
however, the red line is above the white at the far left and right. The distance from right to left
amounts to approximately 15 meters here. This constitutes a problem that cannot be corrected
solely through extrinsic calibration.

for several of the major issues that limit current calibration approaches. The first was the
development of a continuous-time method for obtaining sensor information including orientation.
This is required to allow readings from asynchronous sensors to be compared and allow the
accurate estimation of timing delays. The second major contribution was a process for detecting
the observability of a system’s parameters that is robust to noise. This process assists in preventing
many erroneous updates to system parameters. A method was then developed that utilizes ICP
in combination with the sensor poses and estimated noise to estimate the joint likelihood of
a given pose of a pair of 3D sensors. All of these stages were finally combined in a batch
maximum likelihood estimator that finds the most likely configuration for the system given its
sensor readings.

Two different forms of this estimator were created, an offline and an online module. The
offline module incorporated additional external pose information and would be used when first
calibrating a new system. The online module then operates continuously only using internal
readings and would be used to correct for any small errors that accumulate over the life of the
EUROPA2 system.
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Experimental results of both system demonstrate that the system can achieve calibration
precision to within a range of around 10 mm, 0.5 degrees and 20 ms for a large range of the
given sensors. However, unmodelled high frequency shaking induced into the system by its
drive system was found to detrimentally impact some results. This impact often took the form of
increased uncertainty or slight biasing.

Overall however, in-spite of this issue the system is able to achieve accurate calibrations in a
wide verity of situations. In addition to these results, an open source library that encompasses
all of the above functionality is currently in the final stages of development and will soon be
provided to the public to simplify the calibration of similar robotic systems.
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AppendixA
Supplemental work on rotation quaternions

In this chapter we present some of the additinal arguments, proofs, and derivations we developed
while working on PaperII and which could only fit into its extended version [151] and are
therefore also missing from the version included in this thesis.

A.1. Proof sketch: Correctness of migration recipe

A full technical proof is beyond the scope of this paper and we only provide a sketch of a proof:
To show the claim we assume the opposite, i.e. that we have a counter example, i.e. a tool, T ,
that after some migration, M, as in Section 7.2 into M(T ) is not doing the same job when used
with quaternions of the target convention. Formally, M(T ) does not yield the corresponding,
i.e. quaternions in the target convention and otherwise equal, outputs when given corresponding
inputs (denoted with T 6'M(T )).

1. T can be assumed migrated as a whole by M (=: M doesMigAsAWhole T ):
If not we take the first sub tool, T ′, on the way from input to output, for which T ′ 6'M(T ′),
as new T until M doesMigAsAWhole T .

2. T can be additionally assumed having no quaternion in- or outputs and being translated
by M (¬Q(T )∧M doesTranslate T ):
To ensure that we inflate T into T̂ by adding bijective conversions per quaternion in- or
output, q, into a pair ∈ R×R3×3 through C1 (from the source convention). T̂ can then be
used for exactly the same jobs by employing inverse conversions wherever quaternions
were exchanged with T . We migrate T̂ by M̂ into M̂(T̂ ) by migrating the contained T
using M and translating the inflation layer (effectively translating all source C into the
target C; see Example 7.2). Since M̂(T̂ ) would be used through conversions using the
target C, which would cancel out the translated inflation, causing the same effective input

1E.g. (sign(qr)‖q‖,C(q‖q‖−1)) if q 6= 0, otherwise (0,000)
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output behaviour as M(T ) and therefore different from T̂ . It follows T̂ 6' M̂(T̂ ), while
¬Q(T̂ ). Furthermore T must have been already translated: If it had been interfaced (as a
whole) M̂(T̂ ) would exactly behave as T̂ , because the interfacing conjugation effectively
revokes the translation of the inflation, rendering M̂ into an equivalence transformation,
contradicting T̂ 6' M̂(T̂ ). It follows M̂ doesTranslate T̂ and, since component-wise
translating is equivalent to translating as a whole also M̂ doesMigAsAWhole T̂ .

3. T is no counter example:
It is well-known and straight forward to verify that conjugation is an isomorphism
(H,+,�, ·̄,〈·, ·〉) ' (H,+,⊗, ·̄,〈·, ·〉) that lets the embedding R ⊂ H invariant. Since
T can only use the quaternions by means of their structure and their relation to R (nothing
more is defined about them after all), replacing all quaternion constants according to
the isomorphism and all operations with their isomorphic partners, as precisely done by
the translation procedure, cannot change its input-output behavior for non-quaternions.
Therefore ¬Q(T )∧M doesTranslate T contradicts T 6'M(T ) and proves the claim.

A.2. Proof: Hamilton QM-convention always yields more
similarity

Let C be a consistent partial convention that is a homomorphic QM-convention and additionally
determines a mapping, C.q : R3→U from rotation vectors to the unit quaternions.

A.2.1. Rotation vector to matrix and rotation quaternion
conversions

As C is consistent it holds for all φφφ ∈ R3 that C.C(C.q(φφφ)) =C.C(φφφ), with C.C denoting the
rotation vector to matrix conversion determined by C. Assuming the right side has the form

C.C(φφφ) = exp(a(φφφ)×), (A.1)

with some a : R3→ R3 2 it holds necessarily

CH(exp(I ∗(a(φφφ)/2))) = exp(a(φφφ)×) =C.C(φφφ)

=C.C(C.q(φφφ))
(A.2)

using the exponential map of quaternions, exp 3, because for all x ∈ R3 it holds, independently
of C, that

CH(exp(I ∗(x/2))) = exp(x×).

Due to the definition of CH it follows, for the case that (CH ,�) is sub convention of C, (and
therefor C.C|U = CH ):

C.q(φφφ) = α exp(I ∗(a(φφφ)/2)), (A.3)

2We are not aware of any other existing convention. Also, otherwise it should be hard to justify φφφ as rotation vector unless
the rotation matrix does not act through the matrix product.

3The exponential map is the same for both, Hamilton’s and Shuster’s multiplication.
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with α ∈ {−1,1}. To get the analogous result for the second case, (CS,⊗) is sub convention of
C, we can translate (see Section 7.2) the left hand side of (A.2) into the other QM-convention
and get

CS(exp(−I ∗(a(φφφ)/2))) =C.C(C.q(φφφ)), (A.4)

which yields analogously for this case

C.q(φφφ) = α exp(−I ∗(a(φφφ)/2)). (A.5)

Comparing (A.3) and (A.5) with (A.1) it becomes evident that the second case, (CS,⊗) being
part of C, always yields an extra −.

A.2.2. Angular velocity kinematic equation
All common conventions and frame assignments regarding angular velocities yield one of the
two forms of kinematic equation — to the best of our knowledge:

ωωω
× = βC−1Ċ, or ωωω

× = β ĊC−1, (A.6)

with β ∈ {−1,1} and C(t) a rotation matrix trajectory.
For the following we assume the first form. The claim can be shown for the second analogously.
Firs we observe that a QM-convention, q 7→ C(q), completely determines the corresponding

relation to the quaternion trajectory, q(t) representing the same trajectory as C:

ωωω
× = βC−1Ċ = βC−1(q) ˙C(q) = γ

1
2

βq−1q̇ (A.7)

with a convention-factor γ := 1 for (CH ,�) and γ :=−1 for (CS,⊗).
The last equality of (A.7) is not trivial but can be extracted from known identities as follows.

Table 5.2 contains a well-known special case of (A.7) for β =−1 and ωωω = ωωωA:

−C−1(q) ˙C(q) = ωωω
×
A =−1

2
γq−1q̇

Multiplication with −β proofs the last equality of (A.7). And comparing (A.7) with the
assumed ωωω× = βC−1Ċ, shows that γ = 1 yields more similarity independently of β and therefore
any conventional decision beyond the QM-convention.

A.3. Representing 3d proper rotations with matrices

In this section we aim at clarifying the different kinds of “rotation matrices” and the distinction
about active and passive rotations as far as needed for the arguments presented in the rest of
the paper. For that we first we briefly define the setup and some notions we need in order to
define rotation matrices. Second we define rotation matrices in three different ways. After that
we explain their relation to the usages, active and passive, and how those are related to the
composition of rotations.

163



A. Supplemental work on rotation quaternions

A.3.1. Rotations in 3d-Euclidean space
First we need a general setup in which to define rotations in three dimensions. The Euclidean
three dimensional vector space E3 with the scalar-product 〈·, ·〉 is sufficient. A linear map
Φ : E3 → E3 is a proper4 rotation iff it preserves the scalar product and the orientation. It is
important to note, that Φ is not a matrix, but just a map mapping abstract vectors to abstract
vectors. A basis, B = (bbbi)

3
i=1, we call a positively oriented orthonormal basis (PONB) iff it is of

positive orientation and orthonormal, i.e.

〈bbbi,bbb j〉= δi j

And we write [vvv]B ∈ R3 to denote the coordinates of a vector vvv ∈ E3 with respect to B, such
that vvv = ∑

3
i=1[vvv]

B
i bbbi or equivalently, because B is orthonormal,

[vvv]Bi = 〈vvv,bbbi〉

A.3.2. Three competing major approaches to represent a rotation
with a matrix

Given a PONB, B = (bbbi)
3
i=1 there are three major approaches of representing a rotation Φ with

a matrix:

(a) The representing matrix5 of the rotation with respect to a PONB B, such that for all vectors
vvv ∈ E3 :

[Φ(vvv)]B = RB
Φ [vvv]B (A.8)

This is typically used in mathematical literature. But one could have flipped RB
Φ

and [vvv]B

interpreting the latter as row-vector 6 and define this way the transposed matrix.

(b) The change-of-basis matrix that transforms the coordinates of all fixed vectors vvv ∈ E3 when
the PONB B is rotated, with respect to which the coordinates of vvv are given before and after
the rotation:

[vvv]Φ(B) = BB
Φ [vvv]B

One could have exchanged [vvv]Φ(B) and [vvv]B , ending up with the inverse matrix BB
Φ

−1, as
used e.g. in [121, p. 25].

(c) The direction cosine matrix that contains the coordinates of a rotated PONB B with respect
to itself before rotation - one rotated basis vector per row:

(CB
Φ )i· = [Φ(bbbi)]

B or CB
Φ i j := 〈Φ(bbbi),bbb j〉

4We will often skip the “proper” for brevity. We are not interested here in improper rotations.
5Yes, this name seems a bit unfair - compared to the others, since we are talking about how to represent a rotation with a

matrix. But the other common name for that matrix connected to a general linear map is “transformation matrix”. Unfortunately
this name is often specialized to the matrix representing elements of the special euclidean group — at least in the robotics
community.

6The usual identification of R3 with R3×1 is purely conventional.
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Here Mi· denotes the ith row of a matrix M.
This is used e.g. in [77], p. 8 and [146], p. 447.
One could have chosen columns instead of rows. This would have yielded the transposed
matrix CB

Φ

T .

In all three cases the resulting matrix is itself orthogonal (so its transposed is its inverse) and
it has determinant 1 (this corresponds to Φ preserving the orientation). They all depend on the
choice of the basis B but not one to one. In general given a second PONB C which results
from applying the rotation Ψ on B the representing matrices are all connected by the following
conjugation, while M denotes one of R,B,C:

MC
Φ = BB

Ψ MB
Φ BB

Ψ

−1
(A.9)

But they are not all the same in value (in definition they are clearly different). In fact, the
following always holds:

RB
Φ

−1
= BB

Φ = CB
Φ (A.10)

Hence, considering only the values of R,B,C leads to two different rotation matrices (for a given
basis and a given rotation) always being a mutually inverse pair.

A.3.3. Usage and Composition
The value of R is called the active rotation matrix and the value of B,C the passive rotation
matrix for the rotation Φ with respect to B. The motivation behind active is the fact that the
definition of R is based on how Φ rotates B while the idea behind passive is that B is based on
how the coordinates of a fixed v change when switching basis. We call these different ways to
use a rotation matrix its usage. However, as we mentioned before, all the definitions include
an arbitrary binary choice that taken differently would lead to the transposed / inverse matrix.
Therefore the assignment of active and passive to the values of rotation matrices seems arbitrary
or purely conventional, too. Especially it is unclear why the definitions are not aligned such that
at least they all lead to the same matrix. The reason is that for various applications the important
difference between the available matrices is not their definition but what the standard matrix
product corresponds to in terms of rotations. Because for every pair of invertible matrices, X,Y it
holds (XY)−1 = Y−1X−1 it actually makes a difference whether one uses the orthogonal matrix
R or its inverse, e.g. C. And switching between the two options has the same effect on the result
as flipping the two represented rotations or the two matrices. Both resulting matrices correspond
to a composition of two rotations, Φ,Ψ with a significant difference. Using R as active and C as
the passive matrix:

RB
Φ◦Ψ =

(A.8)
RB

Φ RB
Ψ (A.11)

= (RB
Ψ RB

Ψ

−1
)RB

Φ RB
Ψ

= RB
Ψ (RB

Ψ

−1RB
Φ RB

Ψ )
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=
(A.10)

RB
Ψ (BB

Ψ RB
Φ BB

Ψ

−1
)

=
(A.9)

RB
Ψ RΨ(B)

Φ
(A.12)

CB
Φ◦Ψ =

(A.11),(A.10)
CB

Ψ CB
Φ

=
(A.12),(A.10)

CΨ(B)
Φ

CB
Ψ (A.13)

The active matrix, R, matches the composition order, Φ after Ψ, with its multiplication order
when one keeps the basis of representation (A.11). The inverse, passive matrix, C does the same
iff one represents the second rotation with respect to the second (rotated first) basis (A.13). In
other words the passive is better suited when from the applications domain it is preferable to
switch the reference basis with each rotation (e.g. attitude estimation and control) and the active
is preferable whenever it is preferable to keep the reference frame fixed for all the composed
rotations. In contrast to the definitions above this difference is not arbitrary or conventional. And
therefore the labels active and passive, i.e. the usage of a rotation matrix, would be more robustly
defined using these properties with respect to composition of rotations.

The big confusion concerning rotation matrices is caused — in our opinion — by the fact
that papers and textbooks from different disciplines seemingly fight for the authority to define
which definition deserves the label “rotation matrix” instead of mentioning the two fundamental
options and explicitly choosing the one that is more suitable for a given use case. Of course
somebody who only knows about one definition and usage of rotation matrices will be confused
when reading texts that call the inverted matrix “the rotation matrix”.

It is one plausible but hard to verify theory that this habit of ignorance ultimately led to the
mistake to use active rotation quaternions in attitude estimation and control (see Section 6.4)
— a domain where passive rotation matrices were and still are predominant used. This mistake
inevitably led to the problem represented by (5.1), because — as we have seen — the essential
difference between the two usages is precisely how they relate to the compositions of rotations.
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AppendixB
Further unpublished proofs

B.1. Correctness proof for the hierarchical task
optimization algorithm

The correctness and unique optimality proof for the hierarchical optimization algorithm I was
contributing to [1] was removed from the final version and was instead published as appendix,
A.1, of the PhD thesis [78]. It follows a different and unpublished proof that is less compact but
better for understanding the underlying reasons. The original publisher of the approach (in a less
generic form) [149] did provide a compact proof that their solution honors the hierarchy and
that all feasible tasks are satisfied but neither that all infeasible task are at the same time in fact
achieved in a least squares optimal sense nor that this optimum is unique.

B.1.1. On optimization of prioritized objectives in totally
preordered sets

We start with more general notions and observations regarding the optimization of prioritized
objectives in totally preordered sets.
Let

X be a set
n ∈ N+

(Yi,.i), 1≤ i≤ n a family of totally preordered sets
fi : X → Yi, 1≤ i≤ n a family of objective functions on X .

We now want to formalize the task to minimize first f1 then f2, without changing f1’s value and
so on. To achieve this we first introduce some further symbols :

Definition 1 (Notation).
Ỹ := Xn

i=1 Yi to be the Cartesian product of the Yi
.:= the lexicographic total preorder on Ỹ induced by the .i
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f̃ : X → Ỹ

x 7→ ( fi(x))
n
i=1

To finally define our task to be a prioritized minimization problem of the family fi in the
following sense:

Definition 2 (prioritized minimization problem). The task of finding a minimum in img( f̃ )⊆ Ỹ
with respect to . is called a prioritized minimization problem of the family fi.

Definition 3 (value uniquely solvable minimization problem in a preordered set). A minimiza-
tion problem f ∈ X → (Y,.), with (Y,.) a preordered set, is called value uniquely solvable iff
img( f ) has an unique minimum.

Remark. If . is also an order (i.e. antisymmetric :⇔ (a . b∧ b . a⇒ a = b)) then the
uniqueness is implied by the antisymmetry.

Definition 4 (the i first f -components). Let 0≤ i≤ n.

f≤i : X → Y i

x 7→ ( f j(x))
i
j=1

Definition 5 (componentwise value uniquely solvable). This minimization problem is called
componentwise value uniquely solvable iff for every 1≤ i≤ n the minimization problem of fi
constrained by an arbitrary fix value of f≤i−1 is value uniquely solvable.

∀1≤i≤n ∀y∈img( f≤i−1) ‖ min
f≤i−1(x)=y

fi(x)‖= 1

Remark. For i= 1 this only requires img( f1) to have an unique minimum, as f≤0 is the constant
empty tuple and thus the constraint is effectively no constraint.

Theorem 3 (value uniqueness and solution of a prioritized optimization problem, which is
componentwise value uniquely solvable).

The prioritized minimization problem of fi (i.e. the lexicographic minimization problem of
f̃ ) is value uniquely solvable as a whole if it is componentwise value uniquely solvable and the
unique value can be acquired as f̃ (xn) by the following iteration :
Start with an arbitrary x1 ∈ argmin

x∈X
f1(x) and set xi in the i-th step (i > 1) to an arbitrary element

of argmin
f≤i−1(x)= f≤i−1(xi−1)

fi(x).

Remark. The choice of xi essentially assures that for every 1≤ j ≤ i : f j(xi) = f j(x j), which
means that the values for the higher prioritized tasks are not touch when choosing the next ones.

Proof. Let the prioritized minimization problem fi be componentwise value uniquely solvable.
The iteration can proceed up to the n-th step because the problem is solvable by component (i.e.
there will always be a xi to choose).
Assume now the opposite of the claim, i.e. that the f̃ (xn) is not an unique .-minimum of img( f̃ ).
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Let x̂ ∈ X be mapped by f̃ to a different value as xn but also be at least as good as xn with
respect to the minimization problem,

f̃ (x̂) 6= f̃ (xn)∧ f̃ (x̂). f̃ (xn)

and 1≤ i≤ n be the smallest index at which fi(x̂) 6= fi(xn).
Since i is minimal it follows that f≤i−1(x̂) = f≤i−1(xn). From f̃ (x̂). f̃ (xn) it follows addition-
ally that fi(x̂).i fi(xn). Together this violates the componentwise value uniquely solvable prop-
erty of the f family, because the ith subproblem has at least two different minima, fi(xn) = fi(xi)
by construction and fi(x̂) because it is .i fi(xn). So the assumption of the claim’s opposite was
wrong.

B.1.2. Correctness of the hierarchical optimization algorithm
In this part we directly refer to the algorithm and symbols of [1], Section “3. Hierarchical least
squares optimization” and proof that the provided algorithm, Equation (10) and (11) finds a value
unique global optimum and respect the task’s hierarchy.

Theorem 4 (the algorithm finds a value unique optimal solution).
Let k ∈ N+, the input dimension

X := Rk, the input space
n ∈ N+, the number of tasks
ki ∈ N+,0 < i≤ n, the i-th task space dimension
Yi = Rki ,0 < i≤ n, the i-th task space
bi ∈ Yi,0 < i≤ n, the i-th target
y1.iy2 := ‖y1−bi‖2 ≤ ‖y2−bi‖2 for y1,y2 ∈ Yi

fi : X → Yi

x 7→ Aix

Remark. Fulfilling the hierarchical task in a LS optimal sense for the problem in [1] is equivalent
to finding a solution to a corresponding prioritized minimization problem fi. The transition from
a hierarchy of tasks to a prioritized task list must and can always be performed as a first step by
combining all tasks of a given level set of the distance to root (priority) in the task tree (hierarchy)
into components of complex task. For instance, a pair ( f ,a),(g,b) of tasks on X with the same
priority, such that the goal is to minimize ‖ f (x)−a‖2

2 +‖g(x)−b‖2
2, get combined into (h,(a,b))

with the goal to minimize ‖h(x)−(a,b)‖2
2 = ‖( f (x),g(x))−(a,b)‖2

2 = ‖ f (x)−a‖2
2+‖g(x)−b‖2

2
The xi in [1] are identical to the x′i and not the xi below, However, the final solutions, each

denoted with x, are identical.

The following recursive algorithm outputs a x ∈ X such that f̃ (x) is uniquely minimal in Ỹ :

x1 := A1
+b1,

xi := Ni (AiNi)
+ (bi−Aixi−1)︸ ︷︷ ︸

x′i

+xi−1 for 1 < i≤ n

x := xn,
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where (·)+ denotes the Moore-Penrose-Inverse and Ni is the orthogonal projector onto the null
space, N ([A1, .., Ai−1]) := {x ∈ X |∀i−1

k=1Akx = 0}.

Proof. We’ll apply Theorem 3. To prepare that we have only to check its condition for the fi
and show, that the algorithm executes in deed the described iteration.

• the problem is componentwise value uniquely solvable

Let 1≤ i≤ n
y ∈ img( f≤i−1)⊂×i−1

l=1 Yl .

The minimization of fi on V := ( f≤i−1)
−1

(y) is value uniquely solvable with respect to
.i because: V 3 y is non empty and the intersection of the convex solution sets of the
linear equations A jx = y j for 1≤ j < i and thus convex itself. Hence, fi(V ) is a linear
mapping’s image of a nonempty convex set and thus nonempty and convex itself. Such a
set always contains uniquely a minimizer of the distance to any point, such as Di according
to Lemma 5, which implies the unique solvability of the ith subproblem.

• the given algorithm finds the optimal solution to the minimization problem
It is sufficient to show that the given algorithm performs the iteration from Theorem 3.
Let therefore 1≤ i≤ n.

– i = 1
x1 =A1

+b1 and with a well known property of the Moore-Penrose-Inverse it follows
x1 ∈ argmin

x∈X
‖A1x−b1‖= argmin

x∈X
f1(x)

– i > 1
It is to be shown that

xi ∈ argmin
f≤i−1(x)= f≤i−1(xi−1)

fi(x)

Firstly we take a closer look at the argmin constraint for a x ∈ X :

f≤i−1(x) = f≤i−1(xi−1)

⇔ f≤i−1(x) = f≤i−1(xi−1)

⇔ ∀1≤ j≤i−1 f j(x) = f j(xi−1)

⇔ ∀1≤ j≤i−1 A jx = A jxi−1

⇔ ∀1≤ j≤i−1 A j(x−xi−1) = 0

⇔ x−xi−1 ∈N ([A1, .., Ai−1])

⇔ ∃x′∈X x−xi−1 = Nix′
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This suggests a variable substitution x = Nix′+xi−1 simplifying the argmin expres-
sion as follows :

argmin
f≤i−1(x)= f≤i−1(xi−1)

fi(x)

= Ni(argmin
x′∈X

fi(Nix′+xi−1))+xi−1

def
= Ni(argmin

x′∈X
AiNix′+Aixi−1)+xi−1

def
= Ni(argmin

x′∈X
‖AiNix′+Aixi−1−bi‖)+xi−1

= Ni(argmin
x′∈X

‖AiNix′− (bi−Aixi−1)‖︸ ︷︷ ︸
=:M

)+xi−1

One element of M is easy to find again due to a well known property of the Moore-
Penrose-Inverse :

x′ := (AiNi)
+(bi−Aixi−1) ∈M

Thus it holds that xi = Nix′+xi−1 ∈ argmin
f≤i−1(x)= f≤i−1(xi−1)

fi(x).

Lemma 5 (In a nonempty convex subset of a vector space there is always exactly one element
minimizing the Euclidean distance to a given vector).

Proof. Assume the claim is wrong.
Let n ∈ N+,

a ∈ Rn,
da : Rn→ R,x 7→:= ‖x−a‖2 the Euclidean distance to a,
M ⊆ Rn convex,
x,y ∈M, x 6= y, both minimizing da in M,
w : [0,1]→ R;λ 7→ λx+(1−λ )y, and
ρ : [0,1]→ R;λ 7→ da(w(λ ))

Since M is convex, it follows that ∀λ ∈ [0,1] : w(λ ) ∈M. Since x,y have minimal distance to a
in M, it follows that ∀λ ∈ [0,1] : ρ(λ )≥ ‖x−a‖= ρ(0). From the triangle inequality it follows
further for λ ∈ [0,1],

ρ(λ ) = ‖λx+(1−λ )y−a‖ (B.1)

= |λ (x−a)+(1−λ )(y−a)‖ (B.2)

≤ λ‖x−a‖+(1−λ )‖y−a‖ (B.3)

= λρ(0)+(1−λ )ρ(0) (B.4)

= ρ(0). (B.5)
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And from both inequalities together it follows that ρ is in fact a constant function,

∀λ ∈ [0,1] : ρ(λ ) = ρ(0). (B.6)

Without loss of generality we can assume that y = 0. Otherwise we could translate a,x,y,M by
−y and rely on the translation invariance of the distances. Combining this with Equation B.6
leads us to the statement

∀λ ∈ [0,1] : ‖λx−a‖= ρ(0). (B.7)

It follows that x = 01 as well. And finally, from this that x = y contradicting the assumption.

1Can be shown by taking the derivative of the squared equation with respect to λ .

172



AppendixC
Errata

C.1. Erratum of Online Self-Calibration for Robotic
Systems

Unfortunately, the derivation of the estimation algorithm in [4], an important application of the
some theoretical contributions of this thesis (and with me as second author), has a major flaw:
it is only defined for full-rank Jψ by heavily leaning on the expression (JT

ψ Jψ )
−1 while it is

essential for the algorithm to work especially in the case of rank deficiency. In the following we
demonstrate that the same result can be acquired in an all-defined way.

Differently from the paper’s approach, we start with the RRQR-decomposition of Jψ ,

Jψ = QRΠΠΠ
T , (C.1)

where ΠΠΠ ∈RL×L is a permutation matrix, R ∈RM×L an upper triangular matrix, and Q ∈RM×M

an orthogonal matrix. It follows from the special structure of R and the orthogonaily of Q that
the unique orthogonal projector matrix onto the image space of Jψ is equal to Q1QT

1 , where Q1
is the first rank(Jψ ) columns of Q, as introduced with Equation (20) of [4]. It is well known that
the same projector can be expresses with the pseudoinverse of Jψ , denoted with J†

ψ , yielding

Jψ J†
ψ = Q1QT

1 . (C.2)

With this pseudoinverse we can define a more general form of the full-rank matrix C from
Equation (16) of [4] which remains well-defined in the case of a rank deficient Jψ :

C :=

(
Iψ 0

−JT
θ

J†
ψ

T
Iθ

)
, (C.3)
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Left-multiplying this – just as in the paper – to the left-hand side matrix from Equation (15) of
[4], repeated here for convenience,(

JT
ψ Jψ JT

ψ Jθ

(JT
ψ Jθ )

T JT
θ

Jθ

)(
∆ψ

∆θ

)
=

(
JT

ψ ∆e
JT

θ
∆e

)
, (C.4)

yields a similar result to Equation (17): JT
ψ Jψ JT

ψ Jθ

0 JT
θ

Jθ −JT
θ J†

ψ

T JT
ψ︸ ︷︷ ︸

=:M

Jθ

 , (C.5)

where the crucial 000 in the lower left follows from the fact

−JT
θ J†

ψ

T JT
ψ Jψ + Iθ (JT

ψ Jθ )
T = JT

θ (Jψ −J†
ψ

T JT
ψ Jψ )

= JT
θ (Jψ − (Jψ Jψ

†)T Jψ )

= JT
θ (Jψ −Jψ Jψ

†Jψ ) (C.6)

= 000, (C.7)

which follows in turn from the general symmetry of AA† (for (C.6)) and the identity AA†A = A
(for (C.7)), which are both defining properties of the pseudoinverse of some A.

With this more general C, the lengthy derivation in Equation (20) of [4] to find an efficiently
computable form of M in (C.5), is merely a corollary of the observations we already made, in
particular (C.2):

M = JT
θ JT

ψ

†JT
ψ = JT

θ (Jψ Jψ
†)T = JT

θ Q1QT
1 .

This result leads effectively to the same algorithm as presented in the paper – merely derived
differently.

No further derivations in [4] implicitly assume full-rank Jψ . Hence, we showed that and how
the algorithm proposed in the papers can indeed be derived for rank deficient Jψ .
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