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A B S T R A C T
The generation of believable behavior for synthetic charaters is a major problem
in many products of the entertainment industry. While the film industry can spend
hours on designing and modeling the behavior, the time to generate an appropriate
behavior is restricted to a few milliseconds in an interactive computer game. Due to
this time constraint, the behavior of computer game characters is often very
restricted such that the resulting performance is mostly not authentic and the
underlying rules are transparent to the user after only a few trials.

In this thesis, we propose a framework for the simulation of artificial behavior for
synthetic characters in a dynamic real-time environment, for example a computer
game. The character’s behavior model is based on the concept of agents. This
generic approach relies on a repeated sense-think-decide-act cycle where the
middle steps can provide different forms of sophistication. The novelties presented
in this thesis are manifold: First, a simple method to generate heterogeneous char-
acters is presented. Secondly, an improved generic and two-dimensional path plan-
ning algorithm has been developed which overcomes different problems and yields
shorter pathes in less time than traditional approaches. And thirdly, a level-of-detail
approach for behavior simulation is presented and analyzed which improves the
visual quality of the simulation by a smart distribution of the available ressources.

A first approach implements purely reactive behavior, thus, the characters only
react on the stimulus given by the environment, on internal states, or a combination
of both. The underlying reactive agent model consists of a component-based
knowledge base which allows to easily compose complex behavior out of simple
basic behavior patterns by defining and combining base components into new char-
acters. The combination of multiple patterns can be weighted such that particular
base behaviors are preferred to others.

The reactive agent model is then extended to support additionally proactive
behavior, hence, the character is enabled to enhance its behavior by exploring pos-
sible futural states and by selecting the sequence of actions that lead to the most
promising state with respect to a goal definition. However, the generation of these
plans is computationally expensive and, thus, poses several demands on the system
to enable concurrent planning of multiple characters while maintaining a sufficient
frame-rate. We use interruptible anytime planning algorithms to search for the cur-
rently best partial plan and present different mechanisms that allow for computa-
tionally feasible planning in a dynamic environment.
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The framework provides a quality of service to the environmental simulation
with respect to the time required for the generation of the behavior. This allows the
over-all simulation to maintain a practically constant frame-rate independent of the
number of agents simulated. The time available to the simulation is split up by a
scheduling algorithm according to the needs and the importance of the characters.
The importance of the characters is determined by a level-of-detail approach which
distinguishes between visible, nearly visible, and invisible agents. This classification
makes the visual appearance remain qualitatively high without neglecting any char-
acter.

Finally, we demonstrate the functionality and usefulness of our approach by sev-
eral examples and measurements.



Z U S A M M E N F A S S U N G
Das Erzeugen von glaubwürdigem Verhalten von synthetischen Charakteren ist
ein wichtiges Problem von vielen Produkten der Unterhaltungsindustrie. Während
die Filmindustrie mehrere Stunden damit verbrauchen kann, spezifisches Verhalten
zu erzeugen, ist die zur Verfügung stehende Zeit in interaktiven Computerspielen
auf wenige Millisekunden beschränkt. Wegen dieser Einschränkung ist das Verh-
alten der Charaktere meist sehr beschränkt und deswegen auch nicht authentisch
und können vom Spieler nach wenigen Versuchen durchschaut werden.

In der vorliegenden Arbeit wird ein Framework zur Simulation von künstlichem
Verhalten von synthetischen Charakteren in einer dynamischen Echtzeitumge-
bung, wie zum Beispiel Computerspiele, präsentiert. Das Verhaltensmodell der
Charaktere basiert dabei auf dem Konzept von Agenten, welchem ein sich wieder-
holender Wahrnehmen-Denken-Entscheiden-Ausführen Zyklus zu Grunde liegt.
Dabei können die beiden mittleren Schritte verschiedenste Formen von Rafinesse
aufweisen. Mit der vorliegenden Arbeit werden zugleich verschiedene neue
Ansätze präsentiert: Erstens, ein einfaches Verfahren zum Erzeugen von hetero-
genen charateren. Zweitens, ein verbesserter generischer Pfadplanungsalgorithmus
für zweidimensionale Probleme der vorhandene Ansätze in Sachen Laufzeit und
Ergebnisse übertrumpft. Und drittens verbessert ein Level-Of-Detail Verfahren für
Verhaltenssimulation den visuellen Eindruck durch geschicktes Verteilen der
vorhandenen Ressourcen.

Ein erster Ansatz realisiert rein reaktives Verhalten, bei dem der Agent nur auf
umgebungsbedingte Impulse und interne Zustände reagiert. Das darunterliegende
Modell besteht dabei aus einzelnen Wissensbausteinen, welche einfach zusam-
mengesetzt werden können um ausgeklügelteres Verhalten zu erzeugen. Die
Kombination der einzelnen Bausteine kann zusätzlich gewichtet werden, so dass
einzelne Bausteine gegenüber anderen bevorzugt werden.

Danach wird das reaktive Verhaltensmodell in einem zweiten Schritt erweitert,
so dass die Agenten auch noch zusätzlich proaktives Verhalten unterstützen.
Infolgedessen kann der Charakter sein Verhalten verbessern, indem er möglichst
viele zukünfitge Zustände erzeugt und danach die Sequenz von Aktionen, welche
zum Besten der erzeugten Zustände führen, auswählt. Die Bewertung der einzel-
nen Zustände beruht dabei auf einer Formulierung des aktuellen Zieles der Figur.
Die Erzeugung einer solchen Sequenz ist rechnerisch sehr aufwändig und stellt
deswegen verschiedene Ansprüche an das System, so dass gleichzeitiges Planen von
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mehreren Agenten möglich wird und die Bildwiederholungsrate ein interaktives
Steuern erlaubt. Dazu werden unterbrechbare Anytime Planungs Algorithmen ver-
wendet um den aktuell besten Plan zu finden und wir stellen dazu verschiedene
Mechanismen vor, welche die Veränderungen im dynamischen Umfeld respek-
tieren und dennoch eine rechnerisch nicht zu aufwändig sind.

Das Framework bietet der Simulation der Umgebung einen Service, bei
welchen die Qualität des Verhaltens abhängig von der zur Verfügung stehenden
Zeit ist. Dies erlaubt es, eine praktisch konstante Bildwiederholungsrate zu halten,
unabhängig von der Anzahl Agenten, welche simuliert werden. Die der Simulation
zur Verfügung stehenden Zeit wird von einen Scheduling Algorithmus so auf-
geteilt, dass den Ansprüchen und der Wichtigkeit eines einzlenen Charaktere Folge
leistet. Dabei wird die Wichtigkeit eines Agenten duch einen Level-of-Detail
Ansatz bestimmt, welcher zwischen sichtbaren, fast sichtbaren und unsichtbaren
Agenten unterscheidet. Diese Klassifikation behält die visuelle Qualität der Simu-
lation hoch, ohne dass ein einzelner Charakter völlig vernachlässigt wird.

Die Funktionalität des präsentierten Ansatzes wird durch mehrere Beispiele und
Messungen unterlegt.
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1C H A P T E R
1INTRODUCTION

community has begun to look for new areas of interest. Now, with hardware capa-
ble of processing billions of instructions per second and rendering millions of trian-
gles at interactive frame-rates, the focus has begun to change to other levels, for
example physically based effects and the behavior of the characters simulated by the
computer. 

Related to the latter and during the same period, the area of artificial intelligence
has been one of the most discussed topics with various promises that either had been
successfully achieved or remained the dreams they were. Unlike the above men-
tioned topics in computer science, the improvements and research advances of the
early days in artificial intelligence became less and less when the dream of artificial
humanoids has been recognized as very hard to achieve.

In recent years, the research community has become increasingly interested in
the use of concepts from artificial intelligence in simulations of humanoid charac-
ters. Not only the game industry used the achieved results to improve the charac-
ter’s capabilities and behavior in their products but also the film industry.
Completely computer-generated feature movies such as Toy Story 1&2, A Bug’s
Life, Monsters Inc. Finding Nemo, Shrek, Final Fantasy, and various others have
become very popular and created tremendous economical gains. Beside the known
commercial interests, the military has funded the development of simulation envi-
ronments that can be used to train soldiers in artificial situations and spent millions
on development and research of such systems. Of course, there is a noteworthy dif-
ference between computer animated films and computer games or military simula-
1



2 1  Introduction
tions: While the former genre can spend hours on large clusters of powerful
computers to generate appropriate behavior and renderings, the latter has to provide
an interactive frame-rate and has to generate the behavior of the characters on the
fly according to the user’s game-play.

According to Hawes [Haw03], we use the term computer game as a virtual world
in which one or more users interact, i.e. the player(s). This world is usually popu-
lated with artificial characters that either help, hinder or are neutral to the player.
The interaction of the player occurs in real-time, meaning that each action taken by
the player is immediately executed, thus, such a game is said to be interactive. This
may not cover all existing computer games, for example turn-based strategy games
such as chess, but is sufficient for the cases this thesis is dealing with. When com-
paring this rather loose definition of games to the real world, we see that these fea-
tures also match to our environment. Therefore, the research results achieved in
such environments can eventually be later applicable in the real world with robots.

The simulation and modeling of the behavior interactive of artificial characters
in real-time environments has therefore become a challenging topic in computer
science where many different research fields merge into a collaboration of different
expertises. Artificial intelligence, psychology, biology, and of course traditional
computer science build a basis for believable and sophisticated artificial behavior –
be it artificial, animal, human, or even super-human. Computer games form an
ideal domain to pursue such research by providing a character-based environment.
The modeling of these artificial characters is based on the concept of agents. The
term agent has many different definitions as will become clear in the next chapter
of this thesis. Basically, an agent is anything that can perceive and act in an environ-
ment. But how it decides to act upon its perception is not defined yet and left open.

This thesis will present the research in the area of agent-based behavior modeling
that has been done during the last years at the Computer Graphics Laboratory at
ETH Zürich. The aim of this thesis is to devise a agent-model for real-time envi-
ronments such as game worlds. Additionally, the behavior generated by these char-
acters should provide a level of sophistication that exceeds the one usually
experienced in current games. This goal is very vague as the term “intelligence” can
not be defined precisely and strongly depends on the domain and type of character
on which it is referred to. We will focus on the generation of goal-oriented behavior
[RN96] which allows for flexible characters that show an awareness of their current
situation and how to use their possibilities to improve it. Since the simulation of
goal-oriented behavior is computationally expensive and therefore contradictory to
the real-time claims of games, methods to break down this complexity are covered
with respect to different aspects of our approach.

The remainder of this chapter starts with the motivation of this thesis before the
different goals are specified and explained. A preview on the contributions of the
thesis as well as an outline of this report conclude the chapter.

1.1 MOTIVATION

In most of today’s computer games, the opponents and background characters often
lack a truly sophisticated behavior. Usually based on predefined reactions or scripts,
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their manifoldness is very limited and, thus, the provided behavior is predictable,
dull and gets boring after some hours of game-play. The common approach to
resolve this situation is to add more reactive and scripted behavior routines to give
the characters more possibilities and make them appear more flexible. However,
this protracts the tedious experience only a little more. It would be desirable to
experience an adaptive character whose behavior is based on its experience and will
change during the game-play as the world, the characters, and of course the player
evolves and gains novel knowledge and competencies. 

The lack of more sophistication in computer games has several reasons. First, the
computational cost to create an intelligent performance is much higher than just
reacting to special events with predefined behavior routines or scripts. The selection
of the appropriate routine can be done by comparing the different possibilities and
selecting the most promising which is very straight-forward. Second, since the
resulting behavior is predefined in all situations, the emerging determinism pro-
vides many advantages when debugging a game during development. An adaptive
character’s behavior is expected to change during its lifetime and it is not obvious
how this change will affect the presented behavior – in the worst case, the character
will not act sophisticated at all but rather confusing or puzzling. This might be the
major reason why commercial game companies have not yet decided to push such
a technology, however, when comparing with the progress of physical simulations,
this argument might become feeble one day. However, the former reason has
become more and more obsolete during the last decade. In a first period, the
increased CPU speed and decreased cost of hardware has been used to the last bit in
order to increase the details in graphics. But the last years have shown that modern
graphics cards got increased capabilities such that many calculations can be swapped
out to the graphics processing unit (GPU) resulting in equal or even better visual
results and a decreased computational load on the CPU.

The now available computational resources on the CPU have been spent rather
on physically-based effects, for example rigid or deformable body simulation. We
expect that sooner or later, these calculations will be done on special hardware, too,
as the graphics cards do today. Not later than then, the resources on the CPU could
be available to an improved behavioral simulation. When the computational
resources are available for an additional game experience such as elaborated behav-
ior of the characters, the foundations of such a technology have to be available to the
computer game industry. Therefore, we anticipate this development and present
(partial) solutions to the core problem of sophisticated characters and related topics.

1.2 GOALS OF THIS THESIS

One major goal of this thesis is to investigate on how to improve a character’s
behavior by incorporating enhanced decision-taking algorithms into the simula-
tion. And, as known from graphics, it is not only necessary to be able to render a
triangle mesh on the screen but also to provide suitable data-structures and algo-
rithms that allow to further reduce the complexity of the computation which is the
other major goal of this thesis. We want to investigate methods and models that
allow already today to simulate a sophisticated behavior on current hardware and
improve these methods to surpass a straight-forward approach.
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Therefore, the implementation of a framework suitable for dynamic real-time
environments, such as games, is neccessary to further investigate these methods. We
envision a rather simple world which is populated by agents that act individually but
also group together in order to build herds. The characters simulated in this envi-
ronment should provide fast reactions to environmental changes as well as long-
term behavior which tries to achieve one or more goals. Therefore, the generation
and execution of plans to achieve such high-level goals has to be integrated into the
characters decision-making mechanism. The planning system has to be interrupt-
ible to fulfill the requirements proposed by the real-time aspects of the environ-
ment. 

Hierarchical approaches are considered to be a key to break down complexities
in some of the required methods. Such hierarchies can be applied to several different
aspects of the overall system. A hierarchical composition of complex agents can
reduce the work to be done when designing sophisticated behavior. Also, hierar-
chically organized groups can be used to break down complex herding behavior.

In order to provide a quality of service, the time spent on behavioral simulation
should be restricted such that a constant frame-rate of the rendering mechanism can
be achieved. Therefore, the time available for the simulation of the behavior is vari-
able and should be split up between all simulated entities without neglecting any
one but such that the visual appearance is coherent and remains appealing. A level-
of-detail approach that assigns the available computational ressources to these agents
that are visually important or at a high level of a hierarchy is expected to achieve this
goal. Then, the high-level goals of the complex behavior can be accomplished with
such restricted ressources.

1.3 CONTRIBUTION

In this tesis, the results of the above mentioned work are presented. The contribu-
tion of our work can be summarized as follows:

The agent model presented in this thesis allows for the weighted combination
of simple basic behavior mechanisms into complex and sophisticated agents.
The weights can be used to favor some basic behaviors over other by assigning a
higher weight. The composition of agents is achieved by a component-based
knowledge where components can be reused and cloned. The model also sup-
ports the easy generation of heterogeneous groups of agents in order to provide
an diversified appearance and, thus, an impression of personality. The agents are
capable of perceiving the environment through a sensory system and of acting
on the environment by the use of an action system. Both of these are easily
adaptable to different environments.

Reactive and Proactive Behavior
A two-layered approach is used to model the agents behavior where the lower
level maintains a correct state by reacting to situations in a short-term manner
and the higher level tries to simultaneously achieve goals by planning into the
future. The planning mechanism is interruptible and allows for simultaneous
planning of multiple agents.
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Level-of-Detail
The proposed framework supports a level-of-detail approach that classifies the
agents according to their visibility and distance to the viewer. Using this classifi-
cation, a special scheduling algorithm distributes the time available for the simu-
lation to the agents such that visually important agents receive more time than
others.

Hierarchies
The hierarchical composition of agents as well as a simple mechanism to gener-
ate hierarchical groups achieves a simplification in two aspects. The hierarchical
composition reduces the work of a behavior designer to achieve complex
behavior by reusing elementary and parametrizable components for different
types of behavior. The hierarchically organized groups allow for the decomposi-
tion of complex tasks such that the overall work-load can be reduced.

Path-Planning
The path-planning system which is used by the agents to move to a goal desti-
nation uses a novel approach which is based on the traditional A* algorithm.
This algorithm achieves shorter paths by implementing a dynamic variation of
the traditionally static A* algorithm.

Framework
A framework is presented which allows for the simulation of a large number of
both reactive and proactive agents in a dynamic real-time environment. The
framework supports constant frame-rates by allowing the behavior simulation
to run only for a restricted amount of time. Therefore, the behavior can be
made adaptive depending on different ressources of the underlying hardware.

1.4 OUTLINE

In the next chapter, an introduction to the field of virtual worlds and their inhabit-
ants will be given. First, the definition of agents is presented which is the fundament
of almost all artificial characters. Different types of autonomous characters rely on
this concept and are discussed subsequently. Autonomous agents act independently
of human interaction and can be extended to adaptive agents which change their
behavior based on their experience. Additionally, some missing characteristics and
abilities towards human-like behavior are presented before going deeper into mod-
eling issues and agent architectures. This leads to a discussion on game agents which
are the target of this thesis. A discussion on the classification of environments con-
cludes this chapter.

The third chapter is devoted to our model of reactive agents whose behavior is
determined by reactions to external or internal stimulus. The possibility to create
sophisticated agents by composing them out of simple base types influences the
model on which our reactive agents rely. The main part of this chapter is devoted
to the components which make up such an agent as well as the perception and the
action execution mechanism. The navigation system which allows the characters to
find a route to a particular destination completes the chapter.

Then, the fourth chapter extends the model from a reactive to a proactive agent
which plans ahead in order to find the best actions to take in order to be more suc-



6 1  Introduction
cessful than purely reactive agents. Therefore, a different inference mechanism is
needed which relies on searching through possible states in the future. As men-
tioned before, this is a very time-consuming task which calls for a solution that
respects the real-time requirements of the environment. A thorough investigation
on the according topics will be followed by the presentation of the proactive agent
model.

The fifth chapter uses the afore developed methods and models and deals with
approaches to reduce the complexity of the overall system. Hierarchical solutions
for groups of characters that break down the computational cost are presented in the
first part. The second part introduces a level-of-detail approach that allows to dis-
tribute the time available to those characters that need it most to present their
behavior without neglecting or preventing others from being simulated. An accord-
ing scheduling algorithm and control mechanism rely on this approach and further
extend the system.

The sixth chapter is denoted to a short system overview with respect to imple-
mentational issues. The simulation environment as well as the interfaces between
the different components are discussed and presented.

The last chapter provides a conclusion on all these topics and an outlook to pos-
sible future work.
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2VIRTUAL WORLDS

This chapter presents an introduction to virtual environments and their inhabitants.
In such environments, the presence of virtual characters is essential for the impres-
sion of an alive ambiance. But how can living creatures or even humans be modeled
to get the impression that these are like their real counterparts? And what are the
requirements that should be met with such characters? How can they made look
intelligent and, more important, which forms of intelligence can be achieved?

This section gives a classification of different forms of intelligence and how char-
acters can be modeled that bear some form of sophisticated or even human behav-
ior. We will start by giving a short introduction on artificial intelligence before
presenting the concept of agents as a model for artificial characters. Then, different
types and models of agents are characterized before discussing their usefulness in
real-time environments such as games. Such environments, though, can be very
different, therefore a classification for environments is given in the last part. 

2.1 ARTIFICIAL INTELLIGENCE & CHARACTERS

Russel and Norvig provide a broad overview on topics concerning artificial intel-
ligence (AI) [RN96]. They classify different forms of intelligent systems by distin-
guishing their behavior and the way they behave:

Acting humanly
This category is basically the area where the Turing Test can be applied to test the
human characteristics of a program. This test consists of four main aspects: nat-
ural language processing, knowledge representation, automated reasoning, and
machine learning. Note that this test does not test the physical abilities. This is
done by the Total Turing Test which only works in connection with computer
vision and robotics.
7
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Thinking humanly
This category is covered by the field of cognitive science, which brings together
computer models from AI and experimental techniques from psychology.
Here, the goal is to imitate human thinking as closely as possible. It is not only
the solution of a problem which is interesting, but how the program achieves
this solution.

Thinking rationally
This field of AI is based on Aristotle who was one of the first to codify “right
thinking”. His famous syllogisms lead later to the field of logic. There are two
main obstacles pointed out here. First, it is not easy to handle uncertain things
(which obviously do exist in our world) and, second, there is a big difference
between being able to solve a problem “in principle” and doing so in practice.

Acting rationally
Acting rationally means acting so as to achieve one’s goals, given one’s beliefs.
The last category leads therefore towards a rational agent approach. The reader
can imagine an agent as something that perceives and acts. Correct inference
from the last category is only a part of a rational agent. A rational agent also
needs possibilities to make decisions upon not provably correct things and on
events which cannot be reasonably said to involve inference (e.g. reflexes, etc.).

This thesis presents a framework that allows for the simulation of rationally
acting characters in a real-time environment. As stated above, these characters are
modeled as rational agents which will be defined later in this chapter. The intelli-
gence of such characters is related to several different fields of research in computer
science. Jon Doyle et al. give an extensive list of primary areas that present-day AI
research covers [DD+96]:

Knowledge representation and articulation

Deliberation, planning, and acting

Autonomous agents and robots

Multi-agent systems

Cognitive modeling

Learning and adaptation

Manipulation and locomotion seeks

Speech and language processing

Image understanding and synthesis

Mathematical foundations

Out of these topics, not all are directly related to the research presented in this
thesis. While the first ones are more important for our needs, the latter are not nec-
essary in our environment. For example, image analysis can be omitted in an artifi-
cial environment since we can directly access the world and the objects without
understanding the contents of a rendered image of the view of an agent. However,
the knowledge representation and the ability to act are indispensable. 

In [HR97], Hayes-Roth presents a summary of the proven AI techniques that
have been developed. He distinguishes four areas of techniques such as representa-
tion, inference, control, and problem-solving architectures as shown in Table 2.1.
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Such fundamental thoughts on AI techniques have been used to specify the char-
acteristics of artificial characters that live in artificial environments. Van Lent and
Laird conclude that an effective artificial intelligence engine should support charac-
ters that are reactive, context specific, flexible, realistic, and easy to develop [vLL99]
as presented in Table 2.2. Reactive means that the character should respond quickly
to changes in the environment while the context specific attribute enables the char-
acter to act based on prior experiences and activities. Flexible characters should have
the possibility to select a tactics on a high level to achieve a goal and also to choose
from different forms of low-level behavior that implements a particular tactic. Their
description of realistic characters is directly related to Russel and Norvigs first clas-
sification type at the beginning of this paragraph. According to van Lent and Laird,
a realistic character behaves like humans. Furthermore, a realistic character should
have the same strengths as a human but also the same weaknesses. The last charac-
teristic – simplicity in development – builds on a simple but powerful knowledge
representation and reusable components, a fundamental requirement also stated by
Hayes-Roth in [HR97].

With these characteristics in mind, some basic entity has to be found that fulfills
all requirements proposed in this paragraph. The next section will present an
approach which is able to meet these.

TABLE 2.1 A summary of proven AI techniques as given in [HR97].

Representation Languages, Domain Modeling and Knowledge Engineering
Rules, frames, classes, cases, hierarchies, propositions, constraints, demons, cer-
tainty factors, fuzzy variables

Inference Theorem-Proving, Heuristic Reasoning, and Matching Techniques
Forward and backward-chaining, unifications, resolution, inheritance, hypothetical 
reasoning, constraint propagation, case-based reasoning

Control Goal and data directed, messaging, demons, focus, agenda, triggers, metaplans, 
scheduling, search algorithms

Problem-Solv-
ing Architec-
tures

Rule based, object oriented, frame based, constraint based, blackboard, heuristic 
classification, task-specific shells

The characteristics of a believable character in an artificial environment as proposed
in [HR97].

Reactive Respond quickly to changes in the environment.

Context specific Consider prior sensory information and actions.

Flexible Usage of high-level tactics with multiple low-level implementations

Realistic Acting like humans with same strengths and weaknesses.

Easy to develop Simple knowledge representation and reusable components.
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Agent Definition(s)

This chapter introduces a generic approach that is widely used to model artificial
characters in virtual environments: the concept of agents can fulfill the requirements
in the last section. The word agent is widely used in computer science but when
trying to find a general definition for an agent, we have to consider Wooldridge’s
remark in [WJ95]:

“ (...) the question what is an agent? is embarrassing for the agent-based
computing community in just the same way that the question what is
intelligence? is embarrassing for the mainstream AI community. The
problem is that although the term is widely used, (...) it defies attempts
to produce a single universally accepted definition.”

It seems that is not straightforward to define what an agent is. And there exist
almost as many definitions as researchers have tried to define it. Within this section,
we provide several possible definitions form different contexts.

The online dictionary Merriam Webster [MW05] states:

agent 
1 : one that acts or exerts power
2 a : something that produces or is capable of producing an effect : an
active or efficient cause b : a chemically, physically, or biologically active
principle
3 : a means or instrument by which a guiding intelligence achieves a result
4 : one who is authorized to act for or in the place of another: as a : a rep-
resentative, emissary, or official of a government <crown agent> <federal
agent> b : one engaged in undercover activities (as espionage) : spy
<secret agent> c : a business representative (as of an athlete or entertainer)
<a theatrical agent> 

Thus, we can conclude that an agent represents another entity and can somehow
achieve a result by acting alone. This does not define an agent as it is needed in our
environment but gives a starting point for a further refinement. Wooldridge con-
siders the question and presents his own notion of agency [WJ95]:

“The perhaps most general way in which the term agent is used is to
denote a system, be it hardware- or software-based, with the following
properties:

Autonomy
Agents operate without the direct intervention of humans or others, and
have some kind of control over their actions and internal states.

Reactivity
Agents perceive their environment and respond in a timely fashion to
changes that occur in it.

Pro-Activeness
Agents do not simply act in response to their environment, they are able
to exhibit goal-directed behavior by taking the initiative.

Social Ability
Agents interact with other agents (or possibly humans) via some kind of
agent-communication language.”
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This is a very general definition that can be applied to both hardware and soft-
ware systems. Nevertheless, all these properties are really needed in order to gener-
ate characters that act rationally: Since we do not want to guide each character at any
moment and tell it what to do, it needs some autonomy that enables to act as a single
entity. Obviously, the need for a repetitive algorithm that models the characters
decision process is essential and will be covered in the next section. Note, that
learning is also a part of autonomous behavior according to Wooldridge’s defini-
tion.

In the target environment of this thesis, the reactivity of an agent is very crucial.
The characters should maintain a correct state at every time and need therefore to
have a short response time to external events. But not only the reaction to certain
events is necessary but also the ability to take the future into account to achieve
long-term goals gives a character some sort of sophistication: A person that first
walks into a door before realizing that it is necessary to open it is not considered to
be intelligent. After discussing the agents repetitive mechanism in the next section,
we will present generic models for different types of agents. 

Furthermore, we may want the characters to act in groups and to interact with
each other. The ability to act together, depend on other’s decisions and to commu-
nicate is summarized in the section social agents just before concluding this section
by characterizing game agents which populate the target environment of this thesis.

2.2 AUTONOMOUS CHARACTERS

As stated in Section 2.1.1, a character or an agent is something that perceives and
acts in its environment based upon the perceived information and goes with the
psychological model shown Figure 2.1. Therefore, an agent is basically a mecha-
nism that has a mapping from percepts to actions. But the way the resulting action
is determined upon the perceived information differs for different types of agents. 

Mallot approaches this topic from a psychological point of view [Mal97] since
the human being is the most autonomous character we can imagine. He refers to
the term cognition which refers to a wide variety of mental processes including atten-
tion, recognition, planning, reasoning, thinking and language understanding, as
well as memory and recollection. 

Russell and Norvig split an agent into an architecture and an agent program,
which maps the percepts to some actions. In this section we only consider the latter
while postponing the agents architecture to a later section. First, we have to think
about what kind of mapping is needed and how this can be achieved.

A rational agent is considered to be an agent that does the right thing [RN96]. But
what is the right thing? Russel and Norvig define the right thing as something that
causes the agent to be successful with respect to a performance measure. This measure
determines how successful an agent is. Obviously, there is no globally applicable
measure for all types of agents. According to Russel and Norvig, a rational decision
depends on four things: 

The performance measure that quantifies the success.

The percept sequence that the agent has perceived through its sensors.
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The knowledge about the environment.

The actions that can be performed by the agent.

This leads to the definition of an ideal rational agent who always takes the action
that is expected to maximize the agents performance measure, given the percept
sequence it has seen so far and all the knowledge of the agent. This means that the
ideal agent is perfect with respect to its knowledge and experience. Of course, this
definition does not prevent an ideal agent from making mistakes. Nevertheless,
such an agent will not repeat its errors if its performance measure is perfect.

An agent is considered to be autonomous to the extent that its action choices
depend on its own experience, rather than on knowledge built in by the designer
[RN96]. Note that this does not require the ability to learn from experience but
rather the possibility that the resulting behavior is not totally pre-scripted within all
details. An agent is also autonomous if its decisions rely on the perceptions from the
environment or from other agents, too.

In principle, the basic action-perception cycle is composed of the same tasks as
shown in Figure 2.1. These tasks are executed repeatedly. Thus, any program of an
autonomous agent basically consists of the same four steps:

1. Perception: The agent gets actual information from its environment through
sensors in order to know about its new situation after the last action taken.

2. Inference: The agent infers about the world and what has to be done with
respect to its percepts.

3. Selection: The agent selects one or more actions based on the outcome of step
2.

4. Acting: The selected actions are performed.

These four steps together form a mechanism that allows to design different types
of agents. The complexity of each step depends on either the architecture of the
agent or its environment. For example, in a game environment, perceiving other
agents is not as crucial as for a real-world robot that uses a camera and has to inter-
pret the contents of an image. Obviously, perceiving the environment strongly
depends on the type of environment and its properties. On the other hand, the
inference mechanism and also the selection of the appropriate action are purely
agent-dependent since it relies only on the knowledge of the agent which has been
updated in the previous step. Acting, however, depends both on the agents archi-
tecture and its environment. The way the agents actions are modeled and how they
can be applied to the environment has a strong influence on the possibilities of an
agent. 

Mallot also considers the basic human action-perception cycle and points out
three different types of feedback from effectors to sensors as shown in Figure 2.1
[Mal97]:

a. The internal regulation of the organism is called homeostasis. It does not include
any type of behavior because all feedback is internally. The adjustment of the
body temperature or the blood pressure are examples of this category.

b. Visible behavior without any changes to the environment is called acquisitory
behavior. It is used to improve the acquisition of information. Examples for this
type are eye movements, active vision, etc.
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c. The most complex feedback loop is interactions with the environment. These inter-
actions have an impact on the environment. Besides all actions, social behavior
and communication are also part of this category.

Thus, a human being can use all these three feedback loops to adjust its behavior
to its needs. Therefore, an autonomous agent should also provide these three forms
to reconsider its behavior and adapt it with respect to its performance measure. 

Lent refers to the inference mechanism as the central component of a AI engine
because it sets forth constraints that the other components must meet. Further, the
job of the knowledge machine is to apply knowledge from the knowledge base to
the current situation to decide on internal and external actions. The most charac-
teristic details of an inference machine are how it implements the think step of the
decision cycle and any internal actions of the act step [vLL99]. 

The most simple way to describe the mapping from percepts to actions is a
lookup-table – but this approach fails immediately since such a table would require
a huge amount of memory and the time needed to build the table can get infinitely
long. Furthermore, and most important, such an agent is not autonomous at all
since all actions are predefined. If the environment changes somehow, the agent is
completely lost. The next sections introduce different types of agents which make

FIGURE 2.1 The basic action-perception cycle according to [Mal97] shows three different types of
interaction.
a) The internal regulation, e.g. body temperature, blood pressure
b) Acquisitory behavior, e.g. eye-movement
c) Interactions with the environment
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2.2.1 Simple Reactive Agents

FIGURE 2.2 A simple reactive agent.
The decision relies only on the condition-action rules which can be implemented very
efficiently.
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2.2.2 Reactive Agents with Internal State

FIGURE 2.3 A reactive agent with internal states.
Here, the decision is based on the condition-action rules, too, but also on the internal
state, the knowledge about the outcome of possible actions, and a world model.
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2.2.3 Goal-based Agents

FIGURE 2.4 A goal-based agent.
In this architecture, the agent tries to figure out what states can be reached when
executing different actions. 
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2.2.4 Utility-based Agents

2.3 ADAPTIVE AGENTS
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FIGURE 2.5 An utility-based agent.
In contrast to the goal-based agent, this approach compares different possible ways
to achieve the same state and selects one based on a utility function.
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ble of sequential behavior and learning [YB94]. However, recent academic research
with artificial characters has moved away from genetic algorithms.

Another form of adaptation is . Learning can be broken down into learn-
ing from examples or reinforcement learning. While the first approach, for example
neural networks (NN) or support vector machines (SVM), needs a set of samples
and their corresponding output, the latter is based on the interaction with an expert
who suggests success, failure, reward, and punishment as indicators of the result. 

Neural Networks

NNs are derived from the functionality of the brain and try to rebuild neurons,
synapses and dendrites in the computer. Several layers of so called units are fully
connected by weighted joints and each unit uses an activation function to generate
a continuous or discrete output signal [MP69, RN96]. Then, learning is considered
as a backtracking process which adapts the weights between the units such that the
output of the whole system for a specific input stimulus matches the known output
of training examples. Afterwards, the NN can be applied to novel input patterns.
The main difficulty when designing NNs is the structure of the network, be it the
number of input/output units or the number and size of hidden layers in between
[Rip96].

Outside agent-related research, NN have been applied in various fields, for
example pattern recognition [Rip96], handwritten character recognition
[LBD+90], or controllers for nonlinear plants [Son92]. Lin and Reiter go the oppo-
site way and discuss a theory about forgetting of facts that are no longer true [LR94].

Related to the field of artificial characters are the driving of vehicles [Pom89],
back-parking of a truck with a trailer, landing of a space shuttle on the moon sur-
face, or even an animated dolphin learning to swim [GTH98]. Faloutsos et al.
present an approach for composable controllers for physics-based characters where
each controller learns its preconditions not only manually but also by using a Sup-
port Vector Machine [Bur96, OFG97] such that the character can select the appro-
priate controller by itself [FvdPT01]. As stated above, the commercial computer
game Creatures uses heterogeneous NN to simulate the brain of the virtual pets
which determines the presented behavior [GCM97]. Terzopoulos et al. imple-
mented a virtual fish tank with fishes that navigate upon an artificial perception
[TRG96]. These fishes use a reinforcement learning that is based on an objective
functional that expresses the success of the current learning state to learn complex
motor skills such as turning while swimming, jumping out of the water, or even
performing tricks during the jump-phase. 

Reinforcement Learning

Reinforcement learning [KLM96, RL95] needs a supervisor who reviews the
result and gives a feedback to the system as an expert. Then, the system adapts its
interior decision process according to this feedback such that the triggering action
(sequence) will be likely to get activated after a positive feedback or fewer in the case
of negative feedback.
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Conde et al. provide basic information about reinforcement learning for behav-
ioral animation of autonomous agents [CTT03]. In their approach, the virtual
agents learn by themselves how to find a route to a destination, i.e. the feedback is
given by the environment. In recent years, Blumberg et al. investigated on learning
of artificial animals in a virtual environment [TB, YBS00, BDI+02]. In one setup,
the animal’s motivation system provides reinforcement feedback to the behavioral
action selection mechanism such that it adapts its behavior during lifetime. In
another approach, the user can interact with a dog and teach it to accomplish certain
tasks using a method called “clicker training” which is applied successfully on real
dogs. The clicks give the dog a reinforcement feedback who associates certain
sequences of actions to commands given by the user. In order to find such
sequences, it analyzes the states, actions, and state-action space in between the com-
mand and the feedback. After a few training sessions, the dog is able to accomplish
simple tasks such as sitting or begging.

Multi-Agent Learning

Among the approaches for multi-agent learning methods, Makar et al. presented
an approach for hierarchical multi-agent reinforcement learning [MMG01] where
agents learn how to speed up cooperative tasks in a decentralized fashion. The coop-
eration takes place on the level of sub-tasks rather than on primitive actions. Mat-
suno et al. present a reinforcement learning method for multi-agent setups and test
it with partially observable competitive games, for example “Hearts” [MYIM01].
Tumer et al. focus on individually learning sequences of actions in collective envi-
ronments such that the global reward is maximized [TAW02].

Although learning is very important for a sophisticated behavior, we do not con-
sider adaptive behavior to be crucial for first results. We believe that the process of
learning is rather independent and can be modeled and added to the system at any
time. Thus, we decided to focus on the characters decision capabilities rather than
adaptive ones.

2.4 HUMAN-LIKE CHARACTERS

Logical reasoning and adaptive behavior are only a part of multiple characteristics
which constitute human behavior, thus, the traditional AI techniques alone will not
help achieving this goal. Although not a key issue of this thesis, a short but dense
overview of the area is given here. 

As stated in Section 2.1, human-like behavior goes beyond purely rational
behavior as shown by other research fields such as psychology, biology, and others.
Whereas rational behavior has a clear and precise scientific foundation, human
behavior has not. In this section, we will present some topics where research has
become more and more interested in during recent years in order to generate
believable agents.

Reilly describes the term  as coming from arts and describing characters
that “work” [Rei96]. He states that believable characters seem to be alive and that
the audience has emotions for or about them. In his Ph.D., Reilly presents three
lessons from the arts about the fundamental nature of believability:
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1.
While AI research is devoted to generate intelligent agents performing difficult
tasks, it is sometimes desirable to have stupid characters (e.g. Forrest Gump, Al
Bundy).

2.
Some areas of AI research try to reproduce natural behavior with cognitive
modeling [MDBP95, FTT99, SLL02] as one example. In animated films, how-
ever, the characters are not at all realistic, although often very believable. 

3.
Traditional AI research is not particularly interested in personalities or varia-
tions across characters. Nevertheless, personalities are very important for char-
acters with which the observer can identify itself.

We consider different fields related to this topic: Personality, motivation, emo-
tion, and social or individual behavior. Within this section, we will discuss these
during the next few paragraphs.

Personality

Personality seems to be one key to human-like agents. One approach to some-
thing like personalities has been done by Blando et al. [BLM99]. Their approach
builds upon the idea to compose behavior out of basic components like in object-
oriented programming. A personification is then the task to generate a character by
re-implementing particular behavioral routines. But personality is more than that –
is rather bound to emotions than pure individualism. Recently, Kshirsagar and
Magnenat-Thalmann developed a model based on the Five Factor Model (FFM)
known from psychological studies that uses Bayesian Belief Networks in a layered
approach [KMT02]. The FFM defines five basic dimensions of a personality space:
Extraversion, agreeableness, conscientiousness, neuroticism, and openness. They
demonstrate the usefulness of their model in a text-based dialogue-system. A sim-
pler model for personality is presented by Wilson where the personality of a char-
acter is defined in a 3D cartesian space with the axis being extroversion, fear, and
aggression [Wil00].

Motivation

Motivations are widely used to influence the characters behavioral or cognitive
processes. For example, Canamero uses motivations in the behavior selection pro-
cess and based on arousal and satiation of an autonomous creature with learning and
problem-solving capabilities [Can97]. Burt complements the behavior of animated
agents in virtual worlds with motivational constructs in order to better distribute
the available time with respect to the agents current goals [Bur98]. The already
mentioned work by Yoon et al. creates characters with a transparent motivational
behavior based on the behavioral action selection mechanism of Blumberg et al.
[YBS00]. The motivation system has strong correlations to the behavior system and
consists of a drive system which depends on internal states and an affect system.

Emotions

When reducing the interest to emotions, much research has been done in recent
years. Although emotions and computers have very few in common, there exist
some models that can be applied to model emotional states. Wehrle presents
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research on the motivation for modeling emotions and distinguishes two kinds of
modeling approaches: black-box models and process models [Weh98]. Unuma et
al. generate emotion-based human figure animations by analyzing empirical peri-
odic movements. A Fourier-series expansion of the data is used to generate a model
that produces variations of these movements. The work of Rose et al. attributes
verbs (actions) with adverbs (parameters) that allow for expressive behavior
[RCB98]. After Reilly’s emotional agents [Rei96], Canamero reports on autono-
mous creatures with emotions triggered by particular events that affect the intensity
of behavior [Can97]. Velasquez [Vel], Chown et al. [CJH02], as well as
Gmytrasiewicz and Lisetti [GL01, GL02] present architectures where emotions
have an influence on the process of decision-making. These approaches all model
emotions that can not be directly influenced by the agents actions but rather by
environmental feedback. Recently, Wilson presented the Artificial Emotion
Engine that generates emotional behavior in form of gestures, motivational actions,
and internal states [Wil00]. It divides emotions into three layers: Momentary emo-
tions (e.g. reactions), moods, and personality (as described above), with increasing
temporal extent. Tomlinson and Blumberg enable their characters to have and
express emotional states using emotional memories based on three variables
describing pleasure, arousal, and dominance [TB]. The influence of emotions in
multi-agent systems have attracted researchers in recent years, e.g. [BB01, MG03],
but are out of the scope of this work.

Social Behavior

Multi-agent systems lead us directly to social, collective, and collaborative
behavior – another core property of human-like beings. Simulating the interaction
of different characters has been research since the early days of computer science.
The field can be divided into  of individual-based characters and 
tralized behavior where a special unit controls the other individuals, however, we will
focus on the former approach. Dautenhahn argues that the individual-based
approach is based on observations of human behavior [Dau00]: Humans need to
pay attention to others and their interactions individually. Opposite to social
insects, humans live in individualized societies and need to communicate with each
other effectively. While insects recognize each other as group members rather than
individuals, humans tend to select particular members of the society as special group
members, i.e. friends. Therefore, we have to further differentiate between
approaches for simple social animals where the agent does not build special relation-
ships and relationship-based ones. While the former approach is widely used, the
latter seems to find its way into research only during the past years.

The seminal paper by Reynolds in 1987 presents a particle-based method to sim-
ulate a natural emerging flocking behavior in a group of individuals with only a few
simple rules [Rey87]. This model is still used for animated movies and, as men-
tioned before, will be the basis for a part of this thesis as well. Also, many other
approaches were inspired by natural and biological observations. Kube and Zhang
studied the controlling of multiple autonomous robots inspired by social insects
[KZ92]. Similar to Reynolds boids, their approach is based on a small number of
rules: a common goal, non-interference, herding, environmental cues, group
detection, and self-facilitation. However, not all approaches are promising as Zaera
et al. show. They tried to find an evaluation function to implicitly generate school-
ing behavior with neural-network controlled agents, but fail [ZCB96]. Another
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decentralized approach for real robots has been presented by Martinoli and
Mondada who use a bio-inspired model similar to Kube and Zhang’s to make
robots collecting items [MM98]. Wilkins and Myers centralized approach goes one
step further: A multi-agent planning architecture with a central repository for plan-
related information makes it possible to explore cooperative problem-solving strat-
egies [WM98]. Lita et al. coordinate goal-driven mobile agents in uncertain envi-
ronments like in the Canadian Traveler Problem [BNS91].

Musse and Thalmann present a hierarchical model for simulating virtual human
crowds [MT01]. Various degrees of autonomy on different levels of individuality
allow for a distinctive behavior simulation of crowds. Guided, programmed, and
autonomous groups form the basic levels. Similar, Ulicny and Thalmann deal with
large numbers of virtual humans with scripted and autonomous behavior that are
used to either populate virtual heritage environments and games or simulating
emergency situations in real-time [UT01, Tha02]. Recently, Bayazit et al. pre-
sented a road-map based approach to flocking for complex environments [BLA02].
O’Sullivan et al. present a level-of-detail approach for conversational and social
behavior [OCV+02] which will be discussed in greater detail later.

As mentioned before, a part of Reilly’s PhD thesis deals with believable social
agents [Rei96]. He points out that social behavior is closely related to individual
properties of the character and emphasizes the need for a proper model of other
characters. As examples, his focus lies on two social behaviors: negotiation and
making friends. Tomlinson and Blumberg’s work deals with wolves that exhibit
social interactions [TB]. They use context-specific emotional memories (CSEM) to
remember previous interactions with other wolves with respect to a emotional
experience. Other than the previously mentioned “clicker-trained” dogs, the
wolves are not trained based on reinforcement of a human player but rather by the
reward that emerges the social environment. Then, this positive or negative expe-
rience is associated with the previous activity.

Individual Capabilities

Other than the above mentioned properties of human behavior, there are many
individual capabilities that make characters more human-like, such as respect
[BDH+01], anticipation [Lai01, KB00], or even creativity [Sau02] and many more
which are clearly out of the scope of this thesis.

2.5 BEHAVIOR MODELING AND ARCHITECTURES

After having discussed the characteristics of artificial characters and having shown
some rough outlines of control mechanisms for rational agents, this section will go
into the details of behavior modeling and control architectures by presenting
selected approaches from research. The design and underlying models of these sys-
tems vary very much since there is obviously no correct way to implement an agent.
First, the low-level behavior selection processes in reactive agents will be discussed
before increasing the complexity towards hierarchical or layered approaches, proac-
tive, and high-level cognitive processes.
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2.5.1 Reactive Agents

Concerning individual behavior, research has begun to examine how to model
the locomotion of animals [Mil88, RH91, GT95, TT94]. With moving characters,
the next step was to model the selection of different behaviors that are executed
using such locomotion systems. This process is usually located in between the per-
ception and action selection mechanism and extends very simple methods such as
Reynold’s boids [Rey87].

The game Creatures presents a very open and biologically inspired approach
[GCM97] which consists of two subsystems: the attention lobe directs the creatures
attention towards an object of interest and the decision making lobe consists of a
perception, concept, and decision part where each part is essentially a extended
neural network. This approach reduces the set of possible actions to “verb object”
tuples instead of “subject verb object” triples because of the reduction of possible
subjects to one object of interest. The perception part combines the sensory input
with the internal state and influences the concept part where event memories are
stored and activated based on this perceptive input. The decision part stores con-
cept-action relations that determine the executed behavior. Although very simple,
this approach lacks the possibility to model behavior explicitly.

Tu and Terzopoulos’ artificial fishes [TT94] already introduce a very simple
intention generator which influences the selection of appropriate predefined behav-
ior routines in reactive agents. The intention generator has a limited set of inten-
tions available: avoid, escape, school, eat, mate, leave, and wander. A predefined
intention selection mechanism selects one out of these with some persistence in
order to prevent the fish from switching intentions rapidly. Additionally, they
extend the basic intention generator such that three different types of artificial fishes
result: predators, prey, and pacifists.

Based on Blumbergs work and PhD thesis [BG95, BM97] a whole series of con-
secutive systems have been presented to simulate animated characters based on a
modular and biologically inspired approach, mainly with animals such as dogs or
wolves. The layered architecture allows the characters to follow high-level goals and
select appropriate sub-level behaviors to achieve these goals, although the behavior
selection process is reactive rather than goal-based as presented in Section 2.2.3.
Some part of the sensory input is achieved by a synthetic vision system. A character
is able execute multiple actions at the same time as long as they do not allocate the
same resources, for example turning the head can be executed concurrently to wag-
ging the tail. 

The architecture of Blumberg’s original behavior selection mechanism is com-
posed of five layers as shown in Figure 2.6. The underlying geometry of the char-
acter is governed by the physical properties which can be manipulated by changing
the values in each degree of freedom. Articulated atomic movements are generated
by motor skills that affect the degrees of freedom directly. Then, motor controllers
map the motor commands of the behavior system to particular motor skills. The
primary task of the behavior system is therefore, to select the “right” set of control
signals at each time-step based on the internal state and the state of the environment
perceived. Therefore, the system recalculates the importance of all available behav-
iors during each cycle without restricting the execution to only one – allowing for
secondary behaviors and meta-commands. However, the winning behavior has pri-
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ority over all other behaviors. The value of importance is influenced by releasing
mechanisms, which are some sort of precondition, that also generate pronomes, a data-
structure that allows to use abstract behaviors independent from the object it is
instantiated with. Inhibition and the level of interest are used to arbitrate among com-
peting behaviors. Each behavior has a level of interest that decreases while the
behavior is active such that other behaviors get activated. Inhibition is used to pro-
vide a robust winner-takes-all arbitration among the behaviors and is explained in
detail in [BG95].

FIGURE 2.6 The architecture of Blumberg’s interactive creatures [BG95].

FIGURE 2.7 The layered cognitive architecture for synthetic characters by Burke [BID+01].
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Isla et al. refine the behavior system of Blumberg’s approach into several distinct
systems that communicate through a internal blackboard [IBDB01] . Burke et al.
extend this approach again by the proprioceptive channel resulting in a system as
shown in Figure 2.7 [BID+01]. This channel is used to emulate self-perception,
accept direct self-influence and include self-awareness. 

The character’s sensory system is used to filter incoming data and events in order
to maintain the creature’s virtual sensation honest, for example invisible objects are
rejected and absolute positions are converted into relative ones [IBDB01]. After
sensing a stimulus, it is forwarded to the perception system which uses a percept tree,
a hierarchical data-structure that classifies the sensory input by calculating matching
probabilities. Partial data of the stimulus is passed down the hierarchy only if the
parent has recognized the data itself – leading to a more efficient classification. Inno-
vation is the process of changing the topology of the percept tree on a reward-driven
base. Generated by the perception system, the working memory is filled with
objects that represent the sensory history of the objects in the world. A confidence
value is associated to each memory object and decayed at every timestep the object
is not recognized anymore. The temporal information of these objects allows the
character to predict the future and, therefore, to show surprise when prediction and
perception do not match.

Having gathered all percepts and collected them into the working memory, the
action system has to decide about the actions to take by querying the relevance of
all action-tuples in its collection. The relevance corresponds to the amount of
reward that is expected when executing a particular action and is calculated by
taking into account the intrinsic value of the action, its precondition state and dura-
tion. Similar to Badler et al.’s parametrized action representation [BBB+98], each
action-tuple addresses fundamental questions: 

What do I do? - defines what is actually executed. It can be for example an update
of the working memory, an event to the environment, or a instruction to the
motor system.

When do I do it? - defines the triggering context that represents the relevance
with respect to the current working memory.

What do I do it to? - defines the target of the action which is – during activation –
given by the current object of interest or attention.

How long do I do it for? - defines when to end this particular action which can be
either a scalar timer value or a postcondition function.

What is it worth? - defines the intrinsic value of the action. This value can be
modified through a learning process.

After having selected the current action, the internal blackboard is updated with
the appropriate information as depicted in Figure 2.7. The navigation system can
override navigational motor commands, e.g. “approach”, until the respective con-
dition is satisfied. This is done before the motor system is able to execute a com-
mand.

Another approach based on the reactive agent design has been presented by
Kuffner [Kuf98, Kuf99]. His work concentrates on a synthetic vision system, goal-
directed navigation, and manipulation tasks but restricts the definition of high-level
behavior to simple scripts. However, his characters are articulated human avatars



2.5  Behavior Modeling and Architectures 27
with a spatial extent and a high number of degrees of freedom. Therefore, naviga-
tion as well as manipulation tasks, e.g. grasping, are not trivial to compute. The pre-
sented synthetic vision system relies on a flat shaded low-resolution rendering of the
current view of the character with each object having a different color. When ana-
lyzing this synthetic sight the character can determine all objects currently visible.
To build up and maintain the characters own model of the world a simple algorithm
is presented which works in static as well as dynamic environments. Then, the task
of explorating an unknown environment is discussed and a solution is presented.

2.5.2 Proactive Agents

While the behavior presented by reactive agent models can be very impressive
this approach still has its limitations when concerning adaptive or goal-directed
behavior. Some researchers argue that human behavior is based on the execution of
learned “scripts” rather than planning and interference. Nevertheless, goal-directed
behavior offers a possibility to let the agent decide itself how to achieve a goal by
taking into account its possible actions and the current state of the (dynamic) envi-
ronment. This makes it easy to enhance the character’s possibilites by introducing
new actions without having to adapt all the before mentioned scripts. Thus, it is not
necessary to tell the agent how to achieve something but just to tell what to achieve.

In 1999, Funge et al. addressed this topic and extended the computer graphics
modeling hierarchy by a new top-layer they refer to as cognitive modeling [Fun98,
FTT99, Fun00]. Their approach introduces a cognitive modeling language (CML)
that hides the underlying first-order logic from the user and allows to define the
knowledge of the agent, primitive actions and the goals it should achieve. A method
to generate nonderministic scripts is given, too, and in order to deal with uncer-
tainty about earlier sensed information interval-valued epistemic fluents are used.
The overall interaction of the system is depicted in Figure 2.8. The high-level rea-

FIGURE 2.8 The interaction mechanisms of Funge’s cognitive model in [FTT99] is very similar to
Chen’s model in [CBC01].
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soning engine generates a pruned tree of possible action sequences and selects the
currently best sequence for execution which is passed to the reactive system result-
ing in characters that can plan several steps ahead. An automatic camera selection
mechanism, a prehistoric world with a T-Rex preying Raptors, and a physically
based undersea world with sharks and a merman demonstrate the usefulness of this
approach. While this work is based on situation calculus, a similar approach presented
by Chen et al. relies on event calculus and defines a behavior specification language
(BSL) [CBC01]. They argue that event calculus, although sharing the same basic
ontology1, has the advantage of representing actions with duration rather than sit-
uations which makes it possible to achieve a more narrative modeling language.

More specific towards computer games, Hawes presents an approach for goal-
oriented behavior in real-time environments [Haw00, Haw01]. His goal is to pro-
vide fast yet flexible responses. His work extends the CogAff architecture [Slo99],
a three-layered approach as shown in Figure 2.9. The reactive layer handles fast

decisions based on the current state while the deliberative layer infers on how to
achieve goals and how to distribute the available time onto the running processes.
The meta-management layer on top handles self-monitoring mechanisms that
adjust and influence the deliberative layer in order to increase the overall success and
behavior. Hawes transfers the concept of anytime algorithms [ZR95, Gra96] to
planning algorithms and presents anytime planning [Haw01], a class of interruptible

1.  Ontology: A particular theory of the nature of being or existence. In case of knowledge representation,
ontology is a formally defined system of things and/or concepts and relations between those.

FIGURE 2.9 The CogAff Architecture as presented by Sloman in [Slo99].
The reactive processes are influenced by deliberative processes that generate adap-
tive behavior. The meta-management layer on top are used for self-monitoring, e.g.
to improve the quality of the overall behavior.
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and qualitatively progressive planning methods which will be used and discussed in-
depth later in this report.

The Belief - Desire (or Goal) - Intention model has been introduced in the late 1980s
based on philosophical sources [Bra87], is often referred to as the BDI model and
has been researched thoroughly in the last years but often lacks a concrete imple-
mentation. Theoretical formalizations [RG91, Rao96] have laid out the founda-
tions for implementations of rational agents that rely on the BDI model. In this
logic, the beliefs represent the agents knowledge about the environment, from per-
ception mechanisms, as well as internal states. The desires represent the state which
the agent likes to achieve and the intentions are the means that can be used by the
agent to achieve the desires. These intentions are usually implemented as plans with
pre-conditions and post-conditions. This may sound similar to classical planning
systems such as STRIPS [FN71] but such systems are significantly more sophisti-
cated since the system has to consider reactive behavior as well as proactive behavior
concurrently in a dynamic environment which does not allow to predict the actual
behavior exactly. Recently, Thangarajah et al. address the gap between theory and
practice and present an explicit representation for desires [TPH02]. Geiger and
Latzel present an multi-agent system for agent oriented prototyping which relies
also on the BDI model and can handle hierarchical plans [GL00]. The agent model
of Caicedo et al. uses a similar approach and presents communicative characters and
an according behavior engine [CMT01]. Broersen et al. go one step further and
introduce the Beliefs-Obligations-Intentions-Desires (BOID) architecture
[BDH+01]. They consider obligations as external motivational attitudes whereas
desires are their internal correspondence. Their architecture considers all effects of
an action before committing it – by taking into account fifteen different types of
either internal or external conflicts. 

2.5.3 Summary

The presented modeling techniques and architectures differ widely with respect
to controllability and adaptability. The former characteristic is based on the amount
of influence, the designer has on the resulting behavior while the latter denotes the
flexibility of the resulting behavior to changes in the environment. Figure 2.10
shows a summary of the main approaches on a plane that is spanned by both prop-
erties. The horizontal axis denotes the amount of influence by the designer where
self-contained systems lay on the left side in opposition to user-defined ones on the
right side. The vertical axis represents the adaptability of the model where inflexible
systems are on the bottom while the ones which can alter the behavior based on the
environment are placed on top.

2.6 GAME AGENTS

When looking at the target platform of this thesis, real-time environments such as
games, we find that there exist many different roles for characters in a virtual envi-
ronment. Laird and van Lent provide a list of such roles [LL01]:

Tactical enemies, where many general AI problems have to be solved: Navigation,
path planning, spatial reasoning, and temporal reasoning. They also need a per-
ception system with the same capabilities as humans.
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Partners involve similar AI techniques as tactical enemies. However, while ene-
mies emphasize autonomy, partners emphasize effortless cooperation and coor-
dination between both the player and the partner. The partner AI must
coordinate its behavior, understand teamwork, model the goals of the human,
and adapt to his style.

Support characters are usually some of the least sophisticated AI characters, but
they have the most promise to improve games. Since theses characters need to
exist in a virtual world and generally play a human role in this world, they pro-
vide a useful first step towards human-level AI. They must interact with and
adapt to human players and provide human-like repossessions.

Strategic opponents often have advantages because most game developers resort to
cheating to obtain a challenging opponent. Even with these advantages, most
strategic opponents are predictable and easily beaten once their weaknesses are
found. In team sports games, these opponents style of play must match a real
world team about which the human player is likely to be very knowledgeable.
The tasks of strategic opponents can be divided into two categories: allocating
resources and issuing unit control commands.

FIGURE 2.10 A classification of different agent architectures.
The horizontal range denotes the level of controllability of the simulated agent. The
more control is feasible by the designer the more to the right.
The vertical axis indicates the level of adaptability. The possibility to adapt to changes
in the environment is considered to allow for more flexibility rather than learning
novel behavior.
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AI-driven units are used in strategy games, god games, and team sports games.
Generally, a high-level command of the player has to be carried out. Because of
the large number of simulated units, their computational needs must be kept
very low [AWC99]. Therefore, they are often controlled by FSMs and aug-
mented by some path-planning and path-following. 

The role of commentators is to observe the actions and to generate natural lan-
guage comments suitable to describe the action [Fra99]. The obvious challenge
for a commentator is to create a natural language description of the on-going
action in the game. The description may include both the moment to moment
action as well as key tactical and strategical events that can require complex plan
recognition and a deep understanding of the game.

We will focus on the type of tactical enemies and AI driven units. These charac-
ters should present behavior with specific characteristics in order to be identified as
human-like and accepted by human players. The artificial opponents often have
superhuman capabilities in order to provide a challenging antagonist. Therefore,
the AI requirements to be fulfilled are different from those of traditional games such
as checkers or chess. Nareyek discusses this topic and presents a list of features of
modern computer games [Nar00]:

Real-Time: The time available for taking decisions is very limited.

Dynamics: The environment the characters live in is highly dynamic.

Incomplete Knowledge: The character’s knowledge of the world is limited.

Resources: The character’s resources (computational as well as memory) may
be restricted.

Subsequently, Nareyek states that in modern computer games the goal-directed
behavior of the character is often implemented in predetermined behavior patterns
or – in more sophisticated approaches – as neural networks. He points out that any-
time planning is needed in order to have characters capable of easily adapting to a
changing environment. In this case, planning has to take into account the temporal
and spatial development of the world and the character should be able to deal with
incomplete knowledge.

In computer games, the inference mechanism is usually divided into hierarchi-
cally ordered levels. For example, Lent’s AI engine for game agents uses three levels:
A the top level, there are goals or modes of behavior, the second level represents the
high-level tactics to achieve the top-level goals, and the lower level contains the
steps and sub-steps, called behaviors, used to implement the tactics [vLL99].
Although Atkins’ hierarchical agent control is designed for military purposes rather
than games it can be used in real-time environments [AKW+01]. Therein, the sen-
sors as well as the goals can be defined in a hierarchical fashion in order to reduce
the complexity. 

Isla and Blumberg point out a list of challenges for modern computer games
ranging from perception over anticipation to emotions and learning [IB02]. Sensory
honesty seems to have a great influence on the authenticity of a character. For
example, the opponents should not see through walls or outside their field of view.
Imagination is pointed out as a key component of anticipatory behavior. Frustration
and curiosity as two examples of emotional responses might affect the believability
of an opponent, too. An counterpart who always makes the same mistakes fails to
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appear authentic – a behavior that can be circumvented by adaptive characters. Fur-
thermore, communication and coordination skills are often required to achieve a
realistic game play. In team sports, for example soccer, ice-hockey, or basketball,
good coordination skills are essential for a believable game.

We think that it is not advantageous to concentrate on too much challenges.
Thus, we restrict the skills of our target agents to only the neccessary but try to find
an archictecture and model which allows for later enhancements. A simple sensory
and action system should be enough to provide a working agent. The key is the
inference mechanism whose architecture seems to be promising when using differ-
ent layers. First, an extendable reactive agent model should provide the basics and
will be enhanced in a second step to provide goal-oriented behavior. When design-
ing the over-all architecture carefully, adding adaptive or other human-like behav-
ior should be feasible. We also consider hierarchies as a very promising concept to
break down many complexity issues but will apply such only on parts where others
did not before.

2.7 ENVIRONMENTS

A character cannot live without an environment. The interaction between the
agent and the environment is two-sided. First, the agents perception is based on the
information the environment provides and, second, the agents actions are executed
on the environment and may affect its state.

Russel and Norvig give a general classification scheme for environments [RN96]:

Accessible vs. inaccessible
If the agent has full access to the environmental information it is said to be
accessible to that agent. If all aspects necessary to the choice of an action are
detectable, it is said to be effectively accessible. 

Deterministic vs. nondeterministic
If the current state and the choice of an action completely determines the next
state of the environment, then the environment is deterministic. In an accessi-
ble and deterministic environment, uncertainty has no effect on the behavior.
An inaccessible environment may appear as nondeterministic since not all
aspects that have an influence are likely to be recognized.

Episodic vs. nonepisodic
In an episodic environment, the agent’s experience is based on episodes. Each
episode is independent, thus, has no influence on other episodes. It consists of
perceiving and then acting. Since the episodes are independent, the agent does
not need to think ahead.

Static vs. dynamic
An environment is considered to be dynamic if it can change during the delib-
erative phase of the agent, thus, it has to keep looking at the world while decid-
ing on an action. On the other side, static environments remain unchanged
during this phase and are therefore much more easy to deal with. 

Discrete vs. continuous
If the number of percepts and actions is limited and they are clearly defined the
environment is termed discrete. For example, chess is discrete while a game
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environment is continuous. Of course, each environment becomes discrete at
some very fine level of granularity but the agent probably won’t deliberate on
this level.

Based on this classification, the target environment of this thesis is considered to
be accessible, nondeterministic, nonepisodic, partially dynamic, and continuous.
Partially dynamic because it won’t change during one agent cycle but when the
deliberative phase takes more than one cycle it will most probably change.

This has several implications: First, the implementation of perception seems not
to be challenging due to the accessibility. Second, the nondeterministic and none-
pisodic behavior and the dynamics of the environment make it hard to plan ahead
without having to consider uncertainty. This has no direct impact on the purely
reactive design but has to be considered later when approaching a goal-oriented
solution.
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3C H A P T E R
3REACTIVE AGENTS

This chapter presents the work on the simple characters that only react to external
stimulus and their internal state. First, we characterize an appropriate agent model
that meets our needs. Then, the composition of different behavior patterns is dis-
cussed. The knowledge base of the agents as a basic requirement is described before
the implemented behavior model is presented. The navigation facility is thoroughly
investigated and presented. The chapter concludes with the results that have been
achieved with reactive agents.

3.1 REACTIVE AGENT MODEL

As stated in Section 2.2, reactive agents react upon information that is available
from internal states or that is perceived through sensors. As a consequence, this type
of agents is restricted to a reduced set of possible behaviors. Within this paragraph,
we will discuss the requirements for a reactive agent including a discussion on the
expected behavior. Also, the necessary components of an agent that should be able
to generically represent all different kinds of reactive agents. At the end, we will
present our agent model which is used for the simulation. 

Moreover, we want our agents to be composable out of different basic agents
which is described in Section 3.2. After having constructed different agents, we
want them to build groups such as herds, families, and so on. They should be able
to act not only individually but also in a collective of two or multiple agents. In
order to not restrict our approach to only the necessary components, the agents use
an extensible architecture which allows for easy replacing or adding novel compo-
nents.
35
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3.1.1 Requirements

Before defining an agent program, the designer has to know about the possible per-
cepts and actions, the goals the performance measure tries to reach, and what kind
of environment the agent acts in as described in Section 2.7. Russel and Norvig
propose a classification scheme called PAGE (percepts, actions, goals, environment)
[RN96]. In order to achieve a proper classification the target scenarios that should
be feasible with these agents as defined in Section 1.2 has to be considered first.

In our target framework, an agent’s neccessary percepts are the current position,
orientation, and information about the local environment such as the neighboring
agents. Since the environment is purely artificial, it will impose only few restrictions
on the agent’s perception system as will be discussed thoroughly. The actions an
agent can take have to be at least walking, turning, stopping, using objects lying
around, e.g. eating food, or interacting with other agents. Most of these actions
require the agent to move in the artificial environment. Since the lowest level of
instructions is on the level of “goto” or “use”, it needs a path-planning mechanism
and the ability to follow such a precomputed path in a separate sub-system. The
underlying path-planning system that has been designed will be devoted a large sec-
tion in the second part of this chapter. When talking about the goals the reactive
agents should achieve, the ability to stay alive should be emphasized first. This
includes avoiding enemies and finding food. Furthermore, the agents engaged in
groups should be able to keep with their herd without losing contact.

Because of the generic approach that is intended to be used for a hierarchical
composition of simple behavior blocks, the underlying model should support the
generation of instances and the composition of existing instances into new base
agents. Therefore, each agent has to consist of the same components and support an
arbitrary number of specific components, for example sensors or actions. In order
to easily define this process, we need an agent specification language that allows for
the specification of the simple base agents as well as the complex composition of that
ilk. Furthermore, the aggregation into hierarchical and heterogeneous groups has to
be considered, too.

In summary, our environment should provide characters with a simple reactive
behavior model that form groups but present some individuality. The characters are
depicted as animals – mainly elephants or tigers – without the intention to present
a behavior specific to these animals but due to the lack of three-dimensional and
animated models. Rather, we use animals instead of humans since the behavior
model is not the key issue of our approach. We assume that there are behavior
models that can generate a specific attitude of a particular animal with some reactive
rules. However, in order to provide a simulation of behavior, our model consists of
strolling around, avoiding lakes and enemies, staying on the ground, possibly keep
in groups, and moving to certain locations if ordered by the user. Of course, this is
a very simple model, but the focus of our work is not to generate a novel behavior
model but to provide mechanisms to create characters based on particular models
and to simulate them appropriately.
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3.1.2 Model Overview

The main components of an agent and behavior model have been discussed in the
previous chapter. This chapter presents an assemblage of these models that meets
the requirements proposed in the last section. 

Our model for a reactive agent is simple. Figure 3.1 shows an overview where

the main components are depicted. Each agent stores its private knowledge in a
knowledge base (KB). As we know from Chapter 2.1 the agent life cycle starts with
sensing the environment and updating the internal state, then selecting an appro-
priate action and finally executing the action.

Consider the example of an animal in a natural environment. It walks around and
while nothing happens, it will keep strolling. Once it perceives another animal the
reaction to this event depends on the kind of animal encountered. If the animal has
the same race and a different gender then a mating behavior might be appropriate.
If the animal has different race different reactions are possible. The animal might
flee, attack or just ignore the meeting which depends on a second consideration of
the situation. Therefore, we propose a two-phase mechanism to determine the
appropriate action to take. First, a situation has to be found that matches best. Then,
this situation can provide several different possible actions which are determined in
a second step.

This scheme is reflected in the components of our agent model. Each agent has
a set of sensors that are activated first. Their task is to deliver actual information
about the environment to the agent. Afterwards, the agent goes through a set of sit-
uations from which the one is selected that has the largest possibility to hold. There-
fore, each situation has to provide a function that can estimate the possibility that
this particular situation actually holds. Then, each situation can have a set of differ-
ent actions that could be necessary to resolve the situation. One of these is selected
and gets executed afterwards. To allow individual customization, every component
used by this model can hold a set of attributes that specify the exact behavior of the
component.

FIGURE 3.1 Overview of the main components of the reactive agent model.
The knowledge base (KB) consists of agents that are composed of sensors, situations,
and attributes. Sensors and attributes are simple components. The situations are rec-
ognizable upon their conditions and attributes respectively. They provide several ac-
tions possible to take. Each action has its pre- and postcondition as well as additional
attributes. The groups also shown in the knowledge base are the same components
as agents but additionally contain other agents as well.

KB Agent

Sensors

Situations

Attributes

Situation

Actions

Conditions

Attributes

Action

PreCondition

PostCondition

Attributes

Agents

Groups



38 3  Reactive Agents
A more concise description of the model will be presented in the first part of this
chapter. For the moment, we just have to know that each agent is a container of dif-
ferent sensors, situations, actions and that these components can be customized
using attributes.

3.1.3 Extensible Agents

In order to allow for an extensible agent mechanism which acts not only reactively
but later also proactively as proposed in Section 1.2 our solution is based on the
blackboard architecture as presented in [IBDB01]. Blackboards [HR85] were
introduced first as an exchange platform for hierarchical planning processes and
later as communication mechanism among competiting agents. A blackboard can
deal with multiple cooperating and competing processes. It allows for different
levels of abstraction and provides a simple interface to access the information stored
in it. This approach seems to best suit the needs posed in Section 3.1.1 since it can
be easily adapted by changing single components or extended by adding a new one.
In other terms, the blackboard is used as an intermediate storage for the current
results of different processes that influence the overall behavior of the agent and to
store fluent internal states. The mentioned processes can access specific information
on the blackboard and alter others to influence related processes. Of course, the
order in which these processes access the blackboard is very important.

Thus, each blackboard component can have input and output units that are
restricted to the basic components of the agent such as sensors, situations, actions
or attributes. The blackboard assures that the desired inputs are given and connects
each unit to the appropriate component. 

For the reactive agent model, the blackboard setup is shown in Figure 3.2. Each
component represents a step of the reactive agent cycle and uses information pro-
duced by the preceding components. The agent cycle presented in Section 2.2 can
be converted directly into several processes. First, the agent senses its environment
and updates its knowledge according to the perceived information. Then, we break
up the condition-action-rules proposed by Russel and Norvig into a process that
identifies the current situation before deciding on the action to take in this situa-
tion. At the end, the action system will execute the current action and the process
begins again.

The according blackboard information units these processes have an influence
on are the following:

The sensory mechanism updates the knowledge base of the agent directly and,
thus, has no direct influence on the blackboard.

The situation recognition process will select the current situation based on the
current knowledge of the agent due to its sensory input. This decision might be
affected by the currently executed action, too. This process should provide a
measurement about the probability of this situation for further decisions.

The reactive action selection mechanism relies on the current situation and
evaluates the according current reaction and maybe an object of interest the reaction
is associated to.
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The action system will take the current reaction and decide on the currently
executed action and the probability of the recognized situation whether this
reaction is more important and should be executed immediately. The feed-back
of the current action to the situation recognition can be useful to take decisions
there. Therefore, the action system will provide its decision about the currently
executed action back to the blackboard.

This process will be described thoroughly in the second part of this chapter after
the base components of the agent model have been introduced. 

3.2 BEHAVIOR COMPOSITION

Like a child using bricks to build a complex building or a software engineer using
reusable components and object orientation to construct complex software, we
want to use basic behavioral components or agents to build a sophisticated behavior
for our agents. Therefore, we intend to compose different types of agents rather
than building special ones for every type. However, since many characters should
manifest subtle differences in order to display their own personality, we’d like also
to weight the inheritance to magnify or scale down the inherited basic behavior. In
order to generate additional individual knowledge, we use randomized attributes to
further personalize individuals of the same type [NG03].

Blando et al. [BLM99] presented a system which models behavior by using hier-
archical inheritance to specialize instances by composing them from basic behavior

FIGURE 3.2 The blackboard setup for a reactive agent.
Four processes read and write five units as described in the text.
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types. Subtle differences, however, can only be achieved by defining multiple
unique base components. This is the only article known to the author that deals
with such a topic.

The principal idea is to first generate basic behavioral patterns that deal with spe-
cial situations. For example, we can imagine patterns to avoids lakes or enemies, to
collect food or to follow another character. When having several of these basic pat-
terns, we can generate more sophisticated characters by combining these patterns
and adjusting their attributes. While most of the before mentioned patterns serve
the individual skills of a character, the possibility to follow another agent implies
collective behavior that depends on another character. Collective behavior can be
observed within groups of characters and therefore we present a mechanism to build
heterogeneous groups with dependencies that allow for collective behavior.

In our approach, we want not only to collect behavioral elements together but
also weight the composed elements with their importance. This means, we can
generate characters that behave differently, even though they consist of the same
basic patterns. The assigned weights have an influence on the selection of the cur-
rently best possible action within the sense-decide-act cycle of an agent. In order to
be able to compose characters, we take advantage of the fact that our agents are com-
posed of different components as described in Section 3.1.2. Using that, combining
two basic patterns is just the union of the components used in each of the two basic
units. When applying weighted inheritance, some components of each base com-
ponent have to be updated according to the weight when generating the new char-
acter. 

Figure 3.3 shows the three basic composition operations. On the left, Agent 1 is
extended by adding new components. In the middle, Agent 1 and Agent 2 are com-

FIGURE 3.3 Combining two basic behaviors into a new agent.
A simple extension of an agent is shown on the left. In the middle, the combination
of two different agents into a new one. On the right, the weighted combination is
shown that has an additional influence on the situations of the novel agent type.
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Attributes = {Att1}

Agent 2

Sensors = {Se2}

Situations = {Si2}

Actions = {Act2}

Attributes = {Att2}

Extend Agent 1

Sensors = {Se1, ...}

Situations = {Si1, ...}

Actions = {Act1, ...}

Attributes = {Att1, ...}

Combine 1 & 2

Sensors = {Se1, Se2}

Situations = {Si1, Si2}

Actions = {Act1, Act2}

Attributes = {Att1, Att2}

Agent 3

Sensors = {Se3}

Situations = {Si3}

Actions = {Act3}

Attributes = {Att3}

Weighted Combine

Sensors = {Se1, Se2, Se3}

Situations = {Si1*, Si2*, Si3**}

Actions = {Act1, Act2, Act3}

Attributes = {Att1, Att2, Att3}

0.7

0.3
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bined in to a new agent which possesses the components of both its parents. On the
right, this new agent and Agent 3 are combined using weighted inheritance. This
has the same effect on the components as the before mentioned unweighted com-
bination, namely the collection of all components. But this process will additionally
affect the probability of the situations in the novel agent.

Within the next sections, the base components of the reactive agent model are
introduced and explained. Afterwards, the generation of agents or groups of agents
will be explained, including the weighted inheritance mechanism.

3.3 KNOWLEDGE BASE

As almost every agent-based approach we use a Knowledge Base (KB) to store the
knowledge of our agents. This is one of the central parts of the whole architecture
and separates the individual knowledge of each agent from the common agent
model which is the same for all.

First, we discuss different approaches that are possible before describing each KB
component more precisely than in the model overview. The process of generating
single agents, or groups of agents concludes this section.

3.3.1 Concept

When designing a knowledge base we can distinguish between an agent-centric
design and a global one. In the agent-centric design, each agent has its own knowl-
edge which is completely independent of the others knowledge. On the other
hand, the common knowledge base allows for common knowledge which is shared
among several agents.

The first approach has the advantage that every agent is independent of the others
but this approach is disadvantageous when dealing with collective behavior. While
the common knowledge base allows easily to exchange information or synchronize
several agents, a communication protocol has to be maintained for the agent-centric
approach. Nevertheless, when dealing with a concurrent access to the data, e.g.
when using threads, one has to be very careful with writing the data.

Our approach uses a common knowledge base, since we do not have a distrib-
uted simulation and we would like to easily simulate collective behavior. Neverthe-
less, each agent has associated its own knowledge components which are separated
from the others. Only a few attributes are shared with others. Additionally, we
allow for references within the knowledge base that can be used to create depen-
dencies.

The knowledge base distinguishes between abstract agents, agent instances, and
group agents. While the first only describes a template, pattern or a skeleton of an
agent the second is an agent that exists and can be simulated in the world. The last
type is also an agent instance but is connected to a whole group of agent instances.

The initialization process of the engine takes an agent description file as input and
first constructs a (usually small) set of abstract agents. Afterwards, these abstract
agents are used to generate multiple, probably different, agent instances and groups.
This process is described later in Section 3.3.4.
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3.3.2 Agent Description File

The agent description specification is stored in a XML file and describes the rules
how agents are generated during the initialization process. This file contains all
information necessary to build the agents for the simulation. The basic format of an
agent description is shown in Figure 3.4.

As stated in the above section, the system distinguishes between abstract agents
and instances where abstract agents have to be regarded as templates which generate
instances according to rules. Furthermore, agents and groups of agents have to be
defined differently. While the first part of Figure 3.4 displays an agent definition,
the second part shows an agent group definition. Both the agents and the groups can
specify one or more parents from which their knowledge is inherited. Additionally,
the sensors, situations, and attributes can be extended. For an agent group, the spec-
ification of the instances is necessary and components only needed in the group
instance can be declared separately.

The following section provides an overview of the different components and
presents their declaration specification.

3.3.3 Components

As described in the above sections, the knowledge base stores everything that makes
a difference between two agents, namely components that determine the agents
behavior. This includes a representation of the agent itself, sensors, situations,
actions, attributes, and also conditions.

Attributes. First of all, the most basic entity in the knowledge base is the attribute
depicted in Figure 3.5. Every other component is a container of attributes and can
store as many attributes as desired which are used to specify the component’s exact
behavior. Attributes can hold either a string, integer, float, boolean or 3D vector
value. All attributes except strings allow to specify the value exactly or by the use of

<agent name=”ID” [type=”abstract”]>
[<parents>

{<parent type=”ID” [value=”float”] />}
</parents>]
[<sensors> ... </sensors>]
[<situations> ... </situations>]
[<attributes> ... </attributes>]

</agent>
<agentgroup name=”ID” [type=”abstract”]>

[<parents>
{<parent type=”ID” [value=”float”] />}

</parents>]
[<sensors> ... </sensors>]
[<situations> ... </situations>]
[<attributes> ... </attributes>]
[<group> ... </group>]
<instances> ... </instances>

</agentgroup>

FIGURE 3.4 The agent description file format.
The upper part shows the declaration of a single agent while the lower part specifies
an agent group.
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random values within bounds. Random values are described with the range of pos-
sible values and are uniformly distributed within this range. Special attributes like
the AttrPtr or AgentPtr reference to other attributes or other agents and can be used
for collective behavior. The values of these special attributes are specified with the
name of the target which is linked during initialization.

All attributes have an evaluation type which specifies the way of determination
of the value. While a value of type fix remains constant for all times, the other types
are used with rather randomized attributes. The init type attributes determine the
value once for each instance whereas the any type attributes are reevaluated every
time a value is requested which is especially useful with random-based variables that
rely on a interval of possible values. The init type attributes are needed when creat-
ing a group in which every instance should have an individual randomized value.

Agents. The agent representation stores all data specific for one particular agent as
shown in Figure 3.6. This agent representation is a container of any other compo-
nent except the actions.

An agent can be specified either by creating a totally new one from scratch, by
cloning and extending an existing one, or by multiple inheritance that can be
extended by weights as described in Section 3.2. In the <parents> section, such
base agents can be specified. The <sensors> section can be used to add additional
sensors, just as situations in the <situation> section.

Each agent has a predefined set of attributes that can be specified and extended
in the <attributes> section. The current position, orientation, and velocity as well
as the maximal velocity are the base attributes which every agent has access to.

Sensors. A sensor is a very simple component as shown in Figure 3.7 which is used
to gather external information during the first agent cycle phase. It has a frequency
which determines how often the sensor should be activated and a method which
starts the sensing process and collects the information. The frequency is very useful
for time-consuming sensors such as determining neighboring objects and agents
because it allows to reduce the computational load.

Situations. The situation component is depicted in Figure 3.8 and basically stores
possible actions that can be taken in this situation. Therefore, the situation is an
action-container. Additionally, it stores conditions which must hold in order to
activate the situation. When testing a situation, first all conditions are tested and
when none of them fails then the situation can evaluate its probability. Then, the
situation with the highest probability asked to provide the appropriate action.

Actions. The action component is stored in the situations action container. As
depicted in Figure 3.9, each action has containers for each the preconditions and
the postconditions. Additionally, the action has a duration attribute that describes the
maximal temporal length. An action can only be executed when all of its precondi-
tions hold and is executed until either the duration is reached or all the postcondi-
tions are true. Therefore, it is possible to design actions that have an intrinsic
duration, e.g. taking an object, or a variable one, e.g. walking forward for a certain
amount of time or to a specific location.

Furthermore, an action can contain sub-actions such that simple predefined
sequences of actions are possible. Such hierarchical actions form a container of
actions as the situation does. Only the leaf actions can be executed but the inner
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container actions also have an influence on the behavior since their pre- and post-
conditions can be altered, too. Usually, such multi-actions are not commonly used
within the reactive system since all responses to external triggering events can be
handled with the provided atomic actions. The multi-actions are used rather in the
proactive agent model to store a plan or sequence of actions that is executed.

Conditions. The condition component returns a boolean value on demand that
describes the state of the condition it represents. As shown in Figure 3.10, the con-
dition can be customized by the use of attributes as all other components, too.     

3.3.4 Agent Generation

The generation of new agents can be categorized into three different scenarios.
First, a new abstract agent can be created by either adapting an existing agent’s setup

<attribute 
[type=”{String, Int, Float, Bool, Vect3, AttrPtr, AgentPtr}”] 
name=”ID” 
value=”{VAL, set, random, randomsingle}” 
[evaltype=”{fix, init, any}”] 

/>

FIGURE 3.5 The attribute component.
It is specified by a type, a name, a fixed or random value, and the evaluation type.

<agent name=”ID” [type=”abstract”]>
[<parents>

{<parent type=”ID” [weight=”float”] />}
</parents>]
[<sensors> ... </sensors>]
[<situations> ... </situations>]
[<attributes>

<attribute type=”Vect3” name=”Position” />
<attribute type=”Vect3” name=”Orientation” />
<attribute type=”Float” name=”Velocity” />
<attribute type=”Float” name=”MaxVelocity” />
...

</attributes>]
</agent>

FIGURE 3.6 The agent component.
The parents from which some knowledge is inherited can be specified as well as the
weight of the inheritance. Additionally, the agent can be extended by adding partic-
ular sensors, situations, or attributes.

<sensor type=”ID” [frequency=”millisecs”]>
<attributes> ... </attributes>

</sensor>

FIGURE 3.7 The sensor component.
The frequency determines the rate of activation and is given in milliseconds. A value
of zero will activate the sensor every time the agent is activated. The attributes can
be used to change the behavior of the sensor, for example the search radius to find
neighbors.
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into a new one or by composing two or more abstract ones together. Second, agent
instances are generated by selecting one or multiple and possibly abstract base agent
representations and generating a fully operational agent. Third, setting up groups of
agent instances allows for heterogeneous and also hierarchical herds or flocks.

The process of adapting an existing abstract agent representation into a new one
is the most simple case:

First, a clone of the existing agent is constructed by recursively cloning or copy-
ing the components into the new one. In a second step, the description of the new
agents either overwrites attributes of the existing agent or adds new components to
the clone. Therefore, each component has to provide a method which returns a
recursive clone of this component or copies its member components into an exist-

<situation type=”ID”>
<attributes> ... </attributes>
<actions> ... </actions>

</situation>

FIGURE 3.8 The situation component.
Any situation can be customized by attributes as any other component and stores a
container of possible actions to take in this situation.

<action type=”ID”>
<attributes>

<attribute name=”Duration” /> 
...

</attributes>
<preconditions> ... </preconditions>
<postconditions> ... </postconditions>

</action>

FIGURE 3.9 The action component.
The actions length can be specified either by a specific attribute named Duration or
by postconditions. The preconditions must hold before the action can start.

<condition type=”ID”>
<attributes> ... </attributes>

</condition>

FIGURE 3.10 The condition component.
It can only be customized by attributes.

abstrAgent adapt(abstrAgent agent, Description desc) {
abstrAgent new = agent.clone();
new.load(desc);

}

FIGURE 3.11 Adapting an existing agent.
First, the base agent is cloned, then the description of the new agent is loaded such
that new components are added.
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ing equal component. The container pattern used throughout the components
allows for an efficient way to do that.

During the very first initialization steps, the system provides an ‘empty’ abstract
agent that is used to generate the new base agents. Afterwards, these new agents can
be used as parents in order to further specialize or enhance additional ones. In the
agent specification, these parents are declared within the <parents> section. If this
section appears, at least one default parent has to be specified.

When combining two or more agents together, the <parents> section will con-
tain more than one entry. Where the first remains the default parent, subsequent
parents are declared using the <parent> tag as depicted in Figure 3.6. 

As described in Section 3.2, our system allows for weighted inheritance. As
shown in Figure 3.6, it is possible to specify a weight to each parent from which
knowledge will be inherited. This weight will be used to alter the importance of the
situations. Thus, the probability of all situations inherited from a weighted parent
will be multiplied by this weight.

The according algorithm is described in Figure 3.12. First, a clone of the default
parent is generated. Then, each parent’s components are copied into this new agent.
When dealing with a weighted parent, the algorithm first generates a temporary
clone of the parent and adjusts the importance of all situations according to the
weight. Obviously, the order of the parents is very important, since some parents
might have the same components but with different values of their attributes. After
having collected all the components of the parents, additional specifications are
loaded.

3.3.5 Group Generation

The generation of groups of agents is very similar. Nevertheless, it provides some
mechanisms to create heterogeneous and hierarchical groups using very simple

abstrAgent adapt(abstrAgent default, 
                 abstrAgent parents[], 
                 Description desc) 
{

abstrAgent agent = default.clone();
for each parent in parents {

if (parent.hasWeights) {
abstrAgent tmp = parent.clone();
tmp.adjustSituations(desc);
agent.copy(tmp);

} else {
agent.copy(parent);

}
}
agent.load(desc);

}

FIGURE 3.12 Combining multiple parents into a new agent.
The default agent is cloned and will be extended by the components of all further
specified parents. If a parent is inherited with weights, a temporary clone will be
adapted according to this specification else the parent is simply copied into the de-
fault’s clone. At the end, the additional and individual descriptions are loaded.
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rules. Each group is also represented with an agent that has the same possibilities as
an individual. In order to provide a generic mechanism, the members of the group
and the group agent can have common parents but can be further specialized using
the mechanisms explained in the previous section.

The most simple group pattern is a flat group that consists of all the same agents.
Figure 3.13 shows an example for the specification. As above, the <parent> section
defines the parents of all the agents in the group including the group agent. The
<group> section can be used to further specify the group agent itself, while the
<instances> section only applies to the real agent instances. The Count attribute in
the <instances> section defines the number of instances in the group excluding
the group agent itself.

A more advanced group pattern is a structured group, for example a family. In a
structured group, the instances can be individually specified. Every family consists
of a father, a mother and possibly several children. The first two instances are pre-
defined while the number of children is not. Such a pattern is represented by an
abstract agent group which can be instantiated by declaring the final count as shown in
Figure 3.14. This approach allows for easily creating multiple groups with a differ-
ent number of members using the same abstract group pattern. 

Regular patterns within a group are supported, too. Instead of specifying a distinct
member of the group (e.g. the father as first instance), it is possible to specify rules
based on modulo calculus. For example, a large herd should consist of one half
females and the other half males. Additionally, one out of five might have some
additional capabilities. A group description using these modulo rules is depicted in
Figure 3.15, where every second (0mod2) is female, every other second (1mod2) is
male and one out of five (4mod5) gets some additional behavior.

Even more complex groups can be achieved by using recursive group patterns.
Using these, tree-formed hierarchical groups can be built. For example, consider
the specification in Figure 3.17. The first definition yields an abstract agentgroup
where some of the members are instances of the group itself. In order to obtain a
recursive definition, at least one instance has to specify the group itself as a parent.

<agentgroup name=”Flat”>
<parents>

<default type=”baseagent” />
</parents>
<group> ... </group>
<instances>

<attributes>
<attribute name=”Count” value=”10” />

</attributes>
...

</instances>
...

</agentgroup>

FIGURE 3.13 The description of a group of agents.
It has the same components as a single agent but additionally the number of instanc-
es can be specified in the <instances> section. This example will create a group
that consists of ten members of type baseagent.
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Others might be not and will therefore be leaf nodes in the resulting tree of mem-
bers. Obviously, recursive groups can not have an unlimited number of instances.
Therefore, the recursive group definitions must specify the number of instances. Of
course, these definitions can contain a default element as presented in Figure 3.6
which is applied to all members of the group. When constructing a recursive group
during initialization, the tree is built from top in a breath-first manner. For each
instance to generate, the system determines the level in the hierarchy and which
rules have to be applied.

The topology of a given recursive group is determined by two parameters: First,
the number of allowed agents per group, , and second, the number of recursive
agents per group, . Note, that the recursive ones are assumed to be the first agents
in the group. Figure 3.16 shows an example with  and . In order to
determine the correct group, level, and parent some calculations are necessary since

<agentgroup name=”Family” type=”abstract”>
<parents> ... </parents>
<instances>

<!-- first agent -->
<instance number=”1”> {declaration of father} </instance>
<!-- second agent -->
<instance number=”2”> {declaration of mother} </instance>
<!-- every other agent -->
<instance number=”n”> {declaration of child} </instance>

</instances>
...

<agentgroup>
<agentgroup name=”RealFamily”>

<parents>
<default name=”Family”>

</parents>
<instances>

<attributes>
<attribute name=”Count” value=”5” />

<attributes>
</instances>

</agentgroup>

FIGURE 3.14 The description of a structured group. First, an abstract pattern is defined which is
then instantiated with a certain number of members. In this example, a family con-
sisting of 5 members is created.

<agentgroup name=”Regular” type=”abstract”>
<parents> ... </parents>
<instances>

<instance number=”0mod2”> {female} </instance>
<instance number=”1mod2”> {male} </instance>
<instance number=”4mod5”> {additional behavior} </instance>

</instances>
...

<agentgroup>

FIGURE 3.15 Modulo rules in the instance section of the description allow for regular patterns
within the group. Here, every second instance is a female, while every other is male.
Additionally, one out of five is also further specified.

a
r

a 5= r 3=
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only the current agent counter, , and  are known. The case with  is trivial
and, therefore, the formulas given here assume .

First, the group of the current agent can be determined with

, (3.1)

where  is the agent’s ID and  the group’s ID as given in Figure 3.16.
Then, the level  of this group is given by

. (3.2)

Once the level of the current group is known, the ID of the first group on this level
is 

. (3.3)

With that, it is easy to calculate the position of the current group on the current
level as

. (3.4)

Then, the ID of the parent group is given by

, (3.5)

and the ID of the first agent in this group is therefore

. (3.6)

Based on the previous calculations, the ID of the parent agent in the hierarchy
defined by  and  is

FIGURE 3.16 A recursive group example.
The number of allowed agents per group is a = 5 and the number of reactive agents
is r = 3. The numbering of agents, groups, and levels in this figure correspond to the
formulas given in the text.
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. (3.7)

Thus, we can determine the current agent’s parent and add a reference to each one.
This is necessary when using the hierarchy of the group for collective behavior rou-
tines such as herding. If an instance has an attribute which refers to the recursive
group itself, this reference will be updated accordingly as the next example points
out.

Figure 3.17 shows the definition of an abstract group of five agents where only
two apply the pattern recursively. Below, a group of 23 instances of this pattern is
generated. The resulting instances to generate such a hierarchical group are shown
in Figure 3.18. On the left, the instances of the abstract recursive group are shown
and on the right the 23 instances inside the new group. Note, that the abstract group
definition on top yields four instances. One for the recursive group itself, and one

<agentgroup name=”Recursive” type=”abstract”>
<parents>

<parent type=”base” />
</parents>
<instances name=”R.%i”>

<attributes>
<attribute name=”Count” value=”5” />
<attribute type=”AgentPtr” name=”ParentAgent” 
           value=”Recursive” />

</attributes>
<instance number=”1-2”>

<parents>
<parent type=”Recursive” />

</parents>
</instance>

</instances>
<attributes> ... </attributes>

</agentgroup>

<agentgroup name=”RecursiveInstances”>
<parents>

<parent type=”Recursive” />
</parents>
<instances name=”Rec.%i>

<attributes>
<attribute name=”Count” value=”23” />

</attributes>
</instances>

</agentgroup>

FIGURE 3.17 The description of a recursively defined group.
On top, the definition of the abstract pattern is defined. All instances will be derived
from the base-type. The <instances> section defines the number of agents on
each recursion stage and how many of these agents will apply this pattern recursive-
ly. In this case the first two of five agents on each stage will reimplement the recursive
pattern. Note the attribute ParentAgent which is a reference to the recursive group
definition. This reference will be automatically updated during agent instantiation
such that each instance has a reference to its parent.
Below, the instantiation of the group takes place. A group consisting of twenty
agents will be built using the above scheme. The resulting abstract agents and hier-
archy is shown in Figure 3.18.

idparentAgent idparentFirstAgent posgroup
posgroup

r
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for each defined instance, i.e. the two recursive and the default instance. The
instances of the abstract group get an attribute ParentAgent of type AgentPtr with
the value being the name of the group itself. During instanciation, this reference is
updated dynamically such that it always points to the superior agent as shown in
Figure 3.18.

3.4 BEHAVIOR MODEL

So far, we presented the components which are used to build reactive agents. And,
the mechanism to generate structured, heterogeneous groups has been presented,
too. This chapter discusses the functionality of these components and how they
work together in order to provide a generic model for reactive agents. Each com-
ponent and its specializations should provide a large amount of flexibility which
makes them reusable for different solutions.

The agent life cycle described in Section 2.2 determines the overall structure of
this section. We start by describing the perception functionality which is then fol-
lowed by the situation-recognition process which possibly yields an action for exe-
cution before the cycle restarts the next time the agent is activated.

3.4.1 Perception

The first step in the agent life cycle is the perception of internal and external infor-
mation. Since agents in our system have always access to all internal states, the pro-
cess of determining internal information is not necessary during this step. But

FIGURE 3.18 The instances generated by the definition in Figure 3.17.
The abstract group and the according abstract instances defined with the code on
top of Figure 3.17 are shown on the left. The instances generated by the code below
are shown on the right. The arrows on the right side denote the agent-reference at-
tribute ParentAgent given in the definition.

Recursive

Count = 5

ParentAgent -> Recursive 

Parents = { base }

Instances = { R.1, R.2, R.n }

R.2

ParentAgent -> Recursive 
Parents = { Recursive }

R.n

ParentAgent -> Recursive 
Parents = { }

R.1

ParentAgent -> Recursive 
Parents = { Recursive }

RecursiveInstances

Rec.23Rec.22Rec.21

Rec.20Rec.19Rec.18Rec.17Rec.16

Rec.10Rec.9Rec.8

Rec.15Rec.14Rec.13Rec.12

Rec.5Rec.4Rec.3Rec.1

Rec.11

Rec.7Rec.6

Rec.2

Count = 23 ;  Parents = “Recursive” ;  Instance Name = “Rec.%i”
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requesting information not directly accessible or computational intensive queries,
e.g. neighborhood search, are done during this phase. 

Usually, we want the agents to get the most actual information each time they
are activated. But the sensory environment provides functionality which allows the
user to specify the frequency of activation for each sensor individually. So, each
time, the sensor system is activated, it checks each sensor if it has a frequency value
specified. Sensors without such a value get activated every time while the other
agents remember the last time they were activated. Therefore, the specific value of
the frequency is usually slightly higher than the actual frequency of activation which
depends on the activation frequency of the agent itself. 

Different types of sensors have been implemented and used: 

The position sensor retrieves the actual position of the agent’s avatar in the simu-
lated world. It accesses the simulation by using a sensor interface to the environ-
ment which will be described in Chapter 6. The position sensor is very fast and
has therefore the highest frequency.

The orientation sensor and the velocity sensor act the same way as the position sensor
and provide the current orientation and velocity.

The neighborhood sensor is more complex. It provides a list of other agents within
a certain distance or the k nearest neighbors. In order to use this sensor, the sim-
ulation environment has to provide such a functionality. Since such an opera-
tion is rather time-consuming and the neighborhood might not change that
much, this sensor is usually not activated every time.

The vision sensor is a special sensor because it relies on the output of the above
mentioned neighborhood sensor. It takes its output and tests each agent from
the neighborhood whether it lies within the visible field in front of the agent or
outside. Using this sensor, an agents restricted visible field can be simulated.

3.4.2 Situation Recognition

After having perceived the environment, the agent can be considered up-to-date
and is ready to decide what action could be taken. This process is fairly simple since
each agent has a collection of situations in the knowledge base. These situations can
access the agent’s updated knowledge and decide about the probability that this sit-
uation actually holds. 

Therefore, each situation has to provide a method which returns a probability
value in [0,1]. Each situation is tested and the one returning the highest value is
selected as the actual situation. Therefore, only one situation can be considered
during one cycle.

After having selected the current situation, there might be multiple actions that
should be considered. Therefore, each situation component has a collection of pos-
sible actions. The situation decides which action seems to be most appropriate and
returns a reference which is passed to the action execution system.

As stated in Section 3.3.4, weighted inheritance has an influence on the situation
recognition process. The weight associated with the parent agent has been multi-
plied with the base weight of each situation. This weight acts as a final multiplier on
the evaluation of these situations. Therefore, the estimated probability of a specific
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situation is increased if the situation originates from an agent with a weight above
1.0, and on the other hand, the probability is decreased when the weight is below
1.0. Thus, multiple weighted inheritance allows to adjust the probability of a base
behavior relative to another. For example, one base agent could provide the ability
to avoid lakes while another enables the agent to stay away from enemies. Depend-
ing on the weights when combining these two base agents an instance that is near a
lake and an enemy would decide to either avoid the water or the enemy when both
situations have the same probability.

3.4.3 Action Execution

The action provided by the situation recognition process should be executed after-
wards. This is a crucial part of the whole system since it is possible that each time
the agent is activated, another action is appropriate. Then, no action would last
more than a few milliseconds resulting in a unnatural behavior. Therefore, we
should allow some actions to be fully executed such that the actual situation can be
resolved. On the other hand, some situations need a really short response time - for
example when approaching a dangerous situation.

Our approach considers two types of actions. First, reactions are usually short in
execution and need a very short response time after having been selected. Second,
actions usually have a duration up to some seconds but can be interrupted. Hence,
these have to be handled differently in the action system. 

An action queue in the action system handles this task. As can be seen in
Figure 3.19, the queue of pending actions in the action system puts reactions on top
for immediate execution. Only one reaction can be in the action queue at any time.
If the action queue already has a different reaction on top of it, the reactions are
compared and selected with respect to their importance value which is assigned by
the situation that returned the action for execution.

For actions, the mechanism is slightly different. Actions are placed at the end of
the action queue. If the action to be inserted is already in the queue nothing has to
be done. This queue mechanism provides temporal order for different actions that
should be executed. For example, the agent first selects an action that approaches an
object and when getting near the object, it decides to grab the object. The second

FIGURE 3.19 The action queue mechanism. Reactions are placed on top while actions are append-
ed at the end of the queue in order to provide a temporal order.
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action will wait until the first action has been fully executed and the agent is just
next to the object. Afterwards, the grab-action is executed to take the object.

The actions in the queue get dispatched in the action executor. The mechanism of
the executor is displayed in Figure 3.20. The executor first starts by asking the

queue for a new reaction (2). If there is one on top, it is dispatched and its precon-
ditions are checked. In case of possible execution it is placed on top of the current
action stack (3-5). Using a stack allows for holding back an actually executed action
in case of a high-priority reaction. If the current action stack is empty, there might
be a new action in the queue (7-8). The algorithm stops if there is actually no action
being executed and queued (9-10). Otherwise, the action is pushed on the current
action stack (11) and its preconditions checked (12). If the preconditions hold, the
action’s starting mechanism is executed and it is marked as activated.

After these steps, we can expect an action on the stack whose preconditions have
been tested and that might be activated. It is fetched (15) and if active, the action
can be executed. But first, the postconditions are verified (17) and if these are not
met yet, the action is finally getting executed (19). If the action is not yet active, its
preconditions are checked again. The postcondition check mechanism ensures that
an finished action is removed from the stack and the queue and returns the next
possible action for execution on the stack.

Since actions are hierarchical and can contain multiple subactions
(Section 3.3.3), the mechanisms for checking pre- and postconditions are not

1: Action _current = 0;
2: if (queue.hasNewReaction()) {
3: _current = queue.getReaction();
4: if (_current.checkPreconditions())
5: mCurrentActions.push(_current);
6: } 
7: if (mCurrentActions.empty()) {
8: _current = queue->getAction();
9: if (!_current)
10: return 0;
11: mCurrentActions.push(_current);
12: _current = checkPreConditions();
13:} 
14:if (!mCurrentActions.empty()) {
15: _current = mCurrentActions.top();
16: if (_current.isActive()) {
17: _current = checkPostConditions();
18: if (_current)
19: _current.execute(locale);
20: } else {
21: checkPreConditions(locale);
22: }
23:}
24:return _current;

FIGURE 3.20 The action execution mechanism as code. First, the queue is checked for a new reac-
tion (1-6). In case of no reaction and an empty stack of current actions, a new action
is fetched from the queue and tested for possible execution (7-13). If the current ac-
tions postcondition hold, thus active, and the postconditions are not reached yet, the
action is executed.
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straightforward. The checkPreconditions() method recursively traverses the
actions and checks the preconditions of each action in a depth-first manner as
described in Figure 3.21. First, the topmost action of the current action stack is
fetched (2). If its preconditions hold, the action is started and activated (8-9). If this
action contains subactions (10), these are put on the stack (12), too, the subactions

are traversed recursively and checked for preconditions. When there is no subaction
anymore, we have reached a leaf action of the hierarchy which is executable (14,
20). An action that is currently not executable because of unfulfilled preconditions
will remain in the queue. Each time the preconditions are not satisfied, a counter is
incremented and when a threshold is reached, the action will fail and its onFail()
method is called. This mechanism provides the possibility to extend an action with
some kind of failure analysis mechanism to correct the cause of the failure. It has
access to the situation which has generated the action and can call the situation’s
onFail() method, too, in order to provide a direct feedback mechanism. Of
course, the action could also change a particular internal variable such that a resolv-
ing situation can be activated soon.

The checkPostConditions() method checks the postconditions of each subac-
tion in a similar way. It is shown in Figure 3.22. The current action end if its post-
conditions are reached or its duration has exhausted (5). Then, it is deactivated and
a termination method is called (6-7) before trying to remove the action from the
queue (9). This is done only if it is the toplevel action and no subaction. If the cur-
rent action is a reaction (11), another action might have been interrupted and is
waiting to be carried on (14-20). Else, the current action is also popped from the
stack and the next action on the stack is taken as the current one. Then, there are
two cases to distinguish: First, this action could have an additional subaction which
is fetched and tested for execution using the checkPreCondition() method (34-

1: function checkPreconditions() {
2: Action _c = mCurrentActions.top();
3: bool _finished = false;
4: bool _condition = false;
5: while (_c && !_finished) {
6: _condition = _c.checkPreconditions();
7: if (_condition) {
8: _c.startAction();
9: _c.setActive();
10: if (_c.isMultiAction()) {
11: _c = _c.getNextAction();
12: mCurrentActions.push(_c);
13: } else {
14: _finished = true;
15: }
16: } else {
17: return 0;
18: }
19: }
20: return _c;
21:}

FIGURE 3.21 The checkPreConditions method of the action executor. It handles hierarchical ac-
tions that contain subactions.
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37). Second, it could have no further subactions, which means that it can be inacti-
vated and ended (39-40). Then, the algorithm traverses up the tree of actions until
the action is either entirely executed or another action with executable subactions
appears.

The navigation of an individual agent is part of the action execution system in the
agent engine. As in [IBDB01], the navigation system is used when an agent decides
to move toward a certain location. A goto action is the lowest level of abstraction of
agent-internal actions. Therefore, when initiating a goto action, the agent has to
find out if there exists a path that leads to the goal location and how to get there.
This topic is discussed in the next chapter.

1: Action checkPostConditions(ActionQueue queue)
2: {
3: Action _c = CurrentActions.top();
4:
5: while ((_c) && (_c.checkPostconditions() 

       || _c.checkDuration())) 
{

6: _c.setInactive();
7: _c.endAction();
8:
9: queue->removeAction(_c);
10:
11: if (_c.isReaction()) {
12: mCurrentActions.pop();
13:
14: if (!mCurrentActions.empty())
15: {
16: _c = mCurrentActions.top();
17: _c.restartAction();
18: return _c;
19: }
20: return 0;
21: }
22:
23: mCurrentActions.pop();
24:
25: if (!mCurrentActions.empty()) {
26: _c = mCurrentActions.top();
27: } else {
28: return 0;
29: }
30:
31: Action _action = _c.getNextAction();
32: if (_action)
33: {
34: mCurrentActions.push(_action);
35: _c = _action;
36:
37: return checkPreConditions();
38: } else {
39: _c.setInactive();
40: _c.endAction(locale);
41: }
42: }
43: return _c;
44:}

FIGURE 3.22 The checkPostConditions method of the action executor. It checks the hierarchical
actions recursively for reached postconditions and returns the next possible action if
any.
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3.5 NAVIGATION

Open terrain navigation in static environments can be considered as a path-plan-
ning problem where the task is to find a sequence of waypoints from a start to a goal
location. Additionally, the line segments connecting the waypoints have to be col-
lision-free with respect to obstacles. In most computer games, path-planning is
regarded as a graph-search problem where the graph represents the terrains connec-
tivity and spatial extension [DeL00, DeL01]. Usually, the A* algorithm is then used
to search the graph which is fast but nevertheless can achieve optimal results. The
resulting path is a sequence of collision-free straight-forward movements that lead
the agent to a particular position.

This chapter presents a solution to path-planning in static environments by first
discussing the requirements of such an approach and by giving an overview of the
overall process. In the first section, an introduction to the A* algorithm is given and
it is shown how this algorithm can be used to find paths. Then, the preprocessing
of an arbitrary map containing obstacles is described which mainly consists of a dis-
cretization of the map and the setup of a graph for later search. In Section 3.5.4, the
graph search algorithm derived from A* and optimized for path-planning is intro-
duced. The last sections cover the postprocessing steps that reduce the number of
waypoints and the results when comparing our approach to comparable conven-
tional methods.

3.5.1 Introduction

For real-time applications such as games, the key to efficient path planning is the
spatial decomposition of the environment . Therefore, a human level designer who
defines a graph of landmarks is still needed. The task to find a lean and correct graph
representing the topology of the landscape is crucially, since the smaller the graph
the faster will be the search on the graph. On the other hand, a smaller graph intro-
duces an approximation error by reducing large areas to single points or lines. 

A generic path planning algorithm needs to meet several requirements [Rad03]:

The resulting paths should have the lowest possible cost to prevent any indirection. 

It should be fast to not thwart the simulation process, it should be correct, i.e. no
collisions occur, and it should be robust, i.e. the same request generates the same
path. 

An automatic approach is desirable to assure that no human interaction is neces-
sary. 

Last but not least, the algorithm should be generic with respect to different maps,
i.e. it should not be optimized for a specific map. 

This chapter presents a novel approach to fast path planning in generic terrains
that meets the above mentioned requirements. The presented algorithm is a devia-
tion of A* and processes static maps that contain polygonal obstacles. Our solution
finds shorter paths which connect arbitrary start and goal locations than traditional
approaches.

Generally, graph search based approaches use the vertices of a graph to represent
feasible points in , e.g. landmarks. Variations include methods based on
Voronoi decomposition [OY85], and cell decomposition methods. For static, two-

Cfree
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dimensional environments with convex polygonal obstacles and a point sized agent,
these approaches afford efficient solutions, as surveyed by Schwartz et al. [SSH87].
Exhaustive graph search algorithms, such as A*, constitute the only known optimal
algorithms [HKR93]. But the optimality is bound by the approximation error of
the decomposition, since the vertices of the graph always reduce an area or line to a
single graph node. 

For general environments, the most efficient and complete approach is the road-
map (or silhouette) method [Can88], or its variant, the probabilistic roadmap
(PRM) [KSLO96, KLMR95]. Roadmaps reduce the agent’s free configuration
space  to a skeleton  which can be used to search a path from a given start
to a goal location in . The PRM is very useful in high-dimensional C-spaces.
It searches randomly for configurations in  and connects them to a roadmap.

When dealing with real-time applications, the path planning process has to be as
fast as possible. Therefore, many simplifications are made. This often leads to more
approximation errors. For example, path planning for the real-time strategy game
Star Trek®: Armada is presented in [Dav00]. It applies a quad-tree based decom-
position of the playing field to reduce the number of cells. However, their rubber-
band algorithm used to make the paths looking natural does not even achieve local
optimality.

In order to let an object or character move inside a scene from one location to
another, a path has to be planned that guarantees a collision-free translation from
the start to the goal position. Hence, the whole task of path planning is usually
broken down into four subproblems:

First, one has to find a suitable discretization of the ground on which one can
build a graph. This can be done offline in a preprocessing step. The resulting
graph should be as lean as possible to allow a fast search. If the graph is too large,
the search will be significantly slowed down. One the other hand, the discreti-
zation should be as fine as possible so that the areas corresponding to graph
nodes are not too large. This would lead to an approximation error which ends
up in suboptimal paths.

For a specific path request, the task of point location determines the corre-
sponding graph nodes for each the start and goal position. This depends heavily
on the chosen discretization.

Then, the graph has to be searched for a solution which connects the nodes
found in the previous step. For static environments, as expected, the A* algo-
rithm is commonly used.

Afterwards, the resulting sequence of graph nodes needs to be transferred back
to the original environment. 

Therefore, the main problem seems to find an optimal trade-off between graph
nodes representing spatially small areas (less approximation) and a small number of
nodes (faster search). Additionally, it will be shown that unintuitive and suboptimal
results can occur since the graph is fixed and cannot be adapted to a specific request.

3.5.2 A* Algorithm

The A* Algorithm is a directed breadth-first search used to solve the shortest path
problem in a graph. It combines the advantages of uniform-cost and greedy searches

Cfree Rfree
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by wisely choosing its search-direction. It is the most common search algorithm
adopted by the AI community in this context but can be applied to many problems
due to its generality and efficiency. This section explains how it works on a rather
informal level. Many implementational details which are crucial for its efficiency are
omitted for now [Sto00, Rab00].

Given a graph  with a set of nodes  and a set of edges  and
a distance function  that measures the cost of traveling between two
neighboring nodes, a so-called fitness function

, , : (3.8)

is defined, where

 is the accumulated cost to get from the start node to node  and

 is a heuristic estimation of the remaining costs to get from node  to the
goal node.

In order to know which nodes have been considered during an ongoing search,
the A* algorithm manages two lists: the open-list and the closed-list. The open-list con-
tains the nodes that have to be considered next; they form the front-line of the
search. The closed-list contains the nodes already visited. At the beginning, only the
start node is in the open-list and the closed-list is empty.

The A* algorithm consists of expanding the node p from the open-list whose fit-
ness function is minimal. Expanding a node means that its neighbors  are
inserted in the open-list and that their fitness function is evaluated. Their accumu-
lated cost  is computed by simply adding the cost to reach them to the accu-
mulated cost so far:

(3.9)

After p has been expanded, it is inserted in the closed-list. The algorithm stops
when it tries to expand the goal node. In this case, a path was found. When there
are no more nodes to expand, i.e. the open-list is empty and the goal node has not
been expanded so far, there is no path leading from the start node to the goal node.

Note that there might be more than just one possibility to reach the same node.
Therefore, the A* algorithm has to keep track of the whole node sequence consti-
tuting the solution up to a specific node. For this purpose, every node inserted in
the open-list obtains a pointer to its antecedent node, i.e. the node being expanded.
This way, the complete path can be reconstructed by following these pointers from
the goal node back to the start node. If two paths are found leading to the same node
n, i.e. a node is inserted a second time into the open-list, the path with higher cost

 is discarded since it is evidently longer.

The heuristic estimation of the remaining costs to get from an arbitrary node to
the goal node impacts both the quality and the efficiency of the search. As long as
the heuristic underestimates the real cost to the goal, the shortest path in the graph
is guaranteed to be found. Considering Equation 3.8, it is obvious that in this case
the fitness function never overestimates the total cost of a path. Since A* always
chooses the node with a minimal f, the search cannot end by expanding the goal
node of a path that is longer than the shortest path (see [RN96] for a formal proof).
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It is crucial that the heuristic estimate is fairly accurate [Sto00]. Figure 3.23 illus-
trates the effect of having a heuristic function that underestimates the real costs too
much. The left figure shows the state of the search when deploying an exact estima-
tion of the distance to the goal. The grey nodes are the start and end node respec-
tively. The blue ones denote the front-line of the search, i.e. the nodes in the open-
list. The red nodes are expanded nodes, i.e. the nodes found in the closed-list. As
can be seen, a minimal number of nodes has been expanded. The right figure shows
the same search but this time using a heuristic function that underestimated the dis-
tance to the goal by a factor of 0.625. This time, four times more nodes have been
expanded.

If the heuristic is allowed to overestimate the real distance to the goal, even better
results can be obtained [Rab00]. Consider Figure 3.24 where obstacles have been
added to the scenario. As before, the state of the search using the exact distance to
the goal is depicted on the left hand side where the search struggles to overcome the
large obstacle. Many nodes have to be expanded since an optimal solution might
dodge the obstacles on either side. If overestimating the distance to the goal, the A*
algorithm tends to expand nodes that lie on the direct path to the goal before trying
others. This effect is shown in the right figure. Comparing both, the non-overesti-
mating heuristic explores three times more nodes than the overestimating heuristic.

A disadvantage of overestimating distances is that the solution might be subopti-
mal. Additionally, the search is slowed down significantly if the final path contains
directions that lead away from the goal. Thus, it is the application domain that
decides if an overestimating heuristic makes sense. As will be seen later, this tech-
nique is a vital mechanism to improve efficiency for open terrain navigation. Note
that some experimentation might be necessary in order to assess the optimal quan-
tity of overestimation.

3.5.3 Preprocessing

The following section discusses various aspects of our solution. First, the chosen
discretization method is presented and the given algorithm is improved to better fit

FIGURE 3.23 Effect of underestimating the distance to the goal.
On the left, the result of the exact estimation is shown while the right shows what
happens when the distance is underestimated. Grey nodes depict the start (left) and
goal (right) location. The blue nodes are the front-line of the search, the red node
have been expanded and are now in the closed-list.
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the needs. Second, various approaches to build a graph on such a discretization are
discussed and it is shown that the traditional approaches fail to find optimal and
intuitive solutions. 

Discretization

As explained before, the first task is to discretize the scene into obstacle-free
regions. Different approaches to this problem are proposed in [DeL00] and shown
in Figure 3.25. The first and trivial idea is to use a regular grid of some arbitrary res-
olution as shown in Figure 3.25i). This approach obviously leads to a very dense
graph. Additionally, it can exhibit loss of connectivity, since some cells are only par-
tially empty. A second approach is a quad-tree, depicted in Figure 3.25ii). The
quad-tree displays a better approximation of the scene and a leaner graph, but still
has a major drawback: At the borders of the obstacles there are many very small cells.
Since many paths follow the borders of an obstacle the expected speed-up is partially
lost. The problem with partially occupied cells remains, too. The third approach is
to tessellate the ground into convex polygons, shown in Figure 3.25iii). Convex
polygons have the useful property that any straight path inside the polygon can not
collide with its border. Additionally, since the obstacles are polygonal, a partition of
the walkable ground can be obtained without the loss of connectivity. Finally, a very
lean graph can be achieved when using the points-of-visibility approach in
Figure 3.25iv). For each obstacle corner, all other visible corners are connected to
build a graph with a small number of nodes. However, the determination of the
nearest graph node for an arbitrary location is rather difficult since a visibility-check
is necessary for every potential node. 

Based on this insight, the tesselation into convex polygons seems to be most
promising due to its simplicity. To the end, the algorithm of Seidel [Sei90] has been
used. This algorithm tessellates the ground into trapezoids with horizontal borders.

FIGURE 3.24 Effect of overestimating the distance to the goal.
On the left, the situation with an exact distance measure is shown. When overesti-
mating the distance to the goal, as shown on the right, less nodes get expanded.
Grey nodes depict the start (left) and goal (right) location. The blue nodes are the
front-line of the search, the red node have been expanded and are now in the closed-
list.
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These allow for very fast line intersection calculation which makes this approach
very interesting. Additionally, the algorithm can also deal with polygons containing
holes. This is very important since in our scenario the large polygon that defines the
border of the map contains other smaller polygons representing the obstacles. Addi-
tionally, the tesselation process automatically yields a query-tree that allows to effi-
ciently handle the task of point location. Given an arbitrary point, its corresponding
trapezoid can be found in O(logN) with N being the number of cells.

But the resulting tesselation of Seidel’s algorithm is still suboptimal as depicted
in Figure 3.26. The need to merge neighboring trapezoids into arbitrary convex
polygons wherever possible emerges in order to reduce the number of nodes in the
graph. This algorithm is due to Hertel and Mehlhorn [O’R94, TA02]. This process
is not negligible as can be seen in Figure 3.26ii). Tests on sample maps have shown
that on average 50 percent of the trapezoids are eliminated. When allowing for
slightly concave polygons by introducing a tolerance parameter even more trape-

FIGURE 3.25 Four different approaches to the discretization problem.
The Rectangular Grid (i) is based on a uniform grid which does not fit exactly to the
obstacle borders. Therefore, a rather large area remains unwalkable (red). The
Quadtree (ii) provides a better approximation of the obstacle-borders and less graph
nodes but still has some drawbacks. The Convex Polygon approach (iii) yields a lean
graph and no loss of connectivity. A very lean graph is created with the Points of Vis-
ibility approach (iv). However, for a specific path request, the start and goal node
have to be added to the graph as denoted by the red edges.
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zoids can be eliminated as depicted in Figure 3.26iii). The consequence is that paths
can potentially intersect the border of the polygon. If this is inadmissible, one can
simply expand the contours of the obstacles in a preprocessing step as described in
[You01].

Lakes and Contours

In our environment, obstacles are either objects or lakes. While the position and
extension of the objects can be derived from the object itself, the contours of the
lakes depend on the landscape’s heightfield and need to be generated during initial-
ization. All areas below the height of zero are considered to be lakes. Such a situa-
tion is depicted in Figure 3.27i).

In order to find the contours of the lakes, a binary map of the environment is
generated distinguishing between walkable area (green) and underwater area (blue)
as shown in Figure 3.27ii). During the next phase, each disjunct lake is found using
a floodfill algorithm. This algorithm uniquely labels connected areas known to be
underwater. For each lake, the contour points are the ones that belong to the lake
but have at least one neighbor on the walkable area. The underlying algorithm first
finds one contour point and then follows the contour in clockwise direction and is
described in detail in [Nie01]. The result is shown in red in Figure 3.27iii). How-
ever, this sequence of pixels can be coarsened into a sequence of line segments that
approximates the contour line sufficiently using a loose-contour algorithm [Nie01]
which results in Figure 3.27iv) where the contours of the lakes are shown using red
line segments. Note, that the contours are closed sequences that may overlap the
map borders. 

Building the Graph

Building a graph on this tesselation leads to several possible approaches. One
could use the polygon centers as graph nodes as shown in Figure 3.28ii). This strat-

FIGURE 3.26 Discretization into obstacle-free regions.
The red area denotes the walkable area while the blue one depicts the polygonal ob-
stacle.
i) The tesselation using Seidel’s algorithm is not optimal with respect to the pathfind-
ing problem. 
ii) Merging neighboring cells into larger ones that still remain convex (green circles).
iii) Allowing for slightly concave polygons further reduces the number of polygons
(green circles).
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egy fails since the corresponding portals of each pair of adjacent polygons have to be
found during the search. Instead, the portal centers could be used directly as nodes,
as Figure 3.28iii) shows. While the resulting graph contains more nodes than the
first approach, two advantages can be achieved: First, the step to find portals is omit-
ted. Second, the nodes represent more accurately the geometric locations relevant
to the final path which allows for a better cost estimation between the nodes.

The so far presented solution works fine but has some major limitations. Con-
sider the situation depicted in Figure 3.29i) where a path from A to B has to be
found. A* will find the path leading around the obstacle instead of the expected
straight path because the graph displays a shorter route around the obstacle. Any-
way, choosing the portal centers as node locations is a rather arbitrary choice. Since
most paths dodging an obstacle will follow its contour, one could try to anticipate
this by placing the nodes on the portal end-points. This solves the situation in
Figure 3.29i), however, it fails in other situations as shown in Figure 3.29ii) where

FIGURE 3.27 Generation method for contours of lakes.
i) All areas below the height of 0 are considered to be underwater.
ii) A binary map is generated which distinguishes between walkable (green) and un-
derwater (blue) areas. Using this map, each disjunct lake is labeled uniquely.
iii) The contour points shown in red of these areas are determined.
iv) The resulting contour lines are closed sequences of line segments that approxi-
mate the lake’s real contour.
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an additional obstacle has been inserted. Additionally, the resulting graph has twice
as many nodes as the previous one.

All problems encountered so far stem from the fact that long segments are
reduced to just one or two points in the map and make it impossible to get a correct
heuristic for A*. Introducing a maximal portal width and splitting up broad poly-
gons in order to reduce the deviation could resolve that problem. However, this
would lead to an even denser graph because of the additional interconnections
between horizontally neighboring polygons. Also, note, that no matter how small
the portals will be, there are always counter-examples that produce unintuitive
results.

When abandoning the idea of graph nodes representing precise locations, the
idea to use the whole portals themselves as nodes ends up in a very lean graph again

FIGURE 3.28 Building the Graph.
i) The tesselation using Seidel’s algorithm.
ii) The resulting graph using the trapezoid centers as nodes.
iii) Using portal centers as nodes. The resulting node sequence connecting A and B is
shown in green.

FIGURE 3.29 Limitations of different approaches for building a graph.
i) Using portal centers: Unintuitively, the green path will be chosen instead of the
blue one when connecting A and B using a graph built upon portal centers.
ii) Using portal end points would resolve the situation in i) but fails when adding a
second obstacle where the green path is chosen instead of a direct link connecting A
and B. Adding even more nodes (shown in white) would result in the correct path
(dashed red) but will fail when connecting X and Y (dashed black).
iii) Abandoning the idea of fixed node locations and using the whole portals instead
leads to undecidable situations. When connecting A and B, both red dashed lines
show paths of equal length.
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as shown in Figure 3.29iii). In order to construct the graph, a distance measure
between portals is needed – the minimal distance between two segments seems to
be appropriate which is in most cases the vertical distance between two portals as
shown as green arrows. This distance measure ensures that the total length of the
final path is never overestimated and therefore the optimal path has to be contained
in the set of possible solutions of the A* search.

When reconsidering the above examples the first situation is solved correctly.
Anyway, no assertive answer can be given in the second situation, since both paths
around the small obstacles have identical costs. As a consequence, the problem can
not be decided and in fact, the outcome will depend on the implementation of the
algorithm. Therefore, a modification to makes this approach robust is required.

One possibility could be to tweak the A* heuristic function in Equation 3.8
which estimates the remaining cost to the goal node. Since the function can be arbi-
trarily chosen it can be changed to prefer portals that lie on a straight line between
the start and goal location. Adding a term that enforces the A* search to expand
nodes that lie near to the connecting line also considerably improves the efficiency.
This technique is vital to open terrain navigation since in most cases the paths are
straight or deviate only little from the straight connection between start and goal.
However, the search is significantly slowed down when the path is forced to lead
away from the goal location. Also, the computational expense to calculate such a
heuristic function further slows down the search. A further limitation is that the
search direction is always attracted by the straight line connecting the start and goal
location. When the path leads away from this line it will tend to return rather than
moving ahead from its current position to the goal since the heuristic is only glo-
bally defined. Instead, a local search that depends also on the current position is
more promising.

When looking for a solution that unifies the advantages of the above approaches
while eliminating the incorrect solutions, it should provide a small number of nodes
and accuracy with respect to distance measures. The fundamental problem of the
whole approach so far is that the graph is built offline in a preprocessing stage. It
stays fixed for its lifetime with the exception of the start and goal node that are intro-
duced for a search. Therefore, there is no way to bring in the information of a spe-
cific pathfinding request into the structure of the graph.

3.5.4 Dynamic A*

As has been shown, the major drawback is that no specific information of a request
can be included into the graph since it is built offline. The solution to this problem
presented herein is not to specify the exact location of a node until necessary
[NG04]. The location is set according to the previous course of the path using two
different strategies.

When moving away from the goal location, the direction in which the final path
will lead is not known exactly. Therefore, a lazy strategy is applied which selects the
closest possible location on the next portal. This results in a minimal deviation from
the final path. Here, an approximation error is introduced since the final path will
most likely not traverse this exact location. This situation is depicted in
Figure 3.30i) where the red as well as the blue path both seem promising to lead to
the goal. When moving towards the goal location, a greedy strategy is used since the
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direction where to go is known. This means that the node can be set as close as pos-
sible to the straight line connecting the actual location with the goal. An example
where this strategy is used can be seen in Figure 3.30ii) and iii).

Using these two strategies, several facts provide advantages to traditional
approaches. First, the graph is still small and has a minimal number of nodes with
respect to the tesselation. It is not necessary to introduce additional nodes that slow
down the entire process. Second, a reduction of approximation errors is achieved
since the greedy strategy prevents from spatial approximations. Only the lazy strat-
egy introduces an overestimation of the path length which is bound by the factor

. This worst case occurs when moving vertically instead of diagonally within a
square. Third, the heuristic has not to be tweaked as presented in the last section

FIGURE 3.30 The dynamic A* uses two different strategies.
i) The lazy strategy is applied when moving away from the goal location. The nodes
are then placed on the next portal as near as possible to the previous position.
ii) The greedy strategy is deployed when moving towards the goal location. The
nodes are placed as near as possible to the straight line to the goal. 
iii) The shortest path finally reaches the goal location.
iv) The resulting path after postprocessing. Note, that even though the obstacles are
the same as in Figure 3.28, the solutions found differ where this one is actually short-
er.
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since every situation can be decided entirely. Considering Figure 3.30ii), the red
and blue path both lead to the dashed red portal. Assuming that both of them have
the same cost up to this point, A* could not decide which one to favor since both
are indistinguishable. The presented approach allows for an online distinction
because both paths reach different locations on the portal, hence, their predictions
for the remaining cost differ and make both paths distinguishable. 

Of course, this approach has also some drawbacks. It seems to be slower than the
conventional approach because of the additional evaluation of the distance between
two successive nodes. Also, the calculation of the intersection between the straight
line to the goal and the next portal is a disadvantage. But since the portals are always
horizontally, this can be done very efficiently and is therefore negligible. As the
results will show, our solution is still very fast and competitive.

3.5.5 Postprocessing

After having found a sequence of nodes in the graph using the above presented algo-
rithm, these nodes do not form an optimal path since it still contains more nodes
than necessary – one for each traversed portal. Now, it is necessary to abandon the
graph and return to the original map and apply a postprocessing of the resulting
node sequence right within the map. Additionally, an adaptation of the path to a
three-dimensional environment is possible by incorporating the slope of the terrain
when moving on the path.

Path Optimization

The goal of this postprocessing stage is to find a sequence of waypoints that consti-
tutes a path with a minimal number of waypoints. In order to achieve that, a cone-
of-sight algorithm is proposed which is based on visibility of points and portals.

Again, our algorithm uses the advantage of the horizontal portals by Seidel’s
algorithm. Without loss of generality, it is assumed to move vertically upwards and
the algorithm is presented with the example given in Figure 3.31i). The start node
is at point A and the path has a sequence of portals to pass. Two different portals on
fourth position are depicted as dashed lines to show how the algorithm works in dif-
ferent cases. 

The starting point and the first portal form together a cone of sight as depicted in
Figure 3.31ii). The algorithm keeps track of three points L, R, and the cone’s start-
ing point, in this case A. L, respectively R, denote the borders of the cone. When
looking at the next portal in Figure 3.31iii), its left end lies inside the cone. There-
fore, the left border is narrowed by placing L to this point. Since the right end of
this portal is outside our cone, it will not restrict the current search. Looking at the
third portal in Figure 3.31iv) further restricts our cone, this time from the right side.
R is moved inwards and lies now on the right end of the third portal. These steps
are continued until reaching a portal that completely lies outside the cone.

Portal 4a in Figure 3.31iv) is outside the cone on the left. Therefore a waypoint
has to be placed on the location of L and the algorithm is restarted at this point. The
new situation is shown in Figure 3.31v). This back-tracking step explains why the
algorithm has to keep track of L and R. Alternative 4b shows that the portal lies on
the right side of the cone. Therefore, R has to be set as the first waypoint and the
algorithm continues from the third portal as depicted in Figure 3.31vi). 
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This algorithm guarantees that the shortest path for a given portal sequence is
found. Thus, the straightness criterion for paths introduced in Section 3.5.1 is met.
As a counterexample, the Rubber Banding Algorithm presented in [Dav00] does
not achieve this. The here presented algorithm benefits from the fact that portals are
always horizontal which allows again for fast intersection calculations.

Movement in 3D

The system is now able to efficiently compute qualitative paths but still constitutes
a purely 2D navigation facility. This section presents an approach how to extend the
system in order to take height information into account. This post-processing step
is not necessary but results in aesthetically pleasing paths. 

Instead of having agents that strictly follow the path in a straight line from one
waypoint to another, they can be allowed to diverge to some degree. An approach
is proposed, where the path is adapted to the slope of the terrain. In order to avoid
steep slopes, the agent turns away from its ideal course using the current position p

FIGURE 3.31 Path Optimization: The Cone-of-Sight algorithm.
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of the agent, the next waypoint , and an arbitrary function : ,
where  is the maximal deviation angle. This results in 

, (3.10)

where

. (3.11)

 in Equation 3.10 denotes the deflection from the angle pointing to the next
waypoint . This formula is only applied when , thus, when the agent is
ascending. The first term  ensures, that the deviation decreases as the
waypoint is approached. In order to assure that the goal point  is really reached,
the function  should become 0 when the distance  decreases. The second
term  accounts for the steepness – the greater the length of the gradient, the
larger the deviation form the straight path will be. The last term  weighs the
direction of the gradient against the orientation of the movement. The deviation is
maximal when the next waypoint lies in the direction of the maximal steepness. If
the slope is parallel to the moving direction ( ) the deviation is zero.
Figure 3.32 shows an example where an agent follows a path on an uneven terrain.
The resulting trace of its course in green seems to be far more natural than the red
path generated by the path-planning unit. Nevertheless, the agent will end up in the
same location as the path request has had.

Of course, such an adapted path could pass an obstacle region, because it deviates
from the original path. But since every waypoint is reached exactly and waypoints
usually lie at the border of an obstacle, this problem is negligible. Additionally, the

FIGURE 3.32 Path adapted to the slope of the terrain.
The red line depicts the path given by the path-planning subsystem and the green
line the actual movement of the agent adapted to the slope.
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user has the possibility to specify the maximal deviation angle to keep the agent near
the original path. Furthermore, one could enlarge the obstacle regions in order to
introduce a tolerance bound around each obstacle [You01]. 

3.5.6 Results in Path-Planning

In order to compare this approach with different traditional approaches a test suite
has been set up that automatically generates paths. The measurements were taken
by calculating paths with random start and goal locations on two different maps.
The characteristics of these maps are outlined in Table 3.1. The presented approach
has been compared with three implementations which have been presented before: 

Center: This approach uses a static graph built on the portal centers of the tes-
selation.

Width 1/3: The maximal portal width of the above approach has been set to a
third of the map width and the portals are connected with the maximal fanout.
The resulting graph is more dense but approximates the node locations more
accurately.

Width 1/10: The maximal portal width has been set to a tenth of the map
width with an according fanout. 

All these implementations use the same underlying A* mechanism with the
same performance optimizations as the presented approach. These approaches also
use the path optimization procedure presented in Section 3.5.5. Therefore, all these
path planning systems are comparable to each other. 

TABLE 3.1 The characteristics of the maps used for comparing our approach with others.
The last three rows show the number of nodes of the graphs built on the maps. The
last two rows are derived from the original map by setting the maximal portal width
to 330 and 100 respectively.

Loose Map Dense Map

Map

Size 1000x1000 1000x1000

# Obstacles 100 200

Center Nodes 281 395

Width 1/3 Nodes 323 408

Width 1/10 Nodes 567 568
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Astonishingly, in more than 90% of the cases our approach finds paths of equal
or shorter length as shown in Figure 3.33. The paths are absolutely shorter than the
other approaches in over 50% of the tests. This result is even more distinct on the
loose map with less obstacles (97%, respectively 60%). Using a maximal portal
width only slightly improves the quality of the result as can be seen. On the loose
map this technique is more effective since the portal width is more likely to be large.

Comparing the path generation time of the different approaches, Figure 3.34
shows that the presented approach is competitive. On the dense map (top rows), the
algorithms with approximately the same number of nodes perform similar while the
difference grows with less obstacles. The approach with the maximal portal width
set to a tenth of the map width always performs slower since its graph has more
nodes as shown in Table 3.1. For our approach, absolute time values are 0.19 ms on
average on the loose map and 0.28 ms on the dense map on a 1 GHz Pentium III
computer with 512 MB RAM.

Based on these results and the above description of the algorithm, we can state
that the presented algorithm is fast, robust, and can be used for arbitrary static ter-
rains with polygonal obstacles. The paths are on average shorter that with traditional
approaches and even the computation time is slightly faster. The shorter paths are
due to a better cost approximation that result from moveable graph nodes and the
two strategies used to determine their exact positions. Due to a post-processing step
which removes unnecessary nodes, the paths resulting from our path-planning sub
systems are made up of a minimal number of waypoints. The visual appearance has
been enhanced by incorporating the slope of the terrain while following a path.

FIGURE 3.33 Comparing the path length of traditional approaches with the dynamic A* approach. 
The top three rows (gray) were generated on the dense map, while the bottom three
rows (white) used the loose map described in Table 3.1. On each map the presented
approach is compared to three different implementations that use static graphs.
Red denotes cases where traditional approaches found a shorter path, blue for equal
length of both approaches, and green when the dynamic A* approach found a short-
er path.
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3.6 RESULTS

The as yet presented system is able to simulte the behavior described in
Section 3.1.1. In this section, some examples of this model and the methods pre-
sented will conclude this chapter. 

All examples were generated using a simple simulation environment imple-
mented at ETH Zürich – the GAIA engine – on a Pentium IV 2.6 GHz system with
2.0 GB of memory and a ATI Radeon 8500 graphics board. The scenery is defined
by an heightfield where a value below zero denotes water. The landscapes are cre-
ated using a simple terrain-generator based on subdivision and can be edited in a
separate program in order to create specific terrains. Additional obstacles, such as
trees and bushes, can be placed wherever needed or wanted using a simple mech-
nism. Figure 3.35 shows two different sceneries.

Furthermore, the GAIA engine allows to render the scene in different modes –
a realistic rendering or two different comic rendering modes as shown in
Figure 3.36. On the left, the realistic rendering is shown while the right image pre-
sents one of the comic rendering modes. As mentioned in Section 3.1.1, the inten-
tion of this thesis is not to provide a novel behavior model and the correctness of
the presented behavior with respect to nature is not that important, thus, we use the
comic mode to enforce the abstraction from a natural impression. 

First, the structured group example with the family is shown in Figure 3.37.
Both images show the same scene where the left one is the rendered view and the
right one a color-coded representation. For each different type of agent, a different
color is used, where red depicts the father, blue stands for the mother and yellow
boxes represent the children. Note, that the right image reveals a white box which

FIGURE 3.34 Comparing the run time of traditional approaches with the dynamic A* approach.
The order of the rows is the same as in Figure 3.33.
Green denotes cases where the dynamic A* approach was faster.
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is not visible on the left image. It is the group agent representation which is usually
not rendered but keeps the family together.

Second, a modulo group example is depicted in Figure 3.38. In this example, all
agents of the group are first separated into two categories – for example male/female
– but additionally, every third member has become a child. The left image shows
the group rendered normally. The viewer can only distinguish adult and young
ones by their size. On the right, some of the underlying information is shown as
color-coded cubes. The adult male elephants are shown in red and the female ones
in green. The children can be divided into male/female as well, where blue boxes
represent the male ones and purple ones replace female children. 

The examples shown in Figure 3.39 depict different hierarchical group struc-
tures. The red/green lines depict the hierarchical structure, where the red end is
towards the inferior and the green end towards the superior agent. On the left, the
hierarchy corresponds to a=5 and r=2, meaning that two out of five agents in each

FIGURE 3.35 Two different sceneries.
The terrain in the GAIA engine is based on a height-field and allows for easy replace-
ment of terrains.

FIGURE 3.36 Two different rendering modes.
The left image shows the realistic rendering mode and the right one the same scene
in the comic mode.
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subgroup are superior to another subgroup as described in Figure 3.18. The group
starts on the right with the five rightmost elephants denote the first level. On the
right, another hierarchical group is shown, this time a=4 and r=3. Both groups have
the size of 20 members and implement a leader-follower behavior which keeps the
group together.

We also implemented Reynolds flocking algortihm such that an agent aligns
with its neighbors according to their velocity and orientation if there are any neigh-

FIGURE 3.37 The structured group example.
On the left, a family of elephants based on the example in Figure 3.14 is shown. On
the right, a color-coded representation presents the structure. The red box is the fa-
ther, the blue depicts the mother and the yellow boxes represent the children. The
white box does not appear on the left image since it is the group agent representa-
tion which is usually not rendered but keeps the family together.

FIGURE 3.38 The modulo group example.
On the left, a group with 50 members is shown where some can be identified as chil-
dren and others as adult elephants. The right image reveals the underlying structure
of the group which additionally distinguishes between two types of elephants, for ex-
ample male and female ones. Green boxes are adult males, red ones are adult fe-
males, blue ones are male children, and, finally, female children are denoted in
purple. Again, the group representation is not shown on the left image but as a black
box in the right part.
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bors as shown in Figure 3.40. If an agent comes near the water, it will avoid the
water rather than remaining in the herd. However, Reynolds algorithm is not suit-
able for large crowds since it requires to compute the local neighbors for each indi-
vidual which is hardly feasible with hundreds of agents. Nevertheless, with small
groups of characters, Reynolds approach is feasible and works well when having
found appropriate parameters for the weighting of the different forces.

The last example in this section shows a full scene with over 1500 agents, acting
individually or being engaged in hierarchical groups. Two screenshots of the sce-
nario are shown in Figure 3.41 This scene has been used to measure the frame-rate
of the over-all system inclusive rendering with a full simulation. Full simulation
means that all agents are activated in every time-step such that all can act on the
most current simulation state. The plot in Figure 3.42 shows the frame-rate of the

FIGURE 3.39 The hierarchical group examples.
On the left, a hierarchical group of 20 members with a=5 and r=2 as described in
Figure 3.18 is shown. On the right, another group of 20 members is shown, this time
with a=4 and r=3. The relationship in the hierarchy is denoted by the red/yellow lines
where the red part is at the inferior and the yellow part at the superior agent. Note,
that the front-most elephant on the left is not the group agent but one of the agents
in the first hierarchy level.

FIGURE 3.40 Reynold’s herding algorithm.
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simulation depending on the number of agents. Up to 1000 agents can be simulated
fully without a great impact on the frame-rate. Note, that the frame-rate is much
higher when only small parts of the scene are rendered. The views from which these
values were generated provide a great overview of the scene and, thus, the rendering
cost is not neglectable. Our system also provides acceptable frame-rates for up to
3000 agents and more. However, the system is not optimized with respect to per-
formance and we expect that significant improvement could be achieved when
reengineering the framework.

FIGURE 3.41 A full scene example with over 1500 agents.
The agents are engaged in very large hierarchical groups (elephants) or individually
(lions).

FIGURE 3.42 The average frame-rate depending on the number of agents.
Up to 1000 agents can be fully simulated without restricting the frame-rate under a
rate of 25 frames per second. The frame-rate drops below 10 frames per second
when simulating more than 3000 agents.
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When looking at the different stages of the behavior model in different scenarios,
we obtain the chart shown in Figure 3.43. The chart shows the absolute times
needed to determine the reactive behavior of agents in different scenarios. As can
be seen, the single agent needs with around 0.06 milliseconds almost twice the time
to make a decision and execute it as the average agent in the Full Scene scenario
where only about 0.03 milliseconds are needed. This depends on the complexity of
the agents which is fairly low in the full scene scenario but high in the single agent
scenario.

The relative time needed to make one decision cycle is shown in Figure 3.44
where the colors refer to the same tasks as in Figure 3.43 and the underlying mea-
surements are the same. Obviously all scenarios show approximately the same dis-
tribution of the time. The perception task needs around 25% of the over-all time
where the situation recognition and action selection use 25-30%. The rest, around
45-55% of the time is spent in the action execution mechanism which can be
explained by the complex data structure and routines to determine the execution of
an action. For example, the path-finding task is part of the action execution because
it is done when a corresponding action starts. Therefore, the action execution
mechanism uses the largest part of the over-all time.

FIGURE 3.43 Absolute timings for the different stages of the reactive behavior model.
The underlying measurements were taken for different scenarios such as a single
agent, a family, a hierarchical group and the full scene. The chart shows the time
needed for each of the four stages to determine the reactive behavior. 
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FIGURE 3.44 Relative timings for the different stages for the same scenarios.
The chart shows the same results as Figure 3.43 with the relative time needed for
each stage.
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4C H A P T E R
4PROACTIVE AGENTS

In the last chapter, our approach for reactive agents has been presented including the
generation of heterogeneous groups and hierarchies. But reactive agents can only
provide a limited set of behaviors and it is impossible to achieve an adaptive behavior
without creating rules for every possible situation that can occur. Proactive agents,
in the contrast, are able to present more believable behavior by exploring the future
and comparing different possibilities with respect to a certain goal. Additionally,
they can take other agents’ decisions into account. 

This chapter will first introduce proactive agents before directly going into infer-
ence mechanisms that are needed to act proactively. Such inference mechanisms are
in the need of graph search algorithms to find the best possible solution to execute.
Such algorithms are explored in detail for a single agent before putting everything
together with respect to concurrent planning in the dynamic real-time environ-
ment which puts several restrictions on these algorithms. Then, one section is
devoted to the integration of proactive agents into our environment by extending
the known reactive agents from the last chapter to proactive ones. The chapter con-
cludes with the results achieved in our environment by integrating proactive agents.

4.1 PROACTIVE BEHAVIOR

As has been shown in the previous chapter, the behavior of reactive agents relies
only on a set of predefined rules. These rules determine the presented behavior and
are described as condition-action rules [RN96]. Since such rules are very fast, the com-
putational expenses for a rational agent are rather low. But if it is intended to have
an agent which presents some kind of “intelligent” behavior, these rules are very
limited. Of course, it would be possible to create a rule for every possible situation,
but the according knowledge-base would get very large as does the computational
effort to find the right rule for the current situation. For example, when an agent
81
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approaches a road junction, it should decide whether to go to the right or to the left.
This decision should depend on the desired destination and is very hard to be taken
a priori. Thus, the need of some sort of goal information that describes where the
agent would like to go arises. Then, the agent could determine on the fly to which
side it should turn off. Obviously, the presence of a goal information implies that
the agent has also the possibility to explore the future by concatenating possible
actions and by considering their influence on the environment. This process is
called searching or planning and will be described within this chapter.

In our environment, several new scenarios get feasible when integrating proac-
tive agents. A very simple one is searching for food or other items. An agent that
perceives its environment can register if an object of interest is within its field of
view. Then, it can decide to take that item and dynamically adapt its actual plan to
get to that item and take it. This scenario includes only the agent itself an no others.
But there are scenarios where more than one single agent is incorporated. Such a
scenario is local path planning in a dynamic environment. As has been shown in the
previous chapter, the path-planning sub-system can deal with static environments
but will not consider the local dynamically changing world. A proactive agent could
try to plan the next few steps that lead to the static waypoints of the given path by
including the neighbors and their movements in its explorations. Another scenario
is a sheep-dog that watches a herd of sheeps. When one sheep escapes the herd the
dog has to return it to the herd. Using only a reactive agent approach would not
guarantee to solve this problem. The dog could probably scare the sheep away by
approaching from the wrong direction – especially when the herd is moving, too.
Other examples include hunting other agents or guiding a group of agents towards
a particular location. All these scenarios include more than one agent which makes
them difficult to be modeled with only reactive rules.

Note that this sort of decision-making is fundamentally different from the reac-
tive agents condition-action rules since it takes into account the question “What
will happen in the future if I do this and that?” The reactive agent’s rules do not
explicitly contain this information since it is predefined by the designer. Although
the reactive agent is much more efficient, the goal-based agent is more flexible since
it adapts its behavior with respect to the goal and can therefore easily be changed.
For the reactive agent, many rules have to be changed. Additionally, it allows to
define multiple goals that can be selected according to the current situation. There-
fore, the proactive agents are expected to act with a more sophisticated behavior that
the reactive ones. For example, the agents can adapt their movements to dynamic
changes of the environment which was not possible with the agents presented in the
previous section. Otherwise, an agent can decide online to collect food and change
its plan accordingly.

4.1.1 Definitions

The general definition of a goal-based agent has been given in Section 2.2.3.
Here, the proactive agent as a sub-type or extension of the goal-based agent from
the previous chapter is presented.
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Russel and Norvig describe the proactive agent1 as an entity that decides what to
do by finding sequences of actions that lead to desirable states [RN96]. The process
of looking for such a sequence is called search. A search algorithm takes a problem as
input and returns a solution in the form of an action sequence.

They define a problem as a collection of information that the agent will use to
decide what to do. The basic elements of a problem are states and actions:

The initial state that the agent knows itself to be in.

The set of possible actions available. The term operator is used to denote the
description of an action in terms of which state will be reached after applying
the operator in a particular state.

Both together, they define the state space of the problem: The set of all states
reachable from the initial state by applying any sequence of actions. A path is any
sequence of actions in this state space that leads from one state to another.

Furthermore, the problem has other elements:

The goal test can be applied to a state to determine whether this state is a goal
state or not. This can also be a function that returns a measurement indicating
the progress towards the goal.

And a path cost function that assigns a cost to a path which is the sum of the costs
of the individual actions along the path. This function can be used to compare
two paths in order to use the one with fewer costs.

Such a problem is the input to the search algorithm which returns a solution as
output. A solution is a sequence of actions that form a path that leads from the initial
state to a state that fulfills the goal test. A partial solution is possible when the prob-
lem’s goal test is not binary but continuous, thus, the algorithm can measure the
“distance” to the goal. With such a continuos goal test, it is possible to differentiate
between different states and select the one that is more likely to lead towards the
goal. Then, the partial solution is a sequence of actions that form a path beginning
in the initial state, not ending in a goal state, and whose last node has a better goal
test measurement than the initial state and any other in the path.

General thoughts about the inference mechanism are discussed in Section 4.2.
Furthermore, one can imagine that the planner can have different strategies when
exploring the future. Many different strategies exist and we will now have a deeper
look into these and discussing their applicability in our environment within
Section 4.3.

Exploring the future can take as long as the agent is allowed to do so. Therefore,
an agent could take all the time and prevent others from acting or planning in the
real-time environment. But, in our case, the agents should plan concurrently and
must break their planning after a certain amount of time. We will present a solution
where the agent has the possibility to interrupt the planning process without restart-
ing every time from scratch. This problem is addressed in Section 4.4.

Another problem arises immediately after allowing multiple agents planning
concurrently and their planning process lasts longer than one simulation step. In this

1.  [RN96] refers to it as problem-solving agent.
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case, the planning process will be outdated after some time since the environment
changes dynamically. We will discuss that in Section 4.5.

4.2 INFERENCE MECHANISM

The basic idea is to use the existing reactive agent approach from the previous
chapter as a base and extend it to support proactive behavior. But it should still be
possible to create purely reactive agents that can be simulated rather fast. A two layer
architecture that allows for both reactive and proactive behavior together has been
chosen therefore. A schematic overview of this architecture is depicted in
Figure 4.1. Basically, the proactive layer determines the normal behavior by delib-

erating about the best actions to take in order to approach the agents goal. The reac-
tive layer gets active only when some sort of reaction is necessary, for example
avoiding an obstacle. Such an extension can be easily integrated into the blackboard
architecture described in Section 3.1.3. Actions which are delivered by the proac-
tive sub-system are marked as actions and are therefore inserted at the end of the

FIGURE 4.1 The two-layer architecture for proactive agents. It has a fundamental reactive sys-
tem which determines the behavior by simple condition-action rules. The second layer
is the deliberative layer which generates goal-based behavior. Normally, the agent
acts according to the proactive behavior but sometimes, the reactive subsystem
might break in and interrupt it by inserting a reaction.
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action queue (see Section 3.4.3). On the other hand, the reactive sub-system gen-
erates only reactions which are inserted on top of the queue and are therefore exe-
cuted immediately.

Therefore, an enhancement of the agents architecture in two different ways is
necessary. First, the knowledge about the current goal has to be added to the knowl-
edge-base. Second, the sense-decide-act cycle has to be adapted into a sense-infer-
decide-act cycle by adding a deliberative sub-system to the blackboard-architec-
ture. 

These steps and explanations about the taken decisions are described within the
next sections. While the integration of goals is a rather minor step, the design of a
suitable planning mechanism is not straightforward at all. At the end of this chapter,
we will describe the necessary adaptations of the reactive agent model presented in
the last chapter.

4.2.1 Goals

As stated above, the need for a goal representation arises. Also, when dealing with mul-
tiple possible goals, we either need a inference mechanism that supports multiple
goals at the same time or we need a goal selection mechanism that decides which
goal should be achieved in order to follow only one goal at the same time. The first
approach is very complex and could be a research project of its own. Nevertheless,
a single goal representation can be based on a complex goal test function can con-
sider multiple individual goals in parallel, for example searching for food while fol-
lowing a path. Therefore, we decided to restrict the inference mechanism to one
goal at the same time and add a simple goal selection mechanism – which is
described in the next section.

FIGURE 4.2 The goal component.
It consists of attributes, conditions, a type, and an importance and evaluation func-
tion. Using attributes, the goal can be adapted and customized. The conditions and
the importance function determine the goal’s applicability. A binary goal can only dis-
tinguish between “goal reached” and “goal not reached yet”, therefore, the evalua-
tion function is binary, too. Thus, a continuous goal’s evaluation function provides a
measurement of the approximative distance to the goal.

Goal

Conditions

Attributes
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Evaluation = f ( Environment , Internal State )



86 4  Proactive Agents
In our case, the goal representation is a simple component of the knowledge-base
and extends the list presented in Section 3.3.3. Of course, a goal is an attribute con-
tainer as all other components. Also, it is an condition container to check whether
the goal can be activated or not. 

Then, a goal should provide a method that returns a measurement of an agent’s
state with respect to that goal. Of course, the value should be low for states dissim-
ilar to the final goal state and it should have a maximum at each state that is repre-
sented by the goal. This function can depend on some attributes which allow for
flexible and generic formulations of goals. There might be some sort of goals that
can only be evaluated in a binary way – such as having something or not without
knowing its present location. Therefore, we distinguish between continuous goals and
binary goals. Obviously, binary goals are less mighty than continuous goals since they
do not allow for a stepwise refinement towards the goal. If a binary goal is not within
the planning distance the agent will not succeed in finding it. On the other side, a
continuous goal will lead the agent towards the goal in small steps.

These are the primary components of each goal. Further methods and members
will be explained within the next sections. At the end, in Section 4.6, we will again
come back to the goal component and summarize the properties of goals.

4.2.2 Goal Selection

The need for a goal selection mechanism has been explained in the last section.
When an agent has more than one goal, it should select only one of these and acti-
vate it. This mechanism is achieved in a way similar to the action selection mecha-
nism in Section 3.4.2. Each goal provides a method which returns a value
describing the importance of this goal depending on internal and external states.
The goal with the highest score is then selected and activated. We call this mecha-
nism motivational process, since the motivation determines our actual goals.

Of course, the goal selection mechanism must not change the active goal too
much since the agent needs some time to start planning and finding a suitable
sequence of actions. If the agent switches very fast between different goals, the
resulting behavior might be unintuitive. Therefore, the motivational process adds a
certain value d to the importance of the currently active goal without exceeding the
maximal value. If another goal returns a higher value the difference between the
according importances will be 2d afterwards. Therefore, it is unlikely that these
goals will be exchanged again immediately afterwards. But since the goals deter-
mine their importance by themselves and it is based on internal as well as external
states, we cannot guarantee a forth and back between two goals. But this mechanism
prevents from goal-flickering if these values are more continuous than discrete.

4.2.3 Goal Evaluation

After having activated a goal, the agent should try to find some sequence of actions
that will lead it towards the goal. Such a planning mechanism is basically a search
over a graph of possible states in the future. As stated in Section 4.1 a proactive agent
needs an initial state, a set of actions, a goal information, and a path cost function.
In order to find a solution to this problem it also needs a search strategy. Russel and
Norvig describe a general search algorithm as shown in Figure 4.3 [RN96]. Obvi-
ously, this algorithm will not generate partial plans since it runs until a solution is
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found or no more nodes can be expanded. A general search algorithm that deals also
with partial plans would have to remember the currently best solution and its
progress value. Each time a new node gets expanded and it is no goal node, the value
of the current node has to be compared to the actually best value using the goal test
function. If the value of the current node is larger, the current node is the end node
of the currently best plan.

The agent starts at the current state and applies some of the available actions in
order to get a possible state in the future. Of course, such actions should not have
the same timely behavior as the executable actions in the knowledge-base since the
planner should immediately know the outcome of an action without waiting for
execution. For example, when the planner applies a action which moves the agent
forward for a certain amount of time, the position after having executed this action
can be calculated directly. Therefore, each action in the knowledge-base has to pro-
vide at least one planner action which represents this action and can be applied by the
planner.

4.3 SEARCH ALGORITHMS

In the first section we stated that the inference mechanism can use different plan-
ning strategies in order to find the goal state. This section is devoted to these strat-
egies. We will start with an overview before looking at each algorithm more
precisely. At the end, we will compare these algorithms and discuss their usefulness
and applicability in our environment.

The task of searching can be illustrated by a search tree whose root node is the cur-
rent state and the edges represent the different actions that can be taken. Thus, the
nodes represent possible states of the environment. A search algorithm starts with the
root node and repeatedly selects a node to expand. Expansion is the generation of
successor nodes by applying possible actions to the actually selected node. The
selection of the node and the order of the actions with which the node is expanded
is determined by the search strategy. At this point, it is important to distinguish
between the space of possible states and the search tree. The space of possible states is a
limited set of states that can be reached while there is often an unlimited number of
paths in this space. Therefore, a fully expanded search tree can have up to an infinite
number of nodes.

The choice of an adequate search algorithm for a specific application depends on
four criterions [RN96]:

function General-Search(problem, strategy)
returns solution or failure

init search tree with initial state of problem
loop 

if no candidates for expansion the return failure
choose leaf node for expansion according to strategy
if node contains goal state then return solution
else expand node and add resulting nodes to search tree

end

FIGURE 4.3 A general search algorithm.
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1. Completeness. If there is a solution, there is a guarantee that it will be found.

2. Temporal Complexity. The duration of the search until a solution is found.

3. Memory Complexity. The amount of memory needed for searching the tree.

4. Optimality. If there is more than one solution, the algorithm will find the best
one.

Furthermore, search algorithms can be separated into two different categories
[RN96]:

Uninformed or blind search algorithms have no knowledge about the actions and
their outcome. They only know the set of possible actions and have to explore
many possibilities before finding a good solutions. The algorithm can only dis-
tinguish between a goal state and a non-goal state.

Informed or heuristic search algorithms on the other hand have some knowledge
about the actions and their outcome and can therefore search in a specific direc-
tion and do not have to consider sequences that do not lead towards the goal
state.

At this point, we will not restrict our application to one of these categories since
both kind of actions are possible. Of course, the first category seems to be more
flexible and generic since it does not expect the actions to provide some informa-
tion. But on the other hand, informed search algorithms are much faster than unin-
formed ones and since speed is a major issue in our real-time environment, we
should also have a look at these.

Within these two categories, there exist many different algorithms with different
properties. The next two sections will present an overview of such algorithms. But
these algorithms cover only single-person problems. Afterwards, we will have a
short look into two-person problems where two parties try to optimize their out-
come. At the end of this section, we will discuss the applicability of the presented
algorithms and present the major problems that are expected to emerge in our envi-
ronment.

4.3.1 Uninformed Search Algorithms

As stated above, uninformed search algorithms have no knowledge about the
actions, their outcome, and the number of steps until the goal state will be reached.
They can only separate states that meet the goal conditions from such that do not.

This section presents an overview of the major uninformed search algorithms:
Breadth-first search, depth-first search, limited depth search, iterative deepening
search, and bidirectional search.

Breadth-first search. 

This very simple strategy starts by expanding the root node. Afterwards, all
expanded nodes on the first level are expanded. Then, the next level and so on.
Generally, all nodes of level d will be expanded before the nodes on level d+1. The
breadth-first search guarantees to find a solution if one exists. If there are multiple
solutions, it will find the shortest one. Regarding the criterions from the last sec-
tion, the breath-first search is complete and optimal. Concerning the complexities,
this strategy has a time complexity of O( ) with d being the length of the solutionbd
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and b the branching factor, i.e. the number of actions that are possible from each
state. , because the number of expansions for a solution of length d is

. (4.1)

Since all nodes have to be kept in memory, the memory complexity is of the
same order. This huge memory requirement is the reason why this strategy is of
limited use to our application.

Uniform cost search. 

While the breadth-first search finds the solution with the least number of actions
this might not be the solution with the lowest cost according to a path cost function.
When the search minimizes the cost of the solution by using the path cost function
g(n) of a node n, we talk about an uniform cost search. This strategy always expands
the node with the lowest cost. If g(n) = depth(n) then it is the same as breadth-first
search. The uniform cost search guarantees to find the cheapest solution. Although
it is optimal and complete, it is still rather inefficient compared to other search algo-
rithms.

Depth-first search. 

Instead of expanding the node at the lowest level as the breadth-first search, the
depth-first search always expands a node at the highest level. Only when a node is
not expandable any more and it is no node corresponding to the goal requirements,
the strategy goes back and continues using a node at a lower level. The advantage of
this search algorithm are the low memory requirements. The algorithm just needs
to keep track of one path from the root node to the current leaf node together with
the remaining child nodes of already expanded nodes on the path. For a search node
with a branching factor b and a maximal depth of m the memory complexity is
therefore in O( ). The time complexity is obviously in O( ). For search prob-
lems with a large number of solutions, the depth-first search can be much faster than
the breadth-first search since the probability to find a solution after having visited a
small part of the search space is rather high. But the depth-first search has two main
disadvantages: First, it is not optimal since there is no guarantee to find the best
solution. Second, it is not complete if the search tree has an infinite height. Then,
the algorithm can select a subtree which contains no solution at all. Therefore, the
depth-first search should only be considered when searching a depth-limited tree.

Limited depth search. 

The limited depth search circumvents the problems of the depth-first search by
limiting the maximal depth of the search, i.e. the search tree will be expanded only
until a certain depth is reached. If the limit is chosen large enough, this approach is
complete but still not optimal. The maximal number of expansions of a limited
depth search with depth d and a branching factor b is 

(4.2)
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which is basically the same as the breadth-first search.

The complexity of the limited depth search are similar to the depth-first search:
The time complexity is in O( ) and memory complexity in O( ) with l being the
depth limit. The selection of an appropriate limit is very challenging since the max-
imal depth to a goal node should be known a priori to guarantee the completeness.
And this property is not given for uninformed search algorithms.

Iterative deepening search. 

This strategy utilizes the advantages of the limited depth search and circumvents
the problem of finding an appropriate depth limit by incrementally trying all depth
limits starting at 1. This strategy is a combination of the advantages of breadth-first
and depth-first search. It is optimal and complete as the breadth-first search but has
the low memory requirements of the depth-first search. The order of the expansion
of nodes is similar to the breadth-first search except that some nodes get expanded
more than once. Therefore, it seems that the iterative deepening search is rather
wasteful but for most problems, this overhead is relatively small since the number
of multiply expanded nodes compared to the total number of expansions gets
smaller with an increasing depth limit. For the iterative deepening search, the nodes
at the highest level get expanded once, at the second highest level twice and so on
until the root which is expanded d+1 times. This sums up to

(4.3)

For example, when b=10 and d=5, the number of expansions is 111’111 in the
case of a depth limited search. Using the iterative deepening search, the total
number of expansions is 123’456. The resulting overhead is in this case approxi-
mately 11%. The overhead for different other settings has been compared, too
[Hau03b, Hau03a]. With increasing b the overhead gets smaller while d has no spe-
cific influence on the overhead. Even though a large branching factor implies a low
overhead, the iterative deepening search with a branching factor of 2 takes about
twice as long as the breadth-first search. The time complexity remains in O( ) and
the memory complexity in O( ). Generally, the iterative deepening search is used
for searches with a very large state space and when the depth of the solution is not
known a priori.

Bidirectional search. 

The basic idea of the bidirectional search is to start both from the start state and
the goal state concurrently. The search stops if both searches meet somewhere in
the “middle”. Assuming that the solution has depth d, the bidirectional search will
find with a timely complexity in O( )=O( ) since both the forward as the
backward search have to search only until d/2 which seems very interesting. But the
implementation of a bidirectional has some drawbacks. First, the actions that
expand the nodes have to be reversible in order to achieve a backward oriented
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search. Second, there probably exists more than one goal state, thus, the algorithm
should be able to select the best one in order to return an optimal result. Third, it
should be possible to test efficiently whether a newly expanded node has already
been expanded in the other search tree. In order to guarantee an optimal search,
both searches have to keep all expanded nodes in memory which results in a
memory complexity of O( ).

Comparison. 

Table 4.1 compares the six uninformed search strategies with respect to time and
memory requirements, optimality, and completeness. b is the branching factor, d
the depth of the solution, m the maximal depth of the search tree, and l the depth
limit. Clearly, all these uninformed search strategies have different advantages and
disadvantages that need to be weighted depending on the requirements of the given
problem. For example, the depth-limited search is only complete, if l is larger than
d or the bi-directional search is only optimal if both sides remember all already tra-
versed paths. Although all strategies make sense under particular circumstances, not
all algorithms are suited for our real-time planning approach, as will become clear
in Section 4.4.

4.3.2 Informed Search Algorithms

Compared to the uninformed search strategies, the informed ones use problem-
specific knowledge about the search in order to make the search more efficient.
Usually, they need an evaluation function which estimates for each node the proba-
bility of success when expanding this node. Obviously, this evaluation function can
be hard to find and is seldom very accurate. In order to provide a generic planning
module in our system, informed search strategies cannot be used except when the
goal provides this function. Nevertheless, this section provides a short overview of
the major informed search algorithms. 

Best-first search. 

The most simple informed search algorithm is the best-first search. It always
expands the node whose evaluation function value is maximal. Assuming that the
evaluation function is perfect, this strategy would be rather a direct walk to the goal

TABLE 4.1 Comparison of the uninformed search strategies.
b is the branching factor; d the depth of the solution; m is the maximal depth of the
search tree; l is the depth limit

Criterion
Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative 
Deepening

Bi-
Directional

Time

Space

Optimal yes yes no no yes (yes)

Complete yes yes no yes, if yes yes
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than a search for the goal state. As stated above, the evaluation function is not per-
fect but rather an estimation of the probability of success. Therefore, the best-first
search can be easily lead into a wrong direction. It is an “informed depth-first
search” and is therefore whether optimal nor complete.

Greedy search. 

If the evaluation function is a heuristic function h(n) that estimates the smallest pos-
sible cost from the actual node n to the goal node, then this strategy is called greedy
search. It always expands the node with the lowest cost estimation. As the best-first
search, the greedy search is rather efficient but still not optimal or complete since
the heuristic function can lead the search into a wrong direction.

A* search. 

This search strategy has already been explained in detail in Section 3.5.2 of the
previous chapter. The evaluation function of the A* algorithm is the sum
f(n)=g(n)+h(n) of the cost function g(n) and the heuristic h(n). Therefore, A* mini-
mizes the total path cost and always expands the node with the smallest cost for the
whole solution. The A* search can be optimal if the heuristic never overestimates
the cost to the goal. In this case it is even complete and very efficient.

Iterative deepening A* search (IDA*). 

In the last section, we saw that iterative deepening can be used to reduce the
memory requirements. Using the same trick on A* results in the iterative deepen-
ing A* algorithm. In this algorithm, each iteration is a depth-first search which is
modified to use a cost limit over f(n) rather than a depth limit. Thus, all nodes inside
a certain cost-limit will be expanded during one iteration. IDA* is optimal and
complete as the A* search algorithm. But it only requires memory proportional to
the longest path that it explores. In most cases, O( ) is a good estimate for the
memory complexity.

Simplified Memory-Bounded A* (SMA*). 

Another algorithm that is memory bound as IDA* is SMA*. It circumvents one
major drawback of IDA* by using all the available memory to remember already
visited states. This makes the search more efficient since some nodes do not have to
be expanded multiple times. It is also optimal and complete but it is also more effi-
cient than IDA*.

Iterative improvement algorithms. 

The class of iterative improvement algorithms is completely different from the
ones we discussed before. They do not start at the initial state but with a complete
configuration. Then, they make modifications to this configuration in order to find
a better one. Hill-Climbing, Gradient Descent, and Simulated Annealing are the most
popular alternatives within these algorithms. The task to find a complete configu-
ration initially does not suit the requirements of our approach. Therefore, we will
not discuss this class of algorithms here, but refer to [RN96] as reference.

4.3.3 Discussion of Search Algorithms for One-person Problems

Generally, we’d like to use optimal and complete algorithms since the presented
behavior of the agents in our environment should be as good as possible. We have
seen that there are different algorithms that meet these requirements. As we have

bd
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stated, the informed search algorithms are usually more efficient than the unin-
formed ones. But the need for an evaluation function is a hard constraint on the
search, since this function is different for every problem. Since we can not guarantee
that such an evaluation function is available, we will concentrate on the uninformed
search algorithms. But as we have seen, the general search algorithm in Figure 4.3
is the same for all presented search strategies. Therefore, we will design our
approach to use the general algorithm in order to provide several different search
strategies in our environment such that it could be easily extended with informed
search algorithms.

4.3.4 Two-person Problems

The above presented algorithms have something in common: They only consider
one agent that acts in some environment. But what happens if another agent is pro-
active and both act against each other? Such problems are known in the AI commu-
nity as two-person problems or more colloquial as games – chess for example. The
presence of an opponent makes the search more complicated since he introduces
uncertainty to the decisions of the other one. But this is not the uncertainty as when
throwing a dice since both opponents are expected to act at the best possible rate.

A two-person problem consists of a similar set of properties as the one-player
problem in Section 4.1.1 [RN96]:

The initial state,

a set of operators,

a terminal test which determines if the problem has been resolved, and

a utility function which gives a numeric value for the outcome that can also be
negative.

Each person is allowed to apply one operator before giving the opponent the
same possibility. Now, we will present strategies that can be applied when dealing
with two-person problems. We will not cover strategies that deal with an element
of chance.

Minimax Algorithm. 

The most general approach is the minimax algorithm. The strategy of the player is
to find a sequence of operators including the opponent’s moves that will lead to a
winning terminal state with maximal utility. He has to keep in mind that the oppo-
nent has the same strategy and will do everything to optimize his own achievement.
We consider a very simple two-person problem as depicted in Figure 4.4 where
each person has three possible actions and the problem ends after each person has
executed one of these. We generate the tree by starting in the initial state and apply-
ing all possible actions for each person which results in nine leaf nodes depicting
final states. These leaf nodes are then labeled according to the utility function which
gives us the value the final state has for the first person which tries to maximize.
Assuming that the second person tries to minimize the outcome it will always select
the move that results in the lowest value in the leaf nodes. Therefore, we label each
node on the second persons level with the minimum of all leaf nodes attached to it.
For example, the left sub-tree results in values of 3, 12, or 8. The second player will
chose action  in order to minimize the result, therefore, the first node on the
second level is labeled with the value 3. On the other hand, the first player maxi-

A11
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mizes the outcome of its moves. Therefore, he will select the move that will result
in the highest possible utility. Therefore, we choose the largest value of the second
level as label for the node on the first level which is again 3. Therefore, the first
player has to take action  as the first one. If he would take another action, the
second player could lead the outcome to a value of 2 which is less than the 3
expected. If the opponent does not play in an optimal way, the result will be even
better. The whole algorithm can be easily implemented recursively.

The minimax algorithm has a time complexity of O( ) with m being the max-
imal depth of the tree and b the branching factor, e.g. the number of operators. The
space requirements are only linear in m and b. However, the time cost is totally
impractical – for chess for example, b is about 35 and m around 100 which results in

 nodes to visit. 

Alpha-Beta Pruning. 

The process of eliminating a branch of the search tree from consideration with-
out having examined it is called pruning. This strategy uses a particular technique
known as alpha-beta pruning. It generates the same result as the minimax algorithm
but prunes away branches that cannot possibly influence the final decision.

Reconsider the problem shown in Figure 4.4. When traversing the tree in a
recursive order, the root node will have the value 3 after having traversed the left
subtree. When going down the middle subtree, we reach the node after action 
which has a utility of 2. Therefore, we know, that the whole subtree would yield at
most 2 for the root node value. But since we already know that we can achieve a
value of 3, we can simply skip visiting the remaining nodes. The right subtree, how-

FIGURE 4.4 A tree generated by the minimax algorithm.
The  nodes are moves by MAX and the  nodes moves by MIN. The leaf nodes are
labeled with their respective value for MAX according to the game rules. The labels
at the inner nodes are computed by the minimax algorithm. As can be seen, MAX’s
best move is to take  with MIN’s best response being  which results in a value
of 3 for MAX. All other moves of MAX would have resulted in a lower outcome.
When applying  pruning,  and  will not be considered.
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ever, will be traversed as a whole since this decision can only be made after having
expanded the action . 

In order to do this efficiently, the algorithm keeps track of two values:  denotes
the value of the best choice the first person can achieve so far and  is the value of
the best choice for the second person, i.e. the lowest possible value. Then alpha-
beta pruning will update these values and prune subtrees as soon as it is clear that its
values are worse than  or better than .

Discussion. 

When the player as well as the opponent are planning ahead, it is essential to con-
sider these algorithms such that the result can be maximized for the player even
when the opponent responds perfectly to minimize it. These algorithms have been
developed for two-person games such as chess or checkers where both players make
their moves alternately. In contrast, the underlying environment of this thesis
allows the characters to make their moves simultaneous. Therefore, the minimax
algorithm can not be applied directly. Each character would have to additionally
consider the opponents planning process while planning its own moves resulting in
an even worse computational effort which is hardly feasible in a real-time environ-
ment. 

However, at the end of this chapter some scenarios will be presented with more
than one character being involved . Therein, the opponents are assumed to act reac-
tively to the planning agent’s behavior without looking ahead. Thus, it is easy to
simulate the second characters behavior which results in an appealing behavior.

4.3.5 Applicability

Not every algorithm presented in this section can be applied directly in our envi-
ronment. First, as explained, the two-person problems on which the minimax algo-
rithm relies are not comparable to the situation in our real-time simulation of
characters where all act simultaneously. Second, the informed search algorithms
require an evaluation function to determine which actions are expected to provide
the best gain with respect to the outcome, as explained in Section 4.3.3. Such an
evaluation function is feasible for local path planning for example. When the plan-
ning mechanism has to provide maximal flexibility and should also be able to deal
with unexpected cases, one has to consider the uninformed search algorithms first.
These algorithms allow for unbiased planning that does not rely on a predefined
evaluation function which eventually prevents the character from exploring states
that are not directly coupled with the current goal. Consider, for example, the sit-
uation where a character moves toward a particular position but fails to collect some
food nearby by detouring. When the evaluation function does not include the pos-
sibility to collect food, the agent will not consider the food and pass by even though
the food might increase its overall fitness value.

Therefore, the main focus of this chapter will lie on uninformed search algo-
rithms that can be applied to any problem. Nevertheless, such algorithms are not
optimal with respect to performance since many unpromising search states will be
explored that lead to no successful end state.

However, depending on the scenario and the current goal, the choice of an
appropriate search algorithm is expected to provide better performance and a more
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natural resulting behavior. There are problems where an optimal result is necessary
and the depth-first or depth-limited search will fail to create a proper solution. The
opposite way around, some problems may require to find a solution as fast as possi-
ble without asking for the fastest or optimal sequence to the goal. Additionally,
there are two major problems which will be pointed out in the next section and
which limit the possible algorithms due to the environmental properties of this the-
sis. And, as the next chapter will show, not all algorithms are suited for real-time
planning. This will further restrict the number of possible algorithms.

4.3.6 Major Problems

We have seen that we have a large repository of search strategies to select one. But
not only the choice of the most suitable algorithm is essential for a good result.
There are two major problems that have not been addressed so far. The first deals
with repeated states that make the search inefficient, the other addresses the lack of
an appropriate undo-function available for every action.

Avoiding Repeated States. We have to avoid repeated states during the search
since we can waste a large amount of time by inspecting particular states more than
once. If two different paths reach the same state – for example the sequences forward,
turn-right, forward, turn left results in the same location and orientation as turn-right,
forward, turn-left, forward in Figure 4.5 – then we should have the possibility to deter-
mine that in an efficient way.

According to Russel and Norvig [RN96] there exist three different ways to deal
with repeated states, in increasing order of effectiveness and computational over-
head:

FIGURE 4.5 A simple example for repeated states.
Beginning with the same position and orientation, the sequence forward, turn-right-
forward, turn-left generates the same state as the sequence turn-right, forward, turn-
left, forward. The search algorithm should be able to detect such repeated states in
order to prevent the planning mechanism from spending time on already visited
states.

forward turn-right forward turn-left

forwardturn-right forwardturn-left
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Do not return to the state the search is just coming from. This implies that the
set of operators does not include the reverse of the last applied operator.

Do not create paths that contain cycles. The expansion has to prevent the gen-
eration of nodes that is the same as any in the node’s ancestors.

Do not generate any state that was ever generated before. This requires every
state that is generated to be kept in memory which results in a memory com-
plexity of potentially O( ) but rather O( ) where s is the number of states in
the entire state space.

The first method is very easy to implement but not very effective. Not returning
to precedent state would even not solve the example from above. The second
method implies to always check the actual path against the newly expanded node
and is more promising than the first one. The third option is the most effective but
at the same time very complex. [RN96] suggest to use a hash-table that stores all
generated nodes. This makes the check for duplicates reasonably efficient. But still,
the trade-off between the cost of memory and checking and the cost of extra search
remains. It depends on the problem and it’s “loopiness”.

In our environment, this problem seems especially hard to handle. Instead of dis-
crete states we have a continuous environment. If we would like to use a hash-table
in our application the need for a appropriate hash-function arises. This hash-func-
tion should generate a unique value for each different state. But what features deter-
mine the state of the agent? We should at least consider the position. But, for
example, is the orientation neccessarily part of the state or not? And what about col-
lected items? It is obviously not the same state when an agent returns to a particular
position after having gathered food. And what about internal states such as hunger
or others? It seems that there is no straight answer to these questions.

We decided to only consider the position of an agent in a fixed grid with a rea-
sonable edge length. This will prevent the search from wasting time by visiting cer-
tain locations twice or more. It remains the problem that any agent must not visit the
same location twice during a search even if it has done something in between that
has changed its state, e.g. eating something or taking an object. But as we will see,
the planning process has to be restarted regularly with a relatively high frequency of
a few seconds and therefore, we assume that the remaining features that have an
influence on the state can be neglected.

Undo-Problem. As we have seen, most memory-efficient search algorithms basi-
cally keep the path to the current node in memory. If the algorithm reaches a node
that cannot be expanded anymore, it has to go back recursively in order to select
another node. But what happens if an operator cannot provide such a functionality
to undo the last step? For example, the action could have an influence on the envi-
ronment, e.g. taking an object or influence the movement of a neighbor.

We could regenerate the last visited state by reapplying all actions in the path
from the initial state. However, this is very inefficient when the search algorithm
has to backtrack often. Another option would be to store at each node the state of
the world before expanding that node. Then, we could simply go back to the last
node and take its state as the current state without the need for an undo-function
provided by the action. Again, this problem is related to the repeated states prob-
lem. The question remains which features actually constitute the state of the agent.

bd s
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We would have to keep track of the state of each agent in the world and even the
world with its objects.

We decided to use the second approach but again, we restrict the set of features
that determine the state to only a few. In this case, we consider the position, orien-
tation, and velocity of an agent as its state. Additionally, we restrict the set of
involved agents to only a few. Most scenarios only involve one or two agents, rarely
more. We will only store the states of these while the other agents are regarded as
having no influence at all. In Section 4.6, the according implementation will be
explained in detail when presenting our proactive agent model.

4.4 CONCURRENT REAL-TIME PLANNING

As we have seen in the last section, search algorithms can be very time-consuming
and if the goal is unreachable, they might run forever. But in our environment, only
a few milliseconds are available at each simulation step. During these few millisec-
onds, not only one agent should be activated. In the contrary – as much agents as
possible should get the possibility to explore their future. 

Therefore, the need for concurrent planning with restricted time arises. We will
address this problem within this section. First, the class of anytime algorithm will be
introduced and defined. This class of algorithms offers the possibility to stop and be
reactivated later without loosing the last known state. Furthermore, anytime algo-
rithms provide a continuously improved solution the more time they get. This is a
very promising approach to our problem but it restricts the set of possible search
algorithms that we have presented in the last section. We will discuss this problem
and present according planning algorithms that are suitable for our system.

4.4.1 Anytime Algorithms

According to Grass’ definition an algorithm is an Anytime Algorithm if it fulfills the
following properties [Gra96]:

It has a mass of quality: Instead of a binary notation of correctness, the anytime
algorithm returns a result together with a mass of quality which denotes the use-
fulness of the intermediate result. This means it delivers a value that indicates
how far the current results is from the result after a complete run of the algo-
rithm.

Predictability: Anytime algorithms should predict the quality of the returned
solution if a particular computation time and some information about the used
data is given.

Interruptability and continuity: An anytime algorithm has to be interruptible and
the partial solutions available at such a moment are returned. Furthermore, the
algorithm should be able to continue its work in order to increase the quality of
the intermediate result.

Monotonic behavior: Anytime algorithms keep or increase the quality of the inter-
mediate result the more time they have available. This implies that the quality of
the result has to increase monotonically.
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Such algorithms are widely used in real-time environments with few resources
and where any result is better than none. As we can see, these algorithms have some
very nice properties that can help us to achieve the concurrent planning ability for
our system. Especially the interruptability, continuity, and monotonical behavior
are properties that are desirable for our solution, whereas the predictability is of less
interest but nevertheless an interesting property.

In our case, interruptability can be achieved using two different ways. First, we
could use an external process that starts and stops the according algorithms. Second,
the algorithm could control itself and stop when the available time has exhausted.
The first approach would imply the usage of threads within our system – one for the
supervisor process and one for each anytime algorithm. This seems not very prom-
ising since the management of threads is not for free. Therefore, we decided to
adapt the above presented definition to our needs and use self-interruptability as a
harder constraint than above. Nevertheless, this will not restrict the choice of an
algorithm.

4.4.2 Anytime Planning

The choice to use anytime algorithms for our search problems results in anytime
planning algorithms. But not every search strategy can be adapted to be used as an any-
time planning algorithm. In this section, we will consider the applicability of differ-
ent search algorithms as anytime algorithms.

Because of the interruptability of anytime algorithms, these have to keep the cur-
rent state in memory during an interruption. Therefore, the memory-efficient
search strategies are more interesting to be implemented as anytime algorithms. As
we have seen in Table 4.1, the depth-first search, the limited depth-first search, and
the iterative deepening search are very memory-efficient. Since the latter is also
optimal and complete, we will concentrate especially on this algorithm. All other
one-person search strategies have an exponential complexity with respect to
memory consumption. When using one of these, we would have to keep the whole
currently expanded search tree in memory for each agent which sums up very fast
when dealing with hundreds of agents that act concurrently.

Considering two-person problems, we see that both the minimax and the alpha-
beta pruning algorithm are suitable since both work recursively and have also a
linear memory complexity. Therefore, these are suitable as anytime algorithms, too.

First, we change the general search algorithm from Figure 4.3 into an anytime
algorithm as shown in Figure 4.6. Only a few modifications are necessary. First, the
algorithm gets an additional argument: The time available for planning. It deter-
mines the run-time of the algorithm. Then, since the function will be called more
than once, the initialization should only be done the first time. The simple search
loop in the original search algorithm now checks if the available time has exhausted.
If not, the algorithm will expand one node before checking the time again. Addi-
tionally, the algorithm should remember the currently best intermediate solution
even though it might be only partial and returns it after the time is over.

As we can see, these changes do not have a great influence on the search algo-
rithm per se. But we have to consider that an anytime algorithm has to keep its cur-
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rent state in memory. Therefore, not all search strategies we have seen are
convertable into efficient anytime planning algorithms.

4.5 DYNAMIC ENVIRONMENT

The concurrent planning of multiple agents leads to another problem that arises in
our dynamic environment. The anytime planning algorithm will distribute the cal-
culations over a certain time. Therefore, the initial state that is used as the root node
of the resulting search tree is already out of date after the first interruption. Then,
the search is based on an initial state that does not correspond to the actual state any
more. 

We could decide to restart planning with the actual state every time the planner
is activated. But then, the usage of an anytime planning algorithm would make no
sense anymore since the major advantage of anytime algorithms is the interruptabil-
ity and continuity. Also, if we invest each time only a small amount of time, the
planing algorithm could only execute a few steps which will not lead to a good
intermediate solution – not to mention that a goal state is not likely to be found
within such few time. Therefore, the usage of an anytime planning algorithm is
necessary and implicates that we have to plan on a static environment or we have to
find a way how the dynamic changes can be integrated without neccessarily replan-
ning each time the world has changed. 

Therefore, we have to look for possibilities on how to handle the dynamic
changes in the environment during the search. Several problems have to be dis-
cussed:

How can we plan on a static environment when the corresponding world is dynamic? 
The anytime planning algorithm uses an initial state that remains fixed during
the search process. Changing the initial state would imply to regenerate all pos-
sible successor states which is basically replanning. 

What should happen if the environment changes during a search? 
Small changes or changes not related to the search could be omitted. Other
information such as the position of other involved agents have to be considered
as critical information.

function General-Anytime-Search(problem, strategy, time)
returns solution or failure

if not planning already
init search tree with initial state of problem

while not finished and time available 
if there are no candidates for expansion the return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return corresponding 

solution
else expand the node and add the resulting nodes to the 

search tree
remember currently best solution

end
return currently best solution

FIGURE 4.6 A general anytime search algorithm.
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How can we handle partial plans?
If the planning process is interrupted as intended, we will get the currently best
partial solution in return. This solution might not be the best and it is in the
majority of cases not complete either. But it has to be a sequence of actions that
leads towards a goal state.

What happens if the search can not find a goal solution?
Since the world can change it is possible that there is no solution that origins
from the initial state going to a goal state at each moment. Or the goal function
might lead the search into a local maxima from which the agent can not find a
better state within its search horizon.

Within this section, we will discuss these questions and present some solutions
to handle those cases.

Regular Replanning. A simple solution to the first question is regular replanning.
Assuming that the environment changes in a continuous manner, we have to force
the planning algorithm to restart planning regularly. Immediately after the planning
process has been started, the state of the real world and in the planner are the same.
After the first interruption, these states differ a little bit since the world has evolved
since starting the process but the states inside the planning process have no knowl-
edge about the changes in the world. With every additional interruption, this dif-
ference grows and after a certain time, the information in the planner is so much
outdated that it makes no sense to plan on this information anymore. Then, the
planning process is restarted even though it might not has found a final goal state.
Thus, we have to handle partial plans that are most probably not complete. Of
course, the difference grows even faster the more agents are involved. Therefore,
we divide the global maximal planning time by the number of involved agents in
order to get a measurement for deciding upon a reinitialization.

Planning Proxies. But we have still the problem that we cannot plan directly in the
dynamic environment. We could obviously generate a copy of the whole world at
the moment of the initial state and let the planner act on this copy as long as the
planning lasts. But this is a complete waste of memory. The objects that are purely
static are not needed to be copied since they will not change. And since only a few
agents are usually involved in the planning process, there is no need for copying the
remaining agents, too. Therefore, we decided to use proxies that represent the
agents in the static planning environment. The next section will discuss more
details about these proxies. Here, we just have to know that for each involved agent
a proxy is generated which is used in the planning simulation. Each proxy agent
knows about is original agent and vice versa. Therefore, we can check the difference
between the actual state in the world and in the planning process and use the quasi
static proxies instead of the dynamic agents in the world. This approach can also be
extended to objects, too, where each involved object is represented by a proxy
object. This offers a nice solution to the second question.

Handle Changes. The second question is challenging. First of all, how can we
determine which agents or objects have changed since starting the search. More
important, we should know how theses changes affect the planning process in order
to decide how to handle this information.

The above introduced concept using proxies provides an easy way to determine
changes in the world. For each agent, we know its initial state and the current state
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in the world. If the difference is too large, we can force the planning process to
restart with the current states.

Involving objects in the planning process yields another problem. If we decide
during the planning process to use an object but this object is taken away exactly in
this moment, the planning process could not know about that. It would return a
solution that includes the interaction with an object that is no longer available. Our
solution to this problem is to generate a proxy for this object. The real object itself
knows that there is a proxy connected to it. If the object finds out that is state has
changed, e.g. the position has moved, the door has been closed, etc., it will inform
all connected proxies about it. Then, the proxy can inform its corresponding plan-
ning algorithm which can decide whether to restart or back up to the point where
the object was not involved yet.

Handle Partial Plans. When using an anytime planning algorithm, we usually get
a partial solution each time we interrupt the algorithm. And if a regular replanning
is initiated, the algorithm usually has not found a complete solution yet. Therefore,
we have to find a way how to deal with partial solutions. Of course, the partial solu-
tion should have a certain minimal length before considering to execute it. If this
limit is reached, the partial plan can be executed. When executing a partial plan,
some issues have to be considered:

The agent might has already executed a part of a former plan.
Executing the plan each time from the initial state makes no sense. The agent
can have already executed the first action of the partial plan returned by the last
interruption. But there is no guarantee that the current partial plan has the same
first action. 
Therefore, we have to check that when generating the current partial plan in
the anytime planning algorithm. The algorithm knows the partial plan it has
generated the last time. If this plan is active, the algorithm knows that the agent
has already started to execute the plan. The algorithm goes through the actions
that constitute the plan and searches for the action currently being executed.
Then, it knows that all actions before this particular action were already exe-
cuted and when generating a new partial plan, it will skip the same number of
actions at the begin assuming that the first steps of both partial plans are the
same.
In most cases, this approach is sufficient enough to provide good results. But, of
course, it is not perfect at all. The new partial plan could have a completely dif-
ferent and important action after the initial state than the old one. After skip-
ping this action during the generation of the new plan this action will not be
executed at all. However, due to the regular reinitialization, this action will
become part of another partial plan if it is still feasible.

The agent has executed the partial plan but has no actions to continue.
This can be considered as the opposite of the first issue. The agent is executing
its current partial plan and the planner does not generate a new one. This might
come from the fact that the larger the partial plan the longer it takes to add an
additional action because of the exponential complexity of the search. There-
fore, we adapt the regular replanning rule from above to account not only for
the exhausted time but also the state of execution of the current partial plan. If
the agent reaches the last action of the plan, the planner is forced to reset and
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restart planning again from scratch. If we would restart only after the whole par-
tial plan has been executed the agent might has to wait for the new partial plan
to be generated. When the restart happens before the last action is executed, the
planner has some time to generate a new plan which then replaces the old one,
in most cases before the agent has finished the current action.

Additionally, we can not guarantee that this partial solution will finally lead to
the goal. Therefore, it is possible that a partial plan can lead the agent in the
direction of a local maxima of the goal test function. Due to the regular replan-
ning, we do not know if the problem actually has a solution. We will tackle this
problem by failure methods which are called when the search is stuck. These
methods provide the possibility to rethink the current situation and take some
action to handle it. 

Handle unresolvable situations. Using partial plans might not lead every time to
a goal state. Since the partial plan is not complete and it is not guaranteed that even
the direction of the partial plan is towards a goal state using partial plans can lead the
agent into local maxima of the goal’s test function. There is no solution that pre-
vents the algorithm from doing so if we have no information about where to find
the final state if the algorithm is not complete. But even for complete algorithms,
we cannot search over all possible states since the planning process has to be
restarted regularly. Therefore, the search cannot reach states over a particular limit
in the depth of the search. Another problem, for example, is a sliding door that open
and closes automatically. If all solutions to a problem have to pass this door and the
door is closed in the initial state, obviously no solution can be found at all. 

Since the current system uses the proactive behavior mainly for local path-plan-
ning that includes other actions, e.g. collecting objects or eating food, the main
problem for local maxima is therefore the coordination of the movement. And for
this, we can use the global path-planning system (see Section 3.5) to generate a
static path from the actual position to the goal location. This is done relatively fast
compared to an exhaustive search using a generic uninformed search algorithm. We
can use the static plan to even improve our solution. If the global path-planning
returns a path then it is obviously possible to reach the goal location from the cur-
rent position. And since the global path consists of waypoints that are connectable
by straight lines we can use these as intermediate goals for our local path-planning
that takes place within the planner. Thus, if we implement a goal that tries to reach
a certain location, it first has to check whether a global path exists and then use the
waypoints of this path as intermediate goals. This can be easily done without a great
effort. 

Nevertheless, we can not guarantee that this approach will not lead into a local
maxima or another unresolvable situation as the sliding door. Therefore, each goal
description has to provide a method that is called on failure. Failure means that the
search strategy has not found a state with a higher value than the current within its
limited planning range. Then, the goal can decide what to do and how to handle
such a situation. If there is no obvious solution, the goal should deactivate itself and
allow another goal to take over.
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4.5.1 Planning Proxies

Generating a search tree is usually based on a static environment which does not
change during the search. When using anytime algorithms that are interruptible, we
can not plan directly on the real dynamic environment because it evolves and, thus,
changes during the interruption. As stated above, we do not have to copy the whole
world since most parts of it are static anyway and many agents and objects are not
involved in the planning process. Therefore, we plan directly on the same static
environment but use proxies that represent the involved agents and objects. A
proxy is a simplified knowledge-base object representation which basically stores
the position and other information needed by the planning algorithm as shown in
Figure 4.7.

The most basic proxy is the object proxy. It represents an non-moving object and
stores the actual position of the object in the planning process. The proxy object
offers a method to update the information which basically retrieves the actual posi-
tion of the corresponding object from the simulated world.

Next, the agent proxy represents the planning agent and extends the object proxy
by storing additionally the velocity and orientation. The agent proxy is furthermore
extended to the agent simulation proxy which offers also the possibility to simulate
some very simple reactive behavior. This allows the planning process to incorporate
a model of the behavior of the involved agents. For example, the scenario with the
sheep-dog can be considered as a two-person problem. Then we would have to plan
the behavior of both involved agents. But we can also assume that the sheep has a
very simple reactive behavior which does not include a planning strategy. Then, the

FIGURE 4.7 Proxies represent the real agent in the static planning environment.
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agent simulation proxy of the sheep would move just according to the position of
the dog which allows the dog to find a reasonable solution. Of course, this works
only if the search tree has only a small depth. Since we introduce an error by using
a simplified behavior model, this error gets larger the deeper the search tree is. But
for our setup with the regular replanning initiations this works very well as the
results will show.

The usage of proxies offers some advantages to our planning mechanism. First,
we can choose the time for updates individually. Usually, the proxies are updated
when the search starts or a replanning occurs. We could also update the information
also during the search when knowing that the object has not been involved yet. In
between two updates, the search is purely static. And, when using the iterative
deepening algorithm, we can update the proxies each time the depth limit has been
reached and the search basically restarts. Second, as mentioned above, we can easily
handle changes in the environment using dependencies. Each real world object
knows if there exists a proxy representing this particular object. If the objects state
changes in the dynamic environment, it informs all proxies that the state has
changed. Then, the according planning process can decide whether to update the
proxy – if the object has not been involved yet – or restart the search from scratch
after the update. 

So, each planning process handles at least one proxy, namely the planning agent
itself. Depending on the goal, there might be some other agents or objects involved
which will be represented by agent simulation proxies. For example, in the sheep-
dog scenario, the evading sheep will be represented by another agent, too. There-
fore, each goal has to provide a list of involved agents from which the proxies are set
up according to the specification. During the search, all these proxies will be simu-
lated using their simple reactive simulation model. 

4.6 THE PROACTIVE AGENT MODEL

As stated at the begin of Section 4.2, the proactive agent’s behavior will make use
of the reactive mechanism, too. Therefore, we want to extend the reactive agent
model presented in Section 3.1 et seq. with several necessary extensions:

Enable spatio-temporal planning
We have to plan in the spatio-temporal space since we have to know where and
when an agent does something. The time which is used by an action to be exe-
cuted is considered as the primary dimension. Then, the position and orienta-
tion of the objects can be updated according to the timestep.

Introduce continuous planer actions and a converter to executable actions
As stated in Section 4.2.3, the actions that are used in the planning process can-
not be the same as the executable ones in the dynamic environment since they
are designed to have a duration. During the planning process, this timely behav-
ior should be incorporated directly into the action. Furthermore, the actions in
the planner do not neccessarily have a one-to-one relationship to their accord-
ing executable action. Therefore, a simple converter mechanism is needed.
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Add novel components to the agent model
At the moment, the knowledge-base only supports components for the reactive
agent model. We have to design a planner, goal, and search strategy component
that meets the requirements defined in past sections.

Enable time-consuming sub-systems
Opposite to the already available sub-systems of the reactive agent model, such
as the sensory system, the reactive system, or the action system, the planning
system can consume as much time as possible. Therefore, the agent itself (or
some higher instance) has to decide how much time the planer has available for
inference and pass this value to the planner such that it interrupts the anytime
planning algorithm accordingly.

Within the next few sections, we will discuss these topics and complete the final
model for proactive agents.

4.6.1 Spatio-Temporal Planning

In our environment, an agent has to plan in the spatio-temporal space because the
actions depend on their duration and the execution can move or turn the agent
within the environment. To meet the spatial requirements, the agent proxies store
the position, orientation, and velocity of the agent. The actions that generate spatial
movements will be presented in the next section. But the planning mechanisms has
to additionally adapt to temporal planning and provide appropriate functionality.

Each executable action has an intrinsic duration or a user-defined one. If the
action’s duration is given a priori, the planner has to increase the internal time
accordingly. But what happens if the action’s duration is variable? Then, the planner
can specify the temporal extension itself, maybe depending on the goal’s specifica-
tion of a base time-step. We can expect that the more the planning is in the future,
the more inaccurate the predicted states will be. Therefore, it makes no sense to
plan with very small steps in the far future as when planning with very large time
steps for the upcoming action. The duration of such an action should actually
depend not only on the goal but also on the current depth of the search tree state.

We propose the following rule to determine the duration to take for variable
actions:

(4.4)

where d denotes the actual depth,  the duration provided by the defi-
nition of the goal, and  the exponential base that is used to account for the increas-
ing uncertainty. The value for the base should be chosen within [1.0, 2.0]. Values
around 2.0 already lead to proportionally very large timesteps and make the search
too inaccurate. The base value can be used to address the problem concerning the
local maxima in Section 4.5. If a search shows no progress the planner could decide
to increase the base in order to reach states within a larger spatio-temporal horizon. 

The duration of each action is now defined, be it either by the action itself or the
duration specified in Equation 4.4. Next, we have to design appropriate planner
actions that can deal with a predefined duration.

duration d( ) durationbase bd⋅=

durationbase
b
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4.6.2 Planner Actions

Each executable action should provide at least one action that can be used in the
planner to simulate the action. These actions differ only slightly from the actions
introduced in Section 3.3.3.

First, the actions have to provide a function to test whether the action is execut-
able or not for a specific amount of time. The time value origins from the equation
above and indicates the desired duration in case that the action has no predefined
one. This function is called every time before the action is actually expanding a
state. If this function returns a positive value, the action is actually executed and
returns its real duration.

Second, the planner actions have to implement an undo-method. This method
should not provide functionality to restore the original position, orientation or
velocity of the agent since this is done automatically by the proxies. But the action
might had some influence on other aspects such as the amount of hunger or the pos-
sessed items and so on. Then, this method has to restore the original state of the
proxy accordingly.

Third, each planner action has to generate the according executable action for
the action system on demand. Thus, the planner action has to provide an action that
achieves the same as the planner action has done during planning. The search strat-
egy component acts as a wrapper from planner actions to action system compatible
ones. It provides both the sequence of planner actions and the sequence of accord-
ing executable actions.

A special case of a planner action is the goto-action that is used for moving the
agent in the environment. Normally, the goto-action depends on the destination
but since the destination is not known a priori we cannot search all possible desti-
nations within some range in the continuous environment. Therefore, we have to
provide a set of different planner actions that have an effect as shown in Figure 4.8
and discretize the goto-action. Assuming that the agent has already found the direc-
tion of interest, we do not have to search in the backward direction. Therefore, only

FIGURE 4.8 The planner actions representing the goto-action.
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the turn-around planner action provides the possibility to change the orientation
for more than 90 degrees. Of course, the intermediate actions left-forward and
right-forward are not necessary to span a plane such that possible destinations can
be found, they just help to find smoother solutions. One could add further actions
in between the ones shown in Figure 4.8. But this would increase the branching
factor which has a great influence on the complexity of the search tree and should
be kept low as has been shown in Section 4.3.

4.6.3 The knowledge-base components

In this section, we will present an overview of the basic components that are neces-
sary to create a proactive agent. Some components have already been partly intro-
duced, e.g. the goal in Section 4.2.1. Nevertheless, some important properties have
not been known at this point. Therefore, a summary of the search strategy, goal, and
planner component from a modelling viewpoint is given here. The strategy is basi-
cally the implementation of the different search algorithms. The goal provides the
goal test function and the planner is a generic search algorithm that uses the strategy
and goal component to drive the search.

Anytime Strategies. As manifested, the search strategy determines the next possi-
ble node to expand using some of the presented algorithms in Section 4.3. We
define the inner part of the while-loop in Figure 4.6 as the main component of the
strategy which therefore has to store the list of expanded and expandable nodes. 

Before using the strategy, it has to be initialized. For example, the values for
 and  are retrieved from the goal’s specification. Additionally,

some strategies might need further properties such as the maximal depth or similar
options. For the regular replanning event, the strategy also provides a method that
resets the strategy using the same goal as provided during initialization. During the
search, a generic planner like in Figure 4.6 repeatedly calls the strategy to execute
one step until the time available has exhausted. This is the method where all strat-
egies differ from each other. After each step, the strategy provides the current state
which is compared to the currently best one using the goal’s test function and prob-
ably replaces it.

As stated in Section 4.3.6, not every planner action can provide an undo-
method. Therefore, we decided to use a stack of history entries that store the posi-
tion, orientation, and velocity of each involved agent such that the primary states of
the proxy can be restored easily. This stack is used in every strategy and provides
two methods: One to insert the current state of all proxies and one to reset the states
of the proxies to the values that have been stored before as shown in Figure 4.9.
Other states than the mentioned ones have to be maintained by the according plan-
ner action’s undo method.

Here, we will present the anytime iterative deepening algorithm as an example.
An overview of the algorithm is shown in Figure 4.9. This figure shows the part
within the while loop of Figure 4.6.

The algorithm starts by determining the next possible action which is tested for
possible execution. After the current states of all agents have been added to the his-
tory the action is executed and the algorithm remembers the current action on this
level, adds the expanded action to the actual path and increases the actual depth. If

durationbase base
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there are some other agents involved, they will be simulated using a simplified reac-
tive model which will described in the next section. If the action could not be exe-
cuted because of the maximal depth has been reached, the algorithm increases the
depth limit and resets itself. If the depth limit has not been reached, it restores the
states in the current node from the history and removes the last action from the
actual path. When no executable action could be found the algorithm goes back one
step and continues on that level.

So, every time this algorithm has found a new executable action it will return the
partial plan leading to the state after this action. The generic planner then uses the
goal test function to determine the value of this intermediate solution. If the value
is larger than the previously best plan then the best plan is updated. The algorithm
can be called as often as possible. Each time, the depth limit is reached it will be
increased and the algorithm starts from scratch. The search will stop when the goal
is reached.

Goal. The basic parts of a goal have been discussed in Section 4.2.1: The attribute-
and condition-container property, the binary or continuous test method, and the
motivation test. In this part, we will summarize the further properties that we have
developed within the last sections. An overview of this componentn is given in
Figure 4.10.

We have seen that the choice of which algorithm to take strongly depends on the
actual goal that is pursuited. Therefore, a goal has also the search strategy associated
which is summarized afterwards. Additionally, the goal may depend on some other
agents or objects that are involved in the planning process, e.g. the evading sheep or

FIGURE 4.9 The anytime iterative deepening algorithm core loop.
This algorithm is executed as often as possible before the time available has exhaust-
ed.
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the attacking enemy. The set of possible planner actions that defines the branching
factor in the search process is stored in the goal, too. This list should be restricted to
only the necessary actions in order to reduce the complexity of the search. By
default, the goal simply collects the provided planner actions of all actions that are
associated to a situation component of the agents reactive system. Of course, the
goal can also specify some additional planner actions that are not within the set of
reactive actions. 

During the planning process, the planner has to provide the best partial plan.
This depends on the goal, therefore, it also stores a copy of the currently best solu-
tion already transformed into executable actions. It is valid as long as the replanning
is not initiated anyway due to expiration of the solution. In order to check this time,
the goal needs a replanning frequency or a reset time. 

Also, the goal needs a replanning frequency  and the value for 
to calculate the duration for each steps. The calculation takes place in the algorithm,
but the values are bound to the goal since these values have a strong relationship to
the goal.

Last but not least, we stated in Section 4.3.6 that the search can lead into unre-
solvable situations. Therefore, the goal has to provide a method that will be called
in such a case. This method should try to resolve the problem, by default by reset-
ting the goal once and in case of a second failure before any other reset by deactivat-
ing itself. But there might be some purpose-built goal that handles failures with a
special treatment or a change in the test function and bypass the default case.

As stated in Section 4.3.6, we have to avoid repeated states during the search. We
decided to use a hash-map that stores the visited positions during the search. Since
the positions can be reduced to two dimensions, the hash-function has been imple-
mented as

FIGURE 4.10 The extended goal component.
Compared to Figure 4.2, the right column has been added depicting the additional
components of the final goal component. The search strategy, the other involved ob-
jects, the planner actions, the currently best solution, the reset time and the base du-
ration with the exponential base b.
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(4.5)

where p denotes the actual position in 2D, ext is the extension of the environment
in y-direction, and grid is the size of the grid that is used to discretize the positions.
This maps every possible position within the environment to a hash-value which is
used to mark the position as visited. Inbetween two resets, this particular position
cannot be visited again even if the agents state has changed in between.

Anytime Planner. Each proactive agent must have a generic anytime planner com-
ponent as shown in Figure 4.11 which provides the agent’s inference mechanism.
Basically, the planner receives a goal that provides the goal test function and an any-
time strategy the determines the order the search tree nodes are visited.

FIGURE 4.11 The planner component workflow.
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The generic planner initializes itself and the goal which collecs all neccessary
planner actions. For each planner action a stack of preallocated copies of this planner
action is generated. The usage of preallocated action speeds up the search because
the allocation and disallocation during runtime is crucial to the performance. These
stacks have a predefined initial length. If the search process needs more than the pre-
viously allocated ones, the stack increases the number of planner actions. Therefore,
during the first few iterations, the stacks will generate a suitable number of planner
actions that seldom have to be increased.

Before starting a particular search, the planner resets the planning process if the
regular replanning time has exhausted or the last action of the currently best partial
plan has been reached. If replanning is necessary, the planner resets the goal and the
strategy and clears the current solution. Afterwards, the search loop from Figure 4.6
starts until the time available has been spent.

As declared, the strategy provides a method that executes one step of the search
algorithm. The anytime planner is responsible that this method is called as often as
possible during the available time frame. After each step, the generic planner
retrieves the score of the actual search state from the goal and compares it to the
score of the currently best partial solution. If the score is better and the current solu-
tion has exceeded the minimal path length, the planner gets the sequence of exe-
cutable actions from the search strategy. If the score equals 100%, the goal is
considered to be reached and will be inactivated in order to let the motivational pro-
cess select another one.

But this generic anytime planner differs highly from all other components that
constitute a proactive agent. The basic components inherited from the reactive
agent all have a deterministic comportment while the anytime planner can run as
long as needed until finding a goal state. Therefore, another adaptation to the exist-
ing reactive agent model has to be considered.

4.6.4 Blackboard Extension: Time-consuming Subsystems

The anytime planner is the only component of a proactive agent which can take as
long as time is available. Therefore, it needs a maximal time to run that specifies
when the planner should interrupt itself and return its currently best solution.
When thinking about time-consuming sub-systems, other possibilities for such
components arise: For example, a learning process that tries to optimize the behav-
ior of the agent by changing some of its attributes. Such a learning system could
obviously take as much time as available, too. Another such system could try to pre-
dict futural events to show surprise or disappointment in order to enhance the visual
appearance.

Since our framework should support extensible agents whose behavior can be
changed by adding novel extensions, the blackboard mechanism presented in
Section 3.1.3 has to be adapted and the interface to the time-consuming sub-sys-
tems is crucial. Assuming, the agent knows how much time it has available, it has to
find out how much time remains beside the basic reactive behavior which is neces-
sary on each step. The remaining time can the be spent on the available time-con-
suming sub-systems. At the moment, our agents only support one type of such
components – the planning system. Therefore, we can spend all the remaining time
into planning. If the agents are extended by other time-consuming components we
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would have to think about a more sophisticated scheme that distributes the time
available. There are various approaches possible, such as giving each component the
same amount of time, using priorities that determine how the time is split up, or
using a round-robin scheme that regularly selects one component to be activated.
But such discussions are out of the scope of this work.

The design of the reactive agents as presented in Section 3.1 has been chosen
carefully to allow for further extensions such as proactive behavior. The blackboard
mechanism described in Section 3.1.3 is the base for the proactive agent model. It
can be easily extended with additional units and slots which provide the mecha-
nisms needed for proactive agents. As described in Section 4.2, the behavior mech-
anism is now in principle a two layered scheme where the reactive and proactive
behavior are both activated during the agent’s cycle. As shown in Figure 4.12, the
approach shown in Figure 3.2 has been changed only slightly. Additionally, the goal
selection and planning mechanism had been added as units that access the black-
board which has been extended by two new slots: The current goal is selected by
the goal selection mechanism and provides the planning process the knowledge
necessary to find an appropriate action sequence. This sequence is stored in the cur-
rent partial plan slot that is accessed by the action execution system as described in
Section 4.2.

FIGURE 4.12 The blackboard mechanism extended for proactive agents.
Compared to Figure 3.2, the Motivation Selection and Planning Mechanism have
been added to the units and the Current Goal and Current Partial Plan to the slots in
the blackboard. The Planning Mechanism unit (blue) is a time-consuming unit where-
as all other units operating time is deterministic.
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4.7 RESULTS

As in the last chapter, we conclude this chapter with some results about the men-
tioned mechnisms. In this chapter, the proactive agent model has been presented
and therefore, we will have a closer look at such agents. As a proof of concept, we
will show some screenshots of scenarios that present proactive behavior. The pre-
sented behavior is not very elaborated, however, the basic mechanisms can be
shown.

The first example is a single elephant using its planning system to find a path in
the dynamic environment. The goal is to reach a certain location, for example a
waypoint of a static path, by considering dynamic changes and minor obstacles in
the environment which are not considered by the static path-planning system pre-
sented in Section 3.5. In Figure 4.13, a sequence of screenshots is depicted where
the camera follows such an elephant. The currently active plan is shown as a yellow
line. As can be imagined, the plan gets updated regularly and the elephant adapts its
way according to the plan. In average, the elephant has a plan length of around three
or four steps ahead.

The next example shows the same scenario but this time, multiple agents are
planning concurrently. In the scene depicted in Figure 4.14, fifty agents act proac-
tively and generate individual plans. Because of the anytime algorithm, the agents
do not interfere and can refine their current plan gradually.

Now, we add additional items to the scene that can be collected by the agents.
They will now walk around and when an internal variable representing the hunger
of the animal exceeds a limit, an apple in the neighborhood is collected and the vari-
able’s value decreased. The internal variable is increased in every step such that this
event occurs regularly. The sequence of screenshots in Figure 4.15 depict the scene.
First, the elephant walks through the scene in a rather straight direction. It gets
hungry and perceives food depicted by an apple. Immediately, it starts planning a
path dynamically to the apple and eats it. Afterwards, it continues to stroll around.

If there were another apple lying nearby, the elephant could act differently if the
value of hunger would be still high enough to look for food. Else, it ignores the
apple and continue its way.

A more sophisticated scenario is the sheep-dog which brings back a sheep that
left the herd. Since the sheep fears the dog, it will walk away from the dog. This

FIGURE 4.13 Sequence of an agent planning.
The agent tries to reach its goal with the planning system.
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FIGURE 4.14 Multiple agents planning concurrently.
Each elephant plans as depicted in Figure 4.13. The whole scene consists of 50 agents
which act concurrently in a proactive manner. Due to the anytime planning algo-
rithm, all have approximately the same plan length.

FIGURE 4.15 An elephant collecting food.
Top left: The elephant strolls around the scene and gets hungry.
Top right: It perceives food (red apple) and starts planning a path towards the apple.
Bottom left: It has found the apple and eats it.
Bottom right: Afterwards it continues its previous behavior – strolling around.
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makes this scenario hard to be implemented using purely reactive behavior. The
dog has to approach the sheep from the backside in order to push it back to the herd.
Especially when the dog is inbetween the sheep and the herd, this is hardly feasible
using reactive rules but very easy with our proactive model. It is just necessary to
define an appropriate evaluation function depending on the position of the herd,
dog, and sheep and the dog adapts itself automatically to the situation.The screen-
shots in Figure 4.16 present some according situations. The yellow lines visualize
the current plan of the rear elephant and the blue lines the expected reaction to this
plan. However, the actual movement of the other elephant will differ from this
expectation and the planning agent has to adapt its plan accordingly. On the top
row, the goal location is in the back of both elephants. Therefore, the rear elephant
has to make the front one turn around. In order to achieve this goal, it has to circle
around the front one. On the bottom row, the goal location is in the same direction

FIGURE 4.16 Sheep-dog behavior.
The rear elephant tries to bring the front elephant to a specific location. The front
elephant always fleas from the rear one such that it is necessary to walk around the
front one. The yellow lines depict the rear elephant’s actual plan and the blue lines
the according responce expected by the rear one. Note, that the blue lines will not
match the actual path of the front elephant.
Top: The goal is in the back of the scenery and therefore, the direction should be in-
verse. Therefore, the chasing elephant has to circle around the front one in order to
make it turn around.
Bottom: The goal is in the same direction and therefore, the rear elephant just has to
push the other one towards the goal location.
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as the elephants are moving to. Therefore, the rear one just needs to remain behind
the other one and adjust the direction only slightly.

Of course, this scenario needs no adaptation when dealing with a moving goal
location such as a herd. Because the planner automatically updates the destination
accordingly the plan will adapt to the new situation instantly.

In order to get a significant profiling of the planning architecture, we decided to
allow the agents to do full planning with different maximal depths. Full planning
means that every agent is allowed to search the whole search space in every step. The
according results are shown in Figure 4.17 where the vertical axis denoting the time
in milliseconds is logarithmic. We compared two different setups: The blue sce-
nario uses agents that have six different planer actions while the red scenarion con-
sists of agents that have twelfe planer actions. This number corresponds to the
fanout of the search tree. Then, we allowed the agents to plan up to different max-
imal depths of the search tree in order to restrict the time needed. With three to five
steps planned ahead, we clearly see that the time needed to create such plans gets
tremendous when the complexity is large. For example, an agent with 12 planer
actions and a maximal depth of five would need about 850 milliseconds to traverse
the whole search space. These results emphasize the need for anytime algorithms
which break this long calulations into small chunks.

When turning on the anytime functionality, there is no full planning possible
anymore, since the reset time restricts the maximal time to generate a plan before
the need for a reset arises. Since we can not guarantee that the maximal depth is
reached, we have to measure the average depth of a search until it needs to be

FIGURE 4.17 The average time to achieve a full plan for different depths and fanouts.
The chart shows the time in milliseconds which is needed to traverse the whole search
space for problems with different fanouts, i.e. the number of available planer actions,
and maximal depths of the search tree. Note that the vertical scale is logarithmic.
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restarted. Thus, the reset time has an influence on the average planning depth of
anytime planning algorithms. But also an increasing number of agents in these sce-
narios should reduce the average depth. We set up a scenario with a variable number
of agents and different reset times. We allowed the agents to pursue a goal and each
time, the planning algorithm was restarted, we measured the depth of the previous
solution. As explained in this chapter, this can happend either when the reset time
has been reached or when the agent has reached the last action of the actual plan.
The according results are shown in Figure 4.18. The three lines denote the different
reset times of 10, 5, and 1 second, respectively. The horizontal axis denotes the
number of agents and the vertical one shows the average depth of all these agents.
The average depth is reduced as expected with an increasing number of agents and
with a shorter reset time. For example, a single agent planning with a reset time of
5 seconds (green line) achieves an average depth of approximately 4 steps while one
in a group of 100 agents realizes a value of only 3.2. This chart should be considered
carefully, since these values also depend on the rendering time which depends also
on the number of agents and has an influence on the average activation frequency.

FIGURE 4.18 The average planning depth with anytime algorithms in different setups.
The three lines denote three different reset times of 10, 5, and 1 second, respectively.
The number of agents in the scenario is denoted on the horizontal axis while the av-
erage planning depth is shown on the vertical axis.
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5C H A P T E R
5HIERARCHIES AND LEVEL-OF-
DETAIL

During the last chapters, we have developed a model for reactive as well as proactive
agents in a real-time environment. We have seen that reactive agents can be simu-
lated rather fast while proactive agents can use as much time as available. This makes
great demands on the agent engine that simulates the agents with respect to time-
management.

This chapter will present methods that have been developed during the research
that lead to this thesis. The methods aim at breaking down the complexity and
speeding up the simulation while maintaining a proper visual impression for the
viewer. First, we will present the ideas such that the reader has a short overview of
this chapter and the used concepts. Then, after a section on related work, we will
rehash the hierarchical group structures that can be used to break down the com-
plexity of some problems. Afterwards, we will introduce a level-of-detail (LOD)
approach that determines a priority for each agent depending on the camera posi-
tion. These priorities are used within a scheduling algorithm that distributes the time
available to the agents. Last but not least, we will introduce a method that uses again
the hierarchies within groups to pass the control over to superior agents when the
individuals have a low priority. The chapter will conclude with results that show the
applicability of our methods.

5.1 INTRODUCTION

As known from computer graphics, there exist various methods to speed up the
processing of the graphics output. For example, multi-resolution approaches for
meshes and view-frustum culling are only a few among them. The main goals of
such methods are to maintain the visual impression or quality while reducing com-
119
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putational costs wherever possible. We will discuss such and other approaches for
our behavior simulation in the next sections.

In our environment, time is the most crucial factor. We have to find some way
to reduce the complexity of our approach. Obviously, we can utilize the hierarchi-
cal structures within recursively defined groups of agents as presented in
Section 3.3.5. By defining dependencies within the generated hierarchical tree the
agents decisions can rely on the behavior of their superior agents. Such an approach
has been used to speed up moving a group of agents to a specific location. Further-
more, the herding behavior of such groups can be speed up accordingly. We will
present a hierarchical solution to path-planning and to Reynolds flocking algorithm
in Section 5.3. 

As we have seen, proactive agents are very time-consuming and have to be
restricted in order to allow concurrent behavior. We therefore have to provide a
time-limit to each agent when activating it such that the agent can return after at
most this limit. Thus, we need some scheduling method that determines when and
for how long an agent can be activated. A simple round-robin scheduler simply dis-
tributes the time equally over all agents which seems fair but not optimal. This deci-
sion should depend on the visibility and the distance to the viewer. Hence, we
introduce an approach for level-of-detail on the behavioral and cognitive level.
Each agent gets a priority assigned which indicates the importance of that agent
within the current view of the world. As opposed to view-frustum culling, we
cannot totally neglect invisible agents since the world is expected to evolve contin-
uously. Our level-of-detail method will be presented in Section 5.4 before
accounting for the according scheduling algorithm in Section 5.5.

The last two chapters have introduced the reactive and proactive agent model.
While the former is fast but not sophisticated, the latter is time-consuming but
more advanced. Hence, a group of proactive agents is in great demand of time. It
makes only sense to allow each agent to act proactively on a individual basis if it is
visible and near the camera. If the whole group is far away, the individuals will not
be recognized as such anymore. Therefore, we could make use of the hierarchical
organization and pass the control over individuals up to the superior agents until
one agent controls the whole group. This approach is presented and discussed in
Section 5.6.

5.2 RELATED WORK 

LOD concepts such as view-dependent terrain simplification algorithms, multi-
resolution modeling, and geometry simplification are widely used and well known
in computer graphics [GGS95, Hop97, Paj98, HG94]. Most approaches are
restricted to geometric modeling issues, including some approaches dealing with
LOD for animation [CH97, SF99]. Only few work has been done on LOD in the
kinematic and physical layer. Chenney et al. introduce proxies as computational
inexpensive replacements of invisible dynamic objects which are used to efficiently
simulate large crowds of agents moving along paths where distant agents are
replaced by probabilistic approximations [CAF01, ACF01]. Brogan and Hodgins
automatically builds a simplified model of the characters movement abilities which
is used to speed up simulation [BH02].
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On the behavioral layer, hierarchical sensors, actions and contexts that allow
more complex behaviors and also group engagement were discussed by Atkin et al.
[AKW+01]. Group behavior has also been thoroughly investigated in [MT97,
UT01]. Musse and Thalmann present a hierarchical model for simulating virtual
human crowds [MT01]. These models all rely on the reactive agent concept,
whereas Funge introduces a cognitive modeling language which easily generates
sophisticated behavior of individuals through a knowledge representation that
allows for reasoning and planning in addition to reactive behavior [FTT99]. Can-
amero presents an approach for motivational behavior [Can97], Aylett et al. moti-
vations and continuos planning together [ACP00], and Grosz et al. discuss planning
within groups of agents [GHK99]. As discussed in Chapter 2, Bruderlin et al. and
Isla et al. exploit hierarchical approaches within an agent [BFEM97, IBDB01],
while Atkin et al. present a system which makes use of command hierarchies within
groups of agents [AKW+01]. O’Hara proposes a system that automatically generates
hierarchies of stable subgroups for Reynolds flocking algorithm [O’H02]. 

With respect to LOD on the behavioral level, O’Sullivan et al. present a frame-
work which allows for LODs within geometry, motion, and on the cognitive level
even for groups [OCV+02]. Their approach uses role-passing [MDCO02] to adapt
a characters possible behavior depending on its LOD. An approach by Musse et al.
introduces three different levels of autonomy for an virtual character: guided, pro-
grammed, and autonomous [MKT99]. However, they only compare these levels
against each other and do not infer on switching from one level to another automat-
ically.

5.3 HIERARCHIES

As stated above, the hierarchies within recursively defined groups of agents (see
Section 3.3.5) can be used to break down the complexity of various problems. But
hierarchies appear not only within groups of agents but also in other domains that
have been discussed in the last sections – for example hierarchical sensors, situa-
tions, and also planning. In this section, the emphasis is placed on the hierarchies
within groups of agents. We show how such a group structure can be used to speed
up the task of path-planning for a whole group of agents that wants to move to a
particular destination. Another example is a hierarchical flocking algorithm that
generates similar behavior as Reynolds famous boids [Rey87].

When using such hierarchies, each agent has to know its superior and inferior
agents. Additionally, the agents of the same level that have the same parent can be
worth to know sometimes as we will see. Last but not least, the agent has to know
the head of the group itself. This setup is depicted in Figure 5.1. The according ref-
erences are set up during instantiation of the hierarchical group.

5.3.1 Hierarchical Path-Planning

When a whole group of agents has to move to a particular destination it would be
wise to not allow every member to request a path to the destination using the path-
planning system introduced in Section 3.5. As we have seen, each path-request has
some computational cost which is not negligible if hundreds of agents would
request a path.



122 5  Hierarchies and Level-of-Detail
Obviously, the whole group moves from approximately the same location to the
same destination, therefore, the resulting paths would be almost the same in most
cases. If each agent is glued to its superior agent, only the group head has to plan a
path and follow it. Then, each agent would consecutively follow its superior agent
resulting in the whole group following the group agent. 

When using this approach some problems arise. First, we have to find a way to
glue agents together and, second, we have to deal with exceptions that can occur in
an open environment.

To enable such group behavior, we make use of the attribute which stores a ref-
erence to the leading instance, i.e. the superior agent. By using this reference, we
can easily access the knowledge of this instance and make the decisions dependant
on this information. When having access to the position of the superior agent, it is
easy to define a leader-follower situation that keeps an agent near its leader. This situa-
tion is implemented in a generic way such that it is easy to add this situation also to
agents that do no belong to a hierarchical group. The leader-follower situation has
four main attributes and two possible actions which are shown in Figure 5.2.

The leader is a reference to another agent, in our case the superior agent in the
hierarchical organization.  denotes a small vector which is added to the leader’s
position such that different agents do not radially move directly towards the agent
but towards its neighborhood. Finally, there are two important distance measure-
ments: First, the allowed distance defines a circle (grey area) around the leader in
which nothing happens at all. Second, when the agent is within the path distance but
farther away than the allowed distance (red area), the agent walks directly towards
the position of the leader including . Because of the reference to the leader, the
agent will automatically adapt to the leader’s movement – if necessary. 

FIGURE 5.1 References to other agents within a recursively defined group of agents.
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However, it is still possible that the agent loses contact to its leader due to an
obstacle. Unfortunately, this situation is unavoidable since this situation does not
include the environments information. If the agent is farther away than the path dis-
tance (blue area), it will plan a path to the same position. Although this path will not
adapt to the leader’s movements, it will bring the agent on the shortest path back to
the leader avoiding any deadlock. If the leader has moved in the meantime, the
agent again applies this situation in order to catch up again. If both the follower and
the leader have the same velocity, it might take arbitrary long to catch up to the
leader. Therefore, our solution does not only calculate the path to the leader’s posi-
tion but also makes the leader slow down a little. 

This situation allows members of a group to follow their group instance or their
superior agent. Thus, the whole group will keep automatically together by using a
simple reactive behavior. And it drastically reduces path-planning costs within the
group to a minimum since only the group agent has to regularly generate a path to
the destination. The others automatically follow the leader and initiate a path-plan-
ning only when the leader is too far away.

5.3.2 Hierarchical Flocking

Reynolds flocking algorithm [Rey87] relies on the spatial neighbors of each indi-
vidual. We extended this approach by including not the spatial neighbors but the
hierarchically related agents from within the group. Since each member can adapt
its behavior based on the properties of the known hierarchical related agents as
depicted in Figure 5.1, it is possible to generate new forms of herds, flocks, and
schools. 

Reynolds algorithm relies on three basic behaviors: Collision avoidance, velocity
matching, and flock centering. Each of these three behaviors generates a force
which are all weighted and added resulting in a force that affects the boids move-

FIGURE 5.2 The leader-follower situation that is used for hierarchical path-planning.
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ment. In order to calculate these forces, the local neighbors of each boid have to be
determined and the average position, orientation, and velocity are computed. The
determination of the local neighbors is a complex task [Rih04] and is closely related
to the underlying data-structure representing the distribution of the agents. But the
already available hierarchies within groups of agents can be used to substitute the
dynamic neighbors by the hierarchical ones. Based on Figure 5.1, we generate the
forces of Reynolds approach with respect to three groups of agents. First, the
parent-force  is related to the parent or superior agent. Second, the hierarchy-
force  is calculated with all agents on the same hierarchy level, and, third, the
child-force  with respect to the children of the current agent. Then, we can
simply weight and add these forces and compute a resulting force which influences
the desired orientation and velocity of each group member:

. (5.1)

When comparing this approach with the one of Reynolds, several varieties are
expected to show up. First, the behavior of the individual characters will be slightly
different since not the real neighbors are considered but only the hierarchical neigh-
bors. However, this allows for different independent subgroups and can be leveled
out by adjusting the weights as Figure 5.3i) shows. Second, a major advantage of this

FIGURE 5.3 The hierarchical herding approach based on Reynold’s algorithm.
Top left: A hierarchical herd in movement.
Top right: The subgroups of each hierarchy-level separate from each other when
changing the weights.
Bottom left: A technical view of the scene in ii). The lines depict the hierarchical order
where the green side points to the superior and the red side to the inferior agent.
Bottom right: Top view of the same scene. Agents of the same hierarchical sub-group
align and keep together while the inter-hierarchy relationship is less weighted.
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approach is that the algorithm is independent on the number of agents simulated
simultaneously. While the original approach relies on the varying number of local
neighbors whose determination is time-consuming and can depend on the density
of agents around the current one, this approach is independent on the distribution
of agents and works without considering the local neighbors. Therefore, its run-
time is almost constant as shown in Figure 5.4. Another advantage is the ability to
build herds of families that keep together as a herd but form independent sub-herds
of families as shown in Figure 5.3ii-iv). This can also be seen as a disadvantage
because sub-herds do not align when crossing each other. However, compared to
the original algorithm by Reynolds, the results of our approach look very similar but
have reduced computational expenses. A deeper analysis of this approach as well as
implementation issues are discussed in [Kno04].

5.4 LEVEL-OF-DETAIL

In 1999, Funge presented his work on cognitive modeling [FTT99] in which he
extended the computer graphics modeling hierarchy by two layers as shown in
Figure 5.5: The yellow behavioral and the cognitive layer in red. As discussed in the
related work section of this chapter, LOD concepts on the lowest layers are and
have been widely researched. Also, for the kinematic and physical layer exist some
approaches that introduce multi-resolution techniques to speed up the simulation.
On the behavioral and cognitive layer, there exist only few multi-resolution
approaches. In this section, we present a multi-resolution approach for the behav-
ioral and cognitive level which allows to use the same LOD over all layers of the
modeling hierarchy. The underlying idea of the method is described first before
going into the details.

FIGURE 5.4 Analysis of the hierarchical herding algorithm.
The values depicted are the time needed to determine one agent’s behavior. On the
left, the values for the original approach of Reynolds are depicted when applied in
our environment. On the right, the values are shown for our hierarchical approach.
The large difference results from the neighborhood query which is necessary in Rey-
nold’s approach. However, it is obvious that our approach does not depend on the
number of agents while the traditional approach does.
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5.4.1 Idea

When looking at multi-resolution approaches on the lowest layer of the modeling
hierarchy, there are in principle two methods to reduce the complexity. First,
objects, that are not visible are culled and not rendered at all. Second, objects far
away are reduced to a simple geometry that consists of a small percentage of the tri-
angles of the original model. On the kinematic and physical layer, similar
approaches exist: Invisible objects are simulated by using a simple and fast schemes
while visible objects are simulated with more accuracy. As before, the simulation
complexity can also be reduced to a simpler geometry for objects far away which
allows for faster calculations. The main difference between geometry and kine-
matic/physical approaches is that invisible objects have to be simulated on the upper
layers but can be neglected in the lowest layer.

Obviously, for the top two layers, it is also impossible to totally neglect invisible
objects, i.e. agents. These agents do not stop living outside the visible area. If we
would totally neglect invisible agents, these would stop moving and when returning
to a previously visited location, the world would not have changed at all. In our
environment, each agent is permanently active and acts as steadily as possible. How-
ever, invisible agents can be activated muss less frequent than visible ones. Hence,
the same approximations as on the kinematic/physical layer can be adapted to the
top layers:

Agents that are near the viewer are more important than objects far away.

Agents that are invisible are even less important than objects far away but must
not be neglected anyway.

FIGURE 5.5 The extended computer graphics modeling hierarchy with level-of-detail.
The hierarchy was first presented by Funge in [FTT99]. We extend it by introducing a
level-of-detail on the top layer which can be used also on the bottom layers, too.
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But we have also to account for the possibility that an invisible agent can soon
enter the visible area. It should not start acting more sophisticated right after enter-
ing the visible area but rather when approaching it in order to be “ready” when
entering the scene. Thus, the simulation maintains the visual quality while reducing
computational costs.

5.4.2 Setup

First, we have to determine the LOD for each agent. As stated in the last section,
the LOD depends on the visibility and the distance to the camera. Therefore, our
approach segments the environment into three disjoint areas as shown in
Figure 5.6:

Visible area (gray): This is the part of the environment which is currently ren-
dered.

Nearly visible area (blue): This is the area adjacent to the visible area.

Invisible area (red): The rest of the environment.

Furthermore, each area is additionally segmented based on the distance to the
viewer. Since the primary segmentation of the environment is done anyway during
rendering this classification does not introduce any additional cost to the simula-
tion. The objects are usually managed in a quadtree data structure. Before render-
ing, the quadtree is traversed to determine the visibility for the view frustum culling
of each cell as follows. First, all agents are marked as invisible. In a first iteration, all
quadtree cells are determined of which at least one edge is inside the view frustum.
During the traversal, the agents in these cells are all marked as nearly visible. Addi-
tionally, each object and agent within these cells is checked individually which
reduces the set of potentially visible to really visible ones.

FIGURE 5.6 The setup scheme for the level-of-detail.
The whole environment is segmented into three main areas: The visible (gray), nearly
visible (blue) and invisible area (red). Furthermore, these areas are further segment-
ed based on the distance to the viewer. On the right, a screenshot of the application
is shown with the same color-scheme. The camera (white) is shown with its view frus-
tum.
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According to Figure 5.6, each of these zones is further divided into several sub-
zones depending on the distance to the camera. In each zone, all objects get a value
assigned where lower values specify more important areas. We start by setting the
values for the visible agents according to

, (5.2)

where  denotes the maximal number of levels,  the maximal distance,
and d the distance to the camera. Then, the values for the nearly visible agents are
set to

, (5.3)

where is a positive and constant value. Therefore, nearly visible agents are a
little less important than visible ones. Invisible agents get a LOD according to

, (5.4)

where  has the same meaning like . Due to the clamping, all values
remain in [0, ]. Thus, after processing all the agents each one has a LOD
assigned with lower values denoting more and higher values less importance. One
could imagine to additionally multiply the values of the preceding step with a scal-
ing factor. This would stretch the scale radially and further reduce the importance
of agents not in sight. We have tried this but have not noticed any visual improve-
ment. 

Since the LOD depends only on the camera’s position and orientation and the
agent’s position, the setup should be performed at least when the camera’s position
or orientation has changed much. Since the agent’s position can change, too, the
setup has to be applied regularly. This depends on the maximal velocity of the
agents. If the scene consists of fast moving agents, the LOD setup should be acti-
vated more often. 

Thus, we have created integer values that characterize each agent’s importance.
But only having this value has no immediate effect on the behavior. Now, we have
to find a way how to activate the agents according to their importance and how to
distribute the available time in a similar way.

5.5 AGENT SCHEDULING

After the importance of each agent has been set using the LOD scheme presented
in the previous section, the need for a scheduling algorithm arises. This algorithm
should select the agents which need to be activated and it should determine the
amount of time each agent gets.

Scheduling is primary known from process scheduling within an operation sys-
tem. We will therefore first describe some of the common approaches for process
scheduling and discuss their applicability in our environment. Afterwards, we will
discuss the differences between process scheduling and scheduling in our environ-
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ment and introduce an agent scheduling algorithm that meets our needs including
some results.

5.5.1 Process Scheduling

If an operating system supports more than one concurrent process on a system1 it
needs to decide which process should get activated next. This task is usually done
by a so called scheduler.

There are two different kind of scheduling algorithms:

Preemptive scheduling. The process runs as long as the scheduler allows it. The
scheduler determines a time quantum after which the active process is replaced
by another. Here, the scheduler has full control over the assignment of pro-
cesses to the CPU.

Non-preemptive scheduling. The process runs as long as it needs. Another process
is activated either when the active process decides to hand over the CPU to the
next one or when it terminates.

In order to compare different scheduling algorithms, the following set of criteria
is used:

Response time. This is the time between the process wants to use the CPU until
it receives it.

Throughput. The number of processes which terminate during one time unit.
This presumes that the processes terminate sometimes.

Turnaround time. This describes the duration of a terminating process between
generation of the process until termination.

Efficiency. The percentage of CPU time which is actually used by processes.
This criterion has become less important as a result of the increasing perfor-
mance of current hardware.

Wait time. The total amount of time during a process likes to use the CPU but is
not allowed to do so.

Obviously, some of these criteria are conflicting. For example, a scheduling algo-
rithm with a short response time will have a low efficiency because it has to switch
processes rather often which takes some processing itself.

There are also other criteria which are not as good quantifiable as the above men-
tioned. Nevertheless, they are not less important to scheduling:

Fairness. A scheduling algorithm is considered fair if it distributes the total CPU
time according to each process’ priority in a nondiscriminatory fashion. This
implies that even low-priority processes get a certain amount of time, but high-
priority processes get more according to their priority.

Starvation. This is the situation when one process gets excluded from using the
CPU. This is usually a problem when a low-priority process is locked out by
other high-priority processes. A fair algorithm eliminates the occurrence of star-
vation. 

1.  Assuming that it is a system with only one CPU.
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We will now present some of the most common process scheduling algorithms
and compare them using the cirteria introduced above. These algorithms are first-
come first-serve, round robin, shortest job first, and priority queue.

First-come first-serve (FCFS). This is the most simple scheme possible. The pro-
cess requesting the CPU first will be activated first while later processes have to
wait. As according data-structure the FIFO queue is used commonly. FCFS is a
non-preemptive method. Therefore, this algorithm is not applicable to multi-user
systems since one user could actually block other users from executing processes.
But FCFS has the advantages to be very easy to implement, to have a small overhead
and to be very fair. The main disadvantage has been mentioned already: It is possible
that one process can block all other during a long period. For example, all I/O pro-
cesses can be blocked by a computational intensive process. In average, the FCFS
has a rather low waiting time.

This algorithm is not very useful in our environment, since all processes or agents
are active anyway. The criterion which determines the order of the execution is
therefore invalid and not usable.

Round Robin. This is one of the oldest and most common scheduling algorithms
[Tan92]. It is also one of the fairest ones. Basically, all processes are queued in a
cyclic list which are activated in this order. Usually, a time quantum determines the
run-time of each process. Therefore, round robin is preemptive and expects the
processes to be interruptible. The value of such a time quantum, however, is not
straight-forward because there is a trade-off between a large overhead due to process
management and short response times. A short time quantum implies a low effi-
ciency while a long time quantum increases the waiting time drastically. As the
FCFS method, round robin is also easy to implement. Additionally, it needs only
one attribute, the time quantum. The major disadvantage is that a process’ priority
is not respected because of the rather simple data-structure.

This algorithm treats every process the same way which is fair on the one hand
but not desirable on the other hand. In a environment with a very large number of
agents, even the invisible agents would get the same time as the visible ones. There-
fore, only a small fraction of the agents are activated during one cycle which results
in a low frequency and therefore in erroneous behavior. Although it reduces the
cost of overhead to a minimum which results in a maximal efficiency, we are look-
ing rather for an adaptive method that takes into account the level-of-detail.

Shortest job first. This method tries to minimize the average waiting time for all
processes. In order to do so, the process is chosen for execution which will return
the CPU as soon as possible. The duration while a process can use the CPU without
interruption is called CPU burst. Therefore, a preemptive shortest job first algo-
rithm will chose the process with the shortest next CPU burst. In case of a non-pre-
emptive algorithm the process with the shortest run-time will be chosen instead. In
this case, the processes are called jobs. Usually, jobs are not interactive and have a
predictable run-time. For interactive processes, the overall run-time is normally not
predictable as is the next CPU burst. Therefore, the algorithm usually relies on the
statistic of the previous runs of each process in order to determine the possible
expectable CPU burst. This method can reduce the average waiting time of each
process to a minimum but only if the prediction of the expected CPU burst is as
precise as possible.
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This strategy uses the expected run-time as criterion. But as stated above, this
task is rather difficult and in our environment even more since the time to compute
proactive behavior can take up to infinite time. Furthermore, the average waiting
time which is minimized with this method is not the most important variable in our
environment. For example, invisible agents can be simulated with a rather low fre-
quency without a great negative influence on the visible behavior.

Priority queue. This method has a large number of variations, but all use the same
underlying principle. The basic priority queue is based on the idea that there are
usually some processes with a higher importance than others or that there are some
processes which have a critical response time. For example, in a text processor, the
screen and cursor have to get updated regularly and as often as possible. But the
grammatical online check which runs in the background is of secondary importance
and does not need a small response time. Therefore, the priority queue algorithm
assigns a priority to each process. These processes are then inserted into queues based
on their priority as shown in Figure 5.7.

Each queue maintains a list of processes which are currently not requesting the
CPU. If a particular process needs to be activated it is placed into the ready queue
which is ordered by decreasing priority. Then, the CPU is assigned to the process
in the ready queue with the highest priority, i.e. the front-most one. In case of a
non-preemptive version, the algorithm will select the process with the next lower
priority after the current has released the CPU. If a process is waiting for a resource
it will be deleted immediately from the ready queue and placed back into its priority
queue before the scheduler executes the process with the highest priority.

As major drawback, this algorithm can generate starvation: A few high-priority
processes can detain many low-priority processes. This situation can be resolved by
using the aging principle: Each handled process’ priority is reduced after execution
while the waiting process’ priority is increased regularly. Therefore, all the low-pri-
ority processes will sometime get a priority which allows for execution. Of course,

FIGURE 5.7 Schematic view of the priority queue algorithm.
In the Not-Ready Queues are jobs waiting for resources or input. They are placed in
an ordered fashion in the Ready Queue, when needing the CPU. Then, the CPU
traverses the Ready Queue and executes the jobs.
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the aging has to be applied such that the original priority is considered in order to
allow high-priority processes get proportionally more time than others. Another
disadvantage of this method is the rather large management overhead with several
different queues and possibly changing priorities.

The major advantage of the priority queue scheduling algorithm is the possibility
to classify processes by their importance or priority. Other implementations actually
allow for a dynamically changing priority.

The priority queue scheme seems to be the most promising method presented
here. It uses priorities as criterion to decide about the next process to activate which
has a strong relationship to the level-of-detail in our environment. Agents near the
camera have a low LOD value while distant or invisible ones have a high LOD value
which is inversely proportional to the priority they should have. But the priority
queue has also a disadvantage: Because the LOD value is updated regularly, the pri-
ority queue algorithm has to update its internal data-structures immediately after a
LOD refresh. Ideally, this renewal should occur permanently but as stated in
Section 5.4, the LOD values do not change that often and a full refresh is necessary
only with a rather low frequency of about 1 Hz.

5.5.2 Agent-Scheduling

These scheduling algorithms with their different characteristics are not equally
useful in our environment for different reasons. First, process scheduling is not
exactly the same as agent scheduling. Second, the usability in our simulation envi-
ronment restricts the choice for a scheduling algorithm further more as discussed in
the last section. Third, opposite to processes, our agents have two completely dif-
ferent phases: the short reactive and the arbitrary long proactive phase. Before
choosing a scheduling algorithm, we have to deal with these restrictions.

Obviously, our environment is designed to use a kind mixture between preemp-
tive and non-preemptive scheduling. The system should decide about how much
time the agent gets but the agent has to decide itself when to release. Of course, the
difference between the time an agent gets and the time it actually uses should be as
small as possible. This seems to not restrict the choice very much.

The fact that the proactive agents have two different phases is much more impor-
tant. While some agents might have only the reactive system activated, some can be
proactive. Thus, some agents have always the same run-time while others can spend
as much time as available. And, the reactive phase is not interruptible at all. Either
it is activated and fully executed or it should no be activated at all. All steps from
sensing over situation-awareness to the action selection mechanism are necessary to
provide a reaction at all. If this process would be interrupted in between, the agent
could not use the intermediate information during the next run because it would
be outdated. And therefore, the afforded work would be useless.

The reactive and proactive phase bare two completely different requirements to
the scheduling algorithm. The reactive phase must be activated as often as possible,
thus, has a high frequency. So, the visual quality for the viewer can be maintained.
If the reactive behavior is neglected and the frequency drops, the resulting behavior
would be erroneous with agents crossing water or moving over the borders of the
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environment. Therefore, the most important criterion for the reactive phase is the
response time.

The proactive phase, however, does not require such a high frequency, because
an existing partial solution remains executable for a few seconds at least. Hence, a
renewal or extension is not absolutely necessary. But on the other hand, the time
available for planning should be reasonable high in order to allow for a feasible solu-
tion. As we have seen in the last chapter, the quality of a solution found by the plan-
ning mechanism is proportional to the time spent for searching, especially when
using anytime planning algorithms as presented in Section 4.4.2. 

The requirements of both modes are, as shown in Table 5.1, a short response
time and a long run-time, which are in conflict to each other. Improving one side
will reduce the quality on the other side. Therefore, the best solution is a compro-
mise between both these requirements. As stated in Table 5.1, the average deviation
of the run-time for the reactive behavior is very low. For all agents is in our envi-
ronment is expected to be approximately the same. Only interruptions of the oper-
ating system can increase the run-time noticeable. 

Therefore, we look for a scheduling solution the incorporates both the require-
ments of the reactive and the proactive mode. The general priority scheduling algo-
rithm presented in Section 5.5.1 is not usable in this form. 

5.5.3 Time Accounts

Because the simulation environment is executed in a single thread, the control over
the execution is passed exclusively to the agents. Each agent has to take care not to
pass over the limit given by the scheduler. If the simulated behavior is only reactive,
this limit is not important, since the reactive simulation should not be interrupted
anyway. In the case of proactive behavior, this fact is important to remember. Since
the execution of the anytime planning algorithms has some granularity itself, it is
expected that a proactive agent will use slightly more time than allowed to.

As we have seen, anytime algorithms have the property to increase the quality of
the result with increasing time available to run. And, it might be better to plan a
rather long time in one piece than planning more frequently but with shorter dura-
tion due to memory caching strategies. This leads to the idea that each agent should
be able to decide itself whether to plan frequently with short duration or less fre-
quently but for a longer period by accumulating the time available for planning. We
believe that this idea is very useful because the efficiency of the planning mechanism

TABLE 5.1 Comparison of the reactive phase and the proactive mode.

Mode Frequency Time needs
Run-Time 
Deviation

Necessary?

Reactive High Very few Low Yes

Proactive Depending on 
the goal and 
environment

As much as possi-
ble

High No
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depends mostly on the properties of the goal. This could depend on some dynamic
objects and its according plan should therefore be updated as often as possible. Or
it could be a more static problem with a large branching factor and should obviously
get updated less frequently but needs more time to create a useful solution.

In order to allow an agent to accumulate its time, we introduce a time account for
each agent which is handled by the scheduler. After initialization, each account is
set to zero. If an agent is activated and provided with a certain amount of time but
does not use all of it, the remaining difference will be added to the account. If the
agent is activated the next time, it receives the time for this slot – approximately the
same as in the first run – plus the account’s value which is readjusted again after the
agent has finished. If the agent uses more time than provided then the difference
will be subtracted from the account. With that, the agent’s account can have a neg-
ative value, too. Agents with a negative account will not be allowed to act proac-
tively and can therefore only activate their reactive behavior. Thus, it will need a
rather short time to complete its task and can possibly refill its account over the next
few activations. 

If the scheduler provides each agent at least a little more time than the reactive
behavior needs, then the account would be refilled step by step until the next pro-
active phase. Such a realistic minimal time per agent cannot be predefined per se
because it is strongly depending on the capacity of the used hardware and has to be
determined online. Therefore, the scheduling algorithm will not allow any agent to
act proactively during the first few cycles over all agents. During this phase, the
scheduler allows each agent to run only its reactive behavior routines and measures
the time needed for each agent. With this information, the scheduler calculates the
average over all reactive phases and increases this value by ten percent. This value is
of course agent-dependent and, thus, calculated independently for each agent.

In order to prevent agents from accumulating too much time, the account is lim-
ited with a lower and upper bound. With that, an agent cannot spend more than,
for example, a millisecond and prevents the scheduler from starvation. Obviously,
the time accounts have the tendency to get larger when the agent is not planning.
Thus, all purely reactive agents will have a positive time account which has no influ-
ence on the mechanism. Agents that do not plan will accumulate, too, and if they
decide to become proactive again, their time-account will allow to generate a good
initial plan immediately.

5.5.4 Priority Queue Agent Scheduler Algorithm

This section will describe the scheduling algorithm whose properties have been
acquired during the last sections. Our algorithm is based on the priority queue
scheduling algorithm and uses time accounts for the agents.

For each registered agent, the scheduler maintains a set of different information
such as a reference to the agent, the agent’s actual priority or level-of-detail, and the
time account of that agent. After having registered all agents in the scheduler, they
are placed into their according priority queue. Of course, after each recalculation of
the LOD values, the scheduler has to be set up again.

For each run, the scheduler receives the overall available time for the agent
engine. This time should be split up into time quanta according to the agents level-
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of-detail. First, the algorithm determines a quantum for each priority queue
depending on the priority of the queue and the number of agents contained:

, (5.5)

where T is the total time available for this simulation step.  is the quantum of each
queue determined by

, (5.6)

where N denotes the number of priority queues, i.e. the upper bound of the LOD.
Here, we have to remember that agents with a low LOD have high priority and vice
versa. Therefore, the algorithm subtracts the actual priority from the number of
queues.  is the weighted sum of all agents over all queues according to

, (5.7)

with  being the size of the i-th priority queue. The weighted sum is necessary to
make the time quantum depending on both the size of the queue and its priority.

The determined time quanta for each queue  will be a value in [0,1] which sum
up to 1. Therefore, the sum of all  will be T. After having determined the time
available for each queue and agent the scheduler starts activating the agents by start-
ing at the queue with the highest priority. 

Assuming an agent has an average reactive run-time of  (including the ten
percent added), we can determine the amount  needed for each agent:

. (5.8)

Equation 5.8 allows each agent to run at least its reactive behavior without
decreasing its time account. If the agent has a high priority it will receive more time
than  and is probably capable to act proactively. 

In Section 5.5.3, we introduced time accounts for each agent to accumulate time
not needed over time. Using these, an agent gets as total amount of time  accord-
ing to

. (5.9)

Of course, each queue can run only for  but the sum of all  can be larger
because of the minimal run-time  for each agent. Therefore, the algorithm is
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using a round robin scheme inside the queue by remembering the last agent acti-
vated and starting at the next at the ensuing run. Additionally, we apply the round
robin scheme also to the selection of the current queue such that all queues are acti-
vated on a regular basis. The resulting algorithm is depicted in Figure 5.8. 

This solution resolves most problems but not all. Consider the situation where
the last queue contains only one agent but the total time available always exhausts
before the algorithm reaches this queue. Then, this agent will no be activated at all.
A possible solution to this problem is to decrease each  by a few percent resulting
in a sum smaller than 1. Then, the scheduler would have some buffer that is used to
run queues that would not have been activated else. Of course, in the ideal case this
is a waste of time. But also the operating system can have an influence on the behav-
ior of the scheduling algorithm. The process can be interrupted at any time which
extends the time for the actually executed agent. But the scheduler does not know
about the interruption and assumes that the agent has used a lot more time than it
had available. The according time account is then decreased resulting in a reactive
behavior over the next few runs of this particular agent.

But also the opposite situation is possible. If most of the agents with a positive
time-account decide not to plan during this run but to accumulate the time they
will not use their time . Then the according list is traversed faster than expected
with some unused time left. Ideally, this time should be provided to the other
queues to have more time available for lower priority agents where possibly not all
agents can be activated. Of course, this only happens if all the agents in the queue
have been activated during this run. Then, our algorithm determines the time
remaining with respect to . Then, it is provided to the next queue and added to

FIGURE 5.8 The priority queue agent scheduling algorithm.
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. So, the next queue gets more time than expected because the queue with the
higher priority has not used its whole time quantum.

Two special cases have to be considered to guarantee fairness and prevent from
starvation. First, it is possible that all agents are placed into the same priority queue.
Second, all agents are equally distributed over all queues. The first case is not unre-
alistic at all: If the camera is high above the landscape looking down, all agents are
visible and have approximately the same distance to the camera. Then, the whole
time available is assigned to this particular queue. Within this queue, the round
robin scheduling algorithm is used resulting in a round robin scheduler with time
accounts. Therefore, all agents have an equal priority and the round robing scheme
guarantees fairness and no starvation occurs. The second case is the ideal case and
the opposite of the first scenario. Therefore, all expected cases will be somewhere
in between the first and the second case. Since we use a round robin scheme inside
the queue and over the queues, too, we expect that the over-all scheduling will be
fair, too. 

5.5.5 Results

In general, the total amount of time available for the simulation is independent from
the used scheduler – a scheduler can at most distribute this time reasonable to the
agents. Additionally, the administrative effort of a complicated scheduler will
decrease the efficiency of the whole system. Therefore, we expect that the overall
performance of the priority agent scheduling algorithm will not exceed a round
robin scheduler’s performance. However, the time available should be distributed
in a way such that the visual impression is improved, although less time is available
from an objective point of view.

First, we compare the average activation frequency of the agents of the round
robin scheduler compared to our approach. The results are visualized in Figure 5.9.
The activation frequency is the inverse of the response time which is especially
important for the reactive behavior. As can be seen, agents in the foreground which
are in one of the first priority queues have a high activation frequency and therefore
a low response time. Agents in the background which are in a queue with a lower
priority have, as expected, a lower activation frequency. The time available using
the round robin scheduler is the same and results in an equal frequency for all agents
denoted by the horizontal line. As intended, the priority queue algorithm assigns
proportionally more to agents that are near the camera than for agents that are invis-
ible or far away.

An agent moving from a low-priority to a high-priority queue will receive a
higher activation frequency. The priority queue algorithm allows for smooth tran-
sitions over all queues such that a change of queue will not affect the visual impres-
sion by changing the behavior drastically.

The time needed for re-assigning the agents to their queues and calculating the
time quanta is given in Figure 5.10

In order to validate the time accounts of our scheduling approach, we set up a
scenario that allows the agents to act proactively. Due to a understandable result,
this scenario has a reduced number of only four priority queues. The scenario con-
sists of twelfe proactive agents from which always three were assigned to one prior-

Ti 1+
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ity queue without the possibility to change that setting dynamically. The maximal
time account in this setup has been set to five milliseconds. Each agent is allowed to
pursue one goal until it is reached. Afterwards, the agent remains inactive. The
average time account for each priority queue during execution is depicted in
Figure 5.11. Note, that not all goals have the same temporal length to achieve the

FIGURE 5.9 A comparison of the average activation frequency.
The round robin scheduler’s frequency (red) is equal for all agents, while the priority
queue agent scheduler’s frequency (blue) depends on the priority.

FIGURE 5.10 The time needed to resort the queues and calculating the time quanta.
This depends on the number of agents and queues. The blue line denotes the case
with 10 and the red one with 20 queues.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10
Priority Queues

Fr
eq

ue
nc

y 
[H

z]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200

# Agents

av
g 

S
or

tin
g 

T
im

e 
[m

s]
 

10 Queues 20 Queues



5.6  Hierarchical Control 139
solution. Therefore, the duration until completion of the planning task is individual
and not directly depending on the agent’s priority.

As can be seen, the average time account of the agents first remains a little over
zero which means that all three agents in this queue use the time available for plan-
ning a solution to their goal. The high-frequent oscillation is a result of the accu-
mulation of time in the account because each agent is only allowed to plan if the
time available for the agent is over 0.1 milliseconds. When looking for example at
Q3, at call #195, the curve jumps to a value of approximately 1.76 ms. This is due
to the fact that one of the three agents has reached its goal and remains inactive –
resulting in a time account increasing to the maximum of five milliseconds. At call
#400, the curve increases again because the second agent in this queue has reached
its goal. Now, the average of all three agents remains at 3.35 ms which is approxi-
mately . At call #488, the last agent reaches its goal and now all three
agents are inactive and have a time account of five milliseconds. 

5.6 HIERARCHICAL CONTROL

Another approach to speed up the simulation also uses the hierarchical organization
within a group of agents. But opposite to the scenarios above which use the hierar-
chy to add some kind of special behavior to the agent, the following approach is not
supervised by the agent itself but rather by the simulation system that activates the
individual agents. The method presented here influences the type of behavior of
each agent.

As discussed in the related work section, Musse et al. distinguish three types of
behavior: guided, programmed, and autonomous [MKT99]. Our system already
supports two of them: The programmed type can be compared to our reactive agent
model since its behavior is deterministic. The autonomous type is basically the same
as our proactive agents because the agent can infer on what to do. The guided agent

FIGURE 5.11 The average time account for each priority queue in a special setup.
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does not decide anything since all its actions are determined by an external entity.
In our environment, the guided agent type is not foreseen yet but a similar approach
can be applied.

We can imagine that within a group of proactive agents far away, the individual
behavior of an agent gets less important for the observer than the behavior of the
group as a whole. We use this fact as a starting point for a further reduction of com-
plexity in our environment. The basic scenario consists of a group of proactive
agents. If this group is near the camera, we would like all agents to act individually,
possibly with some respect to the group. If the distance to the group increases, some
of these agents could give their proactive control to another agent in the group and
just stay near this agent. From the distance, this would not decrease the visual
impression since both agents are not fully distinguishable. The more the whole
group gets afar, the less individual behavior is necessary. The behavior of individual
agents can be reduced to only reactive behavior and a few or even only one agent
can guide the group proactively. The possibility of generating hierarchical groups
within the presented system allows for an elegant way to achieve this goal.

This section explores this approach and presents first the algorithm which is used
to pass the control to a superior agent and vice versa. Afterwards, results concerning
this approach are presented.

5.6.1 Algorithm

Two different cases have to be considered: First, we have to determine the moment
when an agent has to release the control to the superior agent and, second, the same
procedure in the opposite direction.

An agent should pass the control over itself to a superior agent if the time avail-
able for planning gets too short and does not satisfy the requirements of the planning
module anymore. Then, the additional time available for planning can be passed to
the superior agent which is assumed to have few time available, too. Thus, the supe-
rior agent gets an increased time account and has more time available for planning
which should be sufficient to generate appropriate plans. Of course, this agent could
be able to release the control to its own superior agent, too. 

This decision does not only depend on the time available for planning but also
on the LOD value. In a heavily crowded environment, we expect that each agent
has only very few additional time and this would immediately lead to a collapse to a
few agents controlling others which only follow their controllers. But for agents
near the camera, we would like to see all agents act independently even if they only
provide reactive behavior. Therefore, the number of controlled agents depends on
the actual LOD value and the additional time available.

The opposite direction is to release the control over other agents in two cases.
First, the agent could control more agents than its LOD allows. Second, the agent
can have so much additional time such that its controlled agents could possibly act
proactively again. The first case can be resolved by releasing the control over some
agents until falling below the limit of the current LOD. In order to allow for a fair
controlling, the agents are released in a first-in-first-out order. The second case is
handled by comparing the actual additional time available to a controlling agent to
a certain threshold. If the threshold is exceeded, a fix number of agents will be
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released such that they will use their additional time themselves in order to plan
towards a goal. If the additional time of the controlling agent is still over the thresh-
old during the next run, the same number of agents will be released again until the
additional time falls below the threshold.

The scheduling algorithm presented in Section 5.5.4 has to be extended. After
the calculation of the total time  for an agent, the scheduler checks regularly if
some change of control or of time-accounts is necessary:

If the current agent is a acting individually, its time account is positive and
smaller than a threshold, and if it is not controlling the maximal number of
agents for its LOD already, then the agent gives the control over itself and all
controlled agents to its superior agent and gets controlled, too.

If the current agent is not being controlled, controls more agents than its LOD
allows, and its time account is larger than a threshold or its LOD is too small,
then the agent releases some of its controlled agents and remains acting individ-
ually.

If the current agent is not acting individually, it passes its whole time account to
the controlling agent and sets its own time account to zero.

The emerging effect of these rules is that groups far away are controlled by only
one agent which plans for the whole group. Hence, the group members will just act
reactive and follow the controlling agent’s plans. When the group comes towards
the camera, the control is first split up such that several subgroups are generated
where each subgroup is controlled by one proactive agent. These subgroups will be
split up again the lower their LOD gets. Just in front of the camera, no controlled
agent is visible since the LOD does not allow to control other agents. 

Figure 5.12 shows a situation where the hierarchical control is applied. Three
large and hierarchical herds are placed at different distances from the camera. In
these images, the agents have been replaced by color-coded boxes. Yellow boxes
represent individually acting agents, blue boxes substitute agents that act autono-
mously but have control over others, and the red boxes depict agents controlled by
another agent. The gray lines denote the controller of the red marked agents.
Figure 5.12i) shows the rendering from the camera perspective. Obviously, most
agents in front of the camera are yellow and, thus, act autonomously. Some appear
in blue because they control some agents out of the view frustum of the camera, as
Figure 5.12ii) reveals. The camera is depicted as a white spot with its view-frustum.
In this image, one can see that in the distant herd, several agents are already con-
trolled by others while some still act autonomously. Figure 5.12iii) shows a differ-
ent scene from a similar viewpoint. Consistently, almost all agents in the frontmost
herd act individually while the distant groups reduce their complexity by allowing
the hierarchical control algorithm to gain influence. In Figure 5.12iv), the opposite
direction is shown with the camera at the horizon. At this distance, the herd is con-
trolled by only a few agents – almost all boxes are red and only a few are either blue
or still yellow.

tj
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5.7 SUMMARY

Finally, we summarize this chapter by presenting an overview of the acquired sys-
tem. The overall process of our solution is depicted in Figure 5.13. 

The first step of our solution is the determination of the level-of-detail for each
agent on a regular basis (a). This classification is done using the agent’s distance to
the camera and its visibility. Afterwards, each agent has an integer value assigned
which corresponds to the priority of this agent. Next, the total amount of time for
the actual simulation step is provided to the agent engine by the game engine (b).

This maximal duration is then split up in the scheduler (c). The agents are acti-
vated on a regular basis with a frequency corresponding to their priority. Each agent
receives an amount of time which is proportional to its LOD value. This duration
has a lower threshold such that purely reactive behavior is still possible. High-pri-

FIGURE 5.12 The hierarchical control algorithm.
Top left: View from the camera perspective. The yellow boxes denote individually act-
ing agents, the blue ones are controlling other agents, and the red ones are being
controlled by others.
Top right: The same scene from an overhead perspective. The white spot is the cur-
rent camera with its view frustum. The agents near the camera are all autonomous
while there are controlled ones in the back.
Bottom left: Another scene from a similar viewpoint. In the distant herds more
agents are being controlled than in nearby ones.
Bottom right: A view from the opposite direction. At a distance that far from the
camera, only few agents act individually while most agents are being controlled.
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ority agents might get more time than the minimum which possibly allows the
agent to plan into the future.

A group of agents can be used to further reduce the complexity of the approach.
Based on the currently available time and the LOD of an agent, the hierarchical
control unit decides whether the agent can act autonomously or needs to pass the
control over it to a hierarchically superior agent (d). Distant agents which have only
few time available for planning will then pass their additional time to the superior
agent and follow it using only reactive behavior rules. In opposition, an agent con-
trolling other inferior agents which gets near the camera or has much additional
time available will release the inferiors which will start acting autonomous immedi-
ately. This process is more efficient on hierarchical groups than on flat groups and
without consequences for purely individual agents.

Thus, the set of possible behavior types is threefold (e) as shown in Table 5.2.
The most basic behavior is the purely reactive type which has been introduced in
Chapter 3. It is rather individual as long as the situations and actions do not depend
on another agent’s bearing. Because the behavior is predefined with a finite set of
simple rules it is very fast to evaluate. But this also restricts the possible attitude of
the character to the designer’s programmed knowledge. The second behavior is the
controlled reactive type which only appears in groups. This is basically the same as
the reactive behavior but the agent additionally keeps thight to its superior control-
ling agent which can act proactive. Therefore, the controlled reactive behavior is
not as individual anymore as the pure reactive but since the controlling agent acts
proactive, the resulting behavior of the whole group remains reasonable. The most
individual behavior type is the proactive one which has been introduced in
Chapter 4. The proactive behavior is fundamentally different from the previous two
types. It allows the agent to follow a goal in the dynamic environment. Therefore,
the presented behavior adapts to external changes immediately and also in advance
by anticipating the future. The drawback of such a sophisticated behavior routine is
the increased time consumption. Therefore, this behavior type is reduced to the
controlled reactive behavior if time gets short and the agent has a low priority.

As Table 5.2 shows, these three behavior types offer a variety of different
requirements and properties. The possible behavior ranges from low to high intel-
ligence and autonomy. The presented algorithm allows for smooth transitions

FIGURE 5.13 Overview of the solution.
The scheduler (c) determines upon the LOD classification (a) and the total available
time (b) the time for each agent. Then, the hierarchical control mechanism (d) selects
the appropriate behavior from three possibilities: Only reactive, controlled reactive,
or proactive (e).
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between these behavior types depending on the level of detail of each agent and the
time available to the overall simulation. Thus, it is possible to generate a full simu-
lation of all agents at low frame-rates or to maintain interactive frame-rates with
reducing the level of sophistication of invisible or distant agents.

In order to compare the achieved frame-rates, we set up a scenario containing
1700 agents with purely reactive behavior. Each agent behavior simulation takes
approximately 0.02 milliseconds, therefore, the total amount of time needed to
simulate all agents would take approximately 34 milliseconds. Thus, with full sim-
ulation, the system could not achieve interactive frame-rates.

Table 5.3 shows the according results. The top three rows are cases where all or
almost all agents can be simulated during on cycle. Therefore, the resulting behavior
is perfect with respect to the applied reactive rules. For 5 to 20 milliseconds, the vis-
ible behavior still looks accurate, however, the behavior of invisible agents gets little
erroneous. When only one millisecond is available, the activation frequency are too
low and also the visible behavior gets erroneous, for example agents that walk into
the water. 

Table 5.4 shows the qualitative results of the second test. In this scenario, we
compared the proactive behavior in different setups. A scene with about 500 dis-
tributed proactive agents is simulated. When setting the allowed time for behavior
simulatioin to 5 milliseconds, we cannot see any proactive behavior when looking
at the full scene. However, themore the number of visible agents is reduced, the
more of them start acting proactively since they receive more time than before.
When the fraction of visible agents is reduced even more to around five percent,

TABLE 5.2 The three different types of presented behavior.
The reactive behavior is the base of the controlled reactive behavior where the agent
has to follow a superior agent. The proactive behavior includes also the reactive be-
havior but additionally allows for pursuing a goal.

Behavior Type Reactive
Reactive / 
Controlled

Proactive

Level of Intelligence Medium Low High

Level of Individuality Fully individual Partly individual, 
depending on a supe-
rior agent which is 
acting proactive

Fully individual

Level of Autonomy Medium Medium-Low High

Dependencies Only if defined in the 
behavior rules

The behavior of the 
controlling agent

Defined by the goal

Time Very few Very few Takes as much as 
available

Frequency High High Variable 
Depending on the 
goal and environment

Complexity Variable Medium High



5.7  Summary 145
also the nearly visible agents start planning which can be observed when turning the
camera and the visible agents are already executing a plan. When increasing the
available time to ten milliseconds allows for more visible agents with the same
behavior but reduces the frame-rate accordingly. For example, when approximately
half of the agents are visible, the ones in the foreground act proactively while the
rest remains reactive. With only ten percent visible, all these do planning even those
entering the view when turning the camera. 

In a final exploration, we measured different variables over a certain time period.
We kept the focus on four categories of information: The time spent for different
tasks, the behavior type of the agents, their visibility, and the LOD distribution.

TABLE 5.3 Frame-rate achieved by restricting the total time available.
With a total of 1700 reactive agents and each taking approximately 0.02 milliseconds
to make its decision.

T [ms] Frame-rate [fps]

50 15

40 17

30 19

20 25

10 34

5 43

1 50

TABLE 5.4 Comparing the resulting behavior in different setups.
The frame-rate (FR) is independent of the number of proactive agents.
v: visible, nv: nearly visible, iv: invisible

T 
[ms]

FR 
[fps]

(v/nv/iv) 
[%]

Observed Behavior

5 56 40/20/40 No proactive behavior. all reactive

5 56 10/20/70 Some agents in the foreground act proactively, but most agents 
reamin reactive only

5 56 5/5/90 Most visible agents act proactively, when turning the camera, some 
agents already plan, others start to do so

10 43 40/20/40 When overlooking the scene, most agents in the foreground act pro-
actively while agents in the middle ground and background remain 
reactive

10 43 10/20/70 All visible agents act proactively,even those entering the scene and 
when moving the camera

15 33 40/20/40 All agents in the forefront are proactive, most in the middle ground, 
too, while the ones in the background are reactive only.
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Corresponding charts for two different scenarios are shown in Figure 5.15 and
Figure 5.16. Both scenarios consist of approximately 200 agents. The underlying
scenario of Figure 5.15 has of many proactive agents and some distributed reactive
agents of which some are engaged in hierarchical groups. The scenario of
Figure 5.16 has fewer proactive agents and many reactive agents of which about half
are part of hierarchical groups and the other half is not.

In these figures, one chart is provided for each category of information. First, the
percentage of time spent for different tasks is plotted where the following tasks are
shown: LOD setup, scheduler setup, perception, situation recognition, reactive
behavior, action system, motivation detection, and proactive behavior. As can be
seen, the management overhead for the LOD setup and the scheduler is on average
below 10% of the time spent for all tasks – and most of this time is spent with the
LOD setup. In the first scenario with more proactive agents, about 30-50% is spent
with planning. 

The second chart is devoted to the behavior type which distinguishes between
controlled, reactive only, and proactive. Obviously, most behavior is purely reactive
which has been expected due to the fact that the reactive behavior is activated every
time but the proactive behavior only with according time-accounts. The percent-
age of controlled agents is fairly low which is due to the small number of hierarchical
agents. This could be enforced more with another setup in the control change algo-
rithm.

The third chart shows the average visibility of agents over time which is partially
linked to the last chart which shows the distribution over the LOD levels. Note,

FIGURE 5.14 Screenshots of scenes similar to Table 5.4.
Top left: 100 proactive agents at 5 ms.
Top middle: 400 proactive agents at 5 ms, most agents visible
Top right: Same as middle one but only a few are really visible
Bottom left: 400 agents at 10 ms, most are visible
Bottom middle: Same as left, but fewer agents are visible
Bottom right: 400 agents at 15 ms
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that the agents can be invisible but, nevertheless, have a medium LOD value. On
the opposite, distant visible agents can have a high LOD value. As can be seen for
the first scenario, most of the agents are not visible with minor execptions. There-
fore, around 50% of the agents are placed in the LOD level 9 and get a minimum
of time and activation. In the second scenario, we can see that most of the agetns
were visible towards the end of the measurement which was caused by the camer
overlooking the whole scene. Thus, only few time can be spent on proactive behav-
ior since many agents have to be activated regularly.

These results show that our approach works well with the presented scenarios
and is able to distribute the time in such a way that the needs of the simulation are
met. The overhead of the LOD approach is manageable and this mechanism pro-
vides good results for the visual impression. Depending on the simulated scenario,
the system adapts directly and distributes the available ressources in a considerate
manner.
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FIGURE 5.15 The behavior of the whole soution over time for a particular scenario.
The first chart shows the percentage of time spent on different tasks.
The second chart shows the behavior type of the agents.
The third chart shows the visibility of the agents over time.
The last chart depicts the LOD distribution of the agents.
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FIGURE 5.16 The behavior of the whole soution over time for another scenario.
The first chart shows the percentage of time spent on different tasks.
The second chart shows the behavior type of the agents.
The third chart shows the visibility of the agents over time.
The last chart depicts the LOD distribution of the agents.
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6C H A P T E R
6SYSTEM OVERVIEW

This chapter will present an overview of the whole system which has been pre-
sented during the previous chapters. We will go into details only where necessary
and start with a global system description and the general architecture. Afterwards,
the most important components are discussed before an overview of the interfaces
concludes this chapter.

6.1 INTRODUCTION

This chapter presents the agent engine which allows for the simulation of a charac-
ter’s behavior in a dynamic real-time environment as described in this thesis. This
agent engine is intended to support a main application such as a game engine which
provides an environment and takes care of the rendering issues, user interaction and
the physical simulation as shown in Figure 6.1. The simulation environment is
expected to provide a real-time simulation and interactive frame-rates.

Usually, a game engine provides a main loop during which the following steps
are executed repeatedly: User input check, networking, simulation update, and
rendering of the current state. The third step, the simulation update, is strongly
coupled with our agent engine. Therein, a game engine usually activates the phys-
ical simulation and moves the objects and characters according to the time passed
since the last update. Before moving any character, the character should have the
possibility to change its direction, speed or other properties which is done in the
agent engine.

The coupling of the simulation environment and the agent engine takes place
just before the simulation update step. It consists of three different operation types.
First, the characters need to be activated regularly such that they can adapt their pre-
sented behavior accordingly. Second, the characters need information from the
environment which is handled by a sensor interface. Third, the character needs to
151
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submit its decisions back to the game engine which moves the character accordingly
and displays some appropriate animations. Therefore, the interface between the
simulation environment and the agent engine is threefold. The control interface
receives the time available for the behavior simulation and basically activates the
scheduler. The scheduler then starts the agents according to its strategy. As we
know from Chapter 2, each agent’s simulation procedure consists of three steps:
Sense, think, and act. During the sense step, the sensor interface’s call-back functions
are used to update the agent engine’s own representation with information pro-
vided by the simulation environment. With the updated information available, the
agent deliberates over its possibilities either in a reactive or proactive manner,
depending on the scheduler’s decision and the level of autonomy. Then, some
action is executed in the action system which uses the effector interface to update
some variables in the simulation environment. 

In the following paragraphs, we will start by discussing the simulation environ-
ment, the interfaces between the simulation environment and the agent engine, and
the components of the agent engine that make use of these interfaces.

6.2 SIMULATION

The presented behavior engine is useless without a simulation environment that
takes care of the movement of the individuals and the rendering of the entire scene.

Since the target platform is a computer game, the environment should support a
real-time simulation where one second of simulation time corresponds to one
second of real time. Also, interactive frame-rates should be feasible which primary
depends on the performance of the simulation environment. Since the behavior
engine is flexible in this aspect, one can determine the remaining time for an accept-
able frame-rate and allow the behavior engine to spend it. Therefore, no time will
be wasted and an almost constant frame-rate can be expected, and, as the results
show, are achieved.

Thus, the behavior simulation is very flexible with this mechanism. When
allowing the engine to use as much time as needed, all agents can be fully simulated.

FIGURE 6.1 The tasks and interaction of the simulation environment and the agent engine.
The simulation environment handles the usual game engine tasks. During the simula-
tion update, the agent engine is activated and the scheduled agents start their indi-
vidual cycle during which the sensor interface receives information from the
environment and the effector interface reports the actions taken back to the simula-
tion.

Simulation Environment Agent Engine

User Input Handling

Simulation Update

Rendering

Character Scheduling

Sense

Think

Act

Sensor Interface

Effector Interface

Control Interface
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Using that approach, one can generate the behavior off-line and replay the outcome
of the simulation without using the behavior engine on-line. We did not make use
of that approach but generated all examples and scenarios in the on-line and real-
time mode.

In order to become fully operative, the simulation environment that uses the
behavior engine has to fulfill several requirements as addressed at the beginning of
this section. It has to provide a simulation update mechanism, a rendering function,
as well as a user input mechanism. The simulation update measures the time spent
since the last call and advances the characters and objects according to physical laws.
In our environment, this is a simple forward integration based on the current veloc-
ity and orientation. This mechanism can also handle collision handling such that the
behavior engine has no need to concern itself with that matter.

6.3 INTERFACES

As we have seen and depicted in Figure 6.1, there are three different interfaces
between the simulation environment and the agent engine. In this section, we will
describe these and discuss related issues.

6.3.1 Control Interface

The control interface is the main connectivity between the simulation environment
and the agent engine. The main methods provide the following functionality:

Loading the agents according to a definition in an agent description file as
described in Section 3.3.2. This method is usually called before starting the
whole simulation process. It generates all agents according to the definition and
initializes the attributes.

Setting the total run-time which influences the overall performance. This is a very
mighty method since several possible scenarios are possible. One can increase
the currently available run-time up to several seconds which will slow down the
simulation but concurrently allows all agents to be activated during one simula-
tion cycle. Or on the other extreme, one can decrease the value to a few milli-
seconds such that only a portion of all agents will be activated but the simulation
environment can keep its simulation frequency almost constant allowing for a
constant frame-rate independent of the total number of agents simulated.

Activating the agent engine’s scheduler which then activates as much agents as pos-
sible with respect to the total run-time. As long as the total run-time has not
exhausted, the scheduler will continue to activate agents. The scheduler ensures
that every agent will be activated at most once – even though some time might
be left at the end when returning the control back to the simulation environ-
ment.

Rendering of additional information and allowing other components to render, too.
This is important when debug information are needed during a real-time simu-
lation. But not only the agent engine provides such debug information but also
some other components such as the scheduler or each agent itself.
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Handling user commands which are not handled by the game engine and are passed
to the agent engine which probably distributes these further to other compo-
nents, such as agents. This includes any global command to change settings in
the agent engine or commands directly to an agent which are presented in
appendix A.

6.3.2 Sensor Interface

The sensor interface is a set of callback functions that have to be implemented in the
simulation environment, i.e. the game engine. These functions should provide
information that is perceived by the agents as explained in Section 3.4.1. There
exist two different types of sensor callback functions: There are global sensory infor-
mation and agent-specific information.

The global information concerns the environment itself, the camera’s position
and orientation. For the environment, information about the ground such as the
height or the gradient at a particular position is essential. Also, the dimension of the
ground and the contours of the lakes are needed, for example, in the navigation
system used for path-planning. Very important for planning is a method which
checks whether a particular position is valid or not.

The agent-specific information can be different for each agent. In our rather
simple environment, the basic information needed by an agent can be reduced to its
position, orientation and velocity. Additionally, the current level-of-detail and the
current neighbors are determined by the simulation environment, and are therefore
also part of the sensor interface. 

The determination of the neighboring objects and agents in the dynamic envi-
ronment is complex and therefore computationally expensive. We compared dif-
ferent data-structures with respect to the speed of updates and queries and the
memory requirements as shown in Table 6.1. [Rih04]

As can be seen, all data-structures provide a comparable cost to determine the
local neighbors and have only very small influence on the overall efficiency. There-
fore, the insert/update cost have to be compared in order to select the best alterna-
tive. This operation will take place during every simulation cycle after the

TABLE 6.1 Comparison of different data-structures used for local neighborhood queries.The in-
sert/update column describes the effort to insert or move an agent in the environ-
ment. The query column shows the costs for determining the local neighbors of a
particular agent and the last column describes the memory requirements of the data-
structure.

Insert/Update Query Memory

Grid fast and constant fast inefficient

Quadtree medium fast adaptive

R-Tree inefficient fast adaptive

k-d Tree inefficient fast adaptive
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environment has moved the agents according to their velocity and orientation.
Thus, its efficiency is even more important than the query’s efficiency since the
query is executed only when an agent becomes active. When comparing the four
data-structures, the grid and quadtree seem to be the most promising approaches
but with different properties. After the evaluation above, we decided to use the
quadtree for static objects due to its adaptive memory requirements, and the grid for
dynamic objects due to its fast and constant update-operations. 

A more thorough inspection of the query efficiency of both these approaches has
been done, too. There are two different types of neighborhood queries:

Neighbors in sight (NIS). This query determines all neighbors within a certain
distance from the querying agent without any restriction of the number of
agents.

k-nearest neighbors (kNN). This query returns the k nearest neighbors without
any restriction of the distance.

Both these queries can be useful in particular situations. NIS is usually needed to
simulate the vision system of an agent with a restricted field of view. kNN is neces-
sary when only a restricted number of agents are needed. Both these queries have
different properties and the results are out of scope of this thesis but can be found in
[Rih04].

6.3.3 Effector Interface

Opposite to the sensor interface, the effector interface is used to set values for the
simulation or to propagate the decisions of the agents back to the simulation envi-
ronment. The effector interface is an abstract class that has to be implemented by
the simulation environment. Since the effector interface is agent-specific, each
agent representative in the environment has to provide the according functionality.

Using that interface, each agent in the agent engine has access to its counterpart
in the simulation environment. After initialization, each agent provides its initial
position, orientation, velocity, and name to the environment. The maximal veloc-
ity, debug color, and the name of the model which is used to display the agent are
passed to the environment, too, but only for debug puposes. 

During the simulation, each agent can change its direction and its speed by set-
ting the desired values. The simulation environment is responsible to generate nat-
ural looking turns such that the orientation does not change too much during one
time step. Also, the actual velocity should be changed only smoothly such that
abrupt changes of the velocity do not occur. 

6.4 CORE COMPONENTS

This section presents an overview of the most important components of the agent
engine. When zooming into the agent engine in Figure 6.1, it can be decomposed
into different sub-parts as shown in Figure 6.2: 

The agent engine (AE) itself is a singleton, thus, only one instance of the AE
exists. It is the main component and implements the controller interface as
stated above. The AE stores a lists of all agents, one for the abstract agents
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needed during the construction of agent instances, one for the agent groups,
and one for all agent instances that are currently active. Furthermore, it provides
access to the controller and the knowledge base. 

The controller/scheduler is the main entry point used by the control interface and
handles scheduling and the hierarchical control mechanism. Depending on the
AE’s definition, either the round robin or priority based scheduling algorithm is
active. During each activation, the controller receives the total available time for
simulating the behavior. During the first few cycles, no proactive behavior is
allowed at all in order to determine the minimal time each agent needs accord-
ing to Section 5.5.3. 
Each active agent is registered at the scheduler after its initialization which gen-
erates an agent info object that provides the information necessary for the sched-
uler. The agent info instance stores whether the agent is autonomous,
controlled, or controlling other agents. In the last case, the inferior agents are
placed in a special list such that the controller knows which agents to release.
Additionally, the actual time-account and its upper and lower threshold are
stored in each agent info object

Each of these agent info objects also has an instance of the agent object which
provides the basic interface between the agent info and the knowledge base. It is
used to load the agents definition, creating the according knowledge base com-
ponents, and to activate an agent such that its behavior simulation starts. During
the cycle of each agent instance, the same methods are executed, independent
on the type of the agent. Only the associated knowledge-base components have
an influence on the simulation and, thus, on the behavior. 
The agent is basically a blackboard which has several components that need
some input and create some output needed by other blackboard components.
These components are either time-consuming or not. When an agent is not
allowed to act proactively, only the time-independent components are acti-
vated. 
A reactive agent consists of the components Sensor (receive sensor data from the

FIGURE 6.2 The main components of the agent engine.
The agent engine provides the main interface and maintains all other components,
basically a controller/scheduler and the knowledge base. Each agent has a represen-
tation in the controller as well as a related component in the knowledge base denot-
ed by the arrow. The knowledge base components are collections of multiple other
components.
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simulation environment), Situation (determine the actual situation), Reactive
(determine the action according to the actual situation), and ActionSystem (exe-
cute the actions). A proactive agent additionally needs the components Motiva-
tion (determine the actual goal) and Planning (generate a sequence of actions
according to the goal) before the ActionSystem is activated.

The knowledge base is the container for all individual agent-specific knowledge.
Each of the agents represented in the scheduler has one associated container in
the knowledge base which is related to several other components as presented in
Section 3.3.3 and Section 4.6.3. It is possible that multiple components refer to
a single component.
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7C H A P T E R
7CONCLUSIONS & OUTLOOK

In this chapter, we summarize the methods and results presented in the preceding
chapters of this thesis. Finally, we will point out directions for future work in the
last paragraph.

7.1 SUMMARY

In this thesis, a framework has been presented that allows for a real-time behavior
simulation of a large number of characters in a dynamic environment. The gener-
ated behavior is both reactive and proactive, thus, allows a character to plan ahead
in order to achieve a goal while maintaining a correct state with reactive behavior
following unforeseen exceptions. The framework can be used in different simula-
tion environments and provides a quality of service with respect to the response
time such that the environment is allowed to achieve constant frame-rates practi-
cally independent of the number and complexity of agents.

Reactive and Proactive Behavior. The characters behavior relies on the concept
of agents and is built out of simple basic components. First, the sensory system uses
an interface to the environment to provide actual information to the agent. Sec-
ondly, the reactive system is activated to determine a situation which matches best
to the current environmental and internal state. If there is such a situation, it pro-
vides a reaction to resolve it. Optionally, the agent might be allowed to plan ahead
in order to achieve a goal. This is done in a third step and provides a partial plan in
the direction of the goal state. The last step is the execution of the current action
which is usually the partial plan but can be overridden by the reaction provided.
Thus, the agent can act proactively but his reactive system prevents him from enter-
ing a dangerous or unexpected situation.

Behavior Composition. The framework permits to compose a sophisticated char-
acter out of simple basic behavior patterns which can be weighted additionally in
159
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order to prefer a particular basic behavior. This mechanism allows a behavior
designer to first implement reusable basic components and then combining and
extending these in order to provide more sophisticated characters. The weighting
of combined components makes it possible to prefer a particular basic behavior to
another one.

Group Generation. These characters can be grouped together using different
forms of groups that simplyfies social behavior. In structured groups, the members
can be individually specified, in heterogeneous groups, modulo-based rules are used
to specify regular parts of the group, and in hierarchical groups, the members are
defined recursively such that a internal hierarchy of group members is achieved.
Especially, the hierarchical groups present the potential for a reduction of the com-
putational effort as has been shown for two different grouping behavior models.

Concurrent Planning in a Dynamic Environment. Planning proactively in a
dynamic real-time environment poses different requirements to the planning sys-
tem. First, the system has to be interruptible such that other agents are allowed to
be activated, too. Therefore, we used anytime search algorithms which fulfill this
requirement. Secondly, several mechanisms are neccessary such that the agent will
always have an actual plan available. We have presented a solution which allows the
agents to pursuit a plan while generating a new one with only negligible interrup-
tions. Thirdly, we have discussed and presented search strategies that are applicable
in our environment. Fourthly, the dynamic environment poses different demands
on the planning system such that changes in the environment can be reflected in the
planning unit. 

Level-of-Detail for Behavior. The so far described framework has a complexity
that does not achieve a visually appealing simulation with a large number of agents.
Therefore, a level-of-detail approach has been introduced which divides the envi-
ronment into areas of different importance where the area in front of the camera is
most important. An associated scheduling algorithm distributes the few millisec-
onds available for the simulation to the agents according to their importance. Thus,
the visible behavior is improved without neglecting the invisible agents. Further-
more, agents engaged in a hierarchical group with low importance can reduce the
over-all complexity of the group by passing the control to a proactive and superior
agent while remaining purely reactive. When the group’s importance rises again,
the mechanism will release the control back to the individuals.

Extensible Framework. Our framework is extensible with respect to additional
behavior such as learning or other human capabilities presented in Section 2.4. Fur-
thermore, many components are designed such that the addition of other and novel
algorithms is relatively simple.

We have shown with different examples and some quantitative and qualitative
measurements that this approach allows for the generation of sophisticated behavior
in a real-time environment. The simulation provides interactive frame-rates alk-
most independent of the number of agents.



7.2  Outlook & Future Work 161
7.2 OUTLOOK & FUTURE WORK

The forelying framework is not yet complete with respect to a truly sophisticated
behavior simulation. Also, the research on proactive agents in real-time environ-
ments is still relatively unexplored but could be a key component of tomorrow’s
games. Therefore, we expect that research in this field will continue and some
results will get into commercial applications. In this section, we will point out pos-
sible future directions related to the work presented in this thesis.

Other Hierarchies. The afore mentioned hierarchies in groups and actions are cer-
tainly not all possibilities, where hierarchical approaches can have a significant
impact on possible variations and computational effort. Some work has already been
presented with respect to hierarchical sensors [IBDB01], goals or situations.

Utility-based Approach. The current proactive behavior relies on the selection of
the currently best plan to a certain situation. If there are multiple possibilities to
chose from, the utility-based approach could compare these and select the one
which matches best to the current needs and desires of the agent.

Proactive Behavior. The presented system supports proactive behavior for a single
agent based on rather general algorithms. We expect that the incorporation of other
search strategies, such as informed ones, could improve the performance of the
application and the quality of the generated plans. Also, two-person problems have
been discussed but have not yet been implemented due to the computational
demands. However, many decisions rely on the behavior of an other agent and as
long as this behavior is just simulated in a reactive manner, the resulting behavior is
erroneous, especially, when the other one is acting proactively, too.

Additional Units. Currently, the agent’s behavior model consists of both reactive
and proactive behavior. The system design allows to enhance the model by adding
novel units to the blackboard which can be either time-consuming or not. We
envision that a learning unit could improve the behavior of the agents over time by
monitoring the state and decisions of the agent. Upon this information, the learning
unit could alter internal variables or parameters in order to improve the over-all
behavior. Such a learning unit would impose the need for an evaluation function
which determines the degree of success given the current state and actions taken.
An anticipation unit is another possible extension to improve the behavior. As
stated in [KB00], the behavior of animals is largely based on expectations. With
anticipation, an animal can display astonishment if an unexpected situation occurs.
Of course, there are many further units possible, such as emotions or creativity.

Behavior Editor. The current system requires the designer to specify the compo-
nents and agents directly in a XML file as described in the text. An editor with a
graphical user interface could improve the usability of the framework considerably.
The description as well as the combination of the base components including the
generation of agent instances would be easier when the result could be displayed
directly. 
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AA P P E N D I X
ASOFTWARE COMPONENTS

The following appendix presents a short overview of the software components used
and developed in this research project.

This research project has been developed using the Microsoft Visual Development
Studio 7.0 in C++. The solution is divided into several projects, each responsible for
a particular mechanism as follows:

czBasic, czKnowledgeBase, czActionSystem, czAgent, and czAgentEngine are the
core projects of the behavior simulation engine. czBasic provides some funda-
mental classes such as the interfaces, the timer, and the parameters. czKnowledge-
Base handles the storage and data-structures for all knowledge base components.
The action system (czActionSystem) is used by all agents of which various imple-
mentations are available in czAgent. At the end, in czAgentEngine all other
projects are assembled. This project provides the main interface to access the
functionality of the behavior simulation.

GaiaEngine and TestSimulation are two different simulation environments.
TestSimulation is the old version which renders the characters only as billboards
without considering their orientation. The newer simulation environment, the
GaiaEngine, provides LOD rendering, animated characters, extended environ-
ment definition possibilities, and two different rendering modes – realistic and
comic rendering.

qtCreaZoo is a run-time control interface that directly affects the rendering and
behavior of the simulation environment during run-time. It is implemented
using Qt [QT 05]. A screenshot is shown in Figure 7.1.

Cal3D is a software library for animating characters developed by Bruno
Heidelberger [Hei01]. It is used to animate the characters used in the Gaia
Engine.
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ContourExtraction, Clipping, and Tesselation are projects used in the path-plan-
ning engine. The contour extraction package is used to find the contour lines of
lakes which are handled as obstacles in the path-planning architecture. These
contours and the other obstacles such as trees are first clipped, then tesselated
before the dynamic A* altorithm can be applied.

FIGURE 7.1 A screenshot of the run-time control interface.
On top, the active agents are displayed, on the bottom left, some of the knowledge
of the selected agent is shown and on the right its current history.
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BUSER COMMANDS

During the simulation, the user can interact with the simulation in the GAIA
engine by pressing distinct keys or by entering user commands on the console. 

B.1 KEY COMMANDS

General

p Pause behavior simulation and movement

h Print help

ESC Exit

TAB Toggle Console on/off

Camera movement

w Move camera forward

s Move camera backward

a Move camera to the left

d Move camera to the right

q Move camera upwards (not always available)

e Move camera downwards (not always available)

g Stick camera to an agent (2 different modes)

[ or ] During stuck camera: Switch agent

y Toggle between three different cameras

m Change camera state: Free over terrain / always same height / free
165
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Rendering

c Switch between realistic and comic rendering

f Toggle fog

b Switch between colored cubes and 3D meshes

Debug

k Switch to debug rendering

n Display the names of the agents

l Display the LOD for each agent

v Display velocity of each agent

i Print scheduler information

j Print camera information

t Print statistics of GAIA engine

backspace Switch to debug rendering of GAIA engine

B.2 CONSOLE COMMANDS

cls/clear Clear command line

help Gaia Display GAIA console commands

camera x y z lx ly lz
Set camera positioin and orientation (l-values: look at)

cmd ... Command to the behavior simulation

B.2.1 Behavior Simulation Console Commands

cmd name r ...

Recursive command. If name is in a hierarchy or group, the com-
mand after the r will be passed to the inferior agents, too. Works with
all commands in this section.

cmd name goto x y

Makes name following a static path of the path-planning system

cmd name go x y

Makes name going to the destination by using its planning capabili-
ties.

cmd name bring other x y

Makes name following other and bring it to the desired destination
using the proactive behavior.

cmd name clear

Reset agent name: 
Stopping current action, removing last user command
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cmd name stop

Stop agent name:
Setting velocity to zero, removing last user command

cmd name hon [n], cmd name hoff

Activate (hon) or deactivate (hoff) the agent’s history. The history
can be displayed in the run-time control interface or on the com-
mand line. n denotes the number of entries in the history.

cmd name hprint

Print agent history on command line.

cmd name print

Print agent information on command line. Only active in Debug
mode.

cmd ctrl name, cmd rel name

Change control of a specific agent. ctrl will make the agent pass the
control to the superior agent and rel will make an agent release all
control over other agents.
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