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Abstract

The demand for computational power in real-time embedded systems
has increased significantly, making multi-core and heterogeneous sys-
tems attractive in the real-time domain. However, as a single memory
subsystem is shared by all cores, simultaneous use of the memory sub-
system may significantly impact the timing properties of a task, and
as systems must be dimensioned for their worst-case execution time
(WCET), such memory interference may lead to very pessimistic ex-
ecution times and low system utilization.

Simultaneously, another trend in real-time embedded systems is
the increased interest in commercial-off-the-shelf (COTS) hardware,
as it is cheaper and more performant than hardware platforms de-
signed specifically with real-time timing guarantees in mind. Such
systems are optimized for good average case performance, employing
best-effort arbitration mechanisms that elevate the effects of memory
interference of multi-core and heterogeneous systems.

In response to this, several software-based mechanisms to limit
the effects of memory interference have been proposed. One of the
most prominent is the Predictable Execution Model (PREM), which
addresses the problem by dividing programs into sequences of memory
and compute intensive phases, and scheduling the system such that the
memory phases of two task never interfere with each other. Over the
past decade a large body of PREM-compliant scheduling techniques
have been proposed, however, very few works on how to automatize
the laborious task of making programs PREM-compliant, and even
fewer works that address the impact of architectural designs on PREM
have been presented.

This thesis addresses this disconnect between scheduling and code
and architectural considerations, starting with an exploration of im-
plications to PREM of different system architectures, from multi-
core CPUs, and via GPUs to Programmable Many-Core Accelerators
(PMCA), as well as the impact of scratchpad- and cache-based mem-
ory hierarchies. From these results, we propose compiler-techniques
to transform legacy code into PREM-compliant memory and compute
phases, accomodating and optimizing for the different architecture and
memory types. We show that such techniques can improve the per-
formance of GPU kernels by up to 2×, but may incur a non-negligible
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scheduling overhead determined by the refill-rate of the local mem-
ory, decided by its size. For CPU kernels freedom from interference
transformations incur on average a 20% overhead, mainly due to cache
management techniques. We also show that PREM can be done with-
out significant overheads on PMCA, as PREM aligns well to the na-
tive execution model. We next confirm that the proposed techniques
provide freedom from memory interference, showing that they reduce
GPU execution time variance under memory interference by orders
of magnitude to a few percent. Similarly, we show that the WCET
of PREM workloads on CPUs can be up to 45% lower than tradi-
tional code. Finally, we show that inter-task optimizations, contrary
to common belief, can not be well managed within the limited visibil-
ity of a PREM compiler, and propose an external optimizer toolchain
that enable PREM systems to be optimized by trading task perfor-
mance for overall memory performance. Using this technique we are
able to reduce system response times by up to 31% over compiler-only
techniques. We conclude that PREM requires different consideration
for different architectural templates, but if well managed can pro-
vide freedom from memory interference guarantees over a vast array
of different platforms, enabling timing-predictable excecution at low
overhead.
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Zusammenfassung

Die zunehmenden Anforderungen an die Rechenleistung eingebetteter
Echtzeitsysteme haben Mehr- und Vielkernsystemen in den letzten
Jahren zu einer attraktiven Lösung gemacht. Da aber alle Kerne
in solchen Systemen sich das Speichersubsystem teilen, können par-
allele Speicherzugriffe mehrerer Kerne im Speichersubsystem inter-
ferieren und dadurch die Latenz von Echtzeitaufgaben erheblich bee-
influssen. Zur gleichen Zeit hat das Interesse an Commercial-off-
the-Shelf-Systemen (COTS) zugenommen, da sie im Vergleich zu auf
Echtzeitgarantien spezialisierten Systemen günstiger sind und höhere
Rechenleistungen bieten. COTS-Systeme sind allerdings für niedrige
durchschnittliche Ausführungszeiten optimiert, und die dabei einge-
setzten Best-Effort-Arbitrierungsmechanismen im Speichersubsystem
können die erwähnte Speicherinterferenz verstärken. Echtzeitsysteme
hingegen müssen für die Worst-Case-Ausführungszeit (WCET) di-
mensioniert sein, die durch Speicherinterferenz erhöht wird. Eine
erhöhte WCET reduziert die Anzahl Aufgaben, die auf dem Sys-
tem verarbeitet werden können, und hebt dadurch den Hauptvorteil
von Mehrkernsystemen auf. Eine zentrale Herausforderung bei der
Einführung mehrkerniger COTS-Systeme für Echtzeitberechnungen
ist deshalb die Minimierung der Speicherinterferenz.

Mehrere dafür geeignete Softwaretechniken wurden in den letzten
Jahren vorgeschlagen. Einer der bekanntesten ist das Predictable Ex-
ecution Model (PREM), das Echtzeitaufgaben in eine Sequenz von
separaten speicher- und berechnungsintensiven Phasen aufteilt und
einen Ablaufplan erstellt, in dem zwei speicherintensive Phasen nie
parallel ausgeführt werden. Dadurch verhindert PREM das Auftreten
der Umstände, bei denen Speicherinterferenz ein Risiko ist. Über das
letzte Jahrzehnt wurde eine grosse Anzahl von Techniken für das Er-
stellen von PREM-konformen Ablaufplänen vorgeschlagen. Allerdings
beherrschen nur wenige Techniken die automatische Transformation
von Echtzeitaufgaben in Phasen. Eine noch geringere Anzahl der
Techniken berücksichtigt bei den PREM-Transformationen auch die
Besonderheiten der Rechnerarchitektur.

Diese Arbeit überbrückt die Lücke zwischen den Abläufplanen und
dem automatischen und rechnerarchitekturbewussten Erstellen von
PREM-konformem Code. Sie untersucht die Auswirkungen PREMs
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auf unterschiedliche Programme auf unterschiedlichen Rechnerarchitek-
turen, von Mehrkern-CPUs über GPUs zu vielkernigen Rechenbeschle-
unigern (PMCA). Auch die Implikationen von scratchpad- und cache-
basierten Speicherhierarchien werden untersucht. Aus diesen Un-
tersuchungen gehen Compilertechniken hervor, die Legacy-Code au-
tomatisch zu PREM-konformen speicher- und berechnungsintensiven
Phasen, die für verschiedene Rechnerarchitekturen und Speicherhier-
archien optimiert sind, transformiert. Die Leistungsbewertung zeigt,
dass die präsentierten Lösungen GPU-Programme um 2× beschleu-
nigen können, aber auch zu deutlichen Verlangsamungen wegen zu-
sätzlicher Operationen durch das regelmässige Nachfüllen des lokalen
Speichers führen können. Jedoch führen diese zusätzlichen Operatio-
nen bei CPUs, wegen ihrer grossen lokalen Speicher, zu einer durch-
schnittlich nur 20 % höheren Laufzeit, und können bei PMCAs, we-
gen der Übereinstimmung der Ausführungsmodelle von PREM und
PMCAs, sogar komplett wegfallen. Die Bewertung der Effizienz der
Techniken zeigt, dass die präsentierte PREM-Technik die Speicher-
interferenz auf GPUs um mehrere Grössenordnungen und auf CPUs
um bis zu 45 % auf nur wenige Prozent verringern kann. Zuletzt
zeigt diese Arbeit, dass, im Gegensatz zu verbreiteten Annahmen,
PREM-Systeme nicht von Compilern oder Ablaufplanern in Isola-
tion optimiert werden können, und diese Arbeit präsentiert eine neues
toolchainbasiertes Modell um diese Einschränkung aufzuheben. Diese
Technik kann die Reaktionszeit eines Echtzeitsystems um bis zu 31 %
im Vergleich zu nur-Compiler-Techniken senken.

Das Fazit ist, dass mit diesen Techniken das PREM automatisiert
und mit geringem Zusatzaufwand auf eine breite Auswahl von COTS
Mehr- und Vielkernsysteme angewandt werden kann, wodurch Spe-
icherinterferenzen stark reduziert werden können.





Chapter 1

Introduction

The demand for computational power in real-time embedded systems
has increased significantly, making multi-core and heterogeneous sys-
tems attractive in the real-time domain. However, as a single memory
subsystem is shared by all cores, simultaneous use of the memory sub-
system may significantly impact the timing properties of a task, and
as systems must be dimensioned for their worst-case execution time
(WCET), such memory interference may lead to very pessimistic ex-
ecution times and low system utilization.

Simultaneously, another trend in real-time embedded systems is
the increased interest in commercial-off-the-shelf (COTS) hardware,
as it is cheaper and more performant than hardware platforms de-
signed specifically with real-time timing guarantees in mind. Such
systems are optimized for good average case performance, employing
best-effort arbitration mechanisms that elevate the effects of memory
interference of multi-core and heterogeneous systems.

1.1 The Memory Interference Problem

Over the past decade, multi-core systems have taken over every market
segment, but their adoption is still slow in the context of real-time
systems because contention on shared resources leads to unpredictable
access times [1, 2, 3]. In recent years, there has similarly been a
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Figure 1.1: The architectural template considered throughout this
thesis.

push towards heterogeneous SoCs for commercial off-the-shelf (COTS)
embedded computing, which combine a general-purpose CPU with a
programmable, data parallel accelerator such as a GPU [4, 5].

While these systems are capable of sustaining adequate GOps/W
targets for the requirements of autonomous navigation workloads,
their architectural design is optimized for best-effort performance,
not at all for timing predictability. To allow for system scalability
to hundreds of cores, resource sharing is a dominating paradigm at
every level in these SoCs. In particular, it is commonplace to employ
a globally shared main memory architecture between all CPU cores
and any accelerators in the system. This has large benefits in energy
savings [6] due to reduced replication of power hungry hardware, and
improves programmability, as programmers do not need to handle
data movements between two discrete memories [7] when offloading
computation to the accelerator.

1.1.1 System Model

Following this trend in embedded high-performance computing sys-
tems, the overarching architectural template considered in this work,
as shown in Figure 1.1 consists of three parts. First, a CPU-like set of
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N cores c0, · · · , cN−1 which have at least one level of core-private stor-
age. Second, one or more accelerator consisting of M clusters sm of
K cores, or processing elements, pm,k. Third and last, a single shared
memory system, as outlined in Section 1.1, to which all data and
instruction requests from each of the CPU cores cn and accelerator
processing units pm,k are sent and handled. All of these components
together are refered to as the system. Depending on the instantiation
of a system, the point at which memory requests converge on their
way to the memory may differ, i.e., at last level cache (LLC) level,
memory controller (MC) level, or other part of the system.

With respect to the memory hierarchy, the only assumption made
on the system is that each individual CPU core cn and each accelerator
cluster sm have access to at least one level of private cache (highlighted
in bright yellow in Figure 1.1). This is a necessary precondition for
the application of the Predictable Execution Model (PREM), which is
a cornerstone that this work builds upon. An introduction to PREM
will be given in Section 1.3, after a discussion on the memory inter-
ference problem that this execution model is intended to solve.

On top of the system a number of real-time tasks τ ∈ T , where T
is the set of all tasks to be executed on the system, are deployed. Each
task τ has an associated deadline before which its computation has to
finish and the result returned. Consistent with traditional definitions
of hard real-time systems [8], a failure of task τ , for any reason, to
meet its deadline is considered a system failure. Each task τ is mapped
either to a CPU core c or an accelerator cluster s, and for the purposes
of this presentation we assume that there is no migration at runtime.
While there is no fundamental limitation preventing migration, this
problem is orthogonal to the focus of this thesis, and assuming a fixed
task-core pairing keeps the discussion focused. We will return to a
more precise task description in Section 1.4.

1.1.2 Memory Interference

To guarantee that timing constraints of tasks τ ∈ T are never violated,
we assume that (and will partially explore how) the worst case execu-
tion time (WCET) of each task τ is analyzed to produce a schedule in
which all tasks are guaranteed to finish before their deadlines [8]. On
traditional single-core systems, such analysis is well understood and
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mature tools exist [9]. On the other hand, when multiple tasks are co-
scheduled in multi- and many-core systems, they become susceptible
to interference from each other’s accesses to main memory (and from
other peripherals’ accesses), with significant impact on the WCET of
real-time tasks [2, 3]. This contention induced by shared resources
makes it difficult to bound worst case execution and response times,
invalidating established single-core analytical methods for formal ver-
ification. Thus, for WCETs to provide a true upper bound under
any multi- or many-core execution, the maximum interference would
have to be assumed for every access [10], leading to very pessimistic
bounds. These may even nullify the benefits of multi-core execution
in the first place as memory latency increases.

The most severely contended resource is the global memory, e.g.,
the DRAM, from which all cores load instructions and data. This
problem was shown by amongst others Pellizzoni et al [1] to be bad
already in multi-core systems, where one could expect a linear increase
in WCET with the number of cores added to the systems. Such find-
ings have later been confirmed both on multi-core and heterogeneous
systems by others, e.g., Caviocchioli et al [2] and Zhang et al [3].

Custom-designed hardware for real-time systems [11, 12], is not
always a viable solution, as it generally lags severely behind in perfor-
mance and cost compared to COTS systems, due to longer time-to-
market and limited production volumes, which prevent access to the
latest CMOS technology nodes. Therefore, software mechanisms that
enable timing predictable execution on COTS hardware are of high
interest. Certification authorities are defining software development
guidelines aimed at enabling the long-awaited adoption of multi-core
processors in safety-critical domains [13]. Here, the concept of ro-
bustness to interference is central, and achieved through strict time
partitioning. As software partitions are guaranteed to execute in iso-
lation, the worst-case execution times (WCET) of each partition can
be computed/measured in isolation, greatly reducing the pessimism in
traditional timing analysis. This also enables system composability, an
important property that ensures that adding or removing a software
partition to or from the system does not affect the timing properties
of any other partition, ensuring that the entire system does not have
to be re-verified.
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1.2 Software Techniques to Address the
Memory Interference Problem

As is known from the literature [14], the deployment of high-level soft-
ware arbitration mechanisms can provide a real-time aware abstrac-
tion layer which provides such software partitioning for robustness to
interference. The abstraction layer removes all dependencies on un-
predictable underlying hardware arbitrators by enforcing software im-
plemented protocols that dictate which device that can access which
resource at what time. Classical examples of such techniques include
reservation server techniques [8], but during the multi- and many-core
revolution this has been further extended in the last decade.

One class of techniques is based on the enforcement of per-core
budgets. In these approaches, tasks are allowed to execute as long as
they stay within the bounds of a predefined amount of cache misses.
If this budget is exceeded, the task/core is stalled as to not neg-
atively affect other tasks in the system. Examples of this include
MemGuard [15], and BWLOCK [16]. While these approaches limit
the amount of interference that different software partitions can have
on each other, they are not able to eliminate it by design. This means
that they remain incompatible with the vast amount of established
single-core analytical methods, as some amount of external memory
interference still needs to be considered in the timing correctness anal-
ysis of each partition. The aforementioned techniques are primar-
ily intended for multi-core systems, and techniques for heterogeneous
SoC management have started appearing more recently, and include
scheduling of DMA memory transfers and kernel executions indepen-
dently at offload time [17, 18], as well as an extension of BWLOCK
– to BWLOCK++ [19] – to provide the capability of reserving mem-
ory bandwidth for offloaded kernels. Furthermore, SiGAMMA [20]
similarly provides a reservation server, as well as techniques to in-
terrupt misbehaving GPU kernels based on their memory bandwidth
utilization.

Another class of techniques are cache-aware analytical methods for
bounding the WCET under interference [21, 22, 23]. These techniques
do not prevent interference, but attempt to tightly bound its effect to
ensure that all tasks meet their deadlines without enforcing budgets.
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The main drawback of these type of approaches is that the memory
interference analysis needs to be redone each time a new task is added
to the system, compromising the important property of system com-
posability, i.e., that components can be added and removed from the
system without affecting the parts of the system that have already
been validated.

The third class of techniques [24, 25] is the enforcement of exe-
cution models that guarantee that segments of tasks in different par-
titions that require access to shared resources (memory) are isolated
from each other in time through means of scheduling. This ensures
that each individual segment can be analyzed with classical single-core
analysis methods, and then combined into a system schedule without
affecting these timing properties. In effect, this approach takes the
software partitioning to an extreme, by subdividing individual tasks
into separate, although communicating, partitions. One of the most
prominent is the Predictable Execution Model (PREM) [24], which is
the theoretical framework that underlies this thesis. The main goal of
PREM is to remove interference from the system by design, meaning
that separate tasks are no longer able to expose each other to memory
interference, and the construction of real-time systems is simplified to
the single-core equivalent state where system correctness can be guar-
anteed by finding a processor time schedule such that all tasks meet
their deadlines. To achieve this, it has to be guaranteed that tasks can
not affect each other’s execution time through memory interference.

PREM achieves this by dividing programs into sequences of mem-
ory and compute intensive phases, and scheduling the system such
that the memory phases of two task never interfere with each other.
As such, PREM has mainly been considered as a scheduling approach
over the past decade, with a large body of PREM-compliant schedul-
ing techniques having been proposed [26, 27, 28, 29, 30, 31].

However, very few works [32, 33] have been published on how to
achieve the fine-grained partitioning of tasks into separate phases,
thereby automatizing the laborious task of making programs PREM-
compliant, and even fewer works that explore how COTS hardware
designs affect PREM [34] have been presented. This thesis addresses
this disconnect between scheduling on the one hand and code and
architectural considerations on the other.
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Figure 1.2: Schematic illustration on how PREM groups memory ac-
cesses spread out throughout a code segment (a) into coarser mem-
ory phases (b). This separation results in independently schedulable
PREM phases (c).

1.3 The Predictable Execution Model

The Predictable Execution Model (PREM) was originally proposed
in the context of single-core CPUs [24], to provide robustness to in-
terference from peripheral (I/O) devices sharing the main memory.
The concept was later extended to counter inter-core interference in
multi-core CPUs [28]. PREM [24] separates programs in scheduling
intervals that can represent memory or compute phases, which will
be discussed in detail in Section 1.3.1. By scheduling the system such
that only a single actor is executing a memory phase at a time, PREM
ensures that this memory phase will not experience any interference.
As a consequence, the WCET of each phase can be calculated or
measured in isolation, leading to system composability and greatly
reduced pessimism in the timing analysis.

1.3.1 The Three-Phase PREM Interval

The insight that underlies PREM is that any access that hits in the
local memory does not depend on the shared resource, i.e., DRAM,
and the worst case execution time (WCET) can not be influenced by
external memory interference. For misses, isolation (no impact on
WCET) can be achieved by reserving the memory system exclusively
for the memory access. However, as cache hit analysis is difficult
for individual accesses [35], and the mechanisms required to protect
them are costly, it is infeasible to do this on a per-access granularity.
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Instead, PREM divides the program into coarse-grained intervals, de-
picted in Figure 1.2. The original code segment (a) has memory loads
(red) and stores (blue) spread out across the execution time (horizon-
tal). By grouping these together (b) coarse enough units are created
to enable individually schedulable load, execute, and store phases (c).
Thus, the load (or prefetch) and store (or writeback) memory phases
are responsible for staging the data of the interval through the lo-
cal (private) memory, such that the compute phase is guaranteed to
hit in the cache. Thus, costly protection of each individual access
is replaced with the protection of the coarser memory phases. Each
3-tuple of prefetch, compute, and writeback phases is refered to as a
PREM interval. To ensure that the prefetched data indeed leads to
cache-hits only, each PREM interval must map to a region of code
whose memory footprint is small enough to fit into the local memory,
such as a private cache or SPM. The compute (or execute) phase can
then operate on the local data without accessing the shared memory.

1.3.2 Compatible Intervals for Legacy Support

The original PREM proposal [24] acknowledges that some parts of
a program cannot be transformed to adhere to the three-phase con-
struct of a PREM interval, such as syscalls. For such cases, PREM
introduces compatible intervals, which execute the legacy code as-is as
a single memory phase. This way, any code can be made compatible
with PREM. The downside is that compatible intervals require access
to memory during their entire execution, despite only a limited share
is devoted to memory accesses, leading to a less effective utilization
of the memory bandwidth, as no other task can utilize the memory
system in the meantime. To separate three-phase PREM intervals
from single-phase compatible intervals, the former are referred to as
predictable intervals. Note that within the PREM framework, both in-
terval types can be executed in a timing-predictable way through mu-
tually exclusive scheduling of any interval that accesses global mem-
ory.
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1.4 Tasking and Scheduling Models

To achieve mutually exclusive memory accesses the Predictable Ex-
ecution Model divides each task τ ∈ T into a sequence of intervals
Iτ = {i0, i1, · · · , in}. Each interval i internally consists of indepen-
dently schedulable prefetch (P), compute (C) and writeback (WB)
phases, where the P and WB phases are referred to as the memory
(M) phases. The memory phases are responsible for moving the data
from the shared memory to a core-private memory λ which is not sub-
ject to interference, upon which the C phase computes. Importantly,
this means that only the memory phases P and WB need to be sched-
uled with mutually exclusive memory access. To ensure that all data
can be stored locally, the size of the data accessed within an interval
size(i) must be dimensioned such that it is smaller than the size of
the local memory size(λ), as shown in Equation 1.1.

∀τ ∈ T : ∀i ∈ Iτ : size(i) < size(λ) (1.1)

There exist multiple valid partitionings of a task τ into intervals Iτ ,
the selection of which is the task of the compiler, which we will present
in Chapter 3, and optimize in Chapter 6.

1.4.1 PREM Scheduling

The original PREM paper [24] considered co-scheduling of a single
CPU and I/O peripherals, but PREM has since been extended to ad-
dress inter-core interference in COTS multi-core systems [26, 27, 28,
29, 30, 36]. While the scheduling question itself is out of scope, an
overview of techniques in the literature is presented here for complete-
ness. Following this, a generic PREM scheduling model that covers
the fundamentals of all schedulers is formulated, introducing the sym-
bols that will be used throughout the rest of the thesis.

Extending the work of the original PREM proposal by Pellizzoni
[24], Bak et al [26] performed the first evaluation of under which
scheduling policy PREM performs best, and determined that this was
the least-laxity first with non-preemptive intervals. This evaluation
was based on a large set of simulated workloads under several schedul-
ing policies. While real systems were used to provide indications, no
effects present in real systems are evaluated.
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Furthermore, special considerations regarding the scheduling of
systems based on different memory hierarchy types have been pro-
posed. A large portion of scheduling work assumes the use of hard-
ware managed caches [27, 28, 29, 31, 36], as these are ubiquitous in
COTS systems, and allow the decoupling of the technique from the
SPM buffer allocation problem. However, as caches can be subject
to unpredictable replacement policies, PREM scheduling techniques
have also been proposed for SPMs [30, 32], that do not suffer from
these problems, as all data movement is managed from software.

Initial PREM work [24, 26, 27] considered only a single memory
phase to prefetch data. Separate prefetch and writeback phases, i.e.,
the three-phase PREM intervals discussed above, were introduced by
Alhammad et al [28], and motivated by the need to explicitly evict
data at the end of each interval. These three-phase PREM intervals
(prefetch – compute – writeback) are used by subsequent works [29,
30, 31, 36], and were described in detail in Section 1.3.1. The three-
phase intervals are necessary for SPMs, because SPMs require data to
be explicitly moved in and out by software, but this finer grained level
of control is also useful for cache-based systems, through techniques
such as preventive invalidation [37], as we will explore in Chapter 5.

PREM schedulers can further be categorized as preemptive [27, 31]
or non-preemptive [29, 30, 36]. While an initial evaluation of different
scheduling policies [26] concluded that a non-preemptive scheduling
policy was best for PREM, they also concluded that it can cause
priority inversion. We note that all preemptive PREM schedulers
require mechanisms to ensure that prefetched data is not evicted by
the time the task resumes. In practice, this requires the cache to
be partitioned on a per-task basis, thereby decreasing interval sizes
and increasing the context switch overhead, which we will discuss in
Chapter 4. To achieve tight response times for PREM, both Bak
et al [26] and Yao et al [27] recommend the promotion of memory
phase priority, as compute phases can thereafter be scheduled without
dependencies, as they do not need mutually exclusive access to memor,
as compute phases can thereafter be scheduled without dependencies,
as they do not need mutually exclusive access to memory.
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1.4.2 Generic Model for PREM Scheduling

The objective of PREM scheduling is to ensure that memory inter-
ference is effectively avoided, while still ensuring that all tasks τ
meet their deadlines Dτ . Memory interference is avoided by finding
a system schedule that maps each interval i to a core c, and globally
scheduling the system such that only a single core c is executing the
memory phase of an interval i at a time. Scheduling techniques to
achieve this are readily available in the literature [31, 29, 36], and as
all share the fundamental requirement that only one task is executing
its memory phase at once, the total response time Rτ of a task τ can
be generically modeled as shown in Equation 1.2.

Rτ = Bcore +Bmemory + S(|Iτ |) + eτ (1.2)

Here, Bcore is the blocking time due to core-local scheduling, e.g.,
the increase in the response time due to τ being preempted (between
intervals) by another task executing on the same core. The Bmemory

term is the blocking time due to a τ having to wait for a task on
another core using the memory, due to the mutually exclusive policy
at the heart of PREM. The S term is the static cost of performing
the context switch for performing the online scheduling decision. This
cost may vary from small (e.g., cost of a function call to determine
the next interval in a pre-computed static schedule) to very large
(e.g., a syscall and online decision from a dynamic scheduler). This
cost grows linearly with the number of intervals |Iτ | in τ that require
handling during execution [38]. The specific scheduling policy (e.g.,
fixed priority, earliest deadline first, etc.) determines when a task is
blocked. Lastly, the eτ term is the accumulated worst case execution
time of all intervals in task τ , as shown in Equation 1.3.

eτ =
∑
i∈Iτ

len(i) (1.3)

Here, len(i) is the worst case execution time (WCET) of interval
i ∈ Iτ . For the remainder of this discussion, we will assume that
len(i) is provided by an external tool which we will refer to as the
WCET analyzer, of which many have been proposed in the literature,
as surveyed by Wilhelm et al [9]. As PREM scheduling implies single-
core equivalence for the WCET analysis, classical single core analysis
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techniques can be used. As is customary, we say that a taskset T is
schedulable if every task in the taskset responds before its deadline,
as shown in Equation 1.4.

∀τ ∈ T : Rτ < Dτ (1.4)

For the remainder of the discussion, we will only consider a single
task τ executing per core c, and as such the term Bcore will always
be zero, assuming |T | ≤ N . However, the fundamental insights of
this paper generalize to the case where multiple tasks are deployed
on each core, although the relative impact of Bcore on the remaining
terms may lead to a different optimal schedule. Following this, we
revise Equation 1.2 as shown in Equation 1.5.

Rτ = Bmemory + S(|Iτ |) + eτ (1.5)

We use the notation Rτ0,τ1,··· to refer to the total response time of the
system, defined as the maximum response time of any of the tasks in
the system max(Rτ0 , Rτ1 , . . .).

1.5 Contributions and Publications

As the main interest on PREM within the scientific community has
been on developing efficient scheduling techniques (Section 1.4.1) for
the three-phase interval model (Section 1.3.1), the evaluation of PREM
has been limited to generated tasksets of different phase lengths, run
in different forms of simulators.

This work presents the first exploration of the necessary software-
support and the first exploration of the effects of the Predictable Ex-
ecution Model when applied outside the confines of simulated multi-
core CPU operating system to heterogeneous architectures with pro-
grammable accelerators, with a focus on CPU+GPU embedded plat-
forms, such as the NVIDIA Jetson Series. By orchestrating the access
to main memory between the CPU and GPU, as shown in Figure 1.3,
it is possible to remove all sources of memory interference between the
host processor and the accelerator. Chapter 2 provides the necessary
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Figure 1.3: Heterogeneous PREM overview.

insights required to construct a PREM compiler capable of compil-
ing heterogeneous programs for heterogeneous platforms. Chapter 3
presents the PREM compiler itself.

In Chapter 4 we use the presented PREM compiler to generate
PREM-compatible versions of real workloads, and execute them on
real systems, making a major contribution in establishing that the
proposed techniques applicable to real systems, and quantify the im-
pact that the necessary code transformations have on the achievable
performance of real workloads. An important such system-application
aspect is further presented in Chapter 5, which explores memory hi-
erarchies from a predictability perspective, providing new insights on
how caches in commercial systems can be used in a predictable man-
ner.

Lastly, in Chapter 6, we automatize a design space exploration for
PREM applications to tune the compiler to the platform an produce
efficient systems. Due to the platform-specific tuning knobs, as well
as inter- and intra-task memory optimizations that can be done, we
conclude that an optimized PREM system can not be produced by
an optimal PREM scheduler nor an optimal PREM compiler in isola-
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tion, but that optimization across all aspects of the final system are
necessary.

The findings discussed in this thesis have primarily been presented
as part of the following conference and journal publications:

• Björn Forsberg, Andrea Marongiu, and Luca Benini, ”GPU-
guard: Towards Supporting a Predictable Execution Model for
Heterogeneous SoC,” in DATE’17, 2017.

• Björn Forsberg, Luca Benini, and Andrea Marongiu, ”HePREM:
Enabling Predictable GPU Execution on Heterogeneous SoC,”
in DATE’18, 2018.

• Björn Forsberg, Luca Benini, and Andrea Marongiu, ”Taming
Data Caches for Predictable Execution on GPU-based SoCs,”
in DATE’19, 2019.

• Björn Forsberg, Luca Benini, and Andrea Marongiu, ”HePrem:
A Predictable Execution Model for GPU-based Heterogeneous
SoCs,” IEEE Transactions on Computers, 2020.

• Björn Forsberg, Maxim Mattheeuws, Andreas Kurth, Andrea
Marongiu, and Luca Benini, ”A Synergistic Approach to
Predictable Compilation and Scheduling on Commodity Multi-
Cores,” in LCTES’20. 2020.

• Joel Matějka, Björn Forsberg, Michal Sojka, Zdeněk Hanzálek,
Luca Benini, and Andrea Marongiu, ”Combining PREM Compi-
lation and ILP Scheduling for High-Performance and Predictable
MPSoC Execution,” in PMAM’18, 2018.

• Joel Matějka, Björn Forsberg, Michal Sojka, Premysl Sucha,
Luca Benini, Andrea Marongiu, and Zdeněk Hanzálek, ”Com-
bining PREM Compilation and Static Scheduling for
High-Performance and Predictable MPSoC Execution,” Parallel
Computing, 2019.

• Björn Forsberg, Luca Benini, and Andrea Marongiu, ”On the
Cost of Freedom from Interference in Heterogeneous SoCs,” in
SCOPES’18, 2018.
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• Björn Forsberg, Daniele Palossi, Andrea Marongiu, and Luca
Benini, ”GPU-Accelerated Real-Time Path Planning and the
Predictable Execution Model,” in ICCS’17, 2017.

And the following manuscript, still in the publication process:

• Björn Forsberg, Marco Solieri, Marko Bertogna, Luca Benini,
and Andrea Marongiu, ”The Predictable Execution Model in
Practice: Compiling Real Applications for COTS Hardware,”
submitted to IEEE Transactions on Embedded Computing Sys-
tems.

1.6 Outline

Following this introduction in Chapter 1, the thesis is divided into five
chapters.

Beginning in Chapter 2 we explore techniques to extend the PREM
scheduling beyond the CPU-resident OS scheduler to include all ex-
ecution units of heterogeneous systems, with emphasis on GPU ac-
celerators. To this end we present GPUguard, a synchronization in-
frastructure that enables scheduler control over GPU execution. This
chapter proceeds with the manual transformation of a heterogeneous
path planning application to conform to the requirements of PREM,
and evaluate it together with GPUguard. From this we draw insights
on the necessary steps, which leads to the development and explo-
ration of compiler techniques for automatic PREMization in Chapter
3.

The compiler exploration is divided into two parts. First we di-
rectly use the insights from Chapter 2 to develop a PREM compiler
for GPU applications. In doing so, we extend our insights from man-
ual PREMization to compiler-based automatic PREMization, which
is then further extended in the second half of Chapter 3 to address
the question of more general applications, as are common on CPU
systems. A thorough experimental evaluation of these compiler-based
techniques follows in Chapter 4. We evaluate the techniques both
with respect to the performance implications of the compiler trans-
formations, and the ability of the transformed code to deliver on the
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PREM guarantees on providing memory isolation through software
partitioning.

The development of the compiler in Chapter 3 and the experi-
mental evaluation in Chapter 4 lead to further insights on the inter-
action between the PREM execution model, and hardware features
such as memory hierarchy configuration. In particular the impact of
hardware-managed caches on the compiled PREM code is explored
both in the context of CPU and GPU caches in Chapter 5.

Having explored the impact of PREM when combining a diverse
set of benchmarks and systems, we commit Chapter 6 to discussing
how PREM systems can be optimized. Fundamentally, the PREM
schedulers presented in the literature over the past decade all assume
that the PREM intervals are given constants that can not be influ-
enced during scheduling. This may have been a reasonable assump-
tion when changing the intervals required error-prone manual labour.
However, with compiler-generated PREM intervals, their configura-
tion can be arbitrarily changed by changing the compiler configura-
tion – in turn opening up optimization opportunities that were not
previously available. In Chapter 6 we explore the co-operation of
PREM schedulers and PREM compilers to allow for dynamic resizing
of PREM intervals to reduce blocking time in the generated schedules
– thus producing better performing systems with shorter response
times. We conclude with an overview of our findings, their impact,
and future directions in the thesis conclusion in Chapter 7.



Chapter 2

Designing PREM for
Heterogeneous
Architectures

In this chapter we explore the requirements to implement PREM on
a heterogeneous system, and perform an initial manual PREMization
of a heterogeneous task. The main outcome of this exploration is to
provide the necessary background for subsequently designing a PREM
compiler, and the development of GPUguard, a synchronization-based
technique to enable PREM scheduling to escape the confines of the
CPU-resident OS. The manual PREMization is done on a GPU-based
path planning algorithm, which then uses GPUguard to execute it
predictably under memory interference on the NVIDIA Jetson TX1
heterogeneous CPU+GPU architecture.

This chapter provides the necessary information to develop the
PREMizing compiler presented in Chapter 3, as well as the motiva-
tion for exploring the use of COTS caches with random replacement
policies in connection to PREM presented in 5.

27
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2.1 GPUguard: Extending PREM to In-
tegrated GPU Accelerators

As accelerators supply a vast amount of computational power, typ-
ically even at smaller energy usage than CPUs, enabling their use
within PREM systems is a critical step in meeting the computational
demand for next-generation embedded real-time applications. Most
modern high-end embedded SoCs rely on a heterogeneous design, cou-
pling a general-purpose multi-core CPU to a massively parallel accel-
erator, typically a programmable GPU.

In such designs the coupling of CPU and GPU is very tight, as
they physically share the main DRAM memory, as opposed to tradi-
tional discrete GPUs. As outlined in Section 1.1 main memory sharing
complicates the deployment of real-time workloads, as memory inter-
ference may cause spikes in execution time that are difficult or even
impossible to model and predict. This is particularly true in the view
of the high bandwidth requirements of GPUs. To harness the advan-
tages of COTS hardware and integrated accelerators in the context of
real-time applications, new techniques that arbitrate memory requests
are required.

In this section, we adress this issue from the perspective of em-
bedded GPUs, in particular the NVIDIA brand. As will be discussed
in Section 2.3, the insights gained from this exploration generalize to
other forms of accelerators as well. This section describes the fun-
damental techniques necessary to achieve this, while the following
section provides a deeper discussion on implementation details and
an evaluation. Fundamentally, there are three issues that need to be
addressed to achieve this.

First, to be able to leverage the previous work done in PREM
sheduling, as discussed in Section 1.4.1, it is important that the specifics
of accelerator execution be isolated and abstracted, such that the un-
derlying differences in execution models (as opposed to CPU) do not
impact the system and task models assumed in such previous work.
This will be addressed in Section 2.1.1. Second, as the PREM schedul-
ing can no longer be isolated to the CPU scheduler built into the
operating system, a novel and portable way of managing the PREM
phase scheduling across host-accelerator boundary needs to be iden-
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tified. This will be addressed in Section 2.1.2. Third, a mechanism
must be put in place that allows software control over the hardware-
managed scheduling of GPU warps. A warp is the name given to the
smallest unit of work schedulable by the GPU hardware, and typically
consists of 32 threads executing in lock-step. As the GPU instruction
set is specialized on computations, and it does not support any of
the mechanisms used in general-purpose systems for scheduling, e.g.,
timer interrupts, another mechanism must be found. This is addressed
in Section 2.1.3.

Following this, this section contains an evaluation of the OS and
hardware impact on the presented approach. This section provides
the fundamental techniques for applying PREM on a heterogeneous
platform, which will be used in the following sections and chapters to
enable further research into heterogeneous PREM.

Overall, this section describes the techniques and findings that
were published in the DATE’17 conference paper on GPUguard [39],
and extended in 2020 with a manuscript in IEEE Transactions on
Computers [40]. GPUguard enforces memory access isolation between
tasks running on both the GPU and the CPU in a homogeneous ar-
chitecture, where simultaneous accesses by several devices may cause
spikes in the execution time and lead to overprovisioning of task time
allocation because of varying worst case execution times (WCET).
The goal of this work was to explore what mechanisms that are avail-
able to control the execution on the accelerator (in particular the
GPU), and to integrate this with PREM execution.

In this work, the GPU scratchpad memory (CUDA shared mem-
ory) was used as local storage for PREM-like execution. This is the
obvious choice, as the SPM is not subject to unpredictable cache re-
placement policies, which we will address in Chapter 5.

2.1.1 Execution Model Compatibility with Previ-
ous Work

Protecting the memory phases on the CPU is straight forward, as the
OS scheduler has full control over which threads execute. On HeSoCs,
the problem is more difficult, as the protection needs to be extended
beyond the scope of the OS scheduler, to include the accelerators.
To remain compatible with the scientific literature on PREM, the
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main requirement is that the GPU task adheres to the separation
into memory and compute phases, as outlined in Section 1.3.1. By
allowing the CPU scheduler to see the GPU phases as it would see
a CPU phase, the GPU can be abstracted as a single classic PREM
task, that when scheduled by the CPU scheduler acts as a proxy for
the GPU memory phases. This retains the system-level scheduling
with the CPU-scheduler, while allowing the GPU memory accessing
phases to be controlled at a system level.

This implicitly leads to a PREM-compatible TDMA-style schedul-
ing at system level. To provide guarantees on available memory access
windows the lengths of the intervals are kept constant by enforcing
the upper bound on the execution time of the phases. This is in line
with previous PREM approaches. While double buffering is better for
performance, single buffering provides the clearest division of mem-
ory and compute phases, and is the favored buffering technique for
GPUguard.

As GPUs are executed in warps, this is the minimum granularity
at which the GPU can be scheduled. However, as the GPU could
potentially executing hundreds, or possibly thousands of warps at a
time, it is not feasible to control the GPU at this level. Instead,
GPUguard controls the GPU at a minimum granularity of Symmetric
Multiprocessor (SM) level, which is NVIDIA terminology for a cluster.
In our experiments we have not noticed any significant interference
between different warps of the GPU if they are executing as part of
the same task. As such, the selected approach is in line with the
architectural design of GPUs, it is compatible with previous PREM
approaches by high-level abstraction of the GPU as a task, and follows
the generic system and tasking model as outlined in Section 1.4.

2.1.2 Memory Scheduling by Token Passing

To control the actual GPU execution from the proxy task on the CPU,
the CPU needs to communicate with the GPU. As GPUs typically do
not support any user-level controllable interrupts, or other forms of
event-based synchronization schemes, GPUguard employs a portable
memory-based synchronization scheme, by passing a memory token
between the devices. Whichever device holds the token may access
memory until the token is given up, as illustrated in Figure 2.1. On
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Figure 2.1: The synchronization protocol employed by GPUguard to
change between computate and memory phases (phase lengths not to
scale).

every phase change the GPU writes a sync flag into a segment of mem-
ory visible to both CPU and GPU, signalling if it is requesting to use
the memory (EnterMem) or has finished using memory (EnterComp).
Once the GPU has written the flag, it stalls until the flag has been un-
set, which signifies that the phase shift has been acknowledged (ACK )
by the CPU. This ensures that the CPU is kept in control of when
memory access is permitted. To ensure that the CPU can execute
jobs in parallel, the CPU is not polling for the GPU sync flag, but
only acts on the synchronization once the preset length of the GPU
phase has passed, i.e., in line with classical scheduling time quanta, in
this case determined by the WCET.

Thus, the length of each phase, Tcompute and Tmemory respectively,
must be programmed into the system so that the exchange of the
memory token is correctly performed at the end of each phase. At the
system level we only consider PREM Memory and Compute phases.
Thus, each kernel has only two quanta associated with it, Ecompute
and Ememory. In addition to this, the system schedule may delay the
execution of the phases, e.g., due to memory being occupied by an-
other task, which introduced idling I into the system. The quantity of
I is determined completely by the exact schedule used for the system,
and appears if the phase times T are shorter than the assigned E.

Synchronization is performed twice per PREM interval. Thus,
taking the synchronization cost into account, which will be quantified
in Section 2.1.4 the overall execution time of each interval Linterval is
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Figure 2.2: Implementation of stalling until sync on GPU. These syn-
chronization points need to be encoded into the GPU kernel.

described by Equation 2.1.

Linterval = Ememory + Ecompute + 2× S (2.1)

As can be seen by inspection, the relative impact on the execution
time of the synchronization is dependent on the execution time of
the individual phases. If E � S the synchronization cost will be
negligible, but if E � S it will dominate the overall execution time.
A more in-depth discussion on this effect follows in Chapter 4.

As illustrated by Figure 2.1, this ensures that only one of the
devices is accessing memory at a time. This approach trivially extends
to control the GPU at a per-cluster granularity, by duplicating the
synchronization channel through which the synchronization token is
passed once for each cluster, enabling the CPU to control which GPU
cluster s or CPU core c that is using memory at any given point in
time.

2.1.3 Managing GPU Scheduling from Software

To ensure that the memory token is respected by every thread in a
cluster, there must also be internal synchronization within each block
on the GPU. Failing to do this may lead to only the thread that
participates in the synchronization respecting the memory/compute
phasing of the system.

As there is no event-based method, like interrupts, that can be
employed within the GPU to affect control flow, the synchronization
points for GPU kernels must be encoded within the program itself,
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explicitly before and after each PREM phase. We will discuss how this
can be achieved manually in Section 2.2 and through compiler support
in Chapter 3. To ensure that a consistent state (i.e., arrived at PREM
phase boundary) can be communicated to the CPU at a per-cluster
level, the GPU block1 internally employs the synchronization scheme
shown in Figure 2.2. At the boundary of each PREM phase, a barrier
is inserted that ensures that every thread has finalized the execution
of either the memory or compute phase, as illustrated by point (a)
in the figure. Following this, one thread of each block (e.g., thread
0) will write the request for the memory token to the synchronization
channel for the block that it is part of, and wait until the request is
granted from the CPU. This is illustrated by point (b) in the figure.
All other threads2 will fall through to a second barrier waiting for the
thread that is communicating with the CPU. Only when this thread
reaches the barrier, all threads can continue into the next phase, as
illustrated at point (c) in the figure.

This technique enables control of when GPU threads are executing
the different PREM phases, even as thread scheduling on GPUs is
otherwise managed from hardware and outside the reach of software
mechanisms.

2.1.4 Implementation and Evaluation

This section provides an initial evaluation of GPUguard on the NVIDIA
Tegra TX1 [41], a high-performance embedded heterogeneous archi-
tecture consisting of a 4-core ARM A57 host processor, and an NVIDIA
Maxwell GPU. The goal of this initial evaluation is to quantify the
different sources of overhead, and validate that GPUguard reduces
the variability in memory access times.

PREM can be implemented at any level of the memory hierarchy.
On the TX1 there are two main options available for the GPU, the
SPM (CUDA shared memory) and the hardware-managed last-level
cache (LLC). As the main goal of the presented work is to achieve
predictability, we have opted for the software managed SPM, that is
not subject to un-controllable hardware eviction policies.

1A block is NVIDIA terminology for the unit of software executing on a cluster.
2More correctly, all threads that are not part of the warp to which the synchro-

nizing thread belongs will continue, due to the warp divergence effect in GPUs.
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GPUguard prototype

Here we implemented an evaluation prototype of GPUguard, split into
a Linux loadable kernel module (LKM) and an API implemented in
CUDA. This API abstracts the synchronization protocol as outlined
in Sections 2.1.2 and 2.1.3. On the CPU, a call to the non-blocking
HostSync() function starts the synchronization mechanism within the
LKM. The non-blocking nature of the call allows the CPU to continue
local execution while the kernel is running, as it would in any legacy
CUDA program.

Since the CPU is tasked with ensuring that the CPU bandwidth
is limited during GPU memory phases, the system must provide some
mechanism to ensure that these limits are upheld. The encoding of the
phases directly into GPU kernels address this issue at the GPU-side.
Since the GPU is the focus of our evaluation, we do not PREMize the
CPU application. Instead, to ensure that the CPU memory accesses
are stopped during the GPU memory phase, the GPUguard synchro-
nization mechanism is coupled with MemGuard [15], such that CPU
tasks are stalled if they are missing in their cache3 during the GPU
memory phase. MemGuard uses LLC miss performance counters to
detect when a core overruns its memory budget, at which point a high-
priority real-time thread performing busy waiting is scheduled. This
effectively preempts any running thread and ensuring that no further
memory accesses are performed before the next renewal period. In this
work we reuse certain aspects of the MemGuard mechanisms, such as
bandwidth limitation through high-priority busy waiting. Once the
GPU finishes its memory phase, the memory budget on the CPU is
lifted.

Figure 2.3 shows the resulting setup. A user-space (top) pro-
gram invokes the GPUguard prototype in the OS kernel space. It
invokes the CUDA driver to start the execution on the GPU. The
GPU execution, as shown on the bottom and in line with Figure 2.1,
transitions between its memory and compute phases. At the end of
each time quanta Ememory, a timer interrupt occurs which triggers
the synchronization protocol described in Section 2.1.2, and enables

3While MemGuard allows for arbitrary thresholds of cache misses until the core
is blocked, to achieve the full isolation guarantees of PREM, the CPU is throttled
already at the first cache miss during a GPU memory phase.
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Figure 2.3: Overview of the GPUguard environment for the experi-
mental evaluation.
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Figure 2.4: Measured latencies of the different steps involved in per-
forming a EnterMemory synchronization.

or disables the MemGuard budget for the CPU. At the end of the
Ecompute quanta, the synchronization protocol is invoked again, and
the MemGuard budget disabled, enabling free memory access for the
CPU. As such, it is guaranteed that the CPU cannot interfere with
the GPU memory accesses while the GPU is in a memory phase.

OS and Hardware Characterization

To gain an understanding of the overheads imposed by the synchro-
nization scheme, we have characterized the three main sources of
overhead: First, the GPU synchronization overhead is the amount
of time the GPU stalls while waiting for the synchronization acknowl-
edgment from the CPU. Second, the CPU synchronization overhead
is the degradation in performance experienced on the CPU due to
the frequent interrupts induced by the synchronization. These over-
heads are represented by S in Section 2.1.2, here separated into SCPU
and SGPU as the exact overhead depends on the device on which it
is measured. Third, the period overhead is the cost of stalls due to
bad matches between the GPUguard time quanta E and the actual
execution time T of the GPU phases.

As an initial characterization of both the CPU and GPU synchro-
nization overheads, the time required for all synchronization steps
were measured. This includes the Linux timer interrupt latency (in-
terrupt), the memory latency for writing the synchronization flags
(sync), the time it takes to wake the throttle thread (wake), and
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Figure 2.5: The percentage of the time available to CPU and GPU
for useful work, as well as the overhead due to the synchronization.

the cost of context switching to the throttle thread once it has been
scheduled (context switch). The results are presented in Figure 2.4.

To evaluate the CPU overhead, we created a synthetic benchmark
which only performs synchronizations, and measured the available
processing and memory time on the CPU. For this experiment, we
assign 50% of the memory bandwidth to the CPU, corresponding to
ECPUmemory

EGPUmemory
= 1. However, as the results in Figure 2.5 shows, the actual

un-throttled memory time available to the CPU is only about 40%,
and decreases with the period length. This is because a shorter period
implies more interrupts and more context switches, which is the source
of CPU overhead SCPU

4.

The GPU overhead SGPU , presented in Figure 2.4, is smaller than
that of the CPU, as the GPU does not perform any additional opera-
tions once the synchronization is done. However, it has to wait for the
CPU to wake the throttle thread and acknowledge the synchronization
request.

The final source of overhead is due to the over-dimensioning of the
GPUguard quanta E compared to the phase lengths T . This overhead

4As GPUguard only throttles the memory bandwidth, a compute-intensive
CPU task can continue execution during the entire period, as long as it does not re-
quire main memory access. On the other end of the spectrum, a memory-intensive
CPU task will be subject to bandwidth throttling during the CPU compute phase,
and in the extreme case it will be stalled until the next CPU memory phase.
Thus, depending on the compute-to-communication ratio of the CPU tasks, and
the bandwidth limit put in place through the MemGuard throttling mechanism,
the available time for performing useful work for a specific task will be somewhere
between these two extremes.
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Figure 2.6: The time required to fill, and fill + empty, the scratchpad
memory on the GPU using different numbers of memory warps.

appears when the GPUguard period is longer than the actual execu-
tion time of the GPU phases, causing the GPU to stall while waiting
for the CPU to enter the synchronization phase. To gain an insight
into the optimal length for Ememory, at which no stall occurs, we
measured the time required to populate the scratchpad memory using
different amount of memory warps. As PREM requires a synchroniza-
tion each time the scratchpad is refilled, this is equivalent to a PREM
interval sized to the local memory size(λ) but with zero computa-
tion, and represents the worst-case compute-to-communaction ratio
of the typical PREM interval size. We also measured the time to
both populate and evict the scratchpad data, as this constitutes typ-
ical program behavior. For these measurements we use a synthetic
benchmark which performs fully coalesced memory accesses to refill
the scratchpad, which gives a lower-bound for the resulting memory
phase lengths, as this is the most efficient way to access memory
[42, 43]. The measured times are presented in Fig. 2.6. For most
warp configurations, the time required to fill the shared memory is
in the range where the CPU-side experiences heavy degradation due
to synchronization overhead, see Figure 2.5. As a result of this, for
kernels that have short phase lengths, the scheduling quanta E will
have to be set higher than the actual T of the PREM phases to en-
sure that the CPU is not starved. Unless the compute phase is long
enough to amortize this overhead, these overheads will become noti-
cable. In effect, memory bound programs, i.e., programs that perform
extensive searching or data traversal in relation to the length of the
computation phase are susceptible to stalls. This will be discussed in
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Figure 2.7: The distribution of execution times for the Matrix Mul-
tiplication kernel under contention. The top histogram shows the
variance in the baseline CUDA version, and the bottom one shows
the variance when GPUguard is used to orchestrate memory accesses.

greater detail in Section 2.2 where we PREMize a GPU-based path
planning application, and Chapter 4, where we evaluate a large set of
benchmarks of different compute to communication ratios. The main
take-away from this experiment is that creating PREM intervals sized
as close to size(λ) is going to be important to make T large enough
to allow the scheduling quanta E to be set E = T to prevent stalls,
and produce well-performing heterogeneous PREM systems.

Effects on Interference

While there are programs that will suffer significant overhead due to
idling I > 0 or S � E, many classical GPU applications, such as
BLAS (Basic Linear Algebra Subroutine) kernels, are compute inten-
sive, and thus not affected by this limitation. We therefore employ a
compute heavy program, matrix multiplication, a BLAS3-type kernel
for the initial evaluation of GPUguard.

We implement a GPUguard enabled version of matrix-matrix mul-
tiplication and compare it to a baseline version taken from the CUDA
samples provided by NVIDIA [44]. Matrix Multiplication has a com-
pute to communication ratio of 2n3/3n2, i.e., the computation part
is cubic in the input size, while the communication is only quadratic.
Thus, as the input size increases, the computational work increases
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asymptotically faster than the memory requirements, leading to less
frequent synchronizations due to the scratchpad memory size. Fur-
thermore, we set the CPU bandwidth limit to zero during the GPU
memory phases, thus stalling all memory accesses from the CPU un-
til the end of the phase. This represents the maximum achievable
isolation – and is in accordance with PREM – and the best case for
increasing timing predictability.

We execute the NVIDIA reference version and the GPUguard -
enabled kernels over several iterations under memory contention gen-
erated by the CPU, and plot their execution time distributions in
Figure 2.7. As can be seen in the figure, the execution time variance
in the GPUguard enabled versions of the BLAS kernels is near zero,
in contrast to the non-PREM reference implementation. In addition
to this, the execution time of the GPUguard -enabled kernel is within
the range of execution times exhibited by the CUDA reference imple-
mentation, showing that heterogeneous PREM execution is possible
without introducing significant overheads from the sources discussed
above.

2.2 GPUguard and Predictable Path Plan-
ning

Having understood the fundamentals of GPUguard, we now set to ap-
ply it to a real application, that fits into the set of compute-intensive
workloads that require the computing power of modern heterogeneous
architectures, as outlined in Chapter 1. Two of the most representa-
tive examples of such workloads are unmanned aerial vehicles (UAVs)
[45] and autonomous driving systems [46]. UAVs are already used for
tasks such as aerial mapping, entertainment, surveillance, and rescue
missions. Fully autonomous driving is still out of reach, but virtually
every major OEM has a roadmap towards achieving this goal, and is
already commercializing advanced driver assistance systems (ADAS)
[47].

In light of this, this section applies PREM and GPUguard to a
GPU-enabled path planning algorithm – an important component in
both of these systems – to improve its timing predictability. This
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section presents the work [48] presented at ALCHEMY’17 hosted at
ETH Zürich, and done in close collaboration with Daniele Palossi
who provided the tracker implementation.

2.2.1 Preliminaries

To turn the path planner into a PREM-compliant form, the appli-
cation must be modified to support the separated memory and com-
putation phases, and integrated with GPUguard as presented in the
previous section. We begin by presenting the non-PREM reference
version of the path planner, and then present how we achieve this
transformation.

Reference Path Planner

The reference path planner [49] has been chosen due to its good perfor-
mance and accuracy, achieved through a non-deterministic implemen-
tation that trades a small amount of accuracy loss (1.2% on average)
for a great performance gain (up to 3.7×). It builds upon a two-
step process. First, automata synchronous composition [50], in which
a discretize topology of the environment, represented as a graph, is
merged with a second graph representing the kinematics of a robot,
to create a composition automaton graph. If a location of the map is
occupied by an obstacle, the corresponding node is removed from the
map before the composition takes place. The main benefit of this ap-
proach is that the path returned by the path planner is guaranteed to
be compliant with maneuvers that the robot is able to perform, sim-
plifying post-validation of the path. The price for this is an increased
size of the graph to be explored. In the reference implementation, the
composition automaton is 21× larger than the map size. Once the
composition automaton has been created, the final step in the process
is to explore it using a Single Source Shortest Path algorithmm such as
Dijkstra’s algorithm [51]. The vertices to be explored in each iteration
are referred to as reference nodes, and it has edges to a set of neighbor
vertices. The main data structure is a sparse state-transition matrix
used to represent all the vertices and the connecting edges. The infor-
mation about which nodes are “to be visited” is kept in an auxiliary
array called mask array, and the cost to traverse each node is stored in
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the cost array. While the mask array indicates that there are still ver-
tices to be explored, another parallel iteration is performed, following
Dijkstra’s algorithm.

As this is a non-trivial problem to solve in real-time for a safety-
critical system, such as an unmanned aerial vehicle, this is a clear can-
didate for deployment on modern heterogeneous embedded systems,
as well as a clear candidate for predictable exceution techniques such
as PREM, that can be enabled with techniques such as GPUguard.

This path planner is used as reference implementation. We port
it from OpenCL to CUDA, first to a naive copy of the original, and
then to an optimized version considering the target platform. For
each of these two version, we implement a standard port, as well as
a GPUguard-enabled version. Due to the large size of the maps, the
graph representations are too large to fit into the GPU local memory.
Thus, in order to handle such limitation, we need to introduce mem-
ory partitioning techniques, i.e., tiling or blocking techniques [52].
Indeed, this will be an important step for any program that has a
larger footprint than the size of the local memory size(λ) as we will
further discuss in the next chapter, when using the experience of this
transformation to construct a PREM-enabling compiler.

Code Adaptation for PREM: Warp Specialization

PREM requires code to be refactored into prefetch, compute, and
writeback phases. In the GPU setting, an interesting work presented
in the literature, CudaDMA [53], proposed a method of performing
such a division to stage data through the local scratchpad through
a process called Warp Specialization. In a warp specialized kernel, a
subset of the threads are continously executing memory prefetches,
while remaining threads perform the computation on the data avail-
able locally. An abstract overview of this is presented in Figure 2.8.
In the original implementation, all load/stores were performed on the
DRAM (1). After the program has been modified, the memory phase
is bringing data in (2) and out (3) of the scratchpad. The computa-
tion phase is operating on the local data in the scratchpad (4). The
entering of these phases is protected by barriers, which ensure that all
copy operations or computations respectively have been completed.
This work focuses on the GPU side of the execution, and thus the
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Figure 2.8: A visualization on how the memory access pattern changes
in the phase separation of the GPU applications. In the original pro-
gram, all memory accesses were done directly to the DRAM (1). After
the modifications, the program is executed in distinct memory (2, 3)
and compute (4) phases, where only the memory phase accesses the
system DRAM.

CPU side is not further explored in this context.

While this was not originally intended for PREM or similar ap-
proaches, this provided the means to and end to achieve this on the
GPU. The original motivation for CudaDMA and warp specializa-
tion was to achieve DMA-like behavior on NVIDIA GPUs that did
not (and still do not) supply a hardware DMA engine. By emulating
this in software, it has been successfully applied to improve perfor-
mance for compute intensive programs with high data-reuse, thereby
avoiding the refetching of data from global memory. In such cases,
scratchpad data staging leads to performance improvements.

A key property of warp specialization is the assignment of differ-
ent warps (groups of threads) to perform the memory and compute
operations. In PREM terms, this enables the assignment of different
number of threads to the compute and memory phases to change the
duration of the memory and compute phases. This independent allo-
cation of threads to perform computation or memory operations pro-
vide a mechanism to balance the length of the corresponding phases.
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Figure 2.9: A visualization on how the assignment of memory and
compute threads in a warp specialized program can lead to better
balancing of compute and memory phases. In the naive case, the same
threads are used to perform both memory and compute operations,
but in the second case, the threads are allocated to balance the length
of the two phases.

A visual representation of this is presented in Figure 2.9. By assign-
ing a larger portion of the threads to memory than computation, the
intuition is that phase durations can be balanced, reducing the stall
time between the phases. In other words, GPU resources can be allo-
cated in such a way as to provide scheduling quanta that support the
natural phase division of concurrently running GPU and CPU tasks.
This follows from the discussion in the original presentation of warp
specialization [53], but is here used for the first time.

A detailed description of how GPU code can be transformed to
warp specialized state is presented by Bauer et al [53], however, the
fundamental steps are outlined here. First, the GPU kernel is divided
into two parts by an if-else statement, which based on the thread
identifier, threadIdx, to determine if the thread is a compute (if ) or
memory (else) thread. For the compute threads, the code is imple-
mented to first wait on a data-avail barrier, after which computation
is adapted to perform the original computation on scratchpad buffers.
Once the computation on the data in the buffer is complete, it triggers
a synchronization on a data-refill barrier. The memory threads per-
form the opposite operation, initially they wait on a data-refill bar-
rier, after which they perform DMA-like data copying to writeback
old buffer data into DRAM, and refill the SPM buffers with data for
the next computation. Once this operation is finished, the memory
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threads trigger the data-avail synchronization. By utilizing multiple
buffers, this technique can be extended to perform double buffering.

This structure is compatible with the GPUguard synchronization
scheme as outlined in Section 2.1.3, by replacing the data-avail bar-
rier with the EnterCompute synchronization, and the data-refill bar-
rier with the EnterMemory synchronization. Therefore, as warp spe-
cialization both showed great promise and was compatible with the
GPUguard synchronization protocol5, it was used as an intermediate
step for porting the tracker. However, the potential downsides of this
approach when applied more broadly will be discussed in Chapter 4.

2.2.2 Six Tracker Implementations

Using the reference path planner presented in Section 2.2.1 two main
versions, each in three flavors are produced. The first version is the
Naive port of the code from OpenCL to CUDA, but without far-
reaching optimizations for the NVIDIA platform. The second version
is the Coal version, which introduces such optimizations to improve
performance.

Naive Port of Path Planner

The naive port of the reference path planner [49] is produced in three
flavors, the first – Naive being the direct CUDA port of the tracker
from OpenCL without CUDA-specific optimizations. The second –
Naive-WS – is the warp specialized version of the same code, which
is created by applying the methodology in Section 2.2.1 to produce
memory- and compute-phases with barrier synchronizations. The
third version – Naive-PREM is the PREM-enabled version, which
is created by exchanging the CUDA barriers of Naive-WS with the
GPUguard synchronization primitives, for integration with GPUguard
presented in Section 2.1.

However, as we will see soon, the Naive port is underperforming
on the NVIDIA platform. The main issue is that the transition matrix
which specifies the neighboring vertices in the graph is stored in a large
matrix. As is common in graph-processing algorithms, this leads to

5Note that warp specialization is just one of many techniques that have this
property.
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Figure 2.10: A visualization on the memory access pattern of the
Naive (A) and Coal (B) implementations.

un-coalesced access patterns, as the graph nodes visited can be stored
in completely different place in memory, as shown in Figure 2.10a.
Furthermore, the store order of the cost array, indexed by the vertex
ID, does not reflect the order in which the vertices are accessed, again
leading to un-coalesced accesses as the cost accessed from each thread
resides in different parts of memory.

Optimized Path Planner with Coalesced accesses

To overcome the poor memory performance of the Naive port, a pre-
processing stage is introduced. This stage performs an offline explo-
ration of the empty map, reordering the elements of the transition
matrix such that they come in the order that they are explored by
the sequential version. This change enables the streaming of the tran-
sition matrix to the GPU, which implies coalesced memory accesses
and maximum use of the memory bandwidth. As some vertices of the
graph may be explored multiple times, to keep the streaming prop-
erty of the transition matrix, these vertices must be added multiple



2.2. GPUGUARD AND PREDICTABLE PATH PLANNING 47

S Starting node

1st frontier - 8 nodes

2nd frontier - 3 nodes

3rd frontier - 17 nodes

S

1
1

1

1
1

1

1

1

2

2

2

3
3

3

3
3

3

3

3

3

3
3

3

3
3

3

3

3

Figure 2.11: A example on how the frontiers are constructed in Coal.

times. We refer to this new version as Coal. A visual representation of
its access pattern is presented in Figure 2.10b, which shows that each
memory access now brings in multiple vertices that are to be explored.
As the cost array is updated by multiple nodes, storing it in the visit
order would introduce coherency issues due to the duplication, thus
it is kept in the original format.

The calculation of the cost to reach each node is greedy, as inher-
ited from the original Dijkstra implementation for the path planner.
For each node the neighbors are explored, and if the cost to reach the
neighbor from the current reference node is lower than the previous
cost, the cost is updated, and the predecessor of the neighbor is set to
the reference node. Thus, the algorithm breaks if a thread explores
a node which has not yet had its cost updated, as this error would
propagate to all its successors. Especially on a GPU, where hundreds
or thousands of nodes could be explored at once, a mechanism which
prevents this must be implemented.

In the Naive implementation, this was addressed using the mask
array, but for the streaming transition matrix, this is no longer feasi-
ble. Instead, the concept of exploration frontiers is introduced. The
exploration frontiers is an enumeration of sets of vertices F , where all
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vertices in Fn have been visited from at least one vertex in Fm for any
m : 0 ≥ m < n. As shown in Figure 2.11, the base case is F0 which
contains only the source vertex. The next frontier is constructed by
all the vertices that can be reached from the source vertex, and then
the remaining frontiers are in turn populated by the vertices that can
be reached by the previous frontier. The introduction of the frontier
concept enables the insertion of breakpoints in the streaming transi-
tion matrix, at which point all previous vertices have to have been
explored before the exploration can continue beyond that point in the
stream, thus ensuring that nodes are not visited out of order. All
of these operations are done offline and encoded into the streaming
transition matrix.

This consitutes the base version for Coal, and like for the Naive
port we also create a warp specialized flavor – Coal-WS – and a
PREM-enabled flavor – Coal-PREM – using the same methodology.
As the focus here is on PREM, further details of the algorithmic de-
tails are out of scope, but further details on the implementation and
accuracy of the algorithm are presented by Palossi et al at CF’16 [49]
and SCOPES’17 [54].

2.2.3 PREM Evaluation

Using the presented implementations of the planner, we evaluate them
from a performance and predictability perspective. The performance
evaluation will tell us important information about the impact of the
code transformations (i.e., warp specialization and GPUguard syn-
chronization) to the performance of the code. The predictability eval-
uation allows the exploration of how the execution time stability is
affected by memory interference for the different versions, and pro-
vides a direct measure on the effectiveness of GPUguard and PREM
to reach these goals.

For this purpose we use the NVIDIA Tegra TX1 [41] heteroge-
neous SoC which features both a 4-core ARM Cortex A57 and an on-
chip programmable NVIDIA Maxwell GPU. The GPU consists of two
streaming multiprocessors (SM), each capable of executing 4 warps
of 32 threads concurrently on the 4 × 32 GPU cores. The threads
of a warp are executing in lock-step, i.e., sharing the same program
counter. Logically, programs are divided into blocks of threads, where
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Figure 2.12: The absolute execution times for the naive (left) and co-
alesced (right) implementation of the path planner. Note the different
ranges of the Y-axes.

each block can have a maximum of 1024 threads executing at a time.
Each GPU core has a private L1 cache, and all threads executing
within the same block, i.e., on the same SM have access to a shared
L2 cache and a 48 KB scratchpad memory.

We evaluate the implementation on map sizes of 100×100, as this
is the maximum size considered in the original paper [49]. All ver-
sions are executed with 1024 GPU threads (i.e., 32 warps, see Section
2.1.4). For the PREM-enabled versions, we configure the GPUguard
scheduling quantas to match the empirically found WCET of each
phase when executed without memory interference, i.e., E = T , and
throttle the CPU bandwidth during GPU memory phases. The base
and warp specialized versions do not interact with GPUguard.

Performance

The execution times for the six path planner versions presented in
the previous section are shown in Figure 2.12. The first thing to
notice is that the Coal versions are 6× faster than the Naive ports
(notice different Y-axis scales). This is due to the changes to the data
structures that enable coalesced memory accesses, making full use of
the GPU bandwidth.

The performance loss for implementing warp specialization for the
Naive port (i.e., the difference between Naive and Naive-WS ) is sig-
nificant, almost 2×. GPUs are known for hiding memory latency
by having many in-flight requests at a time. In the original version,
memory requests were in-flight during computation, but due to the
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barrier synchronization, no memory accesses are in-flight during the
compute phase of Naive-WS. Therefore, the full memory latency has
to be paid at the start of each memory phase, i.e., a cold start penalty.
This effect is somewhat amortized in Coal, where Coal-WS adds less
overhead. This is due to Coal being less reliant on having a large
amount of in-flight requests, as each request on average has a lower
latency, due to coalesced access patterns.

When moving from the warp specialized versions to the PREM-
enabled, the execution time further increases. This is expected, as
the GPUguard synchronizations with the CPU are bound to require
more time than the barriers used in the WS versions. However, there
is a big difference in the size of the overhead between the Naive and
Coal implementations, in the former the overhead is marginal, while
the execution time almost doubles for Coal-PREM.

The reason for the difference is twofold. The first reason is that
the GPUguard synchronization cost with the host is fixed in size, and
how well it is amortized by useful work dictates how much execution
time overhead it adds, as outlined in Section 2.1.2. In the case of
Naive, with its unoptimized memory accesses, the memory phase is
significantly longer than for the Coal version, meaning that the over-
head is better amortized in Naive. This effect will be further explored
in Section 5.1.1.

The other effect is due to algorithmic properties of Coal inter-
acting with GPUguard. The Coal implementation stops loading ver-
tices when it encounters a frontier breakpoint. In iterations where
the breakpoint does not coincide with the SPM being full, this leads
to shorter durations of memory and compute phases. However, as
GPUguard is configured to always enforce the WCET of each phase,
through the scheduling quanta, the execution of a near-empty itera-
tion will require the same time as a full one – this is not the case for
the non-PREM versions of Coal. In the tested map configuration this
occurs frequently, but could be addressed algorithmically by always
loading as many vertices as possible, deferring the frontier boundary
check to the compute phase. Overall, the optimization of the tracker
for the NVIDIA platform has a larger effect than the PREM over-
heads, and Coal-PREM is still 2× faster than the vanilla version of
Naive.
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Figure 2.13: The effect on Naive (left) and Coal (right) under memory
interference from the CPU.

Freedom from Interference

We now evaluate the effectiveness of PREM to achieve freedom from
interference, as well as the performance benefits achieved under mem-
ory interference, due to stable execution times as opposed to accept-
ing increased latencies. Each implementation is executed with and
without memory interference, generated by stress [55] executing
on the CPU. This is a system stress testing tool available on most
GNU/Linux systems, including NVIDIA’s Linux4Tegra, capable of
generating large amounts of memory requests, cpu load, etc. For
these experiments stress executes 24 threads, each accessing a 32
MB array in strides of 129 bytes.

The results are presented in Figure 2.13, in which all execution
times are normalized to Naive without interference. For both Naive
and Coal, the PREM version has significantly lower sensitivity to in-
terference than the other versions, where the base versions suffer a
slowdown of 2.7× and 8× respectively. In the case of Naive, the ex-
ecution time of the PREM version is only 20% lower than the base
version, because the execution time is already dominated by memory
inefficiency and thus the difference is low. In contrast, Coal that has
very efficient use of memory is very sensitive to memory interference,
and the ability of the PREM-enabled version with GPUguard to keep
the execution time stable also under interference makes for a large dif-
ference. In this case, the PREM version with GPUguard is 3× more
performant than the base version, including the overheads discussed
in the previous section.

The execution time of the PREM versions remain constant with
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and without interference – which is the expected result – for all except
one measurement of Naive-PREM. The outlier is due to the interrupt
latency variance in the default Linux4Tegra Linux kernel. This is-
sue can be addressed with kernel extensions, such as PREEMPT RT,
which bound these latencies for real-time Linux systems.

Furthermore, the effects of memory interference to the warp spe-
cialized version is similar to that of the base version, showing that the
code transformations in themselves do not limit the interference, but
the support of GPUguard is required to achive these results.

2.3 Conclusion

The work in this chapter has demonstrated that CPU and GPU mem-
ory accesses can be executed in a timing predictable way, by enabling
PREM-compatible exclusive access to the shared memory system dur-
ing their memory phases. By dimensioning the GPUguard scheduling
quantas to the WCET execution times of the phases in isolation (i.e.,
single-core equivalent timing analysis) near-zero variance in execution
time is achieved also under memory interference.

We have seen that compute intensive tasks like matrix multipli-
cation (Section 2.1.4) can be executed with GPUguard in a PREM-
compliant way at almost no overheads. For more memory bound
workloads, such as the path planner (Section 2.2.3) the shorter ex-
ecution time of compute phases leads to worse amortization of the
synchronization overhead, leading to larger overheads when condering
execution in isolation, i.e., with no memory interference, the insights
provided in Section 2.1.2. In both cases, however, it has been shown
that PREM-like execution with GPUguard can provide significant im-
provements in the measured WCET under interference, thus achieving
its set out goal.

The fundamental technique used to transform GPU kernels in this
section has been warp specialization. This technique was initially
proposed to overcome the lack of hardware DMA engines in NVIDIA
GPUs, limiting previous techniques for efficient data transfers. Here,
we have made limited use of this technique, as a means to achieve sep-
arate memory and compute phases for PREM execution. However, a
main feature of CudaDMA [53] that proposed warp specialization was
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to enable double buffering to improve memory utilization by efficiently
transfering data during computations.

Such techniques would potentially be feasible for compute-bound
kernels also under PREM, in which the compute phase is long enough
to enable two memory phases to be executed under its duration. How-
ever, the introduction of such schemas could significantly limit the
time share of the memory available to other parts of the system,
while the improvements for the GPU kernels are relatively small –
since the kernels are compute bound, the memory phases account for
a relatively small portion of the execution time. For this reason, such
approaches were not explored here, but may be relevant to explore
as part of future work – especially in systems that provide cheaper
synchronization primitives to minimize the overheads of PREM phase
changes.

As memory interference is a significant problem in any system
with shared memory, the technique is also relevant for other types of
heterogeneous systems. While techniques such as warp specialization
are specific to GPUs, any other techniques can be used to transform
programs into separate memory and compute phases. Thanks to the
portable implementation of the GPUguard synchronization scheme, it
could be used with any other software-programmable heterogeneous
system with minimal changes.

Overall, using the techniques in this chapter PREM can be ap-
plied to heterogeneos systems in much the same way as previous work
has enabled its application to multi-core systems. PREM by design
removes memory interference effects between tasks in a system, pro-
viding single-core equivalence in timing analyses leading to system
composability. Being able to apply single-core equivalent techniques
to systems as complex as heterogeneous CPU+GPU architectures is
a major benefit of the work presented in this chapter.

Having demonstrated the feasibility of the approach at runtime,
the next chapter addresses the natural next step: In order to achieve
the results in this section significant code refactoring was required.
Wider adoption of the technique could be facilitated by compiler sup-
port to handle this tedious task.





Chapter 3

PREM Compiler
Support

The transformation of legacy programs into PREM intervals, that pre-
serve correctness of the original program and respect the sizes of local
memories is a tedious and error-prone task. Already in the original
proposal for PREM [24] it was expected that compiler support would
eventually be required to make this technique applicable in practice.
Before our work started, the only automatic code generation technique
available for PREM was LightPREM by Mancuso et al [56]. This is
a profiling-based technique that profiles memory accesses during run-
time, and remaps run-dependent addresses to known fixed addresses
in the program address space. From this profile, LightPREM injects
prefetch phases into the binary of the program. This approach has a
significant drawback in that prefetching of incorrect data found dur-
ing profiling leads to segmentation faults, and any accesses that do
not appear during every run of the program must be purged from the
memory phases. This has two drawbacks, first that this leads to in-
complete prefetching for PREM, potentially limiting the isolation of
the interval partitioning, and second that the memory phases created
from black-box observations may lead to unknown segfaults as the
program input changes.

Compilers instead, have a full visibility of the code under compi-
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lation, and through static analysis techniques can generate memory
phases that are correct under any execution. Constructing a PRE-
Mizing compiler is therefore a significant improvement over the state
of the art in automatic PREM code generation from legacy software.
To transform code into PREM-compliant versions, a PREM compiler
requires means to analyze the code and divide it into PREM intervals,
a method to automatically transform the code into prefetch, compute,
and writeback phases, and a means to ensure that the PREM time-
separation of memory phases can be upheld at runtime.

This section starts by presenting a GPU-centric PREM compiler,
that divides GPU kernels into PREM intervals based on parallel loop
constructs from high-level programming languages, e.g., OpenMP.
This compiler immediately follows the observations from the previ-
ous chapter, automating the PREMization that was there performed
manually. Targetting the same architecture, it uses GPUguard to
enforce the PREM memory and compute phase separation.

Following this, the compiler techniques are extended to support
more general programs and additional platforms, such as general pur-
pose multi-core CPU and programmable many-core accelerators (PMCA).
This section further provides insights on the architectural awareness
required within the compiler to generate well-performing code for plat-
forms with different compute and memory hierarchies.

The compiler techniques presented in this chapter are then evalu-
ated in the following Chapter 4.

3.1 A Heterogeneous PREM Compiler

This section describes the work presented initially in DATE’18 [57],
and extended and published in the IEEE Transactions on Comput-
ers [40] in 2020, aimed at producing a PREM compiler for heteroge-
neous CPU+GPU systems. In this section, the focus is completely
on the GPU compilation, and we will extend it to also encompass the
CPU in Section 3.2. To simplify programmability, we build upon re-
cent proposals for directive-based programming models [58, 59, 60] –
which are more abstract than the low-level coding style of CUDA [43]
or OpenCL [61] – and apply the required transformations transpar-
ently to the application developer, as part of the compilation process.
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Specifically, we design PREM support on top of OpenMP [58]. The
programs generated by the compiler are compatible with GPUguard,
as presented in the previous section.

3.1.1 Compiler Design Decisions

Following the discussion in Chapter 2, and taking into account the
capabilities of compilers to analyze and transform code, we base the
compiler design on the following pillars:
Real-time coding standards – To be able to transform legacy code
to PREM-compliant code, the compiler must be able to infer many
properties of the code. In the general case, this can be impossible to
achieve, due to non-deterministic program flow and dependency on
runtime data that is not available at compile time.

To limit the impact of such factors, we limit the scope of the
PREM compiler to code that has been written in accordance to best-
practices for real-time systems, such as the MISRA guidelines for the
Automotive industry [62]. One of the main benefits of code written
in accordance with such guidelines is that it is subjectible to static
analysis, i.e., program behavior can be determined at compilation
time. This means that such code is more subjectible to exact analysis
tools can be used in place of, e.g., profile-based techniques. Current
compiler infrastructures such as GCC [63] and LLVM [64] contain
built-in analyses to understand control flow, variable evolutions, etc.
to determine such information.

Limiting the scope of the PREM compiler to code written accoding
to real-time standards is reasonable, as the target of PREM is the
enabling of real-time execution, thereby matching well with such real-
time coding best practices.
High Level Language Compilation – In the previous chapter
we applied PREM transformations directly to CUDA code. While
it would be possible to design a heterogeneous PREM compiler on
top of CUDA, this would negatively impact the programming model.
Languages like CUDA, OpenCL, etc, offer a low-level programming
paradigm, which gives the programmer significant opportunity for
workload partitioning, and low-level optimization. As the PREM
transformations are applied, such low-level optimizations may be found
contrary to both performance and predictability in the transformed
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code. Furthermore, were the compiler to undo such explicit program-
mer decisions, there would be a mismatch between the code written
and that of the final program. Such mismatches are in stark opposi-
tion to real-time best-practices for coding, which give a high value to
code readability and understandability.

At the same time, the push towards the adoption of directive-
based programming models such as OpenMP [58] and OpenACC [59]
in the context of GPUs is constantly growing. OpenMP ensures that
also the non-expert user can easily code the desired functionality by
just abstractly indicating which loops are to be offloaded to the ac-
celerator1. By adapting such high-level languages as the basis for the
PREM transformations, not only do we levereage this per-se valuable
feature, it also gives the compiler the freedom to determine the best
work partitioning and data movements for predictability, without con-
flicting with such low-level decisions made by programmers. Already
today the high-level language compilers are performing such decisions
based on performance optimization, and thus is a good match to the
needs of PREM transforming compilers.

We focus on the subset of OpenMP directives that are suitable
for execution on GPUs, i.e., Single-Instruction Multiple-Data (SIMD)
execution. These are expressed using parallel for loops, that are
distributed over the GPU clusters using OpenMP teams. Based on the
findings of Antao et al [65], we focus our efforts on statically scheduled
loops, as these perform significantly better than dynamic scheduling
on GPUs2, and achieve similar performance as native CUDA.
PREM Enforcement Granularity – Predictability can be enforced
at different granularities in the system, most prominently at offload
boundaries, or continously throughout the execution of GPU kernels.
In the case of traditional discrete CPU+GPU systems, the offload
boundary is the only point where CPU-GPU interference needs to be
considered, as the discrete memory of the GPU does not give raise to
interference during kernel execution. This is not the case in integrated
CPU+GPU platforms where the DRAM is shared. As outlined in Sec-
tion 1.1, all memory requests are served by the same physical memory,
and interference occurs throughout kernel executions. In addition to

1Advanced directives provide detailed control to expert users.
2num threads and num teams (corresponding to CUDA blockDim and grid-

Dim), and other OpenMP clauses that can be applied to parallel for loops.
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this, the local memory λ of the GPU is not addressable from the host,
in contrast to the GPU DRAM in discrete GPU systems. Therefore,
data can not be copied into the scratchpad using the memcpy func-
tionality. This means that in both techniques, the kernel code needs
to be transformed not only to express intervals that are small enough
to fit within the size of the local memory size(λ) (Section 1.4), but
also to manage the data transfers to local memory λ.

As GPU kernel code needs to be transformed in either technique,
and the data movements need to be transformed from GPU side, it
makes little sense to split kernels and manage PREM at an offload
granularity. As has been argued, the contents of the kernel code
would be the same in either case. Therefore the only difference be-
tween either controlling PREM phases from within the GPU kernels
– i.e., using the GPUguard techniques – or at a per-offload level is the
addition of further offloading overhead due to GPU reconfiguring at
each interval boundary. Such operations are furthermore part of the
closed-source driver, and can not be relied on for timing predictable
execution, unless given by the manufacturer.

Following the selection of high-level OpenMP programming mod-
els, the PREM transformation into intervals can be easily achieved
based on loop structures in the kernel code itself, through the process
of tiling. By treating a loop iteration as an atomic unit to construct
PREM intervals, they can be grouped together into blocks that are
sized to perfectly match the local storage. This encodes the PREM
interval synchronizations continously within the kernels, given by syn-
chronization points explicitly expressed in the code. While kernels are
reduced to a single offloading point, this point still requires protection
to avoid interference due to OS scheduling jitter, i.e., interference from
other tasks competing for processor time, but this problem is greatly
reduced with less frequent offloads.
Staging data through the Scratchpad – PREM can be imple-
mented at any level of the memory hierarchy. In the provided archi-
tectural template, there are two main options available for the GPU,
the SPM (CUDA shared memory) and the hardware-managed last-
level cache (LLC). While we will show in Chapter 5 that GPU caches
could in theory be used for PREM, it puts additional constraint on
kernels to ensure cache-friendly access patterns. For this reason, and
as the main goal of the presented work is to achieve predictability,
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Figure 3.1: The analysis and transformation steps taken as part of
the PREM-enabling compiler passes.

we have opted for the software managed SPM, that is not subject to
un-controllable hardware eviction policies. This is consistent with the
choice we made in Chapter 2.

3.1.2 Compiler Design

Based on these pillars, we identify the different phases that are re-
quired for a compiler to perform these code transformations. These
phases can be divided into a three-phase compilation process, pre-
sented in Figure 3.1, which will be presented and motivatied in this
section.

Before looking at the details, we outline the different phases of
the PREM compiler, and motivate why they are required. The first
phase is the analysis phase, which collects the necessary information
about the program to perform legal PREM transformations. Since
the size of an interval i, size(i) must be smaller than the size of the
local memory λ, size(λ) (see Equation 1.1) the first step of the analysis
phase is the calculation of the memory footprint of each code segment.
As outlined in Section 3.1.1, the presented PREM compiler uses loop
iterations as the atomic construct from which PREM intervals are
created, and thus this heavilty relies on loop analysis techniques. We
will extend this phase to handle more general control flows in Section
3.2. Based on this information, intervals i that are valid with respect
to Equation 1.1 can be selected. Due to the use of loops as atomic
units, the main technique used for interval selection is loop tiling, i.e.,
dividing a larger loop into several smaller loops, each constituting
a PREM interval. It is the job of the interval selection step of the
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analysis phase to determine which tiling factor that results in PREM
intervals for which Equation 1.1 hold.

Based on the interval selection done in the Analysis phase, the
Refactoring stage transforms the code such that it conforms to the
structure dictated by the selected PREM intervals. Practically, this
involves applying the selected tiling scheme to the original code. Fol-
lowing this, hooks for the PREM scheduling runtime are inserted to
divide the interval into prefetch, compute, and writeback phases.

Finally, the transformation stage is tasked with generating the
memory phases for each individual interval, and injecting them fol-
lowing the scheduling hooks inserted in the refactoring phase. We will
describe three different ways of achieving this transformation; strip-
ping, compatible intervals, and SoftDMA.

Control Flow Graphs

To provide visual information throughout the presentation of each
of these phases, we will use a running example based around the
control flow graph. This allows us to show the incremental changes
performed by the PREM compiler throughout the compilation process
to a general representation of a loop structure.

The CFG G is created for each function F in the program, and is a
directed graph GF = {B, J} that consists of the set of basic blocks B
(nodes), and the set of branches (or jumps) J (edges). A basic block
b ∈ B is an ordered sequence of instructions inst0, inst1, inst2, · · · of
arbitrary length, ending with a terminator instruction. Terminator
instructions include return statements, and importantly branch in-
structions, which each correspond to a jump j ∈ J , which targets any
basic block btarget ∈ B. As G is a directed graph, each jump j ∈ J
therefore has a source bs and a target bt basic block in B, and we say
bs is the predecessor of bt, and correspondingly that bt is the successor
of bs. The return statement exits the scope of the function F , and as
such provides a sink for the paths through the CFG GF .

A well-formed loop consists of at least four basic blocks. The first
is the preheader, which performs the initialization of variables. This
node preceeds the cycle in G that represents the loop, and has only one
successor, the header block. The header block is the first block that
is part of the cycle, and it contains the instructions necessary to test
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Figure 3.2: Original loop

the loop condition. The header block has two successors, depending
on the outcome of the test. If the test result is false, the control
flow jumps to the exit node of the loop, which is the first basic block
following the loop that is not part of the graph cycle. If the test result
is true, the control flow instead jumps into the cycle to the loop body.
The loop body consists of one or more blocks and may have internally
arbitrary control flow, including nested loop structures, as long as
the final block in the loop body has an unconditional jump to the loop
latch. The latch is the final necessary ingredient in a well-formed loop,
and is responsible for bumping (e.g., increment, decrement, ...) the
loop variables (as initialized in the preheader before unconditionally
jumping back to the header (thus completing the cycle), and the loop
condition is re-evaluated.

In loops in which the loop condition consists of evaluating an ex-
pression E of a variable V that is incremented or decremented by a
constant value in each each cycle – loop iteration – we refer to variable
V as the induction variable.

Consider Figure 3.2 that shows both C code and the CFG of a
simple loop. In this representation, the loop is defined by an initial
variable initalization i = 1 in the preheader (here i is the induction
variable), followed by the loop condition test i < 500 in the header.
The body of this particular loop consists of a single basic block which
performs A[i] = i, before jumping to the latch which performs the
bump of the induction variable i++. We will use this simple – but
general – example throughout the following sections to illustrate the
operation of the compiler.
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3.1.3 Analysis and Refactoring

As outlined in Section 3.1.2, the first step in the analysis phase is to
determine the memory footprint of the loops. The analysis of memory
accesses in loops can be classified into one of two classes. The first is
loop invariant accesses, in which each iteration of the loop accesses
the same data. Examples of this include (but are not limited to)
scalar accesses, or array accesses where the index does not depend on
the loop iteration (e.g., constant, or not dependent on the induction
variable). These accesses can be trivially identified from the internal
representation of the compiler. The other class, correspondingly, are
loop variant accesses, in which each loop iteration accesses a different
datum. An example of this are array accesses where the index changes
as a function of the induction variable, as for A[i] in Figure 3.2.

It is important to separate between these two classes to produce
an exact footprint for the loop. If loop invariant accesses are accu-
mulating the loop footprint for each iteration, the footprint will be
overestimated, leading to small intervals and frequent scheduling de-
cisions (adding overheads, as outlined previously in Section 2.1.4 and
to be further explored in Section 5.1.1). Likewise, if the compiler does
not account for all accesses that result from a single symbolic state-
ment, e.g., i in A[i], the footprint will be under-estimated, which
may lead to violations of the PREM requirement expressed in Equa-
tion 1.1. This information can not be extracted directly from the
internal representation in the compiler, but can be identified using
built-in analyses, such as Scalar Evolution (SCEV) analysis.

Scalar Evolution

Scalar Evolution (SCEV) [52] analysis determines how the loop induc-
tion variable (IV) changes over the execution of the loop. Consider
the example in Figure 3.2: Within the compiler, i is represented by
an ambigous symbol, obscuring which elements of array A that will
be accessed at runtime. SCEV analysis uses the available information
in the preheader to determine that at the start of the loop, i = 1,
together with the information expressed in the latch to that for each
subsequent iteration in = in−1 + 1, enables the obscure i symbol to
be replaced with a rich SCEV expression that describes this evolution
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of i over the loop, on the form {start, op, stride}. In this case, i is
represented as i = {1,+, 1}. In addition to understanding the value
of i at any arbitrary iteration, it allows further information such as
the iteration count to be calculated, by testing at which iteration of
the loop that the loop condition i < 500 becomes false.

To extract this rich information, SCEV analysis requires loops to
be statically analyzable, i.e., the iteration space of the loop must not
depend on any information that is not available at compile time. In
the case where e.g., the exact start or end values of i (1 and 500)
can not be statically determined, the SCEV expression will be a sym-
bolic expression, which limits the amount of information that can be
extracted. In the following discussions, we assume that the SCEV ex-
pressions are always non-symbolic, i.e., the induction variable’s start
and end values, as well as its stride can be exactly determined at com-
pile time. This is in line with typical requirements on real-time code
(see Section 3.1.1) although we will further discuss how to lift this
limitation of scope in Section 3.2. Note however that the presented
methodology does not fundamentally depend on Scalar Evolution, but
other loop analysis techniques, including profile-based techniques or
bounds provided through programmer annotations could be used to
provide the necessary information.

Thus, by calculating the evolution of i the compiler is able to
determine all memory accesses that arise from a symbolic expression
like A[i].

SPM Buffers and Memory Footprint

Now that all accesses in the loop can be identified, the footprint of
the loop can be analyzed by the compiler. However, one additional
piece of information is required for the footprint analysis to return
meaningful information. This issue arises from the design choice of
using SPM for local storage. As SPMs are explicitly addressed, the
staging of data in the SPM requires the creation of buffers. At which
granularity data is laid out in these buffers thus impact the footprint
of an interval.

For this work, we have decided to create dense SPM buffers for
arrays, to reduce the address calculation overheads (see discussion
in Chapter 5). This means that the relative distance between two
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elements in the original array and the SPM buffer are preserved,
i.e., A[n] and A[n+C] in the original array is represented directly by
A spm[m] and A spm[m+C] in the SPM. This implies that the absolute
footprint depends on the range of elements accessed in the array, as
space is allocated also for unused data in between.

However, applying this strategy directly to the address of the ac-
cess would not enable multidimensional access patterns (e.g., matri-
ces) to be managed without blowing up the resulting memory foot-
print. Therefore, the strategy is not applied directly to the address,
but to each individual dimension used to index into the array. For
example, a typical matrix access A[i][j] has two dimensions (one
per []) and would be represented by a two-dimensional buffer that is
dense in dimensions i and j, but not in the range of addresses that
these represent.

This focus on dense data structures is motivated by their preva-
lence in typical GPU applications, as they result in coalesced access
patterns that are a prerequisite for good performance. Thus, this ap-
proach presents no practical limitation to typical GPU workloads, and
solutions for other architectures will be discussed in Section 3.2.

Footprint Analysis

Having addressed the analysis of loop variant accesses, and the im-
pact of SPM buffering on the resulting footprint of the program, the
footprint can be calculated. Algorithm 1 shows how to calculate the
range of elements M accessed within an analyzed loop. Lines 6-7 use
SCEV to determine the elements accessed by loop-variant statements
sA, based on the initial value of the IV (start), its increase over succes-
sive iterations (step) and the total number of iterations (tripcount).
For loop invariant accesses, line 10 records the single element loaded
or stored. Lastly, on lines 13-15 the memory accesses of sub-loops in
loop nests are analyzed recursively, and at the end of the recursion,
the memory footprint is determined from the accessed data M .

Sub-loops are represented as new loop structures with their own
preheader etc. as the body of the parent loop. Note that this means
that for each invocation of the inner loop, the loop variant accesses
of the parent loop may be loop invariant in the sub-loop. This means
that these accesses result in a smaller range of accessed elements, in
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Algorithm 1 Pseudo-code for memory footprint analysis.

1: Input: Loop L
2: A is a memory access in L
3: sA is a tuple describing the SCEV of A in L (start, step, tripcount)
4: Output: Memory access map ML

5: for all memory access A in L do
6: if A.loopvariant(L) then
7: sA = ScalarEvolution(A, L)
8: M .addAddressRange(start = sA.start, end = sA.start +
sA.tripcount× sA.step)

9: else
10: M .addAddress(A)
11: end if
12: end for
13: for all Sub Loop SL in L do
14: Recurse on SL
15: end for

turn giving the property that the size of a sub-loop is at most the size
of its parent loop.

PREM Interval Selection

Once the memory footprint has been calculated, PREM intervals are
selected by loop tiling, after which a synchronization skeleton sepa-
rating the PREM phases is inserted.

There are two main cases for turning a loop L into an interval. The
first case is if the memory footprint of the entire loop is small enough
to fit into the SPM λSPM , size(L) ≤ size(λSPM ). In this case, the
data accessed during the loop can be loaded in its entirety into the
local memory using the PREM prefetch phase, wherafter the loop is
executed as-is in the PREM compute phase, although, in the case of
SPM, with pointers updated to access the local memory instead of
DRAM. At the completion of the loop execution, the data is written
back to DRAM using the PREM writeback phase.

The other case, when size(L) > size(λSPM ), the loop must be
divided into n smaller chunks L→ l0, · · · , ln−1, such that each chunk
lm fulfills size(lm) ≤ size(λSPM ). This is achieved through tiling,
and each tile represents an individual PREM interval. As outlined
in Section 3.1.1, the selection of tiling granularity, i.e., the number
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of iterations of L to execute in each lm, directly corresponds to the
selection of PREM intervals.

OpenMP Work Distribution for Parallel For

OpenMP describes data parallelism through loop structures. During
compiler code generation this loop must be transformed into GPU
code that distributes work over threads and blocks. As mentioned in
Section 3.1.1, the distribution over blocks is done using the teams dis-
tribute pragma. The distribution of work to threads is however done
using classical OpenMP loop scheduling. By assigning iterations (i.e.,
values of the IV) of the outer loop to different threads, the workload
can be efficiently executed in parallel. For the purposes of this presen-
tation we refer to this outer loop as the SIMT loop, as it distributes
work across warp threads executing in SIMT mode (SIMT = Single
Instruction Multiple Threads).

This solution does however have an additional impact on tiling for
OpenMP GPU kernels. For the purposes of the following discussion
we will therefore separate the management of iterations of the SIMT
Loop from iterations of other nested loops, which are executed in-
order internally within each thread, as one would expect from classical
single-threaded loops. For this purpose we refer to the iteration space
of the SIMT Loop as the blockDim.

When tiling the blockDim, we constrain the tiling factor to be a to
be a positive multiple of the OpenMP num threads annotation, as an
uneven distribution of the SIMT loop iterations cause some threads
to have no work to perform as part of the tile, reducing performance.
Therefore, we define a block iteration of the SIMT loop as each thread
executing exactly one iteration in parallel.

Tiling

Using this information, Algorithm 2 shows how the memory footprint
is used to achieve load balanced tiles, or PREM intervals. Lines 1-6
handle the case when the tiling is performed on the blockDim, for
which we select the largest number of block iterations that produces a
tile that fits in the SPM (line 3), i.e., fulfilling Equation 1.1. If no such
tile can be created, the algorithm returns a failure (line 5). Note that
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Algorithm 2 Pseudo-code for the tiling decision.

Require: Memory Footprint for all Loops, given by Footprint(), and calculated
from M in Algorithm 1.

Require: λSPM is the size of the local scratchpad
1: if Loop is SIMT Loop then
2: if Footprint(Block iteration of Loop) < λSPM then
3: Set blockDim to largest multiple of num threads such that Foot-

print(T ileblockDim) < λSPM
4: else
5: Failure
6: end if
7: else
8: Set blockDim to num threads
9: for all Sub Loop in Loop ∪ Sub Loops do

10: Set tileDimSubLoop to largest value V such that Foot-
print(T ileblockDim×tileDim) < λSPM

11: end for
12: If V < 1 Then Failure EndIf
13: end if

it would be possible to create tiles where some threads idle, but we
opted for a compiler warning. This allows the OpenMP num threads
to be adjusted to enable balanced tiles and better performance3.

Lines 7-13 of Algorithm 2 handle the tiling of N levels of inner
loops. To respect the SIMT loop we start by assigning a single block
iteration to the blockDim (line 8) to ensure a balanced workload.
The iteration spaces of the remaining N dimensions of the tile, which
we refer to as tileDimn (n = 1 . . . N), are local to each thread, and
can be tiled freely. Thus we select the largest tileDim possible V
in accordance with the size of the local memory, λSPM (line 10). If
it is not possible to find V such that the loop fits into λSPM , we
use V = 1 if the loop has subloops, and recurse to the subloops on
lines 9-11. This is motivated by the fact that for each recursion the
footprint of an interation decreases, as outlined in Section 3.1.3. If
there are no subloops (i.e., innermost loop) and we cannot tile it to
be smaller than λSPM , setting V = 0 triggers a Failure on line 124.
Ultimately, the inequality in Equation 3.1 must hold, meaning that

3In practice, none of the kernels we will show in Chapter 4 trigger this case.
4Addressable by splitting the inner loop into two PREM intervals, using the

techniques presented in Section 3.2.
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the more threads that are used per cluster (blockDim), the smaller
the tileDim (iterations local to the thread) will become.

λSPM ≥ blockDim× tileDim = blockDim×
N∏
n=1

tileDimn (3.1)

Tiling lives at the boundary of the analysis and refactoring phases
of the PREM compilation, as outlined in Section 3.1.2. The decision
at which granularity to perform the tiling – and thus create the PREM
intervals – is taken as part of the analysis. The first step of the refac-
toring phase is to transform the code to match the tiling parameters
derived during the analysis phase. Returning to our running exam-
ple, as shown in Figure 3.3, the tiling of the loop adds the uncolored
nodes in the CFG, and the inner loop in the C code. As part of the
tiling process, the tiled loop ln is outlined to a new function (this is
the opposite of inlining), as shown by the dotted rectangle in Figure
3.3. Note that our approach is not specific of any tiling technique,
and more advanced techniques [66, 67] can be used.

Synchronization skeleton and Scheduler Hooks

Following this, as the next step in the refactoring phase, the result-
ing tiles are separated through the insertions of synchronization calls
according to the GPUguard protocol, as presented in Section 2.1.
These synchronizations are concretely represented by function calls
into a separate PREM library, which we will further describe in Sec-
tion 3.2.4. Through these synchronization points, the GPU program is
effectively divided into PREM memory and compute phases, as shown
in Figure 3.3 by the red squares in the CFG, representing the function
calls in the code. Thus, every instruction following a synchronization
is part of the following PREM phase, as specified in the call, up un-
til the next synchronization. Based on this synchronization skeleton,
the following transformation phase is used to transform the code into
separate PREM prefetch, compute, and writeback phases, as outlined
in Section 1.3.
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Figure 3.3: Tiled loop with EnterMem/EnterComp sync skeleton.

3.1.4 Transformation

The goal of the Transformation phase is to separate the created tiles
– PREM intervals – into separate memory and compute phases. How-
ever, at this point it is worth noting that the insertion of the GPU-
guard synchronization skeleton, performed already during the Refac-
toring phase, already is a valid representation of the PREM compati-
ble interval as described in Section 1.3.2. While these interval do not
benefit from the ability to continue operation on local memory while
other tasks are using the main memory, it is perfectly possible to use
GPUguard to isolate the memory accesses – i.e., the entire legacy-
style execution of the kernel – and thus it fulfills the goals of isolating
memory operations between tasks in the system that PREM requires.

Thus, to create a compatible intervals, no further transformation
is required, and the code can be directly emitted, as illustrated in
Figure 3.1. While the foreseen use of these compatible intervals is
only to support legacy code that for some reason cannot be turned
into predictable three-phase intervals, as outlined in Section 1.3.1, it
is useful to be able to emit them from the compiler anyway to enable
comparison, as we will show in Chapter 4. It is worth noting that the
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Figure 3.4: Skeleton extended to Load Execute Store phases, with
EnterComp and EnterMem synchronizations.

tiling failures described as part of Algorithm 2 can be handled with
compatible intervals, as these are not technically limited to the size
of the local memory size(λSPM ), as they operate directly on DRAM.
Furthermore, in Section 3.2 we will further extend the compiler to
apply this technique to handle such and other analysis phase failures.

A visual representation of how compatible intervals created this
way are executed in the context of GPUguard synchronizations is
presented in Figure 3.5a.

Three-Phase PREM Intervals

The main goal of the PREM compiler, compatible intervals aside, is to
create three-pased intervals with full prefetch, compute, and writeback
phases. This section presents two fundamental techniques to achieve
this, as well as different ways to generate code to achieve different
execution schemes at execution time. We refer to the first technique
as stripping, and the second technique which improves the efficiency
of the memory phases as SoftDMA.
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Figure 3.5: A logical view of different GPU execution schemes en-
abling mutually-exclusive access to the system DRAM with the CPU
executing in the background.

Stripping-based Techniques The easiest way to achieve the phase
separation is to clone the tiled loop into two additional copies, and
placing one after each synchronization, as shown in Figure 3.4. The
PREM memory phases can then be created using a class of techniques
which we refer to as stripping, and represented by the Decoupled
Access Execute technique [68]. This technique transforms the PREM
memory phases, by transforming the cloned copies of the original tile,
and stripping the non-load/store code out of the respective phases,
staging all loaded/stored data through the SPM, and transforming the
original tile (now the compute phase) to access the staged SPM data.
While intuitively predictable intervals created in this manner imply
code transformation overheads compared to compatible intervals, they
reduce the idleness in the system through continued execution while
memory access is not granted, as shown in Figure 3.5b.

Additionally, by using the warp specialization technique presented
in Section 2.2.1, the compiler can further specialize GPU kernel code
to implement a combined execution, where half of the threads executes
one compatible interval tile (directly accessing main memory via cache
misses) and the other half executes a three-phase tile created through
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stripping, staging data through the SPM then computing locally in
the compute phase. This is shown in Figure 3.5c. This technique
was created to address the ineffective use of the memory bandwidth
due to the stripping technique: The technique had previously been
used successfully on cache-based general-purpose CPU programs, but
it failed to make effective use of the GPU memory bandwidth. The
combined technique addresses this by using the slack bandwidth to
compute one tile in DRAM while performing the memory operations
of the three-phase predictable interval. The effects of this will be
shown in Chapter 4.

SoftDMA The need for the combined schema in combination with
the stripping technique illustrates how this originally successful CPU
technique failed to make effective use of the memory bandwidth of the
GPU. For the code to perform well on the GPU, where hundreds or
even thousands of threads are executing the same code, additional care
must be taken when creating the prefetch and writeback phases. The
performance of GPU programs heavily depends of regular and well-
organized memory accesses. In this sense, the stripping technique has
two main disadvantages. First, reusing the original control flow means
that multiple threads may load/store the same data to the SPM, lead-
ing to less effective use of the memory bandwidth. Second, the strict
adherence to the original control flow means that sub-optimal access
patterns may be inherited from the compute patterns, that could have
been optimized if the memory accesses were decoupled from the point
of use [53]. Algorithm 1 provides the compiler with the necessary in-
formation to create better optimized memory phases that lift these
limitations, through a novel technique we refer to as SoftDMA.

As a motivating example, consider a kernel that computes A[i-1]
+ A[i] + A[i+1], i.e., the thread executing the ith iteration will ac-
cess the same memory as the threads executing the i−1th and i+1th
iterations, as shown in Figure 3.6a. In the original program this is
required, as each thread fetches its data from the global memory.
However, if stripping is used, this duplication will unneccessarily be
inherited by the memory phase, as shown in Figure 3.6b. In con-
trast, SoftDMA enables each unique accesses to be mapped to a single
thread, as shown in Figure 3.6c.
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Figure 3.6: The memory access patterns of the original program, and
the PREM memory phases created with the stripping and SoftDMA
techniques.

Instead of reusing the original control flow for the prefetch and
writeback phases, as was the case for the stripping technique, opti-
mized SoftDMA memory phases are created as loops in Algoritm 3.
These loops mimick the behavior of DMA engines, and represent the
smallest amount of code necessary to move the data. To present the
algorithm we refer to 2D structures, but the algorithm generalizes to
data of any shape.

Access code is created for each data structure D in the access map
M (line 1), handling both cases identified as part of the footprint
analysis: loop variant accesses to composite types (arrays of any di-
mension, and structs) on lines 2-11, and loop invariant accesses, e.g.,
scalars, on lines 13-16. For the latter, no loops are needed, and the
data is loaded as is (line 14). The helper function createLoop(start,
stop, step) is used to create a loop on the form for(iv := start ; iv <
stop; iv += step), on the form outlined in Section 3.1.2. L.iv is the
IV (Section 3.1.3) of the created loop L.

For loop variant accesses, the algorithm operates on a per-dimension
basis, where each dimension represents one layer of pointer derefer-
ence, following the principle outlined in Section 3.1.3. For example,
an access to a 2D structure A[i][j] requires three dereferences: The
first to identify the location of A in memory, the second to identify
the offset to the row i, and the last to identify the column j (offset
within the row). We enumerate these dereferences in derefChains,
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starting from the base structure and handle them one by one (line 3).
Note that only the last dereference will address a sequential piece of
memory, as only rows are laid out sequentially – traversing a column
implies an access pattern with strides the length of a row.

To achieve coalesced memory accesses, we therefore assign these
accesses to neighboring threads: Line 5 creates a loop indexed by the
threadIdx, thus mapping the accesses over individual threads such that
all threads will access data as close to each other as possible. On line
6, we use this index to fetch the correct data from memory, using the
offset between the threadIdx and the accessed data element, and the
steps to recompute the address. For all other dimensions dereferenced,
we create sequential loops within each thread (lines 8-9), that account
for the offsets to the non-sequential memory ranges (e.g., row-by-
row accesses in a 2D structure). We thus replace the suboptimal
access behavior in derefChain with new chains derefChains′ that
are efficiently mapped to the iteration space of L, which are pushed
into the loop body of L. By mapping the iteration space of the new
loop L to the threadIdx, SoftDMA improves performance compared
to stripping by ensuring that memory accesses in sequential memory
are loaded in a coalesced manner, and that each element is loaded
exactly once, thus adding the least possible amount of instructions to
create the memory phases.

Certain dereferences, such as A[B[i]], can not be known at com-
pile time, as the value returned by B[i] can not be determined. For
such cases, it is not possible for SoftDMA to coalesce memory accesses
into A. However, SoftDMA is still able to prune duplicate accesses
into B[i], limiting unneccessary transfers. Due to the sensitivity to
memory access patterns, such constructs are commonly avoided in
GPU code, and we do not further optimize for this case. Instead, the
stripping technique is used as fallback solution, if analysis provides
insufficient information for SoftDMA code generation, as outlined in
Section 3.1.3.

The use of SoftDMA only affects the Memory phases, i.e., the
prefetch and writeback transformations. The only transformation
done to the compute phase is to replace all accesses to global memory
with accesses to scratchpad buffers, through which the memory phases
stage data. The SoftDMA transformation does not rely on warp spe-
cialization. Visually, while the implementation is different, the exe-
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Algorithm 3 Pseudo-code for the SoftDMA decision.

Require: Memory Footprint given by Footprint(), and calculated from M in
Algorithm 1.

1: for all data structures D in M do
2: if D.derefChains.isLoopV ariant then
3: for all dimension d in D.derefChains do
4: if d.isSequential then
5: L = createLoop(threadIdx, d.end÷ d.step, blockDim)
6: D.derefChains′.push(L.iv × d.step+ d.start)
7: else
8: L = createLoop(d.start, d.end, d.step)
9: D.derefChains′.push(L.iv)

10: end if
11: end for
12: else
13: for all dimension d in D.derefChains do
14: D.derefChains′.push(d)
15: end for
16: end if
17: end for

cution scheme of SoftDMA is represented by the same scheme as the
standard stripped representation shown in Figure 3.5. In this case,
there is no need for a combined schedule, as the SoftDMA memory
phases are already able to saturate the memory bandwidth, removing
the need to execute a compatible interval in parallel. We will show
that this is true in Section 4.1.3.

Having reached the point where the memory phases for each se-
lected interval is created, the compiler proceeds to code generation
in the backend, using the standard techniques already available. To-
gether with the runtime libray to be presented in Section 3.2.4 the
PREMized GPU code is ready to be scheduled and executed.

3.2 Extending the PREM Compiler to Gen-
eral Purpose CPU code

The techniques presented in the previous section enable the efficient
PREMization of GPU kernels from high-level languages, as we will see
in Chapter 4. From the analyis phase PREM intervals are identified,
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the refactoring stage restructures the code to match the granularity
of the PREM intervals, in this case through the act of tiling, where-
after the transformation phase generates the necessary PREM mem-
ory phases and instruments the code to interact with the scheduling,
e.g., GPUguard, infrastructure.

Before presenting the experimental results, in Chapter 4, this sec-
tion shows how the compiler can be extended to PREMize not only
loop-based GPU kernels, but also CPU code. This section is present-
ing work submitted to ACM Transactions on Embedded Computing
Systems (TECS) [69]. The necessary phases of a PREM compiler, as
shown in Figure 3.1, also applies for the PREMization of more general
applications, but each individual phase needs to be extended. How
this is done is presented in the following section.

3.2.1 Design Decisions

To enable meaningful CPU PREM transformations, we extend the
design decisions for the compiler from Section 3.1.1. Some design de-
cisions remain valid also for CPU compilation, such as the reliance
on real-time coding standards. This design decision remains, as the
purpose of this is to enable static code analysis to enable an efficient
analysis phase. Furthermore, we continue to focus on the same type
of languages, e.g., C-based OpenMP programs. Fundamentally, the
techniques presented in this section would be applicable to any compi-
lation that lowers into LLVM IR, but the focus on C language family
is consistent both with what is often used in practice, as well as the
underlying concepts identified in the real-time coding best-practices.
Furthermore, it has been shown that OpenMP is suitable for use in
critical real-time systems [70].

Extended PREM Enforcement Granularity With respect to
the PREM enforcement granularity however, focusing only on loop
structures is no longer feasible, as CPU programs are not offloaded at
such granularities. Instead, the entire program has to be taken into ac-
count. For this reason, the granularity of PREM intervals is extended
from loop structures to the concept of Single Entry Single Exit (SESE)
Regions (which will be further described in Section 3.2.2), in accor-
dance with the related work by Soliman et al [32]. The use of SESE



78 CHAPTER 3. PREM COMPILER SUPPORT

regions has two fundamental benefits. First, the SESE region struc-
ture is consistent with the coding standards for real-time systems [62],
providing a framework in which the coding style and representations
in static analysis tools and compilers are well-aligned. The second
benefit is that SESE regions can be represented as a tree structure,
in which one region (e.g., a function) encloses another region (e.g.,
a set of instructions). This hierarchy means that as the tree is tra-
versed downwards from the root, the memory footprint of each region
is smaller or equal to that of its parent – preserving the property that
we previously applied to loop nests. Likewise, the previously devel-
oped loop analysis retains an important role in the extended compiler,
as it remains applicable to the compiler analysis as soon as a SESE
region that expresses a loop is encountered.

Support for Cache-based Memory Hierarchies Another im-
portant design decision is to extend both the footprint analysis and
the transformation phase of the compiler to address cache-based mem-
ory hierarchies. The main reason for this is that CPU memory hi-
erarchies are almost exclusively based around caches, as the use of
SPMs require significant support from the OS to manage data local-
ity [71]. Furthermore, the previously presented footprint analysis for
SPM based systems (Section 3.1.3), optimized for efficient buffer cre-
ation for dense access patterns, is no longer adequate. As caches are
implicitly addressed this design decision is not necessary for caches,
as sparse access patterns do not imply an overhead in addressing in-
structions. Instead, cache line locality needs to be taken into account.
For this reason, going forward we refer to the SPM-centric footprint
analysis of the previous section as the dense footprint analysis, and
the cache-centric footprint analysis to be presented in this section as
the sparse footprint analysis.

Handling of non-Analyzable Code Regions with Compatible
Intervals Lastly, as already identified in the original PREM pro-
posal [24], an arbitrary general-purpose code can not be guaranteed
to be fully statically analyzable. As we will outline later in this chap-
ter, there are several reasons where such an assumption may break.
For this reason, when purposing a PREM compiler for general-purpose
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Figure 3.7: A region tree and the corresponding source code.

code, it must be able to address such obstacles, and there are multiple
ways to do it. For our compiler we have decided to make any code re-
gion which the compiler failed to analyze into a compatible interval, as
presented in Section 1.3.2. This enables the PREM compiler to pro-
duce warnings for code which does not correspond to the necessary
standards for static analysis [62], while still producing runnable bi-
naries for any program. Of course, code regions that are turned into
compatible intervals do not benefit from continued execution when
main memory access is blocked, but in our opinion this is preferable
to failing the compilation. Based on the produced warnings a sys-
tem designer can determine if the application of compatible regions is
adequate, or do the necessary changes to enable predictable intervals.

3.2.2 Extended Analysis Phase

This section presents the extensions to the analysis phase that are re-
quired to extend the compiler support from loop structures to generic
programs. It presents how region trees provide the structural infor-
mation for interval selection, how the footprint analysis is updated to
account for cache-specifics, as well as a novel interval selection algo-
rithm that operates on this information.

Program Representation

This section describes how we extend the fundamental representation
of the program from being limited to loop structures to incorporate
all parts of the program. The fundamental concept that we extend
are Single Entry Single Exit regions.
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Single Entry Single Exit Regions SESE regions are code re-
gions represented by every part of the Control Flow Graph (CFG)
that only has a single incoming edge and a single outgoing edge [32].
The SESE property maps well to PREM intervals, as data can be
loaded on the incoming edge and stored on the outgoing edge. Re-
gions are created by identifying the largest possible non-overlapping
subgraphs G′0, G

′
1, · · · , G′n in the CFG Gf of function f which only has

one incoming edge Jentry and one outgoing edge Jexit to/from basic
blocks not in G′. Non-overlapping means that a basic block b ∈ B in
CFG G = {B, J} only appears in at most one of the sub-graphs G′m.
This process can then be repeated recursively by finding the largest
non-overlaping subgraphs G′′0 , G

′′
1 , · · · , G′′n within each region graph

G′. This creates a tree structure Υf for each function f where each
level of the tree represents the sub-regions G′ of the parent region G,
as shown in Figure 3.7. The smallest unit that can describe a SESE
region is a single basic block bleaf ∈ B that fulfills the SESE property,
i.e., in the CFG G = {B, J}, there is a single edge jentry ∈ J that has
bleaf as target, and a single edge jexit ∈ J that has bleaf as source.

SESE region analysis is built into modern compilers [72], but op-
erate only at a per-function level. To construct a tree of the entire
program, and in particular include any function calls made within a
task τ , we use the technique proposed by Soliman et al [32] to nest the
region trees of individual functions in accordance with the program
Call Graph. For each basic block bcallpoint that contains a call, the
block is split at each call point (where a function is called) into three
new blocks bpre, bcall, and bpost, such that bcall only contains the call.
Any preceeding instructions are moved to bpre and any postceding in-
structions are moved to bpost blocks. The new blocks are linked with
unconditional jumps, i.e., new edges in J . From this it follows that
bcall is a SESE region (with the edge from bpre as single entry and the
edge to bpost as single exit), making the bcall block a leaf region of the
region tree Υ. To construct an interprocedural region tree, the region
tree Υfcalled of the called function fcalled is appended as a subtree of
the region tree of the calling function fcallee, replacing the leaf region
bcall, creating a nested region tree.

We further preprocess the code to accomodate special handling of
branches. Each basic block bcondbranch that terminates with a con-
ditional branch j (i.e., corresponding to a branch in the control flow
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graph) is split into two basic blocks bpre and bbranch, where bpre con-
tains all instructions from bcondbranch leading up to but not including
j, and an unconditional branch to bbranch. The new bbranch block only
contains the conditional branch j. Thus, the operation is preserved,
but it ensures that the region G (starting at bbranch) that contains the
branching outcomes G′0, G

′
1, · · · , G′n does only contain the conditional

execution paths – as the SESE region G ends when the branching
paths reconverge.

Incorporating the analysis stage from the GPU compiler, which
was limited to loops is straight forward. Well formed loops, as de-
scribed in Section 3.1.2 also correspond to regions, as shown in Figure
3.7. The loop has a single entry to the header from the preheader, and
a single exit from the exit block. Furthermore, the loop body itself is
a SESE region, as it has a single incoming edge from the header and a
single exiting edge to the latch. This means that the region tree for a
loop structure is able to express the same information as the loop nest
information used in Section 3.1, and the loop analysis remains appli-
cable to loop regions. The region representation is however richer, and
allows sub-regions to be described within the body of a loop, meaning
that loop iterations no longer need to be considered as the atomic
unit from which PREM intervals are created (as outlined in Section
3.1.1). Instead, the region analysis further enables PREM intervals to
be created within loops, if they consist of multiple sub-regions.

We refer to the set of all regions in task τ as Υτ . This corresponds
to the region tree Υmain of the entry point function fmain of τ , i.e.,
the function that starts executing when control is passed to the task
τ . This corresponds to the main function in a single-task binary, but
may be any function inside the program that expresses multiple tasks.
By means of nested region trees, this tree contains all regions of the
task in the and enables interprocedural interval selection.

Interval Types and A Richer Representation In addition to
the interprocedural nesting of the region tree, we further annotate the
region tree with properties and connections to hold information useful
for interval selection, which is to follow in Section 3.2.2. Figure 3.8
shows an example region tree with these properties and connections.
First, we explicitly annotate the child region G′ which is the entry
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point of a region G. There are two cases, depending on if bentry has
a single or multiple successors. In the case of a single successor, the
entry point is the first basic block bentry that is executed within G, and
as regions are non-overlapping bentry belongs to exactly one subregion
G′. As an example, if a region G can be divided into subregions G′0
and G′1, both G′0 and G′1 are children, but the one that contains the
first basic block bentry in the CFG of G is additionally labeled as entry.
If on the other hand bentry terminates with a conditional branch, we
know from before that the entry block bentry only contains the branch
instruction, and we instead label every successor basic block b as entry.
This represents the fact that the outcomes of a branch are mutually
exclusive execution paths.

Secondly, as subregions G′ have an inherent order in G = {B, J},
due to the edges j ∈ J , we express this information on top of the tree
structure with the next property. The property AnextB is defined as
the single exit edge of A being the single entry edge of B. The next
property is only defined on subgraphs that have the same parent. This
extension enables traversal of Υ both hierarchically (by leveraging the
tree property) and in control flow order. This is highlighted in Figure
3.8 with the next arrows.

Lastly, we annotate the regions with their type, which will deter-
mine how PREM intervals can be selected from the region tree Υ. As
outlined previously, loop regions will be handled specially by invoking
the loop analysis presented in Section 3.1, and loops are therefore ex-
plictly labeled. Another construct that requires special handling are
branches, as the branch outcome determines which of the child regions
that are executed. Notice in Figure 3.8 that through the previous an-
notations we see the exclusivity expressed as the branch region having
two entry-type children with no next relation. All other regions are
labeled as linear.

Predictability Levels and Non-SESE Functions There are two
main limitations with the interprocedural region tree that must be
addressed to express complex and real applications. The first case
is for regions with multiple returns fmulret, as such functions do not
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Figure 3.8: A region tree with several types and relationships.

fulfil the SESE property5, and as such no region tree Υfmulret can be
derived and attached to the call point in bcall in the nested region tree.
The second case is for calls to functions that are outside the scope of
the compiler’s translation unit (i.e., the file currently being compiled),
which we will refer to as fexternal. A clear example for this is in calls
to functions in external libraries, e.g. syscalls. As the contents of the
function are not visible to the compiler, it likewise cannot create a
region tree Υfexternal to attach to bcall. Here we discuss a conservative
approach to ensure correctness also in the scope of such code, which
can be commonly found in practice, and we will discuss more detailed
solutions in Section 3.3.

To represent non-SESE code the region tree is extended with non-
SESE blobs (marked red in Figure 3.8). These serve as placeholders,
and will serve as hints to the interval selection that this code cannot be
analyzed (non-SESE) or transformed (non-SESE and external). While
this represents cases where the program cannot be transformed, there
is nothing that can be done within the compiler to lift this limitation.
For this reason, the compiler generates warnings when this occurs,
such that the programmer can adjust their code to enable further
analysis. Note that the underlying constructs that cause these limita-
tions both are adviced against in real-time programming guidelines,
and in line with the definitions of what presents a mandatory compat-
ible interval, as outlined in Section 1.3.2 and described in the original

5Built-in compiler passes are available to transform multiple returns into a
single one, limiting the impact of this factor in practice. However, in cases where
such transformation fails, these cases must be handled.
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PREM proposal [24].
To steer the interval selection process, following in Section 3.2.2,

we introduce the concept of predictability levels to mark all non-SESE
blobs as Unpredictable, all their parents and grandparents as Mixed
(yellow in Figure 3.8), and the remaining analyzable regions as Pre-
dictable (green in Figure 3.8). This information is used in the selection
process that we will present in Section 3.2.2.

This extended region tree provides the foundation for the PREM
interval selection. However, before PREM intervals can be selected,
the footprint of each node needs to be calculated. Already now we can
see from the hierarchical structure of the region tree that it preserves
the property we used in the loop based PREM compiler presented in
Section 3.1, i.e., that traversing the tree downwards leads to region
sizes decreasing.

Footprint Analysis

Memory footprint analysis is the process of calculating the size of
the data accessed by each region in the tree, as required for PREM
interval selection. How the memory footprint is calculated depends
on if SPM or caches are used as local memory, through which data is
staged.

Fundamentally, the software-management of SPMs means that
data can be moved at any granularity, while caches operate at cache
line granularity. Since accessing one datum will automatically bring
in the entire cache line to the cache, the full size of the cache line
needs to be accounted for, and to avoid returning overly pessimistic
footprints, this means that the footprint analysis needs to account
for spatial locality within cache lines. SPMs, on the other hand, are
completely software managed, meaning that individual datum can be
moved freely. On the other hand, as SPMs are explicitly addressed,
well-allocated buffers need to be created to minimize addressing over-
head, leading to constraints that must be accounted for in the foot-
print analysis. For example, it is possible to create sparse buffers in
the scratchpad, but if this leads to significant addressing overhead
(i.e., every DRAM address requires an expensive translation to the
SPM counterpart), it may be better to allocate buffers with ”gaps”
in them, leading to an increase in the footprint compared to the size
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of the individual bytes accessed6.
This means that a PREM compiler requires specific footprint anal-

ysis routines depending on which type of memory that is used on
the system that code is being compiled for, and accounts for the
sparse and dense footprint analyses as outlined previously. How this
is achieved on the presented region tree is presented in this section.

Data collection Loop regions are analyzed using the loop based
footprint analysis presented in Section 3.1. These loop-variant ac-
cesses are described by (start, stride, tripcount) tuples, which record
the source-relative start, the stride, and the tripcount of each ac-
cess pattern, where the tripcount describes the number of iterations
of the loop. All identified memory accesses are stored in a memory
access map A = (start, stride, tripcount, size), corresponding to the
information returned by the SCEV analysis for loop-variant accesses.

For scalar accesses we set start = 0, and stride = tripcount = 1,
signifying a single access with an offset of zero from the source pointer.
The stride will never be taken as the tripcount is one, but it is nec-
essary for the footprint calculation below. For the calculation, the
access map A also records the per-element size of each source data
structure. For duplicate accesses to the same data element, the access
map A only records the access once. Due to real-time coding guide-
lines, e.g., MISRA [62], it is often possible to follow the access back
to its original source. However, if this is not possible, the compiler
can not determine if two memory accesses are pointing to the same
data structure, i.e., pointer aliasing. In these cases the compiler will
conservatively over-estimate the memory footprint, by assuming that
different data will be accessed.

From the access map A the memory footprint FPR of each leaf
region R is calculated. If SPMs are used, the footprint is calculated
by Equation 3.2, summing over the range of addresses accessed in each
data structure using the start s, stride t, tripcount c, and size b, in
accordance with the dense analysis presented in Section 3.1:

FPR =
∑
S∈AR

(max (s+ t× c)−min (s))× b (3.2)

6Similar concerns are the fundamental reason why caches operate at a larger
granularity than individually addressable bytes.
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This represents the footprint for a single unified SPM buffer for each
source, leading to reduced addressing complexity at runtime as there
exists a 1-to-1 mapping for each data structure in DRAM and in the
SPM. The use of a unified buffer may lead to an over-estimation of the
footprint due to sparsity in the memory access pattern. As our focus
for SPM is on GPU-style accelerators, this does not cause significant
issues, as it is in line with how optimized memory accesses have to be
constructed anyway, i.e., coalescing accesses as described in Section
2.2.2.

Extending the compiler with the sparse analysis for caches, where
data movement is transparently handled by hardware without buffer
address calculation overhead, no 1-to-1 buffer mapping is needed. In-
stead, the cache line locality needs to be taken into account, as data is
moved at the granularity of cache lines – i.e., fetching a single element
of four bytes will automatically bring a full cache line, typically in the
order of 64-128 bytes, into the cache. This leads to the footprint cal-
culation formula presented in Equation 3.3. The parameters are the
stride t, tripcount c, and size b of each access in the access map AR
of region R, and the cache line size C.

FPR =
∑

(c,t,b)∈AR

{
(
⌈
c× t×b

C

⌉
+ 1)× C if t× b < C

c× C otherwise
(3.3)

If the cache line size and stride ratio is not taken into account,
the footprint analysis might severely under-estimate the footprint of a
region. Thus, for correct generation of PREM intervals, it is necessary
for the compiler to be aware of the cache line size C of the target
system. Furthermore, we conservatively assume unaligned memory
accesses, by counting one extra cache line. Thus conformance to the
PREM model is ensured, as the actual memory footprint is never
larger than what is reported by the footprint analysis. Note that
FPR does not consider the set-associativity or replacement policies of
caches, as these do not affect the memory footprint per-se, but only
when data is evicted. This will be further explored when mapping the
tasks to the real systems in Chapters 4 and 5.

For both caches and SPM, conformance to the PREM model is
ensured, as the actual memory footprint is never larger than what is
reported by the footprint analysis.
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Footprint propagation As outlined in Section 3.2.2, the child
nodes of a region R cover every basic block that is present in R.
Thus, the footprint for the rest of the tree can be calculated by prop-
agating the footprint of the leaf nodes upwards towards the root. For
each region visited, the footprint contributions from all child nodes are
merged, and all duplicate accesses pruned. This gives an important
property of the region tree: Traversing the tree downwards from the
root means that the memory footprint of the regions are decreasing.

Non- or partial loop analysis Static analysis methods, such as
SCEV, are likely to fail for programs that have not been carefully en-
gineered. To compile programs where some code footprint can not be
analyzed, we extend unpredictable regions (Section 3.2.2) to include
footprint analysis failure. any region for which the footprint analysis
fails is demoted to an unpredictable region. During footprint propa-
gation, the footprint is not propagated for nodes with one or more
unpredictable children, as the contribution from the unpredictable re-
gion is not known.

Interval Selection

Once the region tree is annotated with memory footprints, the PREM
intervals can be selected. This is done greedily by recursion on the
region tree, as shown in Algorithm 4 (page 90), sifr (Select Intervals
From Regions), which returns a set of PREM intervals. This algo-
rithm uses three helper algorithms. First, crti, Commit Region To
Interval, which adds the given region to the current interval if the
predictability level is the same. If the predictability level of the given
region is different from the current interval, it creates a new interval
with the correct predictability level, and adds the region to that in-
terval. Second, mis, Merge Interval Sets, which merges an interval set
returned by a recursive call to sifr with the current instance. Third,
the function tile which tiles a loop region to a specific size. Tiling
is also known as blocking [52], and is typically used to increase cache
locality. We use the same tiling technique as presented in Section
3.1, although without accounting for the blockDim if the loop is not
parallelized using OpenMP.
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The sifr algorithm starts recursion on the root of the region tree.
For each recursive call, it checks if currentRegion is suitable for a
PREM interval. If it is, the region is selected and the recursion is
stopped. If the region is not suitable, recursion continues to the chil-
dren. Thus, the algorithm ensures that the entire program is covered
in exactly one PREM interval.

If a region is suitable for a PREM interval depends on its pre-
dictability level. Most of sifr handles predictable regions, starting on
line 2. For predictable regions, sifr first checks if the currentRegion
is small enough to fit into the current interval, in which case it is
added (line 4). If this is not the case, it checks whether it can start a
new interval (line 6). If the predictable region is too large to fit into
any interval, different steps are taken depending on the interval type.
Loops are handled on line 10, where they are tiled to fit into intervals.
At this point, the full loop is still represented by a single interval, but
is expanded to encompass every tile iteration during the transforma-
tion phase. Note that predictable loop regions that are small enough
to fit into a single interval are not tiled, but handled on lines 4 and 6.
If a branch region (from control flow fork, to the join) is too large, the
control flow of each branch outcome is separated into distinct chains
of PREM intervals (line 14), to avoid prefetching data that is not on
the current branch path.

For linear predictable regions too large for an interval, the recur-
sion continues to its children on line 20. Note that parent nodes are
larger or equal than all its children, and selecting all children (or
grandchildren) implicitly selects the node itself. For leaf nodes, chil-
dren are created by splitting the region as shown on line 23. As a
leaf SESE region is always a single basic block, it retains the SESE
property when split.

On line 30, regions marked as unpredictable are handled. At this
point, there is nothing the compiler can do but to add them to a
compatible interval. For intervals with mixed predictability, handled
on line 32, we start by recursing to the child intervals, as we cannot
create a predictable interval from a region which contains unpredictable
code. During the recursion, the exploration of the tree will continue
until it has reached a purely predictable or unpredictable sub-tree, at
which point the previous steps can be applied. Once the recursive
call returns, the selected intervals can be added to the set of intervals,
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Figure 3.9: Reduction in scheduling points, through interval demotion
for intervals smaller than L, for the task sensor.

as seen on line 35. Note that if the mixed predictability region is
a branch region (as pictured in Figure 3.8), the same steps as for
predictable intervals (line 14) must be taken, but they are left out to
conserve space. This solution is sufficient to produce correct PREM
code from mixed predictability regions. However, during our work
with real applications we have determined that optimizing this case
is paramount for performance. We will therefore revisit this step,
covering lines 34 and 37 in the following section.

To ensure that the entire program is covered, on line 40, recursion
continues, not on the children of the region, but on the successor
(using the next relationship introduced in Section 3.2.2). This ensures
that once the currentRegion has been successfully selected, interval
selection continues in control flow order to the next regions. When
Algorithm 4 returns, every region is assigned to a unique interval.

Interval Demotion

Returning to the selection of PREM intervals from mixed predictabil-
ity regions, let us consider a fundamental trade-off of automatic PREM
code generation. On one hand, predictable intervals are prefered, as
these do not require mutual exclusion to the memory for their en-
tire execution, enabling concurrent scheduling of other tasks. On the
other hand, each interval requires a scheduling decision and a context
switch, giving a strong preference for large intervals. From practi-
cal experience, the most common source of unpredictable intervals is
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Algorithm 4 Select PREM intervals from regions.
1: function sifr(currentRegion)
2: if currentRegion.predLevel ← Predictable then
3: if currentRegion.footprint < availableMem then
4: crti (currentRegion, predictable)
5: else if currentRegion.footprint < totalMem then
6: start new interval
7: crti (currentRegion, predictable)
8: else
9: if currentRegion.isLoop then

10: tile (currentRegion, totalMem)
11: start new interval
12: crti (currentRegion, predictable)
13: else if currentRegion.isBranch then
14: for all entry ∈ currentRegion.entry do
15: start new interval
16: childIntervals ← sifr(entry)
17: mis (childIntervals)
18: end for
19: else if currentRegion.hasChildren then
20: childIntervals ← sifr(currentRegion.entry)
21: mis (childIntervals)
22: else
23: (left, right) ← split(currentRegion)
24: leftIntervals ← sifr(left)
25: mis (leftIntervals)
26: rightIntervals ← sifr(right)
27: mis (rightIntervals)
28: end if
29: end if
30: else if currentRegion.predLevel = Unpredictable then
31: crti (currentRegion, compatible)
32: else if currentRegion.predLevel = Mixed then
33: childIntervals ← sifr(currentRegion.entry)
34: if hasLargePredictable(childIntervals) then
35: mis (childIntervals)
36: else
37: crti (currentRegion, compatible)
38: end if
39: end if
40: succIntervals ← sifr(currentRegion.next)
41: mis (succIntervals)
42: return committed intervals
43: end function
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through syscalls to handle I/O, which will be a critical point for any
embedded system. By definition [24], I/O operations are always com-
patible intervals, and thus unpredictable regions, but the calculations
surrounding them are visible and analyzable by the PREMizing com-
piler, and will thus be represented as predictable regions to sifr. In
the context of I/O-heavy tasks, this causes fine-grained interleaving
of predictable and unpredictable regions. If the compiler too strongly
favors predictable intervals, it will lead to an explosion of small inter-
vals, and the corresponding amount of scheduling decisions required
by the runtime.

For this reason, the hasLargePredictable condition is intro-
duced in sifr on line 34. This function goes through the set of in-
tervals returned from the children of the mixed region, and checks
if the predictable intervals selected are larger than some configurable
threshold L. If this is not the case, all child intervals are dropped,
and the entire mixed predictability region is selected as a compatible
interval (on line 37). We refer to this process of merging small inter-
leaved predictable regions into a larger compatible interval as interval
demotion.

Consider this illustrative example: We used our compiler to PRE-
Mize software components of an autonomous drone. One task of par-
ticular interest, sensor, preprocessed sensor input from gyroscope,
accelerometer, and other sensors, before being used by the system.
This task consisted of several thousand lines of code, had a require-
ment to execute with a period of 5ms, and made heavy use of syscalls
to perform I/O. Without interval demotion, the compiler would create
almost a thousand intervals, as shown in Figure 3.9, as it would use
every opportunity to create a predictable interval. Through interval
demotion, it was possible to reduce the number of scheduling points
significantly. Without interval demotion it would have been impos-
sible to reach the 5ms period of the sensor task, as a scheduling
decision was measured to take approximately 7µs on the target sys-
tem – at 976 intervals the scheduling alone would have amounted to
almost 7ms. Thus, the trade-off between the benefits of predictable
intervals and fewer scheduling points is crucial to consider for high
performance.
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3.2.3 Extended Transformation Phase

Extending the transformation phase for use on cache-based architec-
tures is straight-forward: The PREM phase generation is simplified
by the implicit addressing of caches. For SPMs it is neccessary to
allocate buffers, filling them in the prefetch phase, refactoring the
compute phase to use the data in the buffers, and write back the data
in the writeback phase. For caches on the other hand no buffers need
to be created, and the prefetch phase is created by simply adding a
prefetch instruction for each data element that would previously have
been loaded from DRAM and stored into the SPM buffer. Writeback
phases can be created similarly using eviction instructions, if this is
required on the platform as we will discuss in Chapter 4. Due to the
implicit addressing, the compute phase does not require any instru-
mentation of loads and stores.

The fact that intervals are now expressed in regions instead of
in loop regions does not affect how the synchronization skeleton is
inserted, and the changes to the phase creation are minimal. First,
the infrastructure developed for loops remains applicable also for loop
regions, enabling tiling and phase generation in accordance with the
techniques set out in Section 3.1. For non-loop regions, the SESE
property provides natural insertion points for the memory phases at
the single-entry and single-exit.

The stripping technique, adapted to emit prefetch/evict instruc-
tions instead of SPM load/stores, can be used to generate PREM
intervals for cache based architectures. This approach is equivalent to
the approach described in [68]. However, the previously presented
SoftDMA technique needs to be updated to efficiently work with
multi-core CPU tasks on cache-based systems.

SoftDMA on the CPU The primary motivation for SoftDMA
when applied to GPUs was to ensure that all threads are fetching a
unique piece of data at all times. However, the use of SoftDMA also
has another important side-effect; it reduces the number of instruc-
tions that need to be executed.

This property is also required on the general-purpose processors
that have been explored in this work, because the execution of a large
amount of prefetch instructions can give multiple orders of magnitude
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Figure 3.10: The execution time of the prefetch phase under three
different Prefetch phase regimes.

hit on performance. The key thing to optimize this is to understand
when data that is going to be prefetched is already in the cache, due
to spatial locality of data that was already prefetched.

To address this, we extend the SoftDMA infrastructure presented
in Section 3.1.4 to generate efficient memory phases also for non-GPU
systems. To achieve this, we use the cache line locality information to
generate minimal loops that during prefetching only touch each cache
line onece. Cache line locality can be calculated within composite
types like structs and arrays, but not across data structures or scalar
variables. However, as composite data structures typically dominate
the memory footprint, and they are unlikely to have cache line locality
between them, this transformation still leads to large performance
benefits for the PREM memory phases.

To illustrate the effects of this, we executed the 2DConv ker-
nel from PolyBench [73], which has stencil-type accesses, and mea-
sured the execution time of the prefetch phases under three different
regimes: stripping (as presented in Section 3.1.4), SoftDMA loops
without cache line optimizations, and SoftDMA loops with cache line
optimizations. The execution was performed on the ARM CPU on an
NVIDIA TX1, and the results are presented in Figure 3.10. As can be
seen, for this kernel, the transformation presented in this approach is
6× faster than stripping when not considering that multiple elements
may be part of the same cache line. On top of this, the cache line opti-
mization further increases the performance of the Prefetch phase 11×.
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We will explain this effect in further detail, beginning with the 6× im-
provement compared to stripping. The kernel considered is a 3 × 3
convolution kernel, meaning that during the execution of the kernel,
each element will be accessed 9 times (disregarding elements on the
border). Once as the center element, and eight times for the neighbor
direction (north-west, north, north-east, east, . . . ). Therefore, reusing
the original control flow to prefetch this data means that each element
is fetched 8 times more than needed. With our approach, we identify
the exact memory access pattern, and can produce a Prefetch phase
that only visits each element once. Thus, the upper bound on the
improvement from this transformation is 8×, due to the removal of
duplicate accesses, and the measured improvement is 6×.

To understand the 11× improvement when optimizing for cache
line reuse, we start by realizing that the data types accessed in the
kernel are floats of 4 bytes, and that the NVIDIA TX1 has a cache line
size of 64 bytes. This means that each cache line contains 16 floats
stored sequentially in memory. Since data is moved to the cache at
a cache line granularity, prefetching any element of a cache line will
automatically load the remaining elements. Thus, for sequential ac-
cesses our approach increases the stride of the prefetch loop to only
touch one element per cache line, leading to an upper bound for this
optimization of 16×, of which we measure an improvement of 11×.
Note that the size of the elemements accessed, and the size of a cache
line of the system directly influences the expected gains of this opti-
mization, although these values are fairly typical. Combining these
two optimizations, our approach is able to deliver almost 70× the per-
formance of the stripping approach used in previous works, for kernels
that have a high degree of duplicate accesses.

HardDMA It is worth noting that the operation of SoftDMA is to
emulate the operations of a hardware DMA engine, by iterating over
the data structures to be copied. On platforms where such engines
are available, the SoftDMA implementation can be easily adapted to
perform 1D DMA transfers by instructing the DMA to perform these
operations. As outlined in Section 3.1.4, SoftDMA creates N levels
of loops for every N -dimensional data structure, which iterates over
the data in each dimension. The inner-most loop will transfer data
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that is stored sequentially in memory, and as such this loop can be
trivially replaced with a 1D DMA call. This enables PREM memory
phase creation with hardware acceleration.

In addition to the trivial 1D DMA extension, support for DMAs
that support multiple dimensional data structures has been explored
by Cyrill Burgener [74].

3.2.4 Enabling Scheduling

In addition to performing the transformations, at the end of the Anal-
ysis phase a directed dependency graph is implicitly created from the
PREM intervals that have been selected. Due to the selection pro-
cess, each PREM interval, except for the program entry and exit, has
predecessor and successor intervals implicitly defined through the con-
trol flow graph of the task. To schedule these PREM intervals, the
scheduler requires a directed ayclic graph (DAG), however, the im-
plicitly generated graph would contain cycles if loops have been tiled
into several PREM intervals. For this reason, before the dependency
graph is passed to the scheduler, these loops are unrolled, at a tile
basis, to remove the cycles. Note that, even if the loops would not
be fully unrolled within the code, for code size reasons, the depen-
dency graph is always fully unrolled. Also note that, as loops that
could not be analyzed are represented as a single compatible interval,
these intervals do not need unrolling, as the DAG only represents the
program at a PREM interval level. This process is required for the
scheduler to work correctly, and is required even if the amount of un-
rolled intervals is very large. However, compared to loop unrolling,
the unrolling on a tile basis produces much fewer nodes in the graph,
and does not include instruction level information, but only interval
identification information. Through this process, the possibly cyclic
graph has been turned into a non-cyclic dependency graph, which is
forwarded to the scheduler. Finally, each interval is assigned a unique
id, which is annotated in the DAG, and also in the scheduling hooks
inserted by the compiler – allowing the offline generated schedule to
map to intervals executed at runtime.
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PREM Scheduler Hooks

To facilitate the scheduling at runtime, the PREM transoformation
has inserted the PREM scheduling hooks, as described previously.
These are represented by function calls into an external statically
compiled library, which we call libprem. This library consists funda-
mentally of a single function prem notify(id, type). This func-
tion is responsible for implementing the runtime aspects of the PREM
scheduling, and thus depends on what form of scheduling is used.

Fundamentally, this function is used to call the GPUguard syn-
chronizations when executing on the GPU, triggering the synchro-
nization process outlined in Section 2.1.3. As we will show in Sec-
tion 4.2, this function can also be used to enforce a predefined static
schedule in CPU-only execution. In this case, the scheduler uses the
unique identifiers for each interval generated in the DAG for the offline
scheduling, and uses the same identifier id passed through the library
function call to enforce the order at runtime. The type argument is
used to separate the phases from within the labeled intervals, and thus
corresponds to either prefetch, compute, writeback, or compatible.

The semantics of the function is that once it returns control to
the PREM-transformed program, it is safe according to the PREM
schedule to continue the execution of the following phase (identified
by the id and type arguments), in accordance with the discussion in
Section 3.1.3.

In addition to the prem notify() function, the library imple-
ments prem init() and prem fini(), calls to which are inserted
by the compiler at the very beginning of the control flow (the entry
point as described in Section 3.2.2) and at the end points of that
function. This function can be used by libprem to initialize internal
structures needed for the scheduling, if needed.

This separation of concerns into an easily customizable library
makes it possible to schedule PREM tasks generated with the compiler
on diverse platforms with diverse types of scheduling, as we will show
in the remaining chapters of this thesis.
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3.3 Discussion and Concluding Remarks

The compiler presented is able to transform programs written in acco-
dance with real-time coding guidlines into PREM applications. The
compiler produces the necessary runtime hooks and scheduling infor-
mation required to construct a full working PREM system. We will
evaluate this in Chapter 4.

Before the evaluation, we look into the limitations that have been
identified throughout this chapter, and discuss the impacts of these
limitations, as well as promising ways to lift them.

Translation Units and PREM transformations One of the
most prominent limitations, identified in Section 3.2.2, is that the
PREM compiler is not able to analyze functions that lie outside the
current translation unit. This corresponds to external functions from
libraries or syscalls, but also to functions and symbols implemented
in another source file than the one currently being processed. The
former is a predicted limitation of PREM, as outlined by Pellizzoni et
al [24] and originally motivating compatible intervals. The latter is a
limitation that follows from the way compilers operate, but that was
not foreseen in previous PREM publications.

This limitation can easily be worked around by ensuring that the
entire program – or if a sub-set, the parts that are to be PREMized
– are part of the same compilation unit. For example, if a program
consists of files A.c and B.c, they can be included in the same com-
pilation unit by creating file AB.c that contains the lines #include

"A.c" and #include "B.c". In doing so and compiling AB.c the com-
piler will have full visibility of the symbols and functions in both files
simultaneously, and the problem is averted.

The issue could potentially be worked around by keeping a per-
sistent cache of the analysis results of functions in previous compi-
lation units, and ordering the compilation of files such that if a file
A uses a symbol defined in file B, B is compiled before A, and the
analysis results stored to disk. At the compilation of A, instead of
marking the symbol from B as unpredictable the relevant informa-
tion from the cache could be loaded from disk. This would impose
further requirements on the compilation process: Only after all files
have been analyzed the interval selection can be performed, only after
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which the transformations can take place. Thus, the transformation
instructions would then have to be written to disk, and the compiler
process restarted anew to apply the changes as they correspond to
each translation unit individually. An investigation on what limita-
tion this multi-translation unit transformation would impose on how
intervals are slected (and can be transformed) would be a necessary
first step to determine if this is suitable, or if one would rather en-
force that all aspects of the task to be PREMized is part of a single
translation unit.

A Broader Sense of Compatible Intervals In Chapter 1 we out-
lined that compatible intervals were proposed in the original proposal
of PREM [24] to address non-analyzable syscalls in legacy code. This
served as a way to not impose unrealistic limitations on programs that
execute in a PREM system. In our work we have extended the un-
derstanding of compatible intervals to include any piece of code that
the compiler could not sufficiently analyze to generate three-phase
predictable intervals.

This extension is advantageous, because it allows any program to
be compiled with the PREM compiler, even though parts of it does
not adhere to the requirements for PREM. This enables programmer-
in-the-loop decision making on the correct course of action. If the
cost of rewriting the code is too high (in time, performance, or for
other reasons) in relation to its impact on the PREM schedulability,
then a system designer may be better served to allow this code region
to remain a compatible interval. If this region is critical for PREM
schedulability or performance, then the designer can selectively invest
their effort in these cases.

As outlined, there are several requirements imposed to code that
is to be PREMized, and producing a binary only if every require-
ment is fulfilled in every line of code may be overly limiting. We
therefore argue that this extended understanding of what code that
is best served as compatible intervals allows for more flexibility and
applicability of PREM as a whole. The proposed understanding of
compatible intervals outlined in this Chapter are a strict superset of
what was proposed in [24].
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Larger is Not Always Better? Based on the findings of Chapter
2, the current compiler optimizes for PREM intervals as large as pos-
sible, to ensure that the overhead of frequent scheduling points can
be amortized over longer phases of useful work. However, this opti-
mization is concerned only with the performance of a single task. As
PREM fundamentally comes down to scheduling the memory phases
such that they are non-overlapping, longer phases provides the sched-
uler with coarser granularities, which may lead to less optimal final
schedules.

However, within the compiler such optimizations are not possible,
as the compiler is once again limited to the visibility provided by the
translation unit. Thus it cannot identify opportunities to perform
better interval selections that can lead to better schedules. However,
due to the importance of this aspect it will be further discussed in
Chapter 6 where we present an extended PREM toolchain capable of
triggering interval selections based on feedback from the scheduler.
This enables interval selection to optimize beyond the scope of the
compilation unit, and across the entire system.

Symbolic Scalar Evolution Analysis As outlined in Section 3.1.3,
Scalar Evolution analysis may return symbolic expressions for the evo-
lution of scalar variables. If such variables are used to index into ar-
rays, the implemented version of the compiler is unable to determine
the footprint of the analyzed loop. The simple solution, and indeed
one often used for static analysis in the real-time domain, is to enable
these symbolic expressions to be estimated by providing programmer-
annotated bounds, i.e., using #pragmas.

As such, the static footprint analysis implemented in the compiler
is subject to the same limitations for loop analysis that any other
static analysis tool is, and the same solutions can be used to work
around them. For affine loops it is likely possible to work around this
issue by assuming that each symbol in a symbolic loop expression is
large enough to make the overall loop is larger than the local memory
used for PREM, and enforce tiling based on this assumption. At that
point, no matter what the actual runtime values of the symbols are,
the loop is pre-tiled to ensure safe execution of the corresponding
intervals. This provides an interesting step for future development of
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the compiler.

Optimal Tiling and SPM Buffer Management Tiling and SPM
Buffer Management individually comprise separate fields of research.
In this work we have not aimed at extending the state of the art
in either of these aspects, but used previous approaches presented
in the literature, e.g., tiling [68, 75] or implemented representative
proof-of-concepts, e.g., buffer allocation. This was motivated by the
focus on exploring the possibility of constructing a PREM compiler,
rather than a specific interest in either of the already understood
components.

Due to the fundamental requirement on static analysis within a
PREM compiler, it provides an interesting use-case for novel tech-
niques in these domains, as they can be constructed to rely on more
information than what can typically be expected from a general pur-
pose workload. In addition to this, the PREM compiler in itself would
benefit from more advanced techniques to perform better optimized
tiling [66, 67] and SPM allocation [32].

On Pointer Analysis Pointer analysis remains an important prob-
lem for any compiler analysis and transformation, so also for PREM.
Even though real-time coding guidelines discourage or even forbid
code constructs where such analysis is made more difficult – MISRA
C [62] for example forbids nesting of pointer arithmetics except for
array indexing – there is still software out there that relies on such
constructs. A typical example would be graph traversal algorithms,
stored in linked lists or similar structures. Such structures are not
supported by the presented PREM compiler, and due to the difficulty
in analysing such structures without traversing them at runtime, it
is unlikely that they ever will. Some approaches, such as runtime
prefetcher threads [76] could potentially lift this issue, but would re-
quire extended runtime techniques. As is now, all such structures are
transformed to compatible intervals, with the corresponding compiler
warning to the user.

Code Prefetching The presented techniques in this chapter relate
solely to the prefetching of data for each PREM interval. The compiler
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is trivially extendable to prefetch also code: As each PREM interval
consists of outlined functions, the prefetch phase of the interval could
be extended with a prefetch call on the address of the compute phase
function. The only additional support required would be to, at the
end of the code generation step, fill in the length of the generated
instruction stream for the function.

3.3.1 Conclusion

This section has presented the first large-scale attempt to develop a
compiler capable of transforming legacy code to be compatible with
the three-phase requirement of PREM. This provides an important
step to understand how feasible the PREM approach is in practice, as
manual refactoring is an error prone process, while compiler automa-
tion imposes certain limitations on the code.

Our conclusion is that PREM will imply certain requirements on
programmers of embedded systems, but that with these taken into ac-
count, the most significant limitation of PREM itself, the code refac-
toring requirement, can be automated. This removes one of the large
hurdles to making PREM a feasible approach for future embedded
real-time systems.

In the next section we will evaluate the compiler with real bench-
marks running on real systems, which is the first such experiments
with PREM.





Chapter 4

Co-scheduling
Heterogeneous Systems
with Freedom from
Interference

In Chapter 2 we showed that the freedom from interference guarantees
that PREM promises can be realized in practice on heterogeneous
platforms. At that point the evaluation was limited to a small set
of manually PREMized programs, as refactoring code to align with
the three-phase PREM structure is a tedious task. In Chapter 3 we
showed how a compiler can be implemented to automate this task, for
platforms with different characteristics.

In this Chapter, we will use the presented compilers to test PREM
on a broader range of platforms, and with a broader set of workloads.
It explores the performance impact from the compiler transforma-
tion and runtimes, as well as the ability of the transformed programs
to achieve the freedom from interference guarantees that motivate
PREM. In doing so we will identify challenges that will be addressed
in the following chapters.

We begin in Section 4.1 with a deep evaluation of a large set of
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benchmarks on the same platform used in Chapter 2, the NVIDIA
Jetson embedded GPU systems. Following this Section 4.2 presents
the extended compiler presented in Section 3.2 coupled with optimal
PREM scheduling on ARM CPUs. Lastly, Section 4.3 presents our
findings when deploying PREM on PULP, a programmable many-
core accelerator with access to large SPM-based tightly coupled data
memories.

4.1 Compiler-generated GPU programs

In this section we begin by exploring the impact of PREM on the
NVIDIA TX1 GPU, for benchmarks compiled with the compiler pre-
sented in Section 3.1. This section presents results published at DATE
2018 [57] and in the IEEE Journal Transactions on Computers [40].

The experimental platform and the PREM scheduling parameters
follow in Section 4.1.1, which provides the necessary background in-
formation to the experimental results. This section has three goals,
which will be addressed as follows: Our main goal is to achieve tim-
ing predictable execution, and we expect the required infrastructure
and code transformations to introduce some overhead in the execu-
tion. Consequently, we divide our evaluation into two blocks. The
first block, in Section 4.1.2, explores the performance impact of code
transformation, synchronization, and changes in memory access pat-
terns. Here we compare the novel SoftDMA (SDMA) both to com-
patible intervals (CMPT) and predictable intervals achieved with the
previously presented stripping techniques, coinciding with the DAE
technique [68] (DAE). The second block, in Section 4.1.4, discusses
predictability results for SoftDMA compared to the baseline OpenMP
implementation without PREM.

4.1.1 Setup

We begin by presenting the NVIDIA TX1 on which the evaluation is
performed. Following this, this section provides the PREM scheduling
paradigms that will be explored. This provides the necessary back-
ground information for the experimental results that follow in the
coming sections. In this section we are primarily interested in the
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GPU.

Platform We utilize the compiler presented in Section 3.1 to gen-
erate code for our experimental platform, the NVIDIA TX1. For this
purpose, we use LLVM’s NVPTX (NVIDIA Parallel Threads eXecu-
tion) backend [64, 65, 77] to generate code for the platform. The TX1
consists of a four-core ARM A57 CPU running Linux, and a two-
cluster NVIDIA Maxwell GPU, with 128 physical cores each. Each
GPU cluster has access to a 48kB local SPM, and all clusters share a
L2 cache of 256kB. The off-chip DRAM is shared with the CPU. This
system is well-aligned with the platform model presented in Section
1.1.1, and due to the shared DRAM between the CPU and the GPU
the platform is susceptible to memory interference.

As a representative GPU workload we consider kernels from the
PolyBench-ACC suite [78], compiled with the standard data set for
the best performing block/grid dimensions.

The GPUguard timer interrupt handler implements the synchro-
nization protocol, and is loaded into the kernel as a loadable module
(LKM). Each time the GPU reaches a synchronization point, i.e., it
wants to enter the next PREM phase, it writes a synchronization flag
into the shared DRAM. Once the WCET for the PREM phase has
expired, the timer expires and the handler in the LKM is invoked to
perform the handover of the memory token.

PREM co-scheduling configuration Following from the discus-
sion in Section 2.1.2, to produce the results in this section the system
is scheduled using fixed-size quanta (Section 2.1.2) for the CPU and
the GPU, such that the GPU has access to the global memory pmemory
percent of the time, and conversely is not allowed to access memory
pcompute percent of the time, such that pmemory+pcompute = 100%. In
this section we refer to pmemory and pcompute as the scheduling param-
eters p. These paramters can be freely configured and always produce
a valid PREM schedule, as will be shown in Equation 4.1. We have
already ensured that the fundamental PREM property of Equation
1.1 are upheld from the compiler. The remaining thing to ensure is
that the scheduling parameters p create time quanta E such that they
are always long enough to contain the full worst-case execution time
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T of the phases. This is achieved through the relationships expressed
in Equation 4.1.

Ememory =

{
Tmemory, if

Tcompute
Tmemory

≤ pcompute
pmemory

pmemory
pcompute

× Tcompute otherwise

Ecompute =

{
pcompute
pmemory

× Tmemory if
Tcompute
Tmemory

≤ pcompute
pmemory

Tcompute otherwise

(4.1)

Thus, the execution time of an interval, with the system schedule
taken into account is E = Ememory+Ecompute, which thanks to Equa-
tion 4.1 is always large enough to allow the phase to finish. Any slack
time that remains at the end of the quanta, i.e., due to execution fin-
ishing earlier than its WCET or overbudgeting due to p, will introduce
idle time I into the system, which we will quantify empirically as part
of our evaluation. Theoretically, the idle time I can be determined as
shown in Equation 4.2.

I = (Ememory + Ecompute)− (Tmemory + Tcompute) (4.2)

When the scheduling parameters p are aligned with the phase execu-
tion times T such that Equation 4.1 gives an E such that I = 0, we
say that we have a best-case schedule. Note however, that as T is
the worst case execution time, the system may still idle if the actual
execution time is lower. We refer to this later type of idling as bud-
get idling Ibudget, which is given for each execution by the difference
between the WCET T of the task and the actual execution time ti of
the ith executed instance of the phase.

4.1.2 Performance Evaluation

We begin by experimentally testing the performance of the PREM-
compatible GPU kernels created by the compiler. Due to the code
transformations and runtime scheduling decisions we expect this to
have an impact on the performance. In particular, we expect the per-
formance to be negatively affected by the scheduling through GPU-
guard synchronziations, while the tiling and use of the SPM can have
a positive effect on performance due to increased data locality. In
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Figure 4.1: The performance of code transformation and synchroniza-
tion on the kernels, relative to the unmodified kernels.

this section we therefore compare the performance of the PREM-
transformed kernels to that of the standard OpenMP kernels without
PREM transformations. In the following Section 4.1.4 we will then
compare if PREM is able to maintain this level of performance when
exposed to memory interference, and if overheads outlined here can
be amortized by improved WCET.

We begin by exploring the impact on the three main transfor-
mation styles presented in Section 3.1.4, compatible, stripped, and
SoftDMA. In the first instance, we will discuss only the fundamen-
tal stripping technique, here illustrated by the technique equivalent
to Decoupled Access Execute (DAE) [68].

We configure the system and compiler as outlined in Section 4.1.1,
execute the kernels on the GPU, and present the results in Figure 4.1,
highlighting the effect of PREM code transformations and synchro-
nization on the execution times of the kernels. All execution times
have been normalized to that of the unmodified OpenMP baseline,
and all reported timing results are the measured worst case execution
times (WCET). For all performance-related experiments we measure
execution time in isolation (i.e., without memory interference).

There are two main factors that influence the performance of the
transformed kernels: The change in instruction count and memory ac-
cesses to support the PREM Memory phases, and the synchronization
required to separate the PREM phases. We will discuss the impact of
these generally over the set of benchmarks now, and further extend our
understanding of the performance impact on individual benchmarks
in Section 4.1.5.
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Instruction count and access patterns

Both DAE and SoftDMA add instructions to the CMPT scheme to
implement the separation into load, execute, store phases, which is
bound to introduce an overhead, as can be seen in the blue part of
the bars. Note that, even in light of this, several benchmarks show a
performance increase, which is discussed in detail at the end of this
section, as can clearly be seen in the benchmarks in the left side of Fig-
ure 4.1 (labeled A). The main factor that determines if performance
increases is the amount of data reuse, i.e., the temporal locality of the
computation. The data reuse factor is of importance to any transfor-
mation that tries to gain performance by better use of local memories,
such as cache or SPM, as it is only when the accessed data is already
available locally that the caching benefits come into play. Thus, the
kernels with a higher amount of data reuse will show benefits from
tiling, which is the fundament for all the presented transformations.

Synchronization

Together with the effects of code transformation, the synchroniza-
tion overhead is also presented in Figure 4.1, illustrated by the red
part of the bars. This synchronization cost is due to the GPUguard
token passing to ensure that the PREM memory isolation property
is upheld for the compiled programs at runtime. In contrast to the
GPUguard prototype presented in Chapter 2, in these experiments
we deferred the throttle thread wakeup to the lower half of the in-
terrupt handler, shortening the synchronization latency compared to
Figure 2.4 to Smeasured = 5.8µs, without loss in predictability as will
be discussed in Section 4.1.4.

As outlined in Section 2.1.2 the absolute synchronization cost S is
equal for all kernels, and its impact on each kernel is determined by
how well S is amortized with useful work T . T does not yet account for
the WCET, covered in the next section. However, there is one further
effect at play, which we refer to as the synchronization wall. This
effect primarily affects the kernels in the right-most part of Figure 4.1
(labeled B). As synchronization is initiated on the CPU at the expiry
of timers, there is a maximum frequency at which the synchronizations
can occur, based on the response time Rtimer of the timer interrupt.
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Figure 4.2: The idling introduced into the program due to enforcing
the Fair system memory schedule.

Over 50000 measurements, Rtimer ≤ 10.7µs for 95% of the cases,
and Rtimer ≤ 17µs for 99.9% of the cases1 (including synchronization
cost Smeasured). For benchmarks where T of one or both of the PREM
phases is below this value, T < Rtimer, the GPU will idle forRtimer−T
time units at the synchronization point until the CPU responds (as
with road traffic: the faster you arrive at the red light, the longer you
have to wait).

It has to be underlined that the synchronization wall effect does
not highlight a limitation of the methodology per se. For these kernels,
the SPM is simply not large enough to hold enough data for the phase
lengths T to dominate the synchronization cost S (or, the maximum
speed at which the CPU and the GPU can synchronize is too slow
compared to the SPM refill rate). This problem intuitively disappears
as local storage becomes larger, as we will discuss further in Chapter
5.

On average, the performance impact of the synchronizations re-
quired to be able to execute predictably is about 50%, even when the
kernels that hit the synchronization wall are included, and for some
kernels it can be negligible. Overall, the synchronization cost is similar
for all transformations, i.e., compatible, stripping and SoftDMA.

4.1.3 PREM Scheduling Effects Evaluation

PREM requires enforcing the WCET for each phase before triggering
the synchronization that precedes the beginning of a new phase. In

1Outliers up to Rmaxtimer = 97µs have been measured, but could be removed
with the Linux PREEMPT RT patches, and are not considered.
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our evaluation the WCET of the phases are determined by recording
failed synchronizations during kernel execution. This occurs when the
timer interrupt was triggered on the CPU, but the GPU had not yet
reached the synchronization point, and thus the synchronization could
not be performed. We incrementally increase the timer timeout until
no synchronization fails, at which point the delay accounts for the
WCET.

Under these conditions, Figure 4.2 shows the achieved execution
times when scheduling exclusive memory between the CPU and the
GPU. The relative execution times are broken down into three parts,
where purple is the execution time of code and synchronization pre-
viously shown in Figure 4.1. The remaining segments present two
different types of idling introduced due to scheduling. The yellow
segments show the idling introduced due to WCET budgeting, i.e.,
ensuring that the schedule has enough slack so that the PREM phase
finishes also under the WCET. This corresponds to Ibudget as outlined
in Section 4.1.1. The green segments show the idle time in the system
when sharing the memory bandwidth equally between the CPU and
the GPU, which we will return to shortly, introducing non-optimal
quantas E > T and the corresponding idling I as defined in Equation
4.2. Lastly, in addition to the A and B categorizations introduced in
Figure 4.1, Figure 4.2 introduces an additional category C of memory
bound benchmarks, which will require special consideration.
Best case – Beginning with the purple plus yellow segments, we can
read out the peak performance for each kernel that can be achieved
while guaranteeing that it will never miss its deadline. This is achieved
by reserving enough time in T to encompass the WCET, and by set-
ting E = T it contains the smallest amount of budgeting, and thus
idling, possible. For this reason, we refer to this as the best case
schedule.

This budgeting impacts the kernels differently, and for many ker-
nels (adi, atax, bicg, mvt, gemver, and covariance) we see that the
cost of enforcing the worst case phase length can cause a considerable
slowdown. However, this effect can be significantly reduced when us-
ing SDMA, as the optimized memory phases streamline the memory
accesses, giving raise to less variance in the execution time between
invocations. This effect is large enough to slightly affect the average,
and significantly contributes in for example the adi kernels. In other
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Figure 4.3: The performance degradation due to memory interference
from the CPU for the best case system schedule.

Figure 4.4: The sensitivity to interference for the BASE and SDMA
versions of the kernels.

kernels the memory access patterns do not contain any significant
segments of sequential accesses that SDMA can leverage (due to, e.g.,
row-by-row accesses), as is most pronounced in atax-78 to gemver-
130. In this case SDMA can not improve the WCET budgeting, and
the resulting access pattern is similar as in both CMPT and DAE.

Fair sharing – While the best case schedule introduces the least
amount of idling, it might not be possible to achieve this performance
in a realistic system, as it must be scheduled to provide memory access
to tasks on the CPU as well.

This brings us back to the original reason to transform the code
into separate load, execute, and store (LES) phases: We want to
minimize the time that the kernel requires memory access, so that it
can make progress while the CPU is accessing memory. Our main goal
is therefore to establish that PREM delivers on the promise to increase
performance by continuing execution even when memory access is not
granted. To evaluate the improvement in the transformed code, we
compare their performance when memory access is only granted to
the GPU 50% of the execution time. To achieve fair 50/50 memory
scheduling between the CPU and the GPU, we enforce the length of
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the longest PREM phase to both phases, i.e., Ememory = Ecompute =
max(Tmemory, Tcompute). The results are shown with the full bars
(purple, yellow, and green) in Figure 4.2.

We note that DAE performs worse or at best on-par with the
novel SDMA scheme, which is due to DAEs inefficiency in redistribut-
ing execution time from Tmemory to Tcompute. This is because the
stripping technique creates un-optimized access patterns that might
even fetch data multiple times, as outlined in Section 3.1.4. Because
TSDMA
compute = TDAEcompute (same transformation), and TSDMA

memory ≤ TDAEmemory,
SDMA improves over the state-of-the-art also under co-scheduling
with the CPU, reducing idle time by 45% under fair sharing.

Having established that SDMA improves over the other LES scheme,
we compare SDMA with CMPT. Since CMPT only executes in the
Memory phase, TCMPT

compute = 0, it will always idle for half of the time.
Figure 4.2 shows that on average SDMA introduces about half as
much idling (green segment) as CMPT, and even less in the ker-
nels highlighted in the left of Figure 4.2 (labeled A). These kernels
have a good balance between memory and compute time and can
therefore gain most from a balanced schedule. In the convolution-
2d kernel, co-schedule idling is near-zero (1.2%). For this kernel,
Tmemory ≈ Tcompute, which maps well to a fair sharing scheme with
the CPU: Eq. 4.1 gives E ≈ T , which introduces a low amount of
idling I as given by Eq. 4.2. For most other kernels in the A set, we
see similar results.

In contrast, kernels that hit the synchronization wall show a sim-
ilar amount of idling for all transformations, as the execution time
of the phases T is dominated by synchronization S, due to the small
SPM memory. Between these, there is a set of kernels in the center of
Figure 4.2, labeled C, which show only marginal benefits from SDMA.
These kernels are so memory bound that essentially no work is done
in the Compute phase (Tmemory � Tcompute), in practice making the
SDMA kernel execute in the same manner as CMPT.

Overall SDMA on average reduces the idling by 45% compared to
DAE, and 53% compared to CMPT.
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Figure 4.5: The execution times relative to the non-PREM OpenMP
baseline for Combined kernels under Best fit and Fair scheduling.

SoftDMA and Stripping Techniques in Comparison

There is one additional Stripping technique that we have not yet eval-
uated. This is the Combined scheme described in Section 3.1.4.

The motivation for the Combined scheme is the same as for Soft-
DMA; the standard DAE transform makes insufficient well use of the
memory bandwidth, and as such introduces significant overhead in
the transformed PREM code. While SoftDMA addresses this problem
by generating memory phases with the minimum amount of memory
accesses, as shown in Figure 3.6, the Combined scheme instead con-
structs memory phases to perform in-memory computation of tile n+1
while data is loaded into the local memory for tile n. This means that
two iterations are handled per PREM interval. This was our first
attempt at solving the underlying bandwidth utilization issue, and
was presented in the DATE’18 publication [57], and later replaced by
SoftDMA in the Transactions on Computers [40] publication.

We compare the performance of the transformed code2 under the
Best fit schedule described previously in the blue parts of the bars for
Combined in Figure 4.5 and Figure 4.6 for SoftDMA. Both of these
approaches solve the fundamental problem of memory bandwidth uti-

2The comparison is limited to the kernels that were used in the evaluation in
the DATE’18 publication [57].
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Figure 4.6: The execution times relative to the non-PREM OpenMP
baseline for SoftDMA kernels under Best fit and Fair scheduling.

lization, and achieve similar performance when measuring transforma-
tion and synchronization costs – the Combined scheme is even per-
forming a bit better on average, although for individual benchmarks
that benefitted from the data-reuse aware transformation of SoftDMA
the performance can be significantly worse. The lower average comes
from not being as sensitive to the synchronization wall effects, due to
longer phase execution times for the two-tile execution which amor-
tizes the synchronization costs, and switching phases less often than
limited by the maximum synchronization frequency.

The big difference comes when comparing how they perform under
co-scheduling with the CPU, using the Fair scheme described previ-
ously. As already outlined, the DAE/Stripping approach, upon which
Combined is built, is doing significantly worse in moving execution
time from the memory phase Tmemory to the compute phase Tcompute,
leading to significant idling in the compute phase. This effect is in-
creased when the memory phase is further overloaded to perform an
in-memory computation at the same time, leading to even more idling
as Tmemory increases. As discussed in the previous section, SoftDMA
on average reduces the idling compared to DAE by 45%, however, as
can be seen in Figures 4.5 and 4.6, when comparing to the Combined
scheme, SoftDMA is able to reduce the idling by over 60%.

Thus, even though the combined scheme does address the mem-
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ory bandwidth utilization issue, and may perform slightly better than
SoftDMA on average (in the Best fit schedule), it can perform sig-
nificantly worse for kernels that do not hit the synchronization wall,
and introduces significant amounts of idling in Fair scheduling. For
this reason, following the development of SoftDMA, we dropped all
further investigations into the Combined scheme, as will also be the
case in this thesis.

Performance summary

The key performance take-aways are: i) SDMA on average performs
20% better, and up to 48% better than the state-of-the-art DAE trans-
formation. ii) For kernels where the PREM transformations are bene-
ficial the SDMA average slowdown under fair sharing is only 59%, and
can be as low as 1.2%, significantly improving over 2.74× slowdown in
CMPT, and 2.67× in DAE. iii) In heavily memory bound kernels, the
inability to perform work in the compute phase increases the average
slowdown to 3.8× under fair sharing. In this case, PREM memory
scheduling is unable to provide large improvements. iv) In kernels
with phases shorter than the synchronization granularity, slowdown
is on average 4.3×. This happens when the SPM is too small, and is
an effect of the hardware used and not the technique itself.

4.1.4 PREM effects on Predictability

For predictability results we measure execution time in presence of
high memory interference. The memory interference from the CPU
is generated using the stress [55] tool, which is able to produce large
amounts of memory interference on a system.

To validate the effectiveness of the proposed SDMA toward guar-
anteeing robustness to interference, we execute the the execution of
all GPU kernels under heavy interference from the CPU, as outlined
in Section 4.1.1. The results for the best case scenario are shown
in Figure 4.3. An additional BASE configuration has been added
for each kernel, representing the execution time of the unmodified
OpenMP program in presence of interference. We know from Section
3.1.1 that the interference consists of two parts, memory interference
and scheduling jitter. While SDMA is not affected by the latter (due
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to GPUguard protection), to provide a fair comparison for BASE, we
execute those kernels twice: We measure the memory interference by
executing the offloading process once with the highest priority (i.e.,
low niceness), and measure CPU scheduling jitter by executing it at
the same priority as the interfering process. The green part of the
bars shows execution time in isolation, while the blue and cyan parts
shows additional execution time due to interference, from memory and
Linux scheduling respectively.

Results show that the performance of BASE is degraded to such
a high degree that the SDMA kernels perform better in almost all
cases, despite the factors of slowdown presented previously. On av-
erage, SDMA results under interference remain similar as in isolation
(+3.5%), which is 7 times better than BASE under both interference
types, and 67% better when only considering memory interference.

As robustness to interference is the most important feature of
PREM, it is further highlighted in Figure 4.4, which shows execu-
tion time under interference for BASE and SDMA normalized to the
execution time in isolation for the same scheme. The low variance in
execution time of SDMA, on average 3.5%, is greatly contrasted to
BASE where performance can degrade by orders of magnitude. The
interference to the baseline is based on measurements, and as such
provides a lower bound on the interference that can be experienced.
In contrast, to this, the Predictable Execution Model [28] provides
robustness to interference by design, which means that near-zero in-
terference is indeed the expected value.

4.1.5 Performance Estimation at Compile-Time

Having concluded that the compiler-transformed GPU kernels cou-
pled with GPUguard indeed fulfil the PREM freedom from interfer-
ence guarantee, we return to the question of PREM performance. As
shown in Section 4.1.2, the performance differs significantly between
the presented benchmarks, which we now explore in detail. Our over-
arching goal is to make predictions on the performance from informa-
tion that is or could be made available to the compiler, in order to
predict performance and steer compiler choices. This work is focused
on the SoftDMA transformation for GPU kernels, and was published
at SCOPES’18 [79]. The performance impact is determined by both
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hardware characteristics as well as characteristics of the benchmarks
themselves.

The hardware characteristics we found useful to predict perfor-
mance are the latencies of (a) arithmetic operations larithmetic, (b)
scratchpad accesses lSPM , and (c) DRAM accesses lDRAM . The aver-
age latency of arithmetic operations larithmetic is reported by NVIDIA
as 11 cycles [80], and the latency for accessing the scratchpad is re-
ported by Mei et al. [81] as 28 cycles on the TX1 Maxwell architecture.
The DRAM latency was determined using the synthetic benchmark
presented in Section 2.1.4 where the GPUguard prototype was eval-
uated. We extend the synthetic benchmark to not only consider the
number of threads used for accesses, but also the memory access pat-
tern – in Chapter 2 we were only concerned with the smallest latencies,
to determine the smallest period at which synchronization would have
to occur. To predict the performance of any benchmark the scope has
to be extended to comprise two cases. First, when memory accesses
are coalesced, i.e., threads executing concurrently will touch data on
consecutive addresses, and second when the accesses are sparse, i.e.,
every thread will need to fetch a unique cache line to satisfy its mem-
ory request. The results are shown in Figure 4.7, where the coalesced
curve corresponds to Figure 2.4 in the GPUguard prototype evalu-
ation. As can be seen, the latency for memory accesses that are
coalesced and sparse differ by an order of magnitude, and thus need
to be handled separately. We therefore further divide lDRAM into
the latency for coalesced memory accesses lcoalDRAMand the latency of
sparse memory accesses lsparseDRAM .

The latency for the operations would have to be included in the
compiler for each supported platform, some support for which is al-
ready available in the instruction scheduler in the compiler backend.
The benchmark-specific characteristics can be extracted from the code
under compilation by mapping each instruction to one of the identified
hardware latency classes.

Due to the loop-based offloading in high-level languages, the com-
piler is able to distinguish coalesced from sparse accesses to arrays
through scalar evolution analysis, as each value of the induction vari-
able (IV) of the offloaded loop maps to a specific thread3. By ana-

3Assuming static scheduling, which we committed to in Section 3.1.1.
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Figure 4.7: The difference in time it takes to load fully sequential and
non-sequential data into the scratchpad (49152 bytes).

lyzing the evolution of the IV it is thus possible to determine which
thread will perform each access, and by extension, if the access is part
of a coalesced pattern. The compiler can therefore count the num-
ber of arithmetic operations C, and the number of coalesced Mcoal

and sparse Msparse memory accesses. These operations map to the
identified latencies of larithmetic, l

coal
DRAMand lsparseDRAM .

For the SoftDMA transformed code, these accesses will also result
in accesses to the SPM during the memory phases, at the correspond-
ing lSPM latency. The benefit is that DRAM will only be accessed
once per datum even if it is used multiple times, as the SPM pro-
vides local low-latency accesses. Thus, the compiler also keeps track
of the unique memory accesses Ucoal and Usparse – this information is
implicitly provided by the access map A presented in Section 3.2.2.

4.1.6 Modeling the Execution Time

When estimating the performance of the SoftDMA transformations,
both the cost of executing the PREM phases TPhases, and the time
required for the synchronization TSync must be taken into account.
As the SoftDMA code consists of two parts, TPhases is further split
up into the individual execution times for the Compute and Memory
phases such that TPhases = TMemory + TCompute.

The memory phase execution time is dependent on both the data
movements from DRAM, as well as the cost for accessing the scratch-
pad memory through which the data is staged. Because of this, the
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latency of both memories is taken into account when modeling the
memory phase. As already outlined, the SoftDMA memory phases
imply that data is loaded only once from DRAM, even if reused, and
as such only the unique accesses U are considered. The latency of
arithmetic instructions is only considered in the Compute phase, and
as its accesses are performed on the scratchpad memory, only these
latencies need to be considered. From this, we model the execution
time of each phase as shown in Equation 4.3.

TMemory = Ucoal × lcoalDRAM + Ucoal × lcoalSPM+

Usparse × lsparseDRAM + Usparse × lsparseSPM

TCompute = C × larithmetic +Mcoal × lcoalSPM+

Msparse × lsparseSPM

(4.3)

The cost of performing the synchronization S with the host at
the end of each PREM interval is a system-dependent parameter,
found in Section 4.1.2 to be 5.8µs for the NVIDIA TX1. Importantly
however, we saw in Section 4.1.2 that some kernels suffer additional
overheads because of the minimum synchronization granularity, i.e.,
the synchronization wall. We therefore include the minimum synchro-
nization granularity Rtimer (10.7µs on the TX1) at which the timers
can be triggered, and thus each phase is forced to execute for at least
this time (idling if the phase is shorter). The full SoftDMA interval
execution time is as shown in Equation 4.4.

TSoftDMA = max(TMemory, Rtimer)+

max(TCompute, Rtimer)+

2× S
(4.4)

The modeled execution time is validated against measured values
from Section 4.1.2, and the results are presented in Figure 4.8. It can
be seen that the predicted values follow quite accurately the measured
ones (the error is on average below 10%). From this we conclude that
the hardware and benchmark characteristics that we have identified
in Section 4.1.2 and reidentified here are indeed able to explain the
performance of the SoftDMA transformed kernels. We also conclude
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Figure 4.8: Validation of the modeled LES execution times against
measurements on real hardware.

that it would be feasible to implement such predictions within the
compiler to steer compiler choices, by encoding the arithmetic and
memory latencies, as well as the platform-specific synchronziation cost
and the minimum granularity at which it can be performed.

However, the main motivation for implementing such predictions
in the compiler is to support platforms where the local memory,
e.g., the SPM, is small, to catch the cases where the overheads for
PREM transformations are significant. In the following sections we
will present the corresponding transformations made on platforms
with larger memories, and show that the overheads in those cases are
not large enough to warrant such concern. Following this, in Chapter
5 we will show how the larger hardware-managed caches can be used
to achieve similar low-overhead execution on the GPU.

4.2 Extended CPU Compiler with PREM
Scheduling on ARM CPUs

Following the GPU experiments in the previous section, we now con-
centrate on the evaluation of the extended version of the compiler,
presented in Section 3.2. The extended compiler uses region analysis
to drive the PREM transformations for workloads much more general
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than the GPU-only compiler presented in the previous section. For
that reason, this evaluation is focused on the ARM CPU.

The work presented here was done in collaboration with Joel Matějka
at CTU Prague, and resulted in a conference publication at the 9th
International Workshop on Programming Models and Applications
for Multicores and Manycores (PMAM) [82] with a journal exten-
sion published in Elsevier’s Journal on Parallel Computing (PARCO)
[36]. The contributions of those publication was twofold. First, to
demonstrate PREM compilation for CPU, and second, to present a
new PREM scheduling methodology, based on an ILP solver and a
Heuristic version of the same. Here we are primarily interested in the
former part, i.e., the compiler, but we will present results that also
use the mentioned scheduler, based on work by Hanzálek et al [83], to
show the freedom-from-interference results achieved on general pur-
pose ARM cores. Furthermore, GPUguard used for PREM scheduling
in the previous two sections is able to manage the PREM scheduling
across the CPU-GPU boundary, but not within the CPU – making
further case for the use of custom PREM scheduling techniques.

4.2.1 Cache Considerations

For this evaluation we use the CPU complex of the NVIDIA TX1
platform. It consists of four ARM A57 cores, each core with a 32KB
L1 cache, and a shared L2 last level cache at 512KB. Our experiments
in this section does not consider any GPU kernels, but only parallelism
within the CPU complex.

The ARM CPUs of the NVIDIA TX1, in contrast to the GPU, do
not have access to a scratchpad memory, but data locality is instead
provided by hardware managed caches. These caches employ a ran-
dom replacement policy which makes it difficult to ensure that data
prefetched in the PREM prefetch phase remains in the cache until the
compute phase. Caches are subject to three types of misses; capacity
misses, mandatory misses, and conflict misses. Capacity misses are
avoided in PREM as the memory footprint of each interval is smaller
than the cache (see Section 1.4). Mandatory (cold-start) misses are
not an issue either, as data is explicitly prefetched during the memory
phase. Thus, only conflict misses need to be addressed.

Cache lines are stored into sets, based on the index bits of the
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address. As these benchmarks predominantly store data in arrays,
the associativity gives the number of times the index bits of a single
array can wrap before the sets are exhausted. With multiple arrays
they compete with each other for these sets. The problem is that all
cache conflicts on the A57 are resolved by the Random Replacement
Policy (RRP) [36, 37]. To illustrate the problem, consider any current
interval in which fetches data dnew0 and dnew1 , and a previous interval
in−1 that has fetched dstale. Here, dnew0 , dnew1 , and dstale index into
the same cache set, and we assume the associativity is two, meaning
two data can be stored in that set. At the beginning of in, the datum
dstale of the previous interval in−1 is still in the cache, and once dnew0

is fetched, the cache contains dnew0 and dstale. The problem occurs
when dnew1 is fetched, as this causes the RRP to randomly evict either
dstale or dnew0 . The former is OK, but the latter would lead to a cache
miss for dnew0 during the compute phase of in, violating the PREM
isolation guarantees.

Luckily, the cache prefers to place data in invalid cache ways be-
fore evicting data [37]. This can be leveraged under PREM, as the
writeback phase can invalidate the data of in−1 before in begins, thus
removing dstale from the cache before in starts, and side-stepping the
RRP. We call this mechanism preventive invalidation, showing that
the PREM writeback phase, envisioned for SPMs, is also necessary for
RRP caches.

For this reason, we configure the compiler to create writeback
phases that contain the dc civac instruction, which evicts the spe-
cific cache line from the cache, freeing it up for reuse, and importantly,
avoiding that other cache lines are evicted. However, due to the low
size and associativity of the L1 cache the shared L2 was used for these
experiments, which could lead to evictions from code running on other
cores. In this evaluation we work around this limitation by utilizing
only half the size of the L2 PREM intervals, and as we will show in
Section 4.2.5 this allows PREM intervals to execute without signifi-
cant cache misses. A further discussion on this will follow in Section
5.2, where we utilize cache coloring to ensure isolation also between
different cores.
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4.2.2 Kernels

In this evaluation a reduced set of benchmarks were used in compari-
son to the previous evaluation – which already gave us a good under-
standing of their individual characterisitics – but instead we combine
these kernels into difference scenarios, in which different benchmarks
are co-scheduled with each other. Following from this no external
source of interference is required, as the different co-scheduled bench-
marks will interfere with each other. However, for consistency we will
do such experiments as well.

We consider five kernels, matrix multiplication gemm mul and
transposition gemm tran, 2D convolution 2Dconv, 2D Jacobi stencil
computation 2Djacobi, fast Fourier transform fft, and a binary tree
search bts. These kernels have different compute to communication
(CCR) ratios and different access patterns, and thus represent dif-
ferent types of memory behavior, an important aspect to consider as
outlined for the GPU in Section 4.1.2 and 4.1.5. The 2Djacobi pro-
gram consists of two kernels, where the second kernel 2Djacobi-2 is a
data copy kernel – i.e., it has no computation. The bts benchmark,
due to its graph traversal computation cannot be efficiently turned
into PREM intervals, as discussed in Section 3.3, and as such is rep-
resented by a compatible interval.

We begin by PREMizing and measuring the performance of the
individual kernels comparing it to the original non-PREMized ver-
sion. This corresponds to the evaluation done for the GPU in Section
4.1.2. The results are presented in Figure 4.9. Following this, we re-
run the same experiment under memory interference to characterize
the sensitivity to intererence for all benchmarks, showing the results
in Figure 4.10. In these experiments, we do not perform a specific
experiment for the synchronization overhead, as it is negligible due
to two reasons. First, due to the larger caches the synchronization
occur much less frequently, and second, the passing of the schedule
through a predefined sequence within the CPU removes the need for
costly interrupt handling to coordinate memory transactions with the
GPU.

Beginning with the performance characterization, we see that when
only considering the prefetch and compute phases, PREM is able to
achieve on-par or even improve performance for all kernels. This is
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Figure 4.9: Normalized execution times of kernels.

in line with our observations on the GPU, and are similarly due to
the improved data locality, and the improved memory bandwidth of
the prefetch phases – prefetches are generated at the maximum speed
possible, as no computation takes place in between. However, we see
that the writeback phases, i.e., preventive invalidation, add significant
overhead on top of this. The impact is proportional to the CCR of
the benchmarks, as benchmarks with higher CCR are dominated by
the length of the compute phase, amortizing the cost of preventive in-
validation. The legacy programs, which do no cache house keeping do
not suffer from this overhead, meaning that PREM execution suffers
up to 2.6× overhead, as shown for the copy kernel 2Djacobi-2 (which
has a CCR of zero, due to lack of computation) for this requirement.
However, as we will see in Section 4.2.5, even in light of such over-
heads4 the PREM system overall can still outperform a legacy system,
even if such tasks are part of the taskset.

Considering the kernels under interference, as shown in Figure
4.10, we can see two important things. First, the PREM execution
times remain unchanged and achieve the freedom from interference
promised. Second, the legacy code execution times increase drasti-
cally, in some cases up to over 2.6× their execution times in isolation.
The 2.6× overhead previously reported for the PREMized version
of 2DJacobi-2 shrinks to only 50% when compared to the execution

4As we will explain in Section 5.2.1, these overheads can be further reduced.
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Figure 4.10: Normalized execution times of kernels under external
memory interference.

time of the legacy version under interference. In many other cases the
legacy execution time increases so much that the PREM version out-
performs it, even in light of the overeheads introduced due to cache
bookkeeping.

4.2.3 Use-case scenarios

Having understood the effect of memory interference and PREM trans-
formations on the individual kernels, we now proceed to create sce-
narios of task sets, that we use the techniques presented in the papers
by Matějka, Forsberg, et al [82, 36] to schedule. These scenarios allow
us to test how PREM behaves over a full system of tasks that are co-
scheduled on multiple cores, as opposed to only its effects on individ-
ual kernels. To test scheduling with both small and large scenarios,
two classes were created. The first class is that of a small amount
of PREM intervals, that can be scheduled optimally using the ILP
solver-based solution from CTU Prague [36]. The second class has
a large amount of tasks, the optimal scheduling solution to which is
intractable with ILP solvers. This class whs instead scheduled with a
heuristic approach, also developed at CTU Prague [36].

To understand how tasks/kernels contribute to the scenarios, an
example is provided in Figure 4.11. The scenario contains three DAGs,
each representing one application to be co-scheduled, and vertically
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the DAGs are divided to represent the different benchmarks that it
consists of. The edges of the DAG represent dependencies, i.e., the
interval with the outgoing edge needs to finish before the one where
the edge is incoming can begin. Following from this there are two
types of parallelism expressed in the DAG. First, each individual sub-
graph represents parallelism, as their execution does not depend on
the completion of each other. Second, within each task fork-join style
parallelism is employed (e.g., OpenMP) and is exposed to the sched-
uler as parallel executions that do not depend on each other, e.g., in
gemm mul. Each individual benchmark consists of intervals I, which
are enumerated across the entire application (e.g., it does not restart
for each individual DAG or benchmark), making it possible to individ-
ually identify each interval within the system. The figure shows both
predictable and compatible intervals. Predictable intervals consist of
a prefetch (red), compute (white), and a writeback (also red) phase,
while compatible intervals consist only of a single phase (green). The
scheduler will schedule the prefetch and compute intervals together,
while the writeback phase can be deferred, as illustrated by the arrow
between the compute phase and writeback phase.

This particular scenario consists of three parallel tasks, starting
with intervals I1, I10, and I12 respectively. The first task consists
of the gemm tran and gemm mul kernels, repeated twice in different
configurations, and ending with a compatible interval to rejoin the
threads. Within the gemm mul task further parallelism is exposed.
The second tasks consists of two chained ffts, and the final task of
five chained bst. The scenarios considered for the evaluation are as
follows:

Four small scenarios were selected:

1. Scenario 1 corresponds to the one just discussed, and shown in
Figure 4.11.

2. Scenario 2 is based on Scenario 1, with the only difference that
the bst intervals I15 and I16 are moved to a separate task, giving
four tasks in total.

3. Scenario 3 has a single gemm mul task, divided into seven par-
allel intervals.
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Figure 4.11: A DAG for the intervals of Scenario 1.

4. Scenario 4 has four tasks. First, the same to gemm as in Scenario
1, second and third, two independent fft, and fourth, only two
bst intervals.

Additionally, we selected two large scenarios. The first one, Sce-
nario 5, is the sequential composition of eight executions of Scenario
1. This provided a means to compare the heuristic schedulers per-
formance against a known optimal. This comparison is out of scope
of this thesis, but details can be found in the PARCO publication on
the subject [36]. The second large scenario, Scenario 6, is inspired by
real-world applications, with task intervals that may be executed to-
gether in practice. In detail, we take inspiration from a KCF tracker
[84] (tracker), convolutional neural networks (neural), control tasks
(control), and image processing pipelines (image).

An overview of the components of this scenario is shown in Fig-
ure 4.12. The internal parallelism of the kernels is expressed as a
number after the name (e.g. GEMM 4 contains four parallel intervals
of gemm mul). The first task, inspired by the tracker, begins with a a
memory intensive task (e.g., opening a file), followed by two parallel
chains of convolutions, fast fourier transforms, and matrix multiplica-
tions, ending again with a memory intensive interval to simulate writ-
ing to disk. The second task, inspired by neural, consists of a chain of
matrix multiplications to simulate inference on a neural network. The
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Figure 4.12: An example of a scenario with 110 intervals.

third task is inspired by the control application contains the Jacobi
kernel, simulating the solving of a system of linear equations. At the
bottom there are four tasks inspired by the image application, consist-
ing of graph traversal algorithms (here represented by bst). Overall,
this task combines the components of a possible ADAS-style system,
where image represents the aquisition of image data, tracker and neu-
ral represent the processing of this data, and lastly control represents
the actuation on the system.

To generate the schedules for the evaluated system, the execution
times of each infividual phase within each interval was measured in
isolation on a single core, and the worst-case execution time over 100
executions were selected. Using this information, the PREM schedul-
ing problem was solved using either the ILP [82] or the heuristic [36]
schedulers.

4.2.4 System and Experimental Setup

On the TX1 platform, we achieve the required non-preemptive be-
haviour for PREM systems on CPU [24] by implementing Linux sys-
tem calls to temporarily enable or disable interrupts on the measure-
ment cores, as well as for flushing and invalidating the entire cache.
The latter is required for predictable cache operation, as the preven-
tive invalidation approach is only able to clear cache lines belonging
to generated PREM intervals – not any cold data left from previous
execution. Execution times and cache misses are monitored during
the execution of the experiments using the performance monitor’s
L2D CACHE REFILL event and the PMCCNTR respectively.
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We evaluate our PREM compliant scenarios executed according
to the solved schedules on 100 000 runs and compare that with an
implementation with uncontrolled access to main memory, i.e., legacy
code. Both implementations are based on a thread pool in order to
minimize overheads for creating new threads. Jobs to be executed by
the threads are picked from a queue. In PREM execution, the pool
has a thread for each CPU core and the queue is ordered according
to the schedule generated by the heuristic or ILP solver. When a
PREM phase finishes earlier than the WCET, the subsequent phase
is executed immediately once all dependencies are satisfied. In Legacy
executions, the queue is dynamically filled based on the DAG and the
jobs are executed by threads whose number equals to the maximum
parallelism achievable in the scenario. The threads are scheduled by
the Linux SCHED FIFO scheduler and all have the same priority.

4.2.5 Experimental Results

The measured execution times of all 100 000 runs of our small sce-
narios are presented in logarithmic scale histograms in Figures 4.13a–
4.13d. The PREM schedules completion times CMAX, computed by
the scheduler based on the ILP Solver are shown as a dashed black
lines. We calculate the variance P for PREM as

P = WCETPREM/BCETPREM − 1 (4.5)

where WCETPREM and BCETPREM are the measured worst and best
case execution times of the PREM compliant execution and analo-
gously

L = WCETLegacy/BCETLegacy − 1 (4.6)

for the Legacy execution. Finally, we calculate the WCET difference
as

LP = WCETLegacy/WCETPREM − 1 (4.7)

There are two main findings in the results of the experiments.
First, in every scenario, the variance of completion times under PREM
is small (Pmax = 6.1%) in comparison to Legacy executions (up to
Pmax = 52.4%). The higher variance in Legacy executions are caused
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by a) non-optimal schedules resulting from dynamic scheduling al-
gorithm and b) competition for the shared memory. For example,
in Figure 4.13d the Legacy execution has three major peaks, corre-
sponding to three different dynamic schedules in which the schedules
depends on when each interval finishes5. We can clearly see the posi-
tive impact of static PREM scheduling in the variance of completion
times. The variance could be even smaller if we strictly followed start
times of the computed schedule.

Second and most important, the measured WCET of PREM ex-
ecutions is always smaller than the WCET of Legacy executions, at
least by LP = 25.1%, and up to LP = 44.7%. The WCET of Legacy
executions is strongly affected by co-scheduling effects. Consider the
difference between Scenario 1 and Scenario 2, which only differ in the
separation of the memory intensive graph searching task into one or
two tasks. In scenario 2, the concurrent execution of intervals I12

and I15 prolongs both of them up to 3× as can also be seen in Ta-
ble 4.1. The delay influences the WCET of the Legacy execution,
which is extended from 9.75 to 11.27 ms. This is prevented by the
Predictable Execution Model, as the compiler separates the task into
memory and compute phases, and provides the necessary input for the
ILP-based scheduler from CTU to produce optimal schedules which
prevent memory interference by design. Thus, the execution time of
the PREM intervals remain constant.

For the large scenarios, where an optimal PREM scheduling so-
lution with the ILP solver was not tractable, the heuristic [82] im-
plementation was used instead. The schedule completion times are
shown for Scenarios 5 and 6 in Figure and for Scenario 6 in Figure
4.14. The dotted line represents the static schedule completion time
found by the heuristic, CMAX as a dotted line.

The average execution time of PREM is higher than that of Legacy,
which is due to the inclusion of several kernels that were already shown
to be less performant under PREM. Even in light of this, PREM
provides tighter WCET bounds, LP = 21.75 %, than Legacy. This
is a good outcome, as the WCET is the limiting factor in how many
tasks that can be successfully scheduled in a system. Also, we can see

5E.g., an earlier completion of an interval could cause the next interval to be
migrated from another core instead of taken from the local ready queue.
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Figure 4.13: Histograms of completion times of scenarios with and
without PREM.
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Figure 4.14: Histograms comparing completion times of scenarios with
and without PREM applied

PREM Legacy Scn. 1 Legacy Scn. 2
Time (us) Cache misses Time Cache Time Cache

P C W P C W (us) miss. (us) miss.
I1 28 31 162 3 454 22 0 106 3 510 82 3 519
I2 35 3 106 145 4 063 12 0 3 188 4 914 3 180 4 982
I3 34 3 108 145 4 063 13 0 3 188 4 970 3 187 5 055
I4 33 3 188 146 4 071 15 0 3 651 5 014 3 211 5 380
I5 20 847 78 2 380 19 4 866 2 504 1 127 2 547
I6 16 23 93 1 901 9 0 91 1 930 43 1 971
I7 32 3 198 166 4 079 9 0 3 595 4 088 3 245 4 585
I8 28 2 548 138 3 459 15 0 2 652 3 930 2 603 3 540
I9 55 – – 255 – – 45 250 46 263
I10 35 1 667 277 4 096 22 0 2 324 5 790 2 500 5 811
I11 34 1 670 275 4 081 21 0 2 308 6 281 2 361 6 428
I12 877 – – 3 850 – – 862 4 942 2 355 4 529
I13 860 – – 3 800 – – 788 4 456 1 555 4 058
I14 862 – – 3 805 – – 794 4 432 784 4 145
I15 867 – – 3 802 – – 756 4 009 2 343 4 434
I16 858 – – 3 800 – – 754 3 911 1 527 4 324

Table 4.1: Sample of measured execution times and cache misses for
scenarios 1 and 2

that the execution time variance is much lower in the PREM execution
(PPREM = 1.5 % vs PLegacy = 65.1 %). From this we see that PREM
successfully reduces the execution time jitter, greatly improving the
predictability of the system.

Table 4.1 shows the measured execution times and number of cache
misses in Scenarios 1 and 2. Each predictable interval has measure-
ments shown for each of the PREM phases (Prefetch, Compute and
Write-back). For compatible intervals, the measured values are in the
prefetch column only, as compatible intervals only consist of a single
memory phase.
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From the table two important results can be seen for the memory
isolation property of PREM. First, the compute phases of the PREM-
compliant executions have a negligible amount of cache misses, even
though the cache employs a random replacement policy. This means
that even under these conditions, the proposed toolchain is able to
produce both a system schedule and transform the code such that the
memory isolation property of PREM is upheld in practice. Second, it
can be seen that the memory phases of the PREM-compliant execu-
tions show an average of 15% fewer cache misses. We believe this is
due to the explicit eviction of data that is no longer used, such that
the loading of new data is less likely to evict newly loaded data due
to the random replacement policy.

4.3 PREM on PULP

Having shown that code compiled with the PREM compiler is able
both to provide the necessary freedom from interference guarantees, as
well as provide good performance for many benchmarks on the GPU
and all tested programs on the CPU, we perform one last evaluation
on an additional platform. The contents of this section refers to yet
unpublished work done in collaboration with Cyrill Burgener during
the completion of his master’s thesis [74]. In this case we are look-
ing into the use of hardware-accelerated DMA transfers in the place
of SoftDMA memory phases, and the platform for our evaluation is
HERO [85] which consists of a soft-core implementation of the Par-
allel Ultra-Low Power (PULP) [86] accelerator developed at the IIS
at ETH Zürich. It consists of a RISC-V based PMCA cluster that is
mapped to an FPGA. The cluster consists of 8 in-order RI5CY [87]
cores with 256 KB of tightly-coupled memory (L1) and an external
L2, both implemented as SPMs6. The cluster has a DMA capable
of streaming data from DRAM to the L1. The cluster is deployed
on the programmable logic of the Xilinx Zync-7000 [88], sharing the
DRAM with the dual-core ARM A9 host processor. HERO is pro-
grammed using OpenMP 4+, and thus remains compatible with the
design decisions made for the GPU compiler in Chapter 3.

6For the purposes of this evaluation, we only consider the L1 SPM.
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Due to its SPM-based Tightly Coupled Data Memory (TCDM) to
which all data is manually loaded and stored during execution, the
PULP execution model is very similar to PREM, due to the use of
DMAs to manually transfer data. This makes these platforms very
well suited for PREM: This, in combination with the use of hardware
DMA-engines that conform to the principles of SoftDMA (or even
were the inspration for it) promise the PREM compiler to deliver
two benefits on PULP. First, PREM code should not suffer any of
the code transformation overheads that have been discussed in con-
nection to the GPU, and on the CPU. In contrast, the insertion of
explicit data movements to and from the TCDM should improve the
performance without manually having to manage DMA operations.
Second, the use of SPM-based memory hierarchies removes the risk of
self-evictions during the PREM compute phase, as has been a signif-
icant issue discussed in the two previous sections.

To verify these two benefits, we compile and run benchmarks from
the PolyBench-ACC [78] suite on the the HERO [85] Heterogeneous
Research Platform. For a realistic setting, we scale the PMCA band-
width to that of a full-speed (800 MHz) silicon accelerator (vs. 40 MHz
on the FPGA)7. Section 4.3.2 establishes that the technique achieves
freedom from interference, and Section 4.3.1 evaluates the perfor-
mance of the transformed code.

Furthermore, due to the early stages of development for LLVM
support (which is required for the PREM compiler passes) for HERO,
there was only a rudimentary OpenMP runtime available. This pre-
vented the evaluation of parallel constructs such as parallel for. As
such, the evaluation is restricted to a single-core on the PULP cluster
executing.

4.3.1 Performance evaluation

We begin with the first promise of the PREM transformations greatly
improving performance without having to manually manage data through
DMA calls. We do this by measuring the performance of the PRE-
Mized benchmarks with hardware accelerated DMA-based memory

7Due to this, the CPU bandwidth is considerably smaller than the PMCA’s,
but in line with previously established numbers [89].
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phases inserted by the compiler, and comparing it to the performance
of i) the standard OpenMP implementation (i.e., no SPM use), and
ii) SoftDMA loops. As the HERO platform is programmed using the
OpenMP programming model, the standard OpenMP measurements
provides our baseline. The SoftDMA approach is equivalent in access
pattern and code generation (except that the inner-most SoftDMA
loop is replaced by a call to the 1D DMA-engine).

Figure 4.15 shows that the PREM compiler is able to produce
PREM-enabled applications that improve performance over standard
OpenMP by up to 11.2×, with an average of 9×. The improvement is
possible as OpenMP by design does not consider explicit data move-
ment for SPM memory hierarchies, and therefore every access is han-
dled by DRAM. Through the creation of DMA-enabled PREM mem-
ory phases the program is transformed to use the local memory for
computation, which explains the improved performance, and delivers
on the promise of PREM without overheads.

The use of the hardware accelerated DMA engine also provides
a significant speedup compared to the software-based SoftDMA, on
average 7.3×, and up to 9.4×. This is because the SoftDMA-style
transfers of data using load and store instructions, which is consid-
erably slower than the DMA engines on in-order processors such as
RI5CY – motivating the need for a DMA-aware PREM compiler.
For most benchmarks, SoftDMA can only improve the performance
by a few tens of percent over baseline OpenMP, while for axpy per-
formance even decreases. This is because the data copied to the SPM
is only used once, and therefore the additional overhead of staging
the data through the scratchpad is not amortized over multiple uses.
In contrast, even under such conditions the DMA-accelerated mem-
ory phases still improves the performance over standard OpenMP by
a factor of 4.7×. Conversely, convolution-2d shows the maximum
speedup for any scheme, as it has the highest level of data reuse.

Following this, we extend our evaluation to also include an eval-
uation to baseline OpenMP code with manual DMA data manage-
ment performed by a human expert8. While the comparison against
baseline OpenMP code provides a means to show the effectiveness of
PREM on a platform with similar native execution model, real PULP

8The expert is Cyrill Burgener.
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Figure 4.15: Speedup of the code generated by our compiler tech-
niques compared to the standard OpenMP and software load/store
instruction data transfers (SW).

Figure 4.16: The performance of the code generated by the proposed
compiler techniques compared to that of a human expert.

applications would indeed have their memory accesses optimixed man-
ually, and as such this provides a more representative comparison in
practice.

On average, our technique generates code that reaches 88% of that
performance. The poor performance in axpy is due to the additional
instructions used for tiling, which includes a signed remainder oper-
ation which has high latency. For atax and bicg the strict adherence
to PREM forces the compiler to generate memory phases that reload
some data multiple times, when it is used in multiple intervals. This
ensures consistency at the end of each interval, providing the maxi-
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Figure 4.17: The memory bandwidth usage (Y-axis, MB/s) over time
for code compiled with the proposed technique, and an interfering
CPU task.

mum amount of freedom to a PREM scheduler to schedule intervals
from other tasks in between. In contrast, the version optimized by
the human expert is only considering performance and thus keeps the
data in the SPM for as long as it is needed, and only writes it back
to memory after it is used for the last time.

Overall, the performance is similar to that achievable by a hu-
man expert, with an additional benefit: This performance is achieved
from standard OpenMP code without the need for manual insertion of
PULP-specific DMA calls, making the code neater and more portable
to other systems.

4.3.2 Host and Accelerator Co-scheduling

Having established that the PREM-compliant code generated by the
PREM compiler performs close to what a highly trained program-
mer can achieve, we now show how the transformed code enables
timing-predictable execution. To achieve mutually exclusive memory
access between CPU and PMCA, we use the principal ideas of GPU-
guard, presented in Chapter 2, but with further improvements on the
CPU-accelerator co-scheduling developed by Maxim Mattheeuws in
his master thesis [90]. We show how this enables completely exclusive
access to memory, fulfilling the requirements of PREM.

Similarly to previous experiemental setups we co-execute the PULP
benchmarks with a memory intensive PREM-enabled task. This task
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spinns on memory as soon as it receives the exclusive lock (GPUguard
token) for the memory, and stops when it loses it. Our results show
the full execution time of the PREM-compliant benchmarks compiled
by the PREM compiler, with benchmarks using only 1/8th of the local
SPM capacity. The reason for this is that, due to the limited LLVM
support, this allows us to emulate a perfect linear speedup to 8 cores
by compressing the execution time of the compute phases on PULP
by a factor of 1/8th. This had not been possible if the single core had
used the entire capacity. While not optimal, this case is interesting
as it represents the worst case scenario for how large percentage of
the time that the DMA is holding the exclusive access to the memory,
and limiting memory accesses from the CPU. As the DMA operation
is done in hardware, we do not scale this in the presented plots.

Under these conditions, Figure 4.17 shows the memory bandwidth
utilization by PULP (blue lines) and the CPU (red lines) throughout
the execution of each benchmark. Each plot is labeled with the per-
centage of time that is spent in the PREM compute (C) and memory
(M) phases, as well as the time spent on synchronization (S), which
are shown as black lines at the top of the plots.

The most important finding is that for every benchmark, the mem-
ory accesses are completely separated in time, showing that the PREM
promise of freedom from interference is achieved: CPU tasks are never
affected by the bandwidth use of PULP, or vice versa.

Another important finding is that a significant portion of the mem-
ory time remains free for the CPU to use during the PULP compute
(C) phases. On average 77.5% of the time is available for the CPU to
access memory, and at least 56%. This means that, finding a feasible
schedule for CPU tasks is not significantly complicated when using a
PULP in a PREM system, even under the worst-case linear speedup
to the compute phases.

Lastly, the synchronization cost (S) required to enforce the mutual
exclusion adds on average 8.7% to the total execution time. The
highest cost is recorded for axpy, which is a notoriously light-weight
kernel and as such has very short PREM phases. Even in such a
unfavorable case the synchronization time is only 21.1% on PULP.
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4.4 Conclusion

In this chapter we have evaluated the PREM compiler presented in
Chapter 3 on three different platforms. We have seen how the various
code transformation implemented affect the performance of the result-
ing PREM code. In particular, we have seen that on the GPU, pre-
viously presented techniques for generating memory-accessing phases
such as Decoupled Access Execute (DAE) – generally referred to in
this thesis as stripping techniques do not perform well on the GPU. In-
stead, we have shown that thanks to the static analysis that the PREM
compiler does for footprint calculations, better memory phases can be
generated through the technique we call SoftDMA. Furthermore, we
have seen that similar code generation techniques such as SoftDMA
allows for the generation of slim and well-performing memory phases
also on cache-based CPU systems, leading to well-performing PREM
intervals.

Overall, we have shown that a key aspect in how well PREM per-
forms is the ability of the compiler to move execution time from the,
at a system level, mutually exclusive memory phases Tmemory to the
compute phases Tcompute, which are freely schedulable without tak-
ing into account global resource (memory) utilization. The SoftDMA
scheme is very-well suited for this, in comparison to other techniques
presented in the literature.

Additionally, we have seen that the PREM synchronization cost,
especially in the context of heterogeneous execution, can severely im-
pact the performance. On the GPU we saw that kernels with low
temporal data locality require frequent refills of the local PREM data
buffers, which implies frequent synchronizations and large overheads.
We have shown that this limitation comes from the close interplay
between the size of the local memory, the cost of synchronization, and
the maximum synchronization frequency. In contrast to the GPU eval-
uation, where this was a problem already for slightly memory bound
kernels, we saw that the relatively larger local memories on the PULP
platform addressed this problem by making the synchronization costs
negligible.

Importantly, we have seen that on every evaluated platform, the
compiler has been able to create PREM intervals that are schedulable
on each system without leading to global memory accesses in the com-
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pute phases. Resulting from this, we have seen that the PREMized
systems have a near-zero impact on their execution times in isolation
when significant external memory interference is introduced in the
system. This shows that the proposed PREM techniques are indeed
able to provide the promised freedom-from-interference guarantees of
PREM.

Overall, we have seen that SPM-based systems are, as expected,
better suited for PREM due to their software managed nature. In the
experiment we executed on a cache-based system, we saw that the
hardware-managed replacement policy of the cache required special
consideration to achieve good results with PREM. Furthermore, we
saw on the NVIDIA GPU that the small size of the SPM lead to
significant synchronization overheads, which even in light of this make
it interesting to explore the use of the much larger GPU caches as local
storage.

From this, it is clear that further investigation is required on the
use of caches in PREM, which will be the focus of the next chapter.



Chapter 5

Taming Data Caches

So far we have seen that the PREM compiler, in collaboration with
runtime techniques such as GPUguard, as well as external PREM
schedulers is able to produce programs that remain predictable also
under external interference. However, there have also been issues
related to the behavior of the local storage used for PREM.

This chapter addresses two such questions raised in the previous
chapters. We begin in Section 5.1 by addressing the question of the
synchronization wall issues with PREM execution in CPU-GPU sys-
tems. In our experimental results we saw that several kernels were
not able to ammortize the synchronization overhead due to frequent
refills of the small SPM. In this chapter, we explore the solving of this
issue by using the much larger last level caches for local storage.

Following this, in Section 5.2, we address the issue with the last
level cache of the CPU subsystem, identified in Section 4.2. In that
setup we had to make several restrictions to allow multiple PREM
tasks to execute in parallel on the shared data caches. In this section,
we look into these aspects in more detail, and propose more robust
alternatives.

141
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5.1 Using Large Data Caches to Reduce
Overheads for Heterogeneous PREM

Beginning with the GPU, this section presents work that was pub-
lished at DATE’19 [38], addressing the issue of high synchronization
overheads for certain kernels in heterogeneous PREM environments.
PREM synchronization to coordinate memory accesses between CPU
and GPU, using techniques such as GPUguard, introduces an over-
head in the program execution. In Section 4.1.2 we saw that the size
of the local memory plays an important role in this overhead, as more
frequent, and fixed-length synchronizations are less well amortized
over PREM phases of smaller length. On the GPU the small SPM
was cause for significant overheads in several benchmarks. Further-
more, due to the minimum granularity at which the synchronizations
can be performed, due to a minimal inter-arrival time of timer in-
terrupts used to trigger the synchronization, further overheads were
introduced in several benchmarks. We refered to the later form of
overhead as hitting the synchronization wall.

Let us begin by zooming in on the problem to establish where
the problem occurs, and how it is triggered. When executing PREM
workloads that encompass both CPU and GPU exceutions, the scope
of the PREM scheduler is extended from the management of proces-
sor time within the CPU (i.e., as for a common OS scheduler) to also
schedule access to global memory. To incorporate the GPU in this
scheme, we proposed GPUguard in Chapter 2 to pass memory tokens
between CPU and GPU based on schedule events. These synchro-
nizations events are triggered by timer interrupts at the expiry of a
WCET watchdog timer (Figure 5.1 (a)), at which point the mem-
ory token can be exchanged between the processing units (Fig. 5.1
(b)). However, these synchronizations can not occur at too fine gran-
ularity: The system requires enough time to accomodate the inter-
rupt latency and interrupt handler, as well as leaving enough time for
”useful work”. Therefore, there exists a system-dependent minimum
synchronization granularity (MSG) (Figure 5.1 (c)). In the case when
the phase lengths are shorter than the MSG, the GPU kernel is forced
to idle until the CPU becomes ready for synchronization (Figure 5.1
(d)). This corresponds to the kernel hitting the synchronization wall,
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Figure 5.1: The key components of a PREM interval.

as discussed in Section 4.1.2. When designing the system to account
for the MSG and the length of the PREM phases, we say that we
place a budget on the system, which affects when the watchdog timer
expires. For the GPU, these budgets are translated into GPUguard
scheduling quanta per the discussion in Section 2.1.2.

The impact of these effects is closely connected to the size of the
local storage used for PREM, following from Equation 2.1. Smaller
local memories mean that the data must be exchanged more often as
the computation progresses. For each refill the memory token must
be requested through the GPUguard synchronization, and the corre-
sponding synchronization overhead paid. Additionally, the synchro-
nization may be further delayed if the MSG comes into play. For larger
local memories, the local memory can be refilled less often, leading to
fewer such synchronizations overall, and a decreased likelihood that
the phase lenghts are short enough to trigger delays due to the MSG.

For the GPU, the SPM presents an attractive candidate for local
storage in PREM, due to its predictable behavior, achieved by be-
ing completely software controlled. However in the NVIDIA GPUs,
the SPM is limited to only 48KB of storage, which causes frequent
synchronizations, and gives raise to the problems identified above.
To overcome these problems, this chapter investigates how the larger
hardware-managed caches of the NVIDIA Tegra SoCs [41] can be suc-
cessfully used with the PREM model to achieve predictable execution
at better performance than the SPM-based state-of-the-art.
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5.1.1 The Cases For and Against Caches

This section describes the fundamental differences with the use of
SPM or caches on the NVIDIA GPUs. The first point summarizes
the fundamental reason why caches are of interest in the scope of the
findings of this thesis, but continues to outline additional differences
that impact PREM execution on the GPU and that will be further
explored.

Synchronization The main issue with issue we are trying to solve
is that the small size of the SPM implies short PREM phases, even
below the MSG, which causes the synchronization/idling overhead to
blow up. Intuitively, these overheads can be overcome by increasing
the granulary of the intervals, such that the synchronization makes up
a smaller proportion of the overall execution time. On current genera-
tion heterogeneous SoCs, the last level cache (LLC) of the accelerator
is much larger than the SPM (5× on the NVIDIA TX1, 10× on the
TX2). Thus, the use of caches promises a more effective use of the
kernel execution time.

Code performance As SPMs are software managed and explicitly
addressed, they require a significant addition of instructions to man-
age the data allocation and data movement. This implies an overhead
compared to the use of implicitly addressed caches. For some kernels,
such as matrix multiplication, the amount of data reuse makes it worth
the additional instructions to bring the data closer to the cores. How-
ever, for many kernels , i.e., the same type of kernels that suffer from
synchronization overhead, this overhead can be significant. A sim-
ple example provided in Figure 5.2 highlights the difference between
the two cases. Note that depending on the complexity of the address
calculation, the added instructions from transl addr (which trans-
forms a DRAM address to its SPM counterpart) can be significant. In
contrast, the only instructions needed for hardware-managed caches
is a prefetch of the original address in the memory phase, as shown
in Figure 5.2. Because of this, hardware caches promise additional
performance benefits due to hardware-managed data placement.
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Figure 5.2: SPM data movement code (left) requires more instructions
than caches (right).

Self-eviction To ensure predictability, no cache miss must occur in
the compute phase. To measure this we use the compute phase miss
rate (CPMR), defined as the ratio of cache misses in the compute
phase over the total amount of cache misses. A CPMR of zero thus
means that all cache misses occur in the memory, which in turn enables
predictable execution.

Thus, the key design goal for PREM is to minimize the CPMR,
which makes a strong case for the SPM: The software managed data
movement ensures that data brought into the SPM is guaranteed to
survive until explicitly evicted. In contrast, data in the caches are
managed by a fixed replacement policy, that selects which data to
evict when new data is requested. If the memory accesses of a pro-
gram causes the replacement policy to evict live data, the program is
subject to self-eviction. In the case of the least-recently-used (LRU)
[35] replacement policy this represents no problem, as stale data will
always be evicted before data that was part of the latest prefetch
phase. However, LRU is seldom used in commercial systems, because
of the complex hardware needed to implement it. Instead, cheaper but
less predictable replacement policies are used, that can lead to (more
or less) random self-evictions of alive data from the cache. This is
also the case in the NVIDIA Tegra GPUs [81].
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Figure 5.3: The breakdown of the execution time for the bicg-100
kernel on the SPM, LLC, and without PREM (baseline).

5.1.2 SPM and Cache Differences in Practice

In summmary, the cache promises smaller overheads, but the prob-
lem of self-eviction may compromise the key design goal of minimiz-
ing the CPMR. To see how this manifests in practice, we run the
cache-friendly bicg-100 kernel from the PolyBench-ACC [78] bench-
mark suite on the NVIDIA TX1. This kernel is interesting for two
reasons. First, it is one of the kernels identified in Section 4.1.2 to
suffer from the overheads due to the SPM begin too small, leading to
large overheads. Second, this kernel has cache friendly access patterns,
which should limit the impact of self-evictions, while still allowing to
demonstrate the benefits of larger local storage, and the disappearance
of the synchronization overheads.

We compare the characteristics of this kernel on the SPM, on the
LLC, and without PREM (baseline), under different interval sizes T ,
determined by the amount of data touched. The SPM is limited to
T ≤ 2×48KB (kernel is distributed over two clusters, each with access
to their own SPM), while the LLC allows T ≤ 256KB. The results are
shown in Figure 5.3, where execution times are shown relative to the
baseline, i.e., the original program without PREM transformations
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or synchronizations. The bars are broken down to highlight different
effects.

From the bottom up, “without sync” shows the effect of either
SPM data movements or prefetches as created by the PREM com-
piler, and the “idle” and “sync” parts show the two sources of syn-
chronization overhead described in Section 5.1.1. In these aspects,
caches indeed do better than the SPM; the overheads are rapidly de-
creasing as T goes up, and the use of prefetches initially has a positive
effect, as can be seen in the decrease in “without sync” between the
SPM and LLC cases. As T increases beyond the cache size of 256KB,
we start seeing capacity misses, as illustrated by an increase in the
“without sync” bar at 512KB.

After budgeting for the WCET of the intervals and applying mem-
ory interference, the two top-most bars show a large difference between
the SPM and the LLC. Here, the “with budget” part of the bar corre-
sponds to the difference between the budgeted WCET and the actual
execution times of the phases, as given by Ibudget in Section 4.1.1.
The “with interference” part of the bar indicates how much the ex-
ecution time increases under external memory interference, achieved
in the same manner as in Section 4.1. In a correct PREM system,
this value should be negligible, as all data is stored locally and not
subject to external interference. This result is indeed achieved on the
SPM. When executing on the cache however, a significant slowdown is
visible under memory interfere. Compared to the baseline, PREM on
LLC can still perform better under interference, because cache misses
that occur in the memory phase are protected by GPUguard. How-
ever, cache misses in the compute phase (i.e., violation of PREM) are
subject to the same slowdown as in the baseline case.

For the LLC, the bad performance under interference would occur
only if the data prefetched in the memory phase is selected for eviction
before its point of use in the compute phase. The compiler-generated
prefetch phases are guaranteed to issue prefetch requests for the data,
which implies that the cache replacement policy is working against us,
as the prefetch can not guarantee that the data is in the cache after
the memory phase.
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5.1.3 The Way of the Cache

The main source of self-evictions in the NVIDIA GPU caches, as
shown by [81], is the random replacement policy. Data stored in
different cache ways are more or less likely to be evicted, and if the
loaded data ends up in a cache way that is more likely to get evicted,
it will not survive until the start of the compute phase. The authors
of [81] were only able to show this effect in the L1 cache, where out
of four cache ways per set, one was three times more likely to evict
the data1. As new accessed data will be stored into the set where
the previous data was evicted from, each new accessed datum has a
50% chance of being stored to the fourth way. We refer to this way
as the bad way, because data there is much more likely to be evicted
on the next cache miss. Correspondingly, we refer to the remaining
as the good ways. To minimize the CPMR we want to have a near-
zero probability that data is stored in the bad way. Since the eviction
probabilities imply a 50% chance of data being stored to the bad way,
we can model this as a coin toss (probability of getting R heads in a
row), in which the likelyhood of using a bad way reaches a probability
of less than 0.5% at R ≥ 8.

We verify this intuition, and that this applies to the LLC, in Fig-
ure 5.4, measuring the CPMR for different R at interval sizes T . As
expected, increasing the number of prefetches by a factor of R mono-
tonically decreases the CPMR towards near-zero values. Thus, we
can decrease the CPMR by choosing R = 8, and we refer to R as the
prefetch repetition factor.

In the other dimension we explore the effects on the CPMR as
the interval size T increases, and see that as T decreases the CPMR
also decreases. For all T ≤ 192 the CPMR reaches CPMR < 10%,
after which it increases rapidly. We know that 3/4 of the cache ways
are good, and 1/4 is bad. That also means, that of the full cache
capacity of 256KB, only 192KB (3/4th) is available in good cache
ways. Which in turn means:

• While T ≤ 192KB, all data fits in the good ways, and with a
high enough R, all data will reside there.

1In [81], the observed probabilities of evictions were ( 1
6
, 1
6
, 3
6
, 1
6

).
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Figure 5.4: The CPMR for different R and T .

• Once T > 192KB, data must also be stored in the bad ways,
and there is a very high risk that this data will be evicted at any
cache miss. We therefore expect the CPMR to start increasing
due to self-eviction.

Comparing this to the CPMR in Figure 5.4, we can see that this
matches the observed pattern. Thus, by choosing an interval size T
that is small enough to fit in the good ways of the cache, and repeating
the prefetch operation R = 8 times, we are able to significantly re-
duce the CPMR, whose previously high values prevented predictable
execution on the LLC.

Example Revisited

With this information, it is possible to reduce the amount of cache
misses by repeating each prefetch operation R = 8 times. The re-
sults for the bicg-100 kernel shown before are presented in Figure 5.5.
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Figure 5.5: The breakdown of the execution time for the bicg-100
kernel, with a prefetch repetition R of 8.

In this configuration the good properties of reduced synchronization
overhead is preserved, but the effect on code overhead and interfer-
ence has changed for the negative and positive respectively. Beginning
with the code overhead, which now includes repeated prefetches (and
is shown in the “without sync” part of the bars), we can see that with
R = 8 it slowly increases with the tile size T . The reason for this
is visible in Figure 5.4: As the tile size becomes larger, the CPMR
hits a plateau at a higher and higher value, meaning that as T gets
larger we can never reach the case where every memory access in the
compute is a cache hit. To understand how this affects the execu-
tion time, lets reason about the impact of repeated prefetches. For
a repeated prefetch that hits in the cache, the increase in execution
time should be negligible because the low cache latency. If a repeated
prefetch causes a miss, we will overcome the self-eviction by refetch-
ing it within the memory phase, and thus move one cache miss from
the compute phase to the memory phase, expecting no change in the
overall execution time. This is the case where the CPMR reaches
near-zero values, for tile sizes that fit in the good cache ways, when
T ≤ 192KB. However, if we repeat the prefetch and miss multiple
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Figure 5.6: The results for the individual kernels in fair co-scheduling
with the CPU.

times in the memory phase, and after that still miss in the com-
pute phase, the overall execution time goes up because the increased
overall number of cache misses. We can see that this effect starts at
T = 192KB, where the good cache ways are no longer enough to hold
all data touched by the tile.

The good news, however, is that the lowering of the CPMR has the
corresponding decrease in sensitivity to memory interference, showing
a positive relationship between the CPMR and predictability achiev-
able.

5.1.4 Evaluation

This section extends the evaluation to more kernels from the PolyBench-
ACC benchmark suite [78], using a subset of benchmarks for which
the SPM-based PREM execution implies large overheads. The exper-
iments are executed on the NVIDIA Tegra TX1 [41], using the same
approach as presented in Section 4.1.1. As we have seen that the
CPMR for intervals larger than 192KB, i.e., larger than the size of
the good sets, is significantly increased, we focus the evaluation on
smaller intervals that are less susceptible to interference. The results
are presented in Figure 5.6.

For each kernel we measure the execution time without GPUguard
to determine the effects of the cache-based PREM code transformation
done by the compiler, in comparison to the SPM and to an unmodified
baseline (”Transform”). We also measure the additional overhead due
to synchronization and idleness introduced into the system, as well as
the budgeting, as described in Section 4.1.1, to account for the WCET.
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For a CPMR of zero, the WCET in isolation and under interference
will be the same, and freedom from interference achieved.

We co-schedule the TX1 CPU and GPU so that both devices get
an equal share of the memory bandwidth, which ensures that neither
device is starved for memory. This is achieved by budgeting the mem-
ory and compute phases to equal length. The results are presented in
Figure 5.6.

Optimized cache performance In all cases, the SPM-based state-
of-the-art performs significantly worse than the LLC, and we can con-
firm the previous results that the best configuration is to use a T
that only depends on the good cache ways. For the best interval size
T = 160KB the LLC performs, on average, twice as good as the
SPM, due to the coarser granularity of synchronization made possible
by the large LLC. An additional effect of the cache-based approach is
that the length of the memory and compute phases become more bal-
anced, leading to smaller amount of idleness budgeted into the system
schedule. In the case of SPMs, the compute phase was so short that
it would starve the CPU from using memory, but on the LLC, the
longer latency to the LLC brings up the execution time, allowing the
CPU to get a fair share of memory. The increase in compute phase
latency is compensated by the lower complexity of the LLC memory
phase (Figure 5.2).

We also see that on average, the LLC outperforms the baseline
under interference. While the average over these kernels is modest,
only 10% improvement, the SPM on average showed a almost a 200%
decrease in performance, even under interference. However, in the best
case, PREM on LLC offers a 215% improvement in WCET compared
to the baseline. As the interference to the baseline kernels are found by
measurement, they are only a lower bound on the possible slowdown.
In contrast, PREM is designed with this limit as a design goal.

Predictability In addition to better performance, the predictabil-
ity guarantees can still be preserved with the LLC. Figure 5.7 shows
how much, on average, the execution time increases under interference.
For intervals similar in size to the SPM, T ≤ 128KB, the interference
only adds 3% to the execution time. For the 160KB interval the
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Figure 5.7: The average sensitivity to interference for all kernels.

sensitivity increases to 5% over the execution time in isolation, and
for 192KB, at the limit of the size of the good ways, the sensitivity
increases further to 15%. However, this is significantly less than the
245% for the unmodified baseline.

Thus, it has been shown that with larger local memories, the syn-
chronization overhead inherent to heterogeneous PREM can be suc-
cessfully managed also for low-complexity kernels, by selecting a plat-
form with larger local memories. In addition to this, it has been shown
that, while perhaps not suitable for modeling and static analysis nec-
essary for safety certification, mechanisms within GPU caches can be
used to ensure better cache hit ratios after prefetching.

5.2 Managing Random Replacement Poli-
cies and Shared Cache Levels in CPU
Caches

Let us now look a bit closer into the behavior of the CPU caches
as well. Following the discussion in Section 4.2.1, in the submitted
paper to TECS [69] we further evaluate the effects of NVIDIA Jetson
TX2 caches on PREM intervals. While the experimental results from
this evaluation comes from the newer TX2 platform, the concepts are
applicable also to the previous-generation TX1 used for the evaluation
in the previous sections. The main difference between the TX1 and
the TX2 is that the TX2 features a newer generation of GPU as well
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as, besides the A57’s also in the TX1, an additional two-core processor
of NVIDIA’s own Carmel make. However, for this evaluation we only
consider the A57s.

As outlined in Section 3.2.2, the footprint analysis internal to the
compiler is able to account for cache line locality, but it does not
account for set conflicts in the resulting PREM intervals. The main
goal of this section is therefore to evaluate the impact that this has
on the resulting PREM intervals and how well they manage to isolate
the execution phase from use of the shared memory system.

5.2.1 Cache Associativity, Size, and Misses

With preventive invalidation, as outlined in Section 4.2.1, set-conflicts
can only occur within an interval, as long as private caches are used.
The TX2 (and TX1) only offers a single core-private memory, which
is the L1 cache. Therefore, this is the obvious choice for local storage
for PREM intervals on the TX2.

To test the impact of set-conflicts on the PREM intervals, we there-
fore use a set of PolyBench-ACC [73] benchmarks and configure the
compiler to create intervals smaller than the 32KB L1 cache, execute
them, and record the number of set-conflicts in Figure 5.8. For many
benchmarks, over 20% of the prefetches cause a set-conflict, i.e., ex-
tending the previous example, a new datum dnew2 replaces either dnew0

or dnew1 within the interval itself – again violating the PREM isolation
guarantees by causing a compute phase miss. In these benchmarks
it is caused by several 1- and 2-dimensional arrays having overlap-
ping accesses to the same sets, which quickly increases beyond the
2-associativity of the L1 cache.

We therefore conclude that for otherwise correct PREM intervals,
their execution in practice violates the PREM isolation guarantees due
to frequent self-evictions due to set-conflicts in the low-associativity
L1 caches. This at first glance is a discouraging find. However, if we
can apply some cache partitioning technique to the shared L2 cache,
we would be able to isolate different tasks from interfering with each
other, which would make the L2 cache an option for local storage for
PREM.

The L2 cache has 8× higher associativity and number of sets than
the L1, and can be expected to perform better for these benchmarks.
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Figure 5.8: Average (and min/max) set-conflicts per interval, for L1
and L2 caches.

We will address the shared status of the L2 shortly, but first let us
establish that the L2 solves the problem of self-eviction due to set
conflicts. The benchmarks are recompiled with a target interval size
of 2 MB, ensuring that the full L2 cache is used. Figure 5.8 shows that
the number of set-conflicts per interval are now always below 5%, and
typically below 2% – a 10× improvement compared to the L1. We
conclude that the larger amount of sets and higher associativity makes
the L2 less susceptible to set-conflicts for these benchmarks.

Set-conflicts could potentially be avoided in compiler-generated
PREM intervals if the set indexing bits of each accessed data could
be determined. This would allow the compiler to avoid the creation
of intervals in which one or more sets are over-occupied.

For structured data types, e.g., arrays and structs, an approxi-
mation of the set pressure could be generated by assuming an arbi-
trary address aguess for the beginning of the structure, and tracking
how the set indexing bits change for each element within the struc-
ture. This is possible as the offset of each element in an array or
struct is known, and the indexing bits for each element follow from
the initial guess aguess. For example, the indexing bits could be ex-
tracted for element n in an array of type T as an = aguess + n ∗
sizeof(T ) & SET INDEX MASK, where SET INDEX MASK
is the bitmask of the indexing bits and & the bit-wise and operator.
An incorrect guess for aguess would affect which sets that were used,
but not their set pressure. However, it is not possible to derive the
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relative location of two different data structures A and B at compile
time (this depends on the linker, heap allocators, and stack layout),
which would prevent such an approximation to work between data
structures. This, as a correct approximation of set pressure requires
the assumed starting address of the second structure aBguess to be cor-

rect relative to the first aAguess.

Potentially, this problem could be solved by enforcing specific
memory layouts of data structures by linker scripts, or by collect-
ing all data structures within a container structure C – e.g., a struct
which has the other data structures (e.g., A and B) as members. From
a single initial guess for the start of the container aCguess the addresses

aA = aCguess and aB = aCguess+sizeof(A) would follow, and the index-
ing bits could be extracted. However, as there are several problems
to to implement such a scheme for data present in static memory, the
heap, and the stack, such explorations are out of scope of this work,
and we rely on this post-compilation validation of the cache behavior.

We highlight that set-conflicts in PREM compute phases are com-
parable to non-contended single-cores with dedicated caches, easily
upper-bounded using existing single-core timing analyses. Since mem-
ory phases of other tasks are contended only by set-conflicts of co-
executing compute phases, and the compute phase is inflated only by
the contended set-conflicts, the resulting WCET of PREM tasks are
significantly smaller than non-PREM. While we strive for zero con-
flict misses, we accept the three benchmarks that still experience a
few percent of set-conflict misses.

Following this, we select to use the TX2 L2 cache for local storage
for our PREM intervals. In the next section we will introduce cache
coloring to ensure that the isolation properties are upheld also between
tasks in the context of a shared cache. First, let us evaluate the cost of
preventive invalidation, the orthogonal technique that we use to ensure
that there are no self-evictions within the task itself. From Section 4.2
we know that, besides the need to verify set-conflicts post-compilation,
the preventive invalidation required to ensure predictable cache line
replacement in the A57 caches adds an overhead. As part of our
evaluation in the TECS submission [69] we measured the overheads of
the preventive invalidation approach on the benchmarks used in this
evaluation.
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Figure 5.9: The slowdown factor of preventive invalidation.

Figure 5.9 shows that preventive invalidation on average adds 9%
to the execution time, due to additional cache refills. Note that this
is lower than presented in the previous section: As part of the ongo-
ing compiler development we identified that the preventive invalida-
tion routine did not account for cache line locality, as the SoftDMA
prefetch phases would do. Importantly, this did not lead to incorrect
results, as the cache line was evicted multiple times instead of just
once. Thus we were able to optimize this stage by ensuring that each
individual cache line was only evicted once, without loss of correct-
ness. From this the overhead dropped significantly, corresponding to
the same type of speedup as presented for cache-based SoftDMA in
Section 3.2.3.

Note that data is restored to the cache during the next prefetch
phase, ensuring correct PREM operation. As outlined, invalidation is
necessary for PREM with RRP. For predictable policies, e.g., Least
Recently Used (LRU), writeback phase invalidations are not necessary,
removing this overhead. However, the performance is acceptable, as
we are willing to sacrifice some of the peak performance to achieve
predictability.

5.2.2 Cache Coloring, Shared Caches, and PREM

Shared caches mean that the impact of L2 interference between tasks
on different cores needs to be considered. This can be addressed with
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cache coloring, which ensures isolation of cache lines between cores
by assigning a fixed number of cache sets to each core. Note that
cache coloring does not inherently prevent self-eviction within a task
(a problem we solved with preventive invalidation), but only ensures
that two separate tasks can not interfere with each other. Thus, cache
coloring is an orthogonal approach to PREM, which we combine to
ensure full L2 isolation. As has been shown by Kloda et al [37], this
can be achieved transparently to applications, by managing it through
the virtual memory system. We collaborated with the team behind
[37] at the University of Modena and Reggio Emilia to employ this
technique to ensure PREM isolation also in the context of a shared
L2 cache.

Based on their approach, we use the Jailhouse hypervisor [91]
that implements application-transparent cache colored [37, 92] in-
mates (VMs). We execute all benchmarks as bare-metal inmates,
together with a PREM-compatible synthetic benchmark that gener-
ates the maximum amount of interference possible2. The hypervisor is
extended to implement memory mutices, or memtex for short, which
are requested by hypercalls implemented in the prem notify() run-
time functions inserted as scheduler hooks by the PREM compiler.
Only a single task can hold the memtex at once, ensuring complete
isolation to main memory, as per the PREM definition.

This presents a realistic setup of a PREM system, and our evalu-
ation has two goals. First, we need to ensure that the cache coloring
support provided by the hypervisor ensures that the PREM tasks do
not encounter interference from other tasks that evict their cache lines
during the compute phase. Second, we want to evaluate the perfor-
mance of the benchmarks on this setup, compared to running them
as standard applications without cache coloring or PREM transfor-
mations and scheduling.

Cache Line Isolation A task is correct under PREM if all shared
memory accesses (cache misses) occur in the memory phase. Here
we will establish that this is the case for the compiled code. Since
the L2 cache is shared, the interval sizes are reduced from 2 MB to
512 KB, i.e., one quarter per A57 core, using cache coloring to ensure

2By spinning over an array at the stride of the length of a cache line.
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Figure 5.10: Cache misses in the memory and compute phases.

isolation. We use the A57 performance monitoring unit (PMU) to
record all cache misses occurring in the compute and memory phases
separately, presenting the results in Figure 5.10.

We confirm that on average over all the benchmarks, 99.4% of the
cache misses occur in the memory phase. In the worst case, for 2mm,
the number is 98.5%. The few remaining misses can be traced back
to the set-conflicts shown in Section 5.2.1, and to instruction misses
(also handled by the L2), as the presented techniques only account
for data accesses, as outlined in Section 3.3.

Importantly, for benchmarks were the move from L1 to L2 could
remove all set-conflicts, the number of cache misses in the compute
phase remains very low, highlighting the benefits and possibilities of
PREM in combination with cache coloring in combination with larger
caches of higher associativity.

Regarding instruction misses, these could be prefetched as part of
the generated PREM prefetch phase. As the PREM compiler outlines
all PREM phases into separate functions, the prefetch phase could use
the pointer to the compute function to prefetch its data. However,
this would require further changes to the compiler backend as the
length of the function is not known until the machine code has been
generated, information that is required to know the length of the code
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to prefetch.

The much more difficult problem of prefetching data, which re-
quires significant compiler analysis to determine memory footprint
and select PREM intervals removes the vast majority of misses, and
PREM isolation can be effectively provided. Cache coloring guar-
antees that the number of cache misses will not change due to the
activity of other cores, ensuring that full isolation is achieved and
cache miss analysis can be performed with single-core methods. With
this, we can show that our PREM solution can be used successfully
on random replacement caches that are common in practice.

Performance Evaluation This section evaluates the performance
of the PREM tasks on the NVIDIA TX2 with hypervisor-based cache
coloring and PREM enforcement through memtexes. The memtex
synchronizations are managed from the hypervisor, and triggered by
a hypercall at each prem notify() call. The scheduler always allows
the phase to execute at once, and as the hypercall dominates compu-
tation time, it is representative of the online cost for a pre-computed
static schedule. We do not consider schedule-induced idle-time, as we
are evaluating the effects of compiler transformation, and don’t want
scheduling policies to influence the results. Figure 5.11 shows that
PREM only adds 16.3% to the execution time on average.

As in Section 4.2, the main contributor to the increased execution
time is preventive invalidation, necessary to achieve the low amount
of compute phase cache misses. The number of instructions executed
also contributes to the final performance, as benchmarks with a low
amount of instructions in the original program will be more sensitive
to the cost of added instructions after transformation. No benchmark
shows more than a 44% increase in execution time, which is accept-
able to enabling predictable execution on COTS multi-core hardware.
When considering the additional overhead of the scheduler, it is clear
that enforcing memory protection at this level in the cache hierarchy
leads to small scheduling overheads. The cost to perform the schedul-
ing operation is very small compared to the amount of useful work
that can be executed in intervals of 512KB/thread. On average, the
additional cost of the scheduling operations, hypercall included, is
less than 3%. This again shows that the synchronizationi/scheduling
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Figure 5.11: The relative performance of PREMized to non-
PREMized tasks.

costs highlighted in the GPU evaluation in Section 4.1.2 are resolved
by larger memories.

5.3 Conclusion

This section has addressed the question of cache behavior under PREM,
and we have observed that the random replacement policies common
in commercial off the shelf systems are a problem for predictable exe-
cution, as it introduces additional issues in ensuring that the memory
prefetched during the PREM prefetch phases are indeed available lo-
cally during the compute phase.

In this chapter we have found that the impact of these effects
can be managed by taking additional steps to ensure correct PREM
operation. In the case of the GPU, we found that the use of the
hardware managed caches required additional consideration on the
sizing of PREM Intervals to ensure that the risk of data eviction
before the compute phase was minimized. Fundamentally, we found
that due to the configuration of the cache replacement policy, only
three quarters of the cache sets were usable, and that the generated
PREM intervals should be sized accordingly. In addition to this, we
found that repetitions of the prefetch operations made sure that that
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the data was significantly less likely to be evicted before their use.
For caches on the CPU we did not see this particular character-

istic, however, we found that the low size and associativity of caches
play an important role in the ability of PREM intervals to reduce
the CPMR. In particular, the L1 caches on the TX1 was subject to
frequent self-evictions due to these factors, thus severely violating the
PREM Isolation guarantees for several workloads. We were able to
construct a well-performing PREM system by instead using the shared
L2 cache, which had both larger size and associativity that prevented
such self-evictions. However, to ensure that tasks executing on differ-
ent cores were not able to interfere with each other, we demonstrated
that this approach needed additional runtime support in the form of
cache coloring to isolate the memory usage of the cores from each
other.

All-in-all, the conclusion from this chapter is that larger local
storage is better for PREM performance, reducing the impact of
PREM synchronizations. In the evaluated platforms this could only
be achieved by using hardware-managed caches, which we demon-
strated to have significant issues with respect to PREM, both from a
code generation and runtime isolation perspective. For this reason, we
conclude that PREM can be used in cache-based systems if additional
care is taken, but that the best fit for PREM is a system which has
large software-managed SPM available. This is also in line with our
findings on PREM execution on PULP in Section 4.3.



Chapter 6

System-Level
Co-Scheduling Effects
and Optimization for
PREM

In the previous chapters we have explored the interaction between
the PREM compiler, the PREM runtime, and PREM scheduling. In
particular, in Section 4.2 we used an optimal ILP-based scheduler to
produce an optimal schedule for the PREM system, based on intervals
created by the compiler. However, PREM compilers and schedulers
are individually unable to construct a well-optimized PREM system.
The compiler has a local view of each task, which it can optimize for
predictability and performance, but it cannot optimize for the inter-
actions with other tasks deployed on the system. This is done by the
scheduler, which has full visibility of all tasks in the system. However,
even a state-of-the-art optimal scheduler may produce sub-optimal
schedules, as the scheduler cannot improve the schedule beyond the
degrees of freedom given by the intervals created by the compiler.

Furthermore, the objectives of the scheduler and compiler opti-
mizations are often in direct conflict: Each individual task will per-

163



164 CHAPTER 6. SYSTEM-LEVEL PREM OPTIMIZATION

form better if larger intervals are selected, as this reduces the cost of
scheduling at the PREM phase boundaries. The scheduler, in con-
trast, has the most amount of freedom if PREM intervals are selected
as small as possible, as blocking memory phases can then be inter-
leaved at finer granularity. Thus, for each PREM system there exists
an optimum where for per-task and per-system objectives are com-
bined, but it can not be found by the compiler or scheduler in isola-
tion.

Soliman et al. [93] proposed to address this concern by integrating
the scheduler into the compiler, but this solution is still subject to the
local view of the compiler: All tasks need to be compiled together in
a single compilation unit to enable scheduling, breaking common de-
velopment flows such as partial compilation into object files. To fully
address this issue, a new methodology that preserves the strengths of
both the compiler’s per-task and scheduler’s per-system optimization,
while finding the sweet spot is required.

In this chapter we will address this question, based on work done in
collaboration with Maxim Mattheeuws, and published at LCTES’20
[94]. In particular, we propose a novel methodology and prototype
implementation for bridging the gap between the PREM compiler
and the PREM scheduler, allowing us to reduce the response time of
PREM systems by as much as 31%.

6.1 Problem Description

Our main goal is to co-select PREM intervals with the scheduling,
such that we can minimize the Worst Case Response Time (WCRT)
R of the system. We use the definition of the response time following
from the PREM scheduling discussion in Section 1.4, and as shown
in Equation 1.5. We see that there are three terms that should be
minimized to reduce the response time Rτ of a PREM system; the
blocking time on memory Bmemory, the scheduling/synchronization
cost S(|Iτ |) of the intervals I of task τ , and the execution time of
the intervals eτ . By reducing the response time, the performance
of the system is improved, and it increases the likelihood of making
the taskset T schedulable. The accumulated interval WCET eτ is
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ideally constant1, but the remaining terms can be tuned: To minimize
Bmemory, the interval lengths len(i), i ∈ Iτ̄ (where τ̄ means tasks other
than τ) should be minimized to reduce blocking time. On the other
hand, to minimize S(|Iτ |) the interval lengths len(i), i ∈ Iτ should
be maximized to reduce the number of scheduling points and their
overheads. We make two key observations:

Observation 1: Both options to alter the intervals i ∈ Iτ are only
available during compilation. The first is to alter size(i), as a smaller
interval size (in bytes) will lead to less computation in the interval i,
and a shorter execution time len(i). The other option is to completely
alter the scheduling conditions by selecting a different set of intervals
I ′ altogether.

Observation 2: The impact of both options on Rτ is only known
after scheduling, and cannot be used by the compiler to select a dif-
ferent I ′ or to alter size(i), i ∈ I. Furthermore, the compiler can
only infer information about the task τ under compilation, limiting
optimizations to criteria available at the granularity at which com-
pilers analyze programs (i.e., translation unit), effectively excluding
optimizations to τ̄ .

In light of these limitations, the previously presented PREM com-
piler has fallen back to select PREM intervals that are as large as
possible, while still fitting into the local memory. This reduces the
total amount of online scheduling decisions at runtime, and therefore
S(|Iτ |), at the cost of increasing Bmemory for other tasks. The com-
piler may therefore, by reducing the cost of S(|Iτ |) to optimize the
performance for the task under compilation, increase the Rmemory

term resulting from scheduling, overall worsening Rτ .

Consider the example in Figure 6.1. In the top scenario, tasks
τ0 and τ1 have been compiled with the larger-is-better interval sizing
heuristic. While this is best for the performance of each individual
task, the co-scheduled system suffers from serialization effects, as the
memory phases (i.e., the prefetch and writeback phases) of τ1 cannot
be co-scheduled with those of τ0. In this example, both tasks are
released at time t0 and the final phase of τ1 finishes at t4, which is the
response time R{τ0,τ1} of the taskset {τ0, τ1}. In the bottom scenario,

1In practice, intervals that contain loop tiles may incur non-negligible tiling
overhead for small loop sizes, but at that point S(|Iτ |) will dominate.
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Figure 6.1: Illustrative example of how PREM interval sizing of indi-
vidual tasks affects the overall system performance.

τ0 has been divided into intervals of half the size. Due to scheduling
overhead, the task now takes longer to execute, finishing at t3 instead
of t2, marked A○. However, due to the finer scheduling granularity, τ1
can now be scheduled earlier, completing already at t1. Thus, while
we increased the execution time of τ0, the response time of the taskset
{τ0, τ1} is reduced from t4 to t3, marked B○.

Clearly, there exists a trade-off between the best performance for
the individual tasks and the best performance for the overall system.
This could potentially be addressed by in-compiler techniques (e.g.,
link-time optimization), but no approach exists that allows the entire
set of schedulable tasks to be put under the control of the compiler.
Therefore, we propose a novel methodology for PREM system deploy-
ment to address this issue.

6.2 Synergistic Methodology for PREM
Compilation and Scheduling

For the first time, our methodology enables PREM tools, i.e., com-
piler, WCET analyzer, and scheduler to exchange information, as
shown in Figure 6.2, to globally optimize the system. It can be fully
automatized, driven by the novel Optimizer component. By using this
methodology, the source code and real-time constraints are automat-
ically transformed, analyzed, and scheduled to produce an optimized
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Figure 6.2: Data exchange in the proposed methodology.

PREM system, outputting executable binaries and a static system
schedule.

The first steps of the methodology are directly derived from the
traditional PREM system deployment approach: The first step of
the proposed method is the compilation of the source code for each
PREM task τ ∈ T with the PREM compiler to produce the PREM in-
tervals I. As a starting point, the compiler relies on a simple heuristic
that maximizes use of available local memory (to minimize synchro-
nization overheads, S(|Iτ |)). The compiled program is analyzed for
WCET, i.e., upper bounds of the execution time of each PREM inter-
vals len(i) are derived. This can be done through measurements or
using one of the static analysis methods available in the literature [9].
This provides the input to the PREM scheduler [31, 29, 36] together
with the real-time constraints, e.g., the deadline Dτ . Additionally, as
outlined in Section 3.2.4, the scheduler takes a directed acyclic graph
(DAG) of the ordering of intervals as input, which is produced by the
PREM compiler. The DAG specifies the dependencies between the
PREM intervals to preserve program order in the constructed sched-
ule. At the top level, the SESE edges e (corresponding to jumps j
in Section 3.2.2) that connect the PREM intervals are transferred to
the DAG, and within each intervals there are edges that specify the
dependency of the writeback phase on the compute phase, and of the
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compute phase on the prefetch phase. The scheduler also gives addi-
tional information, e.g., a binary fail/success if the schedule respects
the schedulability constraint as given in Equation 1.4, and the re-
sponse time R of the system. This is where the traditional approach
would end.

However, as outlined in Section 6.1, the identified solution may
not be optimal with respect to R, as the schedule is only optimal
for the exact set of intervals I produced by the compiler. If all real-
time constraints are met (Equation 1.4), this might be acceptable,
but if the scheduler was unable to schedule the selected intervals I
without violating the constraints, this does not necessarily mean that
the system is unschedulable under PREM.

6.2.1 Connecting the Region and Time Domains

This is where our novel methodology offers a solution, which enables
the exchange of high-level information between the scheduling and
compilation steps to enable a synergistic optimization of the system.

Importantly, and as outlined in Section 1.4.1 and Chapter 3, the
compiler operates in the region domain of the source code of the pro-
gram, while the scheduler operates in the time domain. However, it is
inadvisable to intertwine the fundamentally different region and time
domains of the compiler and scheduler, as this increases tool complex-
ity and interdependence, increasing the development and maintenance
cost of either tool. In particular, the compiler should not be extended
to be aware of the behavior of tasks outside its current compilation
unit, and the scheduler should not be extended to understand the
low-level code details of SESE regions in the region domain. The only
shared concept that exist between the compiler and the scheduler are
the PREM intervals I, which we instead use to pass information be-
tween the two.

To enable this, we introduce a new component, the Optimizer as
shown in Figure 6.2 to manage the additional information. This op-
timizer is responsible for translating the output in the time domain
from the scheduler, into a refined interval selection based on the re-
gions Υτ (as defined in Section 3.2.2) of each task τ – thus ensuring
that the compiler only handles the τ in the current translation unit.



6.2. SYNERGISTIC COMPILATION AND SCHEDULING 169

r0 r1 r2 r3 r4

b0 b1 b2 b3
P C WB P WBC

a)

r5 r6 r7 r8 r9

b4 b5
P C WB P WBC

b)
P C WBP C WBP C WB

g0

Figure 6.3: Overruling parameters linked to regions.

As shown in Figure 6.2, the PREM scheduler retains the same
input and output parameters as defined in Sections 1.4.1, 3.2.4 and
6.2, but the output is in the proposed methodology redirected to the
optimizer, which triggers a re-compilation and re-scheduling with a
different set of intervals I ′ based on an overruling vector passed to the
compiler. The overruling vector is given in terms of regions r ∈ Υτ

that the compiler natively understands, allowing it to alter the Iτ
selected to improve the response time R achieved by the scheduler.

We will describe how the optimizer achieves this translation in
Section 6.2.3, but first we define overruling vectors.

6.2.2 Overruling Vectors

The new overruling vector overrules the internal heuristics for interval
selection in the compiler. We define the overruling vector Z as a collec-
tion of boolean values b, where each b represents a decision whether
two regions r0, r1 ∈ Υτ are to be combined into the same interval.
Each b is mapped to the unique SESE edge er0,r1 (see Section 3.2.2)
connecting the SESE regions r0 and r1 in the CFG. If the boolean
value b is true both regions r0 and r1 connected by this edge will be
selected into the same interval i. Consider the example in Figure 6.3a:
Five sequential regions r0, r1, r2, r3, r4 are shown in the CFG. The
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figure depicts the interval selection that {b0, b1, b2, b3} = {1, 1, 0, 1}
would result in, giving two intervals i0 = {r0, r1, r2}, i1 = {r3, r4}.
This corresponds to the selection of regions rseq in Section 3.2.2, which
uses compiler heuristics to perform the same process. However, the
overruling vector allows the proposed methodology to alter the inter-
val selection of the built-in compiler heuristics to improve the overall
system response time of all tasks, as we outlined in Section 6.1.

Regions with loops rloop larger than local memory size(rloop) >
size(λ) cannot be joined with other regions into an interval, as the
loop region in itself is already too large, thus violating the constraint in
Equation 1.1. This can intuitively be addressed by tiling and unrolling
the loop region rloop into smaller regions rloopchunk0 , rloopchunk1 , · · · ,
and selecting each of them using the boolean values b for the resulting
edges erloopchunk0 ,rloopchunk1 that connect them. This is the same effect
as achieved by loop tiling (see Chapter 3), achieving the same effect
but without unrolling the code and increasing the code size. In this
case, the compiler will see a single region rloop, and to inform the
compiler that this region is to be split into tiles, we introduce the
additional overruling vector L of tuples (r, g). Every tuple selects
the tiling granularity g for the loop region r, determining how many
iterations of the loop that are executed within each tile, as shown
in Figure 6.3b. This constitutes a compact way of representing the
unrolling operation that would otherwise be required, and corresponds
to the interval heuristic presented in Sections 3.1.3 and 3.2.2.

Note that regions rloop that are tiled can not be selected into an
interval i with their predecessor and successor regions rpred and rsucc.
This, as the interval would without tiling violate the size constraint in
Equation 1.1, and tiling invalidates the edges erpred,rloop and erloop,rsucc
(replacing them with multiple new edges). Therefore we do not asso-
ciate a boolean value b ∈ Z with edges connecting to a loop that must
be tiled, allowing only the use of (r, g) ∈ L, as shown in Figure 6.3b.
Here r5 and r6, as well as r8 and r9 retain the b ∈ Z vector, while r7 is
only associated with (r, g) ∈ L. Note that the loop back-edge for re-
gion r7 is placed outside the region for illustration purposes only. Note
also that loop regions rloop which are smaller than the local memory
size(rloop) ≤ size(λ) do not need to be tiled, but can be handled with
the Z vector.
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To guarantee that the resulting intervals from the overruling vec-
tors L and Z still correspond to correct PREM intervals, we extend
the compiler to validate that the overruled interval selection do not
violate the constraint in Equation 1.1. This is achieved by performing
a read-only run of the interval selection algorithm in Section 3.2.2,
which implicitly does this for compiler-generated intervals.

6.2.3 Optimizer

The new optimizer triggers, as part of the novel methodology, a re-
scheduling with a different set of intervals I ′ based on the overruling
parameters. This can be executed for any number of iterations, ei-
ther until an I that results in a feasible schedule is found, or further
optimized according to some additional metric. Because the com-
piler selected the optimal intervals for each task τ during the initial
compilation (optimizing S(|Iτ |)), this implies that we are trading off
per-task performance to produce smaller intervals that enable finer-
grained scheduling to optimize Bmemory.

To construct I ′, the optimizer constructs the necessary overruling
vectors based on the result from the previous scheduling. To achieve
this, the compiler is extended to export the generated region tree
r ∈ Υτ as an XML file. This allows the optimizer to deconstruct a
previous interval i ∈ Iτ into its constituent regions r ∈ Υτ (required
for the overruling vectors), and reassemble them into any number of
new intervals i′ ∈ I ′τ .

Depending on the amount of metadata produced by the scheduler,
the selection of which compiler decisions to overrule can be differently
precise: If the scheduler outputs information about which intervals are
blocking which, these can be selectively overruled, but in the generic
case when no such information is provided, the optimizer must use
a suitable algorithm to determine how to produce overruling vectors.
We will discuss this further in Section 6.3.3, but first present a generic
optimizer that makes as few assumptions as possible on the output of
the scheduler.
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Genetic PREM Optimizer: A Use Case

While the optimizer can be tailored to the unique characteristics of
a specific PREM scheduler, we propose an optimizer that uses only
the response time R of the system (a quantity that any PREM sched-
uler will output) to implement the proposed methodology. As small
changes in the interval sizing could potentially significantly alter the
optimal interleaving of memory phases, we are searching for a global
optimum on a non-continuous optimization function. For this reason,
we base our optimizer on a genetic algorithm (GA) [95], as they are
known to perform well on such functions [96]. GAs operate on pop-
ulations of N individuals and execute in epochs. At the end of each
epoch the fitness F of the population is evaluated, in our algorithm
given by F = 1

R , where R is the response time. Each individual in
the population has a different genome γ that represents the charac-
teristic of the individual. In our algorithm, the genome is represented
by the overruling vectors Z and L for every task in the taskset, as
follows: Each b ∈ Z is a single bit representing the decision whether
two regions are to be combined into the same interval. Each g ∈ L
represents the tiling granularity and uses as many bits as required
to express the maximum tiling granularity that results in an interval
smaller than the local memory. This value is implicitly provided by
the compiler during the first epoch, as the intervals are then generated
by the compiler heuristic of selecting the largest possible intervals –
and as already stated, loop intervals that require tiling will always be
represented as a separate interval.

As such, we can represent the parameters L and Z, which describe
each possible interval selection of the task (e.g., all individuals), as a
single binary string, which maps well to GAs. Reusing the exam-
ple from Figure 6.3, example (a) would use four bits to represent
b0, b1, b2, b3, and example (b) would use two bits to represent b4, b5,
as well as the bits required to represent g0. If the maximum legal
value of g0 is 432, an additional 9 bits would be used to represent
base2(g0) = 110110000. Any g not on the form 2n − 1 can express
a tiling granularity that would result in intervals larger than size(λ),
violating Equation 1.1, and we assign these a fitness score of 0 when
caught by the check in the compiler.
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Table 6.1: Benchmarks of different memory complexity.

Complexity
Benchmark Description Compute Memory Shorthand

axpy Vector addition n n AY
gemv Matrix-vector mult. n2 n2 GV
gemm Matrix-matrix mult. n3 n2 GM

jacobi-1d 1D Jacobi stencil n n JA
conv-2d 2D Convolution n2 n2 C2
conv-3d 3D Convolution n3 n3 C3

At the end of each epoch individuals with the worst fitness F are
eliminated, determined by the generation gap parameter G. We use
G = 0.5, meaning 50% of the individuals are eliminated. Following
this, new individuals are generated through two processes: Crossover,
in which the genome of two surviving individuals are combined into
a new individual, and mutation, where a new individual is generated
by randomly changing the genome of an individual [95]. The former
explores solutions close to known good solutions as well as their linear
combinations, and how many individuals are affected is determined
by the crossover rate C. The latter introduces random variance into
the genome by randomly flipping a bit in the genome γ so that the
algorithm is not stuck in a local optimum. How often this occurs is
determined by the mutation rate M .

6.3 Evaluation

We evaluate the performance of PREM tasksets generated by the pro-
posed methodology, showing it is able to improve the PREM interval
selection such that inter-task memory blocking Bmemory is minimized.
We show that reducing the performance of one or more tasks τ ∈ T
can lead to a better overall response time R of the system. We also
show that this requires information that is not available at compile
time, motivating the need for the proposed methodology.

To investigate memory blocking, we use benchmarks of different
compute-to-communication ratios (CCR), which block the memory for
different amounts of time. We initially consider Basic Linear Algebra
Subroutines (BLAS) [97], which are classified according to their CCR,



174 CHAPTER 6. SYSTEM-LEVEL PREM OPTIMIZATION

as shown in the first three rows of Table 6.1: The memory-bound
BLAS1 kernel axpy, the BLAS2 kernel gemv, and the compute-bound
BLAS3 kernel gemm. We refer to these kernels as AY, GV, and GM.

We use the optimizer from Section 6.2.3 and implement over-
ruling vectors in previously presented compilers [32, 36]. Evalua-
tion of PREM schedulers and WCET analyzers is out of scope of
this work, and we use a first-come-first-served (FCFS) schedule and
measurement-based execution times. As the benchmarks are loop-
based, they always execute in a steady-state of repeating fixed sized
intervals under FCFS.

We implement PREM runtime scheduling in a separate process,
which we call the memory arbitrator (MA), on one of the unused
cores. The MA ensures that only a single task executes a memory
phase at a time. At the start of each experiment, the PREM tasks
use a UNIX socket to connect to the MA to set up a shared memory
region shm (not included in measurements). Shared memory is the
fastest inter-process communication in the system2, but still subject
to overheads, as will be shown in Section 6.3.2. Each PREM phase
starts with a handshake with the MA using shm, and only when the
arbitrator gives permission the task executes the phase.

6.3.1 Evaluation Platform and Setup

We evaluate on the NVIDIA TX2 [98] SoC, featuring a 4-core ARM
A57 cluster, each core with a 32 KB private cache, and a 2 MB shared
L2. All cores share the global memory. For our PREM setup, we use
the A57 cores, dimensioning the PREM intervals to stage data through
the private L1. The TX2 runs Ubuntu Linux 16.04, and to avoid OS
scheduling interference, we migrate all processes that are not under
investigation to a single core. As the tasks are mostly sleeping, their
impact on the memory system is negligible.

We execute a PREM task on each of the two remaining cores.
For each task τ executed in the experiments (i.e., an instance of AY,
GV, or GM), we select input sizes such that each task has the same
execution time Rbase. This provides an intuitive measure of how well
the memory blocking time Bmemory is minimized: If we co-run two

2Found using ipc-bench (github.com/goldsborough/ipc-bench).
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Figure 6.4: Execution times of the symmetric and asymmetric sce-
narios.

tasks that in isolation require Rbase time units to finish, the time to
run the two tasks τ0 and τ1 in parallel Rcorun (i.e., the response time of
the taskset) would be the same Rcorun = Rbase time units if the tasks
never block each other. We can then quantify the optimality score
OS of the interval selection as OS = Rbase

Rcorun
. If the tasks never block

each other, we would get OS = 1.0, while complete serialization gives
OS = 0.5. For our experiments we select input sizes such that for each
task Rτbase ≈ 0.8s, and for each taskset Rτ0,τ1base = max(Rτ0base, R

τ1
base).

We use the notation τ0 × τ1 to designate a scenario where τ0 and
τ1 are executed on one core each. We divide the set of scenarios
into two classes: Symmetric scenarios where both tasks execute the
same program but with different genomes, and asymmetric scenarios
where each task executes a different program. These former scenarios
are AY×AY, GV×GV, and GM×GM, and the latter are AY×GV,
AY×GM, and GV×GM. To execute the scenarios, we release both
tasks simultaneously, measuring the time until both have completed,
giving the total response time Rcorun of the scenario.
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6.3.2 Solution space exploration

For each scenario we plot the execution times for the exhaustive explo-
ration of the selection space in Figure 6.4, using the tiling granularity
g of the BLAS kernel loop to represent the selection space of each
task. As the benchmarks are loop-bound, the effect of the interval
overruling parameter L will be most dominant, and we will discuss
the impact of the Z vector in Section 6.3.2. As outlined in Section 6.1,
the compiler heuristics produce the largest intervals possible, repre-
sented by the largest g in each dimension.

The results of the symmetric scenarios AY×AY, GV×GV, and
GM×GM are shown in Figures 6.4a, 6.4b, and 6.4c. They are symmet-
rical around the X = Y plane, which is expected as {τ0, τ1} achieves
the same score as {τ1, τ0} since both tasks are the same. With decreas-
ing loop granularities g, the taskset response time Rcorun generally
increases, as the fixed-size scheduling cost (i.e., S(|Iτ |), see Equa-
tion 1.5) becomes more and more dominant. Note that to increase
readability, we are not plotting configurations whose response time
Rcorun > 2s. However, in AY×AY and GV×GV local minima are
exposed when the tiling granularity gi of τi is a multiple of gj of τj .
As AY has a lower CCR, its intervals are shorter and more sensitive
to this overhead, causing an offset in the minimum. In GM×GM, this
effect is only a plateau, due to the higher CCR causing less memory
contention.

For AY×AY and GV×GV, the maximum interval size compiler
heuristics performs best also under co-scheduling. However, for the
GM×GM, the optimizer found a tiling granularity g = 15 that is more
efficient than the g = 20 selected by the compiler heuristic (maximiz-
ing interval size). As data is reloaded at each PREM interval, the tile
shape at g = 15 causes less inter-interval data reuse, leading to fewer
reloads of data, and better performance.

Furthermore, the CCR impacts the OS, as memory-bound tasks
require memory access for a larger portion of their execution time,
which blocks their co-runner, thus increasing Bmemory. The memory-
bound AY achieves a maximum OS = 0.80

1.12 = 0.71, GV a maximum
OS = 0.83

0.92 = 0.90, and the compute-bound GM a maximum OS =
0.71
0.74 = 0.95.
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Table 6.2: Difference between the best and worst configurations of the
Z vector, in percent of the response time R.

AY×AY GV×GV GM×GM AY×GV AY×GM GV×GM
3.63% 5.93% 6.09% 3.98% 1.70% 2.80%

The results for the asymmetric scenarios AY×GV, AY×GM, and
GV×GM are shown in Figures 6.4d, 6.4e, and 6.4f. These plots have
a much more angular surface due to local optima where an even num-
ber of intervals of τ0 can be executed during an interval of τ1, or
vice versa. In scenarios with GM, the best OS is always achieved
when gGM = 15 (as found before). For the co-running task however,
we see two different effects for AY and GV. The GV×GM scenario
is compute-bound enough to not introduce any significant memory
blocking, and for GV the larger-is-better compiler heuristic leads to
the best optimality score OS = 0.83

0.90 = 0.92. In the AY×GM scenario,
however, Rcorun can be reduced compared to the compiler selected
gAY = 4096 to gAY = 3369. This implies a reduction by the tile size
of ∼ 1/5th, increasing the OS of AY×GM from OS = 0.80

1.35 = 0.59 to
OS = 0.80

0.93 = 0.86, providing a 45% increase in the optimality score.
For AY×GV, reducing the tiling granularity g of both tasks yields

the best result. Reducing the compiler selected gAY = 4096; gGV = 11
to gAY = 3830; gGV = 8 increases the optimality score from OS =
0.80
1.12 = 0.71 to OS = 0.80

1.0 = 0.80. This shows that reduced interval
sizes can reduce the total response time Rcorun, at the cost of task
performance (due to increased S(|Iτ |)), as illustrated in AY×GV: For
the best version under co-scheduling, the per-task execution times
were increased by 1% for AY and 4.2% for GV, due to finer-grained
scheduling. However, this reduces the response time Rcorun of the
co-scheduled taskset by 11%.

Impact of Z overruling vectors

As the AY, GV, GM benchmarks are primarily loop based, the impact
of the loop overruling vectors L are the most dominant. The impact
of the combination overruling vector Z on the total execution time is
presented in Table 6.2. While the impact is relatively small (the Z
vector can only affect the execution time by a few percent), it might
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Figure 6.5: The performance of previously proposed compiler heuris-
tics compared to the best optimized solution.

not be negligible in optimizing a system with tight deadlines Dτ .
Generally for three-phase PREM intervals, the behavior of loop-

based and more sequential programs will be similar, as the L opti-
mization vector can be expanded into the Z vector through unrolling,
as outlined in Section 6.2.2. The impact these intervals have on the
memory blocking time Bmemory is limited by the size of the local
memory size(λ), as all intervals, unrolled or not, must conform to the
requirement of Equation 1.1. Therefore, these results are also repre-
sentative for the impact of the Z vector in non-loop based programs.

However, the PREM model also supports single-phased compat-
ible intervals [24] to execute portions of the code which can not be
transformed by the compiler (e.g., syscalls) as a single memory phase.
These intervals take ownership of the memory system during their
entire execution (retaining the PREM single-core equivalence prop-
erty), affecting Bmemory. As both memory and computation time
contribute to their len(i), it is not limited by size(λ). The Z vec-
tor will start to dominate the L vector as the amount of compatible
intervals with long execution times len(i) increases. As compatible
intervals should be avoided due to their bad behavior on Bmemory,
they are not otherwise covered in this paper.

Performance of Optimizer

To reach the described optima, the GA used the following parameters:
Crossover rate C = 12.5%, mutation rate M = 12.5%, and population
size of N = 100. The GA used a scaling window W = 1 and a
pure selection strategy P . These parameters are chosen based on the
discussion by Grefenstette [95]. We observe rapid convergence: on
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average 91% of the improvement was achieved already in the first
epoch of the GA (worst being 88%). In this setup, 40 epochs take
6.5 hours on the TX2 on average. Within 10 epochs we achieved
results within 3% of the best with only N = 32, which complete in
under an hour. In larger PREM systems, scheduling more than two
tasks will require more time to complete, and an optimization of the
GA parameters and the workstation could be appropriate. However,
we argue that the time to solution is tractable, as the optimizer is
only invoked once. Furthermore, each task within the system can be
developed and tested with short iteration times, and only when all
tasks are final, the proposed methodology is applied.

The presented GA-based optimizer uses only the response time
R as optimization criteria. As shown, this is sufficient to solve the
problem outlined in Section 6.1, and as it is a fundamental output
parameter of any scheduler, it has the additional benefit of working
with any PREM scheduler proposed in the literature. However, with
tighter coupling of the optimizer to the scheduler, a more specialized
optimizer could be possible. As part of our ongoing work we are
exploring the explicit targeting of the intervals i ∈ Iτ that cause
the maximum memory blocking time Bmemory for other tasks τ̄ in
the system. By focusing the optimization on this task τ it might be
possible to reduce the time to solution.

6.3.3 Compiler vs Optimizer

Having determined that 10 epochs with N = 32 gives results close
to the optima, we use these parameters to extend the evaluation to
include three stencil kernels, jacobi-1d (JA), convolution-2d (C2) and
convolution-3d (C3) (as shown in the bottom three rows of Table 6.1)
from the PolyBench suite [73]. These benchmarks are executed in
scenarios with the previously presented BLAS kernels, the results of
which are shown in Figure 6.5. The first six set of bars refer to the
BLAS scenarios described earlier.

The results show that the proposed optimizer can reduce the sce-
nario response times up to 31% over the compiler generated intervals.
Two lessons can be learned from this. First, once intervals are large
enough to dominate the scheduling cost S(|Iτ |), it is more efficient
to optimize for locality rather than maximizing interval size. This
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was shown clearly in the performance gain in the GM kernel in Fig-
ure 6.4c. As it only affects the task τ currently being compiled, is
an optimization that could be implemented with compiler heuristics.
Second, we validate that selecting the maximum PREM interval sizes
can cause significant memory blocking Bmemory, negatively impact-
ing the response time Rτ as shown in in Equation 1.5. By selecting
smaller interval sizes, the interleaving of memory and compute phases
could be improved between the two tasks, as suggested by the moti-
vating example in Figure 6.1, leading to a reduction in the response
time Rcorun in all but two scenarios.

As a rule of thumb, Rcorun improvements are highest in memory
bound scenarios (with large Bmemory) where the CCR are sufficiently
different between the tasks τ0, τ1 to allow effective interleaving. If both
tasks are significantly compute bound, e.g., C3×GM, Bmemory is low,
and there is little to optimize. If both tasks are memory bound but the
CCR similar, e.g., AY×AY, reducing the interval size still causes high
Bmemory. However, for memory bound scenarios where the CCR are
not the same, e.g., AY×GM and JA×AY, scaling the interval sizes
can lead to a large improvement due to better interleaving. These
optimizations strictly depend on the interaction between tasks, and
in contrast to the tiling optimization, there exist no compiler heuristics
that could perform this optimization. Instead the solution can only
be found with our proposed methodology.

6.4 Conclusion

This chapter has explored the impact and trade-offs between per-task
and per-system performance in PREM systems. We have shown that
due to memory serialization effects, selecting a performance-wise sub-
optimal PREM interval configuration for tasks during compilation
can improve the overall system response time. As these optimizations
can not be implemented with compiler heuristics, we propose a novel
methodology that is able to optimize at a system level, by taking the
interactions between tasks into consideration. We have shown that
our methodology can improve the response time of dual-core PREM
execution tasksets by up to 31% without source code changes.
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Conclusion

In this thesis we have presented the first thorough exploration of the
Predictable Execution Model on real systems. From the original pre-
sentation of PREM by Pellizzoni et al [24] – which has received over
200 citations since its publication in 2011 – and forward a vast major-
ity [28, 29, 30, 31, 27, 26] on the work on PREM have been focused on
the scheduling aspect, but very few publications have taken the step
to run PREM-compatible tasks on real platforms. The publications
that make up this thesis [39, 57, 38, 40, 94, 82, 36, 79, 48, 69] account
for a large share of such publications in the scientific literature.

A key enabler in large scale experimentation of any software sys-
tem is the availability of adequate compiler support. The question
of PREM compilation has been thoroughly addressed in Chapter 3,
which has explored which analyses that are required to extract the
necessary information from legacy source code, which limitations that
this imposes on the source code, and how to transform the code to
perform well on a diverse set of platforms. Several interesting engi-
neering questions remain to make the PREM compiler all that it can
be, e.g., by introducing more sophisticated and state of the art al-
gorithms for each individual aspect of the flow. Clear candidates for
such exercises are better tiling algorithms and SPM allocation mecha-
nisms. The pursuit of such engieering effort in these subproblem areas
has been out of scope of this thesis, as the steps to do so are well doc-
umented in other areas of research. In fact, each such subproblem in
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compiler design has a full fledged field of research around it. Instead,
we have shown that the proposed blocks of the compiler are necessary
and sufficient to produce PREM code from real code for real systems.

While the compiler presented in this thesis has been used for most
explorations of PREM on real hardware in the scientific literature,
it is not the only PREM compiler project. In parallel to our efforts
another PREM compiler has been deveoped at the University of Wa-
terloo. This work is to a large extent complementary to the work
presented in this thesis, as it has explored alternative implementa-
tions for SPM allocation [32], interval selection [93], and scheduling
[99]. This increased breadth in the compiler-internal techniques pro-
vides a fertile ground for the next stage of PREM systems research.
Collaborations on such projects are under planning, and promise fur-
ther advancement in this field of research.

From the important work that now lies behind us, we have been
able to establish that the three-interval Predictable Execution Model
approach does indeed fulfill its promises outside of a controlled labo-
ratory simulator setting. In Chapter 2 we performed an initial explo-
ration on the applicability of PREM to heterogeneous systems, one
of the first of its kind – other PREM explorations at the time were
done by Paolo Burgio et al [28] and Capodieci et al [20] – which re-
sulted in the creation of GPUguard. GPUguard showed how PREM
scheduling could be introduced within the limited execution model
of GPUs, without access to event and timer triggered executions, and
extending the control of the PREM scheduler from the CPU OS to the
full heterogeneous system. The lessons drawn from creating PREM-
enabled GPU kernels, in the form of a UAV path planner, provided
the necessary input for the first steps of the compiler implementation.

Following the exploration of PREM compiler techniques in Chap-
ter 3, Chapter 4 explored the impact of the PREM transformations
on co-executing tasks on three different platforms. We showed that
the compiler techniques presented fulfilled the goal of robustness to
interference, and that the produced PREM-enabled versions of the
code in many cases performed better or on-par with their non-PREM
counterparts. For GPU execution we showed that we could achieve
PREM execution in a heterogeneous setting with as little as 1.2%
overhead compared to the non-PREM implementation – a very small
price to pay for robustness to interference. On the CPU, we showed
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that when the PREM code generation presented in Chapter 3 was cou-
pled with PREM schedulers from CTU Prague, we could consistently
produce static PREM schedules of the compiler-produced PREM in-
tervals that had tighter worst-case response times – up to 45% – than
that of legacy approaches, and that the PREM versions never ex-
ceeded the WCET guarantees computed offline. Lastly, we performed
an initial exploration of PREM on PULP, where we determined that
the similarity of the three-phase prefetch-compute-writeback PREM
intervals to the native SPM+DMA execution model was able to au-
tomatically generate code that performed well on the platform, where
traditionally significant manual labor would have been required. In
doing this, we showed that robustness to freedom could be achieved at
or at near-expert programmer performance, with improved portability
of code as a positive side-effect.

In the cases where the performance of the PREM versions of the
programs would not be competitive to their legacy counterparts, we
explored and documented the causes. In particular, we determined
that the size of the local memory in connection with the cost of cross-
device synchronization and the frequency at which such scheduling
can take place is a key determiner in the performance of PREM. Fre-
quent refills of the local memory lead to significant contention not for
the memory system but for mutual exclusive access to the memory
system. We further documented how the unpredictable replacement
policies of caches can negatively impact PREM performance, due to
additional steps required to ensure that no cache misses occur during
the compute phase.

In Chapter 5 we explored these limitations in greater detail, and
showed how they could be lifted or worked around. In particular,
we showed how the overheads due to small local memories and their
frequent refills on GPUs could be worked around by using larger
hardware-managed caches in a predictable way. We determined what
aspects of the cache replacement policy – the non-uniform set eviction
probabilities – that were causing issues with the PREM isolation, and
presented a technique to address this. At the end we could demon-
strate correct PREM execution on hardware caches for kernels which
were previously shown to perform badly on the SPMs – issues that
could be addressed without changing hardware platform using the
presented techniques. Furthermore, we explored the impact of cache
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sizes and associativity with PREM execution on CPUs. On our ex-
perimental system the core private L1 caches, that would have been
ideal from an isolation perspective, were shown to have significant
drawbacks with frequent self-evictions due to low associativity and
size. Again, without having to change platform, we could ensure that
tasks were executing in accordance with the robustness to interference
guarantees by changing to the larger last-level cache, and applying or-
thogonal cache locking (in the form of cache coloring, due to missing
hardware support for locking cache lines) techniques to achieve the
required isolation guarantess.

Finally, in Chapter 6 we showed that the efficient code generation
presented in the previous chapters would not be enough by them-
selves to produce optimal PREM systems – due to the dependency
on the runtime scheduling effects of mutual exclusion of memory
phases. Presented PREM scheduling techniques operate under the
assumption that the PREM intervals are fixed in size, and cannot
be changed, thereby producing suboptimal systems due to unneeded
memory blocking. We proposed a methodology to address this issue,
which makes PREM compiler and PREM scheduler able to exchange
information across their very different domains, and achieve schedules
that were up to 31% better than what the scheduler alone would have
been able to produce.

Summarizing, this thesis has provided the first broad scale explo-
ration of the behavior of PREM on real platforms, enabled by efficient
compiler support. This support has allowed us to identify several
weaknesses and propose solutions.

Several future directions lie open for exploration, including closer
integration with processes within the industry, where techniques such
as PREM would supposedly be applied. A clear example would be
the integration with Domain Specific Modeling Languages (DSMLs)
such as AUTOSAR, which provide their own abstractions for task
scheduling and exchange of data. By integrating the PREM compiler
with a PREM-aware code generator for AUTOSAR systems, PREM
could be made even more attractive in practice.

In the same sprit, the implementation of improved internal com-
piler components – tilers, SPM allocators – would increase the bene-
fits of automatic code generation. An area of high interest for future
engineering endeavors would also be to start lifting some of the restric-
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tions on compiled code that were outlined in Section 3.3, in particular
related to relaxing constraints on non-symbolic expressions for loop
bounds as a prerequisite for tiling and the creation of predictable inter-
vals. This is a requirement that falls just outside otherwise standard
real-time coding guidelines, and would technically be possible to lift,
although it was out of scope for this work.

To conclude, a final direction that would be interesting to explore
in further detail would be to apply the techniques developed as part of
this thesis outside the scope of hard-real time applications. As shown
in the evaluation of PREM on PULP, the techniques developed to
support PREM are closely related to performance optimizations for
memory-bottlenecked systems. As the speed of computation has gone
up, most systems today are bottlenecked by the memory systems, as
data simply cannot be delivered to the processor fast enough. By
applying the techniques outlined in this thesis, the data locality opti-
mizations could be repurposed to increase performance in everything
from soft-realtime embedded systems to distributed high-performance
computing platforms.

The future lies wide open.
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