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Hoc etiam magis haec animum te advertere par est
corpora quae in solis radiis turbare videntur,
quod tales turbae motus quoque materiai
significant clandestinos caecosque subesse.
multa videbis enim plagis ibi percita caecis
commutare viam retroque repulsa reverti
nunc huc nunc illuc in cunctas undique partis.
scilicet hic a principiis est omnibus error.
prima moventur enim per se primordia rerum,
inde ea quae parvo sunt corpora conciliatu
et quasi proxima sunt ad viris principiorum,
ictibus illorum caecis inpulsa cientur,
ipsaque proporro paulo maiora lacessunt.
sic a principiis ascendit motus et exit
paulatim nostros ad sensus, ut moveantur
illa quoque, in solis quae lumine cernere quimus
nec quibus id faciant plagis apparet aperte.

Lucretius, De Rerum Natura, II, 125-141
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Abstract

Molecular simulations have become an important scientific tool with
several applications in physics, chemistry, material science and biol-
ogy. Therefore, the development of more efficient and robust com-
putational methods is of great importance, as any improvement in
this respect can potentially have a positive impact on various open
research fronts. One of the major challenges for molecular simulations
is the sampling of so-called rare events, i.e. microscopic phenomena
occurring on macroscopic time scales. Typical examples of rare events
are phase transitions, chemical reactions, or protein folding. Here we
propose a novel computational technique, called on-the-fly probability
enhanced sampling (OPES) method, which can significantly improve
molecular simulations of such phenomena. The OPES method can
be described as an evolution of another popular enhanced sampling
method, metadynamics, with respect to which it brings both concep-
tual and practical improvements. It goes a long way toward making en-
hanced sampling not only more efficient, but also more robust and eas-
ier to use. Furthermore, OPES unifies in the same approach two tradi-
tionally distinct sampling strategies, namely collective-variable-based
methods and expanded-ensembles methods. We believe that this per-
spective will open interesting new possibilities in the field of enhanced
sampling.

Riassunto

Le simulazioni molecolari sono diventate un importante strumento
scientifico con diverse applicazioni in fisica, chimica, scienza dei mate-
riali e biologia. Pertanto, lo sviluppo di metodi di calcolo più efficienti
e robusti è di grande importanza, in quanto qualsiasi miglioramento
in questo senso può potenzialmente avere un impatto positivo su va-
ri fronti di ricerca aperti. Una delle maggiori sfide per le simulazioni
molecolari è il campionamento dei cosiddetti eventi rari, cioè fenomeni
microscopici che si verificano su scale di tempo macroscopiche. Esem-
pi tipici di eventi rari sono le transizioni di fase, le reazioni chimiche
o il ripiegamento delle proteine. Qui proponiamo una nuova tecnica
di calcolo, chiamata metodo OPES (on-the-fly probability enhanced sam-
pling), che può migliorare significativamente le simulazioni molecolari
di tali fenomeni. OPES si può considerare come l’evoluzione di un al-
tro popolare metodo di campionamento potenziato, la metadinamica,
rispetto a cui apporta miglioramenti sia concettuali che pratici. OPES
ha come obiettivo di rendere il campionamento potenziato non solo più
efficiente, ma anche più robusto e di più facile impiego. Inoltre, OPES
unifica nello stesso approccio due strategie di campionamento tradizio-
nalmente distinte, vale a dire i metodi basati su variabili collettive e
quelli basati su insiemi statistici espansi. Riteniamo che questa prospet-
tiva aprirà nuove interessanti possibilità nel campo del campionamento
potenziato.
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Chapter 1

Introduction

Molecular simulations are playing an ever-increasing role in modern science
and are applied to fields as varied as physics, chemistry, biology, and mate-
rial science. They are used for example to gain insight about the microscopic
mechanisms of complex phenomena and better understand experiments or
guide them, or to accelerate the discovery of new drugs and materials by pre-
screening large databases of possible candidates. Since its early years, molec-
ular simulation had to face two main challenges: the modelling accuracy
and the sampling efficiency. Despite the tremendous progress that computer
simulations have witnessed, both in hardware and algorithms, these two key
challenges are still at the very center of current research and method devel-
opment. During my doctoral studies, I focused on the sampling problem
in molecular simulations and in this thesis I present a novel enhanced sam-
pling method, called on-the-fly probability enhanced sampling (OPES), which
contributes to tackling this issue.

The sampling problem has its roots in the multiscale nature of many phe-
nomena of interest such as phase transitions, protein folding or chemical
reactions, just to name a few. These phenomena, also known as rare events,
present long-lived metastable states separated by kinetic bottlenecks. The
probability of observing one of such rare transitions can be so small that,
when simulating these systems via molecular dynamics or Markov-chain
Monte Carlo, one might need an unfeasible amount of computational time
to sample all the relevant metastable states. In many practical cases most
if not all the simulation is spent in the same free energy basin, and no in-
formation about the actual phenomena is obtained. Over the years, several
different techniques have been developed to try and solve this central issue
in molecular simulations. Among them, we are interested in particular in
the so-called collective variables (CVs) based methods, the first of which was
proposed in the 70s by Torrie and Valleau [1]. Various popular enhanced
sampling methods belong to this category, such as umbrella sampling [2]
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1. Introduction

and metadynamics [3]. These methods typically add to the system a bias
potential that is a function of few CVs and that artificially increases the
probability of observing the rare transitions between metastable states.

These methods can efficiently solve the sampling problem only if a set of few
good CVs is known for the given system. A good collective variable, or reac-
tion coordinate, should encode all the slow modes of the system and express
them as a smooth function of the atomic positions. As a consequence, such
CVs should be able to distinguish all the relevant metastable states as well
as the transition states in between them. Typically, CVs are carefully devised
by trial and error, guided by human insight and expertise, but this process
can be difficult and time-consuming and quickly becomes impractical for
complex systems. For this reason, in recent years much effort has been de-
voted to try to apply machine learning techniques to automatically find such
good CVs. The interested reader can find in Ref. [4] a good (even though
inevitably incomplete) review of this still very active field of research.

With my research I have taken instead a different direction and studied the
way the bias potential can be built, rather than focusing on the identification
of CVs. This choice was motivated by the experience gained by me and
other colleagues in the research group while making use of metadynamics
and the variationally enhanced sampling (VES) method [5]. Although these
methods can be extremely powerful, allowing the study of elusive phenom-
ena, it was clear to us practitioners that they could be further improved. A
first aspect that I wanted to tackle was the slow convergence of the methods
when suboptimal CVs are used, thus when some slow mode is not accel-
erated by biasing. Fewer transitions and hysteresis are clear symptoms of
this suboptimality, and in this scenario the choice of the parameters of the
methods becomes delicate, often requiring a trial-and-error approach. The
outcome of my research has been a novel enhanced sampling method, OPES,
that brings not only an improvement over some of these practical aspects,
but also a different perspective on enhanced sampling. The method inherits
some key characteristics from metadynamics and VES, such as the on-the-
fly optimization of the bias, or the concept of target probability distribution,
which is pushed even further, bringing new insight into what enhanced sam-
pling can be.

This thesis is made as a compilation of four articles that are connected to
the development of the OPES method. The first two articles, Sec. 2.1 and 2.2,
do not directly deal with OPES, but are instead based on the VES method.
They are included in the thesis because they present some of the key ideas
that later have contributed to the formulation of the OPES method, and
thus can guide the reader to better understand the underlying issues and
the tools that are at the heart of the new method. In the last two articles,
Sec. 2.3 and 2.4, the OPES method is formulated and applied to some pro-
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totypical systems that are affected by the sampling problem. The OPES
method is designed to sample different types of target probability distribu-
tions and, while its core elements remain the same, the implementation can
change considerably depending on the chosen target. In the first of these
two articles, similarly to metadynamics, OPES is used to sample uniform
or well-tempered distributions in the CV space and makes use of a kernel
density estimation algorithm. On the contrary, in the last paper we explore
the exciting possibility of using the OPES formalism to perform the same
type of sampling as the popular replica-exchange method[6], thus targeting
expanded ensembles. This last article proves that the perspective introduced
with OPES has been able to bring new insights into the field of enhanced
sampling that go beyond the practical improvements that I was aiming for
at the beginning of my research. Finally, in the concluding chapter of this
thesis I discuss possible future research routes and applications of the OPES
method.

3





Chapter 2

Articles

2.1 Coarse graining from variationally enhanced sam-
pling applied to the Ginzburg–Landau model

This first article is not directly related to the OPES method, however, thanks
to its unusual perspective on enhanced sampling, it touches on some ideas
that were later crucial to develop the method. The goal of this paper is
to show how the variationally enhanced sampling method can be used to
efficiently optimize the parameters of a coarse-graining model, while simul-
taneously improving the sampling of the underlying full-atoms system. We
also explore the use of a nontrivial target distribution and we show that by
using a simple functional to model the free energy (only three free parame-
ters), it becomes possible to greatly increase the number of employed CVs
(up to 364 in the paper). This idea of taking advantage of a specific func-
tional form to express the bias, was later used for developing the expanded
ensemble version of OPES, Sec. 2.4.

My contribution to this article has been implementing the algorithms, per-
forming the simulations, and writing the paper jointly with Valsson and
Prof. Parrinello.

Reference: M. Invernizzi, O. Valsson, and M. Parrinello. “Coarse grain-
ing from variationally enhanced sampling applied to the Ginzburg-Landau
model.” Proceedings of the National Academy of Sciences 114.13 (2017): 3370-
3374. URL https://www.pnas.org/content/114/13/3370

Copyright © 2017 National Academy of Sciences.
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1Department of Physics, ETH Zurich c/o Università della Svizzera italiana, 6900 Lugano,
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Abstract

A powerful way to deal with a complex system is to build a coarse-
grained model capable of catching its main physical features, while be-
ing computationally affordable. Inevitably, such coarse-grained models
introduce a set of phenomenological parameters, which are often not
easily deducible from the underlying atomistic system. We present a
unique approach to the calculation of these parameters, based on the
recently introduced variationally enhanced sampling method. It allows
us to obtain the parameters from atomistic simulations, providing thus
a direct connection between the microscopic and the mesoscopic scale.
The coarse-grained model we consider is that of Ginzburg-Landau,
valid around a second order critical point. In particular we use it to
describe a Lennard-Jones fluid in the region close to the liquid-vapor
critical point. The procedure is general and can be adapted to other
coarse-grained models.

2.1.1 Introduction

Computer simulations of condensed systems based on an atomistic descrip-
tion of matter are playing an ever-increasing role in many fields of science.
Yet, as the complexity of the systems studied increases, so does the aware-
ness that a less detailed, but nevertheless accurate, description of the system
is necessary.

This has been long since recognized, and branches of physics like elastic-
ity or hydrodynamics can be classified in modern terms as coarse-grained
(CG) models of matter. In more recent times, a field theoretical model suit-
able to describe second order phase transitions has been introduced by Lan-
dau [7], and later perfected by Ginzburg [8]. In recent decades a number
of coarse-grained models that aim at describing polymers or biomolecules
have also been proposed [9, 10]. In all these approaches some degrees of free-
dom, deemed not essential to study the phenomenon at hand, are integrated
out and the resulting reduced description contains a number of parameters
which are not easy to be determined.
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2.1. Coarse graining from variationally enhanced sampling

Here we shall use the recently developed variationally enhanced sampling
(VES) method [5] to suggest a procedure that allows the determination of
such parameters, starting from the microscopic Hamiltonian. This will il-
luminate a somewhat unexpected application of VES, which has been intro-
duced as an enhanced sampling method. We shall show that it also provides
a powerful framework for the optimization of CG models, thanks to the com-
bination of its enhanced sampling capabilities and its variational flexibility.
Moreover VES takes advantage of its deep connection with relative entropy,
a quantity that has been shown to play a key role in multiscale problems
[11, 12].

As a first test case for our procedure we shall consider the Ginzburg-Landau
(GL) model for continuous phase transitions. An advantage of using this
model is that its strengths and limits are well known and that other re-
searchers have already attempted to perform such a calculation [13–19]. A
system which undergoes a second order phase transition is described in
the GL model by the following free energy, valid in a rotationally invariant
one-component real order parameter scenario:

F[ψ] = g
∫
|∇ψ(~r)|2 d3r + a

∫
ψ2(~r) d3r + b

∫
ψ4(~r) d3r , (2.1)

where the field ψ(~r) describes the order parameter fluctuations, and g, a and
b are phenomenological quantities that we shall call Landau’s parameters.
To be defined, we shall apply our method close to the liquid-vapor critical
point of a Lennard-Jones fluid.

2.1.2 Variationally Enhanced Sampling

Before discussing our method, we briefly recall some of the ideas at the
basis of VES. The VES method shares with metadynamics [3, 20] the idea
of enhancing the sampling by adding an external bias potential, which is a
function of a few coarse-grained order parameters, so-called collective vari-
ables (CVs). Contrary to metadynamics and other similar methods, VES
does not generate the bias potential by periodically adding on the fly small
contributions, but as the result of the minimization of a convex functional.
Various extensions have been proposed, where VES has been employed in
different ways [21–26].

Let’s suppose that the physical behavior of interest is well described by a set
of CVs s = s(R), that are function of the coordinates R of the N particles
that compose the system. Then one can write the associated free energy
function as F(s) = −(1/β) log

∫
dR δ[s− s(R)] e−βU(R), where β = 1/(kBT)

is the inverse temperature and U(R) is the interparticle potential energy.
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2. Articles

In VES a functional that depends on an externally applied bias V(s) is intro-
duced:

Ω[V] =
1
β

log

∫
ds e−β[F(s)+V(s)]∫

ds e−βF(s)
+
∫

ds p(s)V(s) , (2.2)

where p(s) is a chosen probability distribution, that we will call target dis-
tribution. The functional is convex and for the value of V(s) that minimizes
Ω[V], one has

PV(s) = p(s) , (2.3)

where

PV(s) =
e−β[F(s)+V(s)]∫
ds e−β[F(s)+V(s)]

(2.4)

is the distribution of s in the ensemble biased by V(s). Neglecting immate-
rial constants, Eq. (2.3) can also be written as

F(s) = −V(s)− 1
β

log p(s) . (2.5)

Thus, finding the minimizing bias potential V(s) is equivalent to finding the
free energy F(s).

We notice here that the functional Ω[V] has close connections to the relative
entropy or Kullback-Leibler divergence DKL [27–29], in particular βΩ[V] =
DKL(p‖PV)− DKL(p‖P0). Furthermore, at the minimum we have Ω[V] ≤ 0,
which is a rewrite of the Gibbs-Bogoliubov inequality [30].

In order to minimize Ω[V] we shall express V(s) as a linear function of a
finite set of variational parameters α = {αi}, thus V(s; α). By doing so, our
functional becomes a function of α, that can be minimized using the gradient
and the Hessian

∂Ω(α)

∂αi
=−

〈
∂V(s; α)

∂αi

〉
V(α)

+

〈
∂V(s; α)

∂αi

〉
p

(2.6)

∂2Ω(α)

∂αi∂αj
= β

[〈
∂V(s; α)

∂αi

∂V(s; α)

∂αj

〉
V(α)

−
〈

∂V(s; α)

∂αi

〉
V(α)

〈
∂V(s; α)

∂αj

〉
V(α)

]
, (2.7)

where the averages in the right hand side of the equations are calculated ei-
ther in the biased ensemble 〈·〉V(α), or in the p(s) ensemble 〈·〉p, and second
derivatives in α have been omitted due to the linearity assumption.

Since the forces in Eq. (2.6,2.7) are calculated as statistical averages, a stochas-
tic optimization method [31] is needed. We describe in detail the minimiza-
tion procedure in the Supporting Information (Sec. 2.1.9).
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2.1. Coarse graining from variationally enhanced sampling

2.1.3 Free Energy Model

We consider a Lennard-Jones fluid of N particles confined in a periodically
repeated cubic box of volume V = L3. The order parameter of such a system
is linked to the density ρ(~r) :

ψ(~r) =
ρ(~r)− ρc

ρ0
, (2.8)

where ρ0 = N/V and ρc is the critical density. The order parameter can be
expanded in a discrete Fourier series as:

ψ(~r) = ∑
~k

ei~k·~rψ~k , (2.9)

where ~k = 2π
L ~n, with ~n ∈ Z3. Ginzburg-Landau model implicitly relies

on a characteristic CG length Λ. This is defined by including in the series
expansion, Eq. (2.9), only those wave vectors~k whose modulus is less than
kM = 2π/Λ. We will refer to this as “wave vector cutoff of order nM”, where
nM is an integer such that |~k|2 ≤ k2

M = nM(2π/L)2 for all the included ~k.
Close to Tc the system is dominated by long wavelength fluctuations and
the presence of a cutoff should become physically irrelevant.

We shall consider as collective variables these Fourier components of the
order parameter, s = {ψ~k}|~k|≤kM

. In terms of s the GL free energy can be
rewritten as

F(s) = g IG(s) + a I2(s) + b I4(s) , (2.10)

where the integrals in Eq. (2.1) are rewritten in Fourier space as:

IG(s) = V ∑
|~k|≤kM

k2|ψ~k|
2 (2.11)

I2(s) = V ∑
|~k|≤kM

|ψ~k|
2 (2.12)

I4(s) = V ∑
|~q|≤2kM

∣∣∣∣∣∣ ∑
|~k|≤kM

ψ~k ψ~q−~k

∣∣∣∣∣∣
2

(2.13)

and in the last convolution it is implied that if |~q −~k| > kM then ψ~q−~k =

0. We notice that since the order parameter is a real quantity, its Fourier
transform has the property ψ~k = ψ∗

−~k
. This symmetry property will be used

to reduce the number of independent collective variables. With a cutoff of
order nM = 3 one has 26 CVs, but in our simulations we have dealt with up
to 364 CVs, in the nM = 19 case (see Table 2.1).
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T>Tc

ψ

F(T,ψ)

T=Tc

ψ

F(T,ψ)

T<Tc

ψ

F(T,ψ)

Figure 2.1: A simplified one-dimensional representation of the chosen quadratic target free
energy Ft = −(1/β) log p(s) (green dashed line) and the expected Landau’s free energy (orange
solid line).

2.1.4 Bias Potential and Target Distribution

In order to proceed, we have to choose a variational form for V(s) and intro-
duce a suitable p(s). We shall use for V(s) and p(s) expressions that, when
combined as in Eq. (2.5), lead for F(s) to an expression with the same ana-
lytical structure as the GL free energy, Eq. (2.10). Guided by this principle
we take

V(s) = gV IG(s) + aV I2(s) + bV I4(s) (2.14)

and

p(s) =
e−β[gt IG(s)+at I2(s)]∫
ds e−β[gt IG(s)+at I2(s)]

. (2.15)

These two expressions can be employed in Ω[V], which then can be min-
imized relative to the variational parameters gV , aV and bV . At the min-
imum the estimated F(s) has the desired GL structure, with parameters
g = gt − gV , a = at − aV and b = −bV .

Since V(s) in Eq. (2.14) has only a limited variational flexibility, our estimate
of the free energy F(s) is only approximated. However, given that our V(s)
is based on sound physical considerations, we still expect the F(s) obtained
to be a good approximation.

Using the p(s) in Eq. (2.15) has some advantages. It is a product of uni-
variate Gaussian distributions, so the averages over p(s) that are needed
to minimize Ω[V] (see Eq. 2.6,2.7) can easily be evaluated. And, more im-
portantly, it can be used to guide sampling and accelerate the optimization
convergence.

In order to understand this point we shall refer to Fig. 2.1 that gives an
artist’s impression of a Landau free energy as a function of a one dimen-
sional order parameter as the system crosses the critical temperature Tc. For
T > Tc the order parameter fluctuations are predominantly Gaussian and
the effect of the non-Gaussian quartic term is hidden in the tail of the distri-
bution, as pointed out also by other authors [15, 18]. By using a p(s) that is

10



2.1. Coarse graining from variationally enhanced sampling

broader than the natural Gaussian fluctuations, we can enhance the proba-
bility with which the tails are sampled, thus improving the computation of
the parameter b proportional to the quartic term I4(s).

For T < Tc one enters into the coexistence region, where different problems
arise. The symmetry is broken, and the system spontaneously separates into
two slab-shaped regions of finite but different value of the order parameter.
These two phases, vapor and liquid, correspond to the two minima in the
rightmost curve in Fig. 2.1. By using a p(s) that focuses on the transition
region we can keep the system homogeneous and avoid to a certain extent
some finite-size drawbacks (see Ref. [32]). However, as the temperature is
lowered, the interface between the two phases sharpens up with respect to
the CG length Λ. This situation cannot be described quantitatively by a GL
model which takes into account only long wavelengths fluctuations of the
order parameter. In our simulations there are some clear evidences that the
underlying model is not any longer suited for describing the system. In
fact the convergence in the optimization of Ω[V] slows dramatically, and the
obtained parameters no more follow the expected linear behavior.

The use of a higher wave vector cutoff, and thus a smaller CG length Λ, can
mitigate this issue, but only marginally. In fact there is another important
feature that is not taken into account by this simple model, that is the so
called field-mixing due to the lack of particle-hole symmetry [33], which in-
duces an asymmetry between the two phases at low T. Nevertheless the GL
model we adopted can still give us some relevant information, as shown at
the end of Sec. 2.1.6.

2.1.5 Computational Setup

We choose to simulate an Argon fluid, described by the classical two body
Lennard-Jones potential ϕLJ(r) = 4ε[(σ/r)12− (σ/r)6] truncated and shifted
at Rc = 2.5σ :

ΦLJ(r) =

{
ϕLJ(r)− ϕLJ(Rc) r < Rc

0 r ≥ Rc
(2.16)

This simple system has been intensively studied [32–35] and exhibits in its
phase diagram the needed second order phase transition, at the liquid-vapor
critical point. All the physical quantities in this paper are expressed in terms
of Lennard-Jones reduced units.

We perform canonical (NVT) molecular dynamics simulations at a fixed
average density equal to the critical one, ρc = 0.317 (see Ref. [34]). We are
aware that in a finite size system the critical density is not exactly ρc, but for
our purposes we just need to be close to that value. The temperature T is
kept constant by the velocity rescaling stochastic thermostat [36]. The time
step used is 0.002, and typically we used 107 steps for each run.

11
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Figure 2.2: Landau’s parameters optimized for systems with: (a) N = 128, nM = 3 thus
Λ = 4.267; (b) N = 2048, nM = 3 thus Λ = 10.75; (c) N = 2048, nM = 19 thus Λ = 4.272;
(d) N = 8192, nM = 3 thus Λ = 17.07 . Data at temperatures where convergence was not
clearly reachable are omitted. The linear fits are obtained using only data at T > 0.95 Tc, and
error bars are smaller than the data points.

All the simulations are performed with the molecular dynamics package
GROMACS 5.0.4 [37], patched with a development version of the PLUMED
2 [38] enhance sampling plugin, in which we implemented the VES method
for our specific GL free energy model.

The choice of gt and at, that define p(s) in Eq. (2.15), was based on the
amplitude of the fluctuations observed in the unbiased runs, and on some
trial and error simulations performed on small systems (N = 128, 256). The
value thus obtained were then used as reference for the larger systems. The
adopted values were between 0.05 and 0.2, and generally gt > at.

2.1.6 Results

Ginzburg-Landau model expects the parameter a to have a linear tempera-
ture dependence close to the critical point, thus

a(T) = ac(T − Tc) , (2.17)

while the other two parameters should be constant, g(T) = gc and b(T) =
bc. We run multiple simulations varying both, the size of the system and
the cutoff order, and consequently also the CG length Λ. As noted at the
end of Sec. 2.1.4, depending on the system size and Λ, convergence can
become problematic at low temperatures. Nevertheless we can, somewhat
conservatively, refer only to the region T > 0.95 Tc, where convergence is
safely reached for all the systems studied here. In this region our estimates
are always in qualitative agreement with Landau’s ansatz, as can be seen e.g.
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2.1. Coarse graining from variationally enhanced sampling
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in Fig. 2.2. The temperature dependence of the three parameters can be well
fitted linearly, and all the results obtained are provided in the Supporting
Information (Sec. 2.1.9). Here we only notice that the slope of g(T) and b(T)
is roughly 10 times smaller than the one of a(T). This non-constant behavior
has been reported also in previous literature, for other Landau free energy
models (see e.g. Ref. [15]).

It is possible to define an effective critical temperature T∗c , as the temperature
at which the parameter a(T) becomes zero. This is different from the critical
temperature in the thermodynamic limit, Tc = 1.085 ± 0.005 [34], due to
finite size effects. Contrary to the effective critical temperature that one
could define by looking at the specific heat, T∗c is always greater than Tc, as
noted already in Ref. [13]. In Fig. 2.3 we show our estimate of T∗c /Tc as a
function of both the system size N, and the wave vector cutoff order nM. As
expected, increasing the size at fixed cutoff we have that T∗c approaches Tc.
Maybe less intuitively, when we increase the number of wave vectors, T∗c
moves away from Tc. What we observe is that T∗c is mainly linked to the
coarse-graining length Λ, in fact we find that roughly (T∗c − Tc) ∝ 1/Λ. In
spite of the great variations in the value of T∗c , all our data on a(T) can be
collapsed into a single line when plotted as a function of (T − T∗c )/Tc, see
Fig. 2.4. These are all empirical observations and do not necessarily imply
rigorous scaling laws.

2.1.7 Simulations of the coarse-grained model

Having obtained a coarse-grained description, we can ask to what an ex-
tent the GL model can represent the microscopic properties of the system.
To try and answer this question, we run Monte Carlo simulations, using as

13



2. Articles

−0.1

0.0

0.1

0.2

−0.2 0.0 0.2 0.4

P
a

ra
m

e
te

r 
a

Temperature (T−T*c)/Tc

5

9

13

17

Λ

Figure 2.4: Parameter a, the one proportional to the quadratic term in Eq. (2.10), as a function
of the rescaled temperature (T − T∗c )/Tc. The effective critical temperature T∗c is different for
each system, as shown in Fig. 2.3. Only points with T > 0.95 Tc are plotted.

variables the Fourier components ψ~k and as Hamiltonian the GL free energy.
We define the model at all temperatures by assuming that the parameters de-
pend linearly on T. Despite the limitations of GL model (see end of section
2.1.4), we find that some of the properties of our system are well described
for a wide range of temperatures.

The most remarkable one is maybe the description of the Binder cumulant
[39, 40], a quantity often used to obtain a good estimate of the critical tem-
perature Tc, from finite-size simulations. Using our notation, we can handily
express the Binder cumulant as follows:

U(T) = 1− 〈I4〉
3〈I2〉2

, (2.18)

where 〈·〉 is the ensemble average at temperature T, and I2 and I4 are defined
in Eq. (2.12,2.13) respectively. The important property of Binder cumulant
is that U(Tc) does not depend on the system size, and thus it is possible
to evaluate Tc by looking at the crossing point of the curves obtained with
different N.

The behavior of U(T) for different system sizes is reported in Fig. 2.5, as ob-
tained with unbiased molecular dynamics and Monte Carlo coarse-grained
simulations. Remarkably the CG simulations well reproduce the U(T) curve,
even at T < Tc, and gives an estimate of TC in good agreement with the liter-
ature [34]. To calculate I2 and I4 for this figure we have used a wave vector
cutoff of order nM = 3, but it is important to note that the inclusion of
higher order wave vectors does not change the crossing point, even though
the shape of the curves U(T) may change. This reflects the fact that the
critical behavior is dominated by long wavelength fluctuations.

14
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2.1.8 Conclusions

In this paper we have shown that VES is not only a method for enhanced
sampling, but it provides a formidable tool to approach coarse-graining in
a systematic and rigorous way. It combines the strength of relative entropy
optimization methods with the intriguing ability to orient the sampling to-
wards a desired statistical distribution.

In the present application we treated the case of a second order phase tran-
sition, for which the well established GL theory provided a good CG model.
In other fields of application careful consideration will have to be paid, and
the structure of the CG model might not be easily determinable. However
once this is done, VES provides a way to link rigorously and effectively the
parameters of the coarse-graining model to the microscopic Hamiltonian.
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2.1.9 Supporting Information

Minimization Procedure

The minimization of the VES functional Ω[V], Eq. (2.2), was carried out
following the iterative procedure of Bach and Moulines [31], as described
also in Ref. [5, 21]. In this scheme one considers two distinct sequences of
parameters: the instantaneous α(n) and the averaged ᾱ(n). The instantaneous
sequence is updated using the gradient and the full Hessian, see Eq. (2.6,2.7),
evaluated at the last available average parameter values ᾱ(n):

α
(n+1)
i = α

(n)
i − µ

∂Ω
(

ᾱ(n)
)

∂αi
+ ∑

j

∂2Ω
(

ᾱ(n)
)

∂αi∂αj

(
α
(n)
j − ᾱ

(n)
j

) , (2.19)

where µ is a fixed step size, that we keep on the order of 0.1 in all our sim-
ulations. An important feature of this algorithm is that it does not require
long sampling time for each iteration, in fact we typically estimate the gra-
dient and the Hessian with a stride S = 2000 simulation time steps. We
also implemented a multiple walkers framework [41] to further improve the
sampling, using two independent walkers that share the same bias.

In order to accelerate convergence, we found useful to calculate ᾱ as an
exponentially decaying average, namely

ᾱ
(n+1)
i = ᾱ

(n)
i +

α
(n+1)
i − ᾱ

(n)
i

W
, (2.20)

that is the discretized equivalent of

ᾱi(t) =
∫ t

0
dt′αi(t′)e−(t−t′)/τ . (2.21)

The weight W is linked to the decaying time τ by the relation 1/W = 1−
e−S∆t/τ ≈ S∆t/τ, where ∆t is the simulation time step and S is the stride
between the parameters update. In the runs here reported we aimed at a
τ of about 1/10 of the total simulation length, which amounts at taking
W = 500.

Within reasonable bounds, the precise choice of the parameters µ, S, and τ
do not affect much the rate of convergence of the optimization algorithm. In
fact, we found that the choice of the target distribution parameters, gt and
at, play a more important role in this.

Collective Variables

We report here explicitly the collective variables (CVs) used for our Lennard-
Jones system. We can write the density of the system as a sum of delta
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Table 2.1: Number of independent CVs for a given wave vector cutoff order nM.

nM CVs
3 26
7 80

12 178
16 256
19 364

functions centered in the atom’s positions ~Rj:

ρ(~r) =
N

∑
j

δ(~r− ~Rj) . (2.22)

This is a safe approximation, because the wave vector cutoff will then actu-
ally limit our study to distances greater than Λ. Being the order parameter
ψ(~r) = (ρ(~r)− ρc)/ρ0, its Fourier components ψ~k are

Re(ψ~k) =
1
N

N

∑
j

cos(~k · ~Rj) , (2.23)

Im(ψ~k) = −
1
N

N

∑
j

sin(~k · ~Rj) , (2.24)

it is now easy to notice that ψ~k = ψ∗
−~k

, which halves the number of indepen-
dent Fourier components.

The number of independent CVs is directly related to the cutoff order nM.
For each independent Fourier component ψ~k, we have two independent CVs,
its real and imaginary part. The number of CVs as a function of nM is
reported in Tab. 2.1.

Landau Parameters

We report here the Landau parameters obtained with the variational en-
hanced sampling method, as described in the main text. The parameters
in Tab. 2.2 are obtained with a linear fit of the optimized parameters at tem-
peratures

T = {1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50} . (2.25)

The lowest temperature for the fit is chosen in such a way that a good con-
vergence is ensured at any T even for the bigger systems. Given Ginzburg-
Landau free energy, Eq. (2.10), the fitting parameters are defined as follows:

g(T) = g1T + g0 (2.26)
a(T) = ac(T − T∗c ) (2.27)
b(T) = b1T + b0 . (2.28)

17



2. Articles

Table 2.2: Landau parameters for different systems sizes N and wave vector cutoff orders
nM. We recall that the coarse-grained length is Λ = N1/3/(ρ1/3

0
√

nM) , and that in the
thermodynamic limit the critical temperature is Tc = 1.08(5) .

N nM Λ g1 g0 ac T∗c b1 b0

128 3 4.27 -0.03(3) 0.13(3) 0.46(2) 1.23(6) 0.06(3) -0.00(2)

256 3 5.38 -0.03(3) 0.15(1) 0.46(1) 1.19(4) 0.07(0) -0.02(0)
256 7 3.52 -0.03(2) 0.13(0) 0.46(4) 1.29(7) 0.05(8) 0.00(3)

512 3 6.77 -0.04(4) 0.17(5) 0.45(8) 1.16(8) 0.07(3) -0.02(4)
512 7 4.43 -0.03(4) 0.14(9) 0.46(9) 1.22(8) 0.06(2) -0.00(9)
512 12 3.39 -0.03(3) 0.13(0) 0.46(0) 1.31(4) 0.05(9) -0.00(0)

1024 3 8.53 -0.03(5) 0.17(4) 0.44(4) 1.14(3) 0.05(9) -0.00(9)
1024 7 5.59 -0.04(1) 0.16(9) 0.46(6) 1.18(4) 0.06(8) -0.02(2)
1024 12 4.27 -0.03(4) 0.14(7) 0.46(8) 1.23(8) 0.06(1) -0.00(8)
1024 16 3.70 -0.03(5) 0.14(2) 0.46(8) 1.27(6) 0.06(1) -0.00(3)

2048 3 10.75 -0.04(8) 0.19(4) 0.43(7) 1.12(7) 0.08(2) -0.04(0)
2048 7 7.04 -0.03(3) 0.16(8) 0.45(2) 1.15(4) 0.07(1) -0.03(1)
2048 12 5.38 -0.04(0) 0.16(7) 0.46(7) 1.19(1) 0.06(3) -0.01(6)
2048 16 4.66 -0.03(3) 0.15(3) 0.46(3) 1.21(4) 0.06(7) -0.01(8)
2048 19 4.27 -0.03(2) 0.14(5) 0.46(4) 1.24(0) 0.06(3) -0.01(1)

4096 3 13.55 -0.01(8) 0.15(5) 0.42(9) 1.11(5) 0.06(8) -0.01(8)
4096 7 8.87 -0.03(4) 0.17(6) 0.44(3) 1.13(3) 0.06(9) -0.03(1)
4096 12 6.77 -0.03(3) 0.16(8) 0.45(4) 1.15(6) 0.07(2) -0.03(4)

8192 3 17.07 -0.03(0) 0.16(9) 0.42(3) 1.10(9) 0.07(1) -0.02(1)
8192 7 11.17 -0.02(4) 0.17(0) 0.43(1) 1.12(0) 0.07(1) -0.03(3)

The errors in our estimate of the GL parameters arise from two sources:
the statistical error coming from the stochastic optimization, and the error
provided by the linear fit. The former is significantly smaller than the fit
error.
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2.2 Making the best of a bad situation: a multiscale
approach to free energy calculation

This article, as the previous one, is based on VES and it is not directly con-
nected to the OPES method. However, the paper discusses many of the
key concepts that have been at the center of OPES development. Here we
suggest the idea that the collective variables typically used in applications
are almost always suboptimal and any enhanced sampling method should
take into account the resulting multiscale behavior. For example, we argue
that when dealing with suboptimal CVs, using a quasi-static bias is more
important than having it to precisely reach convergence and fill in all the de-
tails of the free energy surface. Thus the proposed method aims to achieve
as quickly as possible an adiabatic regimen for the bias potential, which
should then be modified only gently, allowing a reweighing procedure not
affected by systematic errors to accurately retrieve the free energy and other
observables. The OPES method adopts this same biasing strategy. Finally
here we write the bias in such a way that it only depends on the free-energy
difference between the basins, and thus the parameter to be optimize is ex-
actly the physical quantity we are mostly interested into, as it will be the
case in OPES when targeting expanded ensembles, Sec. 2.4.

My contribution to this article has been implementing the algorithms, per-
forming the simulations, and writing the paper jointly with Prof. Parrinello.

Reference: M. Invernizzi, and M. Parrinello. “Making the best of a bad sit-
uation: a multiscale approach to free energy calculation.” Journal of chemical
theory and computation 15.4 (2019): 2187-2194. URL https://pubs.acs.org/

doi/10.1021/acs.jctc.9b00032

Copyright © 2019 American Chemical Society.
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Svizzera italiana, 6900 Lugano, Switzerland

Abstract

Many enhanced sampling techniques rely on the identification of a
number of collective variables that describe all the slow modes of the
system. By constructing a bias potential in this reduced space, one
is then able to sample efficiently and reconstruct the free energy land-
scape. In methods such as metadynamics, the quality of these collective
variables plays a key role in convergence efficiency. Unfortunately in
many systems of interest it is not possible to identify an optimal col-
lective variable, and one must deal with the nonideal situation of a
system in which some slow modes are not accelerated. We propose a
two-step approach in which, by taking into account the residual multi-
scale nature of the problem, one is able to significantly speed up con-
vergence. To do so, we combine an exploratory metadynamics run
with an optimization of the free energy difference between metastable
states, based on the recently proposed variationally enhanced sampling
method. This new method is well parallelizable and is especially suited
for complex systems, because of its simplicity and clear underlying
physical picture.

2.2.1 Introduction

Many systems are characterized by metastable states separated by kinetic
bottlenecks. Examples of this class of phenomena are chemical reactions,
first order phase transitions, and protein folding. Calculating the difference
in free energy between these states is of great importance, and various meth-
ods have been developed to reach this goal [42, 43]. In this work, we focus
on the case in which only two states are relevant. The generalization to
a multistate scenario is not too difficult and will be discussed in a future
publication.

In the two-state case one can distinguish two time scales, a shorter one in
which the system undergoes fluctuations while remaining in one of the min-
ima, and a longer one in which the system moves from one minimum to
another. This is the so-called rare event scenario, in which the separation
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between the two time scales can be so large as to be inaccessible to direct
molecular dynamics simulation, preventing a direct calculation of the free
energy surface (FES).

In order to address this issue, a widely used class of free energy methods,
including, among others, umbrella sampling [2], metadynamics [3] (MetaD),
and variationally enhanced sampling [5, 44] (VES), aim at closing this time
scale gap by speeding up the sampling of the slow modes of the system. To
achieve this result, one first identifies a set of order parameters or collective
variables (CVs) that are functions of the atomic coordinates s = s(R). The
CVs describe the slow modes whose sampling is accelerated by means of an
applied bias potential V(s). An optimal CV is such that if employed for an
enhanced simulation run, it closes the time scale gap, so that intrastate and
interstates exploration take place on the same time scale. A more common
scenario is that the CV does not encode some slow modes, and although
much reduced, the gap remains also in the enhanced sampling run. We
shall refer to such CV as suboptimal. The limiting case would be that of a
CV so poorly chosen that the gap falls outside the computational reach. In
this case the CV would be not just suboptimal but also a bad CV. Given the
crucial role of CVs, much effort has been devoted to their design and their
systematic improvement [45–50].

In metadynamics and variationally enhanced sampling the effect of subopti-
mal CVs manifests itself in a hysteretic behavior, easily detectable in the CV
evolution. In these cases MetaD and VES efficiency suffers [20, 51–53]. The
exploration of the system is still enhanced, and the calculation does even-
tually converge [54], but this can require a substantial computational effort
because, even after depositing the bias, some slow modes are present and
the system retains a multiscale nature, with two separate time scales. More
in detail, in this case the shape of the free energy surface in the basins is
easily reconstructed, while their relative height is much harder to converge.

On the basis of this observation, we propose a multiscale approach that
separates the calculation in two steps and aims at improving efficiency in
a suboptimal CV scenario. First we reconstruct separately the free energy
profile of each basin, using MetaD. In a second step we use the properties
of VES to optimize their free energy difference and finally reconstruct the
global FES. The purpose of our approach is to take into consideration the
multiscale nature of a suboptimally enhanced simulation to speed up con-
vergence.

First we shortly present to the unfamiliar reader MetaD and VES, and we
introduce a simple illustrative model that is helpful in visualizing the prob-
lem; then we explain in detail the proposed method. Finally we successfully
apply the new method to some representative systems.
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2.2.2 Metadynamics and Variationally Enhanced Sampling

In this section we recall briefly the main features of the MetaD and VES meth-
ods, both used in our approach. For a more in-depth review see e.g. Ref. [20].
Both methods enhance sampling by building on the fly a bias potential that
is a function of a few collective variables. This bias discourages the system
from remaining trapped in a metastable basin and forces it to explore other
regions. It also provides an estimate of the free energy, which is related to
the probability distribution:

e−βF(s)

Z
= P(s) ∝

∫
dR e−βU(R) δ[s− s(R)] , (2.29)

Z =
∫

dse−βF(s) being the normalization partition function, U(R) the poten-
tial energy, and β = 1/(kBT).

Metadynamics builds its bias as a sum of Gaussian contributions deposited
periodically. In particular we will use its well-tempered variant (WTMetaD)
[55], in which the height of the deposited Gaussian decreases exponentially
as the bias is deposited:

Vn(s) =
n

∑
k=1

G(s, sk)e−β/(γ−1)Vk−1(sk) , (2.30)

where G(s, sk) = We−‖s−sk‖2
is a Gaussian centered in sk, the CVs value at

time tk. Independently from the choice of the Gaussian kernel parameters,
this bias converges in the asymptotic limit to

V(s) = −(1− 1/γ)F(s) + c , (2.31)

where F(s) is the FES and c = c(t) does not depend on s. Once at conver-
gence, the biased ensemble distribution PV(s) ∝ e−β[F(s)+V(s)] is a smoother
version of the unbiased one, i.e.: PV(s) = [P(s)]1/γ. This broadening is
controlled by the bias factor γ, which can go from 1 (unbiased case) up to
infinity (non-well-tempered MetaD).

In the VES method, on the other hand, the bias is obtained as the result of
the minimization of a convex functional:

Ω[V] =
1
β

log

∫
ds e−β[F(s)+V(s)]∫

ds e−βF(s)
+
∫

ds p(s)V(s) , (2.32)

where p(s) is an arbitrary probability distribution called target distribution.
The VES functional is related to the relative entropy, or Kullback-Leibler
divergence [56]. The minimum condition is reached when PV(s) = p(s), a
relation that can also be written as

F(s) = −V(s)− 1
β

log p(s) . (2.33)
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Figure 2.6: 2D free energy surface of the considered model, with the two basins A and B.

It is possible to choose as target distribution the well-tempered one, p(s) =
[P(s)]1/γ. In this case the target has to be self-consistently adjusted as shown
in Ref. [21]. At convergence one obtains the same bias potential as WT-
MetaD.

In order to carry out the minimization of Ω[V], the bias is usually expanded
over an orthogonal basis set V(s) = ∑k αk fk(s), or parametrized according to
some physically motivated FES model [23, 26, 56]. In this way the functional
becomes a function of the variational parameters and can be minimized
using a stochastic gradient descent algorithm as described in Ref. [5].

2.2.3 Illustrative Model

In order to better acquaint the reader with the problem described in the in-
troduction (Sec. 2.2.1), we illustrate the phenomenology associated with the
use of suboptimal CVs in a simple model. The model consists of a single
particle moving with a Langevin dynamics on a 2D potential energy surface
(see Fig. 2.6) with two metastable basins, A and B, such that transitions be-
tween them are rare. This system has only two degrees of freedom, namely
the x and y positions. If we take x as CV and perform a well-tempered
MetaD run (details in the Supporting Information (SI), Sec. 2.2.7), we obtain
the result in Fig. 2.7. The fact that we are missing one degree of freedom can
be seen from the hysteresis apparent in the CV time evolution. In order to
go from one basin to the other, one must wait for a rare y fluctuation, result-
ing in a delay that cannot be enhanced by adding a bias on x. Nevertheless,

23



2. Articles

Figure 2.7: Typical trajectory of a suboptimal CV, obtained via a WTMetaD run (γ = 10).
Hysteresis can clearly be seen (highlighted by the red dashed line), and it is also visible how
WTMetaD slowly reduces it, by depositing less bias as the simulation proceeds. While it is not
possible to draw an horizontal line that separates the two basins, one can easily determine the
basin of belonging for each point by inspecting the CV time evolution.

if we put more bias in one basin we open some higher pathways and tran-
sitions are observed. However, they do not generally follow the lowest free
energy path. This extra bias will also prevent the system from coming back
to the same basin until it is properly compensated as the MetaD simulation
progresses, and this gives rise to hysteresis.

Well-tempering reduces the amount of bias deposited in such a way that
the hysteresis will eventually disappear, and in the asymptotic limit the bias
will converge [54].

If we monitor the time dependence of the bias V(x), we can see how the
shape of the two basins is learned after just the first few transitions and
remains pretty much unchanged throughout the simulation. After this quick
initial phase, the vast majority of the computational effort is used to pin
down the free energy difference ∆F between the two basins.

2.2.4 Method

The observations made earlier suggest a two-step strategy. First one obtains
the shape of the free energy surface in the different metastable basins, then
optimizes the free energy difference between them. We will refer to this
two-step procedure as VES∆F.

Free Energy Surface Model

In a rare event scenario, such as the one discussed in Sec. 2.2.3, there are
by definition distinct metastable basins and it is thus possible to identify
their separate contribution to the global FES. Formally this can be done by
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considering the conditional probability P(s|A), i.e., the probability that the
CVs have value s when the system is in basin A.

P(s|A) ∝
∫

A
dR e−βU(R) δ[s− s(R)] . (2.34)

From P(s|A) one then can write an associated free energy:

e−βFA(s)

ZA
= P(s|A) , (2.35)

where ZA is a normalization constant. With an identical procedure one can
define FB(s|B).

Notice that in general these probabilities are not mutually exclusive and,
especially in the case of suboptimal CVs, there can be an overlapping region
between them (see Fig. 2.7).

The global probability distribution is then obtained simply by combining
these conditional probabilities:

P(s) = P(s|A)PA + P(s|B)PB , (2.36)

and the global free energy (modulo a constant) can thus be written as

F(s) = − 1
β

log

[
e−βFA(s)

ZA
+

e−βFB(s)

ZB
e−β∆F

]
, (2.37)

where the free energy difference between the basins ∆F is defined by

e−β∆F =
PB

PA
=

∫
B dR e−βU(R)∫
A dR e−βU(R)

. (2.38)

One could also write the global FES as a function of ∆Fh, defined as the differ-
ence in height between the two free energy minima. This can be a fairly good
and practical approximation to ∆F, especially if the two basins have similar
shapes. More precisely, well within the typical statistical uncertainty (see SI),
the two quantities differ by a constant that depends only on FA(s) and FB(s).
If the local free energies are shifted so that min[FA(s)] = min[FB(s)] = 0, one
can write

∆Fh = ∆F− 1
β

log
ZA

ZB
, (2.39)

F(s) = − 1
β

log
[
e−βFA(s) + e−βFB(s)e−β∆Fh

]
, (2.40)

with min[F(s)] = 0.
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Step One: Local Basins

There are different ways of calculating the local free energies, FA(s) and
FB(s); here we suggest that a good estimate can be obtained using MetaD.
We do this by accumulating the bias up to the point in which the system
escapes the basin from which the simulation was started. As can be seen,
e.g., in Fig. 2.7, the first recrossing usually happens extremely fast, even if
the CVs are suboptimal. To increase the accuracy, WTMetaD can be used
instead of plain MetaD, and also multiple runs can be combined, starting
from different initial conditions.

With this initial estimate it is important to be able to draw the two local
FES up to the transition region, because this will ensure that they combine
smoothly in Eq. (2.37). Such information is always obtained in the case of
suboptimal CVs, thanks to the typical hysteresis.

In our approach we start N independent simulations from basin A and
stop each simulation as soon as a transition occurs. The bias Vi(s) de-
posited by replica i is then averaged with the others to obtain VA(s) =
1/N ∑i Vi(s) which is used to estimate the local free energy as FA(s) =
−(1− 1/γ)−1VA(s), following the usual MetaD rules. The same is done for
basin B.

A very simple way to automatically stop the simulation at the first recrossing
is to stop it when the CV reaches a threshold value set well beyond the
transition region (e.g., at the center of the other basin), and then cut a small
segment at the end of the trajectory, to make sure that only configurations
from the proper basin are kept. Another option for detecting a recrossing is
to use a descriptor different from the biased CV. The only requirement for
such a descriptor is that it can partition the phase space in two regions, one
for each basins; thus, contrary to a CV, it can be a discontinuous function of
the atomistic coordinates or even a function of past configurations, such as
an exponentially decaying time average, which can greatly improve basins
separation.

In case one has already performed an exploratory MetaD simulation with
multiple transitions between the basins, another possibility for obtaining
FA(s) and FB(s) is to separate the CVs trajectory and build a different
reweighted free energy for each basin.

It should be noted that at this point an extremely precise determination of
the free energy basins is not needed, since a more accurate description can
be obtained later with a reweighting procedure of the longer convergence
run. In our experience, accuracy of the order of kBT in FA(s) and FB(s) does
not slow down the overall convergence.
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Step Two: Free Energy Difference

Once the local basins are obtained we still need to know their relative free en-
ergy difference, ∆F, in order to build the global FES. We use VES to estimate
it.

As target distribution for VES we use the well-tempered one as in Ref. [21],
because it remains controllably close to the physical distribution, while at
the same time enhancing the transition rate. We can then write the bias
potential expansion as a function of a single parameter, ∆F, by combining
Eq. (2.37) and (2.33)

V(s) = (1− 1/γ)
1
β

log

[
e−βFA(s)

ZA
+

e−βFB(s)

ZB
e−β∆F

]
. (2.41)

We can then minimize Ω as a function of ∆F, while updating the estimate
of the target distribution in a self-consistent way.

Given the suboptimal nature of the CVs, it was somehow natural to con-
sider the introduction of a damping factor in the optimization algorithm
commonly used in VES [31]. For this we took inspiration from the AdaGrad
[57] stochastic gradient descent algorithm, generally used for training neu-
ral networks in a sparse reward scenario. Further details can be found in
the Supporting Information (Sec. 2.2.7).

It is relevant to note that during the minimization procedure no extra bias
is added; thus, the system remains in the region of CVs space explored
during step one and does not spend time unnecessarily in high free energy
configurations.

Reweighting Procedure

The reweighting procedure is a key part of the VES∆F method, because (as
we will see) it converges faster than the VES optimization itself and provides
a more accurate estimate of ∆F. For reweighting we employ the scheme
of Ref. [58] and [59], where the unbiased Boltzmann distribution, P(s), is
obtained by sampling the biased one, PV(s):

P(s) =
e−βF(s)

Z
=

ZV

Z
e+βV(s,t) e−β[F(s)+V(s,t)]

ZV
= e−β[V(s,t)−c(t)]PV(s) , (2.42)

where ZV =
∫

ds e−β[F(s)+V(s,t)] and the ratio ZV/Z = e−βc(t) is estimated
by numerical integration on a grid in the CVs space, using F(s) = −(1−
1/γ)−1V(s). This reweighting procedure can be used only in the adiabatic
limit, when the applied bias is quasi-stationary.

When dealing with an optimal CV, a good biasing strategy is to quickly up-
date the estimate of the underlying FES and correct accordingly the applied
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bias. Since the CV incorporates all the relevant slow modes of the system,
this strategy ensures a faster transition rate between the metastable basins
and a faster convergence. However, if the CV is suboptimal, as soon as we
are close enough to a good FES estimate, the bottleneck for making a tran-
sition becomes the unbiased slow mode. In such a scenario, the choice of
rapidly changing the applied bias is no more convenient, as it will only lead
to hysteresis, not to faster convergence. This is one of the reasons why well-
tempered metadynamics outperforms plain metadynamics in many applica-
tions and why the “first fill, then converge” strategy of transition-tempered
metadynamics [60] can be so effective.

In VES∆F we push this strategy even further, and we design the bias opti-
mization in such a way that it quickly reaches a value close to the optimal
one, and from that one we only make gentle adjustments. This allows us to
maximize the time spent in the adiabatic limit, thus improving the reweight-
ing efficiency. As can be seen, e.g., in Fig. 2.9, the result is that the estimate
coming from the reweighting can reach convergence faster than the direct
∆F optimization.

The other aspect that makes reweighting a convenient tool is accuracy. We
do not spend much time in step one; thus the shape of the local basins may
not be very accurate. In principle this can lead to a systematic error in the
estimate of ∆F, since it depends not only on the relative height of the basins,
∆Fh, but also on their shapes, Eq. (2.39). Thus, a safer way of estimating ∆F
is to obtain a reweighted F(s) and to explicitly integrate in the CVs space:

∆F = − 1
β

log

[ ∫
B ds e−βF(s)∫
A ds e−βF(s)

]
. (2.43)

Such an estimate is based on the much longer step-two run and is a very
good approximation provided that the CVs are able to distinguish the two
basins, which is usually the case even for suboptimal CVs. This is why in
the code implementation we prefer to use the FES model of Eq. (2.40), and
to optimize Ω with respect to ∆Fh, and then to use reweighting to estimate
∆F.

2.2.5 Results

The VES∆F method has been implemented in PLUMED [38], an enhanced
sampling plug-in which we used in combination with GROMACS [37] and
LAMMPS [61] molecular dynamics packages. Our code is openly available
online, in the development version of PLUMED (master branch on GitHub),
under the VES module, with the name VES DELTA F. The provided imple-
mentation can deal with multidimensional CVs and more than two FES
basins.
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Figure 2.8: (Left) Local free energies FA(x) and FB(x) in comparison with the model one,
Fmodel(x), obtained by combining them following Eq. (2.40). (Right) Same model free energy in
comparison with the reference one, Fre f (x), that can be obtained via the reweighting procedure.
Parameter ∆Fh is unknown and is calculated during the VES optimization.
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Figure 2.9: Estimate for the illustrative model of Sec. 2.2.3 of ∆Fh along x, obtained directly
from the acting bias and from the reweighting procedure (Sec. 2.2.4), in the case of WTMetaD
and VES∆F. In both methods a bias factor γ = 10 is used. The reference blue stripe is 1 kBT
thick.
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Figure 2.10: Free energy surface of alanine dipeptide in vacuum, as a function of the ϕ and ψ
angles. On the sides is the free energy projected onto each single angle.

First we apply our approach to the case of the simple model of Sec. 2.2.3.
In order to build the local free energy basins we follow step one (Sec. 2.2.4)
and run five independent replicas using WTMetaD with γ = 5 enhancing
x fluctuations. We obtain the FA(x) and FB(x) shown in Fig. 2.8, with a
computational effort that is negligible in comparison to the one needed to
converge the global FES.

We use these local basins to perform step two and optimize the free energy
difference through VES (γ = 10, µ = 0.05). Fig. 2.9 shows an example of
such optimization, compared to a WTMetaD run. We also show the estimate
of ∆Fh obtained with the reweighting procedure.

Both WTMetaD and VES∆F reach relatively quickly a rough estimate of
the ∆Fh between the basins, but while the bias used by the former keeps
oscillating, the latter behaves more smoothly. We believe this is ultimately
the reason why the reweighting converges faster in the case of VES∆F.

Alanine Dipeptide

The alanine dipeptide molecule in vacuum is often used as benchmark for
enhanced sampling methods. At 300 K it presents two main metastable
basins, separated by a kinetic bottleneck. The most stable one, A, includes
two different conformations, C5 and C7eq, that are separated only by a small
barrier. Basin B instead hosts only one metastable conformation, known as
C7ax.
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Figure 2.11: Local free energies obtained for alanine dipeptide. As reference a fully converged
F(ψ) is used. The quantity ∆Fh is unknown at this stage but is used here for displaying purposes.

The typical CVs used for this system are the two Ramachandran angles ϕ
and ψ, Fig. 2.10. The first one, ϕ, is an almost optimal CV, which allows
for very fast convergence (∼ 10 ns) when used in MetaD. Instead ψ is not
only suboptimal, but also a typical example of a bad CV. When biasing ψ,
transitions between the basins are enhanced, but the system remains multi-
scale, with a significant time scale gap between intrabasin and interbasins
fluctuations. In this scenario MetaD presents a strong hysteresis and its con-
vergence is rather slow. For the purpose of showing the strength of our
method, we will pretend here that we do not know of the existence of the ϕ
angle, and we make the unfortunate choice of biasing only ψ.

It is important to recall that while the free energy surface as a function of
ψ is very different from the one relative to ϕ (and thus the minima relative
height ∆Fh is different), the free energy difference, ∆F, between the two
basins does not depend on the CV used, and is the same independently of
the CV representation of the FES, along ψ, ϕ, or both (see SI). This holds true
because all of these CVs can correctly distinguish the relevant metastable
basins.

In order to reconstruct the local free energies, we run 10 independent WT-
MetaD simulations for each basin, terminating them as soon as they make
the first transition. We use a bias factor γ = 10, and other simulation de-
tails can be found in the Supporting Information (Sec. 2.2.7). On average it
takes 0.55 ns to exit the most stable basin A and 0.16 ns to escape basin B.
The combined total simulation time employed for determining FA(ψ) and
FB(ψ) is about 7 ns. This provides a very good estimate, as can be seen
in Fig. 2.11. For the ∆Fh optimization we use a target distribution with a
well-tempered bias factor γ = 10 and a minimization step µ = 0.05. As a
reference, we perform runs of WTMetaD and transition tempered metady-
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namics [60] (TTMetaD), with γ = 10 (see SI). We also perform simulations
with different numbers of multiple walkers [41].

In order to have an estimate of the uncertainty on the calculated ∆Fh, we run
for each of the three methods multiple completely independent runs, always
starting from basin A, but with different initial conditions. We then look at
the average and the standard deviation of these replicas, as a function of
time. Some of the results are shown in Fig. 2.12, and more can be found in
the Supporting Information (Sec. 2.2.7).

On average TTMetaD performs better than plain WTMetaD, while VES∆F is
a great improvement over either method. In particular the VES∆F reweight-
ing is more accurate even in the case of a single walker, where error bars
are large and the optimization is not yet at convergence. MetaD methods
show a systematic shift which is not compatible with the estimates coming
from the bias and disappears when more statistics are collected (the same
happens in Fig. 2.13).

Increasing the number of walkers makes sampling of the neglected slow
degrees of freedom more efficient and improves convergence. Our method,
VES∆F, scales particularly well with the number of multiple walkers.
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Finally we stress the fact that we are not suggesting to purposely pick bad
CVs, because even if our method brings better results when compared to
MetaD, a simulation based on ϕ instead of ψ would still converge with a
computational effort smaller by orders of magnitude.

Sodium

As a last example we study the liquid-solid transition of sodium at 350 K.
It is a first order phase transition, and the stable solid structure is a body
centered cubic (bcc) lattice.

Contrary to the previous case, for this example we use a CV that is one of
the best available to describe the system. We consider a recently developed
CV [62] based on the peaks of the Debye structure factor (see SI, Sec. 2.2.7).
Such a CV is able to clearly identify the liquid and the solid phase, and can
drive transitions between the two. Nevertheless it is not an optimal CV and
has some hysteresis, as can be seen, e.g., in Fig. 3 of Ref. [62].

Although suboptimal, this CV is able in our system to drive the transitions
between liquid and solid avoiding defected states, which might introduce
secondary metastable minima in the FES and affect the estimate of the liquid-
solid ∆F.

Similarly to what was done in the previous case, we first build the local
free energy basins by running five short WTMetaD runs (γ = 20), then use
them to optimize the free energy difference. The target distribution is a well-
tempered one with γ = 20, and the minimization step is µ = 1. In Fig. 2.13
we show the convergence of VES∆F in comparison with WTMetaD. Both
simulations run with four parallel multiple walkers; see SI (Sec. 2.2.7) for
more details.

Also in this less extreme case of a suboptimal CV, VES∆F outperforms the
standard approaches.

2.2.6 Conclusions

In this work we propose a new method, based on a combination of MetaD
and VES, to calculate the free energy difference between two metastable
states. In order to perform such a calculation, MetaD and VES are in princi-
ple very appropriate, especially when used with an optimal CV that is able
to accelerate all the slow modes of the system. In such a scenario the compu-
tational effort needed for convergence is close to that needed for exploring
the FES landscape.

However, in real life applications suboptimal CVs are used, and this makes
it useful to separate the free energy reconstruction into two steps. First we
use MetaD to explore the basins, and then a bespoken version of VES to
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Figure 2.13: Convergence of ∆Fh between liquid and solid for sodium at 350 K, obtained
directly from the acting bias and from the reweighting procedure (Sec. 2.2.4), using WTMetaD
and VES∆F. In both methods bias factor γ = 20 and four multiple walkers were used. The
reference blue stripe is 1 kBT thick.

converge the free energy difference. In doing so, our method focuses on
approaching a quasi-stationary bias, which improves the efficiency of the
reweighting procedure and thus the convergence speed.

In some cases one does not know in advance if the available CV is subopti-
mal or not, and which are the relevant basins of the system under study. A
typical usage scenario would then be to run a first rough non well-tempered
MetaD simulation, aimed at discovering the relevant free energy basins and
the presence (or absence) of hysteresis. If this preliminary run reveals the
presence of a big number of secondary metastable minima, as it can happen
e.g. when dealing with defects in a phase transitions, then VES∆F would
not be the best choice.

We notice that in a suboptimal scenario the VES optimization is crucial, and
the proper ∆F cannot be retrieved via some reweighting technique, such as
weighted histogram analysis (WHAM [63]), applied to the MetaD simula-
tions in the basins. This is because the overlap observed in the CV space is
not actually an overlap in the phase space. This issue would not be solved by
simply adding new biased windows (in an umbrella sampling spirit), since
the hysteresis would still be present [64].

The present method, VES∆F, is to some extent similar to that proposed in
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Ref. [23], but its motivations are different, as are the FES model used and
the strategy to obtain the local basins.

Previous authors have proposed variants to the MetaD algorithm to improve
its convergence rate [55, 60, 65], but none of them connects directly to the
source of the problem, namely, the residual multiscale behavior of subopti-
mal CVs. We think this is a simple but important consideration, and our
approach is meant to fully take into account the multiscale nature of subop-
timal CVs enhanced sampling.

Another important feature is that it is very transparent, having only ∆F as a
parameter to optimize, that is the very physical quantity one is interested in.
It also focuses only on the relevant part of the CV space, avoiding exploring
new regions during the convergence phase. This simplicity can be very
helpful, especially when dealing with complex systems.

Furthermore, VES∆F scales very well in the case of multiple walkers, mak-
ing good use of parallel simulations. For the sake of simplicity we presented
here only the case of one-dimensional CVs and two-minima systems, but the
implementation of VES∆F provided in the publicly available PLUMED code
can already deal with multidimensional CVs and more than two basins. Our
work points to a useful strategy that can be applied also in other circum-
stances and with other methods.
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2.2.7 Supporting Information

Sampling with different CVs

We would like to give a simple example of the different sampling that can
be accomplished by using different kind of collective variables for biasing.
We use alanine dipeptide, and we run three different WTMetaD simulations
(γ = 10) biasing respectively only the “bad” angle ψ, only the “good” angle
ϕ, and both angles. The three simulation require very different time to con-
verge, with the bad angle one requiring more than one order of magnitude
more time, but we show in Fig. 2.14 the same number of points for each
simulation. We used WTMetaD in this example, but the point we want to
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Figure 2.14: Different sampling obtained by employing different CVs for building the bias in
WTMetaD. All simulations are fully at convergence, and only 100000 point are shown for each
one. For a reference free energy see Fig. 5 of main text.

make is not limited to this method, it is a characteristic shared with all CV-
based enhanced sampling techniques. We would obtain the same figure if
we were to use a static bias instead: respectively V(ψ) = −(1− 1/γ)F(ψ),
V(ϕ) = −(1− 1/γ)F(ϕ), and V(ϕ, ψ) = −(1− 1/γ)F(ϕ, ψ).

It can be seen how, when a slow degree of freedom is missing from the bias,
a lot of simulation time is spent in the minima, instead of exploring new
configurations, and some high free energy region are almost never visited.
Despite this, the three simulations all provide the same estimate for ∆F,
when using Eq. (2.43) to calculate it from the reweighting. This is due to the
fact that the contribution from these high free energy regions is extremely
small and can be safely ignored. If instead one is interested not only in
the free energy difference, but on the full FES along a specific CV, a good
strategy would be to directly bias also such CV.

Notes on Eqs. (2.40) and (2.39)

We first define sA and sB as the points where FA and FB respectively are
minimum, thus FA(sA) = 0 and FB(sB) = 0. If A is the most stable basin,
we can then explicitly write ∆Fh = F(sB)− F(sA), where F(s) is the global
FES.

Eqs. (2.40) and (2.39) of the main text are strictly true only in the limit of

FA(sB)→ ∞ and FB(sA)→ ∞ . (2.44)

Outside of this limit, Eq. (2.40) holds true if we substitute ∆Fh with another
quantity, that we call ∆F′h. The exact relation between these quantities is the
following:

∆Fh = ∆F′h −
1
β

log

[
1 + e−β(FB(sA)−∆F′h)

1 + e−β(FA(sB)+∆F′h)

]
. (2.45)
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Also, if condition (2.44) does not hold, we have

min[F(s)] = F(sA) = −
1
β

log
[
1 + e−β(FB(sA)−∆F′h)

]
, (2.46)

which in general is non-zero. A similar correction can be found also for
Eq. (2.39).

In VES∆F we use approximate estimates for the local basins and condition
(2.44) cannot formally be fulfilled, but from a practical point of view this
does not constitute a problem. In fact, the difference between ∆F′h and ∆Fh is
typically some order of magnitude smaller than the uncertainty of the free
energy calculation. For the sodium and the model system examples, this
discrepancy stays well below 10−5 kBT, while for alanine dipeptide, where
the employed CV is quite bad at distinguishing the two basins, it stays below
0.1 kBT.

It is important to remember that this approximation does not affect in any
way the ∆F or ∆Fh calculated through the reweighting procedure (as in
Fig. (2.12) of main text).

Optimization algorithm

The optimization algorithm used in the second step of VES∆F, is a novel
combination of the optimization algorithm commonly used in VES [5, 31]
and AdaGrad [57] stochastic gradient descent algorithm.

In the present paper we only consider the case of two basins, thus we deal
with one optimization parameter ∆F (or ∆Fh, depending on the chosen nor-
malization). Here however we present a more general version of the opti-
mization algorithm, using a multidimensional vector of parameters α.

Following Ref. [5], we write gradient and Hessian of the VES functional:

∂Ω(α)

∂αi
= −

〈
∂V(s; α)

∂αi

〉
V(α)

+

〈
∂V(s; α)

∂αi

〉
p

, (2.47)

∂2Ω(α)

∂αi∂αj
=β

[〈
∂V(s; α)

∂αi

∂V(s; α)

∂αj

〉
V(α)

−
〈

∂V(s; α)

∂αi

〉
V(α)

〈
∂V(s; α)

∂αj

〉
V(α)

]
+

−
〈

∂2V(s; α)

∂αi∂αj

〉
V(α)

+

〈
∂2V(s; α)

∂αi∂αj

〉
p

, (2.48)

where the averages are calculated either in the biased ensemble 〈·〉V(α) (by
running the molecular dynamics), or in the target p(s) ensemble 〈·〉p (by
explicit integration on a grid).
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We make use of a second set of auxiliary parameters for updating the main
one. At each iteration n, we have some auxiliary instantaneous iterate α(n),
while the actual parameters are obtained as their averages

ᾱ(n) =
1

n + 1

n

∑
k=0

α(k) . (2.49)

Gradient and Hessian are always evaluated using this set of averaged pa-
rameters.

We use the above gradient and Hessian, Eq. (2.47) and (2.48), to define an
effective gradient g(n):

g(n)i =
∂Ω
(

ᾱ(n)
)

∂αi
+ ∑

j

∂2Ω
(

ᾱ(n)
)

∂αi∂αj

(
α
(n)
j − ᾱ

(n)
j

)
. (2.50)

In the spirit of the AdaGrad algorithm, we then introduce an history depen-
dent damping factor d(n):

d(n)i =

√[
d(n−1)

i

]2
+
[

g(n)i

]2
. (2.51)

We can now write the update rule for the auxiliary parameters:

α
(n+1)
i = α

(n)
i −

µ

d(n)i

g(n)i , (2.52)

where µ is a fixed optimization hyperparameter. The standard VES opti-
mization algorithm is retrieved if we set d(n)i = 1 for each i and n.

Hyperparameters choice The hyperparameters the user needs to set in
VES∆F are essentially three:

• the bias factor for the target distribution, γ

• the update stride for the parameters, during which the ensemble aver-
ages are estimated

• the optimization step µ

For the choice of the bias factor we use criteria similar to those employed
for well-tempered VES [21] and WTMetaD [55], the main difference being
that our method is less sensitive to the choice of γ. In particular, contrary
to what happens in WTMetaD, the value of γ does not have a direct impact
on the speed at which bias is added, allowing for more flexibility. A similar
effect is obtained also in globally tempered MetaD [54].
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We chose an update stride of 1 ps that is a typical value for both MetaD and
standard VES.

The choice of the optimization step µ is in our experience the most crucial,
but it was not a hard one. We did not try systematically to optimize this
choice, since there is a reasonable range of “good” values. We did notice,
though, that an extreme choice of this hyperparamer can make convergence
terribly slow. In the systems studied here, we noticed that the choice of µ
had a direct impact on the speed at which the parameter α (thus ∆F or ∆Fh)
grows, independently of other factors like γ and the number of multiple
walkers. As an empirical rule at the beginning of the optimization, before
any transition has taken place, we have α(t) ≈ 1.2µ

√
t. Further investigation

is needed in order to provide a simple rule of thumb for the choice of µ.

Illustrative model

To run the illustrative model considered in Sec. 3 of the main text we use
a simple molecular dynamics code implemented in PLUMED [38] (version
2.4 or higher), called ves md linearexpansion. We used the default parame-
ters for the simulation (tstep=0.005, temperature=1, friction=10) and the
Wolfe-Quapp potential,

U(x, y) = x4 + y4 − 2 x2 − 4 y2 + xy + 0.3 x + 0.1 y , (2.53)

which we rotated of an angle θ = −0.15π by rotating the coordinates, thus:

x → x cos θ − y sin θ

y→ x sin θ + y cos θ
(2.54)

The resulting potential is:

U(x, y) =1.34549 x4 + 1.90211 x3y + 3.92705 x2y2

− 6.44246 x2 − 1.90211 xy3 + 5.58721 xy + 1.33481 x

+ 1.34549 y4 − 5.55754 y2 + 0.904586 y + 18.5598 , (2.55)

where the last shift term is added just to put the minimum at zero.

For the MetaD simulations we always use the following parameters: PACE=500,
HEIGHT=1.2, SIGMA=0.35, BIASFACTOR=10, and store the bias on a grid of
GRID BIN=300, GRID MIN=-3, GRID MAX=3. The local free energy basins ob-
tained for VES∆F are stored on the same kind of grid, and required a total
combined number of 2.11× 106 simulation steps. The parameters used for
the VES optimization are: AV STRIDE=500, M STEP=0.05, BIASFACTOR=10.
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Alanine dipeptide

For the Alanine dipeptide simulations we use GROMACS [37] patched with
PLUMED. The setup is the same of Ref. [5], namely: NVT simulation in
a vacuum, Amber99-SB [66] force field, time step 2 fs, temperature 300 K,
velocity rescaling termostat [36].

The MetaD simulations use the following parameters: PACE=500, HEIGHT=1.2,
SIGMA=0.35, BIASFACTOR=10, and store the bias on a grid of GRID BIN=100,
GRID MIN=-pi, GRID MAX=pi. For the TTMetaD the same parameters are
used, plus TTBIASFACTOR=10, TRANSITIONWELL0=0.8, TRANSITIONWELL1=2.7.
The local free energy basins obtained for VES∆F are stored on the same kind
of grid, and required a total combined simulation time of 7.10 ns. The pa-
rameters used for the VES optimization are: AV STRIDE=500, M STEP=0.05,
BIASFACTOR=10.

Results We show here more in detail some of the results from our alanine
dipeptide simulations. We performed a set of calculations with different
number of walkers, comparing WTMetaD, TTMetaD and VES∆F methods.
Each calculation is repeated 10 times to gauge the error. All replicas and
walkers start from basin A with different initial conditions and random seed.
The same initial configurations are used for the three methods.

We notice how in this case TTMetaD converges better than WTMetaD. It can
be seen how VES∆F convergence is smoother than MetaD, and gains more
from the reweighting procedure.

Finally, as noticed in the main text, increasing the number of walkers allows
for a better sampling of the unbiased slow degree of freedom, and thus
ameliorates convergence. This is typical of suboptimal CVs, whereas if an
optimal CV is used one soon reaches a plateau in sampling efficiency when
increasing the number of multiple walkers.

Sodium

For the sodium simulations we use LAMMPS [61] patched with PLUMED.
An embedded atom model (EAM) is used as interatomic potential [67],
molecular dynamics time step is 2 fs, and temperature 350 K. We use the
stochastic velocity rescaling thermostat [36] (0.1 ps relaxation time) and an
isotropic Parrinello-Rahman barostat [68] (1 ps relaxation time). The system
size is 250 atoms.

The Debye structure factor CV we used is implemented in a development
version of PLUMED, but it is openly available upon request and we plan
to make it public in the near future. This collective variable is extensively
described in Ref. [62]. We consider the first structure factor peak of the
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Figure 2.15: Comparison between alanine ∆Fh convergence for 10 replicas using WTMetaD,
TTMetaD and VES∆F, with 1, 4 and 16 multiple walkers (γ = 10). The ∆Fh is estimated
directly from the bias applied, via the relation F(s) = −(1− 1/γ)−1V(s). The reference blue
stripe is 1 kBT thick.

bcc solid, at a scattering frequency Q = 2.070595 Å−1 and with a cutoff
Rc = 10.5 Å.

For the MetaD simulations we use the following parameters: PACE=500,
HEIGHT=10, SIGMA=0.2, BIASFACTOR=20, and store the bias on a grid of GRID BIN=200,
GRID MIN=1, GRID MAX=3. The local free energy basins obtained for VES∆F
are stored on the same kind of grid, and required a total combined simu-
lation time of 6.75 ns. The parameters used for the VES optimization are:
AV STRIDE=500, M STEP=1, BIASFACTOR=20. In both cases we used 4 walkers,
all initialized in different random configurations inside basin A, obtained
from an unbiased run. The reference ∆Fh value was obtained from a longer
WTMetaD 10 walkers run.
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Figure 2.16: Comparison between alanine ∆Fh convergence for 10 replicas using WTMetaD,
TTMetaD and VES∆F, with 1, 4 and 16 multiple walkers (γ = 10). The ∆Fh is estimated
throug the reweighting procedure described in the main text. In the case of MetaD we must
exclude from the reweighting an initial transient, in which the system is out of equilibrium and
the estimate of c(t) is unreliable. The reference blue stripe is 1 kBT thick.
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2.3 Rethinking metadynamics: from bias potentials to
probability distributions

This is the article that first presents the OPES method. Here it is used to
sample the well-tempered target distribution, the same typically sampled by
metadynamics. When targeting this kind of distributions, the OPES method
needs to build an explicit estimate of the marginal probability along the cho-
sen CVs. To do so, we use a weighted kernel density estimator together with
a kernel compression algorithm that allows us to quickly build a coarse es-
timate and then only adiabatically adjust the finer details of the probability
distribution. Another peculiar feature we introduce is a normalization fac-
tor with respect to the explored CV space that significantly speeds up the
discovery of new metastable states, especially in case of multidimensional
CVs. Following a common practice, the new enhanced sampling method is
tested on the alanine dipeptide molecule using as CVs the torsional angles.
However, the advantages of the OPES method become more evident in the
more realistic case of suboptimal collective variables. The interested reader
can find in Refs. [69–71] applications of OPES to other systems.

My contribution to this article has been implementing the algorithms, per-
forming the simulations, and writing the paper jointly with Prof. Parrinello.

Reference: M. Invernizzi, and M. Parrinello. “Rethinking Metadynamics:
From Bias Potentials to Probability Distributions.” The Journal of Physical
Chemistry Letters 11.7 (2020): 2731-2736. URL https://pubs.acs.org/doi/

10.1021/acs.jpclett.0c00497

Copyright © 2020 American Chemical Society.
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Abstract

Metadynamics is an enhanced sampling method of great popularity,
based on the on-the-fly construction of a bias potential that is a func-
tion of a selected number of collective variables. We propose here a
change in perspective that shifts the focus from the bias to the proba-
bility distribution reconstruction while retaining some of the key char-
acteristics of metadynamics, such as flexible on-the-fly adjustments to
the free-energy estimate. The result is an enhanced sampling method
that presents a drastic improvement in convergence speed, especially
when dealing with suboptimal and/or multidimensional sets of collec-
tive variables. The method is especially robust and easy to use and
in fact requires only a few simple parameters to be set, and it has a
straightforward reweighting scheme to recover the statistics of the un-
biased ensemble. Furthermore, it gives more control of the desired
exploration of the phase space since the deposited bias is not allowed
to grow indefinitely and it does not push the simulation to uninterest-
ing high free-energy regions. We demonstrate the performance of the
method in a number of representative examples.

Enhanced sampling plays a crucial role in modern simulation techniques
and is a very active area of research [72]. Of particular historical importance
has been the work of Torrie and Valleau [2]. They consider a system with an
interaction potential U(R), where R denotes the atomic coordinates. Sam-
pling is accelerated by adding a bias potential V(s) that depends on R via
a set of collective variables (CVs), s = s(R). The CVs are chosen so as to
describe the modes of the system that are more difficult to sample. The
choice of a proper set of CVs is critical because it determines the efficiency
of the method. The properties of the unbiased system are then calculated
by using a reweighting procedure. In fact, the unbiased probability density
P(s) = 〈δ[s− s(R)]〉 ∝

∫
dR e−βU(R)δ[s− s(R)] can be written as an average

over the biased ensemble

P(s) =
〈δ[s− s(R)]eβV(s)〉V

〈eβV(s)〉V
, (2.56)
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where β is the inverse temperature. In this way, it is also possible to recon-
struct the free-energy surface (FES), defined as F(s) = − 1

β log P(s).

Since the work of Torrie and Valleau, a large number of CV-based enhanced
sampling methods have been proposed. Among them is metadynamics
[3, 55] (MetaD), which builds the bias V(s) by adding at fixed intervals
repulsive Gaussians centered at the instantaneous point sampled. At the
nth iteration, the bias is given by

Vn(s) =
n

∑
k

e−βVk−1(sk)/(γ−1) G(s, sk) , (2.57)

where the parameter γ > 1 is called the bias factor, and the Gaussian func-
tion is defined as G(s, s′) = h exp

[
− 1

2 (s− s′)TΣ−1(s− s′)
]
, with height h

and variance Σ set by the user. Typically only diagonal variances Σij = σ2
i δij

are employed, but more general choices have also been suggested [65]. It has
been proven [54] that at convergence there is a simple relationship between
the bias and the free energy, V(s) = −(1− 1/γ)F(s), and the sampled en-
semble is a smoothed version of the unbiased one, with FES barriers lowered
by a factor of γ.

Arguably, a major developments of MetaD has been its well-tempered vari-
ant [55]. With only a simple change to the original MetaD equations, it
brought about many improvements, especially regarding the following points.
(1) By damping the bias oscillations, it allows for better handling of subop-
timal CVs, that is, CVs that do not include all of the slow modes of the
system. This is a crucial issue since finding a good CV for a complex system
is nontrivial, and even a good CV is usually suboptimal [52]. (2) It opens
up the possibility of performing reweighting, which is a fundamental aspect
of any enhanced sampling method, since it allows the retrieval of unbiased
statistics of any quantity of interest. (3) It gives more control over the re-
gions explored since the bias does not push the system to extremely high
free-energy regions. (4) Thanks to this property, it also improves the han-
dling of multiple CVs by reducing the volume of CV space that is sampled
at convergence.

Despite the success of MetaD, there is certainly room for further improve-
ment. In fact, over the years many new MetaD variants have been pro-
posed, which put particular emphasis on one of the above-mentioned issues
[41, 50, 60, 65, 73, 74]. Particular attention has been paid to reweighting, and
many different solutions have also been proposed in recent years [58, 65, 75–
79]. With this letter, we want to take a step back and propose a new per-
spective on MetaD in order to provide a general improvement to all of these
issues, as has been the case for well-tempered MetaD.

We start from the observation that in the case of suboptimal CVs, the FES
estimate obtained via reweighting can converge faster than the bias itself
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[80]. In particular, it is more robust and does not present the strong oscil-
lations typical of MetaD. Furthermore, a more static bias can help with the
reweighting procedure itself, giving rise to a positive feedback loop. Thus,
we develop a method that is based on the reconstruction of the probability
distribution via reweighting and uses this estimate to define the bias poten-
tial rather than directly building it as in Eq. (2.57).

Enhanced sampling based on the probability reconstruction is not a new
idea. It was first proposed in the adaptive umbrella sampling method [81]
and later by many others [82–84]. Typically, in such methods the bias at nth
iteration is defined as

Vn(s) =
1
β

log P̂n(s) , (2.58)

where P̂n(s) is an estimate of the probability obtained via a weighted his-
togram or some more elaborate method [82] and is updated iteratively or
on the fly [83]. In building our method, we will introduce few key differ-
ences that come from the long experience with MetaD, which allow us to
overcome some of the limitations of previous probability-based methods.

First, we explicitly introduce a target distribution ptg(s) that will be sam-
pled once the method reaches convergence. This can be obtained with the
following bias:

V(s) =
1
β

log
P(s)

ptg(s)
. (2.59)

In adaptive umbrella sampling, the target distribution is uniform, ptg(s) ∝ 1,
while in MetaD, it is the well-tempered distribution, ptg(s) ∝ [P(s)]1/γ. It
is possible to modify MetaD in order to reach any arbitrary target [74], and
in general the concept of a target distribution has proven to be very useful,
especially in the context of variationally enhanced sampling [5, 21, 24, 56, 85,
86]. In the present work, we will limit ourselves to a well-tempered target
(or a flat target in the γ→ ∞ limit), leaving other interesting possibilities for
future work. We notice here that a well-tempered target leads to more effi-
cient importance sampling compared to the common choice of a flat target,
and despite lowering the FES barriers by γ instead of flattening them, it gen-
erally does not give rise to a slower transition rate between the metastable
states. In fact, in most applications suboptimal CVs are employed and the
transition rate is limited by the slow modes not accelerated by V(s) rather
than by the small FES barriers left along s (Supporting Information - SI,
Sec. 2.3.1) [80].

Since we can express the target distribution as a function of the unbiased
one, ptg(s) ∝ [P(s)]1/γ, we only need to estimate P(s) via reweighting in
order to calculate the bias. We build our probability distribution estimate
on the fly by periodically depositing Gaussians, similarly to how MetaD
builds the bias potential. This is indeed a common way of reconstructing a
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probability, known as kernel density estimation (KDE), and we shall draw
from the vast literature on the subject [87]. Each new Gaussian is weighted
according to the previously deposited bias potential

P̃n(s) =
∑n

k wkG(s, sk)

∑n
k wk

, (2.60)

where the weights wk are given by wk = eβVk−1(sk).

We write the estimator in Eq. (2.60) with a tilde, P̃n(s), to indicate that it
is not properly normalized, and we will take care of the normalization sep-
arately. G(s, sk) represents Gaussians such as those defined previously for

MetaD, with diagonal variance Σij = σ2
i δij and fixed height h = ∏i

(
σi
√

2π
)−1

.
Contrary to MetaD, here the height of the Gaussians is not a free parameter,
and changing it simply corresponds to changing the overall normalization.

It has been shown [87] that in KDE the most relevant parameter is the band-
width (i.e. the width of the Gaussians). A good choice of the bandwidth
should depend on the amount of available data: the larger the sampling,
the smaller the bandwidth. Thus, we choose to shrink the bandwidth as
the simulation proceeds according to the popular Silverman’s rule of thumb
[87]. At the nth iteration

σ
(n)
i = σ

(0)
i [N(n)

eff (d + 2)/4]−1/(d+4) , (2.61)

where σ
(0)
i is the initial standard deviation estimated from a short unbiased

simulation, d is the dimensionality of the CV space, and N(n)
eff = (∑n

k wk)
2 / ∑n

k w2
k

is the effective sample size [88]. The KDE literature presents many other
promising alternatives for the bandwidth selection, but we leave their study
to future investigation.

The number of kernels accumulated during the simulation quickly becomes
very large, and summing all of them at each time step is prohibitive. To
avoid this problem, we adapt to our needs a simple on-the-fly kernel com-
pression algorithm [89] that allows the insertion of new kernels only in
newly explored regions and otherwise merges them with existing ones. In
the Supporting Information (Sec. 2.3.1), we discuss this choice in detail, and
we show the advantages over the more common approach of storing the bias
on a grid [38].

In Figure 2.17 we show how the FES estimate evolves during a typical sim-
ulation with our new method. Our choice of the probability estimator aims
at quickly obtaining a coarse representation of the FES and then slowly con-
verging the finer details, and it is one of the key novelties of our method.

We can now discuss the normalization problem. Any constant overall nor-
malization of the probability estimate P̃n(s) would simply result in a global
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Figure 2.17: Time evolution of a typical OPES simulation of alanine dipeptide in vacuum, using
as CVs the dihedral angles ϕ and ψ. In the top row, the compressed kernels forming P̃n(ϕ, ψ) are
shown, with the point size indicating the bandwidth, while in the bottom one is the corresponding
free-energy estimate Fn(ϕ, ψ) = − 1

β log P̃n(ϕ, ψ), shifted to have a zero minimum. See the SI

(Sec. 2.3.1) for the computational details and a performance comparison with MetaD.

shift of the bias and thus would not have any influence over the simulation.
However, P̃n(s) should be normalized not with respect to the full CV space
but only over the CV space actually explored up to step n, which we call Ωn.
Thus, we introduce the normalization factor

Zn =
1
|Ωn|

∫
Ωn

P̃n(s) ds , (2.62)

that will change over time as the system explores new regions of the CV
space, and it will have an impact on the biasing scheme. This impact be-
comes particularly relevant in CV spaces of dimension d � 1 since the vol-
ume explored |Ωn| grows with a power of d. Adding such a normalization,
together with the chosen probability estimator, helps us overcome the lim-
itations in exploration speed that have affected some previously proposed
on-the-fly probability-based methods [90]. To estimate Zn, we take advan-
tage of our compressed kernels representation and substitute the integral
in Eq. (2.62) with a sum over the positions of the compressed kernels (SI,
Sec. 2.3.1).
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Finally, we can explicitly write the bias at the nth step as

Vn(s) = (1− 1/γ)
1
β

log
(

P̃n(s)
Zn

+ ε

)
, (2.63)

where ε� 1 can be seen as a regularization term that ensures that the argu-
ment of the logarithm is always greater than zero. We notice that the addi-
tion of this term is not merely a technicality to solve a numerical issue but
rather it allows one to set a limit on the bias, thus providing better control
over the desired exploration. It can be chosen to be ε = e−β∆E/(1−1/γ), where
∆E is the height of the free-energy barriers one wishes to overcome during
the enhanced sampling (SI, Sec. 2.3.1). We could have obtained the same
effect of controlling the exploration by properly modifying the target distri-
bution ptg(s), but we believe that introducing ε as a separate term makes for
cleaner equations. By comparing Eqs. (2.63) and (2.58) it should be clear that
our method distinguishes itself from previous adaptive umbrella sampling
methods not only for the employed probability estimator but also for some
other novel key components.

An important feature of our method is that it allows for a simple and
straightforward reweighting scheme. In fact, reweighting can be performed
in the usual umbrella sampling way [Eq. (2.56)] without the need for further
postprocessing analysis. The method has a rapid initial exploration phase,
after which a quasi-static regime is reached, but it is by construction ro-
bust with respect to the initial nonadiabatic part of the trajectory so that the
reweighting can in practice be performed without cropping out the initial
transient (SI, Sec. 2.3.1).

We implemented the new method, called on-the-fly probability enhanced
sampling (OPES), in the enhanced sampling library PLUMED [38] and tested
it on a variety of different systems. Here we provide only a quick overview
of these tests, but the full results are presented in detail in the Supporting
Information (Sec. 2.3.1). The code and all of the files needed to reproduce
the simulations are openly available on the PLUMED-NEST website [91] as
plumID:19.068 .

A full comparison of different enhanced sampling methods is a nontrivial
task and is not the goal of the present letter. However, in order to give
a better idea of our method, we compare it with standard well-tempered
metadynamics whose performances might already be familiar to many read-
ers.

We want to test the methods in an agnostic fashion, using very standard
input parameters rather than running multiple different simulations and
choosing the best-performing ones. One strength of OPES is that it is very
simple to set up and needs just three main parameters: the pace at which
the bias is updated, the initial bandwidth of the Gaussian kernels, and the
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Figure 2.18: Potential energy of the suboptimal double-well 2D model system and its free energy
along the x coordinate.
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Figure 2.19: Typical time evolution of the free-energy difference between the two basins of the
model in Figure 2.18. We run the same simulation with 100 different initial conditions, and in
the SI (Sec. 2.3.1) we show the average and uncertainty obtained from these estimates. The
reference blue stripe is 1kBT thick.

approximate height of the barriers one wishes to cross. In our tests, we al-
ways keep the deposition pace equal to the one used in MetaD, typically
500 simulation steps. The initial bandwidth is simply chosen to be equal
to the smaller standard deviation of the CVs in the minima, which can be
measured in a short unbiased run. The choice of the barrier parameter re-
quires a minimal knowledge of the system, but only a vague idea is usually
enough. This barrier parameter is used to set a reasonable default of both
the regularization factor ε and the bias factor γ (SI, Sec. 2.3.1). It should
be noticed that the choice of γ is not as critical as in MetaD since here it
does not directly influence the convergence speed but only the shape of the
target distribution. In fact, in OPES the limit γ → ∞ is not problematic, as
in MetaD [92], and OPES can also converge to the flat target distribution. In
our tests, we always used the same value of γ for both OPES and MetaD.

In order to test the convergence speed in the case of suboptimal CVs, we
consider Langevin dynamics on a 2D model potential [80], Figure 2.18, and
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Figure 2.20: Φ3 trajectory for alanine tetrapeptide in vacuum, obtained by biasing all the
six dihedral angles (ϕ1, ϕ2, ϕ3, ψ1, ψ2, andψ3) using MetaD and OPES, with the same input
parameters as the standard ones used for alanine dipeptide. We show the ϕ3 angle because it is
the hardest one to sample, but in the SI (Sec. 2.3.1), all of them are presented, together with
the reconstructed FES.

bias only the x coordinate. In Figure 2.19, we compare MetaD and OPES by
plotting the estimate of the free-energy difference between the two basins
as a function of time. Such estimates are obtained directly from the applied
bias, as Fn(x) = Vn(x)/(1/γ − 1). From Figure 2.19, one can see that as
OPES converges it does not present the strong bias oscillations typical of
MetaD.

We also run the typical benchmark system for novel enhanced sampling
methods, alanine dipeptide, biasing dihedral angles ϕ and ψ. The results
are in Figure 2.17 and the SI (Sec. 2.3.1).

As an example of multidimensional bias, we run simulations of alanine
tetrapeptide in vacuum, biasing all six dihedral angles. In Figure 2.20, we
show how OPES is able to explore this high-dimensional CV space much
more efficiently than MetaD. It is important to notice that we use the same in-
put parameters for alanine dipeptide and alanine tetrapeptide. This should
be a reasonable choice since the two systems are very similar from the point
of view of the physics involved, the main difference being the increased di-
mensionality of the CV space. However, many CV-based enhanced sampling
methods would require further tuning or a different set of inputs in order
to perform well in both systems. This is not the case for OPES, thanks to its
robustness to the choice of the input parameters.

In conclusion, within this letter we present a new enhanced sampling meth-
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od, OPES, based on an on-the-fly reconstruction of the probability distribu-
tion. It performs such reconstruction via a weighted kernel density estima-
tion [Eq. (2.60)] with an on-the-fly compression algorithm that allows it to
be most effective, starting from a coarse-grained guess of the free-energy
surface and then converging the finer details. Thanks to this strategy and to
the introduction of a normalization over the explored CV space [Eq. (2.62)],
the method provides an extremely fast exploration, also at relatively high
dimensions. Another peculiarity of the method is the presence of an upper
limit to the applied bias [Eq. (2.63)], which can be useful for avoiding the
sampling of unphysical states. Most importantly, the proposed method re-
quires few simple and robust input parameters, has very good convergence
performance, and presents a straightforward reweighting scheme. Finally,
we considered here only the case of a well-tempered target, but OPES pro-
vides a general framework in which different targets can also be considered.

We believe that this new method can become a handy tool in addressing
enhanced sampling problems and has the potential for further interesting
developments.
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2.3.1 Supporting Information

Algorithmic details

Kernel density compression As discussed in the main text, it is impractical
to describe the probabilities as a sums of all the Gaussians deposited. In
metadynamics (MetaD) and in adaptive umbrella sampling this difficulty is
usually circumvented by mapping the bias on an auxiliary grid. Here we
shall reduce the number of Gaussians needed to represent the probability by
using a kernel compression algorithm borrowed from signal processing liter-
ature [89]. This algorithm has been previously used only for post-processing
estimation, and never with a shrinking bandwidth, but it turned out to be
especially convenient in our setup, thanks to the recursive nature of our
method.
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We restrict ourselves to the consideration of Gaussian kernels with diagonal
bandwidths, the generalisation to more complex kernels being straightfor-
ward. Thus, as in the main text, we write:

G(s, s′) = he
− 1

2 ∑i

(
si−s′i

σi

)2

. (2.64)

To measure of the distance between a point s′ and a kernel G we consider
the Mahalanobis distance, that in our case reads:

d(s′, G) =

√√√√∑
i

(
si − s′i

σi

)2

. (2.65)

Let us suppose that we have to deposit the nth kernel G(s, s(n)) at position
s(n), after the ones previously deposited have been compressed to N kernels
Gk, where in general as n grows we expect N � n. The algorithm then goes
as follows:

1. find the minimun distance between the new point and the compressed
kernels, dmin = mink d(s(n), Gk)

2. check if this distance is smaller than a given threshold, dt:

a. if dmin < dt merge the new kernel G(s, s(n)) with the closest one
Gkmin . Then go back to step 1, using instead of s(n) the new center of
the merged kernel

b. if dmin ≥ dt add the new kernel G(s, s(n)) to the compressed
ones

When merging two Gaussians G1 and G2 the new Gaussian G(s, s′) will have
the following parameters:

h = h1 + h2 (2.66)

s′ = h−1(h1s1 + h2s2) (2.67)

σ2 = h−1[h1(σ
2
1 + s2

1) + h2(σ
2
2 + s2

2)]− s′2 (2.68)

This simple merging rule applies only to Gaussians with diagonal band-
width, however is possible to extend it also to the general case [89].

We found that dt = 1 is a good default value. However, sometimes it might
be useful to adopt a higher threshold, in order to reduce the total number of
kernels, at the cost of obtaining a coarser estimate of the probability density.

This compression algorithm differs from that of Ref. [89] mostly for the ad-
dition of the recursive rule at the end of 2.a. We found this step very useful
especially when the CVs dimensionality is greater than one, because with-
out it the minimum distance between the deposited kernels quickly becomes
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smaller than dt, and the total number of kernels may grow much faster. This
extra step does add an overhead to the algorithm, so in our implementation
we also provide the option not to perform it.

The total number of compressed kernels will always grow in time, but it
soon reaches a sort of plateau, with minimal growth. It is in general not
easy to guess a priori how many kernels will be needed, since it depends
not only on the dimensionality of the CV space, but also on the features of
the free-energy surface and on the range of exploration. However, in our
experience the total number of kernels is always reasonable, and generally
much smaller than the number of points in a typical grid of the same dimen-
sionality.

The overall computational cost of the biasing scheme scales roughly linearly
with the total number of compressed kernels, since at each time step we
need to sum over all them in order to estimate the bias and the forces due
to the bias. A way of greatly reduce the computational cost would be to
implement a neighbor list scheme, but at this point this has been left to
future development.

This bias representation has some advantages when compared to the grid
representation more commonly used, in particular:

• the user does not need to guess in advance the CV region that will be
explored, kernels will be deposited only where necessary

• it can handle a higher dimensional CV space, while grids typically
already struggle at three/four dimensions

• it allows changing the scale used for the description of the bias, a
feature that we found very useful

Bandwidth rescaling The kernels bandwidth is rescaled according to Eq. (2.61)
of the main text:

σ
(n)
i = σ

(0)
i [N(n)

eff (d + 2)/4]−1/(d+4) , (2.69)

where the effective sample size at nth step is:

N(n)
eff =

(∑n
k wk)

2

∑n
k w2

k
. (2.70)

We find useful to define w0 = 1, so that at the beginning of the simulation
N(0)

eff = 1. This choice makes the estimate of the effective sample size more
robust, especially at the very fist steps of the simulation.
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We notice that the fact that the bandwidth is rescaled, requires that also the
height of the deposited Gaussian is adjusted accordingly, since

h = ∏
i

1
σi
√

2π
. (2.71)

Normalization factor According to its definition, in Eq. (2.60) of the main
text, the probability estimator P̃(s) is normalized to 1 over a boundless CV
space. By adding the normalization factor Zn, defined as in Eq. (2.62) of
the main text, we take into account for the actually explored CV space, Ωn.
To calculate Zn we take advantage of our compressed kernel representation,
and consider the centers of the kernels as points for a Monte Carlo integra-
tion:

Zn =
1
N

N

∑
k

P̃(sk) =
1

NS

N

∑
k,k′

G(sk, sk′) , (2.72)

where G(sk, sk′) are the compressed Gaussians, N is their total number, and
S = ∑n

k wk is the global normalization of the KDE. Zn changes accordingly to
the explored space Ωn, and typically converges as soon as no new CV space
region is explored. The above normalization factor also helps correcting
the possible changes in the global normalization S due to the compression
algorithm.

The estimate in Eq. (2.72) scales quadratically with the number of com-
pressed kernels N. In our implementation however, we avoid this by calcu-
lating only the changes with respect to the previous value, Zn = Zn−1 +∆Zn,
which instead scales linearly in N.

The barrier parameter In the current implementation of the method, there
is a parameter called barrier, that should be roughly equal to the free-energy
barrier ∆E that the bias should help overcome. We use this value to set the
bias factor γ = β∆E and the regularization parameter ε = e−β∆E/(1−1/γ).

According to Eq. (2.63) of the main text, the minimum value that the bias
can assume is reached when P̃(s) = 0, and with the given choice of ε we
have:

min
s

Vn(s) = −∆E (2.73)

The maximum value of the bias is instead harder to obtain, because it
changes according to the normalization factor Zn. However it is typically
only few kBT, so that in practice the maximum deposited bias, ∆Vmax, is not
too much higher than ∆E.

It is in principle possible to set a hard limit to ∆Vmax, e.g. by adaptively
adjusting the ε value, but we prefer to have some tolerance with respect
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to the provided estimate of the barrier ∆E, since it is generally not easy to
guess it correctly before running simulations.

We chose to link the bias factor γ to the value of the barrier ∆E because γ is
not a crucial parameter for the convergence speed, as it is the case for MetaD.
However it is also possible to set the value of γ independently, in order to
fine tune the shape of the target distribution. This can be useful e.g. in case
a high dimensional CV space, where one typically wants to restrict as much
as possible the explored space to speed up sampling.

Results on model systems

We implemented our method in a development version of the PLUMED [38]
plugin, and we plan to add it to the official PLUMED code. All the code and
the input files needed to reproduce the following results are openly avail-
able in the Materials Cloud Archive (www.materialscloud.org), as materi-
alscloud:2019.0063, and on the PLUMED-NEST [91] (www.plumed-nest.org),
as plumID:19.068 .

Suboptimal double well We first test our new method on the simple toy
model, first presented in Ref. [80], that consists in a particle moving on a
2D potential U(x, y) with Langevin dynamics, see Fig. 2.18 of main text.
The potential is a rotated Wolfe-Quapp (θ = −0.6 π

4 ), the temperature of the
Langevin dynamics is T = β = 1 and the friction coefficient is 10.

We want to model a double well system with a suboptimal CV, thus we bias
only x. In this simple system we can directly calculate the free energy profile
along x by numerical integration on a grid:

F(x) = − 1
β

log
∫ 3

−3
e−βU(x,y)dy , (2.74)

and also the free-energy difference ∆F, that we define as follows:

∆F = − 1
β

log

∫ 3
0 e−βF(x)dx∫ 0
−3 e−βF(x)dx

. (2.75)

It is important to notice that the free energy profile F(x) can change signifi-
cantly with the choice of the CV, while the free-energy difference ∆F is not
much influenced by the CV choice, provided that the chosen CV is able to
distinguish between the two basins. To illustrate this, in Fig. 2.21 we con-
sider other possible rotations of the potential U(x, y), and we plot the free
energy along the new axis x′, together with the barrier height. As expected,
for all these different rotations the ∆F estimate obtained via Eq. (2.75) is
constant, changing by less than 0.03%.
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Figure 2.21: The free energy of the double well model, for different rotations of the x− y plane
(see Fig. 2.18 of main text). The profile along x′ changes, and so does the highest free-energy
barrier between the two states, while the ∆F is almost identical for all the shown rotations.

We run simulations with both OPES and MetaD, using input parameters
as similar as possible. In particular the bias factor γ = 10, the deposition
stride is 500 time steps and the initial bandwidth is σ = 0.185815 (equal to
the unbiased standard deviation in the minimum). Using the reference from
Eq. (2.74) we also run simulations with a static bias V(x) = −(1− 1/γ)F(x),
that is the bias that both OPES and MetaD reach at convergence. The MetaD
simulations use Gaussians with initial height h = 1 and deposit bias only in
the interval [−2.9, 2.9], to avoid pushing the system out of the [−3, 3] range
in which the potential is defined. This last precaution is not needed for the
OPES and the static bias simulations.

In order to compare the different methods we select 100 initial conditions
from an unbiased run in which the system remained in the deeper basin.
These configurations are used to start 100 independent runs for each of the
methods investigated. The free-energy difference ∆F is calculated from the
free energy estimator given by Fn(x) = −(1− 1/γ)−1Vn(x), except for the
static bias case where reweighting [Eq. (2.56) of main text] is used. Fig. 2.22
shows the average ∆F obtained, together with the standard deviation, as a
function of time.

It is interesting to notice that OPES yields the best estimate, outperforming
also the reference run with a perfect static bias. This is due to the fact that
all the 100 replicas start from the same basin (thus ∆Fn = 0 at the beginning),
and a dynamic bias allows for a faster first transition than a static one, thus
more quickly correcting this wrong initial estimate.

The number of compressed kernels that build the probability estimate is
always smaller than 80, for all of the OPES simulations.
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Figure 2.22: The free-energy difference of the double well model, calculated with different
methods. For the static bias case the reweight estimate is shown, while for the others the
estimate obtained from the applied bias. Average and standard deviation over 100 independent
runs are shown.

Reweighting. It is also possible to obtain an estimate of the free energy and
∆F via reweighting, instead of using the one obtained from the bias poten-
tial. To perform reweighting we follow Eq. (2.56) of main text, using as prob-
ability estimator a weighted KDE. In order to reweight a nonstatic bias one
usually must discard the initial nonadiabatic part of the trajectory, where
the bias changes too fast. Unfortunately it is not always clear how much
one should cut out. For this reason we find it useful to invert the trajectory
and plot the reweighted estimate as a function of time, as in Fig. 2.23. The
plot shows all the possible choices for initial truncation, with on the abscissa
axis the amount of steps truncated. At the far left is the estimate obtained
without discarding any point, at half of the plot is the reweighting obtained
only from the second half of the trajectory and so on. Thus the final part of
the trajectory is always used, which makes sense, since it is the most close
to convergence.

There are different ways of reweighting MetaD. Since we do know the real
F(x) of our toy model, we can use the real c(t), instead of one of its estimates
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Figure 2.23: The ∆F of the double well model from the same simulations used for Fig. 2.22, but
obtained through reweighting. The trajectory has been time-inverted before reweighing, in order
to show all the possible initial truncations (see explanation in the text). The MetaD reweighting
is obtained using a perfect c(t), obtained using the real F(x).

[58, 79]. At step n the “real” c(t) is obtained via a grid integration:

cn = − 1
β

log

∫ 3
−3 e−β[F(x)+Vn(x)]dx∫ 3
−3 e−βF(x)dx

. (2.76)

This provides a better reweighting, because it removes the noise from the
c(t) estimation.

By looking at Fig. 2.23 we can see that, as expected, in the static bias case
there is no need to cut any initial transient. In OPES the reweighting esti-
mate is not significantly influenced by keeping the initial part of the sim-
ulation, even though it is nonadiabatic, and it gives an estimated ∆F very
similar to the one actually used during the biasing. In MetaD instead the
reweighing estimate has a smaller standard deviation compared to the direct
estimate, but one should discard a significant part of the trajectory in order
to obtain a correct estimate.
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Figure 2.24: The free-energy difference for alanine dipeptide, calculated with different meth-
ods. The estimate is obtained from the applied bias, average and standard deviation over 10
independent simulations are shown.

Sampling efficiency: well-tempered vs uniform. Using this toy model we can
also quantify the gain in sampling efficiency provided by using a well-
tempered target instead of a uniform one. To do so, we look at the ef-
fective sample size Neff = (∑k wk)

2 / ∑k w2
k which provides an estimate of

the efficiency of the importance sampling we are doing. We run as be-
fore with 100 different initial conditions, using a well-tempered static bias
V(x) = −(1− 1/γ)F(x) with (γ = 10) and a uniform one V(x) = −F(x).
For the well-tempered case we obtain Neff/N = 0.0236± 0.042 while for the
uniform Neff/N = 0.0117 ± 0.022. This means that given the same num-
ber of steps N, using a well-tempered target in this case provides roughly
twice the effective sample size compared to a uniform target, and thus any
quantity estimated from it will have a smaller statistical uncertainty.

Alanine dipeptide For the alanine dipeptide simulations we use GROMACS
[37] patched with PLUMED. The setup is the same of Ref. [80], namely:
canonical (NVT) simulation in a vacuum, Amber99-SB [66] force field, time
step 0.002 fs, temperature 300 K, and velocity rescaling thermostat [36].

We run OPES and MetaD, using the same bias factor γ = 10 and deposition
stride of 500 time steps. For MetaD we used the typical standard parame-
ters for alanine dipeptide, namely σϕ = σψ = 0.35 rad, and Gaussian height
h = 1.2 kJ/mol. For the OPES simulations we choose an initial bandwidth
σϕ = σψ = 0.15 rad, which is roughly the smaller of the standard deviations
one gets by running a short unbiased simulation in the two basins, and a
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Figure 2.25: The typical number of compressed kernels used in the alanine dipeptide simulations.
The black dotted line shows the total number of deposited kernels. After 100 ns with compression
threshold dt = 1 about 68% of the deposited kernels have been merged, while with dt = 3 about
99%. In this dt = 3 case the bias is very coarse, but still allows for good sampling and the
reweighting estimate of ∆F falls within 1 kBT.

barrier parameter ∆E = 50 kJ/mol. Such ∆E value would lead to a default
bias factor γ ≈ 20, but we set it instead to γ = 10, in order to facilitate
the comparison with MetaD. We run 10 independent simulations for each
method, starting from initial configurations taken from a long unbiased run
in the most stable basin (basin A). Fig. 2.24 shows the average and the stan-
dard deviation of the free-energy difference ∆F, for each method. We define
the free-energy difference in units of kBT as:

∆F = − log

∫
A e−βF(ϕ,ψ)dϕ dψ∫
B e−βF(ϕ,ψ)dϕ dψ

, (2.77)

where A = {ϕ ∈ [0, 2.3], ψ ∈ [−π, π]} and B is the complementary region
in the CVs space.

The number of kernels used in the OPES simulations for representing the
probability distribution, and thus the bias, is shown in Fig. 2.25. In this case
we also test some other values of the compression threshold dt, but all the
results shown in other figures and in the main text are obtained with dt = 1.
For the MetaD simulations of alanine dipeptide we use a 100x100 grid with
spline interpolation.

Alanine tetrapeptide With the same computational setup of alanine dipep-
tide, we simulate alanine tetrapeptide, which has 3 ϕ and 3 ψ angles, see
Fig. 2.26. Using the 3 ϕ angles as CVs would be enough to get a good
sampling, but in order to test the performance in higher dimensions we run
simulations with 6 CVs, using all the angles.
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Figure 2.26: The alanine dipeptide and alanine tetrapeptide molecules, with their Ramachandran
angles.

Fig. 2.27 shows the trajectories of the 6 dihedral angles for OPES and MetaD.
It can be seen how OPES provides an extremely fast exploration also in
such high dimensional case. In principle one could decide to fix the OPES
bias after a few nanoseconds, and use it as static bias to perform umbrella
sampling, in the spirit of Refs. [56, 93].

We notice that the performance of MetaD can be improved by tweaking the
parameters, e.g. using a bigger initial height for the Gaussians, but we could
not find any combination of parameters giving an exploration qualitatively
similar to OPES. Using parallel bias metadynamics [50] (PBMetaD) brings
much better performances in such high CV space. From the point of view
of the exploration however it was still less efficient that OPES, requiring a
few nanoseconds to find all the basins (but we only tested with the standard
parameters, without any tweaking). It would be interesting to implement
in OPES the same target distribution that PBMetaD reaches at convergence,
because it covers a much smaller CV volume than well-tempered, while still
sampling all the relevant basins. Having a smaller CV volume to sample can
help a lot in converging, especially when a big number of CVs is employed.

In Figure 2.28 a free-energy estimate obtained from reweighting the previ-
ous shown OPES simulation is shown, compared with a reference one ob-
tained from a much longer simulation performed with only the 3 ϕ angles.
We chose to show the free energy projected onto the ϕ2-ϕ3 space, because
these are the two angles harder to sample. It is remarkable that after only
1 nanosecond (1000 kernels deposited) all the metastable basins have been
sampled, and the free energy already shows all the relevant features.
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Figure 2.27: The trajectory of the 6 dihedral angles of alanine tetrapeptide, obtained by biasing
all of them with OPES and MetaD respectively.
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Figure 2.28: Free energy for alanine tetrapeptide, obtained by reweighting over the ϕ2, ϕ3 plane
the OPES simulation shown in Fig. 2.27. The reference free energy comes from a 100ns OPES
simulation performed using only the three ϕ angles as CVs.
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2.4 Unified approach to enhanced sampling

This final article shows how the OPES method can be used for sampling
expanded ensembles that are the type of ensembles sampled e.g. by the
replica-exchange method. To this end, we introduce the concept of expan-
sion collective variables, that are used to uniquely define a nonweighted ex-
panded target distribution, together with the needed free-energy differences
and the target bias. Remarkably, when an expanded ensemble is chosen as
target, the kernel density estimation used in the previous paper is no longer
needed and thus the number of external parameters OPES needs is further
reduced, making the method even more robust. In the proposed scheme,
combining tempering-based and CV-based enhanced sampling is straight-
forward and not limited to the expanded ensembles considered in the paper.
With this article we bring a unified perspective on enhanced sampling that
allows for a conceptual and practical simplification, and also paves the way
for new types of sampling.

My contribution to this article has been implementing the algorithms, per-
forming the simulations, and writing the paper jointly with Piaggi and Prof.
Parrinello.

Reference: M. Invernizzi, P. M. Piaggi, and M. Parrinello. “Unified ap-
proach to enhanced sampling.” Physical Review X 10.4 (2020): 041034. URL
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.041034

Copyright © 2020 American Physical Society.
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Abstract

The sampling problem lies at the heart of atomistic simulations and
over the years many different enhanced sampling methods have been
suggested toward its solution. These methods are often grouped into
two broad families. On the one hand, are methods such as umbrella
sampling and metadynamics that build a bias potential based on few
order parameters or collective variables. On the other hand, are tem-
pering methods such as replica exchange that combine different ther-
modynamic ensembles in one single expanded ensemble. We instead
adopt a unifying perspective, focusing on the target probability dis-
tribution sampled by the different methods. This allows us to intro-
duce a new class of collective-variables-based bias potentials that can
be used to sample any of the expanded ensembles normally sampled
via replica exchange. We also provide a practical implementation by
properly adapting the iterative scheme of the recently developed on-
the-fly probability enhanced sampling method [M. Invernizzi and M.
Parrinello, J. Phys. Chem. Lett. 11, 2731 (2020)], which was originally
introduced for metadynamicslike sampling. The resulting method is
very general and can be used to achieve different types of enhanced
sampling. It is also reliable and simple to use, since it presents only few
and robust external parameters and has a straightforward reweighting
scheme. Furthermore, it can be used with any number of parallel repli-
cas. We show the versatility of our approach with applications to mul-
ticanonical and multithermal-multibaric simulations, thermodynamic
integration, umbrella sampling, and combinations thereof.

2.4.1 Introduction

Sampling is one of the main challenges in atomistic simulations. In fact,
even the most accurate models cannot produce high-quality results if the
phase space is not properly sampled. The sampling issue is due to the large
gap between the physical macroscopic timescales and the actual time that
can be explored in standard atomistic simulations. This results in an er-
godicity problem that can be encountered in fields as varied as materials
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science, chemistry, and biology. One facet of this problem is the existence
of different metastable states separated by kinetic bottlenecks, that make
the transition from one state to another a rare event. Enhanced sampling
methods are a possible solution to this problem. Instead of extracting con-
figurations from the relevant physical ensemble, these methods create an ad
hoc modified ensemble in which the probability of sampling rare events is
greatly enhanced. One kind of such target ensembles is obtained by com-
bining multiple subensembles that differ only for the temperature or some
other quantity, a typical example being parallel tempering [94]. We refer to
these ensembles as expanded ensembles [95].

In the present paper we formulate the problem of generating such expanded
ensembles in a way that allows us to use collective-variables-based methods.
We find that the recently developed on-the-fly probability enhanced sam-
pling (OPES) [96] can be adapted to the scope and provides an efficient
implementation. This method was introduced as an evolution of metady-
namics [3], since it can provide the same type of enhanced sampling, but
presents in most cases a faster convergence and has only few and robust
adjustable parameters. These properties of OPES are retained when it is
applied to sample expanded ensembles. This provides us with a general
and reliable method, that can be easily applied to sample many different
ensembles.

We accompany this paper with a number of general considerations (Secs. 2.4.2
and 2.4.7), but the reader mostly interested in the method itself and its prac-
tical implementation can go directly to Sec. 2.4.4. Section 2.4.3 briefly recalls
OPES in its original formulation for metadynamicslike sampling. We also
present a variety of simulations to show the versatility of the new scheme,
in particular (Sec. 2.4.5) multicanonical, multithermal-multibaric, thermody-
namic integration, and also (Sec. 2.4.6) enhanced sampling based on an order
parameter, both alone and in combination with the previous ensembles.

2.4.2 Unified Approach

The most popular approaches to enhanced sampling follow mainly two
strategies. A first one was proposed in a pioneering work by Torrie and
Valleau and is referred to as umbrella sampling [1, 2]. This method starts
by identifying one or few order parameters, or collective variables (CVs),
s = s(x), that are a function of the microscopic configuration and encode
some of the slow modes of the system. Then a bias potential that is function
of the CVs is added to the energy of the system, so that the sampling of the
slow modes encoded by the CVs is accelerated. Many have followed this
approach, and nowadays one of the most popular methods in this class is
metadynamics [3].
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A different perspective to enhanced sampling is that of parallel or simulated
tempering [97, 98]. In this case the idea is to combine in the same general-
ized ensemble the configurations explored by the system at different temper-
atures. This can improve the sampling because at higher temperatures the
exploration of the phase space is often more efficient, and the system is less
likely to remain stuck in metastable states. Over the years this approach has
been extended and implemented in a variety of different methods, among
which replica exchange [6] is probably the most widely employed.

These two families of enhanced sampling methods often have been seen
as distinct and complementary. Although there are some papers in which
the two perspectives are combined [73, 99–101], typically they have been
perceived as hybrid approaches [43, 102]. Here we want to take a closer
look at these two families and show that it is possible to provide a unified
perspective to the enhanced sampling problem.

For a start we must specify that we are not interested in looking at the
specific computational technique the various enhanced sampling methods
use, since according to this criterion there would be many more than two
families. There are methods that use a bias potential and others that use
specific Monte Carlo moves [6], but also methods that introduce a fictitious
dynamics [103], or that focus on directly modifying the atomic forces [104],
to name just a few. This kind of classification is of course perfectly legitimate,
but we find it of limited relevance for our purposes.

The distinction between the two families cannot be based on the fact that
one uses system-specific CVs, while the other makes use of general ther-
modynamic properties. For instance, it is known that Hamiltonian replica
exchange can be used to enhance the fluctuations of any chosen CV [105],
and on the other hand, that it is possible with metadynamics to use the
potential energy itself as CV and sample a multithermal ensemble [106].

Thus we prefer to focus on the target distribution ptg(x) that the different
methods sample. In fact, each enhanced sampling method explicitly or im-
plicitly aims at sampling a specific probability distribution in the configura-
tion space that is not the physical one, but assigns a higher probability to
some rare event. Designing such target distributions so that they are effec-
tive is far from trivial, and we can relate the two families of methods to the
type of target distribution they imply.

A first class of enhanced sampling methods defines the target distribution
by setting a constraint on its marginal distribution along some chosen CVs,
ptg(s) =

∫
δ(s(x) − s) ptg(x) dx. The most common choice is to impose a

uniform marginal, ptg(s) = const. Among the methods that adopt this strat-
egy are adaptive umbrella sampling [81] and metadynamics in its original
formulation [3]. Also, the Wang-Landau algorithm [107] and various multi-
canonical algorithms [108, 109] chose to sample a flat marginal distribution,
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using the potential energy as CV. An interesting case is the one of well-
tempered metadynamics [55] that aims at sampling an s distribution that is
a smoothed version of the original one. Contrary to the uniform case and
in general to the fixed target case [74], the well-tempered target explicitly
depends on the unbiased probability, and is thus not completely known be-
forehand. Other kinds of targets are also used in the 1/k ensemble [110] and
in nested sampling [111].

Another class of methods will be the main focus of this paper, and it is the
one that aims at sampling the so-called expanded ensembles [95]. These
targets are not defined explicitly as a function of some CVs, but rather
consist in the sum of overlapping probability distributions. A typical en-
hanced sampling technique that targets expanded distributions is, for ex-
ample, replica exchange [6]. Expanded ensembles can be obtained by com-
bining the same system at different temperatures, or, more in general, dif-
ferent Hamiltonians [105, 112, 113]. They can be sampled also with single
replica approaches, such as simulated tempering [98] and integrated tem-
pering [114, 115]. Broadly speaking, one could consider as part of this ex-
panded ensemble class also methods like multiple-windows umbrella sam-
pling [116], or thermodynamic integration [117], where multiple separated
ensembles are simulated and then combined into one via some postprocess-
ing procedure such as the weighted histogram analysis method (WHAM)
[63].

It is important to note that by classifying enhanced sampling methods with
respect to ptg(x) we are not implying that methods in the same class are
equivalent. Different methods in fact can use very different strategies to
reach their target, each having its own strengths and weaknesses. However,
this target-distribution perspective suggests that there is not a fundamental
difference between the two traditional families, and that a unified approach
is possible.

From this point of view, a special place is occupied by variationally en-
hanced sampling (VES) [5], targeted metadynamics [74], and on-the-fly prob-
ability enhanced sampling [96], since in these methods one has to explicitly
choose a target distribution. This makes them particularly suited for devel-
oping a unified approach, since they are in principle capable of sampling the
targets of both of the two families of enhanced sampling, and also combine
them in new ways. In VES the usefulness of various target distributions has
already been explored [24, 56, 85]. In particular, a target distribution has
been proposed for sampling multithermal-multibaric ensembles [86] and
also for combining them with a CV that drives a phase transition [118]. It is
this paper that inspired us to try a generalized unified approach.

Our goal here is to introduce explicitly the expanded ensemble target distri-
bution and show that it can be sampled by using a CV-based bias potential
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method such as VES or OPES. In doing so we will introduce the concept of
expansion CVs, that allows us to define both the target expanded distribu-
tion and the bias needed to sample it. The method we propose is thus ca-
pable of sampling both kinds of target distributions, those typical of replica
exchange, but also the uniform and well-tempered distributions typical of
metadynamics. In this sense it provides a unified approach to enhanced
sampling.

2.4.3 On-the-fly Probability Enhanced Sampling

The recently developed on-the-fly probability enhanced sampling [96] is a
collective-variables-based method. Collective variables are a function of the
microscopic configuration, s = s(x), that provide a low-dimensional descrip-
tion of the system. In OPES we aim at modifying the physical probability
distribution of s, P(s), in order to reach a given target probability distribu-
tion, ptg(s). To achieve this we must add the following bias potential

V(s) = − 1
β

log
ptg(s)
P(s)

, (2.78)

where β is the inverse temperature. OPES has been introduced as an evolu-
tion of metadynamics and in this spirit we first have used the well-tempered
target distribution, defined as pWT(s) ∝ [P(s)]1/γ, where γ > 1 is known
as the bias factor. This target distribution aims at increasing the transition
rate between metastable states of the system, by lowering of a factor γ the
free-energy barriers along the CVs. In the limit of γ = ∞ it is equivalent to
choosing a uniform target.

Since P(s) is not known a priori, we resort to an iterative scheme [81, 119].
The core idea in OPES is to estimate the probability distribution at each step
n, Pn(s), by reweighting on the fly a simulation that is biased with Vn(s),
which is itself constructed from such Pn(s) estimate according to Eq. (2.78).
The Pn(s) is obtained via a weighted kernel density estimation, adding a
new kernel at a fixed small interval, similarly to metadynamics.

We refer the interested reader to Ref. [96], where the OPES iterative equa-
tions for the case of a well-tempered and a uniform target are presented
in detail, and to Refs. [69, 70] for some initial applications. In the present
paper we introduce a class of target distributions that allows sampling any
expanded ensemble. We also present in detail the OPES iterative scheme
for this class of targets. While the core ingredients of OPES remain the
same, the resulting method will look quite different from the one presented
in Ref. [96]. In particular, when targeting expanded ensembles we will not
need to use the kernel density estimation that plays instead a crucial role in
the well-tempered case.

70



2.4. Unified approach to enhanced sampling

In applying OPES to sample expanded ensembles, we find a method that is
similar in spirit to that of Ref. [95] and to other more recent methods, such
as integrated tempering sampling [114], infinite switch simulated tempering
[120], and variationally-derived intermediates [121].

2.4.4 Targeting Expanded Ensembles

Let us call u(x) the adimensional reduced potential that contains all the
terms depending on the thermodynamic constraints, such as temperature,
pressure, or others. With x we concisely indicate the atomic coordinates and
any other configurational variable that the reduced potential might depend
on, such as the volume or the box tensor. As an example, in the case of
the canonical ensemble one has u(x) = βU(x), where β is the inverse tem-
perature and U(x) is the potential energy of the system. Let us consider a
system with a reduced potential uλ(x) that is a function of λ, where λ could
be either a single parameter or a set of parameters, and might indicate, e.g.,
a thermodynamic property such as the temperature. At equilibrium its prob-
ability distribution follows Boltzmann statistics:

Pλ(x) =
e−uλ(x)

Zλ
, (2.79)

where Zλ is the partition function, Zλ =
∫

e−uλ(x)dx.

We are interested in sampling configurations in a range ∆λ of λ values.
Instead of running multiple independent simulations at different values of
λ, we can sample a generalized ensemble which contains all the relevant
microscopic configurations, and then reweight them to retrieve the correct
statistics for any λ ∈ ∆λ. Sampling such an ensemble over ∆λ instead of the
separate single λ ensembles is more efficient when different λ ensembles
overlap in the coordinate space, and it can also help in solving ergodicity
problems.

We must choose as target a distribution that covers all the microscopic con-
figurations relevant to the chosen ∆λ range. Similarly to what is done in
replica exchange, we choose a set {λ} of N{λ} values λ ∈ ∆λ such that there
is a good overlap between contiguous Pλ(x). We then define our target dis-
tribution as

p{λ}(x) =
1

N{λ}
∑
λ

Pλ(x) . (2.80)

We refer to this class of target probability distributions as expanded ensem-
ble target distributions. In the present paper we limit ourselves to consid-
ering nonweighted expanded targets, that assign the same 1/N{λ} weight
to all the subensembles, but it is also possible to add some λ-dependent
weights and give different importance to different Pλ(x).
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Without loss of generality, one can consider λ = 0 to be inside the desired
interval ∆λ. It is then possible to run a simulation at λ = 0 and use the
OPES scheme to iteratively optimize a bias that allows one to sample p{λ}(x).
Before proceeding to explicitly write the target distribution and the bias
potential, we express Pλ(x) as

Pλ(x) = P0(x) e−uλ(x)+u0(x) Z0

Zλ
= P0(x) e−∆uλ(x)+∆F(λ) , (2.81)

where ∆uλ(x) = uλ(x)− u0(x) is the potential energy difference and

∆F(λ) = − log
Zλ

Z0
= − log〈e−∆uλ〉u0 , (2.82)

is the dimensionless free-energy difference from the reference system u0,
that can be expressed also as an ensemble average, indicated with the nota-
tion 〈·〉u0 . Our expanded target thus becomes

p{λ}(x) = P0(x)
1

N{λ}
∑
λ

e−∆uλ(x)+∆F(λ) . (2.83)

In order to define the target bias, we first rewrite Eq. (2.78) as

v(x) = − log
ptg(x)
P0(x)

. (2.84)

Finally the adimensional bias needed to sample the expanded target p{λ}(x)
is:

v(x) = − log

(
1

N{λ}
∑
λ

e−∆uλ(x)+∆F(λ)

)
. (2.85)

Note that in writing the bias in this way P0(x) cancels out. It follows that
the bias potential v(x) depends on the coordinates x only through the N{λ}
quantities ∆uλ(x). We refer to these ∆uλ as expansion collective variables.
The expansion CVs completely characterize the expansion, since not only
the bias, but also ∆F(λ), Eq. (2.82), and the expanded target distribution
p{λ}(x), Eq. (2.83), are unambiguously defined through these quantities. We
will see how, by properly choosing the expansion CVs ∆uλ(x), it is possible
to sample different kinds of expanded ensembles. For each of them we also
highlight the connection between these expansion CVs and more traditional
CVs that have a straightforward physical interpretation.

Our target bias, Eq. (2.85), depends on the free energy along the λ param-
eter, ∆F(λ), that is in general unknown. In the OPES spirit we will reach
the target bias iteratively, by estimating on the fly ∆F(λ) via a reweighting
procedure, and using such an estimate to define the applied bias.
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Iterative OPES scheme

The free-energy difference ∆F(λ) defined in Eq. (2.82) can be written using
an ensemble average over the reference unbiased system u0 [122]. However,
estimating 〈e−∆uλ〉u0 from an unbiased trajectory is practically impossible
due to the fact that e−∆uλ can be significantly large in regions where P0 is
extremely small, and that are thus not properly sampled. For this reason we
use reweighting to write it as an average over the biased ensemble

e−∆F(λ) = 〈e−∆uλ〉u0 =
〈e−∆uλ+v〉u0+v

〈ev〉u0+v
, (2.86)

where the ensemble average 〈·〉u0+v is computed as a time average over a
biased trajectory. In this way, one can obtain a much more accurate estimate
of ∆F(λ).

The problem with this procedure is that the target bias v, Eq. (2.85), is itself
a function of ∆F(λ). Therefore, we set up an iterative scheme that consists
in running a biased simulation whose bias is based on the estimate of the
free-energy difference that we obtain via on-the-fly reweighting. At step n
the simulation runs with potential u0(x) + vn(x), where

vn(x) = − log

(
1

N{λ}
∑
λ

e−∆uλ(x)+∆Fn(λ)

)
. (2.87)

The reweighted estimate ∆Fn(λ) is updated at every iteration step n. In
between the iteration steps there is a fixed short stride where the simulation
proceeds and both ∆Fn(λ) and the bias vn(x) are kept constant. The free-
energy estimate at the nth step can be explicitly written as

∆Fn(λ) = − log


n
∑

k=1
e−∆u(k)

λ +v(k)k−1

n
∑

k=1
ev(k)k−1

 , (2.88)

where we use the notation ∆u(k)
λ ≡ ∆uλ(xk) and v(k)n ≡ vn(xk), with xk the

configuration at the kth iteration step.

As the bias approaches convergence, the ensemble sampled approaches the
target one, and the ∆Fn(λ) estimates become more and more accurate. Thus
not only do we obtain the target bias, but we also have an estimate of the free
energy as a function of the λ parameter, i.e., ∆F(λ). Our iterative scheme is
similar in spirit to the one used in integrated tempering sampling [114], but
the two differ both in their implementation and in their applications.

Equations (2.87) and (2.88) are the explicit OPES iterative equations used for
sampling the expanded ensemble defined by the target distribution p{λ}(x),
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Eq. (2.80), and are at the heart of our method. In the following sections we
show how these equations can be used to sample different expanded ensem-
bles, simply by specifying different expansion CVs ∆uλ(x). Once these are
chosen, the only free parameter of the method is the stride between the iter-
ations. This should be set so that consecutive steps are not too correlated, as
it is the case for the on-the-fly Gaussians’ deposition in metadynamics.

It is possible to parallelize the procedure using multiple replicas of the sys-
tem, as is done in multiple walkers metadynamics [41], where each replica
shares the same bias and all contribute to the ensemble average in Eq. (2.88).
At variance with replica exchange, the number of parallel simulations does
not have to be equal to the number N{λ} of λ points that define the target.

Finally, we note that one could consider expressing the free energy ∆F(λ)
via a cumulant expansion [123, 124]. This generally provides a very good
estimate close to the reference λ = 0, but can be very inaccurate when
the range is broad, requiring a great number of terms in the expansion.
Furthermore, we found it can introduce artificial barriers that might stop
the system from visiting all the relevant configurations, thus making the
OPES self-consistent procedure much less efficient.

Reweighting

Until now we have seen how to sample expanded ensembles by applying a
bias potential. We now need a reweighting procedure in order to retrieve
statistics at any desired value of λ. To this effect one can use standard
umbrella sampling reweighting [2]. Given any observable O = O(x) that
is a function of the atomic coordinates, we can calculate its average in the
ensemble λ via the following reweighting equation:

〈O〉uλ
=
〈Oe−∆uλ+v〉u0+v

〈e−∆uλ+v〉u0+v
≈ ∑n

k Okwk(λ)

∑n
k wk(λ)

, (2.89)

where Ok ≡ O(xk) and the weight wk(λ) is defined as wk(λ) ≡ e−∆u(k)
λ +v(k)k−1 .

This equation assumes that the applied bias is static or quasistatic, meaning
that it is updated in an adiabatic fashion. It is thus good practice to discard
an initial transient of the simulation, where the bias changes quickly, and
not use it for reweighting. Determining the exact length to be discarded
might not be intuitive; however, OPES generally assigns a very low weight
to this initial transient, and thus the result will not be significantly affected
by this choice [96].

A useful diagnostic tool when performing reweighting is the so-called ef-
fective sample size, defined as the number of sampled points n times the
ratio between the variance of an observable in the unbiased ensemble and
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its variance in the reweighted ensemble [125]. We use a popular estimator
for the effective sample size, defined as [88, 125]

neff(λ) =
[∑k wk(λ)]

2

∑k w2
k(λ)

, (2.90)

where wk(λ) are the importance sampling weights. Intuitively, the effective
sample size for a given λ will be smaller than the total number of samples,
neff(λ) < n. One should expect the efficiency to be roughly neff(λ)/n ∝
1/N{λ}, given a minimal choice of λ points that properly covers the target
range. Plotting neff/n as a function of λ can be a good diagnostic tool to
monitor the consistency of the iterative procedure.

Finally, we note that the estimate of uncertainties requires some extra care in
case of weighted samples [126]. In Appendix 2.4.9 we describe in detail the
weighted block averaging procedure we adopt, and show how the effective
sample size plays a role.

2.4.5 Linearly Expanded Ensembles

An important type of expanded ensemble is the one obtained by linearly
perturbing the reduced potential of the system, uλ(x) = u0(x) + λ∆u(x). It
is defined by the following expansion CVs:

∆uλ(x) = λ∆u(x) . (2.91)

Various different ensembles can be obtained in this way, such as the multi-
canonical ensemble and the multibaric ensemble, and also alchemical trans-
formations, and others. Recently an interesting “multiforce” ensemble that
falls in this category has been proposed [127]. We present in detail some of
these ensembles in the following sections.

It can be useful to group together these linearly expanded ensembles be-
cause they share some interesting properties. In particular, for these ensem-
bles we can propose a simple automatic way to choose the λ points that de-
fine the target p{λ}(x). The idea is to have the λ points uniformly distributed
in the ∆λ interval with a spacing ∆λ/N{λ} estimated from the effective sam-
ple size as a function of λ, neff(λ). In practice what we do is to run a short
unbiased simulation of n steps at λ = 0 and use a root finding algorithm to
determine the points λ+ > 0 and λ− < 0 such that neff(λ±)/n ≈ 0.5. Then
one can use a total of N{λ} = ∆λ/(λ+ + λ−) equally spaced λ points to
define the target p{λ}(x).

This heuristic way of choosing the λ points is not optimal, and more elab-
orate options have been explored in the replica-exchange literature [128].
However, in our case this choice is less critical, since within our scheme one
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can increase N{λ} without the need to simulate additional replicas of the sys-
tem. Thus this procedure provides an easy and automatic guess for linearly
expanded ensembles that can be practically useful in many scenarios (see
Sec. 2.4.7 for further considerations on the choice of the λ points).

Multicanonical ensemble

We start by considering as an example of linearly expanded ensemble the
case of the multicanonical ensemble, which is probably the one with the
longest history. The goal is to sample all the configurations relevant for
canonical simulations in a given range of temperatures. In a canonical sim-
ulation the reduced potential is u(x) = βU(x), where U(x) is the potential
energy, β = 1/(kBT) is the inverse thermodynamic temperature, and kB
is Boltzmann constant. It is possible to define a multicanonical linearly ex-
panded ensemble, by putting ∆u(x) = u0(x) = β0U(x) and λ = (β− β0)/β0,
where β0 is the inverse temperature set by the thermostat of the simulation
and β spans the target range βmin < β < βmax.

The expansion CVs that define such a target are

∆uλ(x) = λβ0U(x) = (β− β0)U(x) , (2.92)

and by using them in the OPES iterative equations, Eqs. (2.87) and (2.88), we
obtain our multicanonical simulation. Given the physical significance of the
inverse temperature β, it is more natural to directly consider β as parameter
instead of the dimensionless λ. We thus write ∆uβ and ∆F = ∆F(β), where
we have set ∆F(β0) = 0. Similarly, it is natural to consider the potential
energy U(x) as a collective variable, and thus write the bias as

v(U) = − log

(
1

N{β}
∑
β

e−(β−β0)U+∆F(β)

)
. (2.93)

It is important to notice that we did not require the bias to be a function
of a single CV, but rather we find it to be the case when we set as target
the temperature-expanded ensemble. This is in fact a general property of
linearly expanded ensembles. When expanding according to a given λ, the
resulting bias will be a function only of the thermodynamic conjugate vari-
able ∆u. To define the bias v = v(∆u) we then need to estimate the free
energy along λ, ∆F(λ).

Other multicanonical methods aim instead at sampling a flat energy distri-
bution [86, 108, 109]. In order to do so, they need to estimate the free energy
as a function of U (or equivalently the density of states along U), while in
our method, as in other tempering approaches [120], we instead need to
estimate the free energy as a function of temperature, ∆F(β).
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Figure 2.29: Alanine dipeptide in the multicanonical ensemble (Tmin = 300 K, Tmax = 1000 K).
(a) Explored configurations as a function of the dihedral angles. Sampled points are colored

according to their reweighting weight at T = T0 = 300 K, wk(β) = e−(β−β0)Uk+v(k)k−1 . Notice
how all the points in the transition state, close to ϕ = 0, have extremely low probability of
being sampled in an isothermal simulation at 300 K. (b) Free-energy difference between the two
basins ∆FAB as a function of temperature. (c) Reweighted free-energy surface at two different
temperatures.

Example: Alanine dipeptide As an example of multicanonical sampling,
we consider alanine dipeptide in a vacuum, at temperature T0 = 300 K.
This is a typical toy model for testing enhanced sampling methods, since at
room temperature it presents two metastable states with an extremely low
transition probability. A possible way of enhancing the sampling is to bias
the ϕ and ψ dihedral angles, using as target a flat uniform distribution or the
well-tempered distribution [96]. Here instead we bias the potential energy
U, and use as a target the multicanonical ensemble over a temperature range
from 300 up to 1000 K.

Simulations are performed with the molecular dynamics software GRO-
MACS [37], patched with the enhanced sampling library PLUMED [38] (see
Supplemental Material, Sec. 2.4.10, for computational details). The only in-
put needed for OPES, besides the temperature range we are interested in
sampling, is the bias update pace that is set to 500 simulation steps (1 ps).

Figure 2.29(a) shows on the ϕ, ψ plane the configurations sampled during
the 100 ns multicanonical run. It is interesting to notice that the potential
energy U would be considered a bad CV in enhanced sampling methods
such as metadynamics, since it cannot distinguish between the two basins
that have roughly the same energy. However, when using the multicanonical
ensemble as target, by biasing U we can enhance the probability of visiting
the transition state (roughly the region where ϕ = 0), and thus observe mul-
tiple transitions between the basins and converge the free-energy difference
between them, ∆FAB [Fig. 2.29(b)]. We can use the angle ϕ to define this
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free-energy difference between the two basins:

∆FAB = − log

(
〈χϕ∈[0,π]〉
〈χϕ∈[−π,0]〉

)
, (2.94)

where χ is a characteristic function, equal to 1 if the variable is in the proper
range and 0 otherwise.

In the Supplemental Material (Sec. 2.4.10) we discuss the differences with
biasing the energy with metadynamics [100, 106] and show a comparison
between this multicanonical run and a well-tempered run biasing the two
dihedral angles. As expected, the latter is much more efficient (roughly 10
times) in converging the free-energy difference at 300 K, due to the fact that
it focuses on the relevant degrees of freedom and on a single temperature.

Multithermal-multibaric ensemble

Within our scheme, combining different linearly expanded ensembles is
straightforward. One simply has a two-dimensional parameter λ = {λ1, λ2},
and considers uλ(x) = u0 + λ1∆u1(x) + λ2∆u2(x). This can be useful, for ex-
ample, to sample multiple temperatures and multiple pressures in a single
multithermal-multibaric simulation.

In this case we consider NPT simulations with a reference reduced potential
u0(x) = β0U(x) + β0 p0V(x), where p is the pressure and V(x) the volume.
Similarly to what was done before, it is more natural to use as λ parameters
directly the temperature β and the pressure p, and write the expansion CVs
∆uλ(x) as

∆uβ,p(x) = (β− β0)U(x) + (βp− β0 p0)V(x) . (2.95)

The target distribution is defined by a set of N{β} temperatures β ∈ [βmin, βmax]
and N{p} pressures p ∈ [pmin, pmax], for a total of N{β,p} = N{β} × N{p} dif-
ferent ∆F(β, p) to be estimated. We will also express the bias, Eq. (2.85), as
a function of the potential energy and the volume v = v(U, V), which come
as a natural CVs choice. As already discussed, the intermediate tempera-
tures β and pressures p that define the target can be chosen automatically
from a short unbiased simulation. We can do this independently for the two
parameters, despite the fact that the pressure term p is multiplied by β in
Eq. (2.95).

Finally, we notice how the choice of β0 and p0 is completely free. As long
as they lie inside the range of temperatures and pressures that we aim at
sampling, no matter what thermodynamic conditions we start from at con-
vergence we will sample the same configurational space. However, when
the target range is very broad, choosing β0 and p0 roughly at the center can
help to speed up convergence.
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Figure 2.30: Multithermal-multibaric simulation of chignolin. (a) Sampled target distribution
in the CV space of potential energy and volume. (b) Relative effective sample size at different
temperatures and pressures. The bottom corner of high temperatures and low pressures is
excluded from the target to avoid vaporization of the system. (c) Time evolution of the two
biased CVs and of the Cα RMSD for one of the 40 walkers. A RMSD threshold between folded
and unfolded is highlighted with a dashed line.

Example: Chignolin As an example of a multithermal-multibaric simula-
tion we consider the miniprotein chignolin (CLN025) with CHARMM22*
force field [129] and the three-site transferable intermolecular potential (TIP3P)
water model (about 2800 molecules), over a temperature range from Tmin =
270 K to Tmax = 800 K and a pressure range from pmin = 1 bar to pmax =
4000 bar. The velocity-rescaled thermostat [36] is set at T0 = 500 K and the
Parrinello-Rahman barostat [68] at p0 = 2000 bar. The ∆Fn(β, p) estimates
and the bias are updated every 500 simulation steps (1 ps). The N{β} tem-
perature steps and N{p} pressure steps are chosen automatically based on a
short 100 ps unbiased run. This results in 92 steps in temperature and 26
in pressure, for a total of N{β,p} = 2392 points. In order to avoid the region
of low pressure and high temperature where water could evaporate, we dis-
card any (β, p)-point lying below the line from (500 K, 1 bar) and (800 K,
1000 bar). In this way, 91 (β, p) points are discarded.

The simulation is performed in parallel using 40 multiple walkers, and runs
for a total of 300 ns per walker, of which roughly 10 ns are needed to con-
verge the bias. Also in this case we use GROMACS patched with PLUMED.

In Fig. 2.30(a) we show the distribution sampled in the energy-volume space,
while in Fig. 2.30(b) the corresponding effective sample size neff is plotted, as
a function of temperature and pressure, and rescaled over the total number
of samples n. The neff/n is not perfectly uniform, but it has the same order of
magnitude over the whole target region. On the right, Fig. 2.30(c), we show
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Figure 2.31: The fraction folded of chignolin estimated from the multithermal-multibaric simula-
tion. The inset shows the same quantity over a smaller range of temperatures at 1 bar (highlighted
with a gray box), in order to compare it with the reference results from Lindorff-Larsen et al.
[131].

for one of the 40 replicas the energy and volume trajectory, together with the
trajectory of the Cα root-mean-square deviation (RMSD) to the experimental
NMR structure [130].

In Fig. 2.31 we show the chignolin folded fraction at the different temper-
atures and pressures we targeted. The folded fraction is defined as in
Ref. [131], using a dual cutoff on the Cα RMSD based on the CLN025 ex-
perimental NMR structure. A configuration is considered folded when the
RMSD goes below 0.1 nm, and unfolded when it goes above 0.4 nm. In the in-
set we compare our results with those of Ref. [131] that considered a smaller
temperature range at standard pressure. The confidence interval of our esti-
mate is calculated with the block analysis described in Appendix 2.4.9.

The stability diagram of chignolin (Fig. 2.31) does not present striking fea-
tures, in qualitative agreement with Ref. [132]. However, it has been recently
shown [133] that other miniproteins can have a nontrivial phase diagram,
with unfolding both at low temperature and at high pressure.

Thermodynamic integration

Another interesting application of our method is its use for performing ther-
modynamic integration [134]. Let us consider a system with reduced poten-
tial energy u0(x) and free energy F0 = − log Z0 and another similar system
with potential u1(x) and free energy F1. We are interested in calculating the
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free-energy difference ∆F0→1 = F1 − F0, for instance, because we know the
free energy of one of the two systems and in this way we can retrieve the
other one. The key idea of thermodynamic integration is to define a ladder
of intermediate systems with reduced potentials uλ(x) and 0 < λ < 1, to
connect the two systems. The free-energy difference ∆F0→1 to go from the
u0 system to the u1 can be calculated via the following integral:

∆F0→1 =

1∫
0

〈
∂uλ(x)

∂λ

〉
uλ

dλ . (2.96)

Typically individual simulations are run using uλ(x) for different values of
λ and the ensemble average

〈
∂uλ(x)

∂λ

〉
uλ

is estimated for each of them. Then

the integration in Eq. (2.96) can be carried out numerically, e.g., using the
trapezoid rule or a Gaussian quadrature.

The most common way to define the intermediate states uλ(x) is via a linear
interpolation,

uλ(x) = u0(x) + λ∆u(x) , (2.97)

where ∆u(x) ≡ u1(x)− u0(x). In this case we have ∂uλ/∂λ = ∆u.

In the spirit of the present paper, we aim at performing a single simulation
that samples all values of λ simultaneously, similarly to other methods [95,
135, 136]. It is then possible to reweight for any λ and calculate the integral
in Eq. (2.96). Thus we simulate the system at u0(x) and build a target p{λ}(x)
as in Eq. (2.80) using N{λ} λ points in the interval 0 < λ < 1. The OPES
iterative equations, Eqs. (2.87) and (2.88), can be written using the expansion
CVs ∆uλ = λ∆u as defined in Eq. (2.97).

Finally, we note that thermodynamic integration can be performed using in-
terpolation schemes different from the linear one, and our method is general
and can be applied also in those scenarios, simply by properly defining the
expansion CVs ∆uλ(x).

Example: TIP4P water to Lennard-Jones fluid We now use the thermo-
dynamic integration formalism described above to calculate the free energy
of TIP4P water, relative to a reference Lennard-Jones system. The TIP4P po-
tential energy (UTIP4P) is made of an electrostatic energy term and a van der
Waals-type interaction between the oxygens described by a Lenard-Jones po-
tential (ULJ). The free energy of a Lennard-Jones fluid with the same ULJ po-
tential has been fit to an equation of state and thus is a good reference [137].
For the simulations we use the LAMMPS [61] molecular dynamics software,
patched with PLUMED. We perform an NVT canonical simulation at 443 K
using the TIP4P water potential, thus u0(x) = βUTIP4P(x), with N = 384
molecules. The reference system is characterized by u1(x) = βULJ(x).
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Figure 2.32: Calculation of the free energy of liquid TIP4P water using a single-simulation ther-
modynamic integration. (a) Evolution of the collective variable ∆U as a function of simulation
time. (b) Integrand for the thermodynamic integration obtained through reweighting.

With β a constant, we consider as collective variable ∆U(x) ≡ ULJ(x) −
UTIP4P(x), and write the bias according to Eq. (2.85):

v(∆U) = − log

(
1

N{λ}
∑
λ

e−λβ∆U+∆F(λ)

)
. (2.98)

From a short 20 ps unbiased run we obtain with the usual automatic proce-
dure (Sec. 2.4.5) 30 equispaced points in the interval 0 < λ < 1, that define
our target distribution. The evolution of ∆U as a function of simulation
time is shown in Fig. 2.32(a). There is an initial transient of about 3 ns un-
til the bias potential is optimized and then the system diffuses freely. This
has to be compared with a simulation for a given value of λ in which the
fluctuations of ∆U would be very small. From this simulation the integrand〈

∂uλ(x)
∂λ

〉
uλ

= β〈∆U〉λ can be calculated via reweighting, Eq. (2.89),

〈∆U〉λ =
∑n

k ∆Uk wk(λ)

∑n
k wk(λ)

, (2.99)

where ∆Uk = ULJ(xk) − UTIP4P(xk) and wk(λ) = e−λβ∆Uk+v(k)k−1 . The values
of 〈∆U〉λ thus calculated are shown in Fig. 2.32(b). Using these results
and Eq. (2.96) we find a free-energy difference ∆FTIP4P→LJ = FLJ − FTIP4P =
7.00(1) (NkBT units) in agreement with the result reported in Ref. [117].

2.4.6 Beyond linearity: Multiumbrella Ensemble

We consider now another important kind of expanded ensemble, namely the
one obtained by combining all the different windows of a typical umbrella
sampling simulation [105]. We refer to such an ensemble as a multiumbrella
ensemble.

82



2.4. Unified approach to enhanced sampling

Multiple-windows umbrella sampling [116] allows for the free-energy sur-
face (FES) reconstruction along some collective variable s = s(x), that can be
the reaction coordinate or some slow mode of the system. Typically one sim-
ulates multiple copies of the system, each one with a parabolic bias potential
centered at a different sλ-point, in such a way that the resulting probability
distributions have an overlap and cover the whole CV range. Postprocess-
ing via WHAM [63] or other methods is then needed to estimate the relative
free-energy differences and combine the data in a single FES estimate. Here
instead, we aim at sampling all the umbrella windows in the same simula-
tion, by estimating on the fly these free-energy differences and building a
single global potential. For this reason, the FES can then be obtained with
the simple reweighting scheme described in Sec 2.4.4. Both approaches have
their own strengths and weaknesses, as we discuss while presenting the
example below.

Given a system with reduced potential u0(x) and equilibrium Boltzmann
distribution P0(x), we can write the reduced potential of each umbrella win-
dow as uλ(x) = u0(x) + ∆uλ(x), with expansion CVs:

∆uλ(x) =
(s(x)− sλ)

2

2σ2 . (2.100)

The associated probability distribution is Pλ(x) ∝ P0(x)Gσ(s(x), sλ), where
Gσ(s, sλ) is a Gaussian of width σ centered in sλ. The resulting expanded
target p{λ}(x) = 1

N{λ} ∑λ Pλ(x) is clearly not linear in λ, and in fact requires
an extra parameter σ to be defined. The width σ can in principle vary with
λ, but we consider here only the case of uniform umbrellas.

Since the expansion CVs, Eq. (2.100), depend on x only through s = s(x), it
is natural to write the bias as a function of the s CV

v(s) = − log

(
1

N{λ}
∑
λ

e−(s−sλ)
2/2σ2+∆F(sλ)

)
. (2.101)

Contrary to the linear case, in this multiumbrella case both the bias v(s)
and the free-energy differences ∆F(s) = − log〈Gσ(s(x), s)〉u0 are expressed
as functions of the same CV.

The N{λ} sλ points can be chosen to be uniformly distributed in the desired
∆s = smax − smin interval, in such a way to be at most at a distance of σ,
ensuring overlap between contiguous Pλ. For a small enough σ, the estimate
∆Fn(s) converges precisely to the free-energy surface (FES), while if σ is too
broad there will be small artifacts, similarly to what happens when a too
broad bandwidth is used in kernel density estimation.

It is instructive to consider the marginal of the target probability with respect
to the CV, p{λ}(s). In the limit of infinitely small σ and thus infinitely large
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N{λ}, the multiumbrella target p{λ}(s) is a uniform flat distribution over the
∆s interval. In the opposite limit, of a very broad σ, the target distribution
will look like the original, hard-to-sample P0. As a rule of thumb σ should be
as small as the smallest features of the FES we are interested in. We note that
this is the same criterion used to choose the σ parameter in metadynamics
[20], and it can typically be guessed from a short unbiased run. For this
reason we prefer to use as parameter σ instead of the more commonly used
strength of the harmonic umbrella potential K = 1/σ2 [116].

In some cases it proved useful to introduce two small modifications to make
the multiumbrella iterative optimization scheme more robust. We leave the
explanation of them to Appendix 2.4.9, since they have not been necessary
for the examples presented in the paper.

For simplifying the exposition we presented the procedure in the case of a
1D CV, but it is straightforward to extend it to higher dimension, by using
multidimensional Gaussians and placing the sλ points on an appropriate
multidimensional grid. When dealing with higher dimensions it might be
interesting to use some more elaborate shapes for the umbrellas, e.g., a Gaus-
sian mixture in a similar but complementary way to Ref. [138], or to follow
a specific path, as in Ref. [45].

Example: Double-well model As an example for the multiumbrella ensem-
ble we consider a Langevin dynamics on a 2D model potential [80] using as
CV the x coordinate only, Fig. 2.33(a). Such CV is suboptimal, in the sense
that it correctly describes the metastable basins, but does not include all the
slow modes of the system [80]. One of the positive features of multiple-
windows umbrella sampling is that it allows one to estimate the FES by
running many short simulations in parallel. However, in this case some of
the windows—for instance the one centered at x = 0—cannot be efficiently
sampled in a single short simulation due to the barrier along y. This is a
known problem that can be diagnosed with dedicated consistency tests and
is typically solved by performing more sampling [64]. With our approach,
instead, we have a single combined simulation that in this example is long
enough for the y mode to diffuse, and thus the CV suboptimality does not
constitute a problem, and no extra care is required to handle it.

Figure 2.33(b) shows how the target distribution changes for different σ
choices, expressed in units of the unbiased standard deviation in the basins,
σ0 ≈ 0.18 . The FES estimate could be directly obtained from the ∆Fn(s),
but in the case of large σ this would lead to an estimate in which features
are oversmoothed (see Supplemental Material, Sec. 2.4.10). Also, due to the
CV suboptimality this estimate might not be very precise, but simply good
enough for having that the main bottleneck for the transition is the unbiased
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Figure 2.33: Double-well model in the multiumbrella ensemble. (a) Potential energy of the
double-well 2D model system, and its free energy along the x coordinate. (b) Multiumbrella
target distribution, for different values of umbrella width σ. The black dotted line is the unbiased
probability distribution P0(x).

slow mode y [80]. As a general rule, it is better to estimate the FES via the
reweighting procedure.

In the Supplemental Material (Sec. 2.4.10) we provide all the simulation de-
tails and show the convergence of the free energy, comparing it to well-tem-
pered OPES and metadynamics. While in metadynamics and well-tempered
OPES the bias is constructed in such a way to push the system out of the
visited areas, with multiumbrella OPES we are forcing the system to stay in
a chosen CV region. Despite this difference in both cases we have similar
target distributions and the resulting sampling allows us to reconstruct the
FES.

Combining thermodynamic and order parameter expansions

An important characteristic of the present scheme is that it allows for a
straightforward combination of different expanded ensembles. In particular
it allows for a rigorous and efficient combination of thermodynamic gen-
eralized ensembles with enhanced sampling along a system-specific order
parameter.

To understand why this is important one can think about a first-order phase
transition, where there is a kinetic bottleneck between the two phases that
is responsible for an ergodicity problem. Increasing the temperature typ-
ically changes the relative stability of the two phases, but the free-energy
barrier separating them might remain high along the whole coexistence line,
thus making convergence very slow. A possible solution is to identify a
suitable order parameter and biasing it to increase the transition probability.
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Combining the two approaches might actually outperform both [139, 140].
This kind of combination can be useful not only for phase transitions; for
instance, also in alchemical free energy calculations an open problem is how
to properly handle barriers orthogonal to the transformation [141].

We have already cited some hybrid methods that combine a replica-exchange
approach with metadynamics, in order to enhance the sampling along both
a thermodynamic quantity and an order parameter [73, 99–101, 139]. A
nonhybrid approach has been first proposed with multidimensional replica
exchange [105], but it has the drawback of requiring a sometimes impractical
number of parallel replicas, due to the multidimensionality of the expansion.
With OPES we can sample the same target distribution of multidimensional
replica exchange, but using a bias potential and without requiring a mini-
mum number of parallel replicas. In developing our method we followed the
footsteps of another nonhybrid approach that has been recently proposed
by our group, using the VES formalism and a custom target distribution
[118, 142]. Compared to the very flexible and customizable VES approach,
OPES has the advantage of having much fewer free parameters and thus
being simpler to set up and use.

Example: Sodium We consider here as an example the calculation of the
liquid-bcc phase diagram of a model of sodium [67], the same studied in
Ref. [118]. We sample the liquid and solid phase over a range of temper-
atures and pressures, using a recently proposed order parameter s, called
environment similarity collective variable [118]. Such CV provides a mea-
sure of the crystallinity of the system, by comparing the local environment
of the atoms to a reference one. For this reason we refer to it as crystallinity
CV, but it is actually more general and can be used to describe a variety of
phase transitions [142, 143].

Using LAMMPS patched with PLUMED, we perform NPT simulations, u0(x) =
β0U(x) + β0 p0V(x). We can write the OPES equations, Eqs. (2.87) and (2.88),
via the following expansion CVs

∆uβ,p,s(x) = (β− β0)U(x) + (βp− β0 p0)V +
(s(x)− s)2

2σ2 . (2.102)

The free-energy estimates ∆Fn(β, p, s) are expressed as a function of the in-
verse temperature β, the pressure p and the crystallinity CV s. The bias
v = v(U, V, s) is expressed as a function of the potential energy U, the vol-
ume V and the crystallinity CV s.

The simulation is performed with 250 atoms at T0 = 400 K and p0 = 0.5 GPa
(5 kbar), using 4 multiple walkers that share the same bias and contribute
to the same ensemble averages to update the ∆Fn(β, p, s) estimate. The aim
is to sample liquid and solid configurations in the temperature range from
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Figure 2.34: Configurations of sodium sampled during the multithermal-multibaric-
multiumbrella simulation. (a) The points are colored accordingly to the value of the bias
v(U, V, s). (b) The points are shown in the energy-volume space and colored accordingly to
the value of the crystallinity CV s. As reference we also show in grey the region sampled during
an unbiased simulation in the bcc phase.

350 to 450 K and pressures from 0 to 1 GPa (10 kbar). The uniform grid
over β and p to define the target distribution is automatically generated
from a short 100 ps unbiased run, and consists of 4 temperature steps and 8
pressure steps. We chose as σ for the multiumbrella target a value of about
2.5 times the unbiased standard deviation in the basins, and it determines
the presence of 26 umbrellas uniformly placed between smin = 0 (liquid) and
smax = 1 (solid). In total the ∆Fn(β, p, s) to be estimated are 4× 8× 26 = 832.
After less than 3 ns the bias has clearly reached the adiabatic regime, and
could be kept constant and used as static bias. However, since there is no
drawback in doing so, we keep updating the bias and run 25 ns per walker,
for a total combined simulation of 100 ns.

In Fig. 2.34(a) we show the points sampled in the CV space during the simu-
lation, colored according to the value of the bias potential v(U, V, s). We can
clearly distinguish the hourglass shape described in Ref. [118]. In Fig. 2.34(b)
we see the same trajectory plotted on the energy-volume plane. For compar-
ison we show the configuration sampled in an unbiased simulation at a
single temperature and pressure, in which the system remains all the time
in the bcc crystal phase.

We can define the free-energy difference between the two phases as in Ref. [118]:

∆Fliq→bcc(T, p) = − log

(
〈χs∈[0.5,1]〉T,p

〈χs∈[0,0.5]〉T,p

)
, (2.103)

where χ is a characteristic function, equal to 1 if the variable is in the proper
range and 0 otherwise, and 〈·〉T,p is the ensemble average at temperature T
and pressure p.
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Figure 2.35: Phase equilibrium of liquid and solid (bcc) sodium using a combination of thermody-
namic and order parameter expansions. (a) Free-energy difference between the phases, ∆Fliq→bcc,
at different thermodynamic conditions. The coexistence line is shown as a grey dashed line. (b)
Free-energy surfaces as a function of the crystallinity CV, for three representative thermodynamic
conditions. Error bars are smaller than the linewidth.

In Fig. 2.35(a) we show ∆Fliq→bcc(T, p) obtained by reweighting at differ-
ent temperatures and pressures. The coexistence line ∆Fliq→bcc(T, p) = 0
is shown with a dotted grey line. On the right-hand side, Fig. 2.35(b), we
provide the free-energy surface as a function of the CV, F(s), at different
thermodynamic conditions. Error bars are calculated with a weighted block
average (Appendix 2.4.9) and all the results are in agreement with Ref. [118],
see Supplemental Material (Sec. 2.4.10).

It is important to notice that while the relative stability between liquid and
solid changes across the range considered here, the probability of being in
the transition state between the two is always extremely small, as can be seen
from the high FES values around s = 0.5 in Fig. 2.35(b). By actively biasing
the CV s we allow the system to efficiently sample the transition region
as well, and this makes it possible to quickly converge the multithermal-
multibaric simulation despite the presence of a first-order phase transition.

2.4.7 About the Optimal Target Distribution

Before reaching the conclusion of the paper we would like to add a final
remark. At the beginning of Sec. 2.4.4 we presented the nonweighted ex-
panded ensemble target distribution, p{λ}(x) = 1

N{λ} ∑λ Pλ(x). It is reason-
able to wonder if this is an optimal target and in which sense. We argue here
that the effective sample size can be used to define an optimality criterion.

Let us say our goal is to sample from a generalized ensemble that contains all
the relevant microscopical configurations for a give range of the parameter
λ. While the expanded target distribution p{λ}(x), Eq. (2.80), fulfills such a
goal, there are in principle other possible choices.
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It is useful to look at the special case of multicanonical ensembles, that has a
long history (see also Sec. 2.4.5). In this context various different target dis-
tributions have been used, other than the nonweighted expanded ensembles
one. One option is to have a uniform sampling in the energy [86, 108, 109],
another one is to have a uniform sampling in the entropy [110], and a third
one is to define the target by integrating the probability over the tempera-
ture, as in Refs. [114, 120]. In this last approach one often approximates the
integral with a sum, and effectively uses a target similar to our, Eq. (2.80),
which is also the one used in temperature replica exchange. Another in-
teresting perspective is presented in Ref. [144], where a Riemann metric is
introduced to define optimality.

We believe that if our goal is to reweight at different temperatures, then the
optimal target distribution is the one that yields the highest possible uniform
effective sample size over the whole considered ∆λ range. Here we will not
further explore such optimal target distribution nor dig deeper in the defini-
tion of effective sample size. However, simply by defining this criterion we
can notice that one should not see the sum in Eq. (2.80) as an approximation
to an integral. As a matter of fact, using as few as possible intermediate λ
points brings us closer to this optimal target than having more, at least in
the systems we studied (see Supplemental Material, Sec. 2.4.10).

It might also be the case that one is not interested in obtaining statistic for
the whole ∆λ range, but only for a subset of λ states. In this case the optimal
target would be the one that maximizes the effective sample size for those
λ states while ensuring ergodicity. According to this criterion we argued in
Ref. [96] that the well-tempered target is better than a uniform one, since
it allows for an ergodic sampling while providing a higher neff/n ratio and
avoids unimportant high free energy regions.

2.4.8 Conclusion

In this paper we presented a general framework that provides a unified
approach to enhanced sampling. To implement our method we leveraged
the iterative scheme of OPES, an enhanced sampling method based on the
construction of a bias potential along a set of collective variables, that was
originally introduced for metadynamicslike sampling. We showed how this
approach can be used to sample the same expanded ensembles typically
sampled by a different family of enhanced sampling methods.

We also introduced the concept of expansion CVs, ∆uλ(x), that can be used
to fully characterize a nonweighted expanded target distribution p{λ}(x),
Eq. (2.80), together with the free-energy differences to be iteratively esti-
mated, Eq. (2.82), and the target bias, Eq. (2.85).

We then presented various examples of the application of the method to
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Table 2.3: Some of the most common expanded ensembles, together with the expansion collec-
tive variables ∆uλ(x) that define the OPES target bias, Eq. (2.85), and the free-energy differences
∆F(λ), Eq. (2.82). Each of the considered target biases can in turn be expressed as a function
of one or two CVs. It is also possible to easily combine these ensembles to form new ones, as
shown in Sec. 2.4.6.

Target ensemble Expansion CVs Parameters CVs
Linearly expanded λ∆u(x) {λ} ∆u(x)
Multicanonical (β− β0)U(x) {β} U(x)
Multibaric β0(p− p0)V(x) {p} V(x)
Multithermal-baric (β− β0)U(x) + (βp− β0 p0)V(x) {β, p} U(x), V(x)
Multiumbrella (s(x)− sλ)

2/2σ2 {sλ} s(x)

sample the most common expanded ensembles. These ensembles are sum-
marized in Table 2.3. In particular, we have shown how OPES can be used
to enhance at the same time temperature-related fluctuations and a system-
specific order parameter, Sec. 2.4.6.

We notice that in defining the target distribution ptg(x) we consider only
the positional degrees of freedom, and not the atomic velocities. Thus the
ensembles sampled by our method are not identical to the ones sampled,
for instance, by replica exchange, even though the target distribution is the
same. In fact, the two methods sample the same configuration space, but
a different velocity space. This does not have an effect on any statistical
average of observables that are function of the coordinates only, but might
be an interesting point for further research.

In the future it would be interesting to combine expanded target distri-
butions with well-tempered-like distributions, which can scale better with
higher dimensionality. Also weighted expanded targets might be of interest,
where each subensemble λ has a specific different normalized weight. It
might also be useful to implement the target distribution implicitly used by
bias-exchange and parallel-bias metadynamics [50, 73], that scales efficiently
with the number of CVs. More generally, we believe that our perspective of
focusing on the target distribution has further potential that should be ex-
plored.

Data Availability Statement

The method is implemented in the open source PLUMED enhanced sam-
pling library [38], and will be available as a contributed module called
OPES. All the input files and postprocessing scripts used for this paper
are openly available on the PLUMED-NEST [91] (www.plumed-nest.org,
plumID:20.022), and in the Materials Cloud Archive (www.materialscloud.
org, materialscloud:2020.81), where also the trajectories of the simulations
are stored.
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2.4.9 Appendix

A. Algorithmic Scheme

We schematically present the OPES algorithm used for sampling expanded
ensembles.

• INITIALIZATION: each set of expansion CVs can be initialized inde-
pendently, following one of two strategies
- manual Choose the expansion CVs ∆uλ(x) and initialize ∆F0(λ) =
∆uλ(x0)
- automatic (linear expansions only) Chose λmin and λmax. Run ninit
unbiased simulation steps, and use neff(λ) as described in Sec. 2.4.5 to
define the {λ} set. Initialize ∆F0(λ) via Eq. (2.88), using the ninit points
and v = 0

• SIMULATION: run the simulation for τ steps with potential u(x) +
vn(x). Add the point xn+1 = x(nτ) to the estimate ∆Fn+1(λ) and thus
define vn+1(x), according to Eqs. (2.88) and (2.87). If multiple walkers
are present, use each different configuration xn+1 to update the same
∆Fn+1(λ) estimate.

• REWEIGHTING: to reweight for an observable O(x) store its value
during the simulation, together with the value of the potential v and
use Eq. (2.89)

B. Weighted Block Average

When estimating the uncertainty related to an ensemble average obtained
from molecular dynamics, one must take into account for the time correla-
tion between the samples. Methods such as block averaging [145] are com-
monly used to properly handle this. The effect of such time correlation is to
make the sample size effectively smaller, thus simply taking the square root
of the variance divided by the number of samples would underestimate the
actual uncertainty. When dealing with weighted samples, as it is the case
when a bias potential is used, the effective sample size is further reduced
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by the presence of these weights. To account also for this effect we should
slightly modify the block averaging procedure. We report here the protocol
that we follow to estimate uncertainties, which is the same as the one pre-
sented in Ref. [126], but here we highlight the role played by the effective
sample size.

We are interested in estimating the ensemble average of an observable O =
O(x) from a biased ensemble

〈O〉 ≈ Ô =
∑n

k=1 Okwk

∑n
k=1 wk

, (2.104)

where wk are the weights due to the bias potential, as in Eq. (2.89). In order
to estimate the uncertainty we divide the data into M sub-sets or blocks,
each containing an equal number of samples n/M. We then calculate the
estimate Ôi from each block, via a weighted average, and also the weight of
the ith block

Wi =
i(n/M)

∑
k=(i−1)(n/M)

wk . (2.105)

In this way the total estimate can be obtained as the weighted average of the
blocks,

Ô =
∑M

i=1 WiÔi

∑M
i=1 Wi

. (2.106)

Then according to the usual block average procedure we estimate the unbi-
ased variance between the blocks, that in this case is a weighted variance:

σ2
O =

Meff

Meff − 1
∑M

i=1 Wi(Ôi − Ô)2

∑M
i=1 Wi

, (2.107)

where instead of the total number of blocks M, we use the effective block
size Meff < M:

Meff =

(
∑M

i=1 Wi

)2

∑M
i=1 W2

i

, (2.108)

that is the same as Eq. (2.90). The statistical error on the Ô estimate is then
σO/
√

Meff. When the number of blocks M is small, or when the weight
Wi are unbalanced, using M instead of Meff can introduce a considerable
underestimate of the real uncertainty.

The usual block average procedure can then be carried out, repeating the
analysis using different number of blocks M and looking for a plateau in
the error estimate.
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C. Improving Robustness for the Multiumbrella Target

In some cases, when targeting the multiumbrella ensemble it can be impor-
tant to introduce two small modifications, to make the iterative optimiza-
tion scheme more effective. We did not use these modifications in any of
the examples presented, but we found them useful for dealing with more
challenging systems and thus have been implemented in the code.

When the iterative scheme starts, the first guess of the ∆Fn(sλ) comes from
just one single point, and is thus very inaccurate for CV values far away
from the visited one. In particular it tends to become extremely large, which
causes the bias to be very strong in pushing the system to the farthest sλ-
value. This initial bias is stronger the smaller the σ, and might even cause
the simulation to fail during the very first biased steps. To avoid this, we
can limit the initial value of the ∆Fn(sλ) estimates to be always smaller than
a given value, thus ∆F0(sλ) ≤ ∆E. This ∆E value can be set to be equal to an
estimate of the free-energy barrier that has to be overcome. Thus, similarly
to Ref. [96], we add an extra optional parameter called “barrier”, that sets the
value of ∆E. This barrier guess does not have to be perfect and a very rough
estimate typically suffices. Also, we did not observe significant change in
the convergence speed, thus we suggest to use this extra parameter only in
case of an initial failure of the simulation, due to a too strong initial bias.
The barrier parameter can in principle be used also with types of expansion
other than the multiumbrella one, even though in those cases it might be
less useful.

The second modification, comes from the observation that, contrary to the
previously considered expanded ensembles, the multiumbrella one is not
guaranteed to sample the full unbiased distribution P0(x). This can be a
problem for the iterative scheme, because all the ∆Fn(sλ) use as reference the
unbiased free energy F0 = − log Z0, whose estimate can vary substantially if
P0 is not properly sampled. Typically it should be easy to chose an interval
∆s that contains all the s values relevant for P0, but if this is not the case then
the problem can be fixed by simply adding P0 itself to the target distribution.
To add P0 to the target, it is sufficient to add an extra expansion CV ∆u0(x) ≡
0, that always returns zero.

2.4.10 Supplemental Material

Alanine Dipeptide

The simulations for the alanine dipeptide example are performed with GRO-
MACS [37] 2018.6 patched with a custom version of PLUMED [38] 2.6, that
is available on the PLUMED-NEST website [91]. The setup is the same of
Refs. [80, 96], thus canonical ensemble (NVT) in a vacuum, Amber99-SB
force field [66], time step 2 fs, temperature T0 = 300 K, velocity rescaling
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Figure 2.36: Trajectories for the potential energy U and the dihedral angle ϕ of alanine dipeptide
for two different OPES run. The difference between the two is the target distribution: (a) is the
multicanonical expanded one, while (b) is the well-tempered one with respect to the ϕ and ψ
angles.

thermostat [36]. The only input needed to perform the multicanonical simu-
lation presented in the main text was the temperature range, Tmin = 300 K
and Tmax = 1000 K, and the pace at which updating the bias potential, which
was set to 500 simulation steps, thus 1 ps. For this simple system the bias
converges so quickly that we did not have to drop any initial transient before
performing reweighting, e.g. in producing Fig. 2.29 of the main text.

We show in Fig. 2.36 the comparison between two alanine dipeptide simula-
tions at 300 K where OPES has been used for sampling two different target
distributions. On the right, Fig. 2.36a, we use the multicanonical expanded
target presented in Sec. 2.4.5 of the main text, while on the left, Fig. 2.36b,
the well-tempered over the dihedral angles is used, with same parameters
as in Ref. [96]. While the two sampled ensembles are very different they can
be both properly reweighted to obtain for instance the free energy difference
between the two metastable ∆FAB at 300 K. While for calculating ∆FAB at a
single temperature it is more convenient to directly bias ϕ and ψ, this re-
quires some knowledge of the system, and in general it is far from trivial to
identify good CVs, thus a more generic approach such as the multicanonical
one can be useful.

We notice that the sampling obtained with our multicanonical simulation
is very different from the one that can be achieved by biasing the energy
with metadynamics, as proposed in Refs. [100, 106]. This is due to the
very different target distributions they aim to sample. Biasing the energy
in metadynamics enhances the energy fluctuations without seeking a spe-
cific temperature range. For instance, by using the well-tempered ensemble
[100] in the above alanine example, one would sample also lower energies
(associated to lower temperatures) and it would not be trivial to decide how
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Figure 2.37: Difference in using only 3 sub-temperatures, or 1000. (a) shows the energy
histogram of the sampled ensemble, while (b) shows the relative effective sample size as a
function of the temperature. Once the intermediate steps are enough to ensure good overlap,
adding more does not lead to a better target distribution.

much bias to deposit in order to sample all the relevant energies for the
given temperature range.

Next in Fig. 2.37 we show how the multicanonical target distribution for
alanine dipeptide changes when varying the number N{β} of intermediate
temperatures. By default the number of intermediate temperatures is de-
termined automatically via a short (100 ps in this case) unbiased simulation
(see Sec. 2.4.5). In the considered alanine example this suggest the use of just
3 temperatures, equispaced in β: T1 = 300 K, T2 = 461.538 K, T3 = 1000 K.
As discussed in Sec. 2.4.7 of the main text adding more intermediate tem-
peratures might not bring better sampling. We can see this by plotting the
effective sample size neff relative to the total sample size n. We see that by
using N{β} = 3 we can cover in a more uniform way the temperature in-
terval, compared to the case of N{β} = 100. This suggest that the optimal
target distribution is not the one obtained by substituting the sum with an
integral.

Finally, we notice that figures identical to Figs. 2.36a and 2.37 can be ob-
tained by running parallel tempering simulations and combining all the tra-
jectories into one, provided that the same intermediate temperatures are
used.

Double-well Model

The double-well Langevin model is the same use in Refs. [80, 96], and is
implemented in PLUMED. The 2D potential energy is defined by rotating of
an angle θ = −0.6 π

4 the following potential:

u(x, y) = x4 + y4 − 2 x2 − 4 y2 + xy + 0.3 x + 0.1 y . (2.109)
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Figure 2.38: The ∆F(xλ) of the double-well model, for different choices of σ. The black dotted
line is the reference free energy surface. The case σ = 0.1 σ0, N{λ} = 270, is not shown because
it perfectly matches the reference line.

Fig. 2.38 shows how the estimated ∆F(xλ) changes when varying the width
of the umbrellas σ. The corresponding target distribution along x are shown
in Fig. 2.33(b) of the main text. The estimate of the free energy surface F(x)
obtained from reweighting is instead independent from the choice of σ.

Fig. 2.39 presents a comparison between OPES using different kind of tar-
get distributions, namely the multiumbrella one and the well-tempered one,
and metadynamics. In a one dimensional problem the multiumbrellas tar-
get can be slightly more efficient than the well-tempered one. However,
OPES with a well-tempered target is more versatile, since it can be used also
without knowing in advance the CV range, and can be scaled up to higher
dimensions more efficiently, as shown in Ref. [96].

Sodium

The sodium simulations were performed in the same setting as Ref. [118].
We show the sampled space in Figs. 2.40 and 2.41.
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Figure 2.39: The estimate of the free energy difference ∆FAB between the two basins of the
model, obtained with different methods, by averaging 10 independent runs. The run obtained
using OPES with the multiumbrella target uses σ = σ0 = 0.185815. The results for OPES with
a well-tempered target and metadynamics are taken from Ref. [96].
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Figure 2.40: Sampled sodium configurations in the energy-volume space, (a) at fixed tempera-
ture and pressure, biasing the crystallinity CV with a multiumbrella target, and (b) multithermal,
multibaric, and multiumbrella simulation, the same used in Fig. 2.34 in the main text.

Figure 2.41: Sampled sodium configurations for the multithermal-multibaric-multiumbrella sim-
ulation in the energy-volume-crystallinity space. (a) Colored accordingly to the crystallinity CV
s. (b) Colored accordingly to the value of the bias v(U, V, s). The hourglass shape described in
Ref. [118] is clearly visible.
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Chapter 3

Conclusion and future works

3.1 Conclusion

In this thesis I have presented OPES, a novel computational method for per-
forming enhanced sampling molecular simulations. The method works by
estimating on-the-fly the ratio between the underlying probability distribu-
tion and the chosen target distribution, and using its logarithm as bias poten-
tial. The estimate is obtained via reweighting and is updated one sample at
the time, so that after a brief initial transient the bias changes in an adiabatic
fashion. The OPES method aims at making enhanced sampling simpler to
use, with few robust input parameters and a straightforward reweighting
scheme. Furthermore, it has been developed with suboptimal collective vari-
ables in mind, to efficiently deal with them. The inspiration for OPES has
come from the experience with metadynamics and VES, and the method
inherits many of their traits, while improving on some of their weaknesses.
OPES is a collective variable based method, but it has been shown that it is
capable also of performing expanded ensemble simulations, thus opening a
novel unified perspective on enhanced sampling.

The first two articles included in this thesis show the preliminary develop-
ment of the ideas that are at the basis of the OPES method, while the last
two articles introduce the actual OPES method, applying it to two different
families of target distributions. On the one hand, we have distributions de-
fined by their projection into a smaller CV space, similar to those sampled
by adaptive umbrella sampling or metadynamics. On the other hand in-
stead, are expanded target distributions obtained by summing distributions
that differ only by a small amount, as it is the case for temperature temper-
ing distributions, or more in general distributions sampled by the replica
exchange method.
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3.2 Future works

3.2.1 Target distributions

In future works I would like to further extend OPES by applying it to sam-
ple other types of target distributions. One interesting possibility is to target
uniform-entropy ensembles, similar to those sampled by nested sampling
[111]. Another type of target distribution that could find practical applica-
tions is the one sampled by bias-exchange or parallel-bias metadynamics
[50, 73], which allows for a more efficient scaling of the sampled volume
with the CVs dimensionality, compared to the well-tempered distribution.

Yet another exciting possibility would be to use machine learning for design-
ing novel efficient target distributions, instead of limiting its usage to the
search of collective variables. This is interesting because we have evidence
that even without modifying the CVs, one can achieve better performances
simply by properly changing the target distribution. As an example, when
the potential energy is used as CV, much better sampling can be obtained
by targeting the expanded multicanonical ensemble rather than the uniform
one, as discussed in Sec. 2.4. Such machine learning algorithms should aim
at target distributions that increase the probability of sampling transition
states, while maximizing the effective sample size of the reweighting to the
original distribution.

3.2.2 Exploration

Finally, there is another OPES variant that I have been developing and will
be presented in a future article.1 To understand the need for this new variant,
we must first distinguish between suboptimal CVs and degenerate CVs. A
degenerate CV is a suboptimal CV that not only ignores some slow mode
of the system, but it also maps different physical states into the same CV-
space region. An exemplification of a degenerate CV is presented in Fig. 3
of Ref. [52]. A typical metadynamics simulation when using a degenerate
CV will present multiple transitions between the identified metastable states,
but the bias will be extremely slow to converge, and any estimate, such as
the one of the free-energy difference between the states, will have both a
significant statistical error and an uncontrolled systematic error. If instead
one uses such degenerate CV with the OPES method as presented in Sec. 2.3,
typically the initial coarse estimate of the free energy surface will be wrong,
and thus after only one or few transitions, the simulation will likely remain
stuck in the metastable state that is mislabeled by the CV. This can be a great
advantage when developing a new CV, because it gives a clear indication
that the chosen CV is degenerate and should be improved. However, it is

1A development version of the code is already available in the PLUMED library www.

plumed.org/doc-master/user-doc/html/_o_p_e_s__m_e_t_a_d__e_x_p_l_o_r_e.html .
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not always possible to improve a CV, and it can be useful to have a method
that is robust with respect to degenerate CVs, thus still capable of exploring
the free energy surface and give a rough estimate of it even in this scenario.

In order to obtain a method that is less sensitive to degenerate CVs, one can
simply base the OPES procedure on the estimate of the sampled distribution,
instead of the reweighted one. This is easy to do when the target is the
well-tempered distribution pWT(s) ∝ [P(s)]1/γ, that can be estimated as in
Eq. (2.60) but with uniform weights, wk = 1, thus

p̃WT
n (s) =

1
n

n

∑
k

G(s, sk) . (3.1)

The bias, Eq. (2.63), can then be written as

Vn(s) = (γ− 1)
1
β

log
(

p̃WT
n (s)
Zn

+ ε

)
. (3.2)

By making just this simple change, we obtain a method that is better suited
for exploring the CV space even in case of a degenerate CV. It can be shown
that also this OPES variant correctly converges to the well-tempered dis-
tribution, and it can be reweighted with the same simple procedure, after
discarding the initial non-adiabatic part of the simulation.

This novel variant of OPES has a convergence behaviour more similar to the
one of well-tempered metadynamics rather than the standard OPES scheme
presented in Sec. 2.3. However, it retains some of the good features of OPES,
in particular it requires fewer input parameters, scales better to higher di-
mensional CVs and has a straightforward reweighing scheme. I believe that
this new OPES variant can become a handy tool for quickly exploring the
free energy surface of new systems, making enhanced sampling even easier
to use also for non-experts.
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Other articles

This chapter contains all the other articles that I co-authored during my PhD
and were not included in the thesis. Rather than listing them in chronologi-
cal order, here I group them according to their subject.

First there is a paper based on a brief presentation of the OPES method that
I submitted to the 2020 National Congress of the Italian Physical Society and
that was selected for publication.

• M. Invernizzi. ”OPES: On-the-fly Probability Enhanced Sampling
Method.” submitted to Il Nuovo Cimento C (2021) preprint on arXiv.
URL https://arxiv.org/abs/2101.06991

The successive article uses the variationally enhanced sampling method and
explores a novel kind of target probability distribution.

• J. Debnath, M. Invernizzi, and M. Parrinello. ”Enhanced sampling of
transition states.” Journal of chemical theory and computation 15.4 (2019):
2454-2459. URL https://pubs.acs.org/doi/abs/10.1021/acs.jctc.

8b01283

The papers that follow next deal with the phenomenon of crystallization. My
contribution to them is related to the work on the density Fourier transform
as a collective variable, reported in Sec. 2.1.

• H. Niu, P. M. Piaggi, M. Invernizzi, and M. Parrinello. ”Molecular
dynamics simulations of liquid silica crystallization.” Proceedings of the
National Academy of Sciences 115.21 (2018): 5348-5352. URL https://

www.pnas.org/content/115/21/5348

• P. Ahlawat, H. Lu, A. Ummadisingu, H. Niu, M. Invernizzi, S. M.
Zakeeruddin, A. Hagfeldt, M. Graetzel, U. Rothlisberger, and M. Par-
rinello. ”Molecular dynamics simulations of two-step process enable
room-temperature synthesis of α-FAPbI3.” submitted to Science Advances
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(2020) preprint on ChemRxiv. URL https://doi.org/10.26434/chemrxiv.

13084265.v1

• T. Karmakat, M. Invernizzi, V. Rizzi, and M. Parrinello. ”Collective
Variables for the Study of Crystallization.” submitted to Molecular Physics
(2021) preprint on arXiv. URL https://arxiv.org/abs/2101.03150

The following papers instead, are about path integral simulations of fermionic
particles. My contribution is related to applying reweighting and other tech-
niques typical of enhanced sampling in order to ease the fermion sign prob-
lem.

• B. Hirshberg, M. Invernizzi, and M. Parrinello. ”Path Integral Molec-
ular Dynamics for Fermions: Alleviating the Sign Problem with the
Bogoliubov Inequality.” The Journal of Chemical Physics 152.17 (2020):
171102. URL https://aip.scitation.org/doi/10.1063/5.0008720

• T. Dornheim, M. Invernizzi, J. Vorberger, and B. Hirshberg. ”Atten-
uating the fermion sign problem in path integral Monte Carlo sim-
ulations using the Bogoliubov inequality and thermodynamic integra-
tion.” The Journal of Chemical Physics 153.23 (2020): 234104. URL https:

//aip.scitation.org/doi/10.1063/5.0030760

Finally, I am part of the PLUMED consortium (www.plumed-nest.org) that
promotes open science and reproducibility of molecular dynamics protocols.
I contributed by sharing all the inputs of the simulations in my papers, and
by implementing into the open-source library PLUMED (www.plumed.org)
the methods I developed.

• M. Bonomi, G. Bussi, C. Camilloni, G.A. Tribello et al. ”Promoting
transparency and reproducibility in enhanced molecular simulations.”
Nature methods 16.8 (2019): 670-673. URL https://www.nature.com/

articles/s41592-019-0506-8

• Implementation of the method presented in Sec. 2.2 . URL www.plumed.

org/doc-master/user-doc/html/_v_e_s__d_e_l_t_a__f.html

• Contributed module, where OPES is implemented. URL www.plumed.

org/doc-master/user-doc/html/_o_p_e_s.html
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