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A B S T R A C T

Urban transport is a substantial issue in many countries. Congestion and
public transport unreliability need to be addressed. Any new policy needs
to be tested comprehensively against people’s behavior. This thesis compre-
hensively captures travel behavior and willingness to pay for the transporta-
tion modes. This thesis further develops an agent-based model of Greater
Jakarta to model all complex interactions in which individuals interact with
households, activities, and facilities.

There were several steps to develop the model. Firstly, the demand was
built based on the survey of JICA in 2012 and combined with the RP
survey to capture the trip purposes. We used the Bayesian network and
generalized raking for the population synthesis. This method can generate
the travel demand that represents the population in Greater Jakarta. We
created a 30 million synthetic population based on responses from around
600,000 individuals from 170,000 households. Secondly, networks and public
transport lines were built as supply facilities. The data from Open Street
Map was used to create the network, and the data of public transport
lines were scraped from Trafi. This supply and demand-side were used
for running the agent-based model using multi-agent transport simulation
(MATSim).

The thesis also created a state of the art a stated preference (SP) and
revealed a preference (RP) survey with 5,000 respondents. This thesis de-
veloped a model by pooling SP and RP datasets using the multinomial
logit model (MNL) and mixed logit model (MXL) to see how those modes
affect mode choice. The parameter estimated from the model is used to
calibrate the MATSim model so that the mode share from the MATSim
model matches the HTS. Utilizing parameter estimated from the choice
model claims to speed up the simulation time and convergence.

There are new modes of transportation options available that have been
investigated, such as on-demand transports (car-based, motorcycle-based)
that exist in many countries due to the development of information commu-
nication technology (ICT). Other alternatives will be available in the coming
years, such as autonomous vehicles and urban air mobility (UAM).

The results show interesting results. First, the development of the scenario
for greater Jakarta required a lot of effort. The availability of data and the
population’s size required expensive computations starting from population
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synthesis to model simulation. Second, we investigated the willingness to
pay (WTP), e.g., the value of travel time savings (VTTS), value of travel time
assigned to travel (VTAT), and the elasticity for all mode choice alternatives,
including on-demand transport (ODT) and UAM. Third, we found that
the recorded travel behavior answered several questions, such as who the
users are, when the users use it, the users’ purposes, and the speed at
different distances and locations. Finally, we developed a scenario for policy
recommendations using an agent-based model. In this case, we modeled
road pricing implementation on main roads in Jakarta.

This research contributes by building an agent-based model scenario
and investigates the impact of congestion charging in Greater Jakarta. This
research will be a base of future research for developing more complex sce-
narios. This thesis advises on the improvement of urban transportation in
Greater Jakarta. The model can be employed and replicated to answer sev-
eral issues in other agglomerations in Indonesia, such as Greater Bandung,
Greater Bali, Greater Surabaya, Greater Medan, and Greater Makassar.
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Z U S A M M E N FA S S U N G

Der Stadtverkehr ist in vielen Ländern ein wesentliches Thema. Staus
und die Unzuverlässigkeit des öffentlichen Verkehrs müssen angegangen
werden. Jede neue Politik muss umfassend anhand des Verhaltens der
Menschen getestet werden. Diese Arbeit erfasst umfassend das Reisever-
halten und die Zahlungsbereitschaft für die Verkehrsmittel. Diese Arbeit
entwickelt außerdem ein agentenbasiertes Modell des Großraums Jakarta,
um alle komplexen Interaktionen zu modellieren, bei denen Individuen mit
Haushalten, Aktivitäten und Einrichtungen interagieren.

Es gab mehrere Schritte zur Entwicklung des Modells. Zunächst wurde
die Nachfrage auf der Grundlage der JICA-Umfrage von 2012 erstellt und
mit der RP Umfrage kombiniert, um die Fahrtzwecke zu erfassen. Wir ver-
wendeten das Bayes’sche Netzwerk und verallgemeinertes Raking für die
Bevölkerungssynthese. Diese Methode kann die Reisenachfrage generieren,
die die Bevölkerung im Großraum Jakarta repräsentiert. Wir erstellten eine
synthetische Bevölkerung von 30 Millionen, basierend auf den Antworten
von etwa 600.000 Personen aus 170.000 Haushalten. Zweitens wurden Netze
und Linien des öffentlichen Verkehrs als Versorgungseinrichtungen erstellt.
Zur Erstellung des Netzwerks wurden die Daten von Open Street Map
verwendet, und die Daten der öffentlichen Verkehrslinien wurden von Trafi
gescraped. Diese Angebots- und Nachfrageseite wurden für die Ausfüh-
rung des agentenbasierten Modells unter Verwendung der Multiagenten
Transportsimulation (MATSim) verwendet.

Im Rahmen dieser Arbeit wurde auch eine State-of-the-Art-Umfrage zur
angegebenen Präferenz (SP) und zur offengelegten Präferenz (RP) mit 5.000

Befragten erstellt. In dieser Arbeit wurde ein Modell entwickelt, indem SP-
und RP-Datensätze unter Verwendung des multinomialen Logit-Modells
(MNL) und des gemischten Logit-Modells (MXL) zusammengeführt wur-
den, um zu sehen, wie diese Modi die Verkehrsmittelwahl beeinflussen.
Die aus dem Modell geschätzten Parameter werden zur Kalibrierung des
MATSim-Modells verwendet, so dass der Verkehrsmittelanteil aus dem
MATSim-Modell mit der HTS übereinstimmt. Die Verwendung der aus
dem Wahlmodell geschätzten Parameter soll die Simulationszeit und die
Konvergenz beschleunigen.

Es gibt neue Transportmöglichkeiten, die untersucht wurden, wie z. B.
Transporte auf Abruf (mit dem Auto, mit dem Motorrad), die in vielen
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Ländern aufgrund der Entwicklung der Informations- und Kommuni-
kationstechnologie (IKT) existieren. Weitere Alternativen werden in den
kommenden Jahren verfügbar sein, wie z. B. autonome Fahrzeuge und
urbane Luftmobilität (UAM).

Die Ergebnisse zeigen interessante Resultate. Erstens erforderte die Ent-
wicklung des Szenarios für den Großraum Jakarta einen hohen Aufwand.
Die Verfügbarkeit von Daten und die Größe der Bevölkerung erforderten
aufwendige Berechnungen, angefangen von der Bevölkerungssynthese bis
zur Modellsimulation. Zweitens untersuchten wir die Zahlungsbereitschaft
(WTP), z. B. den Wert der Reisezeitersparnis (VTTS), den Wert der für
die Reise aufgewendeten Zeit (VTAT) und die Elastizität für alle Verkehrs-
mittelwahlalternativen, einschließlich On-Demand-Transport (ODT) und
UAM. Drittens fanden wir heraus, dass das aufgezeichnete Reiseverhalten
mehrere Fragen beantwortet, z. B. wer die Nutzer sind, wann die Nutzer es
nutzen, die Zwecke der Nutzer und die Geschwindigkeit bei verschiedenen
Entfernungen und Orten. Schließlich entwickelten wir ein Szenario für po-
litische Empfehlungen unter Verwendung eines agentenbasierten Modells.
In diesem Fall modellierten wir die Implementierung von Straßenbenut-
zungsgebühren auf Hauptstraßen in Jakarta.

Diese Forschung trägt dazu bei, indem sie ein agentenbasiertes Modells-
zenario erstellt und die Auswirkungen von Staugebühren im Großraum
Jakarta untersucht. Diese Forschung wird eine Basis für zukünftige For-
schung sein, um komplexere Szenarien zu entwickeln. Diese Arbeit gibt
Ratschläge für die Verbesserung des städtischen Verkehrs im Großraum Ja-
karta. Das Modell kann eingesetzt und repliziert werden, um verschiedene
Fragen in anderen Ballungsräumen in Indonesien zu beantworten, wie z.B.
im Großraum Bandung, Großraum Bali, Großraum Surabaya, Großraum
Medan und Großraum Makassar.
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1
I N T R O D U C T I O N

1.1 motivation

Agent-based modeling has been growing in recent decades with its ability
to capture people’s behavior. This approach is an important step towards
capturing the complex interaction between people’s behavior and infrastruc-
tures. On one hand, each person has different characteristics like income,
age, gender, and trip purpose. On the other hand, infrastructure has several
constraints, such as starting time, closing time, and access to infrastructures.
This complex interaction makes the system difficult to model.

We develop a model of this type for Greater Jakarta, which has a massive
population of around 30 million inhabitants and many different types of
transport modes available. Greater Jakarta consists of 3 provinces with a
total of 13 cities. This area, as the capital region, has a considerable impact
on the Indonesian economy. Therefore, solving urban transport problems
will be beneficial for the economy and quality of life in Greater Jakarta.

However, agent-based modeling has not been well adopted for Indonesia.
Only in Padang, Indonesia where Taubenböck et al. (2013) simulate the
evacuation during Tsunami. Transport infrastructures have been planned
based on the needs for small scale regions with some facilities not connected
to each other. For example, when we have to transfer to another transport
mode and it is not in a walkable distance. In the past, we used the four-step
model as a transport planning tool. Recently, there are many emerging
modes of transport, like ride-hailing, car-sharing, electric car sharing, urban
air mobility, which can not be modeled fully with a conventional four-
step model. Therefore, this method can not help us to model complex
interactions anymore.

1.2 research gap

Previous studies were conducted in Greater Jakarta. However, they are
limited to a four-step model, which only consider aggregate origin and
destination trip (Hadian, 2018), choice modeling (Belgiawan et al., 2019b;
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2 introduction

Ilahi et al., 2018), and analysis of an activity diary survey (Dharmowijoyo
et al., 2016; Yagi and Mohammadian, 2010).

This research, therefore, is integrating the results from a choice model
and activity diary survey to develop an agent-based model, which can
model people’s behaviour this should improve the accuracy of the model as
each person is simulated based on its socio-demographic attributes, activity
location, activity chain, mode choice, and facilities constraint. However, the
agent-based model consume considerable amount of time to simulate and
need much more detailed data-sets especially for large number of agents.

Furthermore, this study comprehensively captures the impact of emerg-
ing transport modes in Greater Jakarta such as car On-Demand transport
(ODT), and motorcycle (MC) ODT, which are growing in recent years. This
study also investigates urban air mobility (UAM), which can be an option
for future transport. The impact of congestion charging is also investigated
by usng an agent-based model. In this model, we consider for both car
and motorcycle the income of the users, which previous studies did not
consider (de Freitas et al., 2017; de Palma and Lindsey, 2006; Kaddoura and
Kickhöfer, 2014).

We conducted a Stated Preference (SP), and Revealed Preference (SP)
survey to obtain the parameter estimates for a mode choice model. Further,
we used the results from the RP survey to include mandatory and secondary
activities in our simulation. We used MATSim (Multi-Agent Transport
Simulation) as a tool for the agent-based model (Horni et al., 2016).

1.3 research objectives

The main objectives of this research is to create an agent-based model of
Greater Jakarta, which further is used as a model to investigate different
transport policies. To develop the model, we did several steps from the de-
mand and supply side. The second chapter discusses population synthesis,
where we develop the demand for our model.

The third chapter describes two surveys, i.e. the revealed preference (RP)
survey, and stated preference (SP) survey. It discusses the survey design,
descriptive analysis, and the parameter estimate based on the multinomial
logit (MNL) model and mixed logit (MXL) model.

The fourth chapter discusses the MATSim network and the public trans-
port lines, which we have developed based on current conditions. The fifth
chapter describes the model building, where we combine the results of the
population synthesis with the choice model. The sixth chapter discusses



1.4 original papers and contributions 3

the policy scenario. Finally, the last chapter discusses the conclusions and
recommendations.

1.4 original papers and contributions

Each chapter of this thesis is based on several papers. The following para-
graphs explain the part of the paper in the chapter.

• Chapter 2 is based on Ilahi and Axhausen (2019), which was done by
Ilahi and updated to cover all activities of people behaviour in Greater
Jakarta. Kay Axhausen provided guidance, comments, and editing.

• Chapter 3 is based on Ilahi et al. (2019d), which is under review.
Ilahi created the survey and experimental design, did the analysis,
managed the survey process, and prepared the manuscript. Axhausen
provided guidance, comments, and editing. Belgiawan supervised the
fieldwork, commented, and edited, and Balac provided comment and
editing. The survey was funded by IVT ETH Zurich as a part of an
ongoing Airbus project.

• Chapter 4 is based on Ilahi et al. (2019d,c); Belgiawan et al. (2019b)
which are under review and published respectively, for which Ilahi
created the survey, did the analysis, managed the survey process, and
prepared the manuscript. Axhausen provided guidance, comments,
and editing. Belgiawan supervised the fieldwork, comments, and
editing, and Balac provided comments and editing. The survey was
funded by IVT ETH Zurich as a part of an ongoing Airbus project.

• Chapter 5 and 6 are based on Ilahi et al. (2019a). They also based
on Ilahi et al. (2019b), which is not published yet. Balac provided
comments, Kay Axhausen provided guidance, comments, and editing.
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2
P O P U L AT I O N S Y N T H E S I S

2.1 introduction

This chapter discusses how we conducted the population synthesis. Several
methods are discussed in this chapter, the advantages and disadvantages
of each method and implementation in other countries.

Many studies have mentioned that agent-based transportation mod-
els require detailed individual and household information such as socio-
demographic variables, and geocoding of activity locations (Balmer et al.,
2006). These data can be collected from multiple data sources. To collect
all those data for a population is costly in terms of time and resources.
Therefore, several approaches can be used for population synthesis from
limited data. One of the initial methods is iterative proportional fitting
(IPF), which was first introduced by Deming and Stephan (1940) and first
implemented in transport research by (Beckman et al., 1996). To tackle the
sample problems, Barthelemy and Toint (2013) developed a method for the
synthetic population without a sample by using the available information
of dis-aggregated level data and random draws. This method was shown
to be able to produce a consistent synthetic population. IPF consists of
several iteration steps, where each row and each column are proportionally
adjusted to be equal to the marginal row, and column totals. The steps are
repeated until both row and column converge or the sum of the rows and
columns are relatively similar to their marginal total. However, the control
total of IPF is based on marginal individual or marginal household totals.
Since IPF is widely used for population synthesis, there are several efforts
to improve the quality of IPF and to develop new approaches. As reviewed
by Müller and Axhausen (2011); Sun and Erath (2015), the IPF has been
extended by many researchers, for example, to deal with the zero-cell issue
(Guo and Bhat, 2007). Ye et al. (2009) proposed an iterative proportional up-
dating (IPU), Pritchard and Miller (2012) addressed memory consumption
issues. Additionally, Casati et al. (2015); Zhu and Ferreira (2014) introduced
hierarchical and multi-stage IPF procedures. IPU and Hierarchical IPF are
an advanced method of IPF that consider household and individual control
totals. However, if it only uses one type of control total, it is considered as
IPF.

5
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Furthermore, there are other methods, such as Combinatorial Optimiza-
tion (CO) (Voas and Williamson, 2001). CO is a method that estimates the
integer weight of a sample and replicates it to the desired marginal target
total. This method claims to have less variance than IPF. Farooq et al. (2013);
Saadi et al. (2016a) proposed a Markov Chain Monte Carlo (MCMC) method
that deals with the zero-cell issue. There is an extension of MCMC, called
hierarchical MCMC, that uses individual and household attributes simulta-
neously. Hafezi and Habib (2014) further employed fitness based synthesis
(FBS), which allows considering multilevel controls by selecting variables
that have maximum fitness value. However, this approach gave less accuracy
when there was a more detailed classification of attributes. Sun et al. (2018)
developed a hierarchical mixture model. This method is combining three
different models i.e., probabilistic tensor factorization, multilevel latent
class modeling, and rejection sampling. This approach can produce a pool
of agents that consider the inter-dependencies of household and individual
structure. This method is complicated and not widely applicable, though.

Several use cases employ population synthesis with different approaches.
We summarize the use cases of the various methods for different locations
and population sizes. As can be seen in Table 2.1, most of the locations are in
developed countries and have a population under 10 million. Furthermore,
there is related software that can be used for the synthetic population
generation, such as, PopoSynWin, ILUTE, PopGen, FSUMTS, CEMDAP,
ALBATROS , R package sms, R package synthpop, TRANSIMS, Synthia,
and SMILE (Müller and Axhausen, 2011; Templ et al., 2017).
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Source Location Methods
Sample
size (%)

Population
in

millions

Barthelemy and
Toint (2013)

Belgium randomly
drawing

0 10.00

Casati et al. (2015) Singapore IPF 1 4.00

Farooq et al. (2013) Brussels MCMC 0.1 1.20

Hafezi and Habib
(2014)

Canada FBS 1 1.30

Huynh et al. (2013) Sydney CO NA 5.00

Moeckel et al. (2003) Netanya IPF with
MCMC

6 2.60

Müller and Ax-
hausen (2011)

Switzerland IPF 5 8.00

Pritchard and Miller
(2012)

Canada IPF With
MCMC

2 3.42

Saadi et al. (2016a) Brussels MCMC,IPF 0.1 1.20

Sun and Erath (2015) Singapore Comparing
BN,
MCMC,
IPF, and
DI

1
*

4.00

Ye et al. (2009) Arizona IPU 8 3.07

Zhang et al. (2017) San Francisco BN 6 7.00

Zhu and Ferreira
(2014)

Singapore IPF 1 4.0

∗Tests from 1% to 100% of sample size

Table 2.1: Summary of use cases of population synthesis

As an alternative, Sun and Erath (2015); Zhang et al. (2017) employed
Bayesian networks (BN) for the task. They claim that it can capture com-
plex interaction and hierarchical household structure of the sample and
show that it is better than other methods (i.e., MCMC, DI, and IPF). More-
over, Saadi et al. (2016b) used the Hidden Markov model (HMM), which is a
stochastic model that learns a complex joint distribution sample structure or
known as the simplest BN. However, this model has less consideration for
the hierarchical household structure. Since HMM could not fit the marginal
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totals, Saadi et al. (2018) improved the method that integrated an HMM and
IPF. After the combination, the model can give a quasi-perfect result.

In this paper, we utilize a BN. However, similar to an HMM, a BN is
only able to generate a synthetic data and gives a similar distribution to the
sample (Sun and Erath, 2015; Zhang et al., 2017). Therefore, we add a similar
type of integration as in Saadi et al. (2018). In this case, we integrated a BN
and a GR multilevel IPF to fit the aggregate census data for the following
reasons. First, when the sample is less than 40 %, BN is known to give better
results to model inter-dependencies of individual and household attributes
(Sun and Erath, 2015). Second, BN outperforms other methods in terms of
the resulting square root of the mean square error (SRMSE) and becomes
an excellent model to capture heterogeneity when the sample is less than
70%.

This study makes the following contributions:

• We integrated two methodological approaches: BN integrated with
generalized raking (GR) multilevel IPF

• We applied the model in a developing country and to a megacity,
one of a total of 31 locations worldwide of 26 of them are in the
less developed regions (United Nations, 2016) that have lower data
availability

• This chapter adds to the growing literature on BN for population
synthesis and its application in developing countries and megacities.

The remainder of this chapter is structured as follows. Section 2.2, ex-
plains the concept of the Bayesian network, and in Section 2.3 discusses
study area and framework model. In Section 2.4, we apply the approach
for a population synthesis using BN and GR multilevel IPF to fit aggregate
census data. Discussions and conclusions follow in Section 2.5 and 2.6.

2.2 a bayesian network

The Bayesian network uses a graphical method to learn probabilities for a
model (Cowell et al., 2006). It consists of two parts: a directed acyclic graph
(DAG) and a set of the conditional probability distribution (Sun and Erath,
2015; Hornỳ, 2014), where DAG consists of a set of correlated random
variables. The variables of a graphical structure G = (V, A) are represented
by a node or vertex (V), and the correlation is represented by the directed
edge or arc A. In the example in Figure 2.1, there are variables income, age,
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and gender. The directed arrows from NodeIncome to NodeAge and from
NodeIncome to NodeGender indicate that NodeAge and NodeGender are
linked by a conditional probability with NodeIncome. Therefore, the condi-
tional probability distribution of this condition is P[NodeAge|NodeIncome]
and P[NodeGender|NodeIncome].

Figure 2.1: Example Directed acyclic graph (DAG)

2.2.1 A learning algorithm for Bayesian networks

There are different algorithms for learning Bayesian networks, as explained
by Scutari (2010), such as the constraint-based algorithm, the score-based
algorithm, or the hybrid algorithm. Each type of algorithm includes a
learning algorithm. Here, we used the R package bnlearn (Scutari, 2010),
which implements tabu search as part of the score-based algorithm. Tabu
search, as a generic heuristic procedure, is an iterative searching procedure
to obtain the best solution from complex correlation patterns (Glover and
Taillard, 1993). Besides, it can handle local optima by selecting a very close
solution to optimality, which can minimize the score (Scutari, 2010). It
supports a whitelist and a blacklist. A blacklist means that those arcs will
not be presented in the network structure, and a whitelist is a reverse of a
blacklist.

2.2.2 Network scores

The step of measuring the candidate of the graphical structure that fits
the data is important to ensure that our structure can produce a fitting
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synthetic population. In this process, several methods are introduced, such
as maximum likelihood:

L(Gh|D) = max
G

sup
Θ
L(Gh, Θ|D) = max

G
(Gh, Θ̂|D) (2.1)

Where L(Gh|D) = maxG supΘ L(Gh, Θ|D) is the log-likelihood of a pro-
vided pair (G, Θ) given observation D. However, the log-likelihood is not
re-presentable as explained by Sun and Erath (2015) due to over-fitting.
This method will always build a fully connected DAG. Therefore, the most
applicable approaches are using the Bayesian Information Criterion (BIC)
(Rissanen, 1978; Schwarz et al., 1978) and Akaike Information Criterion
(AIC) (Rissanen, 1978; Akaike, 1974).

BIC(Gh|D) = log P(D|Gh, Θ̂)− d
2

log m (2.2)

AIC(Gh|D) = log P(Gh, Θ|D)− d (2.3)

Where Θ, in the first equation, is the maximum likelihood estimate parame-
ter given a hypothetical structure Gh. d is the degree of freedoms in Θ, and
m is the number of observations. In contrast to maximum likelihood (2.1),
BIC (2.2) and AIC (2.3) have a penalty function for the optimal likelihood

log P(Gh, Θ|D). For BIC, the penalty is
d
2

log m, and for AIC is d. Using the
scoring function, the best network is selected for constructing the synthetic
population.

2.3 constructing the population of greater jakarta area

The study area is the Greater Jakarta Area or Jabodetabek, which consists
of Jakarta Province, parts of West Java Province, and Banten Province. It has
31.7 million inhabitants in 2016 (BPS-Statistics, 2016a,b,c), see Table 2.2. The
population data used for the synthetic population generation was partly
obtained from the JAPTRAPIS study (Jabodetabek Public Transport Policy
Implementation and Strategy) in 2009 (JICA, 2009; Ilahi and Axhausen,
2017).
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Province Region Male Female

Jakarta South Jakarta
East Jakarta
Central Jakarta
West Jakarta
North Jakarta

1,096,469

1,436,128

457,025

1,246,288

867,727

1,089,242

1,407,688

457,157

1,217,272

879,588

Banten Tangerang City
Tangerang Regency
South Tangerang City

1,045,113

1,724,915

777,713

1,001,992

1,645,679

765,496

West Java Depok
Bogor
Bogor Regency
Bekasi City
Bekasi Regency

1,061,900

532,000

2,792,900

1,369,600

1,654,600

1,044,200

515,900

2,666,800

1,345,200

1,591,400

Total 31,689,992

Table 2.2: The population of the Greater Jakarta area in 2016

There are two different types of data in the JAPTRAPIS study, which are
the Household Travel Survey (HTS) and the Activity Diary Survey (ADS).
However, we only use HTS data consisting of 178,954 households or 334’973

individuals for the population synthesis, which are equal to three percent of
all households. In the HTS, the respondents are individuals who are going
to school or office. Therefore, the aggregate synthetic population is limited
to the census population of individuals who have activities for studying or
working with a total of more than 20 million, as seen in Table 2.3.

The data used for this approach are from multiple sources within the HTS
data. The variables of the individuals include age, gender, education, and
employment status. The variables of the households are income, housing
status, vehicle ownership, and address. In the activities-based model, we
also need geocoding of activity locations. Since we geocode based on google
API. Therefore, there are three sources of data in the model. We use the R
package dplyr for the data joint. Figure 2.2 shows the framework model of
data combination and integration between BN and GR. Further detail of
the BN is presented in Figure 2.4.
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Province Region Male Female

Jakarta South Jakarta
East Jakarta
Central Jakarta
West Jakarta
North Jakarta

877,679

1,141,943

367,092

989,250

701,639

626,495

815,130

262,034

706,136

500,837

Banten Tangerang City
Tangerang Regency
South Tangerang City

999,131

1,645,087

753,194

590,688

972,578

445,290

West Java Depok
Bogor
Bogor Regency
Bekasi City
Bekasi Regency

711,791

354,155

1,845,195

917,511

1,097,039

394,497

196,284

1,022,666

508,514

608,014

Total 20,049,867

Table 2.3: The population of Jakarta greater area with the relevant activities in
the census in 2016

Figure 2.2: Framework model
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2.4 model estimation

2.4.1 Bayesian network step

We consider seven variables by combining individual and household data
for the population synthesis using BN, as presented in Table 2.4: type of ac-
tivities, age, sex, income, housing, car ownership, and driving license. These
seven variables are considered as the main socio-demographic variables to
reduce the complexity of the network structure. However, for the variables
income, housing status, and car ownership, the household data is used. The
chosen network structure is based on the AIC score employing the Tabu
search algorithm to learn the network structure of the BN, as implemented
in the R package bnlearn (Scutari, 2010; R Core Team and others, 2013).

Variable Definition [number of cate-
gories]

Values

TA Type of activities of individual
[2]

School; Work

Age Age of individual [8] < 6; 6-12, 12-18; 18-24; 24-
32; 32-42; 42-60, >60

Sex Gender of individual [2] Male; Female

Inc Income of household in million
IDR [7]

NA; < 1, 1-3; 3-5; 5-8; 8-15;
>15

HS Housing status of household [2] Owned; Rented

CO Car ownership of household [ 2] Yes; No

Licen License of individual [4] Motor cycle; Car; Motor-
cycle and Car; No License

Table 2.4: The population of greater Jakarta area

There are two steps in the tabu search in this scenario, without using the
whitelist and blacklist G structures for the initial search and with using
the whitelist and blacklist for the final search There are 256 searches in the
initial search, and 64 searches for the final search. The final structure is
obtained by an iterative process after the error for each arc is measured.
The arc, which gives the smallest error, is included in the network using
the whitelist command and the arc, which gives the highest error, is never
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included in the network using the blacklist command. In the final search,
we found an AIC of -1679334 for the selected BN.

The model structure and the conditional probabilities of the variables
can be seen in Figure 2.3. The tables accompanying Figure 2.3 present the
conditional probabilities. In this case, we show sex and income variable.
There is a directed arc of NodeTA and NodeAge that goes to NodeSex.
Therefore, the conditional probability, with an income of 5-8 TA school, and
age <6, is 0.43 for females and 0.57 for males. This way of interpretation
is the same for other variables, and the total of conditional probability is
always equal to one. After we identified the best structure, we generated
the data as close as possible to the aggregate census data. In this research,
the data is generated for 4 million, 8 million, 16million, to 22 million agents.

Figure 2.3: Final model structure G

We randomly joined the generated BN population to the remaining 20

variables left in HTS data, based on the available seven variables in both
data sets. Complete sets, after both data are joined, will be used for the
agent-based model. We obtain a joint data set consisting of 27 variables
(Figure 2.4). For the extended target of 16 million agents, this joint operation
takes three days and 13 hours. Moreover, for 22 million agents, this joint
operation takes more than five days on the servers of the ETH Zurich
computer cluster (ETH Zürich, 2016).
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Figure 2.4: Population synthesis steps

To visualize the goodness of fit after the BN approach and the joint
data, we compared HTS data and the final structure from BN. However,
in this case, we only visualize two different types of joint distributions.
Figure 2.5 shows the joint distribution of income and age, and Figure 2.6
shows the joint distribution of income and region. The left figure shows the
joint distribution data from HTS. Then, the middle figure shows the joint
distribution of the data from BN, and the right shows the fit of the joint
distribution of both HTS and BN. We considered the region variable, which
was not used as a variable in the BN approach as in Figure 2.6, to ensure
that a joint data procedure gives a good fit with unselected variables. We
found a similar distribution after both HTS and BN data were joined.
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Figure 2.5: Joint distribution of income and age

Figure 2.6: Joint distribution of income and region

Furthermore, as stated by Sun and Erath (2015); Zhang et al. (2017), the
BN model can reproduce the distribution of the HTS data. That is because
we can only assign to this target value, whether we estimate 4 million or
22 million. It is not based on the control total of aggregate census data in
Table 2.3. Therefore, to solve this issue, we employ multilevel IPF with the
R-package MultilevelIPF (Müller, 2017) to adjust the artificial sample to the
aggregate census data, as presented in Table 2.3.

2.4.2 GR Multilevel IPF for fitting against census data

Several multilevel IPF algorithms have been implemented, such as hierar-
chical iterative proportional fitting (HIPF), iterative proportional updating
(IPU), entropy optimization (Ent) and generalized raking (GR). Neverthe-
less, we use a GR algorithm that has been shown to outperform the other
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algorithms, which generates weights with minimal squared error and is
faster. It matches the data with the aggregate control groups by estimating
a weight for each observation in the sample (Müller, 2017). There are two
group controls used: region and gender, and region and age.

Furthermore, the weakness of IPF is on non-integer weights (Müller,
2017; Lovelace and Ballas, 2013). Meanwhile, it requires integer weights for
generating the target population. Integerisation is the process of converting
the decimal weights (related to how many times each agent is replicated) to
integer values. Therefore, integerisation is an important step to produce the
best fit to the marginal census data. It can be done using weighted random
sampling without replacement using the wrswoR package (Müller, 2016),
and also using the ‘truncate, replicate, sample’ (TRS) method (Lovelace and
Ballas, 2013). However, we employ random sampling without replacement,
which consists of three steps. The first step is removing the decimal values.
The second step is calculating the decimal remainders that will be used as a
vector of probability weights, and the third step is implementing weighted
sampling without replacement. A crank algorithm is used in this operation
for faster results (Müller, 2016).

The data used, from BN for fitting using GR, differ in size from 4 million,
8 million, 16 million, to 22 million agents. Less fit result was acquired when
we use data from 8 million, 16 million, to 22 million. It can be because the
huge size and complex data structure create an error in implementation.
Moreover, integerisation has also created an error in replication. Therefore,
we used the 4 million agent data set that fit with less than 0.2 % data
difference compared to the target census data. The synthetic population
data fits after conducting GR multilevel IPF to the target of 20 million
marginal census data and the control totals in Table 2.3, which are based
on age and gender for each region. The results can be seen in Table 2.5 and
Figure 2.7.
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Province Region Male Female

Jakarta South Jakarta
East Jakarta
Central Jakarta
West Jakarta
North Jakarta

-0.0075

-0.0072

0.0155

0.0123

0.0466

-0.0054

-0.0015

0.0007

-0.0040

-0.0032

Banten Tangerang City
Tangerang Regency
South Tangerang City

-0.0176

-0.0250

-0.0356

0.0003

-0.0222

0.0114

West Java Depok
Bogor
Bogor Regency
Bekasi City
Bekasi Regency

0.0476

0.0085

0.0057

0.0440

-0.0186

-0.0223

0.0056

0.0010

0.0248

0.0026

Table 2.5: The difference (in %) between population synthesis and census data of
region and gender



2.5 imputing all activities 19

Figure 2.7: The difference (in %) between population synthesis and census data
of region and age

2.5 imputing all activities

In this section, we improved our population synthesis to get all other
secondary activities, for example leisure, shop, and other. We used the data
from our household travel survey (HTS) survey in 2019, which can be seen
in chapter 3 for more detail. For commuting trips, such as home to work
(h-w), home to school (h-s), and vice versa, are based on the data from JICA
in 2012 (JICA, 2009). In this study, we used the same fully automated and
customizable open-source pipeline, which has been used successfully in
several places such as Switzerland, Los Angles, San Francisco, and Île-de-
Fance region (Hörl and Balac, 2020).

The HTS data consists of activity chain of respondents in a day, including
their socio-demographich profile, such as age, gender, household income,
car ownership, and mode transport used. It also includes the exact time,
when respondents do their activities.



20 population synthesis

We also have the address, where the respondents living and doing the
activities. We used this address to get coordinate locations using google
API. However, the address in Indonesia is complicated, instead of only
street name, house number, and post code. The address also has the district
number (kecamatan), sub-district (kelurahan) number, citizen number (rukun
warga (RW)), neighbour number (rukun tetangga (RT)). This makes an error
in our coordinate, which make some coordinate are outside of greater
Jakarta. For those coordinate that outside of Greater Jakarta we deleted.

2.5.1 Imputing primary and secondary activity locations

The primary and secondary locations including, home, work, leisure, edu-
cation, shops, others were retrieved from Open Street Map (OSM). We also
assigned home locations alongside the residential roads.

2.5.2 Pre-processing input data

The information gathered form HTS data is adapted to reduce the complex-
ity. For mode transport, which HTS had 13 type of modes, are converted to
seven type of modes including walk, public transport, car, motorcycle, car
ODT, motorcycle ODT, and car passenger.

The trips on observations, which are not starting at home and end at
home were filtered out. The trips purpose were merged to six categories,
such as home, work, education, leisure, shop, other.

2.5.3 Results after matching activities

We use age, gender, and employment variables to match with activity chain
from HTS survey. To clearly see that our activity are matched, we compare
average crowfly distance for different activities, which shows how far the
agents perform for different activities. This can be seen in Figure 2.8, and
also Figure 2.9 for cumulative distributions of crow-fly distance.
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(a) Mandatory activities

(b) Secondary activities

Figure 2.8: Comparison of mean crow-fly distance
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(a) Leisure activities (b) Other activities

(c) Shop activities

Figure 2.9: Distance cumulative distributions of crow-fly distance

The Figure 2.10 shows the distribution of activity chains in the popula-
tion synthesis and compares it to the observed distribution obtained from
the household travel survey. It shows that activity chain from population
synthesis can match very well with the activity chain from household travel
survey.
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Figure 2.10: Activity chain distributions

2.6 discussion

Population synthesis is an important step when we develop an agent-based
model. Data become an important factor in ensuring that the population
synthesis gives a precise description of the agents. There are several meth-
ods available. Some of methods tried to improve the previous methods, and
other methods tried to use new methods, as mentioned in Section 2.1. Each
region has different difficulties since each country has different regulations
regarding data issues and data availability. Less developed countries may
have less accessibility and quality of the data. One of the studies generated
a synthetic population without a sample to address the availability of a
sample issue (Barthelemy and Toint, 2013). However, it becomes question-
able at which level of disaggregation this can give quasi-perfect distribution.
On the other hand, it would be a solution for the initial development of an
agent-based model.

The size of the data set also influences the processing. As mentioned in
Section 4, it takes more than a day to combine the different data sets. It will
be an interesting topic to accelerate the combining process for huge data
sets. Moreover, a BN alone cannot fit the marginal census data. However,
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using only GR also fails to make sure that the dependency of each variable
is perfectly reproduced. Meanwhile, the combination of BN and GR is
a solution to maintain the stability of the dependencies and to ensure a
quasi-perfect distribution. Saadi et al. (2018) also combined HMM and IPF
in the same spirit.

2.7 conclusions

In our case, we found that the BN could construct a synthetic population
and reproduce the HTS data. The result after data combining between
population synthesis and HTS data gives well-fitting distributions. However,
BN has some differences vis-à-vis marginal data from the census. Therefore,
we need to fit against the marginal distribution of the census data.

The differences are addressed with GR. We made an effort to remain as
close as possible to the target census data when we fit with GR. We started
at 4 million, 8 million, 16 million, and 22 million agents produced by the
BN approach. However, it gave different distribution against census data
when we tried with 8 million, 16 million, and 22 million. Therefore, we
used 4 million agents from the BN to fit with the 20 million target agents of
the marginal census data/control total using GR, which is equal to 20% of
the final data. Based on the results described in Section 4, we have three
conclusions i.e.::

• Our results confirm that the BN approach can be used to produce
large samples with well-fitting distributions, which is useful for any
researcher who has a limited sample to start.

• The result from GR can fit the control totals or marginal census data.

• Integrating BN and GR can help researchers to produce data that fit
to control totals or marginal census data.

• The pipeline can match the distribution of the chain of activity in the
population synthesis to HTS survey.

This synthetic population is used for our further research to develop
an agent-based model using Multi-Agent Transport Simulation (MATSim)
(Horni et al., 2016). This is the first scenario of an agent-based model for
Greater Jakarta (Ilahi et al., 2019a). Several variables from the synthetic
population will be used in the agent-based modeling, such as age, gender,
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income, the coordinate of home and office, activities, license, car owner-
ship. Furthermore, we also integrate secondary activities in our population
synthesis by matching them with all activities based on HTS in 2019.



26



3
T R AV E L B E H AV I O U R I N G R E AT E R J A K A RTA

3.1 introduction

This chapter discusses the travel behavior in Greater Jakarta. The objectives
of this research are to understand the travel behaviors and to explore the
influencing factors of mode choice. This research answers several questions
for each mode of transportation i.e.: who the users are, when the users use
it, the purposes of the users, the speed of different distances and locations.

We have experienced that rapid growth of Information and Communica-
tions Technology (ICT), which causes the evolution of emerging transporta-
tion modes, is inevitable. The concepts of peer production, also known as
a sharing economy in the digital era, were discussed by (Benkler, 2002),
and (Pepić, 2018). It connects the service, which is offered by a company,
to individuals through the internet. This business model exists not only in
the transportation industry but also in many sectors of industry, including
hotels, restaurants, ticketing, and e-commerce.

One such alternatives is On-Demand Transport (ODT). ODT connects
potential passengers and potential drivers through a smartphone app. Grow-
ing ODT systems have become popular in many countries. The conventional
taxi industry’s passenger volume has decreased since the ODT mode of
transportation became available (Lam and Liu, 2017). The lower price and
the greater convenience of using a smartphone are the main advantages
of ODT compared to conventional taxi service. ODT also becomes a link
to connect the last miles of a trip to its final destination, especially for
motorcycle (MC) ODT, that can move faster through traffic congestion and
can drive on narrow roads. These systems have also reduced the number of
unemployed (AngryWorkersWorld, 2019). Driver’s income was higher than
the minimum wage when this system started; however, it has decreased
due to the growing number of drivers (Lam and Liu, 2017). Resistance from
conventional taxi drivers exists in many countries (Borowiak and Ji, 2019;
Lam and Liu, 2017; Peticca-Harris et al., 2018; Rogers, 2018) for various
reasons, one of which is the lack of regulations imposed on ODT (Irawan
et al., 2019; Rogers, 2018).

Several studies have investigated ODT, both car-based (Dias et al., 2017;
Rayle et al., 2016; Young and Farber, 2019) and MC-based (Irawan et al.,

27
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2019; Medeiros et al., 2018), but they are limited to the characteristics of
ODT users and the effects of ODT on other modes. In a study by Dias et al.
(2017) on the socio-demographics of respondents that use car-based ODT, it
was found that ODT users tend to not only be young, well-educated, and
have a higher income, but they also live in higher-density areas. In another
study, Rayle et al. (2016) showed that the user characteristics, wait times,
and trips served differed between car taxi and car-based ODT. There are
few studies on MC-based ODT (see, e.g., Irawan et al., 2019; Medeiros et al.,
2018). Irawan et al. (2019) showed that MC-based ODT had a positive effect
on the use of public transport when the system becomes a feeder to public
transport. They also found that MC taxis and MC ODT competed with each
other (Irawan et al., 2019; Medeiros et al., 2018). Other studies found the
same competition between car taxis and car ODT (Contreras and Paz, 2018;
Habib, 2019).

Another alternative mode is Urban Air Mobility (UAM). There is a
growing interest in solving urban transportation problems by using air
mobility. Nevertheless, UAM might be suitable only for high-income users
because the price is much higher than other alternative modes. UAM may
eventually become a realistic alternative mode of transportation. Land
transport is indeed insufficient to accommodate the demand for mobility
in Greater Jakarta. Three-dimensional transport, such as UAM, may be a
strategy to address such congestion. Balac et al. (2019a) noted that several
studies were trying to measure the demand for UAM in urban areas (see,
e.g., Balac et al., 2019b; Fu et al., 2019; Garrow et al., 2017). Balac et al.
(2019b,a) attempted to simulate UAM in the urban transport environment
using an agent-based modeling approach based on the potential demand
of UAM. Shaheen et al. (2018) measured the potential demand of UAM
in several cities in the U.S. using SP experiment and attitudinal questions.
In a related study, Eker et al. (2020b) measured individuals’ perceptions
regarding the potential benefits of UAM.

The developments of Information and Communications Technology (ICT),
which enable the evolution of emerging transportation modes, are inevitable.
Peer production concepts, also known as a sharing economy in the digital
era, have been discussed by Benkler (2002) and Pepić (2018). This business
models connects the service offered by a company to individuals through
the internet and currently exists in the transportation industry and many
other sectors, including hotels, restaurants, ticketing, and e-commerce.

There are several companies in the ODT industry, such as Uber, Lyft,
Grab, and Gojek. Uber and Lyft were launched in San Francisco in 2012.
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Uber focused on a black-car limousine service, while Lyft focused on a
long-distance intercity carpooling named Zimride in 2007 (Henao, 2017).
Uber was the big ODT player in Southeast Asia before Grab took over its
business and Uber began selling its shares. This has also happened in other
countries (Sothy, 2019). Currently, the local big players are Grab, which
started in 2012 in Malaysia, and Gojek, which began in 2010 in Indonesia.
Gojek, which was started from only a MC-based ODT in Indonesia, has
expanded into other Southeast Asian markets. Gojek is backed by tech
giants like Google and Tencent (Russell, 2018).

Moreover, most ODT companies expanded their businesses by providing
other services, including transporting goods, and buying and delivering
food. In this way, they also helped micro and small businesses to increase
their sales (Harsono, 2019). Now that ODT is established, society does not
want to reduce its availability. The service is very convenient; people can
easily request rides anytime and anywhere and it operates as a door-to-door
service with a fixed upfront price. This system is quickly growing as it
meets transportation demands when conventional urban transportation
modes cannot.

In the future, alternative forms of transportation will continue to emerge,
including the development of electric-based or even autonomous vehicles,
flying transportation, and the development of the bundling scheme of
mobility as a service (MaaS). Several companies, including Airbus, Uber,
and Lilium, have been investing in the development of UAM. Airbus tested
the flight of UAM in Eastern Oregon Downing Downing (2019). This system
may help the congested city and longer-distance travelers to minimize their
travel time. The vertical take-off and landing (VTOL) aircraft, which can
land and take-off vertically, may reduce land transportation infrastructure
growth in the future. However, the UAM will continue to be more expensive
than other transportation alternatives, as its operational cost will be higher.

UAM might face several challenges in the future, however. As mentioned
by Ahmed et al. (2020), the sustainability of UAM involves several aspects to
be considered, such as safety, training, infrastructure, environment, logistics,
cybersecurity, and the human factor. Reiche et al. (2018) and Cohen et al.
(2020) also discussed aspects related to the development of UAM, such as
challenges, infrastructures, technology, public acceptance, and laws and
regulations. Al Haddad et al. (2020) found that safety was the main concern
for the adoptions of UAM. Moreover, Eker et al. (2019) found that older
persons are relatively more concerned about safety issues related to UAM
than younger people.



30 travel behaviour in greater jakarta

To achieve our objectives, we conducted a Revealed Preference (RP) sur-
vey in Greater Jakarta. Similarly, several studies have previously conducted
RP surveys to understand travel behavior (see, for example, Axhausen
(1995); Axhausen et al. (2002); Dharmowijoyo et al. (2015)). For observing the
willingness to pay (WTP) from the mode choice experiment, we conducted
a Stated Preference (SP) survey, which has been widely used to estimate
WTP of mode choice alternatives. We estimated the model using pooled
RP and SP data sets, which could give robust estimations overcoming the
limitations of both data sets. There are several contributions from this study,
including:

• We conducted a state-of-the-art RP and SP survey and presented its
methodology with a total of 5,143 respondents, which covers 52,731

observations.

• We gained new insight into travel behavior in Greater Jakarta.

The remainder of this chapter is structured as follows. The second section
describes the survey design and data collection. This is followed by the
third section, which shows the descriptive statistics of the data in general.
The fourth section explains the results obtained from the RP survey. The
fifth sections describes the experimental designs and construction choice
alternatives.

3.2 survey design and data collection

The survey was conducted from April to May 2019 in Greater Jakarta,
which includes three provinces: West Java, Jakarta, and Banten, comprising
13 cities. The cities outside Jakarta are called Bodetabek (Bogor, Depok,
Tangerang, Bekasi). We administered the survey in three waves: The first
from April 1 to 13, 2019, the second from April 18 to 26, 2019, and the third
from April 29 to the May 9, 2019. Due to Indonesia’s 2019 presidential and
parliamentary elections, the survey was paused during April 13-17, 2019.
A total of 5,143 respondents were interviewed, some of whom represent
complete households. To the best of our knowledge, no previous study con-
ducted in Jakarta has used such a large sample size. After data cleaning, the
survey consisted of 3,708 respondents in 952 households, 1,432 individual
respondents, and 53,977 valid choice observations. The respondents’ home
location can be seen in Figure 3.1.

A paper-and-pencil survey was used for this study, and most of the
respondents were willing to fill in the survey form with guidance from
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Figure 3.1: Home location of respondents in the study area

the surveyor. The response rate was 50% in the pre-test survey and rose
to more than 80% in the main survey, as can be seen in Table 1. This
response rate was considerably higher than studies in other countries, for
example, Axhausen (2008) for the Swiss experiences. The response rate was
high because we approached the informal subdivisions in Indonesia: local
communities "Rukun Warga" (RW) and local households groups "Rukun
Tetangga" (RT). Each RW consists of approximately five RT, and each RT
contains between 30 and 50 household groups. This approach is used to
gain respondents’ trust by asking permission of the heads of the RW and
RT before conducting the survey. The heads of approximately 33 RT were
approached, which encompasses about 1,000 households.

Additionally, most of the surveyors lived in the study area, which made
it easier for them to approach the respondents directly. A similar approach
had also been used in Bandung, as briefly explained by Dharmowijoyo
et al. (2015). To know the effort required by the respondents to answer
a questionnaire, we estimated the response burden. Table 3.2 shows that
the response burden for socio-demographic questions was 177 points, 737

points for the RP travel diary survey and 450 for the SP survey. The method
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Survey Location Response rate

Pre-test Jakarta 50%

Main survey Jakarta 87.5%

Bodetabek 98%

Table 3.1: Response rate of the survey

to calculate the response burden was by assigning the points to each ques-
tion types. The scheme is described in Axhausen and Weis (2010) and
updated in Schmid and Axhausen (2019). The primary response burden is
the address, especially for the RP survey, as respondents are usually not
aware of the street numbers in their neighborhood, RT, or RW of their trip
destinations. Therefore, the response burden increases with the number of
trips. However, the response burden in our survey was relatively low.

Question type Observation Response burden

Socio-demographic 5,143 177

RP Survey 37,042 737

SP Survey 20,482 450

Table 3.2: Response burden of the survey

The survey included the usual socio-demographic questions, including
age, gender, income, car ownership, and the primary mode of transport.
The RP travel diary of three working days consisted of detailed information
on the respondent’s departure time, transport mode, trip destination, and
trip purpose. The survey design follows the Mobidrive protocol that was
well-designed in Axhausen et al. (2002). The last element in the survey
was a mode choice SP experiment. Respondents were asked a couple of
preliminary questions before completing the SP experiment, i.e., whether
their trips were in Jakarta or not, whether they were a driver or non-driver,
and their travel distance. These initial questions reduced the complexity
of the choice experiment. For example, in the choice experiment, private
vehicle options would not be available for non-drivers. The walking mode
option did not exist for trips longer than 1.5 km, and congestion/tolls
price variables would not be present for the trips outside Jakarta. The
survey included emerging transportation options: ODT MC (Gojek, Grab),
ODT car (GoCar, Grab), and UAM. Since the respondents might not know
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about UAM and might never have seen it before, the surveyor gave a brief
explanation of UAM using figures to illustrate its concept. The questions
are summarized in Table 2. Public Transport (PT) refers to Bus, Bus Rapid
Transit (BRT), train, and angkot (Microbus). An angkot is a microbus with a
capacity for a maximum of 12 passengers (Cervero, 1991; Ilahi et al., 2015).

Socio-demographics Travel diary Choice alternatives

Age Destination Walk

Gender Mode transport Car

Income Departing time Motorcycle

Expenditures Arrival time Public transport

Address Address Car ODT

Number of households Trip distance Motorcycle ODT

Vehicle ownership Transport cost Car Taxi

License Frequency activity Motorcycle Taxi

Access to private vehicles Type of activity UAM

Main mode

Education

Occupation

Dwelling

Working hour

Table 3.3: The survey questions

3.3 descriptive analysis

Table 3.4 sshows the socio-demographic characteristics of the respondents.
The share of male respondents in the sample was slightly higher than in
the census (57.30%). About 46.90% of the respondents were younger than
34 years old, which was slightly higher than in the census. 31.70% of the
sample had a university degree. More than 90% of respondents live in a
single-family house and own the house; this is expected as the apartment
share of the housing market is less than 2% (Yudis, 2019). However, the
number of respondents who are homeowners overrepresented, as other
sources suggest that it should be around 47.85% (BPS-Statistics, 2016a).
House prices in Indonesia are relatively affordable, and thus ownership
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does not necessarily suggest that owners have high incomes. Furthermore,
a house can be inherited from previous generations, depending on the
size and location. The most likely homeownership arrangement is that the
owners have a mortgage for the house from a bank based on the husband
and wife’s joint income.

Jakarta City tends to have high rise buildings in the center and then
low-rise buildings towards the city’s outskirts, making the city more spread
out and expensive to maintain or invest in infrastructure. Around 41.60% of
respondents drove in Jakarta, and 28.60% drove in the urban agglomeration.
The shares of the main modes of transportation, or the most frequently
used, can be seen in Table 3. The number of ODT or ride-sourcing users was
substantial. We found that MC had the highest share (54.30%), followed by
car (15.30%), MC ODT (10.90%), and public transport (bus, BRT, commuter
rail, microbus) (9.9%).

Table 3.4: Descriptive statistics of the survey respondents

Variable Sample (%) Census (%)

Male 57.30 50.70

Female 42.70 49.30

Age categories

Younger than 24 years old 46.90 44.09

Aged 24-29 years old 11.30 9.19

Aged 29-34 years old 6.30 9.10

Aged 34-39 years old 8.30 8.44

Aged 39-44 years old 8.80 7.39

Aged 44-49 years old 9.20 6.20

Aged 49-54 years old 5.30 5.01

Older than 54 years old 3.90 10.54

University degree 31.70 -

Owned house 92.40 47.85

Landed house 97.20 -

Has access to car 25.60 -

Has access to motorcycle 67.90 -

( To be continued)



3.3 descriptive analysis 35

Variable Sample (%) Census (%)

Driving license

Car 5.60 -

Motorcycle 41.00 -

Car and motorcycle 23.40 -

No license 30.00 -

Working hour

Full time 32.50 -

Half-time (30 hours) 11.60 -

Half-time (20 hours) 13.40 -

Student 29.20 -

Non worker 13.20 -

Saving (%)

0-25 21.10 -

25-50 26.10 -

50-75 38.10 -

75-100 14.70 -

Transport cost (%)

0-25 80.50 -

25-50 16.30 -

50-75 0.80 -

75-100 2.40 -

Type of respondents (%)

Driver in Jakarta 41.60 -

Driver in agglomeration cities 28.60 -

Non-driver in Jakarta 11.70 -

Non-driver in agglomeration cities 18.20 -

Main mode of transport (%)

Walk 6.70 -

Bike 0.70 -

( To be continued)
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Variable Sample (%) Census (%)

Bus 0.60 -

BRT 1.20 -

Commuter rail 3.70 -

Microbus (angkot) 4.40 -

Car 15.30 -

Motorcycle 54.30 -

Car taxi 0.10 -

Car ODT 1.10 -

Motorcycle taxi 1.00 -

Motorcycle ODT 10.90 -

3.4 revealed preference

3.4.1 Mode choice by socio-demographics, trip purpose, and distance

The results, as can be seen in Table 3.5, show that the mode share was
different from when JICA conducted its travel diary surveys (JICA, 2009) in
2009. This was mainly due to the spread of information and communications
technology (ICT) and the arrival of ODT in Greater Jakarta. In general, those
who are younger than 24 dominated the use of all modes, as the number of
those persons in Indonesia was dominant. Around 66.90% of the motorcycle
ODT users and 34% of the car ODT users were less than 24. This number
was equal to 6.5 % of all trips. The majority of car and motorcycle ODT
users were female. Similar findings were reported previously in Canada,
where most of the ride-hailing users were young and female (Young and
Farber, 2019).

The users of PT (bus, BRT, and train) usually do not have access to a car,
but they are more likely to have access to a MC. Angkot users, on the other
hand, have access neither a car nor a MC. Less than 10% of the respondents
are more likely to take ODT or conventional taxis. Cars were more likely to
be used by full-time workers and university degree holders. Table 3.6 shows
that MC was more likely to be used by persons with a monthly income less
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than IDR 18 million (1,250 USD)1, and the car is more likely to be used by
those with an income higher than IDR 18 million.

The mode choice of the respondents depends on the trip’s purpose. Users
preferred private vehicles for all trip purposes. The results show that the
mode choice of public transport increases for a return home and work
trip. While mode choice of ODT increases for education and leisure trip
purposes. Walking was more frequently used for work, daily shopping, and
religious activities. Respondents were more likely to use MC, followed by
car, walk, and MC ODT for morning, afternoon, and evening trips. However,
respondents were more likely to walk, followed by using MC at midday.
During the night, respondents preferred to use MC, followed by a car and
by walk. The chi-square test shown in Table 3.5 and Table 3.6 indicates a
significant relationship between the chosen mode of transportation and the
socio-demographic and trip purpose attributes of the respondents.

1 USD 1 is equal to IDR 14,400
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Attributes Walk Bike Bus BRT Train Angkot Car Car Taxi Car ODT MC MC Taxi MC ODT

Row percentage 18.80 0.50 0.60 0.90 3.00 3.80 13.50 0.10 1.00 47.30 1.10 9.50

Male 59.42 59.89 64.56 34.78 74.73 29.92 65.52 54.55 18.38 66.48 19.11 34.60

Age(years)

< 24 32.34 58.76 55.34 61.18 41.37 38.05 26.40 50.00 33.70 50.01 34.49 66.69

24-29 17.32 3.39 17.96 15.53 32.12 9.55 8.42 20.45 4.74 12.52 8.68 6.65

29-34 10.40 5.65 6.31 5.59 9.96 7.99 5.60 0.00 1.95 7.49 5.46 3.00

34-39 11.71 10.17 3.40 7.45 5.69 16.9 8.90 2.27 4.46 8.20 11.41 6.28

39-44 9.90 0.00 2.43 5.59 5.96 11.24 15.70 0.00 9.75 7.49 16.38 5.20

44-49 8.49 10.73 8.74 2.48 3.29 8.84 16.84 13.64 13.37 7.78 13.90 4.65

49-54 4.11 6.78 2.91 2.17 1.07 3.54 11.90 13.64 15.32 4.15 5.96 4.31

> 54 5.74 4.52 2.91 0.00 0.53 3.89 6.24 0.00 16.71 2.35 3.72 3.23

University degree 33.18 9.04 43.20 43.48 28.38 11.17 57.88 36.36 37.05 30.67 8.44 25.66

Owned of house 87.79 100.00 97.57 84.16 89.23 95.19 97.58 86.36 96.10 92.15 82.38 91.98

Has access to Car 15.32 3.39 21.36 20.19 11.74 5.16 85.10 6.82 29.25 16.82 7.69 14.24

Has Access to Motorcycle 61.21 18.64 66.02 53.73 85.50 26.10 55.20 70.45 45.13 87.95 22.33 33.60

Full-time 30.15 20.90 38.83 41.30 66.64 13.58 50.50 22.73 20.89 32.74 12.90 20.30

Half-time (30 hours) 21.22 12.99 11.17 13.04 9.61 7.64 13.38 27.27 5.57 12.73 4.96 7.62

Half-time (20 hours) 17.75 6.78 19.42 8.07 12.54 23.34 11.60 13.64 15.04 15.27 8.68 9.45

Student 11.77 44.63 22.82 37.27 9.88 19.80 18.92 31.82 24.51 29.73 24.32 50.39

Unemployed 19.12 14.69 7.77 0.31 1.33 35.64 5.60 4.55 33.98 9.53 49.13 12.25

Driving license

Car 4.62 0.00 2.91 9.32 1.51 0.21 23.96 0.00 10.58 2.00 1.99 5.60

Motorcycle 42.74 16.38 20.87 23.60 66.46 18.10 7.14 29.55 12.53 60.61 7.69 41.00

Car and Motorcycle 9.41 3.95 36.41 19.88 10.05 2.76 60.98 29.55 15.60 20.91 2.98 23.40

No license 43.24 79.66 39.81 47.20 21.98 78.93 7.92 40.91 61.28 16.48 87.34 30.00

Start time

Morning (4-9am) 10.72 0.59 0.69 1.06 3.47 4.52 13.81 0.14 0.63 53.56 1.26 9.57

Midday (9am-2pm) 49.15 0.51 0.25 0.30 0.73 4.04 7.48 0.09 1.31 26.48 1.92 7.74

Afternoon (2pm-7pm) 8.75 0.31 0.59 1.06 3.94 3.15 15.67 0.12 1.08 54.54 0.44 10.35

Evening (7pm-12am) 9.21 0.68 0.75 0.75 4.47 1.42 24.32 0.07 1.56 45.53 0.07 11.18

Night (12am-4am) 16.67 0.00 0.00 0.00 0.00 0.00 27.08 0.00 0.00 54.17 0.00 2.08

Chi-squares tests (X2) are all significant (p− value < 0.001)

Table 3.5: Socio-demographics of the respondent by chosen mode
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Attributes Walk Bike Bus BRT Train Angkot Car Car Taxi Car ODT MC MC Taxi MC ODT

Income (IDR Million)

< 1 18.13 0.16 0.00 0.90 2.71 7.38 4.68 0.57 0.08 58.90 1.56 4.92

1-3 29.97 1.04 0.86 1.43 2.32 9.56 2.94 0.27 0.48 44.34 0.83 5.97

3-5 27.15 0.01 0.59 0.47 5.59 4.67 4.75 0.10 0.31 49.15 1.17 6.04

5-8 20.97 0.44 0.53 1.21 3.96 4.22 10.43 0.05 0.20 50.36 1.66 5.98

8-12 16.07 0.74 0.68 0.25 1.16 2.09 17.50 0.00 0.91 46.62 0.42 13.56

12-15 5.96 0.81 0.23 1.12 1.41 1.27 22.42 0.00 1.41 49.19 0.40 15.77

15-18 5.08 0.95 0.40 0.95 0.00 0.71 26.19 0.00 2.22 47.62 0.95 14.92

18-21 5.69 0.00 0.71 1.00 0.85 0.43 28.31 0.85 5.19 34.85 1.21 20.91

21-25 2.54 0.00 1.14 0.76 0.38 0.76 42.39 0.00 1.52 37.31 0.51 12.69

25-28 4.43 0.95 0.48 1.11 0.79 0.48 35.79 0.16 4.59 31.67 1.82 17.74

>28 4.90 1.18 0.00 1.76 0.20 0.39 42.55 0.00 5.29 30.39 0.39 12.94

Trip purpose

Go home 9.99 0.52 0.58 0.88 3.44 4.34 14.84 0.12 1.09 52.29 1.18 10.73

Drop off 18.39 0.15 0.73 0.00 0.15 9.64 13.14 0.00 2.77 50.22 0.73 4.09

Work 18.54 0.16 0.76 0.96 4.68 2.44 17.07 0.12 0.35 48.34 0.54 6.04

Education 8.00 0.84 0.49 1.54 1.23 3.44 9.33 0.18 0.62 54.82 0.99 18.52

Daily shopping 32.89 1.39 0.28 0.00 0.42 9.99 4.16 0.21 1.80 33.59 6.32 8.95

Special shopping 20.46 0.53 0.00 0.00 1.06 9.17 16.58 0.18 3.35 39.68 1.23 7.76

Leisure 17.56 0.47 0.16 0.79 1.27 6.33 17.72 0.00 6.65 36.08 1.42 11.55

Religion 88.55 0.51 0.00 0.00 0.30 0.30 1.82 0.00 0.61 6.38 0.00 1.52

Other purpose 78.82 0.35 0.06 0.40 0.40 0.17 2.94 0.00 0.40 14.95 0.06 1.44

Chi-squares tests (X2) are all significant (p− value < 0.001)
1 USD is equal to 14,085 IDR on 31th of July 2019

Table 3.6: Income, trip distance and trip purpose of the respondent by chosen mode
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As depicted Figure 3.2, for short distances (0 to 1.5 km), the
share of Non-Motorized Transport (NMT) was the highest; how-
ever, when the distance increased, the mode share of private
vehicles also increased. NMT refers to walk and bike alternatives.
Interestingly, the share of the conventional taxi was lower than
ODT. Certainly, ODT is more convenient than a conventional taxi
as people may have a price estimate upfront and it has a lower
price and faster service. ODT was preferred, especially when
compared to a conventional motorcycle taxi, where people have
to negotiate the price first with the driver. MC ODT was used not
only for short distances, but also for long distances. The share
of MC ODT was higher than 12% when the distance was farther
than 5 km.

The public transport share was more than double when the
distance was more than 30 km. The reason is that the access
to private vehicles is insufficient for the people living far from
their activities’ locations. The people living farther from activity
locations have a relatively lower income level, and they cannot
afford to live in places that close to CBD. Moreover, the price
of public transport is lower than other modes due to the price
subsidies from the government, especially for BRT and Train.

Furthermore, Figure 3.3 shows mode shares by travel time,
in which the shorter the travel time, the higher the shares of
NMT and ODT. However, private vehicle and public transport
are reverse, and ODT is more preferred than the conventional
taxi in any cases.
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Figure 3.2: Travel distance by mode
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Figure 3.3: Travel time by mode

3.4.2 Cost structure of the transport modes

Figure 3 shows the price structure of the different modes of
transportation, presented in a log-time and log-cost scale format.
These figures are based on the travel cost and travel distance for
each trip of the respondents. Blue represents car-based modes,
orange represents MC-based modes, and green represents the
public transport modes. It shows that public transport modes
have a lower cost in general. When the distance increases, the
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price of public transport is lower than car-based or MC-based
modes. Compared to other public transport modes, the lower
the marginal price of traveling by train decreases by distance.
For car-based modes, it can be observed that traveling by car
is inexpensive for short-distance trips, but it becomes the most
expensive mode for longer trips. Car ODT prices are higher than
those of conventional car taxis as reported by the respondents.
Regarding the price of MC-based modes, we can see that the
price of MC taxis is the highest, followed by MC ODT and MC.

Figure 3.4: Travel time (log) and travel cost (log) by mode
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3.4.3 Trip chains

Each trip had a particular purpose: work (w), to go home (h),
education (e), errand (er), leisure (l), and daily and special shop-
ping (s). Trips for religion and other purposes are combined into
leisure purposes, and drop-offs are considered to be errands.
Table 3.7 shows the 10 most frequent trip chains that make up
94.52% of all activity chains. The most frequent chain is home-
work-home (h-w-h), followed by home-education-home (h-e-h).
The result shows that these simple mandatory activity chains
have a share of 55.81%, which is considerably higher than the
results in other countries, Schlich et al. (2004) report this share to
be less than 25% in the case of Mobidrive and Uppsala. Following
these two chains, the home-shopping-home (h-s-h) trip chain is
the third most common with 9.52%.

We also divided the trip chains based on gender and house-
hold monthly income categories. Males had a higher share for
most trip chains; however, females had a higher share of home-
shopping-home, home-leisure-home, and home-errand-home trip
chains. It showed that transport for shopping, leisure, and errand
purposes was more likely to be taken by females because they
are less likely to be employed. The income categories also influ-
enced the trip chains of respondents. The income was divided
into three-levels: low income (less than IDR 5 million), medium-
income (between IDR 5 and 15 million), and high income (more
than IDR 15 million); medium-income respondents had higher
shares for all trip chains, but lower-income respondents had a
higher share for h-w-l-w-h and h-er-h trip chains.
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Trip chains Male Female Low Income Medium Income High Income Total

h-w-h 67.60 32.40 32.37 51.14 16.49 39.79

h-e-h 54,56 45.44 25.23 52.91 21.87 26.02

h-s-h 11.00 89.00 31.44 53.11 15.45 9.52

h-w-l-w-h 77.92 22.08 59.05 40.44 0.51 7.69

h-l-h 35.23 64.77 32.72 41.72 25.56 4.91

h-w-l-h 84.62 15.38 45.16 53.11 1.74 2.64

h-er-h 33.63 66.37 47.66 39.77 12.57 2.23

h-e-l-h 58.82 41.18 41.18 47.06 11.76 0.66

h-s-w-h 96.74 3.26 26.09 73.91 0.00 0.60

h-w-s-h 55.07 44.93 37.68 47.82 0.51 0.45

Row percentage 57.20 42.80 33.30 50.30 16.40 94.52

Chi-squares tests (X2) are all significant (p− value < 0.001)
1 USD is equal to 14,085 IDR on 31th of July 2019

Table 3.7: Trip chains by gender and income level

3.4.4 Speed by distance, mode, and region

The average speed of modes increased with the traveled distance,
as can be seen in Figure 3.5. We calculated the speed based on
respondent’s reported travel time and distance. The calculation
is based on the aggregate of all stages and modes used. For short
distances, the speed was slower due to the frequent walking
and bike use. Figure 5 presents the speed for different modes
in Jakarta and its agglomeration. The speed of the transport
modes was different for each mode and region. The average
speed of bike, bus, BRT, angkot, MC Taxi was higher in the
agglomeration; however, the average speeds of the other modes
were quite similar. In general, the agglomeration had a higher
speed than Jakarta due to lower traffic congestion.
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Figure 3.5: Average mode speed by distance
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Figure 3.6: Speed distribution by mode and region

3.5 constructing choice alternatives

3.5.1 SP data set: Experimental Designs

We constructed stated choice experimental designs with a D-
efficient design using Ngene (ChoiceMetrics, 2014). All the re-
spondents of the RP survey, equaling 5,143 respondents, were
given SP surveys. The mode choice experiment in Greater Jakarta
was categorized by travel distance to the place of their daily
activities, driver or non-driver, traveling inside or outside of
Jakarta. The respondent received preliminary questions about
these categories. The mode alternatives and variables were based
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on the respondent’s answers to the preliminary questions. Each
respondent received four-choice experiments. In total, there are
20,064 observations.

The types of experiments are shown in Table 3.8. The conges-
tion/toll charging attribute was only available for the respondent
who travelled within or to Jakarta. There are nine different modes,
including walking, PT, car, MC, car Taxi, MC Taxi, MC ODT, car
ODT, and UAM. Walking was only available for a distance less
than 1.5 km and applicable for drivers or non-drivers. The car
and MC were always available in each distance interval, but
not available for non-drivers. To reduce the complexity of the
choice alternatives, we assigned ODT and conventional taxi at
random, meaning that for some respondents, "Taxi" appeared,
and for some respondents, "ODT" appeared as a choice option.
For the access time, we assume a range of 5 minutes, 10 minutes,
and 15 minutes to get from the station or shelter to vertiports.
The detail of the attributes can be seen in Table 3.9. We ensured
that the travel time and travel cost offered produced VoT values
within the range found in the paper by Belgiawan et al. (2019b).
For car-based modes, the car VoT was the highest in the survey
design, followed by conventional car taxis and car ODT. Then, for
MC-based modes, the MC VoT was the highest, followed by MC
taxis and MC ODT. The VoT offered for UAM was the highest
compared to other modes because UAM has the fastest travel
time and the highest cost. The assumptions of the cost per km of
UAM in this scenario varied between USD 0.69-2.08

2. However,
if we account for the value on purchasing power parity (PPP)3 in
2019 (OECD, 2019), the cost is around 2.1-6 USD/km. Uber Air

2 USD 1 is equal to IDR 14,400

3 USD 1 is equal to IDR 4,753
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expects to have a cost of around 5.73 USD per mile/3.5 USD/km
and hopes to reduce the price to 1.15 USD/km and even to 0.27

USD/km in the long-run (Dickey, 2020). Neighboring Singapore
expects the cost to be around 3.75 USD per mile/2.3 USD/km
or double the price of ground car raid-hailing (TheJapanTimes,
2019). Therefore, we tried to cover that range of costs in our
scenarios.

Mode 0-1.5 km 1.5-5 km 5-15 km 15-25 km >25 km Driver Non driver

Walk True False False False False True True

PT True True True True True True True

Car True True True True True True False

MC True True True True True True False

Car Taxi Random Random Random Random Random Random Random

Car ODT Random Random Random Random Random Random Random

MC Taxi Random Random Random Random Random Random Random

MC ODT Random Random Random Random Random Random Random

UAM False False True True True True True

Table 3.8: Availability mode by distance and driving ability
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Attributes PT Car MC Car Taxi MC Taxi Car ODT MC ODT Walk UAM

Travel cost (Thousand IDR)

0-1.5 km 3;6;8 6;8;10 2;4;6 12;14;16 5;10;15 7;12;15 6;10;12 - -

1.5-5 km 6;12;17 14;18;20 9;10;13 25;30;40 15;20;25 14;25;35 15;18;22 - -

5-15 km 9;18;27 22;28;32 13;20;25 58;90;110 30;35;45 55;80;100 25;35;40 - 60;100;150

15-25 km 13;30;55 35;60;75 20;30;45 75;120;160 50;65;80 72;110;145 45;55;68 - 150;200;250

>25 km 20;40;65 62;90;115 30;40;50 110;170;250 72;90;120 105;165;220 65;80;96 - 250;300;350

Travel time (minute)

0-1.5 km 5;10;16 6;12;15 4;6;8 6;10;15 6;7;8 6;8;10 4;6;8 30;50;70 -

1.5-5 km 10;20;30 10;20;30 8;15;25 10;20;25 9;15;20 10;20;30 10;15;25 - -

5-15 km 15;30;45 15;30;45 15;25;35 25;40;55 15;25;32 25;40;55 15;25;32 - 8;9;10

15-25 km 30;45;60 37;60;70 25;40;50 35;55;70 25;40;50 35;55;70 25;40;50 - 10;12;15

>25 km 35;60;90 52;90;120 27;50;70 52;75;100 35;60;70 105;165;220 35;50;70 - 13;17;23

Transfers (minute) 0;1 - - - - - - - - -

Waiting time (minute) 5;15;30 - - 5;10;20 5;10;20 5;10;20 5;10;20 10;15;25

Toll/congestion charging - 10;15;25 5;10;15 10;15;25 5;10;15 10;15;25 5;10;15 - -

(Thousand IDR)

Accessl time (minute) 5;10;15 - - - - - - - 5;10;15

1 USD is equal to 14.400 IDR on 25th of May 2019

Table 3.9: Attributes of each mode and category
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3.5.2 RP data set: Non-Chosen Choice Alternatives

The non-chosen transport alternatives for each trip were con-
structed based on information from google API (Google, 2019).
We collected the coordinates of each trip origin and destination
based on geocoding Google API. Then we collected the infor-
mation of non-chosen alternatives: transit, driving, and walking
based on Google API direction (Google, 2019). We report the
travel time information of each non-chosen alternative mode
available on the exact departure time reported in the survey. For
bike and MC, however, there was no Google information avail-
able for travel time and limited research regarding the speed of
these modes of transport are in urban settings. We thus assume
that a MC’s speed is 3.3 km/h faster than that of a car (Walton
and Buchanan, 2012). For a bike, the speed depends on the age
of the respondents. The speed of an older person was 10 km/h,
while a younger person’s speed was 15 km/h (City of Copen-
hagen, 2013; Woodcock et al., 2018). We assumed each mode’s
travel cost based on the travel prices that exist in Greater Jakarta.

The detail of the assumptions can be seen in Table 9. There were
no costs related to walking or biking. The base in the parameter
travel cost indicates the travel cost when the respondent first
begins to use the mode. We collected waiting time, transfer, and
walking time for transit based on the Google API. There was no
specific API for each different transit mode. The mode was not
always available. For example, if the respondents did not have
access to cars and MC, those modes would not be available as
a non-chosen alternative. The waiting time for an angkot, ODT,
and a conventional taxi was five minutes. The access walking
time of angkot or microbus was five minutes, and transfers only
occur when the trip was longer than 10 km.



52 travel behaviour in greater jakarta

3.5.3 Description of the pooled SP and RP data set

Our data set contains 52,731 observations, excluding microbus
alternative. The share of MC choices from the SP and RP data
set is the highest. As shown in Figure 6, the share of choice
alternatives varies by age group and income group.
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(a) Share by age group (b) Share by income group

(c) Share on SP and RP data set

Figure 3.7: Mode shares of data set
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Mode Travel time (minutes) Travel cost (thousand IDR/km) Waiting time (minute) Transfer Walking time transit (minute) β ODT Availability

Walk API Walking - - - - - always

Bike APICarDistance
SpeedBike - - - - - always

Car CarAPI 2.95 - - - - Access Car

Motorcycle APICarDistance
APICarSpeed+3km∗h−1 0.59 - - - - Access Motorcycle

Car ODT API Car 10(base) + 3.5 5 - - Yes Always

Motorcycle ODT APICarDistance
APICarSpeed+3km∗h−1 10(4km) + 2.5 5 - - Yes Always

Bus API Transit 10 per 10 km API Transit API Transit API Transit - Has transit

BRT API Transit 3.5 API Transit API Transit API Transit - Has transit

Train API Transit 5.5 API Transit API Transit API Transit - Has train

Microbus (angkot) API Car 5 per 10 km 5 > 10 km 5 - Always

Car taxi API Car 6(base) + 4.5 5 - - - Always

Motorcycle taxi APICarDistance
APICarSpeed+3km∗h−1 10(base) + 3 5 - - - Always

Table 3.10: Parameter assumptions for non-chosen mode alternatives
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M O D E C H O I C E I N G R E AT E R J A K A RTA

4.1 modeling framework

In this chapter, we developed a model based on a pool of stated preference
(SP) and Revealed Preference (RP) data sets. We explore the demand of
each choice alternatives: the willingness to pay (WTP) or value travel time
savings (VTTS), value travel time assigned to travel (VTAT), and elasticity
of all choice alternatives, including ODT and UAM. We conducted a stated
choice experiment to gather the data and used a discrete choice model to
do the analysis. The measurement of WTP: VTTS, VTAT, and elasticity all
together is rarely explored by other researchers.

We employed the multinomial logit (MNL) and mixed logit (MXL)
formulation for the choice modeling analysis, both of which are widely
used for policy analysis. We used 1,000 Halton draws for MXL. The
estimation took seven days. This paper used the R package, mixl, to
estimate the model (Molloy et al., 2019). The model that we presented
here was based on pooled SP and RP data sets. Train (2003); Cherchi and
Ortúzar (2011); Schmid et al. (2019) show that the pooled SP and RP data
sets have a better estimation and robustness, which could improve the
quality of only the SP or RP data sets. MNL assumes that the error term ε is
equally Identical and Independently Distributed and that the alternatives
have the same probability distribution and independence (McFadden, 1973;
Train, 2003). The alternative specific constants (ASCs) are decomposed
into their mean value and their standard deviation, denoted by ηi,n. The
utility of a person n choosing alternative i in choice situation t can be seen
in equation 1 for MNL and equation 2 for MXL.

Ui,n,t = ASCi + βiXi,n,t + εi,n,t (4.1)

Ui,n,t = (ASCi + ηi,n) + βiXi,n,t + εi,n,t (4.2)

55
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There are 11 alternatives in Model 1 and 8 alternatives in Model 2 and
Model 3. MC-based and car-based taxis were converted to taxi, and MC-
based and car-based ODT were converted to ODT. The utility formulation
for choice alternatives i ∈ {walk, bike, ..., UAMSP} and individual n ∈
{1, 2, .., N} in choice scenario t ∈ {1, 2, ..., T} can be seen in the Appendices.
Travel cost has a continuous interaction term with income and travel
distance. In the meantime, the travel time of UAM has a continuous
interaction term with travel distance, which corresponds to elasticity
λIncome and λDistance (Ilahi et al., 2019c; Vrtic et al., 2010; Mackie et al.,
2003). Income refers to the household income, while AverageIncome is the
sample mean of income. Distance is the individual trip distance, and the
AverageDistance is the sample mean of distance.

4.2 results

4.2.1 Model Estimations of Pooled SP and RP

The results for the three models are presented in Table 10, in which
MC is the base category. Model 1 has 11 modes of transport alternatives
presented: walking, bike, bus, BRT, train, car, MC, taxi, ODT, PT SP (public
transport in SP data set), UAM. Model 2, which combines all public
transport modes (Bus, BRT, Train, and PT SP) into a single PT, has eight
choice alternatives: walk, bike, car, MC, taxi, ODT, PT, and UAM. For
Models 1 and 2, we implemented MNL model. Model 3 has the same
alternatives as in Model 2. For Model 3, we implemented MXL model.

The parameters of Model 1, established travel time for a specific alter-
native, generic travel costs for all choice alternatives, and generic con-
gestion charging only for car, MC, taxi, and ODT modes of transport.
Socio-demographic attributes, such as household income, age, gender, and
education, were specific only for some alternatives. The models include
the attribute of living in the urban agglomeration for UAM. Model 2 and
Model 3 had similar parameters to Model 1 except for cost and PT travel
time. Cost is a combination of travel cost and congestion charging, while
PT travel time in Model 2 and Model 3 is a combination of all public
transport alternatives.



4.2 results 57

In the case of Model 1, we found an insignificant result for the ASC
of train, meaning that the train is not more or less preferred than a MC.
However, the other choice alternatives had negative and significant ASCs,
suggesting that the MC is more preferred than the alternative choices. In
Model 2 and Model 3, we found that the ASCs for all choice alternatives
were negative, showing that the MC is preferred more than the other
transport choice alternatives.

In the models, we found that males, non-university, and older people
were less likely to choose ODT, which is supported by significance of male
ODT (+), university degree ODT (+), and age ODT (-). Except in Model 3,
only age for UAM is significant, and being male in ODT is not significant.
For UAM, the impact of being male and living outside Jakarta (in the
urban agglomeration) was not statistically significant. However, the young
and university degree holding respondents tended to choose UAM. It
is supported from the significant of age UAM (-), and university degree
UAM (+). This finding is in line with that by Eker et al. (2020a), that young
respondents tend to choose UAM. Furthermore, variable travel costs,
congestion charging, and access time of UAM were negatively significant,
as expected.

The variable of travel time for all choice alternatives was negative and
significant in all models, and significant except for PT (in the SP data set)
and bus in Model 1. These results suggests that they did not like biking.
This finding may be because the bike lane facilities do not accommodate
bikers very well, and bikers have to compete for space with the motorized
vehicles. Furthermore, hot weather makes it difficult to ride bikes. All
models also indicate that respondents like to use cars and MC, and that
residents in Jakarta prefer to use private vehicles. However, for UAM, from
beta travel time, we can see that in Model 1 and Model 2, the respondents
immensely enjoy the UAM after Car, but Model 3 indicates that UAM is
just somewhat more enjoyable than ODT.

In model 1, the travel time of PT in SP and bus were not significant.
However, travel time of BRT and train were negative and significant.
People preferred to use BRT rather than a train because the train was
less accessible. The number of BRT stops and lines are higher than train
stations and lines: 325 BRT lines and 22 commuter lines. Moreover, people
still need to take other modes to go to the train station. The λ of income
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and distance for all models is negative and significant, as shown in Vrtic
et al. (2010).

With regard to BIC and rho-square, Model 3 (MXL) outperforms the
other models, and Model 2 is better than Model 1. Those models provide a
better fit than previous studies of Greater Jakarta (Belgiawan et al., 2019b;
Ilahi et al., 2019c).

Table 4.1: A Pooled SP and RP result

Variable Model 1 Model 2 Model 3

Baseline: MC Par. t-test Par. t-test Par. t-test

ASC Walk -2.51 −23.08∗∗∗ -2.57 −23.27∗∗∗ -16.38 −14.23∗∗∗

ASC Bike -4.22 −13.57∗∗∗ -4.24 −13.65∗∗∗ -39.48 −18.52∗∗∗

ASC PT -3.50 −25.14∗∗∗ -3.75 −30.5∗∗∗ -21.02 −26.28∗∗∗

ASC Bus -5.05 −13.47∗∗∗ - - - -

ASC BRT -4.74 −20.3∗∗∗ - - - -

ASC Train -0.29 −0.9 - - - -

ASC Car -1.20 −10.64∗∗∗ -1.09 −9.05∗∗∗ -14.29 −2.61∗∗∗

ASC Taxi -3.94 −23.59∗∗∗ -3.82 −21.21∗∗∗ -25.72 −9.28∗∗∗

ASC ODT -1.43 −9.32∗∗∗ -1.23 −7.64∗∗∗ -10.83 −7.02∗∗∗

ASC UAM -3.54 −6.95∗∗∗ -3.23 −5.7∗∗∗ -22.03 −5.89∗∗∗

β Tcost -1.42 −12.08∗∗∗ -2.08 −15.76∗∗∗ -6.46 −17.15∗∗∗

β Con. charg -4.13 −8.46∗∗∗ - - - -

λ Income, cost -0.09 −3.06∗∗∗ -0.06 −2.83∗∗∗ -0.13 −3.80∗∗∗

λ Dist, cost -0.83 −19.16∗∗∗ -0.75 −19.13∗∗∗ -0.84 −29.59∗∗∗

λ Dist, timeUAM -14.73 −5.23∗∗∗ -12.3 −9.46∗∗∗ -12.01 −5.18∗∗∗

σ Sc. Par MCSP 0.77 32.79∗∗∗ 0.67 31.31∗∗∗ 0.19 11.28∗∗∗

η Walk - - - - -10.37 −22.82∗∗∗

η Bike - - - - 17.04 20.73∗∗∗

( To be continued)
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Variable Model 1 Model 2 Model 3

Baseline: MC Par. t-test Par. t-test Par. t-test

η PT - - - - -18.59 −15.97∗∗∗

η Car - - - - 17.96 2.20∗∗

η Taxi - - - - -13.06 −5.97∗∗∗

η ODT - - - - -14.70 −9.49∗∗∗

η UAM - - - - 13.75 9.03∗∗∗

β Ttime Walk -0.36 −6.82∗∗∗ -0.52 −9.11∗∗∗ -2.04 −3.65∗∗∗

β Ttime Bike -8.61 −4.55∗∗ -9.05 −4.79∗∗∗ -20.00 −3.73∗∗∗

β Ttime PT -0.28 −1.22 -1.49 −7.17∗∗∗ -8.52 −5.29∗∗∗

β Ttime Bus -1.18 −1.4 - - - -

β Ttime BRT -1.07 −2.36∗∗ - - - -

β Ttime Train -2.72 −6.39∗∗∗ - - - -

β Ttime Car -0.60 −3.64∗∗∗ -1.24 −6.33∗∗∗ -5.15 −3.01∗∗∗

β Ttime MC -2.34 −10.25∗∗∗ -3.32 −12.68∗∗∗ -10.13 −5.88∗∗∗

β Ttime Taxi -3.49 −8.03∗∗∗ -4.79 −9.23∗∗∗ -9.63 −1.73∗

β Ttime ODT -5.10 −15.27∗∗ -6.26 −16.82∗∗∗ -15.67 −8.48∗∗

β Ttime UAM -1.36 −31.83∗∗∗ -2.65 −3.12∗∗∗ -12.41 −2.37∗∗

β Actime UAM -3.54 −1.82∗ -4.54 −2.02∗∗ -15.51 −1.38

β Male ODT -0.38 −4.87∗∗∗ -0.42 −4.95∗∗∗ -3.13 −1.41

β Male UAM -0.04 −0.2 1.08 4.17∗∗∗ 0.29 0.19

β Age Walk 0.99 3.69∗∗∗ 1.03 4.02∗∗∗ 10.41 1.05

β Age Train -0.15 −2.01∗∗ - - - -

β Age MC -0.93 −3.96∗∗∗ -0.83 −3.45∗∗∗ -2.72 −0.46

β Age ODT -1.36 −4.05∗∗∗ -1.32 −3.75∗∗∗ -11.13 −0.94

β Age UAM -3.44 −3.48∗∗∗ -3.76 −3.35∗∗∗ -22.91 −2.78∗∗∗

( To be continued)
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Variable Model 1 Model 2 Model 3

Baseline: MC Par. t-test Par. t-test Par. t-test

β Uni. ODT 0.25 2.86∗∗∗ 0.27 2.97∗∗∗ 3.45 7.34∗∗∗

β Uni. UAM 0.93 4.09∗∗∗ 1.08 4.17∗∗∗ 6.88 4.10∗∗∗

β Agglo. UAM 0.34 1.47 0.15 0.58 0.19 0.13

Observations 52731 52731 52731

Draws - - 1000

Final-LL -57153 -59103 -33948

Rho-square 0.44 0.42 0.67

AIC 114381 118267 67970

BIC 114709 118533 68299

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

4.2.2 Value of travel time savings

We measured the VTTS of a person in U.S dollars (USD). VTTS measures
a person’s willingness to pay in return for a reduction of travel time. As
our scenario was conducted using Indonesia Rupiah (IDR), we converted
IDR into USD, and calculated the VTTS using the following formula:

VTTSi,n =
ffiVi,n/ffiTi,n

ffiVi,n/ffiCi,n
=

60, 000
14, 000

∗ fiT
fiC

(4.3)

where Vi,n represents systematic utility for an alternative i for person
n, Ti,n represents travel time for the person n choosing alternative i, and
Ci,n represents the cost for the person n choosing an alternative i. The
parameters of time and cost are represented by βT and βC respectively.

Table 11 shows the results of the VTTS at the sample mean. It presents
the willingness to reduce travel time by one unit. Public Transport in Table
11 and 12 refers to general public transport, as in the SP dataset the mode
is an aggregate of all PT services. The specific modes of transport, like
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Bus, BRT, and Train, are from the RP dataset based on the assumptions in
Table 9.

We found that the VTTS of the PT (in the SP data set) was the lowest,
but the travel time parameter of PT was not significant. The VTTS of cars
was lower than that of the other modes of transport. The result is the same
as that of Ilahi et al. (2019c); Belgiawan et al. (2019b); however, it differs
from that of Schmid et al. (2019); Shires and de Jong (2009); Wardman
(2004) that shows the car VTTS was higher than public transport. The
VTTS of ODT was the highest, followed by taxi, train, and MC. Model
2 gave a similar result, in which ODT was the highest, followed by taxi,
MC, UAM, PT, and car. In Model 3, the highest VTTS is ODT, followed
by UAM, taxi, and MC. Furthermore, the interaction between income and
distance to VTTS is shown in Figure 7 for cars, MC, ODT and UAM.

In terms of VTTS vis-a-vis the Congestion Charge in Model 1, the ODT
was the highest, followed by taxi, MC, and car, showing that the users of
ODT and taxis were more sensitive to the charge. The income per capita
in 2018 in Jakarta was 17,438 USD per year or 8.7 USD per hour for an
assumed 2,000 hours per year. However, we must consider that Indonesia
has a high Gini ratio. A small number of people have very high incomes
per capita. The hourly income per capita is lower than 8.7 USD if we
exclude the highest-income people. We found that the VTTS vis-a-vis
travel cost of ODT, taxi, and train (Model 1), ODT and taxi (Model 2), and
ODT and UAM (Model 3) were higher than income per capita/hour. The
VTTS vis-a-vis of access cost was higher than income per capita/hour in
all models.

As has been discussed in several studies (Schmid et al., 2019; Jara-Díaz
et al., 2008; Hössinger et al., 2020), the VTTS is the sum of the value of
leisure (VOL) and VTAT. VOL represents the willingness to pay to reduce
travel time to gain more utility, and VTAT is the indirect value disutility of
travel time assigned to travel. VOL is calculated based on the proportion of
hourly income and each country has a different value. Assuming that the
VOL of Indonesians is similar to Chileans, approximately 66% of wages
(Jara-Díaz et al., 2008) the resulting VOL is 5.74 USD. As shown in Table 11,
VTAT is positive for public transport, bus, BRT, car, and UAM (Model 1),
and public transport, car, and UAM (Model 2). However, only the car and
public transport in Model 3 have a positive VTAT. The higher the VTAT,
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the lower the VTTS. In the meantime, the lower the VTAT, the higher
the VTTS. The positive value of VTAT shows disutility when travel time
is reduced; it therefore reveals more about comfort, safety, and security
during travel, than the travel time itself.

Model Mode Fuel/Ticket cost Congestion cost Access cost VTAT

Model 1

PT 0.86 - - 4.88

Bus 3.56 - - 2.18

BRT 3.23 - - 2.51

Train 8.21 - - -2.47

Car 1.80 0.62 - 3.94

MC 7.06 2.43 - -1.32

Taxi 10.52 3.62 - -4.78

ODT 15.38 5.29 - -9.68

UAM 4.98 - 10.7 0.76

Model 2

PT 3.07 - - 2.67

Car 2.55 - - 3.19

MC 6.85 - - -1.11

Taxi 9.88 - - -4.14

ODT 12.92 - - -7.18

UAM 5.47 - 9.35 0.27

Model 3

PT 5.65 - - 0.09

Car 3.42 - - 2.32

MC 6.72 - - -0.94

Taxi 6.39 - - -0.65

ODT 10.39 - - -4.65

UAM 8.23 - 10.29 -2.49

Table 4.2: Value of time of mode of transport pool SP and RP (USD/hour)
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(a) VTTS car (b) VTTS motorcycle

(c) VTTS ODT (d) VTTS UAM

Figure 4.1: VTTS related to income and distance
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4.2.3 Point elasticities of travel time

In this section, we measured the direct point elasticities for all modes of
travel. The method used were the same as those presented in Atasoy et al.
(2013); Belgiawan et al. (2019a), as shown in Eq.3:

Ewi
iqXkiq

=
Qs

∑
q=1

EiqXkiq

wqPiq

ΣQs
q=1wqPiq

(4.4)

where wq represents the sample weight for individual q from sample
Qs from population Q and EiqXkiq is the disaggregate elasticity on the
demand of individual q for variations in attribute Xkiq. We weighted each
observation in our data sets according to the representation of its age and
gender category in the Greater Jakarta population.

The results are shown in Table 12. The sign of all the time and cost
elasticities measurements were as expected, which means that a percentage
increase in all travel time and travel cost would, on average, reduce the
probability of choosing an alternative. We found that travel time for
all modes was inelastic for Model 1, and ODT was elastic for Model 2.
However, for Model 3, only walking and MC were inelastic. The bike
had the highest reduction, in which a 1% increase in travel time would
reduce the probability of choosing a bike by 4.26%, followed by ODT with
a reduction of around 3.39%, and public transport of 2.83%.

Furthermore, for travel costs, only UAM was elastic for Model 1 and
Model 2. However, travel cost was elastic for car, taxi, ODT, and UAM for
Model 3. It showed that a 1% increase in travel cost for the UAM would
reduce the probability of choosing UAM by 2.07% in Model 1, 2.96% in
Model 2, and 9.55% in Model 3. In Model 3, we found that a 1% increase
in travel cost would reduce the probability of choosing a car by 2.15%, a
taxi by 2.23%, and ODT by 2.60%. The congestion cost was inelastic for
Model 1. The access time was inelastic for Model 1 and Model 2, but was
elastic for Model 3.
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Model Mode Travel time Travel cost Congestion cost Access time

Model 1

Walk -0.17 - - -

Bike -0.94 - - -

Bus -0.46 -0.33 - -

BRT -0.42 -0.05 - -

Train -0.87 -0.05 - -

Car -0.13 -0.36 -0.13 -

MC -0.24 -0.14 -0.05 -

Taxi -0.57 -0.44 -0.07 -

ODT -0.92 -0.43 -0.01 -

PT -0.06 -0.63 - -

UAM -0.15 -2.07 - -0.33

Model 2

Walk -0.24 - - -

Bike -0.99 - - -

Car -0.26 -0.58 - -

MC -0.34 -0.24 - -

PT -0.54 -0.24 - -

Taxi -0.75 -0.64 - -

ODT -1.11 -0.68 - -

UAM -0.29 -2.96 - -0.39

Model 3

Walk -0.95 - - -

Bike -4.26 - - -

Car -1.29 -2.15 - -

MC -0.85 -0.72 - -

PT -2.83 -0.67 - -

Taxi -1.76 -2.23 - -

ODT -3.39 -2.60 - -

UAM -1.32 -9.55 - -1.42

Table 4.3: Point elasticities of variables
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A G E N T- B A S E D M O D E L O F G R E AT E R J A K A RTA

5.1 introduction

Transport activities are not based on a single entity but consist of several
complex interactions (Kitamura, 1988; Axhausen and Gärling, 1992). As
social creatures, our trip activities are influenced by other people. It can
be in intra-household interaction (Bradley and Vovsha, 2005). For instance,
our activities in the morning can be influenced by our children. We need
to drop off our child to school first before we go to the office. Each activity
type also has different time allocations as stated by (Borgers et al., 2001;
Gliebe and Koppelman, 2005; Simma and Axhausen, 2001) and there
are difference shares for each trip purpose (Axhausen et al., 2002). As
classified by (Arentze and Timmermans, 2004), there are several types of
constraints in activities, such as household constraint, spatial constraints,
time constraints, and spatial-temporal constraints. For example, in the
shopping places, we have time constraint when it opens or closes, and
how far it is from our home location. Nevertheless, trip activities can
be influenced by bigger group interactions, in which people are also
influenced by their needs, occupation, group, ethnicity, nationality, or even
belief and interest. However, family has more influence factors as it is
where we spend our time and have interaction the most.

To simulate above complex interactions, we used an agent-based model
which has been used by many researchers. There are several tools us-
ing agent-based model, such as; ORIENT/RV (Axhausen, 1989), TRAN-
SIMS (Smith et al., 1995), SimMobility (Adnan et al., 2016), SimTRAVEL
(Pendyala et al., 2012), Multi-Agent Transport Simulation MATSim (MAT-
Sim) (Balmer et al., 2006; Horni et al., 2016), and GEMSim (Saprykin et al.,
2019). However, in this research, we employed MATSim, which is con-
sidered suitable in the recent past to model large-scale cities, such as
Singapore (Erath et al., 2012). Besides, it is able to include micro-buses
in simulation (Neumann et al., 2015), and utilizes joint activities between
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household members as can be seen in (Dubernet and Axhausen, 2015).
Besides, it can also simulate the impacts of emerging transportation op-
tions and policies, such as the impacts of car-sharing (Balac et al., 2019),
urban air mobility (Balac et al., 2018), bike-sharing, congestion pricing,
automated vehicles or equity effects, which are hard to investigate on a
suitable level using the more traditional modeling techniques (Horni et al.,
2016).

The following reasons motivate the use of agent-based model. First, to
the authors’ knowledge, this research will be the first to make use of an
agent-based model that incorporates microbus or "angkot" and simulates
the daily behavior of people performing their activities in Greater Jakarta.
There are several studies conducted in Jakarta. Yagi and Mohammadian
(2010) simulated mode and destination choice based on discrete choice
modelling, and Dharmowijoyo et al. (2016) measured variability of travel
patterns in greater Jakarta. However, those studies do not take into account
greater Jakarta as a whole object of study using agent-based modelling.

Second, our model integrates novel approach to the mode-choice model
in simulation. As shown in Hörl et al. (2018, 2019), the approach can give
faster convergence speed of simulation than scoring based (Balmer et al.,
2006; Horni et al., 2016). Third, this research also adds to the growing
literature on modelling large-scale cities especially when the data are
scarce or not easily obtainable. Fourth, it is different from conventional
four step model. Each individual is simulated as an agent, in which each
of them has its attributes, such as socio-demographic, activity location,
and mode of transportation. The attributes of each agent are used as an
input plan, and then the model uses iterative processing to find the best
plan that maximizes an agent utility.

The remainder of this chapter is structured as follows. The following
section describes case studies of Greater Jakarta, and the third section
explains the MATSim framework. Mode-choice in MATSim is presented in
the forth section. Then, the fifth section presents the first results obtained
for the commuting population of the Greater Jakarta. Finally, the conclu-
sions, limitations and further recommendations are presented in the last
section.
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5.2 matsim framework

This study utilized a Multi-Agent Transport Simulation (MATSim), which
performs a microscopic simulation of daily schedules of synthetic persons
performing activities in the study area. The persons in MATSim are rep-
resented by agents, and each agent has its plan that represents its daily
schedule of activities connected by trips. The plans are simulated using
the mobility simulation (mobsim) for a number of iterations. Before each
simulation starts, some of the agents are allowed to change a part of their
plan in the re-planning phase. This simulation cycle can be seen in Figure
5.1.

Figure 5.1: The MATSim loop (Source: MATSim book (Horni et al., 2016) )

In this work, however, we use a slightly different iterative approach
proposed by Hörl et al. (2018, 2019) that integrates a mode-choice model
with the micro-simulation in MATSim. In this approach, agents are allowed
to change their modes of travel based on a discrete-mode choice model
implemented. Since the mode-choice model in the re-planning phase uses
estimates on the travel-times, costs, waiting times, etc. from the previous
iteration, the scoring phase is no longer needed. This approach is then
utilized to investigate mode choices for the commuting population of the
Greater Jakarta population.

5.2.1 Traffic flow model

Traffic simulation model in MATSim uses a queue based approach, which
has two attributes, storage and flow capacity. Storage capacity defines how
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many cars can be stored at a time on a road link, and flow capacity defines
the outflow capacity of a link.

5.2.2 Public transport network and counting stations

In Jakarta and in Indonesia in general, there are different modes of trans-
portation options available, some of them are formal ones, like car, mo-
torcycle, commuter rail, Bus Rapid Transit (BRT), big buses and medium
buses, and some informal ones are micro-buses (called “angkot”, which
has an informal service without a fixed schedule). Micro-bus, which is of
a small size, has an ability to become a door to door services in Greater
Jakarta. Simulation of micro-buses in an agent-based model has been
previously used in the South-African context (Neumann et al., 2015).

To create public transport network, we need open street map (OSM)
and general transit feed specification (GTFS) data. However, there is no
publicly available GTFS data for Greater Jakarta. Therefore, we have
manually constructed the public transport schedules using the data from
a company called Trafi (https://www.trafi.com/id/jakarta). The data
scrapped from Trafi website are formatted to GTFS structure data (Google,
2019). There are several important files that must be available, which can
be seen in Table 5.1.
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File Description

agency.txt Public transport (PT) company that operates the pt
lines. In our cases, it consists of BRT, Rail, Angkot,
Bus. BRT is all PT that operate in busyway/dedi-
cated line (Transjakarta), Bus is all big/medium bus
operating in mixed traffic. Rail consists of commuter
line operated by public company railway (PT. KAI),
and angkot is all microbus lines.

stops.txt Station/shelter location, which consists of shelter
station coordinate, the name of the shelter station,
name of shelter/station.

routes.txt The name of public transport routes/lines. A route
is a group of trips that are displayed to riders as a
single service.

trips.txt Trips for each route. A trip is a sequence of two or
more stops that occur at specific time.

stop_times.txt Times when a vehicle arrives at and departs from
individual stops for each trip.

Table 5.1: Overview of GTFS files

Furthermore, OSM network and manually constructed GTFS schedules
are converted to MATSim format using the pt2matsim extension (Poletti,
2016). BRT lines are categorized as dedicated lanes. In the end, the transit
schedule is mapped to the MATSim network using the same extension.
Finally, we obtain public transport lines within the network. There are
1,756 public transport lines in total. There are 325 BRT lines (including
other bus companies that using BRT lines), 421 Bus lines, 22 commuter
rail lines, and 988 micro-bus lines. There are also 20 counting stations that
count the number of vehicles in 15min bins as can be seen in Figure 5.2.
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Figure 5.2: MATSim network, public transport lines, counting stations

5.2.3 Private and public transport vehicles

As the vehicles have different sizes and capacities in our simulation, we
classify private and public transport vehicles as in Table 5.2. Car and
motorcycle are classified as private vehicles, while BRT, bus, commuter,
and micro-bus are classified as public transport. The pce (passenger car
equivalent) of motorcycle used is 0.25.
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Type Mode Symbol Length/Width
[m]

Capacity Seat-
s/Standing

Number
of lines

Private Car
Motorcycle

car
mc

4.3/1.6
1.7/1.0

7/0

2/0

-
-

Public BRT
Bus
Commuter
Micro-
bus

pt
bus
rail
angkot

2.5/50

2.5/35

240/2.8
4.2/1.6

50/30

35/15

2.8/1000

1.6/8

325

421

22

988

Table 5.2: Public transports and private vehicles parameters

5.3 calibration

5.3.1 Mode shares

The model are calibrated using 1% of population using parameter esti-
mated from MNL model based on chapter 4. The calibrated parameter
estimated used for this model can be seen in Table 5.3. The average income
used in this model is 5.327 Million IDR, and the average distance is 7.67

km.
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Parameters Estimation

ASC Walk -7.00

ASC PT -6.00

ASC Car -0.75

ASC Car ODT -6.50

ASC Motorcycle ODT -4.00

β Travel cost -2.08

λ Income, cost -0.06

λ Distance, cost -0.75

β Travel time Walk -0.70

β Travel time PT -2.00

β Travel time Car -4.00

β Travel time Motorcycle -6.10

β Travel time Car ODT -8.26

β Travel time Motorcycle ODT -7.00

β Waiting time PT -0.05

β Access egress time PT -0.05

β Male Car ODT -0.42

β Male Motorcycle ODT -1.15

β Age Walking 1.03

β Age Motorcycle -0.83

β Age Car ODT -1.32

β Age Motorcycle ODT -1.32

Table 5.3: Calibrated parameters of mode choice model

We compare the mode shares and the mode shares for several distance
band with the Household Travel Survey (HTS) of Mobility Jakarta Survey.
After several calibration, we can see that the mode shares of the model
fits the HTS, as shown in Figure 5.3, and Figure 5.4. It is not perfectly



5.4 discussion and conclusions 75

match, since we need to make sure that the mode shares match not only
in aggregate view but also by distance band view.

Figure 5.3: Mode shares

5.4 discussion and conclusions

In this chapter, we use an agent-based modelling framework to simulate
the commuting population of Greater Jakarta. The methodology presented
also utilizes a novel approach that integrates mode choice with a micro-
simulation in MATSim. The results show that differences between the
mode shares from MATSim and JICA mode shares is very low. It also
shows that the mode shares for different distance band matches between
MATSim and JICA.

This research simulate behavior of people living in Greater Jakarta
including primary and secondary activities. Nevertheless, this research
provides the backbone on which further research can be built. However, it
takes a considerable amount of money and time for construction as the
size of the city, and the population is huge.
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Figure 5.4: Mode shares by distance band

The parameters of the mode choice model are based on the Greater
Jakarta model. However, we adjusted with calibration value and factor of
five mode transports (public transport, car odt, mc odt, car, motorcycle),
as resented in Table 5.3. We use 1 (%) of the population in our simulations
for calibration. The calibrated model further used for simulating impact
of congestion pricing in Greater Jakarta.

As for now, however, the model in this thesis did not consider the joint
trips of members in the same household, but it considers car passenger
trips. The model also did not simulate public transport in mixed traffic to
speed up the simulation time.
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P O L I C Y S C E N A R I O

Jakarta government had implemented several policy to reduce the number
of vehicles for several arterial road in Greater Jakarta. Previously, a "3 in 1"
throughout high-occupancy vehicle (HOV) policy had been implemented
on several arterial roads in Jakarta’s CBD for cars (Governor of DKI Jakarta
Province, 2012).

The a 3 in 1 policy means that private cars with less than three persons
are not allowed to travel on arterial roads during morning and evening
peak hours. However, this policy has not been successful in improving
urban transport conditions due to lack of control and some further im-
plementation issues. For example, many people pay brokers to fulfill the
minimum number of passengers (Anya and Wardhani, 2016). This led
to the revocation of this policy (Governor of DKI Jakarta Province, 2012).
Due to the failures of this policy, there is a movement to replace the 3 in
1 scheme with a more comprehensive approach such as Electronic Road
Pricing (ERP).

It is argued that for the case of Jakarta ERP will produce financial
resources for other projects (CMEA and JICA , 2012). ERP has already been
successfully implemented in several countries (Agarwal and Koo, 2016;
Eliasson and Mattsson, 2006; Rotaris et al., 2010; Santos, 2005). For example,
Singapore has succeeded to shift private car users to use public transport
by 10%–20% (Agarwal and Koo, 2016). The ALS (Area Licensing Scheme)
in London has significantly reduced the number of private vehicles (Santos,
2005). Other examples include Milan (Rotaris et al., 2010) and Stockholm
(Eliasson and Mattsson, 2006).

Several studies have already been conducted on the feasibility of ERP
in Jakarta. Prayudyanto et al. (2013) evaluated several approaches that
can support the implementation of congestion charging. Sugiarto et al.
(2015, 2017) have explored the psychological factors that influence the
public acceptance of ERP schemes. Their results emphasize that clear
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introduction and explanation of the benefits of the ERP policy will increase
public acceptance of its implementation.

Furthermore, Belgiawan et al. (2019b); Ilahi et al. (2019c) estimated the
impact of pricing in Greater Jakarta using Random Regret Minimization
(RRM), and Mixed Logit Model (MXL). Belgiawan et al. (2019b) found that
the road pricing of car and motorcycle are nearly inelastic. However, the
car is substantially higher than the motorcycle, in which the probability
of using a car might be lower when the congestion charging increases.
Besides, Ilahi et al. (2019c) found that the motorcycle tends to be more
willing to pay compares to the car for gaining more benefits.

6.0.1 Scenario

In this chapter, we discuss the road pricing scenario in Greater Jakarta
using MATSim. There are three different road pricing schemes namely
cordon toll pricing, distance toll pricing, and area toll pricing (Nagel,
2016).

Modelling of road pricing has been implemented by many researchers,
as can be seen in (de Freitas et al., 2017; de Palma and Lindsey, 2006;
Kaddoura and Kickhöfer, 2014). However, those pricing schemes are
simulated only for the car without considering the income of the agent.
As Jakarta has more motorcycle than a car, we implemented the road
pricing also for motorcycle with distance-based pricing. Besides, we also
considered the income of the users to make the scenario more realistic,
which, in reality, the higher the income, the users tend to be willing to pay
the road pricing. We simulated 10% of population, which takes 10 day for
computation time.

The congestion charging operates 7.00 a.m - 10.00 am and 4.00 pm to
7 p.m. The location of the scenario is at eight main roads in Jakarta as
shown in Figure 6.1, which has a 24 km length in total, or 3 km length on
average. There are three different scenarios as can be seen in Table 6.1. We
increased the price for each scenario by 33% for both car and motorcycle.
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Figure 6.1: Mode shares

Type Scenario 1 Scenario 2 Scenario 3

Car 3 4 5

Motorcycle 1.5 2.0 2.5

Table 6.1: Cost per km for car and motorcycle in road pricing in IDR Thousands
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6.0.2 Results

The results in Figure 6.2 and Figure 6.3 show that the implementation
of road pricing scenarios for both cars and MC simultaneously could
reduce the traffic on the main road in greater Jakarta. It affects the other
mode, such as car ODT and MC ODT, which is not charged. However, the
number of cars and MC that decreased was not significant.

(a) Car

(b) MC

Figure 6.2: Traffic count on road pricing scenario for car and MC
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(a) Car ODT

(b) MC ODT

Figure 6.3: Traffic count on road pricing scenario for car ODT and MC ODT

The traffic of cars and MC in morning peak decreases by increasing
the price of congestion charging. In the morning peak from Table 6.2, at
scenario 1, the car’s number decreases by 9.30%, 6.21% at scenario 2, and
10.93% at scenario 3. For the motorcycle, the number of MC decreases by
7.77% at scenario 1, 6.69% at scenario 2, and 9.08% at scenario 3. However,
in the evening peak from Table 6.3, the number of cars reduces by 1.56

% at scenario 1, 5.71 % at scenario 2, and 19.95% st scenario 3. Besides, it
decreases for MC by 8.86% at scenario 1, 12.75% at scenario 2, and 14.21%
at scenario 3.
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Scenario Mode Count % diff

Existing Car
Motorcycle
Car ODT
MC ODT

4,108

27,517

120

1,206

-
-
-
-

Scenario 1 Car
Motorcycle
Car ODT
MC ODT

3,726

25,380

146

1,416

-9.30

-7.77

21.67

17.41

Scenario 2 Car
Motorcycle
Car ODT
MC ODT

3,853

25,677

152

1,504

-6.21

-6.69

26.67

24.71

Scenario 3 Car
Motorcycle
Car ODT
MC ODT

3,659

25,018

133

1,477

-10.93

-9.08

10.83

22.47

Table 6.2: Traffic count for each road pricing scenario on morning peak

The number of car ODT and MC ODT increases for all scenarios and
peak times (morning and evening). In general, on both morning and
evening peak times, the number of vehicles decreases when increasing the
road pricing by 7.07% at scenario 1, 8.25%, and 11.00 % at scenario 3.

PT in the model was not simulated on mixed traffic to reduce the
computing time. Therefore, we could not see the impact on PT directly
regarding how much it increases the share of PT.
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Scenario Mode Count % diff

Existing Car
Motorcycle
Car ODT
MC ODT

3,644

29,578

63

766

-
-
-
-

Scenario 1 Car
Motorcycle
Car ODT
MC ODT

3,587

26,958

87

966

-1.56

-8.86

38.10

26.11

Scenario 2 Car
Motorcycle
Car ODT
MC ODT

3,436

25,808

89

955

-5.71

-12.75

41.27

24.67

Scenario 3 Car
Motorcycle
Car ODT
MC ODT

2,917

25,375

80

979

-19.95

-14.21

26.98

27.81

Table 6.3: Traffic count for each road pricing scenario on evening peak

Overall, the reduction in the evening peak is higher than the morning
peak. Several reasons that might not significantly decrease the traffic.
Firstly, the price of road pricing is not high enough, making the agent will-
ing to pay road pricing. Secondly, the agents’ income that uses those roads
is high, making the road pricing relatively low to income. Furthermore,
As can be seen in Figure 6.4 and 6.5, we found that the distribution of age,
gender, employment, and regional distributions of the agents are similar
for existing and the future scenarios. The share of males, employment,
and age between 25-34 years old is the largest distributions, and most of
them are from south of Jakarta.
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Times Scenario Count % diff

Morning
peak

Existing
Scenario 1

Scenario 2

Scenario 3

32,951

30,688

31,186

30,287

-
-6.93

-5.36

-8.08

Evening
peak

Existing
Scenario 1

Scenario 2

Scenario 3

34,051

31,598

30,288

29,351

-
-7.20

-11.05

13.80

Both peak Existing
Scenario 1

Scenario 2

Scenario 3

67,002

62,226

61,474

59,638

-
-7.07

-8.25

11.00

Table 6.4: Traffic count for each road pricing scenario on different peak times
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(a) Age

(b) Gender

Figure 6.4: Age and gender distribution on road pricing scenario
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(a) Employment

(b) Region

Figure 6.5: Employment and region distribution on road pricing
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C O N C L U S I O N S A N D R E C O M M E N D AT I O N S

Summary of Findings The overall objective of this thesis, i.e., developing
an agent-based model in Greater jakarta, has been broken down into
five tasks. These are: 1) To Generate population synthesis. 2) To analyze
travel behavior on each mode in Greater Jakarta. 3) To explore model
estimations based on stated preference and revealed preference data set,
which measure willingness to pay (WTP) for specific mode, i.e., Value of
Travel Time Savings (VTTS), elasticities, Value of Travel Time Assigned
to Travel (VTAT). 4) To combine the results of choice model, travel be-
haviour, and population synthesis into Agent-based model. 5) To give
policy recommendations based on model and simulation.

To accomplish the first objective, we constructed population synthesis
based on the data from JICA in 2012. However, the data are only limited
to the profile of respondents and mandatory activities. Therefore, we
did a Revealed Preference (RP) survey in Greater Jakarta, with total of
5,000 respondents, so that we could model the secondary activities. The
second objectives has been accomplished by the same Revealed Preference
(RP) data set. We analyzed the behavior for each mode transport. The
third objectives has been carried out by creating mode choice experiments
through stated preference (SP) survey. There are 5,000 respondents in this
experiments. The model was estimated using Multinomial Logit (MNL)
and Mixed Logit (MXL) model. The fourth objectives has been done by
applying agent-based model. We simulated people behavior regarding
their activities, interaction, and facility constraints. We used parameter
estimated from discrete choice model and population synthesis. For the
fifth objective, we simulated policy scenario in Agent-based model. In this
cases, we created road pricing scenario for main arterial road in Jakarta.
We implemented road pricing for both car and motorcycle, and we also
considered the income of agents.

This thesis presents a travel diary survey and its outcomes for the
Greater Jakarta region. It provides the most comprehensive sample to
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date of the mobility behavior of people living in Greater Jakarta. This
paper discusses an early effort to understand On-Demand Transport
services and Urban Air Mobility (UAM) and their impacts on mobility in
Greater Jakarta. We identify the patterns of trip purposes for each mode
of transport and distinguish the mode choice by its socio-demographic
attributes. The results indicate who made the trips, as well as when and
why. We also describe the response rate and response burden. This research
further enriches the scarce literature on mobility patterns in developing
countries, especially considering the multitude of mode choices, some of
which are informal.

Our objectives were to capture travel behavior for each mode of trans-
portation comprehensively. The WTP for each mode was also investigated,
which includes the VTTS, the VTAT, and elasticity, using pooled SP and
RP data sets. The attributes of time and cost were negative and significant
in all models, as expected, except for PT and the bus in Model 1. We
found that the VTTS of ODT was the highest. The low VTTS of the car
in our result shows that car users enjoy riding in a car. Implementing
road pricing might not significantly reduce the share of cars and MC, as it
was inelastic in Model 1. However, increasing PT frequency or creating a
special bike lane and bus priority lane to reduce travel time could increase
the shares of those modes. As can be seen in all models, we found that
cars and MC are inelastic for all variables, except for cars in Model 3.

UAM has the potential to develop, although it might be suitable only
for high-income residents and long-distance travel. As seen in our results,
the VTTS of UAM was relatively low. As the urban agglomeration cities
in greater Jakarta are relatively far from Jakarta and the airport, UAM
has an advantage compared to other choice alternatives. Moreover, severe
congestion in Jakarta also provides an advantage for UAM over other
alternatives. The infrastructure requirements of UAM that are needed to
ensure that UAM services are adequate will take some time to cover all of
Greater Jakarta. Greater Jakarta differs from cities in the U.S. such as Los
Angeles and New York City, where UAM is currently available. Society
still needs to be educated to become familiar with this system. Safety and
security are also required to ensure that society accepts the development
of this mode of transport.
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In our results, ODT had the highest VTTS, suggesting that this system
provide great benefits for people in Greater Jakarta. Both high and low-
income people can use this transportation alternative. If a person has the
app, s/he can comfortably ride the ODT service. The principal problems
that still arise in the context of using ODT are related to regulation, as
this system is not subject to the same regulations as other modes of travel,
such as PT. MC ODT changed the behavior of conventional transaction;
people do not need to negotiate the price upfront, and drivers do not need
to wait for the customer at a particular place daily (called pangkalan).
Regulations could be beneficial for both passengers and providers. ODT
can also support the PT infrastructure. The positive value of VTAT in
public transport shows that public transport’s comfort, safety, and security
should be considered for further improvement.

The results from the agent-based model show that the different road
pricing is not significantly reduce the number of cars and motorcycles.
It shows that motorcycling is more sensitive to road pricing. In contrast,
other policies may reduce the number of cars and MC, such as by creating
a quota for each household for owning a private vehicle, by making it
difficult for people to afford those modes, and by implementing an odd
and even license plate policy to control the number of cars in circulation.
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A
U T I L I T Y E Q UAT I O N

In this appendix, we present the utiliy fromulation for Model (A.1 -A.20),
Model 2 (A.21-A.40), Model 3 (A.41-A.60). In Model 2 and Model 3, we
combine all public transport mode (bus, BRT, and train) as single public
transport (PT), and travel cost (TC) and congestion charging (CC) as a
single travel cost (TC).

Uwalk,n,t =1 ∗ (αwalk + βTTwalk ∗ TTwalk,n,t + βAge ∗ Agen) + εwalk,n,t (A.1)

Ubike,n,t =1 ∗ (αbike + βTTbike ∗ TTbike,n,t) + εbike,n,t (A.2)

Ubus,n,t =1 ∗ (αbus + βTTbus ∗ TTbus,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCbus,n,t) + εbus,n,t

(A.3)

UBRT,n,t =1 ∗ (αBRT + βTTBRT ∗ TTBRT,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCBRT,n,t) + εBRT,n,t

(A.4)
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Utrain,n,t =1 ∗ (αtrain + βTTtrain ∗ TTtrain,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCtrain,n,t + βAgetrain ∗ Agen) + εtrain,n,t

(A.5)

Ucar,n,t =1 ∗ (αcar + βTTcar ∗ TTcar,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCcar,n,t) + εcar,n,t

(A.6)

UMC,n,t =1 ∗ (βTTMC ∗ TTMC,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMC,n,t + βAgeMC ∗ Agen) + εMC,n,t

(A.7)

Utaxi,n,t =1 ∗ (αtaxi + βTTtaxi ∗ TTCartaxi,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCCartaxi,n,t) + εtaxi,n,t

(A.8)

UODT,n,t =1 ∗ (αODT + βTTODT ∗ TTCarODT,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCCarODT,n,t

+ βMaleODT ∗ GenderMale,n + βEducationODT ∗ EducationUniversity,n

+ βAgeODT ∗ Agen) + εODT,n,t

(A.9)
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Utaxi,n,t =1 ∗ (αtaxi + βTTtaxi ∗ TTMCtaxi,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMCtaxi,n,t) + εtaxi,n,t

(A.10)

UODT,n,t =1 ∗ (αODT + βTTODT ∗ TTMCODT,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMCODT,n,t

+ βMaleODT ∗ GenderMale,n + βEducationODT ∗ EducationUniversity,n

+ βAgeODT ∗ Agen) + εODT,n,t

(A.11)

UwalkSP ,n,t =σSP ∗ (αwalk + βTTwalk ∗ TTWalkSP,n,t + βAgewalk ∗ Agen) + εwalkSP ,n,t

(A.12)

UPTSP ,n,t =σSP ∗ (αPT + βTTPT ∗ TTPTSP,n,t

+ βTC ∗ (
Distance

AverageDistance
)

λDistance
∗ ( Income

AverageIncome
)

λIncome

∗ TCPTSP,n,t) + εPTSP ,n,t

(A.13)

UcarSP ,n,t =σSP ∗ (αcar + βTTcar ∗ TTcarSP,n,t

+ βTC ∗ (
Distance

AverageDistance
)

λDistance
∗ ( Income

AverageIncome
)

λIncome

∗ TCcarSP,n,t + βCC ∗ CCcarSP,n,t) + εcarSP ,n,t

(A.14)
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UMCSP ,n,t =σSP ∗ (βTTMC ∗ TTMCSP,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMCSP,n,t + βAgeMC ∗ AgeMC,n + βCC ∗ CCMCSP,n,t) + εMCSP ,n,t

(A.15)

UTaxiSP ,n,t =σSP ∗ (αTaxi + βTTTaxi ∗ TTCarTaxiSP,n,t

+ βTC ∗ (
Distance

AverageDistance
)

λDistance
∗ ( Income

AverageIncome
)

λIncome

∗ TCCartaxiSP,n,t + βCC ∗ CCCartaxiSP,n,t) + εTaxiSP ,n,t

(A.16)

UODTSP ,n,t =σSP ∗ (αODT + βTTODT ∗ TTCarODTSP,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCCarODTSP,n,t

+ βCC ∗ CCCarODTSP,n,t + βMaleODT ∗ GenderMale,n + βEducationODT

∗ EducationUniversity,n + βAgeODT ∗ Agen) + εODtSP ,n,t

(A.17)

UTaxiSP ,n,t =σSP ∗ (αTaxi + βTTTaxi ∗ TTMCTaxiSP,n,t

+ βTC ∗ (
Distance

AverageDistance
)

λDistance
∗ ( Income

AverageIncome
)

λIncome

∗ TCMCTaxiSP,n,t + βCC ∗ CCMCtaxiSP,n,t) + εTaxiSP ,n,t

(A.18)
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UODTSP ,n,t =σSP ∗ (αODT + βTTODT ∗ TTMCODTSP,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMCODTSP,n,t

+ βCC ∗ CCMCODTSP,n,t + βMaleODT ∗ GenderMale,n + βEducationODT

∗ EducationUniversity,n + βAgeODT ∗ Agen) + εODTSP ,n,t

(A.19)

UUAMSP ,n,t =σSP ∗ (αUAM + βTTUAM ∗ (
Distance

AverageDistance
)

λDistance
TTUAMSP,n,t

+ βATUAM ∗ ATUAMSP,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCUAMSP,n,t + βMaleUAM ∗ GenderMale,n

+ βLocationUAM ∗ LocationAgglomeration,n + βEducationUAM

∗ EducationUniversity,n) + εMCUAM ,n,t

(A.20)

Uwalk,n,t =1 ∗ (αwalk + βTTwalk ∗ TTwalk,n,t + βAge ∗ Agen) + εwalk,n,t
(A.21)

Ubike,n,t =1 ∗ (αbike + βTTbike ∗ TTbike,n,t) + εbike,n,t (A.22)

UPT,n,t =1 ∗ (αPT + βTTbus ∗ TTbus,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCPT,n,t) + εPT,n,t

(A.23)
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UPT,n,t =1 ∗ (αPT + βTTPT ∗ TTBRT,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCBRT,n,t) + εPT,n,t

(A.24)

UPT,n,t =1 ∗ (αPT + βTTPT ∗ TTtrain,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCtrain,n,t + βAgetrain ∗ Agen) + εPT,n,t

(A.25)

Ucar,n,t =1 ∗ (αcar + βTTcar ∗ TTcar,n,t + βCar ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCcar,n,t) + εcar,n,t

(A.26)

UMC,n,t =1 ∗ (βTTMC ∗ TTMC,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMC,n,t + βAgeMC ∗ Agen) + εMC,n,t

(A.27)

Utaxi,n,t =1 ∗ (αtaxi + βTTtaxi ∗ TTCartaxi,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCCartaxi,n,t) + εtaxi,n,t

(A.28)
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UODT,n,t =1 ∗ (αODT + βTTODT ∗ TTCarODT,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCCarODT,n,t

+ βMaleODT ∗ GenderMale,n + βEducationODT ∗ EducationUniversity,n

+ βAgeODT ∗ Agen) + εODT,n,t

(A.29)

Utaxi,n,t =1 ∗ (αtaxi + βTTtaxi ∗ TTMCtaxi,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMCtaxi,n,t) + εtaxi,n,t

(A.30)

UODT,n,t =1 ∗ (αODT + βTTODT ∗ TTMCODT,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMCODT,n,t

+ βMaleODT ∗ GenderMale,n + βEducationODT ∗ EducationUniversity,n

+ βAgeODT ∗ Agen) + εODT,n,t

(A.31)

UwalkSP ,n,t =σSP ∗ (αwalk + βTTwalk ∗ TTWalkSP,n,t + βAgewalk ∗ Agen) + εwalkSP ,n,t

(A.32)

UPTSP ,n,t =σSP ∗ (αPT + βTTPT ∗ TTPTSP,n,t

+ βTC ∗ (
Distance

AverageDistance
)

λDistance
∗ ( Income

AverageIncome
)

λIncome

∗ TCPTSP,n,t) + εPTSP ,n,t

(A.33)
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UcarSP ,n,t =σSP ∗ (αcar + βTTcar ∗ TTcarSP,n,t

+ βTC ∗ (
Distance

AverageDistance
)

λDistance
∗ ( Income

AverageIncome
)

λIncome

∗ TCcarSP,n,t + βCC ∗ CCcarSP,n,t) + εcarSP ,n,t

(A.34)

UMCSP ,n,t =σSP ∗ (βTTMC ∗ TTMCSP,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMCSP,n,t + βAgeMC ∗ AgeMC,n + βCC ∗ CCMCSP,n,t) + εMCSP ,n,t

(A.35)

UTaxiSP ,n,t =σSP ∗ (αTaxi + βTTTaxi ∗ TTCarTaxiSP,n,t

+ βTC ∗ (
Distance

AverageDistance
)

λDistance
∗ ( Income

AverageIncome
)

λIncome

∗ (TCCartaxiSP,n,t + CCCartaxiSP,n,t)) + εTaxiSP ,n,t

(A.36)

UODTSP ,n,t =σSP ∗ (αODT + βTTODT ∗ TTCarODTSP,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ (TCCarODTSP,n,t + CCCarODTSP,n,t) + βMaleODT ∗ GenderMale,n

+ βEducationODT ∗ EducationUniversity,n + βAgeODT ∗ Agen) + εODtSP ,n,t

(A.37)

UTaxiSP ,n,t =σSP ∗ (αTaxi + βTTTaxi ∗ TTMCTaxiSP,n,t

+ βTC ∗ (
Distance

AverageDistance
)

λDistance
∗ ( Income

AverageIncome
)

λIncome

∗ (TCMCTaxiSP,n,t + CCMCtaxiSP,n,t)) + εTaxiSP ,n,t

(A.38)
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UODTSP ,n,t =σSP ∗ (αODT + βTTODT ∗ TTMCODTSP,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ (TCMCODTSP,n,t + CCMCODTSP,n,t) + βMaleODT ∗ GenderMale,n

+ βEducationODT ∗ EducationUniversity,n + βAgeODT ∗ Agen) + εODTSP ,n,t

(A.39)

UUAMSP ,n,t =σSP ∗ (αUAM + βTTUAM ∗ (
Distance

AverageDistance
)

λDistance
TTUAMSP,n,t

+ βATUAM ∗ ATUAMSP,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCUAMSP,n,t + βMaleUAM ∗ GenderMale,n

+ βLocationUAM ∗ LocationAgglomeration,n + βEducationUAM

∗ EducationUniversity,n) + εMCUAM ,n,t

(A.40)

Uwalk,n,t =1 ∗ (αwalkRND + βTTwalk ∗ TTwalk,n,t + βAge ∗ Agen) + εwalk,n,t
(A.41)

Ubike,n,t =1 ∗ (αbikeRND + βTTbike ∗ TTbike,n,t) + εbike,n,t (A.42)

UPT,n,t =1 ∗ (αPT RND + βTTbus ∗ TTbus,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCPT,n,t) + εPT,n,t

(A.43)
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UPT,n,t =1 ∗ (αPT RND + βTTPT ∗ TTBRT,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCBRT,n,t) + εPT,n,t

(A.44)

UPT,n,t =1 ∗ (αPT RND + βTTPT ∗ TTtrain,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCtrain,n,t + βAgetrain ∗ Agen) + εPT,n,t

(A.45)

Ucar,n,t =1 ∗ (αcarRND + βTTcar ∗ TTcar,n,t + βCar ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCcar,n,t) + εcar,n,t

(A.46)

UMC,n,t =1 ∗ (βTTMC ∗ TTMC,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMC,n,t + βAgeMC ∗ Agen) + εMC,n,t

(A.47)

Utaxi,n,t =1 ∗ (αtaxiRND + βTTtaxi ∗ TTCartaxi,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCCartaxi,n,t) + εtaxi,n,t

(A.48)
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UODT,n,t =1 ∗ (αODT RND + βTTODT ∗ TTCarODT,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCCarODT,n,t

+ βMaleODT ∗ GenderMale,n + βEducationODT ∗ EducationUniversity,n

+ βAgeODT ∗ Agen) + εODT,n,t

(A.49)

Utaxi,n,t =1 ∗ (αtaxiRND + βTTtaxi ∗ TTMCtaxi,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMCtaxi,n,t) + εtaxi,n,t

(A.50)

UODT,n,t =1 ∗ (αODT RND + βTTODT ∗ TTMCODT,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMCODT,n,t

+ βMaleODT ∗ GenderMale,n + βEducationODT ∗ EducationUniversity,n

+ βAgeODT ∗ Agen) + εODT,n,t

(A.51)

UwalkSP ,n,t =σSP ∗ (αwalkRND + βTTwalk ∗ TTWalkSP,n,t + βAgewalk ∗ Agen) + εwalkSP ,n,t

(A.52)

UPTSP ,n,t =σSP ∗ (αPT RND + βTTPT ∗ TTPTSP,n,t

+ βTC ∗ (
Distance

AverageDistance
)

λDistance
∗ ( Income

AverageIncome
)

λIncome

∗ TCPTSP,n,t) + εPTSP ,n,t

(A.53)
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UcarSP ,n,t =σSP ∗ (αcarRND + βTTcar ∗ TTcarSP,n,t

+ βTC ∗ (
Distance

AverageDistance
)

λDistance
∗ ( Income

AverageIncome
)

λIncome

∗ TCcarSP,n,t + βCC ∗ CCcarSP,n,t) + εcarSP ,n,t

(A.54)

UMCSP ,n,t =σSP ∗ (βTTMC ∗ TTMCSP,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCMCSP,n,t + βAgeMC ∗ AgeMC,n + βCC ∗ CCMCSP,n,t) + εMCSP ,n,t

(A.55)

UTaxiSP ,n,t =σSP ∗ (αTaxiRND + βTTTaxi ∗ TTCarTaxiSP,n,t

+ βTC ∗ (
Distance

AverageDistance
)

λDistance
∗ ( Income

AverageIncome
)

λIncome

∗ (TCCartaxiSP,n,t + CCCartaxiSP,n,t)) + εTaxiSP ,n,t

(A.56)

UODTSP ,n,t =σSP ∗ (αODT RND + βTTODT ∗ TTCarODTSP,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ (TCCarODTSP,n,t + CCCarODTSP,n,t) + βMaleODT ∗ GenderMale,n

+ βEducationODT ∗ EducationUniversity,n + βAgeODT ∗ Agen) + εODtSP ,n,t

(A.57)

UTaxiSP ,n,t =σSP ∗ (αTaxiRND + βTTTaxi ∗ TTMCTaxiSP,n,t

+ βTC ∗ (
Distance

AverageDistance
)

λDistance
∗ ( Income

AverageIncome
)

λIncome

∗ (TCMCTaxiSP,n,t + CCMCtaxiSP,n,t)) + εTaxiSP ,n,t

(A.58)
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UODTSP ,n,t =σSP ∗ (αODT RND + βTTODT ∗ TTMCODTSP,n,t + βTC

∗ ( Distance
AverageDistance

)
λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ (TCMCODTSP,n,t + CCMCODTSP,n,t) + βMaleODT ∗ GenderMale,n

+ βEducationODT ∗ EducationUniversity,n + βAgeODT ∗ Agen) + εODTSP ,n,t

(A.59)

UUAMSP ,n,t =σSP ∗ (αUAMRND + βTTUAM ∗ (
Distance

AverageDistance
)

λDistance
TTUAMSP,n,t

+ βATUAM ∗ ATUAMSP,n,t + βTC ∗ (
Distance

AverageDistance
)

λDistance

∗ ( Income
AverageIncome

)
λIncome

∗ TCUAMSP,n,t + βMaleUAM ∗ GenderMale,n

+ βLocationUAM ∗ LocationAgglomeration,n + βEducationUAM

∗ EducationUniversity,n) + εMCUAM ,n,t

(A.60)
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Hornỳ, M. (2014) Bayesian networks, Boston University School of Public
Health, Boston.

Hössinger, R., F. Aschauer, S. Jara-Díaz, S. Jokubauskaite, B. Schmid,
S. Peer, K. W. Axhausen and R. Gerike (2020) A joint time-assignment
and expenditure-allocation model: value of leisure and value of time
assigned to travel for specific population segments, Transportation, 47 (3)
1439–1475.

Huynh, N., M. Namazi-Rad, P. Perez, M. J. Berryman and Q. Chen (2013)
Generating a synthetic population in support of agent-based modeling
of transportation in sydney, paper presented at the 20th International
Congress on Modelling and Simulation (MODSIM 2013), 1357–1363.

Hörl, S., M. Balac and K. W. Axhausen (2018) A first look at bridging
discrete choice modeling and agent-based microsimulation in matsim,
paper presented at the The 7th International Workshop on Agent-based
Mobility, Traffic and Transportation Models,Methodologies and Applications
(ABMTrans).

Hörl, S., M. Balac and K. W. Axhausen (2019) Pairing discrete mode
choice models and agent-based transport simulation with matsim, paper
presented at the 98th Annual Meeting of the Transportation Research Board
(TRB ).

Ilahi, A. and K. W. Axhausen (2017) Measuring accessibility using an
activity based model approach in jabodetabek, in 17th Swiss Transport
Research Conference (STRC 2017), Ascona.



bibliography 113

Ilahi, A. and K. W. Axhausen (2019) Integrating bayesian network and
generalized raking for population synthesis in greater jakarta, Regional
Studies, Regional Science, 6 (1) 623–636.

Ilahi, A., M. Balac, A. Li and K. W. Axhausen (2019a) The first agent-based
model of greater Jakarta integrated with a mode-choice model, Procedia
Computer Science, 151, 272 – 278.
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