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A B S T R A C T

This study presents MANGO (Multi-stAge eNerGy Optimization), a novel optimization model that incorporates
a multi-year planning horizon, along with flexible, multi-stage investment strategies for the effective, long-
term design of decentralized multi-energy systems (D-MES). By considering the dynamic surrounding energy
and techno-economic landscape that evolves over time, MANGO harnesses the strategic value of investment
flexibility and can optimally phase D-MES investments in order to benefit, for instance, from projected future
reduced technology costs and technical improvements. To achieve this, the model considers the most relevant
dynamic aspects, such as year-to-year variations in energy demands, changing energy carrier and technology
prices, technical improvements and equipment degradation. MANGO is also capable of optimizing the design
of complex configurations composed of multiple, interconnected D-MES installed at different locations. Finally,
the model’s formulation also addresses end-of-horizon effects that can distort solutions in multi-stage energy
system models.

Besides presenting the key aspects and the mathematical formulation of MANGO, this study also uses
the model to develop a six-stage energy design plan, along a 30-year project horizon, for an urban district
composed of 3 sites in Zurich, Switzerland. One candidate D-MES is considered per site and different scenarios
are examined regarding building retrofitting and D-MES interconnections. Results overall show that retrofitting
leads to lower emission levels, but significantly higher costs. On the other hand, D-MES interconnections
improve both the economic and the environmental system performance. Finally, regarding optimal D-MES
configurations, a variety of technologies is used, with combinations of air-source heat pumps and natural gas
boilers leading to better economic performance and combinations of ground-source heat pumps and biomass
boilers to more environmentally-friendly designs.

Overall, MANGO facilitates D-MES decision-making at the strategic level by delivering flexible multi-stage
investment strategies, at the economic level by providing detailed information about the systems’ economic
performance during each project year and, finally, at the technical level by specifying the optimal technical
configurations of each D-MES and their optimal operating schedules. With its long-term perspective, MANGO
can offer insights that closely match the dynamic class of real-world energy system design projects led by
energy developers.
1. Introduction

1.1. Background: single- and multi-stage D-MES design

In response to contemporary energy challenges, decentralized multi-
energy systems (D-MES) have the potential to secure the sustainable
energy supply for existing and new buildings and districts [1]. D-
MES typically integrate multiple conversion and storage technologies
and use different energy networks to satisfy different types of energy
demands (e.g. thermal, electrical etc.) for various consumer types. As a

∗ Corresponding author.

result, D-MES can increase the utilization of local renewable energy [1],
reduce the carbon intensity of energy supply [2], and even unlock new
business opportunities [3,4].

D-MES design projects are commonly categorized based on their set-
ting (urban, semi-urban, rural), spatial scale (single building, neighbor-
hood, district) and application type (residential, commercial, industrial,
mixed-use) [5–7]. In this work, we define two further classes of D-MES
design projects based on the investment strategy that they consider,
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namely static (or single-stage) and dynamic (or multi-stage) D-MES design
rojects.

We define the static class to include D-MES design projects that are
haracterized by a single, ‘here-and-now’ investment at the beginning
f the project without the possibility of additional investments during
he system’s lifetime. We refer to this D-MES design scheme as static
ecause it is best suited for projects that do not include long-term
evelopments to which the energy developer would need to react with
dditional investments.

In contrast to the static class, we label a D-MES design project
s dynamic when it involves investment decisions in multiple stages
uring the project lifetime. The multi-stage investment strategy may
e necessitated by specific project details, for instance, by long-term
tructural & developmental changes to a district with existing buildings
eing retrofitted and/or new buildings being added in multiple future
hases. Additionally, a dynamic, multi-stage D-MES design scheme
ight also stem from the developer’s efforts to harness the value

f investment flexibility. By investment flexibility, we refer to the
nfluence of developments in the surrounding economic and energy
andscape on optimally phased investment strategies, in order to benefit
rom projected future technological improvements, cost reductions, and
nergy carrier price changes, among others.

A certain overlap can be noted between single- and multi-stage
-MES design projects, most notably regarding decisions pertaining

o the selection and siting of technologies that need to be installed.
evertheless, the addition of a temporal dimension in the decisions
f multi-stage projects, regarding the optimal timing of the invest-
ents, introduces an additional layer of decision-making complexity

nd establishes them as a separate dynamic class of D-MES design
rojects.

.2. Literature review

The largest body of D-MES literature has focused on single-stage
-MES design projects. Multiple studies have presented models that
re based on optimization techniques like Mixed-Integer Linear Pro-
ramming (MILP) and aim to simultaneously optimize the single-stage
-MES design and its operating strategy. To calculate the system’s oper-
tion, the most common approach is to use a single, representative year,
nd extrapolate the results over the lifetime of the D-MES (see e.g. [8–
0]). The use of a representative year reduces the data requirements
or the analysis; however, the inherent assumption in this practice is
hat all relevant parameters for the design (energy demands, techno-
conomic parameters etc.) will stay constant at their assumed values
uring the project lifetime, which can in turn lead to sub-optimal deci-
ions. As a result, some studies have combined single-stage investment
ecisions with multi-year analyses of D-MES operation e.g. in order to
ccount for changing energy demands due to climate change [11] or
or changing energy carrier prices [12]. The potential of these single-
tage D-MES design models has been illustrated with case studies across
ifferent scales and settings, including rural communities [13], urban
istricts [14], industrial clusters [15], and university campuses [16].
inally, several recent studies have developed advanced model features,
ncluding modeling of seasonal storage technologies [17,18], the con-
urrent optimization of building geometries and D-MES design [19],
emand shifting to times of lower grid carbon intensity by considering
ime-varying electricity grid emission factors [20], and, finally, the
bility to investigate the impact of uncertainty on single-stage D-MES
esign [10,21].

On the other hand, the dynamic class of multi-stage D-MES design
roblems has been mostly overlooked in the literature. A simplified
pproach to approximate multi-stage D-MES design includes using
single-stage model and solving it sequentially for multiple future

ears/stages with the corresponding future values for the input pa-
ameters. Murray et al. [22], for instance, used a static single-stage
2

-MES design model to identify optimal D-MES designs for one urban m
nd one rural neighborhood in Switzerland for the years 2015, 2020,
035, and 2050. The advantage of this approach is that a readily
vailable, single-stage D-MES design model can be used to approximate
multi-stage energy plan. Its disadvantage, however, is that it is a
yopic approach with the D-MES design for each stage being optimized

ndependently from all other preceding and subsequent stages. As a
esult, the continuity of the energy system is not considered and the
ossibility of, for instance, postponing technology investments to a later
tage cannot be evaluated.

An alternative option would be to use models like TIMES [23–25] or
SeMOSYS [26], which incorporate multi-stage investment decisions
nd, although their primary focus is on national energy system plan-
ing, can also be applied for local energy systems e.g. at the community
evel. Nevertheless, some of their characteristics prevent them from
eing readily or easily applied for D-MES design applications. One such
mportant characteristic is, for instance, the aggregated representation
f a whole city or community into a single energy entity, when D-MES
odels typically exhibit high spatial resolution down to building-level

epresentations [27]. As a result, although studies that have used the
IMES model to create strategies for urban and community energy
ystems can provide valuable strategic insights (see e.g. [28,29]), their
ggregated view of the energy system means that the results cannot be
sed to precisely plan the multi-stage design of a D-MES.

In order to address these issues, in the recent years, some studies
ave presented models developed specifically for the optimal, multi-
tage design of D-MES. Cano et al. [30] presented a model that can
utput a multi-year investment plan for an energy system taking into
ccount future energy costs and energy demands, as well as aspects like
echnology aging. In a similar direction, Pecenak et al. [31] presented a
odel for the multi-year planning of microgrids. Their model considers

he future evolution of energy carrier and technology prices, energy
emands, as well as technology degradation. Wei et al. [32] presented
model for the multi-stage design of multi-energy microgrids, which

an also consider the influence of short- and long-term uncertainty for
ore robust designs. Finally, in a more recent study, Faraji et al. [33]

ombined long-term load forecasting using artificial neural networks
ANNs) with the multi-year module of the HOMER software [34] for
he multi-stage design of a microgrid in Iran.

These studies form important contributions towards establishing
ethodologies for the dynamic multi-stage design of D-MES. However,

here remain some issues that need to be addressed. First, neither of the
odels consider technological improvements over the planning hori-

on, which could, for instance, change the efficiency of technologies
hat still experience techno-economic learning, and in turn change the
ptimal investment decisions. As a result, since all investments in one
echnology have the same technical characteristics in the model, their
apacities are aggregated and their operation is calculated as if they
ere one single unit. Nevertheless, taking into account the projected

echnological improvements for less mature technologies could uncover
etter future investment opportunities. Therefore, it would be impor-
ant for the model to include such capabilities and to be able to evaluate
heir influence by tracking the different installations and calculating
heir operation as distinct units.

Second, neither of these studies address the end-of-horizon effects
hat are known to distort the solutions in long-term, multi-stage energy
odels [35]. These effects are a consequence of the models’ finite
lanning horizon and they pertain to penalizing investments towards
he end of the model’s horizon, which are fully paid, but their benefit
i.e. operating during their lifetime) is not fully realized. This effect can
istort these later investment decisions (e.g. by favoring less capital
ntensive technologies), but also influence decisions in earlier stages,
ince they are made in anticipation of developments in the future. The
onger the model horizon, the less significant these effects become;
evertheless, it is important to mitigate these end-of-horizon effects for

ore effective D-MES investment decisions.
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Third, the models by Cano et al., Pecenak et al., and Faraji et al. are
only capable of optimizing single D-MES installations, but not multiple,
spatially distributed and interconnected D-MES installations. In recent
years, multiple studies from the single-stage D-MES design literature
have demonstrated the benefits of considering multiple D-MES capable
of exchanging energy with each other, especially at larger spatial scales
(e.g. [16,27,36,37]). Interconnections between D-MES can lead to an
overall energy system that is able to achieve reduced system costs and
emissions, for instance, due to smoother demand profiles and smaller
overall capacities due to technology sharing. Thus, the consideration of
multiple interconnected D-MES is an important aspect that multi-stage
D-MES design models should also be able to address. The model by Wei
et al. does include multi-location optimization capabilities; however,
the authors in the paper do not demonstrate these capabilities, as the
illustrative case study used is for a single-location system.

As a final point, beyond the models’ capabilities, we argue that for
different reasons these previous studies have not fully demonstrated
the advantages of multi-stage design processes for D-MES and the
insights that they can provide for D-MES developers. For instance,
Cano et al. consider only a single technology (photovoltaic (PV) panels)
for the different stages. Pecenak et al. placed the main focus of the
study on comparing the multi-stage D-MES design methodology with
an adaptive method that uses a sequence of single-year optimizations to
approximate multi-stage decisions. In the study by Wei et al. the focus
is placed on comparing combined heat and electricity supply planning
to separated planning, the impact of battery price developments and
the computational efficiency of their proposed method. Finally, Faraji
et al. focus primarily on different methods to project the multi-year
load growth.

1.3. This paper

In summary, previous studies that dealt with the multi-stage de-
sign of D-MES (i) did not include the option for considering future
technological improvements in the model, (ii) did not address end-
of-horizon effects, (iii) did not optimize the design of multi-location
D-MES configurations, and (iv) did not sufficiently highlight the results
and value of dynamic multi-stage D-MES design. With this paper, we
address these methodological and knowledge gaps and contribute to the
nascent field of multi-stage D-MES design with the introduction of our
novel Multi-stAge eNerGy Optimization (MANGO) model. The paper’s
main contributions are summarized as follows:

• The development of a state-of-the-art optimization model for D-
MES design that incorporates a multi-year horizon, is capable
of considering flexible, multi-stage investment strategies and can
optimize the design of complex configurations composed of mul-
tiple, interconnected D-MES. The model’s formulation enables the
representation of finite planning horizons of any length, while
also mitigating end-of-horizon effects.

• The consideration in the model of the most relevant dynamic as-
pects and parameters that evolve during the multi-year planning
horizon, including year-to-year variations in energy demands,
changing energy carrier prices and technology costs, technical
improvements for conversion and storage technologies and equip-
ment degradation.

• The application of the model to a dynamic urban district case
study development (existing and new buildings) to illustrate the
model’s application and to highlight the insights that it can offer
to developers dealing with real-world multi-stage D-MES design
tasks.

This paper is structured as follows: Section 2 describes the main
features and the formulation of the optimization model for multi-stage,
interconnected D-MES design. Section 3 introduces the case study that
is used to illustrate the main outputs of the model and the insights that
it can generate. Section 4 presents the results of the paper. Finally, in
Section 5, the paper’s concluding remarks are given.
3

2. MANGO: A model for the optimal, multi-stage design of D-MES

This section introduces MANGO, a model to identify optimal multi-
stage design solutions and operating strategies for one or more D-MES
according to economic and environmental objectives. The key char-
acteristics and the mathematical formulation of the most important
elements of MANGO are presented here; the complete model formu-
lation and detailed explanation of all parameters, variables, constraints
and objective functions are provided in Appendix A. Overall, all model
constraints and objective functions are linear, with both continuous
and integer (binary) variables included. Hence, the developed model
is formulated as a MILP, which means it can be solved very efficiently
with state-of-the-art MILP solvers like Gurobi [38] or CPLEX [39].

2.1. Key MANGO model aspects

2.1.1. Multi-year horizon and long-term dynamic aspects
Starting from MANGO’s temporal dimension, the model’s horizon is

composed of multiple years 𝑦 ∈  to include a long-term perspective
for the D-MES design task. Each year is represented with a set of days
𝑑 ∈ , each of which is in turn composed of individual time steps 𝑡 ∈  .
These relationships between years 𝑦, days 𝑑 and hourly time steps 𝑡 is
epicted graphically in Fig. 1. The set  can include every day of each
ear 𝑦 in the model horizon. However, in order to reduce the model’s
omputational requirements, a number of typical days is used instead
o represent the complete set of days in a year.1

In order for multi-stage D-MES planning to harness the value of flex-
ble investment decisions, it needs to capture the long-term, dynamic
evelopments in the surrounding economic and energy landscape that
nfluence the D-MES design and operation decisions. In MANGO, the
ollowing aspects are considered as dynamic and evolving during the
odel’s multi-year horizon:

• The annual energy demands and renewable availability levels2

• The energy carrier prices and emission factors3

• The conversion and storage technology costs and technologi-
cal improvements regarding conversion efficiencies and energy
storage performance4

• Technology degradation leading to deteriorating energy perfor-
mance of installed equipment based on its age5

.1.2. Multi-stage investment strategy
Next, we introduce the multi-stage investment strategies considered

n the MANGO model. The simplest approach to achieve this would
e to allow investments to happen at the beginning of each year 𝑦 in
he model horizon. However, in many real-world projects with long
ifetimes (e.g. 30 years or longer), investments might be considered
nly for a small number of stages, which are usually defined by the
pecific project details. While considering more investment stages will
esult in a more flexible D-MES design plan, it also increases the plan’s
omplexity, which can be a limitation for real-world projects.

Hence, to introduce some flexibility in the model, we decouple
he model’s investment stages 𝑤 ∈  from the years 𝑦 ∈  in

the model horizon, with  ⊆  , which means that the model is
able to accommodate any multi-stage investment configuration with an
arbitrary number and frequency of investment stages.

1 By increasing the number of typical days to 365, a whole calendar year
an also be represented in the model.

2 Energy demands and renewable availability levels are still expressed with
time step resolution in the model.
3 Energy carrier prices and emission factors vary per year but are assumed

onstant during each year.
4 Technology costs and technical characteristics are assumed to change at

n annual resolution.
5
 Degradation is assumed to occur per year based on the technology’s age.
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Fig. 1. Temporal horizon representation in the MANGO model using a sequence of years, days, and time steps.
Fig. 2. Conceptual representation of multiple, interconnected D-MES exchanging energy with each other.
2.1.3. Multi-location D-MES configurations
An explicit spatial dimension is also included in the model. More

specifically, MANGO can consider multiple locations 𝑙 ∈ , with
each one representing one or more energy consumers, whose energy
demands need to be met. MANGO is then capable to design energy
systems deciding among the following options:

• One D-MES installed at each location with no interconnections
between them

• One D-MES installed at each location with possible interconnec-
tions between them

• D-MES installed at one or more locations serving end-users at
other locations through interconnections

The concept of multi-location D-MES configurations is illustrated
graphically in Fig. 2.

2.1.4. Multi-stage D-MES design task
The final aspect to be discussed is MANGO’s multi-stage D-MES

design task. For a given design problem, first, the candidate energy
conversion (𝑐 ∈ ) and storage (𝑠 ∈ ) technologies that can be used
to compose a D-MES need to be defined, along with the energy carriers
(𝑒𝑐 ∈ ) that can be imported, converted, stored or exported by a
D-MES, consumed by the energy consumers, or exchanged between
multiple D-MES. Then, the objective(s) according to which the design
needs to be optimized must be specified. MANGO includes economic
(minimization of total system cost) and environmental (minimization
of total system CO emissions) objectives, since ensuring affordable
4

2

and sustainable energy supply are two of the most important driving
factors behind the adoption of D-MES. Nevertheless, MANGO can also
accommodate any other types of objectives used in energy system opti-
mization models such as maximizing reliability, renewables integration
etc. [40,41].

Given the candidate technologies, the energy carriers in the system,
and the objective functions to be optimized, MANGO makes design
decisions regarding what, where and when actions. More specifically,
regarding conversion and storage technologies, the model identifies
which ones need to be installed and what their capacities should be
(what), at which location they need to be placed (where), and at which
investment stage they need to be installed (when). Finally, regarding D-
MES interconnections, the model decides if they need to be established
(what), between which locations (where) and at which investment
stage (when). Since design decisions are also influenced by the energy
system operation, the model also identifies the optimal operation for
the technologies of each D-MES and the energy exchanges between
them along the multi-year horizon  .

2.2. Optimization model formulation

Following the presentation of the key MANGO model aspects, this
section discusses the key details of MANGO’s mathematical formulation
which are presented in more detail in Appendix A.

2.2.1. Sets
The various temporal, spatial and technological dimensions outlined

for the model in the preceding section form the sets that are used in
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MANGO to index the model parameters, variables, and constraints. Ta-
ble 1 presents a summary of all model sets along with their description
and also defines some useful subsets for the energy carrier set, , and
he conversion technology set, .

.2.2. Parameters
MANGO requires different parameters in order to perform the task

f D-MES design. The main parameter categories include:

• Energy demand profiles that accurately reflect short-term vari-
ability and long-term developments

• Renewable energy availability profiles that accurately reflect
short-term variability and long-term patterns

• Economic parameters, such as the evolution of energy carrier
prices and technology costs, maintenance costs etc.

• Technical parameters pertaining to the operation and the per-
formance of conversion, storage and network technologies, such
as conversion efficiencies, self-discharge losses, network losses,
technology lifetimes etc.

• Miscellaneous parameters connected to case-specific limitations
or characteristics, such as the availability of roof area for solar
technology installations

All model parameters, their mathematical notation and definition
re discussed in more detail in Appendix A.2.

.2.3. Decision variables
MANGO’s decision variables are split into two groups, depending on

hether they pertain to design or operational aspects of D-MES. The
ull list of D-MES design variables is given in Table A.5, but the most
mportant ones are also discussed here:

• 𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤 : New capacity of conversion technology 𝑐, installed at

location 𝑙, in investment stage 𝑤
• 𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟

𝑠,𝑙,𝑤 : New capacity of storage technology of type 𝑠, in-
stalled at location 𝑙, in investment stage 𝑤

• 𝑌 𝑛𝑒𝑡
𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑤

: Binary variable denoting the initial connection to ex-
change energy carrier 𝑒𝑐𝑥, between energy system locations 𝑙, 𝑙′,
in investment stage 𝑤

The variables in the model pertaining to operating aspects of the
-MES are described as follows. Since they refer to D-MES operation,
ll variables are indexed per year 𝑦, day 𝑑, and hour 𝑡 in addition to
heir specific indices discussed below:

• 𝑃 𝑖𝑚𝑝
𝑒𝑐𝑖 ,𝑙,𝑦,𝑑,𝑡

: Import of energy carrier 𝑒𝑐𝑖, at energy system location
𝑙

• 𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤,𝑦,𝑑,𝑡 : Input energy to conversion technology 𝑐, installed at

energy system location 𝑙, in investment stage 𝑤6

• 𝑃 𝑒𝑥𝑝
𝑒𝑐𝑒 ,𝑙,𝑦,𝑑,𝑡

: Exported energy of carrier 𝑒𝑐𝑒, at energy system loca-
tion 𝑙

• 𝑃 𝑒𝑥𝑐
𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑦,𝑑,𝑡

: Exchanged energy of energy carrier 𝑒𝑐𝑥, from location
𝑙 to location 𝑙′

• 𝑆𝑜𝐶𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 : State of charge of storage technology 𝑠, installed at
energy system location 𝑙, in investment stage 𝑤7

6 The definition domain for the variables 𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤,𝑦,𝑑,𝑡 includes the conditions:

≥ 𝑤 and 𝑦 ≤ 𝑤 + 𝑐𝑙𝑐 − 1, which defines the operating period of conversion
echnology 𝑐, with 𝑐𝑙𝑐 being the lifetime of the technology. This ensures that

technology cannot operate in the years before the investment stage it is
nstalled and also that it cannot operate beyond its lifetime 𝑐𝑙𝑐 . For instance,
f a technology is installed in stage 𝑤 = 1 and has a lifetime of 15 years, it
ill be operational between 𝑦 ≥ 1 and 𝑦 ≤ 15.
7 Similarly to the case of 𝑃 𝑐𝑜𝑛𝑣

𝑐,𝑙,𝑤,𝑦,𝑑,𝑡, the definition domains for the variables
𝑜𝐶𝑠,𝑙,𝑤,𝑦,𝑑,𝑡, 𝑄𝑐ℎ

𝑠,𝑙,𝑤,𝑦,𝑑,𝑡, and𝑄𝑑𝑖𝑠
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 include the conditions: 𝑦 ≥ 𝑤 and 𝑦 ≤

+ 𝑠𝑙𝑠 − 1, with 𝑠𝑙𝑠 being the lifetime of storage technology 𝑠, to ensure that
perating variables are only defined for the operating period of the storage
5

echnology 𝑠.
• 𝑄𝑐ℎ
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 : Charging energy into a storage technology 𝑠, installed

at energy system location 𝑙, in investment stage 𝑤7

• 𝑄𝑑𝑖𝑠
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 : Discharging energy out of a storage technology 𝑠,

installed at energy system location 𝑙, in investment stage 𝑤7

.2.4. Objective functions
As mentioned earlier, the minimization of the total energy system

ost and of the total CO2 emissions over the multi-year horizon are the
wo objectives integrated in the MANGO model.

The definition of the total cost 𝑇 𝑐𝑜𝑠𝑡 is given in Eq. (1) and is
omposed of terms that represent the total investment expenditure, the
otal operating expenditure and the salvage value of the system at the
nd of the model horizon. The exact mathematical definitions of the
ndividual terms in Eq. (1) are given in Appendix A.

min 𝑇 𝑐𝑜𝑠𝑡 =
∑

𝑙,𝑤

(

𝐶𝐼𝑁𝑉 ,𝑇𝐸𝐶𝐻
𝑙,𝑤 + 𝐶𝐼𝑁𝑉 ,𝑁𝐸𝑇

𝑙,𝑤

)

⋅
1

(1 + 𝑟)𝑤−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Investment expenditure

+
∑

𝑙,𝑦

(

𝐶𝐼𝑀𝑃
𝑙,𝑦 + 𝐶𝑀𝐴𝐼𝑁𝑇

𝑙,𝑦 − 𝑅𝐸𝑋𝑃
𝑙,𝑦

)

⋅
1

(1 + 𝑟)𝑦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Operating expenditure

−
∑

𝑙
𝑅𝑆𝐿𝑉 𝐺
𝑙 ⋅

1
(1 + 𝑟)||+1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Salvage value

(1)

The investment expenditure is composed of a sum over all energy
system locations 𝑙 and investment stages 𝑤 of the individual expendi-
tures for energy conversion and storage technologies, 𝐶𝐼𝑁𝑉 ,𝑇𝐸𝐶𝐻

𝑙,𝑤 and
the expenditure for energy networks to interconnect individual D-MES,
𝐶𝐼𝑁𝑉 ,𝑁𝐸𝑇
𝑙,𝑤 . The operating expenditure is defined as the sum over all

energy system locations 𝑙 and years 𝑦 of the individual expenditure due
to energy carrier imports, 𝐶𝐼𝑀𝑃

𝑙,𝑦 , technology maintenance, 𝐶𝑀𝐴𝐼𝑁𝑇
𝑙,𝑦 ,

and, the revenue due to energy carrier exports (𝑅𝐸𝑋𝑃
𝑙,𝑦 ).

Finally, the salvage value is defined as the sum of the individual
salvage value terms (𝑅𝑆𝐿𝑉 𝐺

𝑙 ). These terms represent the remaining
value that is retained by technologies at location 𝑙 that have not
reached the end of their lifetime at the end of the model horizon.
The salvage value is credited back to the total system cost to offset
part of the investment costs in technologies that have been utilized
only for a fraction of their lifetime in the model. Hence, the use of
these salvage values can mitigate the distorting end-of-horizon effects
discussed in the Introduction. The amount of salvage value depends on
the investment stage a technology was installed, its operational lifetime
and its initial investment cost (the exact definition of the 𝑅𝑆𝐿𝑉 𝐺

𝑙 is
given in Eq. (A.12)). Technologies reaching the end of their lifetime
during the modeled horizon are assumed to have no salvage value.

All terms of Eq. (1) are discounted to present values with the
discount rate 𝑟. All investment expenditures are assumed to occur at
the beginning of the year corresponding to each investment stage 𝑤,
operating expenditures at the end of the year 𝑦, while the salvage value
is paid back after the end of the model horizon.

The second objective function considered in the model, namely the
total CO2 emissions for the designed energy system, is expressed as
the sum over all energy system locations 𝑙 and years 𝑦 of individual
emission terms, 𝐸𝐶𝑂2

𝑙,𝑦 , as shown in Eq. (2):

min 𝑇 𝐶𝑂2 =
∑

𝑙,𝑦

(

𝐸𝐶𝑂2
𝑙,𝑦

)

(2)

The 𝐸𝐶𝑂2
𝑙,𝑦 term includes only operational CO2 emissions and, more

specifically, direct emissions due to local energy carrier utilization (e.g.
fossil fuel combustion) and indirect emissions due to energy imports
(e.g. grid electricity imports). The exact mathematical definitions of the

𝐶𝑂2
𝐸𝑙,𝑦 terms in is given in Appendix A.
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Table 1
MANGO model sets and indices.
Set Index Description

 𝑦 Calendar years considered in the model horizon
 𝑑 Set of representative days considered for each year
 𝑡 Time steps considered for each day
 ⊆  𝑤 Investment stages

 𝑙 Energy system locations

 𝑒𝑐 All energy carriers in the energy system
𝑖 ⊆  𝑒𝑐𝑖 Energy carriers that can be imported by the energy system
𝑒 ⊆  𝑒𝑐𝑒 Energy carriers that can be exported from the energy system
𝑥 ⊆  𝑒𝑐𝑥 Energy carriers that can be exchanged between energy system locations
𝑑 ⊆  𝑒𝑐𝑑 Energy carriers for which demands are established

 𝑐 Energy conversion technologies
𝑠𝑜𝑙 ⊆  𝑐𝑠𝑜𝑙 Solar energy conversion technologies
𝑑 ⊆  𝑐𝑑 Dispatchable energy conversion technologies
 𝑠 Energy storage technologies
l
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o
i
d
(
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t
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MANGO can be used in both single- and multi-objective optimiza-
ion modes considering both the cost and CO2 objective. In the lat-
er case, the multi-objective problem is solved using the augmented
-constraint method from [42], as it has been shown to avoid the
roduction of weakly Pareto optimal solutions.

.2.5. Constraints
The final necessary building block of an optimization model is the

onstraints that define balances, limitations, upper/lower bounds or
inimum requirements involving the model’s decision variables. In
ANGO, constraints are needed to describe technical, physical and

erformance constraints that pertain to design and operating aspects
f D-MES and they include:

• Energy balances for each D-MES to ensure that the energy de-
mands of the end-users are met considering energy imports, con-
version, storage, exports and exchanges between locations

• Energy balances for each energy storage system to describe the
relationship between each storage’s state-of-charge and charging
and discharging energy flows

• Constraints preventing the generation and storage of energy be-
yond the installed technology capacities

• Constraints limiting storage charge/discharge rates to their max-
imum allowed values

• Physical resource limits, such as the roof area availability for
solar technologies and the availability of biomass for energy
applications

• Constraints that govern the interconnections between D-MES

In this section, the mathematical formulation of the energy balance
onstraints for each D-MES are presented in order to demonstrate how
he model calculates the operating patterns of all technologies and to
ighlight some important model characteristics (the formulation of the
est of the MANGO constraints are presented in Appendix A).

The energy balance constraint is shown in Eq. (3). In broad terms, it
tates that the end-user energy demands, 𝑑𝑒𝑚𝑒𝑐𝑑 ,𝑙,𝑦,𝑑,𝑡, at location 𝑙, for
nergy carrier 𝑒𝑐𝑑 , must be balanced by energy imports, conversion,
torage, exchange and exports for every year 𝑦, day 𝑑 and time step 𝑡

in the model horizon. Therefore, by applying it for all energy carriers
𝑒𝑐 and locations 𝑙, the model is able to calculate the optimal operation
of the whole energy system across the complete model horizon.

In Eq. (3), apart from the model decision variables, which are
described in Section 2.2.3, the following terms are included: 𝜂𝑐𝑜𝑛𝑣𝑐,𝑒𝑐,𝑤 is
the conversion factor for technology 𝑐 and energy carrier 𝑒𝑐 that is
installed in stage 𝑤. 𝑐𝑑𝑒𝑔𝑐,𝑒𝑐,𝑤,𝑦 is the total degradation coefficient for
the conversion factor of technology 𝑐 and energy carrier 𝑒𝑐 depending
on the installation stage 𝑤 and the operation year 𝑦. 𝑠𝑡𝑐𝑠,𝑒𝑐 is a coupling
parameter describing the energy carrier 𝑒𝑐 that can be stored in storage
technology 𝑠. 𝜂𝑛𝑒𝑡 is a term representing the loss factor per unit distance
6

𝑒𝑐𝑥
of the network technology used to exchange energy carrier 𝑒𝑐𝑥 between
ocations. Finally, 𝑥𝑙,𝑙′ is the distance between locations 𝑙 and 𝑙′.

𝑑𝑒𝑚𝑒𝑐𝑑 ,𝑙,𝑦,𝑑,𝑡
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Demand

= 𝑃 𝑖𝑚𝑝
𝑒𝑐𝑖 ,𝑙,𝑦,𝑑,𝑡

⏟⏞⏟⏞⏟
Import

+
∑

𝑐,𝑤
𝑦≥𝑤

𝑦≤𝑤+𝑐𝑙𝑐−1

(

𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤,𝑦,𝑑,𝑡 ⋅ 𝜂

𝑐𝑜𝑛𝑣
𝑐,𝑒𝑐,𝑤 ⋅ 𝑐𝑑𝑒𝑔𝑐,𝑒𝑐,𝑤,𝑦

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Conversion

+
∑

𝑠,𝑤
𝑦≥𝑤

𝑦≤𝑤+𝑠𝑙𝑠−1

[

𝑠𝑡𝑐𝑠,𝑒𝑐 ⋅ (𝑄𝑑𝑖𝑠
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 −𝑄𝑐ℎ

𝑠,𝑙,𝑤,𝑦,𝑑,𝑡)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Storage

+
∑

𝑙,𝑙′
𝑙≠𝑙′

[

𝑃 𝑒𝑥𝑐
𝑒𝑐𝑥 ,𝑙′ ,𝑙,𝑦,𝑑,𝑡

⋅ (1 − 𝜂𝑛𝑒𝑡𝑒𝑐𝑥
⋅ 𝑥𝑙′ ,𝑙) − 𝑃 𝑒𝑥𝑐

𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑦,𝑑,𝑡

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Exchange

−𝑃 𝑒𝑥𝑝
𝑒𝑐𝑒 ,𝑙,𝑦,𝑑,𝑡

⏟⏞⏟⏞⏟
Export

,

∀ 𝑒𝑐 ∈ , 𝑙 ∈ , 𝑦 ∈  , 𝑑 ∈ , 𝑡 ∈ 

(3)

The constraint in Eq. (3) also serves to illustrate multiple key novel
spects of the model. The most important one is the separate dispatch
f all installed conversion and storage technologies without aggregat-
ng them into one, ‘virtual technology’. This is achieved by defining
istinct energy conversion variables (𝑃 𝑐𝑜𝑛𝑣

𝑐,𝑙,𝑤,𝑦,𝑑,𝑡) and storage variables
𝑄𝑑𝑖𝑠

𝑠,𝑙,𝑤,𝑦,𝑑,𝑡, 𝑄
𝑐ℎ
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡) for the same technology type 𝑐 but differentiating

y the investment stage 𝑤 when it was installed. This in turn enables
he following novelties:

• Technological improvements for conversion technologies: The term
𝜂𝑐𝑜𝑛𝑣𝑐,𝑒𝑐,𝑤 allows the conversion efficiency of the same technology
𝑐 to differ depending on the investment stage 𝑤 when the tech-
nology is installed. This not only allows the model to optimize
the investment timing, but combined with the separate dispatch
aspect, to also separately optimize the operation schedule of
each technology taking into account its nominal efficiency when
installed.

• Performance degradation for conversion technologies: In a similar
fashion to the previous aspect, the model is capable of tracking
the degradation of the conversion efficiency of a technology 𝑐 via
the term 𝑐𝑑𝑒𝑔𝑐,𝑒𝑐,𝑤,𝑦 and, via the separate dispatch, considering its
impact on the operation of individual technologies.

.3. Model summary and critical reflection

Overall, the MANGO model presented in this section can effectively
erform the task of multi-stage D-MES design. The model integrates
multi-year horizon and is able to accommodate multi-stage strate-

ies composed of any number and frequency of investment stages.
dditionally, the model addresses the shortfalls of previous multi-stage
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Fig. 3. Investment stages, construction development phases and layout plan for the three sites of the case study urban development. In the timeline, dark colored sections signify
construction/retrofit and operation phases, while lighter colored sections demonstrating solely operation.
design models, first, by including the option to consider technolog-
ical improvements in the model; second, by using salvage values to
mitigate end-of-horizon effects; and third, by optimizing the design of
multi-location D-MES configurations.

However, these model innovations also introduce one important
challenge. More specifically, the consideration of multi-location D-MES,
as well as the separate tracking dispatch of each technology at each D-
MES can increase significantly the number of variables in the model. As
a result, although we have not performed any formalized comparisons
and tests, we expect the computational requirements of MANGO to be
higher compared to models that consider only single-location D-MES
and aggregate all installed technologies of the same type into one,
‘virtual’ technology. Nevertheless, we argue that the benefits of these
model additions outweigh the drawback of the increased computational
costs, which will also get progressively lower with future advances in
computing power and MILP solver technologies. In cases, though, when
computational costs become prohibitive, reducing the resolution of the
model horizon from single-year to multi-year (e.g. 5-year) increments
will allow a reduction in computational costs, while also maintaining
the MANGO model innovations.

Finally, a key characteristic of the MANGO model is its deterministic
nature, meaning that perfect knowledge is assumed for all relevant
model parameters. While the majority of the D-MES design models
7

are also of deterministic nature, it can be argued that achieving full
certainty is nearly impossible, especially when such long-term deci-
sions are to be made. From a modeling perspective, techniques like
Stochastic Programming [43] are established approaches to deal with
optimization under uncertainty and they have been successfully used
in the past with single-stage D-MES models (see e.g. [44]). However, in
order to incorporate uncertainty, these techniques lead to significant
increases in computational cost requirements, which with MANGO and
its multi-year, multi-location perspectives already has a considerably
higher computational cost compared to single-stage D-MES. With this
paper, our primary aim was to present a model that is capable of multi-
stage D-MES design taking into account all relevant dynamic aspects,
discuss the model’s methodological details, and illustrate its value.
Given the issue of increased computational requirements, if we were
to formulate MANGO as a multi-stage stochastic optimization model,
adjustments and simplifications would be necessary to ensure that it
can be solved with reasonable computational effort, which would itself
require a separate investigation. Therefore, we have opted to leave such
an uncertainty investigation for future studies.

3. Illustrative case study

3.1. Case study composition

To demonstrate the model’s application and the type of results and
insights that it can generate, we investigate the multi-stage design
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Fig. 4. Evolution of total building floor area (left) and total roof area for the installation of solar technologies (right) for the three sites of the case study urban development
during the 30-year planning period.
Fig. 5. Superstructure representation of candidate energy conversion and storage technologies for the composition of a D-MES.
of an energy system for a hypothetical urban district in the city of
Zurich, Switzerland. A 30-year planning period is considered (2021–
2050) and the urban development is composed of one existing (site
A) and two new neighborhoods (site B & site C), which are assumed
to be developed in different construction phases. These exemplary
development phases are inspired from an actual D-MES district near
Zurich [45,46]. A summary of the urban district’s development plan is
shown in Fig. 3 and is discussed as follows:

• Site A corresponds to an existing, mixed urban neighborhood
composed of 4 single-family houses (SFH), 16 multi-family houses
(MFH) and 4 commercial buildings. The exact configuration of
this existing urban district in terms of building geometries, place-
ment and characteristics is taken from [47]. The total building
floor area for this site is approximately 22’300 m2.

• Site B is a new development with construction taking place in two
phases. In the first development phase (Phases 2 and 3), between
2026 and 2035, a total of 45 residential buildings (13 SFH and
32 MFH) are built with a total floor area of 20’450 m2. In the
second development phase (Phase 4), between 2036 and 2040, 1
commercial office building is constructed per year, for a total of 5
office buildings with total floor area equal to 17’200 m2. Hence,
the total building floor area for site B after both construction
phases are complete will be approximately 37’650 m2.
8

• Site C is a also a new district, however, it is assumed to be
composed purely of commercial consumers with 1 commercial
office buildings being built each year between 2031 and 2038
for a total building floor area of 25’300 m2 when construction
is complete.

The evolution of the total building floor and roof area that is
suitable for solar installations over the 30-year planning horizon is
shown for each site of the district in Fig. 4.

3.2. D-MES design task, scenarios and a sensitivity analysis

3.2.1. Design task description
The envisioned energy system for the case study urban district

is composed of three D-MES, each of which will be installed at one
respective site and will supply the site’s buildings with thermal and
electrical energy to cover their heat (space heating and hot water)
and electricity (appliances, lighting and air-conditioning) demands. The
technology portfolio that is considered for each site’s D-MES are given
in a superstructure representation in Fig. 5. In terms of conversion
technologies, the candidate technologies include electrically-driven air-
source heat pumps (ASHP), ground-source heat pumps (GSHP), natural
gas and biomass boilers, and gas-fired combined heat and power (CHP)
engines. In terms of renewable energy technologies, photovoltaic (PV)
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Fig. 6. Evolution of heat (left) and electricity (right) demands for the three sites and the three retrofit scenarios during the 30-year planning period.
r
f
r

anels are considered. Additionally, hot water thermal storage tanks
nd lithium-ion batteries are considered to store thermal and electrical
nergy, respectively. Each D-MES can import biomass from external
ources and is connected to the natural gas and the electricity grid, al-
owing for imports of natural gas and imports and exports of electricity.
inally, the option for interconnecting the three D-MES is also included
n the case study to consider the possibility of sharing resources and ex-
hanging energy during low energy demand times at one site and high
nergy demand times at another. These energy exchange possibilities
re also shown in Fig. 5.

Given the case study’s development plan, in this paper, to demon-
trate long-term, multi-stage energy planning for urban districts, we opt
or a 6-stage investment plan with investment stages occurring every

years (i.e. in the beginning of 2021, 2026, 2031, 2036, 2041, and
2046, respectively).

Overall, then, from an energy system design perspective, the dis-
trict’s energy plan will prescribe which technologies need to be installed
for each site at each investment stage and whether interconnections be-
tween the sites need to be built. Additionally, since the model also
calculates the optimal energy system operation for the whole planning
horizon, some insights with regards to the system’s operation (e.g.
he utilization of each technology at each site, imports, exports and
xchange of energy) will also be provided.

.2.2. Scenarios
For the D-MES design problem described in the previous section,

he MANGO model is used to identify multiple optimal solutions to
epresent the trade-offs between the system’s total cost, expressed in
et present value terms for the year 2021, and the system’s CO2
missions, calculated as the total over the project horizon. However, to
ain further insights regarding some key model aspects and case study
haracteristics, we define and investigate a series of scenarios. The
irst of these aspects is the influence of D-MES interconnections on the
ystem design and performance. As a result, we define two scenarios:
ith and without D-MES interconnections.

Given that, unlike sites B and C, site A is composed of existing
uildings, a second aspect that we would like to examine is the in-
luence that potential retrofits for site A’s buildings would have on
he energy system design results. Building retrofits that increase the
hermal energy efficiency of the buildings in site A would alter the
hares of thermal energy demands among sites and could in turn also
lter the system’s operating patterns and performance.8 To examine

this, we define three scenarios: one with no building retrofits, one in
which 50% of the buildings are retrofitted, and a last one where 100%
of the buildings are retrofitted. In the ‘50% retrofit’ scenario buildings
are ranked in terms of their energy demands and the twelve buildings

8 Electric energy efficiency interventions were not considered, as electric-
ty demand levels for lighting and appliances were calculated considering
tate-of-the-art norms.
9

t

with the highest total heat demands are chosen to be retrofitted. For
both the 50% and the 100% retrofit scenarios, buildings are to be fully
retrofitted (addition of wall, roof, and ground floor insulation along
with window replacements) with the retrofitting process occurring in
the first 10 years of the project (2021–2030)9.

The retrofit interventions affect primarily the building heat de-
mands, by reducing the buildings’ space heating demands, while the
hot water demands remain unaffected. On the other hand, retrofitting
has only a small influence on the site’s electricity demands, by reducing
the air-conditioning loads, while the electricity demands for lighting
and appliances, which form also the largest electricity demand share,
remain unaffected. Retrofit costs for each building are calculated using
the information in [48] and are attributed to each year in accordance
with the retrofit schedule. After the MANGO model calculates the total
and yearly D-MES costs, the annual retrofit costs are added to them, to
obtain the overall scenario cost.

In order to study the interactions between interconnection and
retrofit options, all possible scenario combinations are considered,
bringing the total scenario number to six.

3.2.3. Sensitivity analysis
In addition to the interconnection and retrofitting scenarios, we

also perform a brief sensitivity analysis to understand the impact that
investment flexibility, expressed as the number of investment stages
considered, has on the resulting energy plan. We perform the sensitivity
analysis for the cost-minimization objective under the scenario without
D-MES interconnections and without retrofits. Under these settings, we
then compare the multi-stage investment plans under 3, 6, 12, and
18 investment stages. A comparison with a single-stage plan is not
performed, since the class of static, single-stage D-MES design models
cannot be applied for multi-stage design problems.

3.3. Case study input data

The input data to the model that pertain to the case study can be
divided into three key categories: (i) the energy demand patterns that
each D-MES need to satisfy and the incoming solar radiation patterns
on the building rooftops of each site, (ii) the investment costs and tech-
nical characteristics of all energy conversion, storage and distribution
technologies considered, and (iii) the energy carrier prices and emission
factors. The latter points (ii) and (iii) are presented in Tables B.6, B.7,
B.8, B.9, and B.10, while the former point (i) is presented in Fig. 4.

9 We assume that for the ‘50% retrofit’ scenario, two buildings are
etrofitted in each of the first two years, followed by one building per year
or the remaining eight. For the ‘100% retrofit’ scenario, three buildings are
etrofitted in each of the first four years, and then two buildings per year for
he remaining six.
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Fig. 7. Evolution of investment costs for a 100 kW-sized ASHP, GSHP, CHP and PV system and a 100 kWh-sized battery during the model horizon (left) - The total technology
nvestment cost reflects the contributions by both the fixed cost (𝑓𝑐) and the linear cost (𝑙𝑐) terms, as given in Table A.3. Evolution of heat pump Coefficient-of-Performance (COP)

and PV panel efficiency during the 30-year planning period (right).
Fig. 8. Evolution of energy carrier prices (left) and grid electricity emission factor (right) during the 30-year planning period.
.3.1. Site energy demands and renewable potential
The heat and electricity demands and the incoming rooftop solar

adiation for each building in the district are calculated using the Build-
ng Performance Simulation software EnergyPlus [49]. To represent the
nter-annual variability of weather conditions, as well as the changing
limate conditions during the planning horizon, each building in its
espective site is simulated for every individual year between 2021–
050, using weather files that were developed in [47] and describe
uture climate conditions for the case study’s location.

The building geometries, locations and characteristics (building age
nd constructions) for site A are taken directly from [47]. For the
etrofit scenarios, the buildings of site A are assumed to reach the
etrofit construction standards set in the latest construction standards
n Switzerland. The same set of building geometries as for site A
re then also used to compose sites B and C, however, the building
onstructions are updated to reflect the latest construction standards
n Switzerland [50]. By year 30, thermal demands for site A thermal
nergy demands are reduced by 60% and 75% in the ‘50%’ and the
100% retrofit’ scenarios, respectively.

Fig. 6 shows the evolution of the annual heat and electricity de-
ands for the three sites. In the ‘No retrofit’ scenario, site A’s heat
emand is dominant over the whole planning horizon. In both retrofit
cenarios, site A’s heat demands show a decreasing trend for the first
en years and reache similar levels as site B in the ‘50% retrofit’ scenario
nd as site C in the ‘100% retrofit’ scenario. On the other hand, as soon
s their construction phases are complete, both sites B and C exhibit
igher electricity demands compared to site A, primarily due to the
arge areas of commercial space.

The final processing step necessary for efficient optimization solver
ime is to convert the hourly energy demand and solar radiation profiles
or each site and year into a set of typical days that can represent
he full year. This is done in two steps: In the first step, similarly to
any previous research efforts [21,51,52], the k-medoids clustering
10
algorithm is used to select the five most representative days of each
year considering all sites’ energy and solar profiles. In the second step,
for each development phase (i.e. the years between two investment
stages), the days when the peak heating and the peak electricity de-
mands occur for each site are also added to their corresponding year.
This second step, thus, ensures that between two investment stages, the
peak demands for each site are considered and the design will ensure
adequate system capacity to meet them.

3.3.2. Technology costs and technical characteristics
Given the multi-year horizon of the MANGO model, all technology

costs and technical characteristics, along with best estimates regarding
their evolution, need to be defined for every individual year and
investment stage. For this case study, we have assumed that during
the project planning horizon the technology costs and characteris-
tics for less mature technologies, such as PV panels or batteries, will
change driven by technological learning and efficiency improvements.
For more mature technologies like natural gas boilers, on the other
hand, constant values are taken for both the technology costs and
performance characteristics like conversion efficiencies. An extensive
data collection campaign was launched, comprised of both scientific
publications and technical reports, to characterize the necessary data
for the relevant parameters of all considered technologies until 2050.
Actual values and data sources are presented in the Appendix B. As
examples, Fig. 7 shows, first, the assumed technology cost evolution for
a 100 kW-sized ASHP, GSHP, CHP and PV system and a 100 kWh-sized
lithium-ion battery, which decrease at various learning rates from 2021
to 2050. The figure also shows the assumed improving efficiencies for
heat pump technologies and PV panels.

3.3.3. Energy carrier prices and emission factors
To determine the evolution of energy carrier (natural gas, biomass,

electricity) prices for the complete project horizon, current consumer
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Fig. 9. (a) Pareto front illustrating the total system cost and CO2 emissions for the optimal D-MES designs in the six interconnection–retrofit scenarios. (b-g) Breakdown of total
system costs along the Pareto front for the six scenarios.
prices are taken from the Official Energy Statistics of Switzerland [53]
and are assigned as prices for 2021. Then, the evolution of these prices
is assumed to follow the New Energy Policy (NEP) scenario of the Swiss
Energy Strategy 2050 [54], which limits emissions to 1–1.5 tCO2 per
person in 2050. The resulting price developments are given in Fig. 8,
demonstrating a gradual increase for all considered energy carriers.

The carbon emission factor for natural gas is assumed constant
and equal to 198 gCO2/kWh for the whole planning horizon, taken
from [54]. Since life cycle analysis of technologies is not considered
in this work, neither biomass consumption, nor electricity generation
from PV panels, are assumed to incur any CO2 emissions. However, the
carbon intensity of grid electricity imports to the district are expected to
vary from year-to-year in the modeled horizon, driven by changes in the
generation mix, which are in turn driven by market conditions, policy
targets, etc. at national and international levels. To model the evolution
of the Swiss grid’s carbon intensity relevant for this D-MES, we first
assign today’s carbon intensity (24 gCO2/kWh, taken from [55]) as the
value for 2021. Then, we model its development according to the NEP
scenario and the Variant C&E electricity supply scenario, as expressed
11

in the Swiss National Strategy 2050 [54]. The evolution of the resulting
grid carbon intensity is also presented in Fig. 8. The shape of the curve
is explained by the fact that the C&E scenario assumes that in the first
15 years (2021–2035), Swiss nuclear power plants10 are replaced by
equal shares of renewable and fossil fuel technologies (decentralized
CHP and Combined Cycle Gas Turbine (CCGT) plants), leading to the
increasing trend for the grid’s carbon intensity. From year 15 onward,
fossil fuel plants are gradually phased out, while renewable generation
keeps increasing, leading to the subsequent decreasing trend.

4. Results

In this section, we present the main results of applying MANGO
to the dynamic urban development case study, highlighting the main
insights that multi-stage design results can offer to D-MES developers.
First, the economic and environmental performance of the optimal D-
MES designs in the different scenarios are presented in Section 4.1.
Then the optimal system configurations are discussed in Section 4.2,

10 Switzerland has committed to phase out nuclear energy by 2034 [56].
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Fig. 10. Operating (a-b, d-e) and retrofit costs (c, f) over the 30-year planning period for two interconnection–retrofit scenarios and for the cost- and CO2 optimal Pareto points.
The costs in this figure correspond to nominal, undiscounted expenditures.
alongside insights on their operating patterns in Section 4.3. The results
of the sensitivity analysis are presented in Section 4.4, and, finally, a
results and model discussion is provided in Section 4.5.

4.1. Economic and environmental performance of optimal D-MES design

Fig. 9a presents optimal Pareto fronts for all retrofit and intercon-
nection scenarios that illustrate the direct trade-offs between D-MES
costs and CO2 emissions. Overall, in all cases, starting from the cost-
optimal point, emission reductions can be achieved with small increases
in the total system cost. For instance, for an emission reduction of
approximately 20%, costs increase 2–5.5% in all scenarios. However,
CO2-optimal points lead to sharp cost increases that are 15% higher
than the cost-optimal points in the case of the ‘100% retrofit’ scenarios
and even 45% higher in the ‘No retrofit’ scenarios.
12
Observing the scenarios more closely, we observe major differences
in their resulting economic and environmental performance. Under all
retrofit scenarios, allowing D-MES interconnections shifts the Pareto
fronts towards both lower costs and lower emissions. Comparing, for
instance, the results of all cost-optimal points, interconnections lead,
on average, to 10% less emissions and 2% lower costs.

On the other hand, retrofitting allows for substantial emissions
reductions, but also leads to higher costs. For instance, the emissions
of the CO2-optimal points of the ‘100% retrofit’ scenarios are lower
by more than 20% compared to the corresponding points in the ‘No
retrofit’ scenarios. However, the costs in the cost-optimal points of the
‘100% retrofit’ scenarios are on average 75% higher than the cost-
optimal points without retrofitting. As a result, depending on the CO2
levels that the developer wants to reach or that are mandated by energy
regulations, retrofitting might be an important element of the energy

plan for the case study district. It should be noted, though, that, in this
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Fig. 11. Total investment costs per investment stage for two interconnection–retrofit scenarios and for the cost- and CO2 optimal Pareto points. The costs in this figure correspond
o nominal, undiscounted expenditures.
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ork, we only represent the retrofit-related costs, but not the potential
conomic benefits due to higher building value after the retrofits. If
hese were to be included, the retrofit-related cost increases could be
educed.

The influence of interconnections and retrofitting on the system
ost and emissions is further illustrated in Fig. 9b-g, which show the
reakdown of costs across all Pareto points and scenarios. Across the
ame interconnection scenarios, retrofitting leads to reductions of the
-MES-related costs, which are, however, offset and exceeded by the

etrofit costs themselves, leading to overall increased costs. Under the
ame retrofit scenario, however, allowing D-MES interconnections adds
comparatively low cost for the network technologies, but, by reducing
rimarily the investment costs, leads to overall lower system costs
nd CO2 emissions. Finally, across all cases, the energy carrier import
osts are the most dominant D-MES cost category, responsible for 50%
o 75% of the total system cost (excl. retrofit cost) across all cases,
ollowed by the energy technology investment costs, which correspond
o 23% to 48% of the total system cost (excl. retrofit cost). Maintenance
osts, network investment costs and revenue sources have a minor
nfluence on the overall cost.

Besides the overall economic and environmental performance of the
tudied systems, MANGO, with its multi-year perspective, also provides
nformation regarding the evolution of the system costs. For a few
elected scenarios, Fig. 10 presents the evolution of the operating costs
nd revenues for the D-MES of all sites and the yearly retrofit costs
or site A. The corresponding plot regarding the evolution of the CO2
missions for the D-MES is given in Fig. C.17. Please note that all future
osts and revenues in the figure are not discounted to demonstrate their
elative magnitude. The overall trend shows a clear increase in future
perating costs, driven partly by the developments in sites B and C (see
13
ig. 3), and partly by the projected increases in energy carrier prices
see Fig. 8). On the other hand, the retrofit cost evolution shows a
ecreasing trend, since the bigger buildings with higher energy demand
evels are prioritized in the retrofit plan, as discussed in Section 3.2.2.

Taking a closer look at the individual cost categories, while
etrofitting reduces system operating costs, the allocation of import
osts across the energy carriers remains the same between the two cost-
ptimal points and the two CO2-optimal points in Fig. 10. For example,
or the cost-optimal cases, the grid electricity cost is the dominant
perating expenditure, exceeding 90% of the total operating cost in
ome years, but it also remains important for the CO2-optimal points
oo, with biomass cost showing also increased influence. Furthermore,
n CO2-optimal points, there is a noticeable reduction in export profit
ue to higher self-consumption of locally generated PV electricity in
rder to reduce system emissions, along with a growing influence
f maintenance costs, as a consequence of higher overall technology
nvestment costs11 for these points shown in Fig. 9. Finally, although
e do not present the isolated impact of interconnection in the figure,

esults showed that it does not greatly influence operational costs
ut instead the cost composition between sites, since in this case one
ite can increase energy production to cover the energy demands on
ifferent sites.

Next, the results for the evolution of the technology investment costs
re presented in Fig. 11. The same scenarios as the ones of Fig. 10 are
lso used here and the costs reported are the nominal, undiscounted
alues. Starting from the impact of retrofits and interconnections on

11 Maintenance costs for a technology are calculated as a percentage of the
upfront investment cost for the technology, as shown in Eq. (A.10).
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Fig. 12. (a-d, f-i) Evolution of installed capacities of energy conversion technologies at each site during the 30-year planning period for four interconnection–retrofit scenarios and
the cost-optimal (a-d) and CO2-optimal Pareto points. (e,j) Summary of total, aggregated installed capacities of conversion technologies for four interconnection–retrofit scenarios
and the cost-optimal (e) and CO2-optimal (j) Pareto points.
nvestment costs, two key results are highlighted. First, for both the
ost- and CO2 optimal points, a reduction in the investment costs is
bserved, that is more pronounced in the CO2 optimal case. Second, al-
owing D-MES interconnections incurs a change the investment patterns
ith fewer investments required per site and investment stage. For in-

tance, in the case of the cost-optimal points with no interconnections,
ite A invests in conversion technologies in four stages, while when
14
interconnections are allowed, the number of investments is reduced to
two.

Changing the axis of analysis and comparing the results under the
same retrofit and interconnection scenario, Fig. 11 shows a significant
increase in investment costs, when transitioning from the cost-optimal
to the CO2-optimal designs, which is equal to 200% in the ‘No-retrofit’
scenario and 125% in the ‘100% retrofit’ case. Moreover, this increase is
driven primarily by higher investments in conversion technologies and
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Fig. 13. Evolution of installed capacities of energy storage technologies at each site during the 30-year planning period for two interconnection–retrofit scenarios and the cost-optimal
(a-b) and CO2-optimal (c-d) Pareto points.
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secondly in storage technologies. It is worth noting that, although not
explicitly reported in Fig. 11, MANGO is capable of further breaking
down investment expenditure per technology and site in order to
provide more detailed information for the developer. Network costs in
the interconnection scenarios have only a small impact. Finally, while
the undiscounted salvage values appear to be very high due to the high
investments towards the second half of the project horizon, actually the
influence over the project time horizon is low, as observed in Fig. 9.

Overall, the results reveal complex investment patterns involving
multiple investment options in each scenario and indicating that there
is no dominant investment strategy among all cases. Hence, these
results also highlight the value of multi-stage D-MES design tools that
can deliver tailor-made and optimal plans that would not be easily
discoverable with conventional planning approaches.

4.2. Technology configurations of optimal D-MES design

Following the system’s economic and environmental performance,
in this section, the technology configurations of the optimal D-MES
designs are presented.

Fig. 12a-d and f-i offer valuable information pertaining to the
evolution of the installed conversion technology capacities at each site,
in four scenarios, and for the cost- and CO2-optimal Pareto points.
The scenarios represent the four possible combinations between the
two interconnection scenarios and the ‘No retrofit’ and ‘100% retrofit’
scenarios. It must be noted that to aid the readability of these figures,
the available capacities of the same technology type in each year are
aggregated before plotting. An example figure for one scenario with
each individual installed technology shown separately depending on
the investment stage in which it was installed is given in Fig. C.18.
15
Each individual technology installation is also considered in Fig. 12j
with the bars stacking the capacity of each installation to present the
sum of the installed conversion technology capacity over all stages
for the four considered scenarios and for the cost- and CO2 optimal
points, respectively. For these two subplots, though, PV installations
are excluded, since the total installed capacity is always maximized and
equal across all scenarios.

Starting from the cost-optimal points in Fig. 12a-d, across all cases,
the systems rely on ASHPs and natural gas boilers for the provision of
heating. In the first years, natural gas boilers occupy the largest share
of installed thermal capacity, however, the share of ASHPs in the total
capacity increases with time, driven by the technology cost reductions
and efficiency improvements shown in Fig. 7. PV installations are
identical in all cases and their installation is maximized according to
the available roof space during the case study development (see Fig. 4).

The overall impact of retrofitting and interconnection scenarios in
the four studied scenarios is summarized in Fig. 12e. The main effect of
retrofitting is the reduction in the total installed technology capacity for
the systems, which is equal to −28% and −33% when interconnections
re not and are considered, respectively. Under both interconnection
cenarios, the reduction in installed capacity is mostly reflected on
he ASHPs, while the natural gas boiler capacity remains relatively
naffected.

On the other hand, interconnections have only a small influence
n the total installed capacity. However, in both retrofit scenarios,
nterconnections both (i) reduce technological complexity of the energy
ystem and (ii) smooth capacity investments. Reduced technological
omplexity is demonstrated by the smaller number of larger thermal
nergy generation technology installations, such as ASHPs, reducing the
otal number of installed technologies, in both cases, from 12 to 7. The
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Fig. 14. Evolution of local thermal generation at each site during the 30-year planning period for four interconnection–retrofit scenarios and the cost-optimal (a-d) and CO2-optimal
e-h) Pareto points.
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nfluence of smoothing capacity investments are shown in year 16 of
he interconnected cases due to ability to exchange thermal energy.

Shifting to the CO2 optimal points, the first observation pertains
o changes to the technology mix from gas boilers and ASHPs to a
ombination of biomass boilers and GSHPs. Additionally, there is a
hift to larger technology capacities, driven by the greater reliance
n GSHPs to self-consume locally generated renewable electricity and
he addition of biomass boilers for a zero-carbon energy supply. The
16

c

verall influence of retrofitting is the significant reduction in the total
nstalled capacity (equal to −30% and −28% when interconnections are
ot and are considered, respectively), which is, in turn, translated to
ower total GSHP and higher total biomass boiler capacities. Relating to
he influence of interconnection, technological complexity is reduced in
imilar proportions relative to the cost optimal cases, for example from
4 to 14 in the ‘No retrofit’ scenario. In contrast to the cost-optimal
ase, though, interconnections also reduce the total installed capacity
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s

Fig. 15. Evolution of local thermal generation and energy exchange at site A during the 30-year planning period for the ‘Interconnection’ and the ‘No retrofit’ and ‘100% retrofit’
cenarios and for the cost-optimal Pareto point (a-b), the 3rd Pareto point (with the 1st being the cost-optimal one) (c-d) and the CO2-optimal (e-f) Pareto points.
for the CO2-optimal points. However, the investment smoothing pattern
observed in the cost-optimal results is not repeated here.

Shifting to energy storage, Fig. 13 presents the evolution of installed
capacities for thermal storage and battery technologies at each site,
in two scenarios, and for the cost- and CO2-optimal results. Overall,
similar patterns to Fig. 12 are observed, with total storage capacities
growing over time across all cases. Retrofitting and interconnections
reduce total installed capacities for the same Pareto points. Under the
same scenarios, thermal storage plays a ubiquitous role, while batteries
only become a major part of the energy system in the CO2-optimal case.

4.3. Operating patterns of D-MES designs

Various streams of valuable information pertaining to the operation
of the designed energy system are also provided by MANGO. One
example is shown in Fig. 14, which presents the annual, total thermal
energy generation per site over the time horizon for the same four
17
scenarios as in Fig. 12 and for the cost- and CO2-optimal Pareto points
(additional results on the evolution of local electricity generation and
grid electricity imports is shown in Fig. C.19). Starting at the cost-
optimal point and the ‘No interconnection - No retrofit’ scenario, we
observe that natural gas boilers only produce a small fraction of the
total thermal energy generation (11% on average per year) and are
‘phased-out’ after year 16. Thus, while gas boilers demonstrated similar
capacities to ASHPs as shown in Fig. 12, they are operated as peak ther-
mal energy supply. An overall similar pattern is observed for the ‘No
interconnection - 100% retrofit’ scenario, with the only difference being
that the ASHPs at site A produce less thermal energy due to retrofitting.
The thermal generation patterns change drastically, though, as soon as
interconnection is allowed. The key difference is that starting from year
10 onward, the largest share of thermal energy is primarily generated
by technologies in one or two sites at a time, with energy demands
at the rest of the sites met via the interconnections. This allows the
overall system to better utilize newer technologies that have higher
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Fig. 16. (a) Total system cost for the 4 sensitivity analysis cases considered. (b-d) Evolution of installed capacities of conversion technologies at each site during the 30-year
lanning period in the sensitivity analysis cases with 3 (b), 12 (c), and 18 (d) investment stages. The corresponding results for the 6 investment stages are given in Fig. 12a.
fficiencies and have not experienced longer degradation times like
lder technologies. As an example, in the ‘No retrofit’ scenario, the
ew ASHP installed in year 10 at site B, generates more than 50%
f the total thermal energy, reducing the share of site A’s thermal
eneration. From year 21, as soon as a new ASHP is installed at site A, it
ecomes again the highest thermal energy generator. Similar patterns
re generally observed in the ‘100% retrofit’ scenario, however, due
o site A’s reduced heat demands, site B becomes the highest thermal
nergy generator, due to it also being the highest thermal energy
onsumer.

Comparing generally the scenario-by-scenario results between the
ost- and CO2-optimal points, we observe similar patterns for thermal
nergy generation. In the ‘No retrofit’ cases, the greatest share of
hermal energy comes from GSHPs, exceeding 85% in some years, while
iomass consumption is limited by the biomass availability constraints.
ue to the lower heat demands for site A in the ‘100% retrofit’ sce-
arios, biomass becomes the dominant heating technology. Similar to
he cost-optimal cases, interconnection changes the shares of thermal
nergy generation between sites. While in the ‘No retrofit’ scenarios
ite A generates most thermal energy with GSHPs complemented by
ite B’s biomass boilers, in the ‘100% retrofit case’, the thermal energy
eneration patterns change between phases depending on which site
as the newest and/or most efficient generation technologies. For
nstance, between years 16 and 20, sites B and C dominate with GSHPs
nd biomass boiler-based generation, while between years 21 and 25,
he new and hence more efficient (due to less degradation) biomass
oiler in site A takes over the biomass-based thermal energy generation
rom site B’s D-MES.

Finally, Fig. 15 zooms in on one site and presents the local thermal
nergy generation and the thermal energy exchange from the perspec-
18

ive of site A over the time horizon, for the cost-optimal, the 3rd
Pareto point (see Fig. 9), and the CO2 optimal solutions, in both the
‘No retrofit’ and the ‘100% retrofit’ scenarios. Starting from the ‘No
retrofit’ results, site A, in the cost-optimal and 3rd Pareto point cases,
initially covers its own thermal energy demands until year 10, then
relies primarily on energy imports from other sites until year 20, and
then transitions back to covering its own thermal energy demands and
exporting to other sites. Overall, in these two cases, site A covers 80%
and 68% of its thermal needs through local generation and the rest
through imports. On the other hand, for the CO2-optimal point, site
A becomes highly self-sufficient covering 94% of its energy demand
through local generation, primarily using GSHP technologies, leading
to very low amounts of energy are exchanged from and to site A.

Retrofitting does not change the thermal energy landscape for site A,
which still relies on combinations of local energy generation and energy
exchange at different shares during the model horizon, albeit at lower
levels due to the lower heat demands. However, in the case of the CO2
optimal solution, much more complex patterns emerge with periods in
which combinations of technologies are used to generate heat locally
and exchange it to other sites, and periods e.g. between year 16 and
21, during which energy exchanged from other sites is used to cover
heat demands. In total, over the project horizon, site A covers 52%,
75% and 86% of its own thermal requirements in the cost-optimal, 3rd
Pareto point, and CO2-optimal solutions, respectively.

4.4. Sensitivity analysis

Fig. 16 summarizes the main results of the sensitivity analysis
described in Section 3.2.3. Starting from the system’s economic per-
formance, Fig. 16a compares the total system cost resulting from cost-
optimal plans with 3, 6, 12 and 18 investment stages. Results show
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a decreasing cost trend as the number of investment stages increase.
While the 3-stage plan has approximately 4% higher costs than the
base case, 6-stage plan, increasing the number of stages to 12, and
further 18, incurs a decreasing marginal benefit. This indicates that
the additional planning flexibility above 12 stages cannot be harnessed
in this specific case study, but nonetheless demonstrates the value of
multi-stage modeling approaches.

Fig. 16b-d further present the evolution of the energy system’s com-
position for 3, 12 and 18 investment stages, which can be contrasted
with the base case, 6-stage plan from Fig. 12a. Overall, the same general
trends can be observed in all cases with a split between natural gas
boilers and ASHPs in the first years and a transition to higher ASHP
capacities towards the end of the model horizon. Additionally, PV
capacities are always also maximized. Nevertheless, as the number of
investment stages increases, also the complexity of the resulting plan
increases too. This can be observed especially in the 12- and 18-stage
plans, with a larger number of smaller capacity additions happening
after year 16. Overall, a trade-off is formed between system cost and
technological complexity. Depending on the priorities of the developer,
an appropriate number of investment stages can be selected.

Finally, although we have not performed formal tests, a brief note
is provided regarding the computational time required for the different
cases, which, as discussed in Section 2.3, increases with the number of
stages considered. In our simple sensitivity analysis, the computational
time varied exponentially from approximately 10 min when 3-stages
are used, to approximately 1 h with 6 stages and more than 2 days
when 18 stages are used. These are only provided as an indication
here and can vary significantly depending on the details of the scenario
considered (e.g. with or without interconnections etc.).

4.5. Results and model discussion

In this section, we provide our perspective on the added value
that MANGO’s D-MES design approach can bring for energy developers
and, finally, we provide a brief discussion on the important issue of
uncertainty.

As discussed in the Introduction, the process of creating D-MES
planning strategies for an urban district should reflect its dynamic
construction development, as well as the long-term developments of
the surrounding energy and economic landscape. MANGO incorporates
the most relevant dynamic aspects for D-MES, such as evolving energy
prices, technological developments, and changing energy demands due
to retrofitting and/or new building additions, and is capable of gener-
ating optimal D-MES planning strategies with the desired flexibility in
terms of the number and frequency of investment stages.

The incorporation of a multi-year horizon, along with multi-location
D-MES configurations, each of which is composed of multiple technolo-
gies, means, on the one hand, that MANGO is capable of delivering
highly complex plans. Overall, MANGO offers a wealth of information,
across different dimensions that can be used to assist decisions at
different strategic, economic, and technical levels. For instance, infor-
mation on the total lifetime economic and environmental performance,
as presented in Fig. 9, can be used at the strategic level regarding which
of the proposed designs to choose. Detailed information regarding the
yearly evolution of operation and investment costs, respectively in
Figs. 10 and 11, can be used for project budgeting. The evolution of
the installed technology capacities, as in Figs. 12 and 13, can be used
at the technical level to guide purchasing decisions, while information
on the year-to-year energy generation and exchanges, as presented in
Figs. 14 and 15, can be used at the detailed engineering level when, for
instance, deciding on the necessary infrastructure to coordinate multi-
location D-MES operation. Finally, due to the multiple dimensions
included in MANGO, all model outputs can be examined in close detail
or abstracted in metrics defined per location and/or year for a more
high-level view.
19
Besides the methodological contributions introduced by the pro-
posed model of this paper, we aim to narrow the distance between
D-MES modeling and real-world D-MES design in practical applica-
tions. We argue that the multi-stage investment perspective of the
MANGO model matches more closely the needs of energy system
developers when they design D-MES. Therefore, by highlighting the
benefits of multi-stage D-MES design and the valuable insights that it
can generate, we seek to contribute towards a faster diffusion of D-MES
design optimization models from research to practice.

Despite its deterministic formulation, MANGO can nevertheless be
valuable for real-world D-MES projects and practical applications. Al-
though the model outputs a multi-year design plan, we do not expect
D-MES developers to only run the model once at the beginning of a
project and then fix all investment decisions for the project’s duration.
Instead, a developer should run the model with their best possible
estimates of the model’s dynamic parameters, obtain a multi-stage
design plan for the D-MES that takes into account these developments,
and then proceed to implement only the investments dictated by the
model for the first investment stage with the knowledge of future
flexibility. Then before the next, actual investment stage of the project,
the developer should re-run the model, with updated estimates for the
model’s dynamic parameters and obtain an optimal decision for the
next investment stage. Given that uncertainty grows larger the further
the prediction horizon lies, one can have more confidence in their short-
term predictions and, hence, the short-term investment decisions of the
model that need to be implemented first.

5. Conclusions

This paper presented MANGO, a novel optimization model for the
optimal, multi-stage design of D-MES. The model allows for flexible
investment strategies to be defined and considers the most relevant
dynamic aspects that evolve during the lifetime of a D-MES project,
such as year-to-year variations in energy demands, changing energy
carrier and technology prices, technical improvements in generation
technologies and equipment degradation. MANGO further extends the
state-of-the-art in multi-stage D-MES design, by allowing multi-location
D-MES configurations to be optimized and by treating end-of-horizon
effects for more accurate design decisions. Another novelty is MANGO’s
technology-focused modeling approach, which means that all invest-
ments in energy generation and storage are tracked separately and
their capacities are not aggregated into total capacities. This allows
the model to dispatch each installed technology individually taking
into account their different performance characteristics e.g. due to
performance degradation or due to technological improvements during
the project lifetime.

In this paper, the MANGO model was also applied to a 6-stage
D-MES design problem for an urban district case study in Zurich,
Switzerland with the aim to demonstrate its application and high-
light the insights that the model can generate. Total system cost and
CO2 emissions minimization are examined and six scenarios are also
considered regarding D-MES interconnections and building retrofits.

Overall, the D-MES design plan in all optimization settings and
scenarios benefit from the multi-stage investment strategy, as technolo-
gies are installed in all stages to echo the developments in the urban
district, benefit from reduced future technology costs, and to replace
technologies that reach the end of their lifetime. Regarding specifically
the examined scenarios, results showed that allowing D-MES inter-
connections leads to better economic and environmental performance
(for instance, 2% lower costs and 10% lower emissions on average
for the cost-optimal designs across all scenarios). On the other hand,
while retrofitting increases total costs significantly, it allows for lower
CO2 emission levels to be reached. For instance, the lowest possible
emission level for the system without building retrofits is approx.
equal to 3500 tCO2. Under the ‘100% retrofit scenario’, the minimum
achievable emissions are reduced to approx. 2700 tCO . Regarding
2
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technology configurations for D-MES, retrofitting and interconnections
do not have a significant impact in terms of system selection, with most
cost-effective designs including combinations of natural gas boilers,
ASHPs and PV panels, while designs with the lowest CO2 emissions
transition to biomass boilers, GSHPs and PV configurations. Neverthe-
less, retrofits affect the total capacities of the technologies installed,
while interconnections allow for technology sharing, and reduce the
number of technologies installed. Finally, regarding the system’s oper-
ation, interconnections allow for higher utilization of the newest, more
efficient technologies each year, leading, however, to more complex
operating patterns for the whole system.

Overall, MANGO is a novel contribution to the field of model-based
D-MES optimization. With its long-term perspective, it can offer insights
that closely match the dynamic class of real-world energy system
design projects led by energy developers. It can facilitate strategic
decision-making by creating multiple design alternatives that highlight
trade-offs between design objectives. Additionally, with its detailed
breakdown of costs per year and per expenditure type, it can inform
and drive decisions at the economic level. Finally, MANGO generates
valuable insights that can assist decisions at the technical engineering
levels regarding the design of multiple D-MES in terms of technology
selection, sizing and siting, as well as information on the optimal
operating patterns of each system.

Future studies should seek to incorporate the issue of uncertainty
in the long-term planning of D-MES and extend the model to be able
to make robust design decisions considering multiple, possible future
scenarios for the dynamic parameters. Additionally, the extension of the
end-use sectors considered and the inclusion of mobility applications
will enhance the scope and the value that the model can bring to energy
developers. Finally, building retrofits in this paper were treated exoge-
nously from the model and only using a set of predefined scenarios. To
further enhance retrofit-related decision-making, these decisions could
be directly incorporated in the model and their granularity could also
be augmented, allowing MANGO to decide, for instance, exactly which
building needs to be retrofitted, when and what the optimal interven-
tion should be. This will allow the model to find more globally optimal
solutions, balancing between energy retrofit and D-MES solutions.
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Appendix A. Complete MANGO model formulation

In this appendix, the complete formulation of the novel MANGO
(Multi-scAle eNerGy Optimization) model is presented.

A.1. Sets

The model’s parameters, variables, and constraints are indexed over
the sets described in Table 1. The sets reflect the temporal and spatial
dimensions in the model, as well as the considered energy carriers and
energy technologies.

A.2. Parameters

The model considers a series of technical, economic, environmental
and miscellaneous parameters, which are presented in Tables A.2, A.3,
and A.4, respectively. The values for the key model parameters used
for this paper’s case study are given in Appendix B.

A.2.1. Parameter definitions
Eqs. (A.1) to (A.4) show the definition of model parameters related

to performance degradation of conversion and storage technologies and
to their salvage value at the end of their lifetime.

𝑐𝑑𝑒𝑔𝑐,𝑒𝑐,𝑤,𝑦 =(1 − 𝑐𝑦𝑑𝑒𝑔𝑐,𝑒𝑐 )(𝑦−𝑤),

∀ 𝑐 ∈ , 𝑒𝑐 ∈ , 𝑤 ∈  , 𝑦 ∈  |

{𝑦 ≥ 𝑤 AND 𝑦 ≤ 𝑤 + 𝑐𝑙𝑐 − 1}

(A.1)

𝑠𝑑𝑒𝑔𝑠,𝑤,𝑦 =(1 − 𝑠𝑦𝑑𝑒𝑔𝑠)(𝑦−𝑤),

∀ 𝑠 ∈  , 𝑤 ∈  , 𝑦 ∈  | {𝑦 ≥ 𝑤 AND 𝑦 ≤ 𝑤 + 𝑠𝑙𝑠 − 1}

(A.2)

𝑐𝑠𝑙𝑣𝑔𝑐,𝑤 =
1 − (1 + 𝑟)

max
𝑦∈

(𝑦)+1−𝑤−𝑐𝑙𝑐

1 − (1 + 𝑟)−𝑐𝑙𝑐
,

∀ 𝑐 ∈ , 𝑤 ∈  | {𝑤 ≥ max
𝑦∈

(𝑦) + 1 − 𝑐𝑙𝑐}
(A.3)

𝑠𝑠𝑙𝑣𝑔𝑠,𝑤 =
1 − (1 + 𝑟)

max
𝑦∈

(𝑦)+1−𝑤−𝑠𝑙𝑠

1 − (1 + 𝑟)−𝑠𝑙𝑠
,

∀ 𝑠 ∈  , 𝑤 ∈  | {𝑤 ≥ max
𝑦∈

(𝑦) + 1 − 𝑠𝑙𝑠}
(A.4)

.3. Decision variables

The model’s decision variables are presented in Table A.5 and are
ivided into three key categories. The first category pertains to energy
ystem operation aspects and involves variables representing energy
onversion, import, export, exchange and storage. The second category
ertains to the design of the energy system and involves variables
elated to new installations of conversion and storage devices and
heir capacities, as well as to the diameter and the corresponding
ost of thermal interconnections between energy system locations. The
hird and final category pertains to the economic and environmental
erformance of the energy system.

.4. Objective functions

The two most commonly considered objectives are incorporated
n the MANGO model. These correspond to the minimization of the
ifetime, discounted energy system costs (𝑇 𝑐𝑜𝑠𝑡) and/or CO2 emissions
𝑇 𝐶𝑂2 ). The mathematical definitions of the two objective functions are
iven in Eqs. (A.5) and (A.6), respectively.

min 𝑇 𝑐𝑜𝑠𝑡 =
∑

(

𝐶𝐼𝑁𝑉 ,𝑇𝐸𝐶𝐻
𝑙,𝑤 + 𝐶𝐼𝑁𝑉 ,𝑁𝐸𝑇

𝑙,𝑤

)

⋅
1

𝑤−1

𝑙,𝑤 (1 + 𝑟)
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Table A.2
Technical MANGO model parameters.
Parameter Unit Description

Energy conversion technologies

𝜂𝑐𝑜𝑛𝑣𝑐,𝑒𝑐,𝑤 [–] Conversion factor for technology 𝑐 and energy carrier 𝑒𝑐 installed in stage 𝑤
𝑐𝑑𝑒𝑔𝑐,𝑒𝑐,𝑤,𝑦 [–] Total degradation coefficient for the conversion factor of technology 𝑐 and energy carrier 𝑒𝑐

depending on the installation stage 𝑤 and the operation year 𝑦 (Defined for:
{𝑦 ≥ 𝑤 and 𝑦 ≤ 𝑤 + 𝑐𝑙𝑐 − 1})

𝑐𝑦𝑑𝑒𝑔𝑐,𝑒𝑐 [–] Yearly degradation coefficient for the conversion factor of technology 𝑐 and energy carrier 𝑒𝑐
𝑐𝑙𝑐 [years] Lifetime of conversion technology 𝑐

Energy storage technologies

𝑠𝑡𝑐𝑠,𝑒𝑐 [–] Storage technology coupling parameter describing the energy carrier 𝑒𝑐 stored in storage
technology 𝑠

𝜂𝑐ℎ𝑠 [–] Charging efficiency of storage technology 𝑠
𝜂𝑑𝑖𝑠𝑠 [–] Discharging efficiency of storage technology 𝑠
𝜂𝑠𝑒𝑙𝑓𝑠 [–] Self-discharge losses of storage technology 𝑠
𝑞𝑐ℎ,𝑚𝑎𝑥𝑠 [–] Maximum charging rate of storage technology 𝑠
𝑞𝑑𝑖𝑠,𝑚𝑎𝑥𝑠 [–] Maximum discharging rate of storage technology 𝑠
𝑠𝑑𝑒𝑔𝑠,𝑤,𝑦 [–] Total degradation coefficient for the charging and discharging efficiencies of storage technology

𝑠 depending on the installation stage 𝑤 and the operation year 𝑦 (Defined for:
{𝑦 ≥ 𝑤 and 𝑦 ≤ 𝑤 + 𝑠𝑙𝑠 − 1})

𝑠𝑦𝑑𝑒𝑔𝑠 [–] Yearly degradation coefficient for the charging and discharging efficiencies of storage
technology 𝑠

𝑠𝑙𝑠 [years] Lifetime of storage technology 𝑠

Energy networks

𝜂𝑛𝑒𝑡𝑒𝑐𝑥
[–] Losses per meter of network connection transferring energy carrier 𝑒𝑐𝑥

𝛼 [mm/kWh] Empirical parameter used for the calculation of the necessary pipe diameter for thermal
network connections between locations

𝛽 [mm] Empirical parameter used for the calculation of the necessary pipe diameter for thermal
network connections between locations

𝛾 [CHF/m/mm] Empirical parameter used for the calculation of the pipe investment cost per meter for thermal
network connections between locations

𝛿 [CHF/m] Empirical parameter used for the calculation of the pipe investment cost per meter for thermal
network connections between locations

Miscellaneous technical parameters

𝑑𝑒𝑚𝑒𝑐𝑑 ,𝑙,𝑦,𝑑,𝑡 [kWh] Energy demand for energy carrier 𝑒𝑐𝑑 , at location 𝑙, in year 𝑦, day 𝑑 and time step 𝑡
𝑏𝑖𝑜𝑦 [kWh/m2] The available bioenergy (in the form of biomass) per unit of building floor area in year 𝑦
𝑠𝑜𝑙𝑙,𝑦,𝑑,𝑡 [kWh/m2] Incoming solar radiation patterns at energy system location 𝑙, in year 𝑦, day 𝑑, and time step 𝑡
𝑓𝑎𝑦 [m2] Total building floor area across all energy system locations in year 𝑦
𝑟𝑎𝑙,𝑦 [m2] Total building roof area across at location 𝑙, in year 𝑦
𝑥𝑙,𝑙′ [m] Distance between energy system locations 𝑙 and 𝑙′

𝑛𝑑𝑦,𝑑 [days] Number of calendar days represented by each representative day 𝑑, in year 𝑦
Table A.3
Economic MANGO model parameters.
Parameter Unit Description

𝑖𝑒𝑐𝑖 ,𝑦 [CHF/kWh] Price for importing energy carrier 𝑒𝑐𝑖, in year 𝑦
𝑒𝑒𝑐𝑒 ,𝑦 [CHF/kWh] Compensation for exporting energy carrier 𝑒𝑐𝑒, in year 𝑦
𝑓𝑐𝑐𝑜𝑛𝑣𝑐,𝑤 [CHF] Fixed cost for the installation of conversion technology 𝑐, in investment stage 𝑤
𝑙𝑐𝑐𝑜𝑛𝑣𝑐,𝑤 [CHF/kW] Linear, capacity-dependent cost for the installation of conversion technology 𝑐, in

investment stage 𝑤
𝑓𝑐𝑠𝑡𝑜𝑟𝑠,𝑤 [CHF] Fixed cost for the installation of storage technology 𝑠, in investment stage 𝑤
𝑙𝑐𝑠𝑡𝑜𝑟𝑠,𝑤 [CHF/kWh] Linear, capacity-dependent cost for the installation of storage technology 𝑠, in

investment stage 𝑤
𝑜𝑚𝑐𝑜𝑛𝑣

𝑐 [–] Parameter used to calculate the annual maintenance cost for conversion
technology 𝑐 as a fraction of its total investment cost

𝑜𝑚𝑠𝑡𝑜𝑟
𝑠 [–] Parameter used to calculate the annual maintenance cost for storage technology 𝑠

as a fraction of its total investment cost
𝑐𝑠𝑙𝑣𝑔𝑐,𝑤 [–] Salvage percentage of initial investment cost for conversion technology 𝑐 that

was installed in stage 𝑤 and has not reached the end of its lifetime at the end of
the model horizon (Defined for: {𝑤 ≥ max

𝑦∈
(𝑦) + 1 − 𝑐𝑙𝑐})

𝑠𝑠𝑙𝑣𝑔𝑠,𝑤 [–] Salvage percentage of initial investment cost for storage technology 𝑠 that was
installed in stage 𝑤 and has not reached the end of its lifetime at the end of the
model horizon (Defined for: {𝑤 ≥ max

𝑦∈
(𝑦) + 1 − 𝑠𝑙𝑠})

𝑟 [–] Discount rate
i

+
∑

𝑙,𝑦

(

𝐶𝐼𝑀𝑃
𝑙,𝑦 + 𝐶𝑀𝐴𝐼𝑁𝑇

𝑙,𝑦

)

⋅
1

(1 + 𝑟)𝑦

−
∑

𝑙,𝑦
𝑅𝐸𝑋𝑃
𝑙,𝑦 ⋅

1
(1 + 𝑟)𝑦

−
∑

𝑙
𝑅𝑆𝐿𝑉 𝐺
𝑙 ⋅

1
(1 + 𝑟)||+1

(A.5)
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t

min 𝑇 𝐶𝑂2 =
∑

𝑒𝑐𝑖 ,𝑑,𝑡

(

𝑃 𝑖𝑚𝑝
𝑒𝑐𝑖 ,𝑙,𝑦,𝑑,𝑡

⋅ 𝑐𝑒𝑐𝑖 ,𝑦 ⋅ 𝑛𝑑𝑦,𝑑
)

(A.6)

The 𝑇 𝑐𝑜𝑠𝑡 objective is composed of summation terms including the
nvestment costs for energy technologies (𝐶𝐼𝑁𝑉 ,𝑇𝐸𝐶𝐻

𝑙,𝑤 ) and network
echnologies (𝐶𝐼𝑁𝑉 ,𝑁𝐸𝑇 ) at each location 𝑙 and investment stage 𝑤,
𝑙,𝑤
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Table A.4
Environmental and miscellaneous MANGO model parameters.

Parameter Unit Description

𝑏𝑖𝑔𝑀 [–] ‘‘Big M’’ - Sufficiently large value
𝑐𝑒𝑐𝑖 ,𝑦 [kgCO2/kWh] Carbon emission factor for imported energy

carrier 𝑒𝑐𝑖 in year 𝑦

the energy carrier import costs (𝐶𝐼𝑀𝑃
𝑙,𝑦 ), maintenance costs (𝐶𝑀𝐴𝐼𝑁𝑇

𝑙,𝑦 )
and revenues due to energy carrier exports (𝐵𝐸𝑋𝑃

𝑙,𝑦 ) at each location 𝑙
and calendar year 𝑦, and, finally, the salvage value at each site 𝑤 at
the end of the model horizon due to technologies not reaching the end
of their lifetime (𝑅𝑆𝐿𝑉 𝐺

𝑙 ). Definitions for these terms are given in Eqs.
(A.7) to (A.12).12

Note that all cost terms are discounted to present value using
the discount rate 𝑟. Cost terms pertaining to investment expenditure
are assumed to occur at the beginning of the investment stage/year,
hence, the exponent 𝑤 − 1 in the discounting term of Eqs. (A.7) and
(A.8). The same applies to the salvage revenue term (𝐵𝑆𝐿𝑉 𝐺

𝑙 ) with the
discounting term using the term || − 1 as the exponent (|| denotes
the cardinality of the set  , which in this case refers to the number
of years considered). On the other hand, operating expenditures are
assumed to occur at the end of the calendar year, so the exponent of
the discounting term is only 𝑦 in Eqs. (A.9) to (A.11).

𝐶𝐼𝑁𝑉 ,𝑇𝐸𝐶𝐻
𝑙,𝑤 =

∑

𝑐

[

𝑙𝑐𝑐𝑜𝑛𝑣𝑐,𝑤 ⋅𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤 + 𝑓𝑐𝑐𝑜𝑛𝑣𝑐,𝑤 ⋅ 𝑌 𝑐𝑜𝑛𝑣

𝑐,𝑙,𝑤

]

+
∑

𝑠

[

𝑙𝑐𝑠𝑡𝑜𝑟𝑠,𝑤 ⋅𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤 + 𝑓𝑐𝑠𝑡𝑜𝑟𝑠,𝑤 ⋅ 𝑌 𝑠𝑡𝑜𝑟

𝑠,𝑙,𝑤

]

,

∀ 𝑙 ∈ , 𝑤 ∈ 

(A.7)

𝐶𝐼𝑁𝑉 ,𝑁𝐸𝑇
𝑙,𝑤 =

∑

𝑙′
𝑙′≠𝑙

[

𝑌 𝑛𝑒𝑡
𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑤

⋅ 𝐿𝐶𝑛𝑒𝑡
𝑙,𝑙′ ⋅ 𝑥𝑙,𝑙′ ⋅ 0.5

]

,

∀ 𝑒𝑐𝑥 = 𝐻𝑒𝑎𝑡, 𝑙 ∈ , 𝑤 ∈  (A.8)

𝐶𝐼𝑀𝑃
𝑙,𝑦 =

∑

𝑒𝑐𝑖 ,𝑑,𝑡

[

𝑃 𝑖𝑚𝑝
𝑒𝑐𝑖 ,𝑙,𝑦,𝑑,𝑡

⋅ 𝑖𝑒𝑐𝑖 ,𝑦 ⋅ 𝑛𝑑𝑦,𝑑
]

, ∀ 𝑙 ∈ , 𝑦 ∈  (A.9)

𝐶𝑀𝐴𝐼𝑁𝑇
𝑙,𝑦 =

∑

𝑐,𝑤
𝑦≥𝑤

𝑦≤𝑤+𝑐𝑙𝑐−1

[

𝑙𝑐𝑐𝑜𝑛𝑣𝑐,𝑤 ⋅𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤 + 𝑓𝑐𝑐𝑜𝑛𝑣𝑐,𝑤 ⋅ 𝑌 𝑐𝑜𝑛𝑣

𝑐,𝑙,𝑤

]

⋅ 𝑜𝑚𝑐𝑜𝑛𝑣
𝑐

+
∑

𝑠,𝑤
𝑦≥𝑤

𝑦≤𝑤+𝑠𝑙𝑠−1

[

𝑙𝑐𝑠𝑡𝑜𝑟𝑠,𝑤 ⋅𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤 + 𝑓𝑐𝑠𝑡𝑜𝑟𝑠,𝑤 ⋅ 𝑌 𝑠𝑡𝑜𝑟

𝑠,𝑙,𝑤

]

⋅ 𝑜𝑚𝑠𝑡𝑜𝑟
𝑠 ,

∀ 𝑙 ∈ , 𝑦 ∈ 

(A.10)

𝑅𝐸𝑋𝑃
𝑙,𝑦 =

∑

𝑒𝑐𝑒 ,𝑑,𝑡

[

𝑃 𝑒𝑥𝑝
𝑒𝑐𝑒 ,𝑙,𝑦,𝑑,𝑡

⋅ 𝑒𝑒𝑐𝑒 ,𝑦 ⋅ 𝑛𝑑𝑦,𝑑
]

, ∀ 𝑙 ∈ , 𝑦 ∈  (A.11)

𝑅𝑆𝐿𝑉 𝐺
𝑙 =

∑

𝑐,𝑤
𝑤≥||−𝑐𝑙𝑐+1

[

𝑙𝑐𝑐𝑜𝑛𝑣𝑐,𝑤 ⋅𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤 + 𝑓𝑐𝑐𝑜𝑛𝑣𝑐,𝑤 ⋅ 𝑌 𝑐𝑜𝑛𝑣

𝑐,𝑙,𝑤

]

⋅ 𝑐𝑠𝑙𝑣𝑔𝑐,𝑤

+
∑

𝑐,𝑤
𝑤≥||−𝑠𝑙𝑠+1

[

𝑙𝑐𝑠𝑡𝑜𝑟𝑠,𝑤 ⋅𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤 + 𝑓𝑐𝑠𝑡𝑜𝑟𝑠,𝑤 ⋅ 𝑌 𝑠𝑡𝑜𝑟

𝑠,𝑙,𝑤

]

⋅ 𝑠𝑠𝑙𝑣𝑔𝑐,𝑤,

∀ 𝑙 ∈ 

(A.12)

12 The 0.5 term in Eq. (A.8) is added to attribute equally the network costs
o both interconnected sites.
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A.5. Constraints

A.5.1. Energy balances
The constraint in Eq. (A.13) describes how the energy demands of

the end-users at the different locations are met at each time step of the
model via energy imports, energy conversion, conversion, energy stor-
age charging and discharging, energy exchanges, while also allowing
for energy exports.

𝑑𝑒𝑚𝑒𝑐𝑑 ,𝑙,𝑦,𝑑,𝑡 = 𝑃 𝑖𝑚𝑝
𝑒𝑐𝑖 ,𝑙,𝑦,𝑑,𝑡

+
∑

𝑐,𝑤
𝑦≥𝑤

𝑦≤𝑤+𝑐𝑙𝑐−1

(

𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤,𝑦,𝑑,𝑡 ⋅ 𝜂

𝑐𝑜𝑛𝑣
𝑐,𝑒𝑐,𝑤 ⋅ 𝑐𝑑𝑒𝑔𝑐,𝑒𝑐,𝑤,𝑦

)

+
∑

𝑠,𝑤
𝑦≥𝑤

𝑦≤𝑤+𝑠𝑙𝑠−1

[

𝑠𝑡𝑐𝑠,𝑒𝑐 ⋅ (𝑄𝑑𝑖𝑠
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 −𝑄𝑐ℎ

𝑠,𝑙,𝑤,𝑦,𝑑,𝑡)
]

+
∑

𝑙,𝑙′
𝑙≠𝑙′

[

𝑃 𝑒𝑥𝑐
𝑒𝑐𝑥 ,𝑙′ ,𝑙,𝑦,𝑑,𝑡

⋅ (1 − 𝜂𝑛𝑒𝑡𝑒𝑐𝑥
⋅ 𝑥𝑙′ ,𝑙) − 𝑃 𝑒𝑥𝑐

𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑦,𝑑,𝑡

]

− 𝑃 𝑒𝑥𝑝
𝑒𝑐𝑒 ,𝑙,𝑦,𝑑,𝑡

,

∀ 𝑒𝑐 ∈ , 𝑙 ∈ , 𝑦 ∈  , 𝑑 ∈ , 𝑡 ∈ 

(A.13)

.5.2. Conversion technology constraints
Eq. (A.14) prevents the violation of the nominal capacities of con-

ersion technologies during the system’s operation.

𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐𝑑 ,𝑙,𝑤

≥ 𝑃 𝑐𝑜𝑛𝑣
𝑐𝑑 ,𝑙,𝑤,𝑦,𝑑,𝑡 ⋅ 𝜂𝑐𝑜𝑛𝑣𝑐𝑑 ,𝑒𝑐,𝑤

⋅ 𝑐𝑑𝑒𝑔𝑐𝑑 ,𝑒𝑐,𝑤,𝑦,

∀ 𝑐𝑑 ∈ 𝑑 , 𝑒𝑐 ∈ , 𝑙 ∈ , 𝑤 ∈  , 𝑦 ∈  , 𝑑 ∈ , 𝑡 ∈  |

{𝑦 ≥ 𝑤 AND 𝑦 ≤ 𝑤 + 𝑐𝑙𝑐𝑑 − 1 AND 𝜂𝑐𝑜𝑛𝑣𝑐𝑑 ,𝑒𝑐,𝑤
> 0}

(A.14)

Eq. (A.15) defines the input energy to solar energy technologies as
he product of the incoming solar radiation multiplied by the installed
apacity of the technology.

𝑃 𝑐𝑜𝑛𝑣
𝑐𝑠 ,𝑙,𝑤,𝑦,𝑑,𝑡 = 𝑠𝑜𝑙𝑙,𝑦,𝑑,𝑡 ⋅𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣

𝑐𝑠 ,𝑙,𝑤

∀ 𝑐𝑠 ∈ 𝑠, 𝑒𝑐 ∈ , 𝑙 ∈ , 𝑤 ∈  , 𝑦 ∈  , 𝑑 ∈ , 𝑡 ∈  |

{𝑦 ≥ 𝑤 AND 𝑦 ≤ 𝑤 + 𝑐𝑙𝑐𝑠 − 1}

(A.15)

Eq. (A.16) states that the total installed capacity of solar energy
echnologies in each year and location cannot exceed the available roof
rea.

∑

𝑐𝑠,𝑤
𝑦≥𝑤

𝑦≤𝑤+𝑐𝑙𝑐𝑠𝑜𝑙 −1

𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐𝑠𝑜𝑙 ,𝑙,𝑤

≤ 𝑟𝑎𝑙,𝑦, ∀ 𝑦 ∈  , 𝑙 ∈  (A.16)

Eq. (A.17) limits the total annual consumption of biomass across
ll sites to account for biomass availability. In this work, the value
or the parameter 𝑏𝑖𝑜𝑦 is calculated by dividing the estimated domestic
iomass potential for Switzerland from [57] with the yearly projected
otal building floor areas for the country from [54].

∑

𝑒𝑐𝑖 ,𝑠,𝑑,𝑡
𝑒𝑐𝑖=𝐵𝑖𝑜𝑚𝑎𝑠𝑠

𝑃 𝑖𝑚𝑝
𝑒𝑐𝑖 ,𝑙,𝑑,𝑡

⋅ 𝑛𝑑𝑦,𝑑 ≤ 𝑏𝑖𝑜𝑦 ⋅ 𝑓𝑎𝑦, ∀ 𝑦 ∈  (A.17)

Eq. (A.18) is a Big-M constraint that forces binary variable 𝑌 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤 to

e equal to 1, if the variable 𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤 gets a non-zero value.

𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤 ≤ 𝑏𝑖𝑔𝑀 ⋅ 𝑌 𝑐𝑜𝑛𝑣

𝑐,𝑙,𝑤 , ∀ 𝑐 ∈ , 𝑙 ∈ , 𝑤 ∈  (A.18)

.5.3. Storage technology constraints
Eqs. (A.19) and (A.20) describe the energy balances of each storage

echnology and, more specifically, the relationship between a tech-
ology’s state of charge and charging and discharging energy flows.
dditionally, the influence of performance degradation is included via

he term 𝑠𝑑𝑒𝑔𝑠,𝑤,𝑦. The need for two equations to describe the storage

nergy balances stems from the use of a set of typical days to represent
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Table A.5
MANGO model decision variables.
Parameter Unit Description

Energy system operation

𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤,𝑦,𝑑,𝑡 [kWh] Input energy to conversion technology 𝑐, installed at energy system location 𝑙, in investment stage 𝑤,

and operating in year 𝑦, day 𝑑, and time step 𝑡 (Defined for: {𝑦 ≥ 𝑤 and 𝑦 ≤ 𝑤 + 𝑐𝑙𝑐 − 1})
𝑃 𝑖𝑚𝑝
𝑒𝑐𝑖 ,𝑙,𝑦,𝑑,𝑡

[kWh] Import of energy carrier 𝑒𝑐𝑖, at energy system location 𝑙, in year 𝑦, day 𝑑, and time step 𝑡
𝑃 𝑒𝑥𝑝
𝑒𝑐𝑒 ,𝑙,𝑦,𝑑,𝑡

[kWh] Exported energy of energy carrier 𝑒𝑐𝑒, at energy system location 𝑙, in year 𝑦, day 𝑑, and time step 𝑡
𝑃 𝑒𝑥𝑐
𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑦,𝑑,𝑡

[kWh] Exchanged energy of energy carrier 𝑒𝑐𝑥, from location 𝑙 to location 𝑙′, in year 𝑦, day 𝑑, and time step
𝑡 (Defined for: {𝑙 ≠ 𝑙′})

𝑄𝑐ℎ
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 [kWh] Charging energy for storage technology 𝑠, installed at energy system location 𝑙, in investment stage 𝑤,

and operating in year 𝑦, day 𝑑, and time step 𝑡
𝑄𝑑𝑖𝑠

𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 [kWh] Discharging energy for storage technology 𝑠, installed at energy system location 𝑙, in investment stage
𝑤, and operating in year 𝑦, day 𝑑, and time step 𝑡

𝑆𝑜𝐶𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 [kWh] State of charge of storage technology 𝑠, installed at energy system location 𝑙, in investment stage 𝑤,
and operating in year 𝑦, day 𝑑, and time step 𝑡

Energy system design

𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤 [kW, m2] New capacity of conversion technology 𝑐, installed at location 𝑙, in investment stage 𝑤

𝑁𝐶𝐴𝑃 𝑠𝑡𝑟𝑔
𝑠,𝑙,𝑤 [kWh] New capacity of storage technology 𝑠, installed at location 𝑙, in investment stage 𝑤

𝑌 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤 [–] Binary variable denoting the installation of new capacity of conversion technology 𝑐, at location 𝑙, in

investment stage 𝑤
𝑌 𝑠𝑡𝑟𝑔
𝑠,𝑙,𝑤 [–] Binary variable denoting the installation of new capacity of storage technology 𝑠, at location 𝑙, in

investment stage 𝑤
𝑑𝑚𝑙,𝑙′ [mm] Pipe diameter for thermal connections between energy system locations 𝑙, 𝑙′ (Defined for: {𝑙 ≠ 𝑙′})
𝐿𝐶𝑛𝑒𝑡

𝑙,𝑙′ [CHF/m] Interconnection cost to exchange energy carrier 𝑒𝑐𝑥 between locations 𝑙, 𝑙′ (Defined for: {𝑙 ≠ 𝑙′})
𝑌 𝑛𝑒𝑡
𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑤

[–] Binary variable denoting the initial connection to exchange energy carrier 𝑒𝑐𝑥, between energy system
locations 𝑙, 𝑙′, in investment stage 𝑤 (Defined for: {𝑙 ≠ 𝑙′})

Energy system cost and emission performance

𝑇 𝑐𝑜𝑠𝑡 [CHF] Total lifetime energy system cost
𝑇 𝐶𝑂2 [kgCO2] Total lifetime energy system CO2 emissions
𝐶𝐼𝑀𝑃
𝑙,𝑦 [CHF] Total cost due to energy carrier imports at location 𝑙, in year 𝑦

𝐶𝑀𝐴𝐼𝑁𝑇
𝑙,𝑦 [CHF] Total maintenance cost for all conversion and storage technologies installed at location 𝑙, in year 𝑦

𝐶𝐼𝑁𝑉 ,𝑇𝐸𝐶𝐻
𝑙,𝑤 [CHF] Total investment cost for conversion and storage technologies at location 𝑙, in investment stage 𝑤

𝐶𝐼𝑁𝑉 ,𝑁𝐸𝑇
𝑙,𝑤 [CHF] Total investment cost for network technologies at location 𝑙, in investment stage 𝑤

𝑅𝐸𝑋𝑃
𝑙,𝑦 [CHF] Total income due to energy carrier exports at location 𝑙, in year 𝑦

𝑅𝑆𝐿𝑉 𝐺
𝑙 [CHF] Salvage value of all conversion and storage technologies at location 𝑙 not reaching the end of their

lifetime at the end of the model horizon
r

each modeled year, which means that the continuity between the days
is no longer valid. As a result, the storage devices are assumed to only
be able to cover daily demand and production fluctuations. Therefore,
Eq. (A.19) applies to all time steps of a typical day except for the first
one. In this case, Eq. (A.20) applies, which

𝑆𝑜𝐶𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 =
(

(1 − 𝜂𝑠𝑒𝑙𝑓𝑠 )⋅𝑆𝑜𝐶𝑠,𝑙,𝑤,𝑦,𝑑,𝑡−1

)

+
(

𝑄𝑐ℎ
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 ⋅ 𝜂

𝑐ℎ
𝑠 ⋅ 𝑠𝑑𝑒𝑔𝑠,𝑤,𝑦

)

−
(

𝑄𝑑𝑖𝑠
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 ⋅

1
𝜂𝑑𝑖𝑠𝑠 ⋅ 𝑠𝑑𝑒𝑔𝑠,𝑤,𝑦

)

,

∀ 𝑠 ∈  , 𝑙 ∈ , 𝑤 ∈  ,

𝑦 ∈  , 𝑑 ∈ , 𝑡 ∈  |

{𝑦 ≥ 𝑤 AND 𝑦 ≤ 𝑤 + 𝑠𝑙𝑠 − 1 AND 𝑡 ≠ 1}

(A.19)

𝑆𝑜𝐶𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 =
(

(1 − 𝜂𝑠𝑒𝑙𝑓𝑠 )⋅𝑆𝑜𝐶𝑠,𝑙,𝑤,𝑦,𝑑,𝑡+| |−1

)

+
(

𝑄𝑐ℎ
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 ⋅ 𝜂

𝑐ℎ
𝑠 ⋅ 𝑠𝑑𝑒𝑔𝑠,𝑤,𝑦

)

−
(

𝑄𝑑𝑖𝑠
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 ⋅

1
𝜂𝑑𝑖𝑠𝑠 ⋅ 𝑠𝑑𝑒𝑔𝑠,𝑤,𝑦

)

,

∀ 𝑠 ∈  , 𝑙 ∈ , 𝑤 ∈  ,

𝑦 ∈  , 𝑑 ∈ , 𝑡 ∈  |

{𝑦 ≥ 𝑤 AND 𝑦 ≤ 𝑤 + 𝑠𝑙𝑠 − 1 AND 𝑡 = 1}

(A.20)
23
Eqs. (A.21) and (A.22) limit the maximum charge and discharge
ates as a function of the installed capacity of a storage technology.

𝑄𝑐ℎ
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 ≤𝑞

𝑐ℎ,𝑚𝑎𝑥
𝑠 ⋅𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟

𝑠,𝑙,𝑤 ,

∀ 𝑠 ∈  , 𝑙 ∈ , 𝑤 ∈  , 𝑦 ∈  , 𝑑 ∈ , 𝑡 ∈ 
(A.21)

𝑄𝑑𝑖𝑠
𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 ≤𝑞

𝑑𝑖𝑠,𝑚𝑎𝑥
𝑠 ⋅𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟

𝑠,𝑙,𝑤 ,

∀ 𝑠 ∈  , 𝑙 ∈ , 𝑤 ∈  , 𝑦 ∈  , 𝑑 ∈ , 𝑡 ∈ 
(A.22)

Eq. (A.23) states that the state of charge of a storage technology
cannot exceed its rated capacity.

𝑆𝑜𝐶𝑠,𝑙,𝑤,𝑦,𝑑,𝑡 ≤ 𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤 ,

∀ 𝑠 ∈  , 𝑙 ∈ , 𝑤 ∈  , 𝑦 ∈  , 𝑑 ∈ , 𝑡 ∈  |

{𝑦 ≥ 𝑤 AND 𝑦 ≤ 𝑤 + 𝑠𝑙𝑠 − 1}

(A.23)

Eq. (A.24) is a Big-M constraint that forces binary variable 𝑌 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤 to

be equal to 1, if the variable 𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤 gets a non-zero value.

𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤 ≤ 𝑏𝑖𝑔𝑀 ⋅ 𝑌 𝑠𝑡𝑜𝑟

𝑠,𝑙,𝑤 , ∀𝑠 ∈  , 𝑙 ∈ , 𝑤 ∈  (A.24)

A.5.4. Network technology and energy exchange constraints
Another collection of model constraints pertains to the interconnec-

tions between energy systems at different locations, their characteristics

and the exchanged energy.
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More specifically, Eq. (A.25) specifies that the initial connection can
only occur once during the project horizon, while Eq. (A.26) specifies
that this connection is bidirectional. Eq. (A.27) is a big-M constraint
that allows energy to be exchanged between two locations only if a
connection between them already exists.
∑

𝑤
𝑌 𝑛𝑒𝑡
𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑤

≤ 1 , ∀ 𝑒𝑐𝑥 ∈ 𝑥, 𝑙, 𝑙
′ ∈  | 𝑙 ≠ 𝑙′ (A.25)

𝑌 𝑛𝑒𝑡
𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑤

= 𝑌 𝑛𝑒𝑡
𝑒𝑐𝑥 ,𝑙′ ,𝑙,𝑤

, ∀ 𝑒𝑐𝑥 ∈ 𝑥, 𝑙, 𝑙
′ ∈ , 𝑤 ∈  | 𝑙 ≠ 𝑙′ (A.26)

𝑃 𝑒𝑥𝑐
𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑦,𝑑,𝑡

≤ 𝑏𝑖𝑔𝑀 ⋅
∑

𝑤
𝑤≤𝑦

𝑌 𝑛𝑒𝑡
𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑤

,

∀ 𝑒𝑐𝑥 ∈ 𝑥, 𝑙, 𝑙
′ ∈ , 𝑦 ∈  , 𝑑 ∈ , 𝑡 ∈  | 𝑙 ≠ 𝑙′

(A.27)

Eq. (A.28) is a constraint that is used for the calculation of the
necessary pipe diameter for the thermal interconnection between two
energy system locations.

𝑑𝑚𝑙,𝑙′ ≥ 𝛼⋅𝑃 𝑒𝑥𝑐
𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑦,𝑑,𝑡

+ 𝛽 ⋅
∑

𝑤
𝑌 𝑛𝑒𝑡
𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑤

,

∀ 𝑒𝑐𝑥 = Heat, 𝑙, 𝑙′ ∈ , 𝑦 ∈  , 𝑑 ∈ , 𝑡 ∈  | 𝑙 ≠ 𝑙′
(A.28)

Eq. (A.29) is a constraint that is used for the calculation of the
necessary pipe diameter for the thermal interconnection between two
energy system locations.

𝑑𝑚 = 𝑑𝑚 , ∀ 𝑙, 𝑙′ ∈  | 𝑙 ≠ 𝑙′ (A.29)
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𝑙,𝑙′ 𝑙′ ,𝑙
Eq. (A.30), finally, is used to calculate the piping cost per meter of
network connection as a function of the pipe diameter.

𝐿𝐶𝑛𝑒𝑡
𝑙,𝑙′ = 𝛾 ⋅ 𝑑𝑚𝑙,𝑙′ + 𝛿 ⋅

∑

𝑤
𝑌 𝑛𝑒𝑡
𝑒𝑐𝑥 ,𝑙,𝑙′ ,𝑤

, ∀ 𝑒𝑐𝑥 = Heat, 𝑙, 𝑙′ ∈  | 𝑙 ≠ 𝑙′

(A.30)

As can be seen from these network constraints, in addition to
Eq. (A.13), the networks in the MANGO are modeled in a simplified
way, considering only distance-dependent losses when energy is ex-
changed. Since MANGO is mostly concerned with planning decisions
and not detailed network performance considerations, this choice was
made for the sake of computational efficiency. Nevertheless, more
advanced approaches to represent thermal and electrical networks in
MILP models can be found in [58] and [59], respectively.

Appendix B. Model parameter values used for the case study

In this appendix, the values for the most relevant model parameters
are reported in Tables B.6 to B.10. The discount rate, 𝑟, used in the
analysis is taken as equal to 5%.

Further data not explicitly provided in the manuscript, for instance
regarding the values of the multi-year energy demand and renew-
able availability time series, will be made available to anyone upon
reasonable request.

Appendix C. Further case study results

See Figs. C.17–C.19.
Table B.6
Energy carrier import prices and export compensation, along with the CO2 emission factor for grid electricity during the 30-year planning
horizon. All price and compensation units are in CHF/kWh and the CO2 emission factor in kgCO2/kWh. Ref. [53] is used to obtain the current
(2021) values for the import prices and export compensation. Ref. [55] is used to obtain the current (2021) value for the grid emission factor.
Ref. [54] is used to create the projections for all values according to the NEP scenario.

Import prices Export compensation CO2 emission factors

Ref. [53,54] [53,54] [53,54] [53,54] [54,55]
Year Natural gas, 𝑖𝑔𝑎𝑠,𝑦 Biomass, 𝑖𝑏𝑖𝑜,𝑦 Grid electricity, 𝑖𝑒𝑙𝑒𝑐,𝑦 Grid electricity, 𝑒𝑒𝑙𝑒𝑐,𝑦 Grid electricity, 𝑐𝑒𝑙𝑒𝑐,𝑦
2021 0.073 0.072 0.159 0.053 0.024
2022 0.074 0.074 0.161 0.054 0.028
2023 0.075 0.076 0.163 0.054 0.031
2024 0.076 0.079 0.165 0.055 0.035
2025 0.077 0.081 0.166 0.055 0.038
2026 0.079 0.085 0.169 0.056 0.042
2027 0.081 0.089 0.171 0.057 0.046
2028 0.083 0.093 0.173 0.058 0.050
2029 0.084 0.096 0.175 0.058 0.053
2030 0.086 0.100 0.177 0.059 0.057
2031 0.087 0.103 0.179 0.060 0.071
2032 0.089 0.106 0.181 0.060 0.085
2033 0.090 0.108 0.183 0.061 0.099
2034 0.091 0.111 0.184 0.061 0.112
2035 0.093 0.114 0.186 0.062 0.126
2036 0.094 0.116 0.186 0.062 0.121
2037 0.094 0.118 0.187 0.062 0.115
2038 0.095 0.120 0.187 0.062 0.110
2039 0.096 0.122 0.187 0.062 0.104
2040 0.097 0.124 0.187 0.062 0.098
2041 0.098 0.125 0.188 0.063 0.094
2042 0.098 0.126 0.189 0.063 0.089
2043 0.099 0.128 0.190 0.063 0.084
2044 0.100 0.129 0.191 0.064 0.079
2045 0.100 0.130 0.193 0.064 0.074
2046 0.101 0.131 0.193 0.064 0.069
2047 0.101 0.133 0.193 0.064 0.064
2048 0.102 0.134 0.194 0.065 0.059
2049 0.103 0.135 0.194 0.065 0.054
2050 0.103 0.136 0.195 0.065 0.049
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Fig. C.17. CO2 emissions over the 30-year planning period for two interconnection–retrofit scenarios and for the cost- and CO2-optimal Pareto points.

Fig. C.18. Visualization of installed capacities of energy conversion technologies at each site and each Investment stage during the 30-year planning period for the ‘Interconnection
- 100% retrofit’ scenario and the CO2-optimal Pareto point.
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Table B.7
Dynamic cost (fixed and linear) and efficiency coefficients of GSHP, ASHP, PV, and Battery technologies during the 30-year planning horizon based on the learning curve coefficient
(𝜇) for each technology. 𝐶𝑦 = 𝐶𝑜 ⋅ 𝑒−𝜇𝑦. All fixed cost (𝑓𝑐) units are in CHF, while all linear cost (𝑙𝑐) units are in CHF/kW for the GSHP, ASHP and CHP, in CHF/m2 for PV, and
in CHF/kWh for the Battery. In the Table, references labeled with ∗ are used to obtain current (2021) cost values and efficiencies for the technologies, while references labeled

ith + are used to create projections for the future.
GSHP ASHP CHP PV Battery

𝜇 0.035 0.027 0.005 0.021 0.019

Ref. [60]∗, [61]+ [60]∗, [61]+ [62]∗,+, [63]∗,+ [60]∗, [61]+ [60]∗, [61]+ [62]∗,+, [63]∗,+ [64]∗,+ [64]∗,+ [22]+, [64]∗ [22]+, [64]∗ [22]∗, [65]+ [22]∗,+,
[66]+, [67]+

Year 𝑓𝑐𝑐𝑜𝑛𝑣𝐺𝑆𝐻𝑃 ,𝑤 𝑙𝑐𝑐𝑜𝑛𝑣𝐺𝑆𝐻𝑃 ,𝑤 𝜂𝑐𝑜𝑛𝑣𝐺𝑆𝐻𝑃 ,𝑤 𝑓𝑐𝑐𝑜𝑛𝑣𝐴𝑆𝐻𝑃 ,𝑤 𝑙𝑐𝑐𝑜𝑛𝑣𝐴𝑆𝐻𝑃 ,𝑤 𝜂𝑐𝑜𝑛𝑣𝐴𝑆𝐻𝑃 ,𝑤 𝑓𝑐𝑐𝑜𝑛𝑣𝐶𝐻𝑃 ,𝑤 𝑙𝑐𝑐𝑜𝑛𝑣𝐶𝐻𝑃 ,𝑤 𝑓𝑐𝑐𝑜𝑛𝑣𝑃𝑉 ,𝑤 𝑙𝑐𝑐𝑜𝑛𝑣𝑃𝑉 ,𝑤 𝜂𝑐𝑜𝑛𝑣𝑃𝑉 ,𝑤 𝑙𝑐𝑠𝑡𝑜𝑟𝐵𝐴𝑇 ,𝑤

2021 49,130 2450 4.00 49,635 610 3.00 63,280 790 17,610 115 17.0% 235
2022 47,440 2366 4.04 48,313 594 3.03 62,964 786 17,250 113 17.2% 231
2023 45,809 2284 4.08 47,026 578 3.06 62,650 782 16,897 110 17.3% 227
2024 44,233 2206 4.12 45,773 563 3.09 62,338 778 16,551 108 17.5% 222
2025 42,712 2130 4.17 44,554 548 3.12 62,027 774 16,212 106 17.7% 218
2026 41,243 2057 4.21 43,367 533 3.16 61,718 770 15,880 104 17.9% 214
2027 39,824 1986 4.25 42,212 519 3.19 61,410 767 15,555 102 18.0% 210
2028 38,454 1918 4.29 41,087 505 3.22 61,104 763 15,237 100 18.2% 206
2029 37,132 1852 4.33 39,993 491 3.25 60,799 759 14,925 97 18.4% 202
2030 35,855 1788 4.37 38,927 478 3.28 60,496 755 14,620 95 18.6% 198
2031 34,621 1726 4.41 37,890 466 3.31 60,194 751 14,321 94 18.7% 195
2032 33,431 1667 4.46 36,881 453 3.34 59,894 748 14,028 92 18.9% 191
2033 32,281 1610 4.50 35,899 441 3.37 59,595 744 13,741 90 19.1% 188
2034 31,170 1554 4.54 34,942 429 3.40 59,298 740 13,459 88 19.2% 184
2035 30,098 1501 4.58 34,011 418 3.43 59,002 737 13,184 86 19.4% 181
2036 29,063 1449 4.62 33,105 407 3.47 58,078 733 12,914 84 19.6% 177
2037 28,064 1399 4.66 32,224 396 3.50 58,415 729 12,650 83 19.8% 174
2038 27,098 1351 4.70 31,365 385 3.53 58,123 726 12,391 81 19.9% 171
2039 26,166 1305 4.74 30,530 375 3.56 57,834 722 12,137 79 20.1% 167
2040 25,266 1260 4.79 29,716 365 3.59 57,545 718 11,889 78 20.3% 164
2041 24,397 1217 4.83 28,925 355 3.62 57,258 715 11,646 76 20.4% 161
2042 23,558 1175 4.87 28,154 346 3.65 56,973 711 11,407 74 20.6% 158
2043 22,748 1134 4.91 27,404 337 3.68 56,588 708 11,174 73 20.8% 155
2044 21,965 1095 4.95 26,674 328 3.71 56,406 704 10,945 71 21.0% 152
2045 21,210 1058 4.99 25,964 319 3.74 56,124 701 10,721 70 21.1% 149
2046 20,480 1021 5.03 25,272 311 3.78 55,844 697 10,502 69 21.3% 147
2047 19,776 986 5.08 24,599 302 3.81 55,566 694 10,287 67 21.5% 144
2048 19,096 952 5.12 23,943 294 3.84 55,289 690 10,076 66 21.7% 141
2049 18,439 920 5.16 23,306 286 3.87 55,013 687 9870 64 21.8% 139

2050 17,805 888 5.20 22,685 279 3.90 54,739 683 9668 63 22.0% 136
Table B.8
Constant costs (fixed and linear), conversion efficiency, lifetime, degradation, and O&M cost coefficients of all conversion technologies. Where there are missing values (–),
parameters change over the 30-year planning horizon (see Table B.7).

Technical characteristic GSHP ASHP Natural gas boiler Biomass boiler CHP PV

Fixed conversion technology cost, 𝑓𝑐𝑐𝑜𝑛𝑣𝑐,𝑤 (CHF) – – 23,785 [60] 55,885 [60] – –
Linear conversion technology cost, 𝑙𝑐𝑐𝑜𝑛𝑣𝑐,𝑤 (CHF/kW) – – 175 [60] 320 [60] – –
Conversion factor, 𝜂𝑐𝑜𝑛𝑣𝑐,𝑒𝑐,𝑤 – – 90% [68] 85% [21] 55% (thermal)

[21] 35%
(electrical) [21]

–

Conversion technology lifetime, 𝑐𝑙𝑐 (years) 20 [21] 20 [22] 20 [21] 20 [21] 20 [21] 25 [69]
Yearly conversion degradation coefficient, 𝑐𝑦𝑑𝑒𝑔𝑐 2.0% [70] 2.0% [70] 1.0% [70] 1.0% [70] 2.0% [71] 0.5% [72]

𝑐𝑜𝑛𝑣
Maintenance cost factor, 𝑜𝑚𝑐 1.5% [18] 1.5% [18] 2.0% [73] 2.0% [73] 1.5% [18] 1.5% [6]
Table B.9
Constant techno-economic characteristics of thermal and the battery electrical storage technologies.
Technical characteristic Thermal Battery

Charge/discharge efficiency, 𝜂𝑐ℎ𝑠 ∕𝜂𝑑𝑖𝑠𝑠 90% [74] 90% [21]
Maximum charge/discharge rate, 𝑞𝑐ℎ,𝑚𝑎𝑥𝑠 ∕𝑞𝑑𝑖𝑠,𝑚𝑎𝑥𝑠 25% [74] 25% [22]
Self-discharge rate, 𝜂𝑠𝑒𝑙𝑓𝑠 0.50% [18] 0.06% [75]
Fixed storage technology cost, 𝑓𝑐𝑠𝑡𝑜𝑟𝑠,𝑤 (CHF) 1685 [21] –
Linear storage technology cost, 𝑙𝑐𝑠𝑡𝑜𝑟𝑠,𝑤 (CHF/kWh) 13 [21] –
Storage technology lifetime, 𝑠𝑙𝑠 (years) 30 [76] 15 [77]
Yearly storage degradation coefficient, 𝑠𝑦𝑑𝑒𝑔𝑠 0% 2.0% [78,79]

𝑠𝑡𝑜𝑟
Maintenance cost factor, 𝑜𝑚𝑠 2.0% [18] 2.0% [18]
Table B.10
Technical characteristics of network technologies.
Technical characteristic Value

Thermal network efficiency, 𝜂𝑛𝑒𝑡𝑠 ∕𝜂ℎ𝑒𝑎𝑡 98.2% [80]
Electrical network efficiency, 𝜂𝑛𝑒𝑡𝑠 ∕𝜂ℎ𝑒𝑎𝑡 99.8% [80]
Empirical parameter for pipe diameter calculation, 𝛼 0.073 [81]
Empirical parameter for pipe diameter calculation, 𝛽 32.2 [81]
Empirical parameter for pipe investment cost per meter calculation, 𝛾 6.49 [81]
Empirical parameter for pipe investment cost per meter calculation, 𝛿 168.4 [81]
26
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Fig. C.19. Evolution of local electricity generation and grid electricity imports at each site during the 30-year planning period for two interconnection–retrofit scenarios and for
the cost- and CO2-optimal Pareto points.
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