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Abstract: The goal of classical geodetic data analysis is
often to estimate distributional parameters like expected
values andvariances basedonmeasurements that are sub-
ject to uncertainty due to unpredictable environmental ef-
fects and instrument specific noise. Its traditional roots
and focus on analytical solutions at times require strong
prior assumptions regarding problem specification and
underlying probability distributions that preclude suc-
cessful application in practical cases for which the goal is
not regression in presence of Gaussian noise.

Machine learning methods are more flexible with re-
spect to assumed regularity of the input and the form of
the desired outputs and allow for nonparametric stochas-
tic models at the cost of substituting easily analyzable
closed form solutions by numerical schemes. This article
aims at examining commongrounds of geodetic data anal-
ysis and machine learning and showcases applications
of algorithms for supervised and unsupervised learning
to tasks concerned with optimal estimation, signal sep-
aration, danger assessment and design of measurement
strategies that occur frequently and naturally in geodesy.

Keywords: Geodesy, Adjustment theory, Machine learn-
ing, Hilbert spaces, Kernel methods

1 Introduction

One widely adopted definition of machine learning de-
scribes it as the study of algorithms whose performance
on a specific task increases with experience [22]. Here ex-
perience is usually quantified by the amount of data and
performance is measured by a function that includes intu-
ition onwhen a result of the algorithmcould be considered
desirable.

In this generality, the definition encompasses actions
as simple as taking the arithmeticmean x̄ = n−1∑nk=1 xk of a
dataset {xk}nk=1 as an estimator for the expected value μX =
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E[X] of the random variable X with independent samples
Xk and realizations xk . This is due to the fact that x̄ is a
solution to the optimization problem

x̄ = argmin
x̂∈ℝ

n
∑
k=1
(x̂ − xk)

2 (1)

and its performance as measured by the variance of the
residual random variable X̄ − X = n−1∑nk=1 Xk − X for any
new independent observation X

σ2X̄−X = E [(
1
n

n
∑
k=1

Xk − X)
2

] − E [ 1
n

n
∑
k=1

Xk − X]
2

=
1
n
E[X2] + E[X2] (2)

gets better (lower standard deviation) with increasing
sample size n. Although typically one expects from ma-
chine learningalgorithmsamore complex interactionwith
the data, the above example is instructive in the sense that
the task is to be expressed in the language of a probabilis-
tically motivated optimization problem upon which it is
solved employing numerical routines. The exact way in
which this optimization is carried out will be of no con-
cern in this article; instead priority is given to an intuitive
explanation of the correspondence between learning task
and equivalent optimization problem as the authors have
found lacking clarity in this area to be the main impedi-
ment to understanding machine learning algorithms act-
ing in high dimensional or even infinite dimensional set-
tings.

Presumably due to missing or unclear links failing to
explain the relation between classical adjustment theory
andmachine learning algorithms, the latter are rarely used
in geodesy. Not considering photogrammetry and remote
sensing, whose ties particularly to computer vision are un-
deniably strong and result in extensive usage of learning
algorithms, references are rather limited.

In the field of physical geodesy, numerical reasons
arising duringmanipulation of ill-conditionednormalma-
trices for example in gravity field estimation [20] have
lead to widespread use of regularization which — as we
will show in section 2 — is mathematically equivalent to
statistical inference with a prior on some function space.
Apart from this slightly hidden link, individual publica-
tions have addressed directly concrete applications rang-
ing from system identification employing neural-networks
[24] to the use of support vector machines for velocity
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field interpolation in the context of landslide monitoring
[30] and thereby hinted at some of the potential of ma-
chine learning methods for typical geodetic core-tasks.
[29] stake out the role artificial intelligence might have to
play in geodesy and list several algorithms; however, they
focus more on possible future developments whereas we
want to make explicit mathematical equivalences and dif-
ferences in perspective between the data analytical ap-
proaches taken in geodesy and machine learning.

One distinguishes machine learning tasks regarding
the given inputs and the desired outputs. When a set of in-
dependent variables xk and corresponding response vari-
ables yk is given in the form of a sequence {(xk , yk)}nk=1 and
the algorithm is supposed to closely emulate the mapping
f : xk Ü→ yk the task is said to be supervised [18, pp. 26–28].
When only a sequence {(xk)}nk=1 is given and structure is to
be found without further guidance the task is called un-
supervised. Many intermediate shades exist between the
two extremes; e. g. reinforcement learning in which an al-
gorithm—designed to find optimal strategies in a stochas-
tically changing environment — receives positive or nega-
tive feedback but no ground truth or optimal strategy is
known that could serve to construct reference values yk
[34]. This scheme of clusteringmachine learning tasks can
be contrasted with a more output oriented one, in which a
task is called regression if the output is numerical or clas-
sification if it is categorical to nameonly the twomost com-
mon formats [18, pp. 26–28].

The premises of geodetic data analysis as embodied
by what is known as adjustment theory are typically nar-
rower [5]: Measurements are sequences of real numbers
{yk}nk=1 and there exists a set of parameters {λk}mk=1 such
that its transform A({λk}mk=1) by some function A resem-
bles {yk}nk=n apart from a residual term that is assumed
to be entirely stochastic in nature [26, p. 137]. Several ex-
tensions exist most notably among them collocation; see
e. g. [23, 6]. The above problem is a supervised regression
problemone could equallywell tacklewith differentmeth-
ods. In the next section classical least squares solutions
for a very basic estimation task are rederived fromdifferent
starting points. Thiswill reveal differences in philosophies
between geodesy and machine learning regarding how to
pose a problem even though the calculations ultimately
yield the same equation. The equivalence of adjustment to
an algorithm that may be considered as belonging to ma-
chine learning (Gaussian process regression / Kriging) and
one that surely does so (optimization in reproducing ker-
nel Hilbert spaces / splines) is shown and augmentedwith
a Bayesian interpretation. Section 3 is devoted to toy ex-
amples fromgeodesy that defy being solved by adjustment
theory and require algorithms frommachine learning that

at first glancemight seemobscure in this settingbutwill be
demonstrated to work reasonably well and arise naturally
when the viewpoint developed in section 2 is taken.

In those toy problems a dataset containing total sta-
tion observations is subjected to a kernel based time series
analysis to separate signal from noise, classified by a sup-
port vector machine (SVM) as stable or instable and split
into maximally independent parts by kernel independent
component analysis (K-ICA).We hasten to note that the ex-
amples presented in this paper are of an illustrative nature
before closing with a discussion of the results and an out-
look on potentially interesting and worthwhile future ap-
plications.

2 Adjustment and machine learning
Weproceed by applying adjustment theory to a simple 1 di-
mensional regression / interpolation problem. By tackling
the same task with geostatistical and functional analytic
methods, the connections to statistical inference and de-
terministic function approximation are highlighted. This
allows to coach adjustment theory in a learning frame-
work. Both adjustment and machine learning procedures
makeuse of the samewords but theirmeanings oftendiffer
considerably. To alleviate the confusionwewill always de-
fine the quantities appearing in this chapter strictly math-
ematically and we try to keep with the usual notational
customs of the respective fields as far as no contradictions
arise. Furthermore, we hope that Table 1 provides a guide-
line to translate terminology between machine learning
and adjustment based approaches to estimation and urge
the reader to briefly skim over it before entering the next
section. However, it is by no means complete and the
reader will have to fill in some of the missing pieces him
or herself as he or she advances through the text.

The mode of presentation is geared towards parallel-
ing that of earlier survey articles establishing links be-
tween processing schemes in geodesy and various other
disciplines of science; we specifically recommend [16].

2.1 Regression / interpolation problem

Suppose n observations {yk}nk=1 are given together with the
locations {xk}nk=1 ⊂ X at which they were performed. The
goal is to estimate the values y(x) even for unobserved lo-
cations x ∈ X , see Fig. 1 for an illustration.

A typical set of assumptions and procedures to de-
rive a solution within an adjustment theoretic framework
would consist in the items listed below.
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Figure 1: A one dimensional illustration of the regression / interpo-
lation problem posed above. Without prior knowledge it is not clear
which estimator — represented here by the various broken lines — is
the most appropriate.

i) Assume there is an underlying deterministic function
of x depending linearly on a set ofm parameters λ, i. e.
(ytrue)i = ∑

m
j=1 λjgj(xi) = Aλ with the n × m Matrix A

having entries (A)ij = gj(xi).
ii) The deviations between ytrue and y are due tomeasure-

ment noise which is assumed to be multivariate Gaus-
sian with expected value zero and covariance matrix
Σv, preferably diagonal.

iii) Minimize the weighted sum of squares vTΣ−1v v of resid-
uals v(λ) = Aλ − y by choosing the optimal set λ∗ of
parameters λ.

We arrive at the following-GaussMarkovmodel [26, p. 137]:

Aλ − y = v E[v] = 0 E[vivj] = (Σv)ij
y ∈ ℝn y = [y1, . . . , yn]

T yk = k-th observation

λ ∈ ℝm λ = [λ1, . . . , λm]
T λk = k-th parameter

A ∈ ℝn ⊗ ℝm A = [a1, . . . , an]
T

with ai = [ai1, . . . , aim]
T and (Aλ)k = a

T
k λ.

Bar some technicalities regarding invertibility of ATA
the solution can be written as the estimator ŷtrue(x) =
∑mj=1 λ

∗
j gj(x) where the parameters are optimal in the

sense of being a minimizer for the discrepancy measure
‖Σ−1/2v (ŷtrue − y) ‖

2, i. e.

λ∗ = argmin
λ∈ℝm
‖Σ−1/2v (Aλ − y)‖

2
ℓ2

= argmin
λ∈ℝm
‖Ãλ − ỹ‖2ℓ2

= Ã+ỹ (3)

where Ã = Σ−1/2v A, ỹ = Σ−1/2v y and Ã+ is the pseudoinverse
of Ã [33, p. 218]. Therefore the well known formula for λ∗ is

λ∗ = (ATΣ−1v A)−1ATΣ−1v y. Then λ∗ is anm-dimensional vec-
tor, Aλ∗ is an n-dimensional vector representing estima-
tions of the noiseless ytrue at the observed locations and
ŷtrue(⋅) = ∑

m
j=1 λ
∗
j gj(⋅) is a function of x ∈ X . The family

{gj(⋅)}mj=1 of functions used to approximate y only enters the
problem formulation via the matrix Awhere each row of A
is a row vector aTk of the possibly nonlinear functions gj(⋅)
acting on x; (aTk )j = gj(xk). The estimators ŷtrue(⋅) for dif-
ferent choices of function classes {gj}mj=1 (linear, cubic) are
shown in Fig. 1.

The probabilistic interpretation is quite straightfor-
ward. Under the assumption that the stochastic model of v
being multivariate Gaussian with E[v] = 0 and E[v ⊗ v∗] =
Σv is correct, one may write [27, p. 68]

L(λ, v) = fv(v|λ)

= (2π)−n/2√det Σv exp [−
1
2
v(λ)TΣ−1v v(λ)]

log fv(v|λ) = c1 − c2 ([Σ
−1/2
v v(λ)]T [Σ−1/2v v(λ)])

= c1 − c2‖Σ
−1/2
v (Aλ − y)‖

2
ℓ2 (4)

where c1 and c2 are constants and fv(v|λ) is the conditional
probability density function of the random variable v rep-
resenting the residuals due tomeasurement error givenpa-
rameters λ and the distributional information about their
means and covariances. Since log(⋅) is amonotonous func-
tion, themaximizer of log fv is also themaximizer of fv and
the likelihood L(λ, v) implying that the least squares solu-
tion is a maximum likelihood estimator. Note at this point
that the likelihood L(λ, v) = fv(v|λ) is proportional to fλ(λ|v)
via Bayes rule [27, p. 60]

fλ(λ|v) = fv(v|λ)fλ(λ)[
[

∞

∫
−∞

fv(v|λ)fλ(λ)dλ]
]

−1

under an assumed uniform distribution for λ. Then the
maximum likelihood estimate is actually the Bayesian
maximum a posteriori estimate. Equation (4) conse-
quently establishes a link between maximum likelihood
estimation, norm minimization and, in special cases,
Bayesian inference.

2.2 Adjustment as a learning task

The adjustment approach to interpolation can be identi-
fied as a supervised regression problem. The set of tuples
{(xk , yk)}nk=1 are the training data, the goal is to approx-
imate the input-output relation between the {xk}nk=1 and
{yk}nk=1 where the decision variable is the target vector λ.
Essentially nothing changes, if the pretext of an artificial
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interpolation problem is dropped; the solution of a linear
adjustment problem in Gauss-Markov form can always be
written as [13, p. 93]

ŷ(⋅) =
m
∑
k=1

λ∗k gk(⋅) (5)

λ∗ = argmin
λ∈ℝm
‖A(x)λ − y‖2H (6)

where ⟨f , g⟩H = ⟨Σ−1f , g⟩ℓ2 is the inner product in some
Hilbert space. Here we wrote A(x) to explicitly document
that the design matrix contains nonlinear features in x —
a notion that is quite straightforward to interpret in the in-
terpolation case as

A(x) =
[[[

[

g1(x1) . . . gm(x1)
...

...
g1(xn) . . . gm(xn)

]]]

]

in this case contains e. g. polynomials in x. However in ar-
bitrary abstract adjustment problems, it might not always
be easy to identify what the independent variable {xk}nk=1
corresponds to, if just A(x) as a matrix of features is pro-
vided. When for example the levelling problem (7)

[[[[

[

1 0 0
1 −1 0
0 1 −1
−1 0 1

]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
A(x)

[[

[

H1
H2
H3

]]

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

λ

≈
[[[[

[

H∗1
Δh1
Δh2
Δh3

]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
y

(7)

H∗1 : Approximately known height
Hk : Heights to be determined
Δhk : Measured height difference (8)

is given, it is quite hard to interpret the rows of A(x) as
nonlinear features of some scalar x. However, we might
always resort to the mental trick of considering the rows
of A(x) as linear features of a vector valued independent
variable x ∈ ℝm. Concretely this means having as train-
ing data {(xk , yk)}nk=1 = {([1 0 0]

T ,H∗1 ), ([1 − 1 0]
T ,Δh1), . . .}

and approximating a function f : ℝ3 → ℝ that maps the
xk to the yk linearly, i. e. f (xk) = f ([x1k , x

2
k , x

3
k]
T ) = H1x1k +

H2x2k + H3x3k . But this equation just defines a hyperplane
in ℝ4 indicating that the adjustment problem has been
reduced to a simple regression in a higher dimensional
space.

We present for comparison a geostatistical and a func-
tional analytic approach, that both enjoy some popular-
ity in the machine learning community under the names
of Gaussian process regression and splines in reproducing
kernel Hilbert space. The equations will largely be identi-
cal but the spirit is noticeably different.

2.3 Adjustment, geostatistics and splines

In geostatistics, to solve the interpolation problem, one
would assume the observations yk to be realizations of a
stochastic process {Y(xk)}nk=1 with Y(x) ∈ L2(Ω) a square
integrable random variable for all x ∈ X and an estimator
Ŷ(x) for Y(x) in general is sought. Assemble this estima-
tor as a function of the given random variables {Y(xk)}nk=1
in such a way as to minimize the expected square loss
E[(Ŷ(x) − Y(x))

2
]which is the error variance of the estima-

tion.
It can be proven [25] that for a zero-mean Gaus-

sian process the best predictor Ŷ functionally dependent
on some set Yk = Y(xk), k = 1, . . . , n is the condi-
tional expectation, which is furthermore linear in its argu-
ments.

Ŷ(x) = E[Y(x)|Y1, . . . ,Yn] (9)

Ŷ(x) =
n
∑
k=1

αkYk (10)

Presupposing knowledge of the mean-zero joint Gaus-
sian distribution, denote by σ(Y(x1),Y(x2)) the covariance
E[Y(x1)Y(x2)] of the two random variables Y(x1),Y(x2) ∈
L2(Ω); x1, x2 ∈ X . To find theseα forwhich Ŷ(x) = ∑nk=1 αkYk
is the conditional expectation, minimize

E[(Ŷ(x) − Y(x))
2
] = σ(Ŷ − Y , Ŷ − Y) =: σ2α(v(x)).

Since the covariance σ(⋅, ⋅) is bilinear in its arguments, this
amounts to solving à/àαkσ2α(v(x)) = 0, k = 1, . . . , n with

σ2α(v(x)) = σ(
n
∑
i=1

αiYi − Y ,
n
∑
j=1

αjYj − Y) (11)

=
n
∑
i=1

n
∑
j=1

αiαjσ(Yi,Yj) − 2
n
∑
i=1

αiσ(Yi,Y) + σ(Y ,Y)

This immediately implies

à
àαk

σ2α(v(x)) = 2[
n
∑
i=1

αiσ(Yi,Y) − σ(Yi,Y)]
!= 0

and α consequently satisfies

[[[

[

σ(Y1,Y1) . . . σ(Y1,Yn)
...

. . .
...

σ(Yn,Y1) . . . σ(Yn,Yn)

]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Σ

[[[

[

α1
...
αn

]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟
α

=
[[[

[

σ(Y1,Y(x))
...

σ(Yn,Y(x))

]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Σx

(12)

The above formulae are known as the simple Kriging equa-
tions [10, p. 152]. Solving this system leads to the optimal
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choice of coefficients α for assembling the simple Krig-
ing predictor ŶSK = ∑

n
k=1 αkYk out of measurements Yk,

k = 1, . . . , n and finally

ŶSK(x) = α
T {Yk}

n
k=1 = Σ

T
x Σ
−1{Yk}

n
k=1. (13)

In the case where also the mean function is unknown,
needs to be estimated and has form h(x) = ∑ml=1 βlgl(x), the
universal Kriging system [10, p. 168] arises instead:

[
Σ A
AT 0
] [

α
μ
] = [

Σx
Ax
] (14)

where α, Σ, Σx are defined as in equation (12), μ is some
m-dimensional Lagrange multiplier, (A)ij = gj(xi) and
(Ax)j = gj(x) defines a column vector. For a fixed x ∈ X ,
the optimal estimator is the universal Kriging predictor
ŶUK = ∑

n
k=1 αkYk with the α chosen to satisfy the system

of linear equations specified above.
By solving system (14) via substitution, the coefficient

vector α = [α1, . . . , αn]T is found explicitly and the estima-
tor can be decomposed into three components.

α = Σ−1 [Σx − A(A
TΣ−1A)−1 (ATΣ−1Σx − Ax)]

ŶUK(x) = Σ
T
x Σ
−1{Yk}

n
k=1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ŷ1(x)

(15)

+ ATx (A
TΣ−1A)−1ATΣ−1{Yk}

n
k=1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ŷ2(x)

− ΣTx Σ
−1A(ATΣ−1A)−1ATΣ−1{Yk}

n
k=1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ŷ3(x)

Comparing the above terms to equations (13) and (3), we
find that

Ŷ1(x) = ŶSK(x) Ŷ2(x) = ŶAdjustment(x)

and Ŷ3(x) is a cross term accounting for the fact that the es-
timatedmean ŶAdjustment(x) needs to be subtracted for nor-
malization. An alternative way of writing (15) would there-
fore be

ŶUK(x) = ŶAdjustment(x) + V̂SK(x) (16)

where V(x) = Y(x) − ŶAdjustment(x), the residual af-
ter subtraction of the estimated mean function h(x) =
ATx (A

TΣ−1A)−1ATΣ−1{Yk}nk=1. We find the main difference to
adjustment to be the existence of an estimation term for a
stochastic component owing to the fact that what we want
to estimate is only somewhat correlated to the measure-
ments.

Summarizingly, from the geostatistical perspective,
the inclusion of randomness results in a more flexible
model for the predictions and residuals. This contrasts
with the randomnesses role as a cover term to sub-
sume unwanted and unmodelled effects in terms of de-
viations from the parametric model in classical adjust-
ment.

In the approach described above, we minimized

E[(Ŷ(x) − Y(x))2] = ‖Ŷ(x) − Y(x)‖2L2(Ω)

pointwise for each x ∈ X separately to derive a predic-
tor Ŷ(x) because we took as fundamental the notion of
a random variable and its variance. It is possible to ab-
stract from this situation by introducing spaces H(X ) of
functions f : X → ℝ with Gaussian measures on these
spaces [21] which allow writing the probability of having
a randomly drawn f ∈ H(X ) in the subset Q ⊂ H(X )
as

P(f ∈ Q) = ∫
Q

dν(f )

where the right hand side is an integral through func-
tion space against some measure ν. Under certain as-
sumptions [14, p. 9] H(X ) turns out to be completely
determined by its covariance operator — an infinite di-
mensional analogue of the covariance matrix satisfying
Cf : H(X ) ∋ g Ü→ Cf g = E[⟨f , g⟩Hf ] ∈ H(X ) which in turn
is completely specified once the second moment function
K(x1, x2) = E[f (x1)f (x2)] is known [3, p. 29].

The space H(X ) can be shown to be the reproducing
kernel Hilbert space HK with reproducing kernel K(⋅, ⋅) :
X × X → ℝ. In this function space the norm ‖f ‖HK

is in-
versely related to its probability of occurrence [14, p. 19].
This leads one to formulate the estimation problem glob-
ally for all x ∈ X simultaneously as

σf = argmin
f∈HK :Lf={yk}nk=1‖f ‖2HK

(17)

where σf (⋅) is then called an interpolating spline. The op-
erator L : HK → ℝ

n goes by the name of measurement
operator and relates the function f (⋅) to the observed val-
ues yk, k = 1, . . . , n. It is simple evaluation in this case,
i. e. (Lf )j = yj = Ljf . Minimization of ‖f ‖HK

is reasonable
as the whole problem (17) then translates to finding that
function f which is yk at the positions xk and is most likely
as described by some Gaussian measure on the Hilbert
spaceHK .
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If we decide to drop the interpolating conditions and
replace them with the constraint that Lf be “close” to
the observations {yk}nk=1 as measured for example in the
ℓ2-norm, the smoothing spline equation (18) ensues.

σf = argmin
f∈HK

‖Lf − {yk}
n
k=1‖

2
ℓ2 + ‖f ‖

2
HK

(18)

It balances fidelity to the data and likelihood of the chosen
function. The explicit solution is given by [4, p. 161]

σf (⋅) =
n
∑
j=1

λjLjK(⋅, ⋅) (19)

λ = (Σ + I)−1{yk}
n
k=1 (20)

where I is the n × n unit matrix and (Σ)ij = K(xi, xj). For a
specific σf (x) one gets

σf (x) =
n
∑
j=1

λjK(xj, x) = Σ
T
x Σ
−1{yk}

n
k=1

under interpolating conditions — this is just the simple
Kriging estimator if K(x1, x2) = E[Y(x1)Y(x2)]. Extensions
to account for unknown means are standard and ulti-
mately yield the same predictions ŶSpline(x) = σf (x) as uni-
versal Kriging [3, pp. 88–91].

Finally notice that at the {xk}nk=1 for which observa-
tions are available

ŶSpline(xk) = ŶUK(xk) = ŶAdjustment(xk) + V̂k = yk

where V̂ is the residual Aλ∗ − {yk}nk=1 from the adjustment
procedure. This allows the conclusion that splines and
Kriging as representers of machine learning approaches
on the one hand and adjustment as a representer of clas-
sical geodetic techniques on the other hand are basically
equivalent bar the philosophical difference of what is con-
sidered uninteresting noise to be discarded and what is
not.

Another difference is that in the adjustment formula-
tion, the decision variable is a parameter vector λ which
determines a function f whereas in the machine learning
formulation the function f is itself the decision variable to
be determined via optimization.

2.4 Connection to other norm-based
algorithms

Defining estimators as solutions to norm minimization
problems is a common method of formalization in both
geodesy and machine learning. In geodetic estimation

tasks the quantity to be optimized is often the likelihood
of residuals whose assumed Gaussian distribution yields
the classical least squares formulations. Estimation tasks
arising in machine learning seem to less often make a
strict distinction between deterministic signal and ran-
dom noise and at times avoid making use of distribu-
tional assumptions altogether. Instead, they communicate
an estimator’s desirability via an objective function that
is not in all cases stochastically motivated. This leads to a
wider variety of estimators whose properties are less well-
known but interesting nonetheless. As shown in the pre-
vious equations (14) and (18), norm minimization tasks of
the type

σf = argmin
f∈HK

‖Af − y‖2ℓ2 + ‖f ‖
2
HK

(21)

correspond to optimal estimation in presence of white
noise on the measurements Af of a stochastic process f
with covariance function K(⋅, ⋅). This correspondence ex-
tends uniquely to an adjustment problem Aλ − y = v with
white noise v on the measurements and a prior that fa-
vors small lengths of the coefficient vector λ. Even thougha
prior on coefficient vectors λwith (Aλ)k = (∑

m
j=1 λjgj(xk))k ≈

yk seems — at least from this perspective — puzzling at
first, it enters naturally if one assumes that the linear com-
bination ∑mj=1 λjgj(⋅) is itself chosen randomly with the λj’s
distributed as multivariate Gaussian.

This opens up interpretations of further machine
learningmethods that are similar in flavour to the abstract
spline problem (21). Consider for example

Ridge regression: σf = argmin
f∈ℝm
‖Af − y‖2ℓ2 + α‖Bf ‖

2
ℓ2

LASSO: σf = argmin
f∈ℝm
‖Af − y‖2ℓ2 + α‖f ‖ℓ1

Elastic net: σf = argmin
f∈ℝm
‖Af − y‖2ℓ2 + α1‖f ‖

2
ℓ2 + α2‖f ‖ℓ1

[15, pp. 61, 68, 118] where the α’s are some positive con-
stants that determine if faithfulness to the data or regular-
ity of the estimator are prioritized and B is some linear op-
erator. In the above, ‖ ⋅ ‖ℓp denotes the classical ℓp norms,
i. e.

‖f ‖ℓp = p√
m
∑
k=1
|fk |p.

Note that the ℓp norms are nonnegative functions of f ; con-
sequently minimizing them is equivalent to maximizing
a likelihood. This holds since for any nonnegative func-
tion q(f ) ≥ 0 ∀f ∈ ℝm satisfying additional constraints
exp(−q(f )) is normalizable with c−1 = ∫ℝm e

−q(f )df < ∞
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implying that c exp(−q(f )) is a valid probability density
function. Therefore to each norm type there corresponds
a unique probability density function: to the ℓ2 norm one
mayassociate themultivariateGaussianand to the ℓ1 norm
a multivariate version of the Laplacian distribution. See
Fig. 2 below for some sketches of the respective norms and
densities in the instructive 1 dimensional case.

Figure 2: The ‖ ⋅ ‖ℓ1 and ‖ ⋅ ‖ℓ2 norms and their corresponding proba-
bility densities associated with the Gaussian and Laplacian distribu-
tion. Note the Laplacian’s heavier tails.

The Gaussian pdfs derivative at its mean is zero; the
pdfs value converges to zero extraordinarily fast. The
Laplacian pdf in contrast has heavy tails but its derivative
at the mean is undefined. We extract the following from
our discussion and the images in Fig. 2:
I When minimizing the ℓ2-norm or equivalently max-

imizing the likelihood under a Gaussian pdf, small
residuals are considered almost irrelevant since the
gradient of ‖ ⋅ ‖2ℓ2 around 0 is zero. Large deviations
are punished disproportionately strong: During mini-
mization decreasing a big residual is considered more
favourable than decreasing several small ones by the
same amount.

II When minimizing the ℓ1-norm or equivalently max-
imizing the likelihood under a Laplacian pdf, small
residuals are punished less than big ones but still
severely as the gradient of ‖ ⋅ ‖ℓ1 around 0 is constant
andpositivedriving either f to sparsity (if ‖f ‖ℓ1 → min)
or leading to sparse residuals (if ‖Af − y‖ℓ1 → min).
Big residuals are penalized proportionally: decreasing
abig residual is as goodasdecreasing analready small
residual by the same amount.

Figure 3: The ℓ1-norm based estimation is much more robust than
the ℓ2-norm based estimation. The lower panels show the resid-
uals between coordinates in system 2 and the coordinates trans-
formed into system 2 from system 1 via transformations derived
from Eq. (22). The scale in the lower panels is identical.

Combining I and II explains why ℓ1-norm minimization
leads to sparse and robust estimators that can systemat-
ically outperform ℓ2-norm based least squares solutions.
Therefore ridge regression might be seen as adjustment
with a prior on the length ofBλ, LASSO has a sparsity prior
on the parameter vector λ and elastic net regularization
balances both. To obtain the usual interpretations, swap
f for λ in the above and assume the stochastic process f to
be determined by a multivariate Gaussian on Bf , sparse or
a combination of both.

We demonstrate performance difference of ℓ2 and
ℓ1-norm based estimation in the presence of outliers for
the typical geodetic task of inferring a Helmert transfor-
mation with fixed scale from coordinate measurements in
Fig. 3. We briefly sketch the algorithm used to find the op-
timal transformation A(λ∗) with

λ∗ = argmin
λ=[xA ,yA ,φA]∈ℝ3

‖A(λ)x − y‖ℓp p = 1, 2 (22)

that maps the coordinates x in system 1 onto the coordi-
nates y in system 2:
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Table 1: Correspondence of terminology in machine learning and adjustment.

Terminology or quantity Role in ML Role in adjustment

Target vector y in ‖Aq − y‖→ min. y is a vector of observations yk , k = 1, . . . , n. y is a vector of observations yk , k = 1, . . . , n.

Decision variable q in ‖Aq − y‖→ min. q = f is the vector of function values to be
estimated; no parametric form is assumed.

q = λ is a vector of parameters used to
construct a function f (⋅) = ∑mj=1 λjgj(⋅).

Operator A in ‖Aq − y‖→ min. A is an operator that maps f onto
measurements of f and emulates the way that
observations y are generated. Af then typically
is f evaluated at points xk , k = 1, . . . , n. A is
called the measurement operator.

A is a matrix whose rows are vectors of
(nonlinear) transformations of the points xk ,
k = 1, . . . , n. Aλ then typically is
f (⋅) = ∑mj=1 λjgj(⋅) evaluated at the points xk .
A is called the design matrix.

Term ‖Bq‖rr in ‖Aq− y‖
p
p + ‖Bq‖

r
r → min. With q = f , ‖Bf ‖rr is a regularization term that

includes a prior on the function f into the
estimation of f . The exact nature of the prior
depends on norm r and energy operator B.

Since q = λ is a vector of parameters, there
seems hardly any justification for penalizing
terms ‖Bλ‖rr . With B = αI, α > 0 and r = 2 they
may be introduced for numerical reasons
under the name of Tikhonov regularization.

Randomness and residuals The quantity f to be estimated is assumed to
come from a stochastic process. Unmodelled
effects can be pushed onto f during estimation
but f is very flexible. The residuals v = Af − y
are random too; f and v are distinguishable
only via their correlation structure.

The quantities λ to be estimated are assumed
to have fixed deterministic values.
Randomness is a property of the residuals
v = Aλ − y that act as a flexible catch all term
subsuming all effects unaccounted for by the
parametric model.

Features A feature is a potentially infinite dimensional
vector that contains (nonlinear)
transformations of the input variable x, i. e.
g(x) = {gj(x)}∞j=1 for some set of functions gj .

During the construction of the design matrix
A, the concept is used implicitly. Each of its
rows can be interpreted as a feature in some
input variable x.

Representations A representation of a dataset {yk}nk=1 is a choice
of basis functions {gj}∞j=1 such that each yk is
representable as a combination of gj ’s. A
representation can be determined
automatically by solving an optimization
problem.

The choice of a good representation is left to
the practitioner, whose responsibility it is to
either determine a set of function {gj}mj=1 such
that∑mj=1 λjgj(xk) approximates yk or derive
them from the geometrical of physical
configuration of the task.

Note thatmany special procedures exist, which is why our explanations are geared to a proper description of only a simple subset of tasks that
might be formulated as the minimization of discrepancy and irregularity measures. We consider these to be a good first order approximation
to many commonly encountered problems in both fields.

1. Get initial solution: λ0 ∈ ℝ3.
2. Set up problem: yk = A(λk)x, Δyk = yk − y.
3. Estimation step: Δλ∗ = argmin

Δλ∈ℝ3
‖DA[λk]Δλ − Δy

k‖ℓp .

4. Update step: λk+1 = λk + Δλ∗. Repeat steps 2–4 until
convergence.

In the above, D denotes the differential with respect to the
parameters. The initial solution can be guessed via an ini-
tial least squares step or by solving a subproblem which
is neither over- nor underdetermined. The minimization
problem in step 3. is either solved analytically (ℓ2-norm)
or via linear programming (ℓ1-norm) [7, p. 294].

We close this section by stating in the followingTable 1
an approximate correspondence between terminology and
somequantities roles inmachine learning and geodetic es-
timation.

3 Learning algorithms and toy
applications

After having related adjustment theory to learning,wepro-
ceed to explain three algorithms which do not have an ex-
act analogue within the bounds of the adjustment frame-
work. Since therefore necessarily the arguments and cal-
culations deviate from classical material, intuition is pro-
vided, as to why the methods work and how they are to be
applied in practice. To underline the latter, brief and sim-
ple — but from a least squares perspective nontrivial — toy
examples from geodesy are tackled in a fashion emphasiz-
ing approximate interrelations between concrete task and
methodological approach rather than rigour.

The preceding section made use of a function K : X ×
X → ℝ to represent an estimator ̂f for a function f in terms
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of basis functions Kx(⋅) := K(x, ⋅) evaluated at the sample
points {xk}nk=1. The stochastically optimal choice for this
so called kernel function turned out to be given by the
covariance function K(x1, x2) = E[Fx1Fx2 ] where ∀c ∈ X ,
Fx : Ω ∋ ω Ü→ Fωx ∈ ℝ was a square integrable random
variable indexed by the space variable x ∈ X .

This view immediately suggests to generalize the finite
dimensional covariance matrix ΣF of a random vector F
taking values in ℝn, n <∞ and satisfying

⟨ΣFg, h⟩ℝn = ⟨E[F ⊗ F
∗]g, h⟩ℝn

= E[⟨F, g⟩ℝn⟨F, h⟩ℝn ] ∀g, h ∈ ℝ
n, (23)

towards the typically infinite dimensional covariance op-
erator CF exhibiting an exactly analogue relationship [3,
p. 29]. This can be done by defining it as the selfadjoint
positive definite kernel operator CF : HK ∋ g Ü→ (CFg)(⋅) :=
∫X K(x, ⋅)g(x)dx ∈ HK .

As such K(⋅, ⋅) takes the role of a function determining
the entries in an infinite dimensional covariance matrix
that will intuitively be recognized by the practical geode-
sist as a natural extension of the already known frame-
works to function space valued estimation problems. For
the remainder of the paper we term this way of think-
ing about a kernel the covariance-interpretation. There is,
however, a second radically different perspective onto ker-
nels that is used concurrently in machine learning [32,
p. 39] and emphasizes the meaning of K(x, ⋅) = ϕx(⋅) ∈ HK
as a Hilbert space valued nonlinear feature of x ∈ X .

An instructive way to illustrate this consists in two
separate steps that are roughly sketched for the special
case of a Gaussian kernel K(x1, x2) = exp(−‖x1 − x2‖2) for
x1, x2 ∈ X ⊂ ℝ.
1. Rewrite −‖x1 − x2‖2 as −‖x1‖2 + 2⟨x1, x2⟩ − ‖x2‖2 and

substitute this term in the exponential expression for
K(x1, x2) to derive

K(x1, x2) = c(x2)e
2x1x2−x21 (24)

= c(x2)
∞

∑
n=0

Hn(x2)
n!

xn1 =
∞

∑
n=0

αn(x2)x
n
1

where Hn(⋅) is the n-th Hermite polynomial [31, p. 456]
and αn(x2) := c(x2)Hn(x2)/n! is a function solely de-
pending on x2.

2. Notice that K(x1, x2) is effectively a linear superposi-
tion of monomials xn1 , n ∈ ℕ0 where the coefficient
vector {αn}n∈ℕ0 depends on the exact value of x2. As
x2 is varied to x�2 the coefficient vector changes as well
resulting in K(x1, x�2) being a different linear combina-
tion of powers of x1. When x2 ∈ X is not fixed at all,
then K(x1, ⋅) = ϕx1 is a function from X to ℝ and we

have at the same time ϕx1 (⋅) as an element of a (repro-
ducing kernel) Hilbert space HK [32, p. 39] and as an
infinite set of X -parametrized powers of x1. As ϕx1 (⋅)
contains nonlinear information about x1 it is called a
(nonlinear) feature of x1.

It should now be clear that ϕx(⋅) ∈ HK is an infinite di-
mensional representation of x ∈ X that for specific choices
of K(⋅, ⋅) can even encode all the information possibly to
be known about x ∈ X [12]. We will call this the feature-
interpretation of a kernel in what follows.

The reader is advised to not mix up both interpreta-
tions as the implied objects of investigation are different.
The covariance-interpretation assumes the measured ob-
jects to be (nonlinear) functions f : X → ℝ with f ∈
HK subjectable to linear operations only. In contrast to
this, the feature-interpretation assumes the measured ob-
jects to be x ∈ X and embeds them nonlinearly in HK
for some reproducing kernel Hilbert space HK . Both per-
spectives rely on the algebraic and geometric properties
of the involved reproducing kernel Hilbert spaces (RKHS),
whose internal structure as determined by the kernelK(⋅, ⋅)
impacts the form of estimators and feature embeddings
alike.

We proceed to apply both high dimensional embed-
ding philosophies to supervised and unsupervised prob-
lems and start with the more familiar one of interpreting
kernels as generators of covariance matrices.

3.1 Application 1: signal separation for total
station data when the covariances are
known

Suppose a total station was set up as depicted in Fig. 4 to
monitor the movement of a prism. To not unnecessarily
complicate this example, it will be assumed to hold that
no tilt occurs and movement of the prism is constrained
to purely lie in the x-direction implying a one dimensional
formulation to be sufficient. The measurements are sup-
plied in the form of a time series of x-coordinates.

Given: A sequence of times tj ∈ T and corresponding
measurements mj ∈ ℝ of the x-coordinate in the format
{(tj,mj)}

n
j=1 where n is the number of measurements.

Goal: Split the signal into separate parts that are in a
stochastically reasonable way optimally identifiable with
noise, atmospheric influences and true x-coordinate.

Assumption: The measurements mj are realizations of
square integrable random variablesM ⋅tj : Ω ∋ ω Ü→ Mω

tj ∈ ℝ
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Figure 4: The setup for the signal separation problem in section 3.1.
The measurements of the prisms changing x-coordinates contain
atmospheric influences and noise.

for all tj ∈ T; i. e. {Mt : t ∈ T} is a stochastic process and
separable in the following way:

Mt = Nt + At + Xt (25)

where the stochastic processes Nt ,At ,Xt correspond to
noise, atmosphere and x-coordinate respectively and are
independent from each other. Their covariance functions
(=kernels KN ,KA,KX) are assumed to be either known ap-
proximately or inferrable from the different time scales of
Nt ,At ,Xt that find their expression in the decay character-
istics of the kernels.

Main idea: The measurements M ⋅⋅ : Ω ∋ ω Ü→ Mω
⋅ ∈ ℝ

T

are assumed to lie in some infinite dimensional Hilbert
space HM with kernel KM = KN + KA + KX which implies
that HM is the direct sum of the Hilbert spaces contain-
ing pure noise, atmospheric influences and x-coordinates
in the sense that HM = HN ⊕ HA ⊕ HX . For a more rigor-
ous account, see [21]. An optimal interpolating spline σm
is found such that σm(tj) perfectly coincides with the mea-
surements at times tj.

σm(⋅) = argmin
m∈HM :m(tj)=mj

‖m‖2HM
(26)

σm(⋅) =
n
∑
j=1

λjKM(tj, ⋅) with λ = (K
ij
M)
−1m (27)

whereby K ij
M is the matrix with entries KM(ti, tj) ∈ ℝn ⊗ ℝn

and m ∈ ℝn is the n-dimensional vector containing the
measurements. Notice that σm(⋅) is not a number but a
function of t ∈ T. Subsequently σm(⋅) ∈ HM will be or-
thogonally projected onto the subspaces HN ,HA and HX
to yield the optimal estimators σn = ΠNσm, σA = ΠAσm,
σx = ΠXσm.

Results: When reliable covariance information is avail-
able, the results are stochastically optimal under a Gaus-
sian process assumption [28, p. 27]. Also on a purely vi-
sual level the outcome of applying the estimation proce-
dure above to an exemplary dataset seems reasonable —

for an example see Fig. 5. The algorithm is quite robust to
misspecification of the kernels as long as the correlations
structures of the individualmixture components to be sep-
arated are appropriately encoded in the kernels.

The extension to vector valued and tensor valued
splines is straightforward and much effort has been put
forward to guarantee practical computability and stabil-
ity of the numerical schemes that nowadays incorporate
many ideas from finite element analysis and spectral the-
ory, see [4].

3.2 Application 2: signal separation for total
station data when the covariances are
unknown

In what follows, the requirements on prior knowledge are
relaxed and the covariance structure is no longer assumed
to be known. In only presupposing the measurements as
being made up of statistically independent parts, we pass
from a supervised to an unsupervised learning problem
that has no analytical solution anymore. Before describ-
ing and applying K-ICA in this setting, it is instructive to
explain the most common measures for characterizing in-
dependence of random variables.

Two random variables X,Y : Ω → ℝ are called in-
dependent if — bar some technicalities concerning mea-
surability and continuity — their joint probability density
function fXY (x, y) factors into the product of its marginals;
i. e. fXY (x, y) = fX(x)fY (y) [1, p. 91]. One writes X∐Y in this
case. It is well known that two jointly multivariate Gaus-
sian distributed random variables X and Y are uncorre-
lated if and only if they are independent [27, p. 71]. Gen-
erally, however, two random variables X,Y may have zero
correlation without necessarily being independent. In the
non-Gaussian case the covariance function

cov(X,Y) = ∫
ℝ2

(x − E[X])(y − E[Y])fXY (x, y)dxdy

is therefore a necessary but insufficient indicator of inde-
pendence and needs to be replaced by the entropy-based
mutual information I(X,Y).

The mutual information between two random vari-
ables is defined as [19]

I(X,Y) = ∫
ℝ2

fXY (x, y) log [
fXY (x, y)
fX(x)fY (y)

] dxdy (28)

where the expression is evaluated as an appropriate limit
in any pathological cases. It can be shown that I(X,Y) =
0⇔ X∐Y and otherwise I(X,Y) > 0.
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Figure 5: An example of signal separation. The left panels show the true underlying ground truth (synthetic data), that is superimposed
to generate the signal plotted in the center. This time series is the input for the RKHS based estimation framework outlined in section 3.1
whose output are the estimations visible on the right side. The scale is the same for the six outer plots.

Therefore from a theoretical perspective if one wanted
to split a timeseries {mj}

n
j=1 linearly into independent com-

ponents {aj}nj=1 and {xj}
n
j=1 one could try to minimize the

mutual information between the {aj}nj=1 and the {xj}nj=1
which are assumed to be realizations of random variables
A and X with significantly different probability distribu-
tions. Typically estimating the mutual information empir-
ically is hard, however, and it is more common to instead
maximize a contrast function ρ(A,X) that convincingly
measures how different the distribution of A is from that
of X. Such contrast functions ρ are typically derived from a
Taylor expansion of −I(⋅, ⋅) in terms of features of probabil-
ity distributions (e. g. third moment or higher order cumu-
lants) that partially emulate the property of −I(A,X) being
biggest for fA being very different from fX [2].

It is entirely possible to apply the aforementioned in-
finite dimensional embedding of probability distributions
into an RKHSHK in this setting. An efficiently computable
measure of dependence to be minimized is then given by
theHK -correlation

ρHK
(A,X) = sup

‖gj‖HK =1,j=1,2

E[g1(A)g2(X)]

√E[g1(A)2]E[g2(X)2]
(29)

for functions g1, g2 that are already centered in feature
space HK [2]. ρHK

is to be interpreted as the maximally
achievable correlationbetweennonlinear transformations
of the randomvariablesA andX where optimization is car-
ried out over the class of nonlinear transformations. Mak-
ing use of the reproducing property

⟨g,ϕP⟩HK
= EP[g(X)]

for ϕP = EP[K(X, ⋅)] expectation w.r.t to the probability
measure P the kernel trick allows computationally effi-

cient finite dimensional implementation of this infinite di-
mensional problem.

Suppose, a total station S was set up as depicted
in Fig. 6 to monitor the movement of two prisms P1,P2
mounted on a planar structure subject to a translational
rigid, but time dependent change of coordinates. To keep
the example simple, only the x-coordinates will be inves-
tigated to arrive again at a one dimensional formulation
that parallels the one presented in section 3.1 but with in-
creased difficulty due to the absence of any knowledge of
the correlation structure of the signals to be separated.

Figure 6: The x coordinate of the prisms P1, P2 are measured employ-
ing a total station positioned at S. The distances d1,d2 and angles
φ1,φ2 are not assumed to be known.

Given: A sequence of times tj ∈ T and corresponding se-
quences of measurements mk

j ∈ ℝ of the x-coordinates
of the prism Pk, k = 1, 2. The totality of measurements is
summarized in the sequence {(tj,m1

j ,m
2
j )}

n
j=1 where n is the

number of measurements.

Goal: Split the signal {(m1
j ,m

2
j )}

n
j=1 into two separate parts

that are in a stochastically reasonable way identifiable
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with atmospheric influences and the true x-coordinates of
P1,P2.

Assumption: The measurements mk
j are realizations of

square integrable random variables Mk
tj for all tj ∈ T, i. e.

{Mk
t : t ∈ T} are two stochastic processes whichwe assume

to be linear mixtures of deformations and atmospheric in-
fluences:

M1
t = q11Xt + q12At

M2
t = q21Xt + q22At

where the stochastic processes Xt and At correspond to
x-coordinates and atmospheric influences respectively. In
short vector notation andwith obvious identifications, one
may write

Mt = QYt (30)

instead. For this model to be reasonable, it is necessary
that the whole planar structuresmotion is sufficiently well
described by a translation to guarantee that the behaviour
of the two prisms x-coordinates is identical. Furthermore
the atmospheric conditions need to be constant over the
whole spatial domain to ensure that their influence on the
measurement series {mk

j }
n
j=1 is representable as terms q12At

and q22At linearly related to some underlying scalar At .

Further explanation: The atmospheric conditions are al-
lowed to vary in time. We may calculate the entries of Q
based on knowledge of the geometrical configurations and
usual formulas for distance reduction of electrooptic mea-
surements by noting that the atmospheric correction Δxk
satisfies

Δxk = Δdk cosφk

= α(Temperature,Pressure)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
At

dk cosφ2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
qk2

where α is ameteorological correction factor, see for exam-
ple [35, p. 310]. This would allow us to solve the problem
immediately by inverting Q and applying Q−1 =: W to the
sequences of measurements — however we do not want to
do this but demand that the algorithmfinds themost prob-
able decomposition based not on physically or geometri-
cally motivated knowledge but solely on the probabilis-
tic assumption that the x-coordinates and atmosphere are
stochastically independent of each other. NeitherXt norAt
are allowed to be Gaussian since approximate stochastical
independence will be achieved by maximizing some mea-
sure of non-Gaussianity [8].

Main idea: Since the measurements Mk
t : Ω ∋ ω Ü→

Mk
t (ω) ∈ ℝ are supposedly both linear mixtures of Xt and

At with Xt∐At, a 2 × 2 matrix W with WMt = Ŷt max-
imally independent in the sense of mutual information
would solve the problem apart from the usual ambiguities
encountered during ICA [17].

To approximately achieve this, minimize the
Hk-correlation

ρHk
(X̂t , Ât) = sup

f ,g∈Hk

E[f (X̂t)g(Ât)]

√E[f 2(X̂t)]E[g2(Ât)]

for somekernel k(s, t)determining theflexibility of permis-
sible transformations f , g ∈ Hk . As explained in Eq. (29),
this is a measure of mutual dependency. To minimize it,
employ the code provided by [2] consisting of iteratively
executing the following three steps starting from an initial
guess ofW :
I Whiten the data and construct the kernel matrices Kl,

l = 1, 2 with elements (K1)ij = k(X̂ti , X̂tj ) and (K2)ij =
k(Âti , Âtj ) for i, j = 1, . . . , n where X̂t and Ât are derived
from Ŷt = WMt . Then center the kernel matrices.

II Solve the regularized kernel canonical correlation
generalized eigenvalue problem

[
0 K1K2

K2K1 0
] [

λ
μ
]

= ρW [(K1 + αI)
2 0

0 (K2 + αI)2
] [

λ
μ
]

for ρW to determine the Hk correlation dependent on
the matrixW .

III Minimize −1/2 log λW where λW is the smallest of the
generalized eigenvaluesρW bygradient descent on the
manifold of orthogonal matrices.

Results:When the two underlying stochastic processes Xt
and At generate non-Gaussian data and are governed by
probability distributions which are reasonably well dis-
tinguishable via linear combinations of higher order sta-
tistical moments, the splitting achieved via kernel ICA is
convincing. For an exemplary application to a simulated
dataset, see Fig. 7.

The situation exhibited in Fig. 6 is not entirely realis-
tic and would need to be modified for any actual appli-
cation in practice — however the idea of splitting several
sequences of measurements into maximally independent
components is a promising one.

The framework is applicable whenevermeasurements
generate for each point in time a whole vector of values
and there are reasons to suspect that each entry in that vec-
tor is a linear mixture of quantities of actual interest. This
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Figure 7: Simulated atmospheric effects and deformations in forms
of time series (row 1) are mixed together with the matrix [1 0.5; 1 0.8]
(row 2). The unimixing was done with the K-ICA procedure outlined
in this section (row 3). After normalization, the estimated mixing
matrix is [1 − 0.4; 1 − 0.7]. The scale is arbitrary but identical for all
subplots.

may open up not only new purely statistical signal sepa-
ration procedures but also suggest different mensuration
strategies that are explicitly meant to measure only indi-
rectly the quantities of interest in the form of easily acces-
sible linear mixtures and infer them later on via optimiza-
tion in a separate post-processing phase. This promotes a
rather opportunistic viewpoint similar to the one taken in
compressive sensing that contrasts starkly with the clas-
sical geodetic perspective, in which the quantities of in-
terest are supposed to be the direct outcomes of measure-
ments.

3.3 Application 3: classification of total
station data

Suppose now that for a time series of noisily gathered co-
ordinate measurements a decision is sought as to judge if
it is indicative of harmful deformations or not. Assume fur-
ther that only exemplary time series are provided to which
a label is assigned that classifies them as belonging to a
harmless (−1) or dangerous (+1) situation. One commonly
used way to solve supervised classification tasks like this
is to use support vector machines, whose basic principle
we briefly outline in what follows.

Suppose the set of pairs {(xi, yi)}ni=1, xi ∈ ℝ
m, yi ∈

{−1,+1} are the training examples and let χ+ := {xi ∈ χ :

yi = +1}, χ− := {xi ∈ χ : yi = −1} where χ is the set of all
x-values in the training set. If it is possible to find a hyper-
plane P(ℝm) inℝm which separates χ+ from χ− then P(ℝm)
is called a separating hyperplane and χ+ and χ− are termed
linearly separable inℝm. An illustration for the casem = 2
is found in Fig. 8.

Figure 8: The left panel shows two sets χ+ and χ− which are linearly
separable in ℝ2 whereas the same cannot be said for the situation
on the right side. Elements of χ+ are marked as disks, elements of χ−
as circles.

The figure also exhibits an example, in which χ+ and
χ− are not linearly separable in ℝ2. However, after center-
ing and a nonlinear transformation of type ϕ : (x1, x2) Ü→
x21 + x

2
2 associating to each x its distance to the origin, χ+

and χ− are linearly separable in the feature space ℝ1 via a
separating hyperplane — simply thresholding in this low
dimensional case.

This suggests again a kernelization approach: Instead
of trying to find a separating hyperplane P(ℝm) in the in-
put space ℝm containing the xi, map xi into some infi-
nite dimensional Hilbert space Hk of features by setting
ϕ : ℝm ∋ x Ü→ ϕ(x) = k(x, ⋅) ∈ Hk for some reproducing
kernel k(⋅, ⋅) and search for a separating hyperplane in the
RKHSHk instead.

A hyperplane P(Hk) in Hk is completely specified by
a normal vector f ∈ Hk and a (positive or negatively
weighted) distance d to the origin.

P(Hk) := {g ∈ Hk : ⟨f , g⟩Hk
+ d = 0}

Depending on what side of P(Hk) a point h = ϕ(x) ∈ Hk
comes to lie, it is predicted to either belong to class χ+ or
χ− via

ŷ = sign (⟨f , h⟩Hk
+ d) = sign (⟨f , k(x, ⋅)⟩Hk

+ d)

which also directly gives the decision rule for classifying
previously unencountered inputs x ∈ ℝm [32, p. 190]. Find-
ing an approximately separating hyperplane P(Hk) in the
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RKHS Hk that balances the number of misclassifications
and the regularity of P(Hk)’s backprojection intoℝm is ap-
proximable by the optimization problem [15, p. 428]

( ̂f , d̂) = argmin
f∈Hk ,d∈ℝ

n
∑
j=1
[1 − yjŷ(xj)]+ + α‖f ‖

2
Hk

(31)

where [ ⋅ ]+ denotes the positive part and ŷ(x) =
sign (f (x) + d). Consequently Lj(f ) = [1 − yjŷj(xj)]+ is a pos-
itive functional of f for each j quantifying the classifica-
tion error. The norm ‖f ‖Hk

has the same interpretation as
in section 2.4. The positive parameter α balances fidelity to
the data and regularity [15, p. 424]. Notice that it is entirely
possible to swap Lj(f ) in equation (31) for a quadratic error
term and recover the smoothing spline equation (18).

Equivalently one may solve the quadratic program

maximize
λ∈ℝn

n
∑
j=1

λj −
1
2

n
∑
i=1

n
∑
j=1

λiλjyiyjK(xi, xj) (32)

subject to 0 ≤ λj ≤ C ,
n
∑
j=1

λjyj = 0

for some positive C dependent on the parameter α from
equation (31) [32, p. 205] [15, p. 420]. Efficient algorithms
are available to solve this problem for the parameters
{λj}nj=1 which then are used to assemble the class estima-
tor

ŷ(x) = sign(
n
∑
j=1

λjyjK(x, xj) + d) (33)

with d = 1/yi − f (xi) for any i = 1, . . . , n. This classifier is
termed support vector machine andwewill apply it imme-
diately to the problem outlined before.

Let the time series in Fig. 9 be the input x for our clas-
sification problem; the sets χ+ and χ− providing exemplary
time series associated to harmful and harmless situations
are sampled there as well by listing some representatives.

Given: A sequence {xj}nj=1 of deformation measurements
xj = {xij}

m
i=1 ∈ ℝ

m at times ti ∈ T in the format {(ti, xij)}
n
i=1

where the sequence xj ∈ ℝm is the interesting part and the
time information will regularly be discarded. There is fur-
thermore a training set of examples {(xj, yj)}nj=1where again
each xj is a time series and yj is the corresponding label.

Goal: Emulate the input-output behaviour mapping time
series onto danger assessments via the class prediction
function ŷ(x) defined in equation (33). It makes use of the
RKHSHk of functions onℝm with reproducing kernel k(⋅, ⋅)
that maps pairs of time series onto a real number quanti-
fying their similarity.

Figure 9: The uppermost panel exhibits the sequence of deforma-
tion measurements which are to be evaluated as either dangerous
or not. Some of the training data is presented in the lower two pan-
els. The scale is the same for all plots of training data.

Assumption: The set of time series χ+ associated to dan-
gerous behaviour is approximately linearly separable from
the set χ− after embedding it into the infinite dimensional
Hilbert spaceHk of features via the map

ϕ : ℝm ∋ c Ü→ ϕ(x) = k(x, ⋅) ∈ Hk .

Furthermore assume that the euclidean distance is a
meaningful measure of closeness between time series. Us-
age of the linear kernel k(x1, x2) = ⟨x1, x2⟩ℝm derived from
the inner product in ℝn is then justified.

Main idea: Solve the optimization problems specified in
equations (31) or (32) to find a parameter vector λ and a
constant d such that the classifier ŷ assembled from λ and
d according to equation (33) has both acceptable regularity
and misclassification rate on the training set. Afterwards,
apply ŷ : ℝm → {−1,+1} to unseen time series to classify
them.

Results: Support vectormachines usually perform reason-
ably well although more sophisticated methods exist for
function approximation problems [9]. Table 2 summarizes
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the SVM’s behaviour in terms of errors of the first and sec-
ond kind. For the estimation of empirical error probabil-
ities the cycle of simulating ground truth, fitting an svm
andclassifying 100 randomly chosen time serieswas rerun
100 times while the amount of training examples was sub-
jected to systematic change. Classification was done using
the Matlab built-in “fitclinear”.

Table 2: Performance of SVM’s for the specific task outlined above.

error samples
10 102 103 104

type I in % 6.6 1.8 0.6 0.2
type II in % 6.7 2.0 0.6 0.2

Empirically estimated probabilities of type I error (incorrect rejection
of null hypothesisH0) and type II error (failure to reject incorrect null
hypothesis H0). H0 is the hypothesis that y(x) = −1.

We want to close this section with a few clarifying
remarks regarding simulation methodology and a link to
classical hypothesis testing.

This example is again purely synthetic. We randomly
sampled from a stochastic process that corresponds to
Brownian motion, each realization was considered to be
a time series xj ∈ ℝm of deformation measurements. If the
best fitting line through {(ti, xij)}

m
i=1 had positive slope, the

situation was classified as dangerous and harmless other-
wise. This generation rule for our synthetic ground truth
was not communicated to the SVM however, which only
received the labeled training examples andhad to infer the
rule by itself. Notice that even for the trivial finite dimen-
sional kernel k(xi, xj) = ⟨xi, xj⟩ℝm the limit performance
should be almost perfect separation since the underlying
true classification rule is

Ax ≥ 0⇒ y(x) = +1
Ax < 0⇒ y(x) = −1

where A : ℝm → ℝ is a linear operator consisting of a
concatenation of line fitting and calculation of the deriva-
tive of that line — both operations being linear in the data.
ThereforeAχ+ is linearly separable fromAχ− inℝ1, and the
underlying decision rule can be written as

⟨ ̃f ,Ax+⟩ℝ ≥ 0
⟨ ̃f ,Ax−⟩ℝ < 0

∀x+ ∈ χ+ and x− ∈ χ− where ̃f is any nonzero number. This
implies for f = AT ̃f ∈ ℝm the equivalent decision rule

⟨f , x+⟩ℝm ≥ 0
⟨f , x−⟩ℝm < 0

∀x+ ∈ χ+ and x− ∈ χ− because ⟨ ̃f ,Ax⟩ℝ = ⟨AT ̃f , x⟩ℝm for
any A : ℝm → ℝ. For a simple example like this, embed-
dings into infinite dimensionalHk are unnecessary. When
the underlying classification rule (=failure mechanism in
our example) is complicated or unknown and danger as-
sessment is demanded based only on a sequence of mea-
surements somewhat correlated with the reasons for crit-
ical behaviour, they may however prove helpful. [32] pro-
vide some examplary applications that go into this direc-
tion and demonstrate the usefulness of including kernel-
based nonlinearities into estimation.

It is possible to establish that the inner-product-based
decision rule for linear SVM’s is the same as the Bayes rule

log(fY |X(y = +1|x)f
−1
Y |X(y = −1|x)) ≷ 0⇒ ŷ(x) = ±1

for some semiparametric probability density function fY
whose parameters haven been inferred viaMaximumLike-
lihood estimation [11]. This is obviously a form of likeli-
hood ratio test as employed for comparing two statistical
models in classical hypothesis testing.

4 Conclusion and outlook
In this paper, we investigated the interface between geode-
tic data analysis and machine learning algorithms. It
turned out that adjustment as used in the geodetic com-
munity can be interpreted as a learning algorithm via
proper relabeling of the terms occuring in the optimiza-
tion task arising during maximum likelihood estimation
under assumption of Gaussianity. This was exemplified in
a simple application, in which adjustment, geostatistics
and splines were employed for regression and interpola-
tion purposes. They were shown to essentially agree when
applicable. A table was provided that served as a guide-
line to translate between adjustment theoretic and ma-
chine learning motivated treatments of estimation prob-
lems.

Apart from the different role of stochasticity in both
fields, one of the main differences is the focus on high di-
mensional embeddings of data. It was outlined, how infi-
nite dimensional problems can be efficiently solved using
kernels and some intuition was gathered by tackling a se-
quence of instructive albeit simple geodetic toy problems
—not all ofwhichwere known to be easily solvable. The al-
gorithms are shown to be demonstrably easy to implement
with further examples freely available on GitHub.1

1 https://github.com/jemil-butt/ML_tutorials_geodesy

https://github.com/jemil-butt/ML_tutorials_geodesy
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We speculate that an influx of ideas and procedures
developed in themachine learning community into the set
of methods finding widespread usage in geodesy is bound
to be beneficial particularly in the following subfields:
Mensuration design: The existence of numerical algo-

rithms for approximate optimization in connection to
difficult nonlinear tasks with many decision variables
implies the possibility to adapt measurement strate-
gies dynamically as data comes in, as for example
might be the case in monitoring scenarios. Further-
more solutions to previously untackled problems in
estimation and inference might relax constraints usu-
ally imposed on instrument and campaign setups.

Data analysis: Regression and classification, supervised,
unsupervised and reinforcement learning are tools of
which only the first one is commonly exploited in
the geodetic community. Whereas the impact of better
classification methods as generalizations of rigorous
hypothesis testing is to a certain degree predictable,
unsupervised and reinforcement learning as frame-
works for optimal decision making and pattern recog-
nition in situations involving uncertainty provide ex-
citing opportunities to solve new and seemingly ill
posed estimation problems.

However, the at times less rigorously stochastic approach
of machine learning algorithms implies weaknesses in di-
agnosing distributional characteristics and derived error
bounds for the outputs. This is a limitation in need of recti-
fication beforewidespread use becomes feasible in a disci-
pline as dependent on reliability as geodesy. To a lesser de-
gree, it is also expected that increasingly instruments may
arise whosemeasurements only yield the target quantities
after a costly optimization — a trade off between post pro-
cessing and instrument complexity. As the performance of
estimation and inference grows, physically motivated for-
ward models for instrument errors or the behaviour of ob-
served objects in general might to a certain degree gradu-
ally be replaced by data driven stochastic approximations.
Visualization may be aided by classification and cluster-
ing algorithms which also regularly prove useful for data
exploration and knowledge discovery. We see less poten-
tial in the less processing dominated domains of geodesy
— those dealing particularly with the development of the-
oretical models or infrastructural and legislative aspects.
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