
ETH Library

Schedulability of probabilistic
mixed-criticality systems

Journal Article

Author(s):
Draskovic, Stefan; Ahmed, Rehan; Huang, Pengcheng; Thiele, Lothar

Publication date:
2021-10

Permanent link:
https://doi.org/10.3929/ethz-b-000470954

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Real-time Systems 57, https://doi.org/10.1007/s11241-021-09365-4

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000470954
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11241-021-09365-4
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Vol.:(0123456789)

Real-Time Systems
https://doi.org/10.1007/s11241-021-09365-4

1 3

Schedulability of probabilistic mixed‑criticality systems

Stefan Draskovic1   · Rehan Ahmed2 · Pengcheng Huang3 · Lothar Thiele1

Accepted: 16 January 2021 
© The Author(s) 2021

Abstract
Mixed-criticality systems often need to fulfill safety standards that dictate differ-
ent requirements for each criticality level, for example given in the ‘probability of 
failure per hour’ format. A recent trend suggests designing this kind of systems by 
jointly scheduling tasks of different criticality levels on a shared platform. When this 
is done, the usual assumption is that tasks of lower criticality are degraded when a 
higher criticality task needs more resources, for example when it overruns a bound 
on its execution time. However, a way to quantify the impact this degradation has 
on the overall system is not well understood. Meanwhile, to improve schedulabil-
ity and to avoid over-provisioning of resources due to overly pessimistic worst-case 
execution time estimates of higher criticality tasks, a new paradigm emerged where 
task’s execution times are modeled with random variables. In this paper, we analyze 
a system with probabilistic execution times, and propose metrics that are inspired by 
safety standards. Among these metrics are the probability of deadline miss per hour, 
the expected time before degradation happens, and the duration of the degradation. 
We argue that these quantities provide a holistic view of the system’s operation and 
schedulability.
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1  Introduction

Mixed-criticality (MC) systems are real-time systems that feature tasks of differ-
ent criticality levels. Typical application domains include avionics and automotive 
(Burns and Davis 2017). In MC systems, each task has an associated criticality 
level. Depending on the criticality level, a failure of a task, for example due to dead-
line miss, can have a more or less severe impact on the overall safety of the system. 
Due to possible catastrophic consequences of a system failure, MC systems for some 
application domains are subject to certification standards. For example, DO-178C 
(Rtca/do-178c 2012) is a standard for avionics systems. It defines five criticality lev-
els, ‘A’ to ‘E’, with ‘A’ being the highest criticality level. Here, a failure of a task of 
criticality ‘A’ can have a negative impact on the overall safety of the aircraft, while a 
failure of a task of criticality ‘D’ may only slightly increase the aircraft crew’s work-
load. Quantitatively, an application’s criticality correlates to a tolerable failure rate 
under a given certification standard. The failure rates of all tasks, under their respec-
tive criticality levels, have to be guaranteed for certification of the overall system. 
As an example, Table 1 states the tolerable failure rates for DO-178B.1

Traditionally, industry favors physical segregation of tasks based on their critical-
ity level (Tămaş-Selicean and Pop 2015). This implies, for example, that tasks of 
each criticality level execute on their own hardware, and tasks of different critical-
ity levels do not interfere. However, such a physical separation based on criticality 
levels can lead to system under-utilization and complex distributed multi-processor 
architectures. Recently, there has been a push towards integrating tasks of different 
criticality levels on a single hardware platform (Burns and Davis 2017). The advan-
tages for such consolidation include reduction in cost, power dissipation, weight, as 
well as maintenance.

Unfortunately, this consolidation of criticality levels makes isolating tasks of 
different criticality levels problematic. Essentially, a low criticality level ‘D’ task 
may hinder the execution of a higher criticality level ‘B’ task, possibly resulting 
in a deadline miss—which can be considered as a type of failure. To counter this, 
researchers have proposed several schemes which are covered in detail in Sect. 2. 
Broadly speaking, the approaches are based on an execution time abstraction pro-
posed by Vestal (2007). Vestal’s model builds on the Worst-case Execution Time 

Table 1   Failure rate 
specification for different 
criticality levels

Level Failure condition Failure rate

A Catastrophic 10−9∕h
B Hazardous 10−7∕h
C Major 10−5∕h
D Minor 10−3∕h
E No effect n/a

1  DO-178B was replaced by DO-178C in 2012.



1 3

Real-Time Systems	

(WCET) abstraction. He assumes that tasks have a set of WCET estimates with 
different levels of confidence. The system is required to meet the deadline of a 
criticality level ‘A’ task for the highest confidence and most pessimistic WCET 
estimates. For lower criticality tasks, correct execution needs to be guaranteed for 
less pessimistic WCET estimates. Prominent proposed approaches that build on 
Vestal’s model feature mode-based scheduling schemes that ensure that the sys-
tem executes tasks of all criticality levels correctly when less pessimistic WCETs 
estimates are not overrun, while reduced service to tasks of lower criticality lev-
els is in place when this is not the case.

In this paper, instead of taking a single WCET estimate as in the traditional 
real-time model, or a criticality dependent set of WCET estimates as per Ves-
tal’s model, we assume a stochastic model of execution times. For each task, the 
execution time is modeled with an independent random variable. This additional 
information on the execution time allows us to have improved schedulability due 
to the so called multiplexer gain, i.e., the likelihood of high execution times of 
many tasks occurring simultaneously is very small. Under the proposed scheme 
there is a non-zero probability of a high criticality task missing its deadline. If the 
probability is less than the failure rate specification of the criticality level, see for 
example Table 1, then the MC system can still be schedulable according to the 
probabilistic bounds on deadline misses.

Individual tasks are assumed to be periodic with constrained deadlines. The 
platform is assumed to have a single core. We assume a dual-critical model, 
where the criticality of tasks can be either lo or hi. The system is also assumed 
to have two modes of operation: lo- and hi-criticality mode. In the lo-criticality 
mode, all tasks are executed normally. In the hi-criticality mode, newly released 
jobs of lo tasks are starting in a degraded mode so that preference is given to hi 
tasks.

The application of stochastic execution to MC systems is not new and several 
recent works exist (Maxim et al. 2017; Masrur 2016; Guo et al. 2015). However, 
existing results do not provide a holistic scheduling scheme and analysis covering 
all execution modes and transitions. A detailed accounting of existing schemes 
and their limitations is given in Sect. 2. In the following, we suppose that a MC 
scheduling scheme fulfills the following requirements:

–	 Schedulability analysis of tasks is provided for each criticality level in each 
system mode.

–	 Conditions that should trigger a mode switch are defined.
–	 Analysis of the time spent in each system mode is provided.
–	 A method to consolidate these individual components and compute a metric 

comparable to the Probability of Failure per Hour for tasks of each criticality 
level is given.

In this paper, we address all of these individual components. Specifically, we 
make the following contributions: 
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1.	 We propose conditions that trigger a mode switch, both from lo- to hi-criticality 
mode (lo → hi), and from hi- to lo-criticality mode (hi → lo).

2.	 We provide a detailed stochastic analysis of lo-criticality mode. Using the analy-
sis, the Probability of Deadline Miss per Hour in this mode is computed for tasks 
of both criticality levels.

3.	 We provide a first stochastic analysis of hi-criticality mode. Using the analysis, 
the maximal time spent in hi-criticality mode is obtained, along with the Prob-
ability of Deadline Miss per Hour for tasks of both criticality levels. Also taken 
into account is the probability the system enters hi-criticality mode.

4.	 Using contributions 1–3, we compute the overall Probability of Deadline Miss 
per Hour values for all tasks by consolidating the respective values for lo- and hi-
criticality mode. This allows us to compare these probabilities with the permitted 
ones found in typical certification standards.

5.	 We determine the probability that a lo task is started in its degraded mode.

Due to these contributions, we claim that this is the first work which provides a 
system-wide approach to MC scheduling, while considering a stochastic model of 
task execution times.

Organization: This paper is organized as follows: Sect. 2 highlights the related 
research in Mixed-criticality scheduling and in stochastic analysis. It also highlights 
the limitations of existing research which are addressed by this work. Section  3 
states our system model. The model includes the task model and the model of the 
MC system. This is followed by Sect. 4, which states and explains important defini-
tions and operations for stochastic analysis of systems with non-deterministic execu-
tion times. Section 5 covers the proposed analysis for getting Probability of Dead-
line Miss per Hour values, both for all lo and for all hi tasks. This section also has 
important intermediate results such as the duration of lo- and hi-criticality mode, 
and the probability of each event that causes a system mode switch. Results are cov-
ered in Sect. 6. In this section, we evaluate various schedulability metrics and design 
trade-offs for MC systems. Conclusion is given in Sect. 7, followed by references.

2 � Related work

Vestal’s paper (2007) is the first paper that presents the MC model, where safety-
critical tasks have multiple WCET estimates with different levels of assurance. 
Based on the model, a preemptive fixed priority scheduling scheme for sporadic 
task sets is presented: Static Mixed Criticality (SMC). In the widely examined dual-
criticality case, hard guarantees are given to hi tasks, but lo jobs might miss their 
deadline if a hi job overruns its optimistic WCET. As well as this, a lo job is de-
scheduled if it overruns its WCET.

Baruah et  al. (2011) introduced an important fixed priority scheduling scheme, 
Adaptive Mixed Criticality (AMC), which defines a system that can operate in dif-
ferent modes. The system starts in lo-criticality mode where all tasks are sched-
uled to execute according to their optimistic WCET estimates. If any job overruns 
its optimistic WCET, a switch to hi-criticality mode happens, where all lo tasks are 
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de-scheduled. This way, hi tasks are guaranteed to meet their deadlines all the time, 
whereas lo tasks have this guarantee only in lo-criticality mode.

EDF scheduling has been adapted to Vestal’s model as well. Baruah et al. (2011) 
propose a scheduling scheme for sporadic task sets based on EDF, called EDF-VD. 
In this scheme, the deadlines of all hi tasks are scaled down by a single scaling factor 
so that an overrun is detected early. Once an overrun is detected, the system enters 
hi-criticality mode where all lo tasks are de-scheduled. In this scheme, all tasks meet 
their deadlines if no optimistic WCET is overrun, while only hi tasks meet their 
deadlines if some of them are overrun. Ekberg and Yi (2012) use demand-bound 
functions to scale the deadlines of hi tasks individually, by a heuristic search strat-
egy. Deadlines are chosen so that the schedulability of the system is maximized. The 
lo- and hi-criticality mode model in this scheme is similar to the one used in Baruah 
et al. (2011). Huang et al. (2014) amend EDF-VD to include degraded service for 
low criticality tasks while the system is in hi-criticality mode. The paper also pre-
sents an upper bound on the duration of this mode. Park and Kim (2011) present 
another EDF-based scheme, CBEDF. Here, high criticality tasks are always guar-
anteed to execute, while some guarantees are given to tasks of low criticality using 
offline empty slack location discovery. Vestal’s model with two modes of operation 
was also investigated for time-triggered scheduling, most notably in Baruah and 
Fohler (2011). For a comprehensive overview of research into Mixed Criticality, we 
refer the reader to the review by Burns and Davis (2017), while for a discussion on 
the applicability of Mixed Criticality systems to industry and its safety-critical prac-
tices see Ernst and Di Natale (2016).

As for probabilistic MC systems, related work often models them with probabilis-
tic Worst-Case Execution Time (pWCET) distributions, which are seen as extending 
Vestal’s model such that each task has a large number of WCETs with various levels 
of confidence (Burns and Davis 2017; Davis and Cucu-Grosjean 2019). A pWCET 
distribution comes from either the randomness inherent in a system and its environ-
ment, or the lack of knowledge we have about a system, or possibly both (Davis 
et al. 2017). To derive these distributions, well established methods like static prob-
abilistic timing analysis (Devgan and Kashyap 2003), or measurement based proba-
bilistic timing analysis techniques (Cucu-Grosjean et  al. 2012) already exist. Ide-
ally, modeling tasks with pWCET distributions removes dependency between them, 
meaning any task-set can be analyzed as though all tasks had independent execution 
times. In practice, by using pWCET distributions, these dependencies are reduced 
but not removed completely. This still poses a major problem in applying pWCET 
methodologies for real-time computing. For an extensive survey of timing analysis 
techniques, we refer the reader to Davis and Cucu-Grosjean (2019). In this paper we 
assume that tasks’ execution times are modeled with random variables which are 
given, and these random variables can be seen as an abstraction of ideal pWCETs.

For the analysis of probabilistic MC systems, obtaining probabilistic response 
times is key. The survey on probabilistic schedulability analyses by Davis and Cucu-
Grosjean (2019) lists various approaches to response time analysis. Our paper builds 
mainly upon the work of Díaz et  al. (2002, 2004), as their analysis of real-time 
systems is pessimistic. Using probabilistic analysis, existing work often presents 
scheduling schemes where individual tasks have certain permissible deadline miss 
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probabilities. Examples are Maxim et al. (2017) and Abdeddaïm and Maxim (2017), 
were SMC and AMC scheduling are adapted to a probabilistic MC model, demon-
strating the improvement in schedulability. Masrur (2016) proposes a scheme with 
no mode switches, where lo tasks have a soft guarantee on meeting their deadline 
as well. Alahmad and Gopalakrishnan (2016, 2018) use a Markov decision process 
to provide probabilistic guarantees to jobs, and also formulate an optimization prob-
lem that provides the scheduling policy. Santinelli and George (2015), Santinelli and 
Guo (2018), and Santinelli et al. (2016) examine probabilistic MC systems by doing 
a sensitivity analysis, which focuses on the impact made by varying execution times. 
However, we observe that a holistic characterization of probabilistic mixed-critical-
ity systems remains largely unexplored in the state-of-the-art. Deadline miss prob-
abilities of individual jobs are often not aggregated into system-wide metrics, for 
example in Masrur (2016) and Maxim et al. (2017). We note that giving soft guar-
antees to individual tasks is not equivalent to guaranteeing a probability of deadline 
miss per hour. Another related work, Guo et al. (2015), analyzes a simple probabilis-
tic model, where a hi task has just two WCETs and their corresponding probabilities 
of occurrence. Using the model, they propose a EDF-based scheduling algorithm 
which has an allowed probability of a timing fault happening system-wide. Finally, 
Küttler et al. (2017) consider a model where some guarantees are available to tasks 
of lower criticality. They propose lowering the priorities of lower criticality tasks in 
certain modes of operation. Still, without characterizing the duration of modes, we 
believe that the impact of degradation of lo tasks can not be properly quantified.

Finally, our own previous work (Draskovic et al. 2016) addresses the probability 
of deadline miss in lo-criticality mode of a dual mode system, while also comment-
ing on the time before a transition to hi-criticality mode happens. However, a sys-
tem-wide overview of the system is not given as hi-criticality mode is not analyzed. 
In this paper, we address the aforementioned limitations of the state-of-the-art.

3 � System model

We start this section with an informal overview of our system model, before pre-
cise definitions are presented. The model is an extension of Vestal’s original model 
(2007), and as is with Adaptive Mixed Criticality (Baruah et al. 2011), there are two 
modes of operation, lo- and hi-criticality mode.

lo-criticality mode can be considered a normal mode of operation, and the sys-
tem is expected to operate in this mode most of the time. hi-criticality mode can 
be considered an emergency mode, where newly instantiated lo jobs are started 
and running in degraded mode so preference is given to the execution of hi jobs. 
More specifically, hi criticality tasks are not affected by the mode of operation, 
these task are always released and executed until their completion. lo critical-
ity tasks have two variants: each lo job can be released in degraded or regular 
mode. They always finish in the mode they started with. Though lo tasks are 
never dropped, they are released with degradation when the system is in hi-crit-
icality mode. In practice, this means that there are two implementations of each 
task, and the degraded variant offers a reduced functionality. For example, the 
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numerical result is computed with less precision. Vestal’s original model speci-
fies dropping lo jobs when hi jobs need more resources, and our model can be 
seen as a generalization where not executing a job is the extreme case.

The system starts in lo-criticality mode, and remains there until a mode 
switching event occurs. The first mode switching event is the only one discussed 
for non-probabilistic MC systems, and is thus found in previous work, for exam-
ple (Baruah et  al. 2011; Ekberg and Yi 2012; Huang et  al. 2014; Maxim et  al. 
2017): a hi job’s execution lasts longer than a provided threshold. The second 
mode switching event is when a hi job misses its deadline. It is introduced to 
reduce the probability of consecutive deadline misses of hi jobs. Note that a hi 
job might miss its deadline without overrunning its threshold execution time, for 
example because it was blocked by jobs of higher priority. Finally, the third mode 
switch event is when a long backlog of lo jobs accumulates, which could in turn 
produce an arbitrarily high backlog when entering hi mode. Once in hi-criticality 
mode, the system switches back to lo-mode the first time it is idle.

Using this model, we say a task-set to be schedulable using fixed priority 
preemptive scheduling, if the probability that any job misses its deadline during 
an hour of operation is sufficiently small, and if the ratio of lo jobs released in 
degraded mode is acceptable.

General notation on random variables This work deals with discrete random var-
iables, and they are denoted using calligraphic symbols, for example A . The proba-
bility function of A , noted pA(⋅) , tells us the probability that A takes a specific value 
u: pA(u) = ℙ(A = u) . Without loss of generality, we assume that the possible values 
of all random variables span the full range of natural numbers. If the maximal and 
minimal values with non-zero probability of A exist, and are noted umax and umin , 
then the probability function can be represented in vector notation:

Let us define a relation to compare two random variables A and B , as was done by 
Díaz et al. (2002).

Definition 1  (First-Order Stochastic Dominance) A is greater or equal than B , writ-
ten as A ⪰ B , if and only if

Note that probability densities can be incomparable.
We introduce a shorthand notation for the probability that a variable modeled 

with random variable A has a value greater than scalar s. Instead of the cumber-
some expression 

∑
s<i ℙ(i = A) , we use ℙ(s < A).

Finally, we introduce a simple notation [s]1 to indicate that a scalar or expres-
sion s is limited to a maximum value of 1, [s]1 = min (s, 1).

Task model A task-set Π consists of N independent tasks. Each task is periodic, 
constrained deadline, with an initial phase and a criticality level. A single task �i 

(1)pA = [pA(umin ),… , pA(umax )]
⊺.

(2)∀l ≥ 0 ∶

∞∑
u=l

pA(u) ≥

∞∑
u=l

pB(u).
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is characterized by tuple (Ti,Di,�i,�i, Ci) , where Ti is the period, Di is the relative 
deadline, �i is the phase, �i ∈ {LO, HI} is the task’s criticality level, and Ci models 
the probabilistic execution time. Ci has a maximal value with non-zero probability, 
which is the WCET, noted Cmax

i
 . Tasks with criticality level lo and hi are referred 

to as ‘lo tasks’ and ‘hi tasks’, respectively. An instance j of task �i is called a job, 
and denoted as �i,j . Each job �i,j has its release time ri,j = �i + (j − 1) ⋅ Ti , and its 
absolute deadline di,j = ri,j + Di . The hyperperiod hp of a set of tasks is defined to 
be the least common multiple of all task periods.

We model the execution times of each task �i with known independent and iden-
tically distributed random variables Ci . This means that there is no dependency 
between the execution times of any two jobs, regardless of whether they are of the 
same task or not, and execution times of all jobs of one task are modeled with the 
same random variable. However, the provided analysis is safe, i.e., if the computed 
bounds hold for a given set of probabilistic execution times, they also hold if the 
execution times are smaller or equal according to Definition 1. Therefore, the proba-
bilistic execution times Ci can also be regarded as ideal probabilistic worst case exe-
cution times (pWCETs), which would remove the requirement that execution times 
of jobs are independent.

In the standard MC model (Vestal 2007), hi tasks have an optimistic and a pes-
simistic WCET estimate, and lo tasks are executed by the processor only if hi tasks 
meet their optimistic WCET estimates during operation. The reasoning behind this 
is the assumption that most of the time hi tasks will not execute for longer than their 
optimistic WCET estimate, so less computational resources are needed for the cor-
rect operation of the system. In this paper, we assume that the distribution of the 
execution time of each task Ci is known. Therefore, instead of the optimistic WCET 
estimate, for each hi task we define a threshold execution time value Cthr

i
 . We assume 

this value is a given design choice. Note that the probability that a hi task executes 
for longer than this threshold is ℙ(Ci > Cthr

i
) . The precise way this threshold is used 

in scheduling of jobs is described later in this section. Additionally, instead of not 
executing lo jobs in order to free up resources, we introduce that each lo job can be 
released in degraded or regular mode. If it executes with degradation, its WCET is 
C
deg

i
 . The Cdeg

i
 value is assumed to given as a design choice. It could be zero if the 

task is not to be run in hi-criticality mode, or it can be any value less than its WCET: 
in this case it is assumed that a lower functionality is provided.

For the execution time of hi tasks, it is useful to introduce the following random 
variable that describes a worst-case behavior as long as the analyzed system is still 
in LO-critical mode.

Definition 2  (Trimmed Execution Time) Random variable CLO

i
 models the execution 

time of hi tasks �i , but modified such that they do not execute for longer than Cthr
i

:

(3)pCLO

i
(u) =

⎧⎪⎨⎪⎩

pCi(u) u < Cthr
i
,∑Cmax

i

v=Cthr
i

pCi(v) u = Cthr
i
,

0 u > Cthr
i
.
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Figure 1a illustrates the Ci of a lo task, as well as the WCET denoted as Cdeg

i
 in 

degraded mode. Figure 1b illustrates the Ci of a hi task as well as the trimmed execu-
tion time CLO

i
 with the corresponding Cthr

i
 and Cmax

i
 values.

This definition differs from the one found in many related works, i.e. Draskovic 
et  al. (2016), where the execution time of hi tasks in LO-critical mode is defined 
as the conditional probability ℙ(pCi(u) = u|u ≤ Cthr

i
) , often called ‘truncated’ execu-

tion time. The ‘trimmed’ execution times, as defined in this paper, are by defini-
tion greater or equal to the equivalent ‘truncated’ execution times. This paper uses 
‘trimmed’ execution times because they simplify the analysis of hi-criticality mode, 
namely by simplifying initial conditions noted by Definition  12. The cost of this 
simplification is that it introduces pessimism in the lo-criticality mode analysis, 
however this has been found to be numerically negligible through simulations. Nev-
ertheless, using the ‘truncated’ execution times option with a more complex analy-
sis is also possible. For more information, see the comment on future work in the 
conclusion.

The response time of job �i,j is modeled with random variable Ri,j . The way this 
variable can be obtained and upper-bounded is presented in Sect. 4. The deadline 
miss probability of job �i,j is the probability that this job finishes after its deadline 
���i,j = ℙ(Ri,j > di,j).

Schedulability In this paper, we consider a single-core platform. A simple execu-
tion model is used, where task preemption overhead is zero.

As in the standard MC model, the system is defined to operate in two modes of 
operation, lo- and hi-criticality mode. When the system is operating in lo-criticality 
mode, both lo and hi jobs are released. When the system is operating in hi-criticality 
mode, hi jobs are released normally, while lo jobs are released in degraded mode.

In this paper the definition of schedulability is inspired by the probability-of-fail-
ure-per-hour notion. Therefore, we first define the probability of deadline miss per 
hour, before defining schedulability. We also define the probability of degraded job, 
a proportion of how many lo jobs execute in degraded mode in the long run.

0 Cdeg
i

Cmax
i

execution time

pr
ob

ab
ili
ty

Ci

0 Cthr
i

Cmax
i

execution time

pr
ob

ab
ili
ty

Ci
Clo
i

Fig. 1   Task execution times, with named values and trimmed execution time CLO

i
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Definition 3  (Failure Probabilities) The probability of deadline miss per time inter-
val T for hi or lo jobs is denoted as ���HI(T) or ���LO(T) , respectively. It is the 
probability that at least one hi or lo job misses its deadline during a time interval of 
length T.

Formally, we define ���HI(T) and ���LO(T) as:

where � = {LO, HI} , and S𝜒 (t) = {𝜏i,j | 𝜒i = 𝜒 ∧ t ≤ ri,j < t + T}.

Definition 4  (Probability of Degraded Job) The probability of degraded lo jobs 
���deg is the probability that any individual lo job is released in degraded mode:

where

Definition 5  (Schedulability) A MC system is (�HI, �LO, �deg)-schedulable if 
���HI(1h) ≤ �HI , ���LO(1h) ≤ �LO , and ���deg ≤ �deg , where 1h denotes the dura-
tion of 1 h.

The probabilistic MC scheduling scheme used in this paper can now be defined:

Definition 6  (Probabilistic MC Scheduling) In lo-criticality mode, all tasks are 
scheduled using a provided fixed-priority preemptive schedule. The system starts in 
lo-criticality mode, and remains in it until one of the following events causes a tran-
sition to hi-criticality mode: 

1.	 A hi job overruns its threshold execution time Cthr
i

.
2.	 A hi job misses its deadline.
3.	 The system-level backlog, meaning the amount of pending execution, becomes 

higher than a predefined threshold Bmax.

In hi-criticality mode, the same fixed-priority preemptive schedule is used, but lo jobs 
are released with degradation in order to free up the processor. lo jobs starting in lo-
criticality mode are still continuing in their normal mode with execution time Ci . The 
system remains in hi-criticality mode until it becomes idle for the first time.

(4)���� (T) = max
∀t

ℙ
(
∃�i,j ∈ S� (t) ∶ �i,j misses its deadline

)
,

(5)���deg = max
∀t

|SLO-DEG(t)|
|SLO(t)| ,

SLO(t) = {𝜏i,j | 𝜒i = LO ∧ t ≤ ri,j < t + T}

SLO-deg(t) = {𝜏i,j | 𝜒i = LO ∧ t ≤ ri,j < t + T ∧ 𝜏i,j is in degraded mode}
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4 � Preliminaries

With tasks having probabilistic execution times, a set of computational primitives are 
required to perform the schedulability analysis. A probabilistic analysis of real-time 
systems, on which our analysis is based, was described by Díaz et  al. (2002, 2004). 
We summarize the analysis technique in this section. The analysis and its primitives 
are used extensively in the following sections to perform the schedulability analysis of 
mixed-criticality systems.

The analysis requires computation of the backlog, i.e., the sum of pending execution 
times of all ready jobs. For each priority level i there is a backlog containing the execu-
tion times of all pending jobs with priority i or higher. When a new job with priority 
i arrives, all backlogs with level i or lower are increased by adding its execution time. 
Adding the execution time random variable to a backlog is done using convolution. 
Executing a job decreases the backlogs of all levels i that are equal or smaller than the 
priority of the job. Decreasing the backlog is done using shrinking.

Definition 7  (Backlog) The ith priority backlog at time t, Bi(t) , is a random variable 
that describes the sum of all remaining execution times of pending jobs of priority 
not less than i, at time t. The backlog Bi(t−) is the same as Bi(t) , except it does not 
take into account jobs released at time t.

Using convolution to compute backlog after arrival of a job Suppose that a job �i,j is 
released at time ri,j , and Bk(ri,j−) is the kth priority backlog at time ri,j , but excludes the 
newly released job. Assuming that i ≥ k , and that no other job is released at the same 
time, backlog Bk(ri,j) can be computed using the convolution operator ⊗:

Backlog reduction due to execution of highest priority job Let us assume that in 
the interval t0 < t < t1 there are no job arrivals. During this interval, the backlog is 
decreased as the processor executes pending jobs. If Bi(t0) is the ith priority backlog 
at time t0 , the corresponding backlog at time t can be computed using the so-called 
shrinking operation. Specifically, for computing backlog at time t0 < t < t1 , the fol-
lowing equation can be used:

In other words, the backlog after an execution of t − t0 time units is computed by 
left-shifting the initial backlog by t − t0 , while truncating at zero since the processor 
is idle when no pending execution is present. For brevity, we define the correspond-
ing shrinking function of a random variable B:

(6)pBk(ri,j)
= pBk(ri,j−)

⊗ pCi .

(7)pBi(t)
(u) =

{∑t−t0

j=0
pBi(t0)

(j) u = 0,

pBi(t0)
(u + t − t0) u > 0.

(8)shrink(B,m)(u) =

{∑m

j=0
pB(j) u = 0,

pB(u + m) u > 0.
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Backlog State Space Exploration First, we define the function ���� for computing 
the backlog at some time t + u given the backlog at time t.

Definition 8  (Backlog Computation) ����
(
Bi(t), Π, i, t, u

)
 is a function for com-

puting the ith priority backlog at time t + u , i.e., Bi(t + u) . We assume that the ith 
priority backlog at time t is Bi(t) , and that the task arrivals and execution times in 
the interval [t, t + u) are in accordance with task set Π.

The computation of ���� can be done by applying the definition of a task set as 
well as the previously described operations, namely convolution and shrinking. We 
demonstrate this using the following example.

Example  Task-set Π is given, and consists of task �1 = (T1 = 5, �1 = 0, D1 = 5, C1) , 
and of task �2 = (10, 0, 10, C2) . Task �2 has a higher priority. The backlogs at time 
0− at priority levels 1 and 2 are given as B1(0−) and B2(0−) , respectively. For this 
set-up, find the backlog at time 10− at priority level 1, as well as the backlog at time 
7 at priority level 2.

Solution. The following combination of convolution and shrinking computes 
B1(10−) = ����

(
B1(0−), Π, 2, 0−, 10−

)
 , by taking into account the execution 

times of all jobs:

For computing the highest priority backlog, task �1 is ignored. Using the same pro-
cedure, we obtain B2(7) = ����

(
B2(0−), Π, 1, 0−, 7

)
:

4.1 � Upper bound of backlog

In order to provide a holistic schedulability analysis, we need to determine upper 
bounds of the backlogs for all time instances within any future hyperperiod, i.e., we 
are interested in a set of random variables Bi(t) such that Bi(n ⋅ HP + t) ⪯ Bi(t) for all 
priority levels i, future hyperperiods n ≥ 0 and time instances within a hyperperiod 
0 ≤ t < HP . We start by computing the steady-state backlog and proceed by showing 
that it provides the desired upper bound.

Computation of the steady state backlog The ith priority backlog at the start 
of the nth hyperperiod is Bi(n ⋅ HP) , but this backlog may be different for each 
n. However, the sequence of random variables {Bi(n ⋅ HP)} can be viewed as a 

pB1(0)
= pB1(0−)

⊗ pC1 ⊗ pC2 ,

pB1(5−)
= shrink(B1(0), 5),

pB1(5)
= pB1(5−)

⊗ pC1 ,

pB1(10−)
= shrink(B1(5), 5).

pB2(0)
= pB2(0−)

⊗ pC2 ,

pB2(7)
= shrink(B2(0), 7).
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Markov process as shown by Díaz et al. (2002). Specifically, they present the fol-
lowing theorem about the existence of a limit to the above mentioned sequence, 
including the corresponding proof:

Theorem 1  (Section 4.2 of Díaz et al. 2002) The sequence of backlogs {Bi(n ⋅ HP)} 
for n ≥ 0, where i is a priority level, has a limit if the average system utilization is 
less than one, and if the sequence of jobs remains the same each hyperperiod. If it 
exists, this limit is called the ith priority steady state backlog at the beginning of the 
hyperperiod, and noted Bi(0).

For computing the steady state backlog at the start of a hyperperiod Bi(0) , Diaz 
et al. propose three methods. The first method is an exact one stated in Sect. 4.3.2 
of Díaz et al. (2002) and exploits the structure of the infinite dimension transition 
matrix P . A second method (Sect. 4.3.3 of Díaz et al. (2002)) finds an approxi-
mate value of Bi(0) by truncating P to make its dimension finite. Finally, a third 
method is to iterate over hyperperiods until the following relaxed steady state 
condition is satisfied:

This condition states that the maximum difference between all ith priority backlogs 
must not exceed a configurable small value � . This method does not require com-
putation nor truncation of the transition matrix P . For further details on choosing 
appropriate initial backlogs, please refer to Díaz et al. (2004).

Pessimism of the steady state backlog Assuming that the initial backlog is 
zero at every priority level, and that the sequence of jobs remains the same each 
hyperperiod, it has been shown in Díaz et al. (2004) that the ith priority steady 
state backlog is an upper bound to all ith priority backlogs at the start of the 
hyperperiod. The following two Lemmas can be used to show that the backlogs at 
the beginning of a hyperperiod are increasing from hyperperiod to hyperperiod. 
They state that the operations of convolution and shrinking preserve the partial 
ordering of random variables.

Lemma 1  (Property 3 in Díaz et  al. 2004) Given three positive random variables 
A,B, C . If A ⪯ B, then A + C ⪯ B + C.

Lemma 2  (Property 6 in Díaz et  al. 2004) Given two positive random variables 
A,B, C . If A ⪯ B, then shrink(A,m) ⪯ shrink(B,m).

(9)max
i,x

{|||pBi(k⋅HP)(x) − pBi((k−1)⋅HP)(x)
|||
}
< 𝜖.
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Now, the following Theorem can be shown by means of the above consid-
erations: We have, by definition, Bi(t) = limn→∞ Bi(t + n ⋅ HP) for all n ≥ 0 and 
0 ≤ t < HP , and we know from Theorem 1 that Bi(n ⋅ HP) ⪯ Bi(0) for all n ≥ 0.

Theorem  2  (Theorem  1 in Díaz et  al. 2004) Assuming that the initial backlog is 
zero, and that the sequence of jobs remains the same each hyperperiod, the ith pri-
ority backlog at time t inside every hyperperiod is upper bounded by the ith priority 
steady state backlog at time t inside the hyperperiod:

In summary, if the initial backlog is zero, the steady-state backlog Bi(t) provides 
an upper bound for all backlogs within any future hyperperiod. This result will be 
used extensively in the the response time analysis described next.

4.2 � Response time analysis

The response time of a job Ri,j tells us when this job will finish its execution, rel-
ative to its release time. We summarize the procedure as proposed by Díaz et  al. 
(2002). The response time of a given job �i,j is influenced by the initial backlog at 
its release time Bi(ri,j) , and the computation times of all jobs that preempt the job. 
Therefore we can define a function:

  The pseudocode for computing response times is given in Algorithm 1. For a given 
job �i,j , first Ci is convolved with the the current ith priority backlog (line 2). This 
would provide us with the response time of �i,j , if there were no preempting jobs. 
When a preempting job is released at a given point in time, then the probability 
function vector of �i,j ’s response time is split in two portions (line 6): the part before 
preemption ( Rl ), and the part after preemption ( Ru ). The part after preemption is 

∀i ∶ pBi(0)
(0) = 1 ⇒ ∀t ∈ [0, HP), ∀n ∈ ℕ ∶ Bi(n ⋅ HP + t) ⪯ Bi(t)

(10)Ri,j = ���
(
Bi(ri,j), Π, �i,j

)
.
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convolved with the probability function vector of the preempting job’s computa-
tion time, and the result is added to Rl in order to get �i,j ’s response time after this 
preemption (lines 7 and 8). The probability function of Ri,j is only computed until 
the job’s deadline di,j.

Next, we present a theorem that we will use to obtain the worst-case hourly dead-
line miss probability. Beforehand, the Lemma shows that the response time function 
��� is monotone in the backlog at the release time of the job.

Lemma 3  (Theorem 1, Property 3 of López et al. 2008) Given two random variables 
A, B . If A ⪯ B , then ���

(
A, Π, �i,j

)
⪯ ���

(
B, Π, �i,j

)
.

As the steady-state backlog at any time within a hyperperiod is always greater 
than or equal to the backlog at the corresponding time within any hyperperiod, the 
following Lemma can be obtained.

Lemma 4  Assuming the initial backlog is zero, substituting any backlog Bi(ri,j) with 
the appropriate steady state backlog Bi(ri,j) in the response time analysis, produces 
a value greater or equal to the response time.

Proof  This Lemma is a direct consequence of Lemma 3 and Theorem 2 as well as 
the results in López et al. (2008). 	�  ◻

The value ���
(
Bi(ri,j mod HP), Π, �i,j

)
 will be named the steady state response 

time, and denoted as Ri,j . Note that use of the steady-state backlog Bi leads to an 
upper bound of the response time Ri,j . Based on these results, we can now deter-
mine an upper bound on the response time of each job. Due to the fact that we 
defined the steady-state (worst case) hyperperiod, we can finally determine the 
worst-case deadline miss probability of a job �i,j within any hyperperiod. Instead of 
using the modulo operation as in Lemma 4 we can also just look at jobs �i,j within 
the single worst case hyperperiod with 0 ≤ j < HP∕Ti.

Theorem  3  The deadline miss probability of a job �i,j denoted as ���i,j can be 
bounded as follows:

Proof  The proof follows directly from the results described in López et al. (2008) as 
well as Lemma 4. 	�  ◻

∀i ∶ pBi(0)
(0) = 1 ⇒ ���

(
Bi(ri,j), Π, �i,j

)
⪯ ���

(
Bi(ri,j mod HP), Π, �i,j

)
.

∀i, 0 ≤ j < HP∕Ti ∶ ���i,j ≤ ���i,j = ℙ

(
di,j < ���

(
Bi(ri,j), Π, 𝜏i,j

))
.
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5 � Analysis of mixed‑criticality systems with stochastic task execution 
times

In this section, we determine the (�HI, �LO, �deg)-schedulability of a mixed-critical 
task set Π as defined in Definition  5. To this end, we compute upper bounds on 
probabilities that there is at least one deadline miss of a LO or HI job within 1 h, 
i.e., ���HI(T) or ���LO(T) , respectively, for a time interval of length T = 1 h. In 
addition, we will compute an upper bound on the probability that a lo job oper-
ates in degraded mode ���deg . The underlying concept of the forthcoming analysis is 
described next.

Let us start with the computation of the probability ���deg that a LO job operates 
in degraded mode. This probability can be upper bounded by noting that LO jobs are 
executed only in their degraded mode if their release time ri,j happens during HI-crit-
icality mode. Therefore, we will first determine the maximal length ΔHI

max
 of any HI

-criticality mode execution. In addition, we determine an upper bound on the prob-
ability, that there is at least one mode switch within a single hyperperiod denoted as 
PHP

LO→HI
 . Using these two values, we can bound the relative time the system is in HI 

mode and therefore, the probability that a lo job operates in degraded mode.
To determine upper bounds on probabilities ���HI(1h) , ���LO(1h) that there is 

at least one deadline miss of a LO or HI job within 1 h, we first look at upper bounds 
on the probabilities that at least one LO or HI job misses its deadline during any HI

-criticality mode execution that is started within a hyperperiod, denoted as ���
HI

HI
 or 

���
HI

LO
 , respectively. Note that the upper index denotes the mode, whereas the lower 

one denotes the criticality of the jobs we are considering. In addition, we determine 
an upper bound on the probability that at least one LO or HI job misses its deadline 
during a hyperperiod under the conditions that first, no mode switches take place 
and second, HI jobs do not overrun their threshold Cthr . We denote these values as 
���

LO

HI
 or ���

LO

LO
 , respectively. Again, the upper index concerns the mode and the 

lower one the criticality of the considered jobs. Now we can determine the desired 
probabilities ���HI(T) and ���LO(T) by combining (a) the w.c. probabilities ���

LO

HI
 

and ���
LO

LO
 that a deadline miss happens during a hyperperiod if the system is in LO

-criticality mode, (b) the w.c. probabilities ���
HI

HI
 or ���

HI

LO
 that at least one LO or HI 

job misses its deadline during any HI-criticality mode started within a hyperperiod.
We will now first determine bounds ���deg and ���� (1h) using the above defined 

quantities: ΔHI

max
 , PHP

LO→HI
 , ���

HI

�
 and ���

LO

�
 for HI and LO jobs, i.e., for � ∈ {LO, HI} . 

Afterwards, we will explain how these quantities can be determined.

5.1 � Probability of job degradation

In this section, we will compute an upper bound on the probability that a LO job 
operates in degraded mode, i.e., ���deg . As described above, we will make use of the 
maximal duration of a HI-criticality mode execution and the probability that there is 
no mode switch within a hyperperiod.
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Definition 9  (Maximal Duration of High-Criticality-Mode) The quantity ΔHI

max
 

denotes the maximal duration the system is continuously executing in HI-criticality 
mode.

Definition 10  (Mode Switch Probability) The quantity PHP

LO→HI
 denotes an upper 

bound on the probability that there is at least one mode switch lo → hi within a sin-
gle hyperperiod.

Using these definitions, we can determine an upper bound on the desired quantity.

Theorem 4  The probability of degradation of a LO job can be bounded as follows:

Proof  We obtain this value by multiplying the probability that hi-criticality mode is 
entered during one hyperperiod, with the the number of lo jobs that are released in 
degraded mode when it does.

First, note that there is some constant number K of lo jobs with that are released 
every hyperperiod. From the moment one HI-criticality mode is entered, it executes 
at least partly in at most ⌈1 + ΔHI

max
∕HP⌉ hyperperiods. Therefore, what ever the num-

ber of mode switches is inside one hyperperiod, in the worst case, all lo jobs from 
this and the next ⌈ΔHI

max
∕HP⌉ hyperperiods are executed in degraded mode. In other 

words, K ⋅
⌈
ΔHI

max
∕HP + 1

⌉
 lo jobs are degraded.

Second, let us note that there is at least one mode switch within a hyperperiod 
with probability PHP

LO→HI
 . Combining this probability with the number of lo jobs that 

are degraded if a mode switch happens, we get:

 	�  ◻

This upper bound on the probability of degradation of a LO job may be overly 
pessimistic in the case when the hyperperiod is much larger than the maximal dura-
tion of HI-criticality mode, HP ≫ ΔHI

max
 . Still, in practical scenarios, it is not consid-

ered usual practice to design a system with a very long hyperperiod. We therefore 
accept the upper bound as satisfactory.

The necessary quantities ΔHI

max
 and PHP

LO→HI
 will be determined later as part of our 

analysis of the HI - and LO-criticality modes.

(11)𝖯𝖣𝖩deg ≤

⌈
ΔHI

max

HP
+ 1

⌉
PHP

LO→HI
.

𝖯𝖣𝖩deg ≤

(
K ⋅

⌈
ΔHI

max

HP
+ 1

⌉
PHP

LO→HI
+ 0 ⋅ (1 − PHP

LO→HI
)

)
K−1

=

⌈
ΔHI

max

HP
+ 1

⌉
PHP

LO→HI
.
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5.2 � Probabilities of deadline misses

Let us now determine the deadline miss probabilities of ���HI(T) and ���LO(T) , 
i.e., the probabilities that at least one HI criticality job or one LO criticality job 
misses its deadline within the time interval T. With T = 1 h we get the quantities as 
required by the schedulability test according to Definition 5. For the following theo-
rem, let us suppose that � ∈ {LO, HI} denotes the criticality of jobs in the deadline 
miss probabilities.

In principle, the analysis investigates two coupled systems. The first one which 
is denoted as the LO-system never does a mode switch, i.e., all mode switch events 
are ignored. In addition, it uses modified execution time probabilities of HI critical-
ity jobs such that the LO-system pessimistically describes the behavior of the origi-
nal system if operating in LO-criticality mode. In particular, all execution times of 
HI jobs that are higher than the threshold are trimmed to it, see Definition 2. The 
worst-case steady-state probability that at least one � job misses its deadline dur-
ing a hyperperiod in the LO-system is denoted as ���

LO

�
 . This probability is deter-

mined using the worst-case steady-state backlog and response-time analysis as 
provided in Lemma 4, but using the trimmed execution times of HI jobs. The other 
system is denoted as the HI-system and considers the case that at least one lo → hi 
mode switch happened within a hyperperiod, i.e., at least one HI-criticality mode is 
executed.

Definition 11  (Deadline Miss Probabilities in Different Modes) The worst-case 
probability that at least one � critical job misses its deadline during any HI-critical-
ity mode started in a single hyperperiod is denoted as ���

HI

�
 . The worst-case steady-

state probability that at least one � critical job misses its deadline during a hyper-
period in a system where (a) all mode switch events are ignored and (b) execution 
times of HI jobs are trimmed to their threshold according to Definition 2 is denoted 
as ���

LO

�
.

Note that ���
LO

�
 can be computed according to Lemma  4. Using these defi-

nitions, we can determine bounds on the requested deadline miss probabilities 
using the following result. The desired probabilities per hour can be obtained by 
setting T = 1 h.

Theorem 5  (Deadline Miss Probabilities) The deadline miss probabilities ���� (T) 
for � ∈ {LO, HI} can be bounded as follows:

Proof  It needs to be proven that the probability that there is no deadline miss of any 
� job within time interval T is bounded by

(12)���� (T) ≤ 2 −
�
1 − ���

LO

�

�⌈ T

HP
⌉
−
�
1 − ���

HI

�

�⌈ T

HP
⌉
.

1 − ���� (T) ≥
�
1 − ���

LO

�

�⌈ T

HP
⌉
+
�
1 − ���

HI

�

�⌈ T

HP
⌉
− 1.



1 3

Real-Time Systems	

There is no deadline miss within T if there is no deadline miss when the system 
executes in LO-criticality mode and there is no deadline miss if it operates in HI-criti-
cality mode. Suppose the first event is named a and the second one b, then we know 
that p(a ∩ b) = p(a) + p(b) − p(a ∪ b) ≥ p(a) + p(b) − 1 even if both events are not 
independent. Therefore, the theorem is true if

lower bounds the probability that there is no deadline miss when the system is in LO
-criticality mode and

lower bounds the probability that there is no deadline miss when the system is in HI

-criticality mode.
Let us first look at the LO-criticality mode. At first, note that ⌈T∕HP⌉ is the number 

of hyperperiods that completely cover an interval of length T. Therefore, we can 
safely assume that our interval has the length of ⌈T∕HP⌉ full hyperperiods. Remem-
ber that the backlogs during a steady-state computation are monotonically increas-
ing, see Theorem  2. In a similar way, response times of jobs are monotonically 
increasing from hyperperiod to hyperperiod, see Lemma 4. As a result, the deadline 
miss probabilities of jobs are increasing from hyperperiod to hyperperiod as well 
and ���

LO

�
 is a safe upper bound for every hyperperiod in our modified LO-system. 

We model the system as a worst-case Bernoulli process, acting from hyperperiod to 

hyperperiod. As a result, 
�
1 − ���

LO

�

�⌈ T

HP
⌉
 is a lower bound on the probability that 

there is no deadline miss in the LO-system, i.e. all switching events are disabled and 
the execution times of HI jobs are trimmed.

It remains to be shown that the response times in our LO-system are always larger 
or equal than those in the original system when it is in LO-criticality mode. This is 
certainly true as after a hi → lo mode switch, the backlogs are 0 for sure and there-
fore, they are lower than those in the modified LO-system. Due to Lemma  4, the 
response times are larger in the modified LO-system. Moreover, trimming of execu-
tion times of HI criticality jobs has no influence on the backlogs as long as there is 
no hi → lo mode switch, i.e., the original system operates in LO-mode.

Now let us look at the HI-mode. Again note, that ⌈T∕HP⌉ is the number of hyper-
periods that completely cover an interval of length T. The worst-case probability 
that at least one � critical job misses its deadline during any HI-criticality mode 
started in a single hyperperiod is denoted as ���

HI

�
 , see Definition 11. Therefore, �

1 − ���
HI

�

�⌈ T

HP
⌉
 is a lower bound on the probability that there is no deadline miss 

caused by a lo → hi switch within a hyperperiod.
This concludes the proof as we considered the case that the systems operates in 

LO-criticality mode somewhere within a hyperperiod (bounded by the case that it 
is always in this mode during the hyperperiod) and the case that one or more HI

�
1 − ���

LO

�

�⌈ T

HP
⌉

�
1 − ���

HI

�

�⌈ T

HP
⌉
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-criticality modes are started within a hyperperiod (all corresponding deadline 
misses are accounted for in the hyperperiod where the HI-criticality mode was 
started).  	�  ◻

Now we will determine the quantities ΔHI

max
 , PHP

LO→HI
 , ���

LO

�
 and ���

HI

�
 required to 

compute ���deg , ���HI(T) and ���LO(T) . We start by analyzing the behavior of the 
MC system in LO-criticality mode.

5.3 � LO‑criticality mode

The analysis of the LO-criticality mode will allow us to determine some of the required 
quantities, namely the worst case probability PHP

LO→HI
 of at least one lo → hi mode switch 

within a hyperperiod and the worst-case probability ���
LO

�
 that at least one � critical 

job misses its deadline within a hyperperiod if operating in the modified LO-system, see 
Sect. 5.2. Moreover, we will determine the worst-case probability of a lo → hi mode 
switch at time instance t ∈ {0,… , HP − 1} within any hyperperiod, as this quantity 
will allow us to analyse the �-critical mode later on.

Lemma 5  Given a modified task system where no lo → hi mode switch is executed 
and all HI critical jobs are trimmed to their execution time threshold Cthr

i
, see Defini-

tion 2. Then,

is an upper bound on the probability of at least one deadline miss of any � job dur-
ing LO-criticality mode execution within any hyperperiod, where ���i,j denotes an 
upper bound on the deadline miss probability of job �i,j according to Theorem  5. 
Note, […]1 indicates the expression is limited to a maximum value of 1.

Proof  We will show that the response times in the modified system are always larger 
or equal than those in the original system when it is in LO-criticality mode. Accord-
ing to Theorem 3, the upper bound on the deadline miss probability ���i,j holds for 
any hyperperiod. On the other hand, we can not assume that the miss probabilities 
for the jobs are within a hyperperiod are independent. Therefore, we upper bound 
the probability of the union of events by their sum. It remains to be shown that the 
modified LO-system with all lo → hi mode switches disabled and the trimmed execu-
tion times of HI critical jobs provides upper bounds on the original system when 
operating in LO-criticality mode. This is certainly true as after a hi → lo mode switch 
in the original system, the backlogs are 0 for sure and therefore, they are lower than 
those in the modified LO-system. Due to Lemma 4, the response times are larger in 
the modified LO-system. Moreover, trimming of execution times of HI criticality jobs 

���
LO

𝜒
=

⎡⎢⎢⎣
�
𝜏i,j∈S

���i,j

⎤⎥⎥⎦

1

,

S = {𝜏i,j � 𝜒i = 𝜒 ∧ 0 ≤ j < HP∕Ti}
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has no influence on the backlogs as long as there is no hi → lo mode switch, i.e., the 
original system operates in LO-mode.

The bounding of the value ���
LO

�
 to 1 is safe, as for any summa-

tion of events we have p(a ∪ b) ≤ p(a) + (b) and p(a ∪ b) ≤ 1 leading to 
p(a ∪ b) ≤ min (1, p(a) + (b)) . 	�  ◻

Now, we will determine an upper bound on the worst-case probability PLO→HI(t) 
of a lo → hi mode switch at time instance t ∈ {0,… , HP − 1} within any hyperper-
iod. Remember that there are three triggering events for a lo → hi mode switch, 
namely (a) a HI critical job misses its deadline (b) the system-level backlog, 
meaning the amount of pending executions, becomes higher than a predefined 
threshold Bmax and (c) a HI critical job overruns its threshold execution time Cthr . 
We will analyze the three different mechanisms one after the other and finally 
combine the results.

Let us start with the deadline miss probability at time instance 0 ≤ t < HP 
which we denote as Pdm(t).

Lemma 6  Given a modified task system where no lo → hi mode switch is executed 
and all HI critical jobs are trimmed to their execution time threshold Cthr

i
, see Defini-

tion 2. Then,

is an upper bound on the probability of at least one deadline miss of any HI criti-
cal job during LO-criticality mode execution at time t,   0 ≤ t < HP, where ���i,j 
denotes an upper bound on the deadline miss probability of job �i,j in the modified 
task system according to Theorem 3. Note, […]1 indicates the expression is limited to 
a maximum value of 1.

Proof  We can not assume that the deadline miss probabilities at time t are independ-
ent. Therefore we use as an upper bound of the union of events the sum of the indi-
vidual probabilities.

The bounding of the value Pdm(t) to 1 is safe, as for any summation of events we 
have p(a ∪ b) ≤ p(a) + (b) and p(a ∪ b) ≤ 1 leading to p(a ∪ b) ≤ min (1, p(a) + (b)) . 
S(t) denotes the set of all HI critical jobs with deadline at time t. 	�  ◻

We continue with the probability that at time instance 0 ≤ t < HP the total 
backlog exceeds the upper bound Bmax which we denote as Pbe(t).

Lemma 7  Given a modified task system where no lo → hi mode switch is executed 
and all HI critical jobs are trimmed to their execution time threshold Cthr

i
, see Defini-

tion 2. Then,

∀0 ≤ t < HP ∶ Pdm(t) =

⎡⎢⎢⎣
�

𝜏i,j∈S(t)

���i,j

⎤⎥⎥⎦

1

S(t) = {𝜏i,j � 𝜒i = HI ∧ di,j = t}
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is an upper bound on the probability that the total backlog at time t exceeds Bmax 
during LO-criticality mode execution within any hyperperiod, where BN(t) denotes 
an upper bound on the lowest priority backlog in the modified task system according 
to Theorem 2.

Proof  The total backlog equals BN(t) according to Definition 7. Then, the Lemma 
directly follows from Theorem 2. 	�  ◻

Unfortunately, the computation of the probability Pov(t) that at time instance 
0 ≤ t < HP at least one HI critical job overruns its threshold execution time Cthr

i
 is 

more involved. Whereas the overrun probability ℙ(Ci > Cthr
i
) can be simply cal-

culated, it is more complex to understand at what time instance such an event 
happens, due to interference from other jobs. We will first compute the upper 
bound on the backlog for our modified LO-system as usual. Based on this, we now 
consider each HI critical job individually and compute its response time if the job 
would have the execution time Cthr

i
 . If this response time plus the release time ri,j 

of the job equals t, then the job overruns at t under the condition that it overruns 
at all. The following Lemma summarizes the corresponding result.

Lemma 8  Given a modified task system where no lo → hi mode switch is executed 
and all HI critical jobs are trimmed to their execution time threshold Cthr

i
, see Defini-

tion 2. Then, ∀0 ≤ t < HP

is an upper bound on the probability that at time instance 0 ≤ t < HP at least one HI 
critical job overruns its threshold execution time Cthr

i
 . Here, Bi(t) denotes an upper 

bound on the level i backlog in the modified task system according to Theorem 2 and 
���
i,j

 denotes a modified job �i,j with a deterministic computation time of Cthr
i

 . Note, 
[…]1 indicates the expression is limited to a maximum value of 1.

Proof  At first note that we do not assume that the probabilities of overrunning the 
threshold execution time Cthr

i
 are independent. Therefore, the union of at least one 

overrun at time t is bounded by the sum of individual probabilities for each HI job, 
see the definition of S. Moreover, ℙ(a) = ℙ(a|b) ⋅ ℙ(b) for events a and b. In our 
case, ℙ(b) = ℙ(Ci > Cthr

i
) , i.e., the event that task �i,j has a overrun of its threshold 

execution time. We now need to show that the term 
ℙ(���

(
Bi(ri,j), Π, �

��

i,j

)
+ ri,j) mod HP = t) denotes the probability that an overrun 

due to task �i,j happens at time t under condition that the overrun happens at all, i.e., 
it represents ℙ(a|b) . Note that the term [���

(
Bi(ri,j), Π, �

��

i,j

)
+ ri,j] denotes the fin-

∀0 ≤ t < HP ∶ Pbe(t) = ℙ(BN(t) > Bmax )

Pov(t) =

⎡⎢⎢⎣
�
𝜏i,j∈S

ℙ

�
(���

�
Bi(ri,j), Π, 𝜏

��

i,j

�
+ ri,j) mod HP = t

�
⋅ ℙ(Ci > Cthr

i
)

⎤⎥⎥⎦

1

,

S = {𝜏i,j � 𝜒i = HI}
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ishing time of task �i,j if using the worst-case steady-state backlogs B and the execu-
tion time Cthr

i
 . Therefore, under the assumption that the task overruns, it determines 

the distribution of the time when the overrun actually happens. As this time may be 
in the next hyperperiod, we use the modulo operation.

The bounding of the value Pov to 1 is safe, as for any summation of events we have 
p(a ∪ b) ≤ p(a) + (b) and p(a ∪ b) ≤ 1 leading to p(a ∪ b) ≤ min (1, p(a) + (b)) . 	� ◻

Based on the previous three Lemmas we can conclude this section with the 
desired worst-case probability PLO→HI(t) of a lo → hi mode switch at time instance 
0 ≤ t < HP within any hyperperiod.

Theorem 6  PLO→HI(t) is an upper bound on the worst-case probability of a lo → hi 
mode switch at time instance 0 ≤ t < HP within any hyperperiod with

where Pdm(t), Pbe(t) and Pov(t) are computed according to Lemmas  6,  7 and 8, 
respectively. An upper bound on the probability of at least one lo → hi mode switch 
within a hyperperiod can be determined as

Note, […]1 indicates the expression is limited to a maximum value of 1.

Proof  The Theorem is a simple consequence of the previous Lemmas as we can not 
assume independence of events within a hyperperiod.

	�  ◻

As a simple corollary to the above Theorem, one can compute a lower bound on 
the expected length of a single LO-criticality mode execution as

This results concludes the analysis of the LO-criticality mode and we are now ana-
lysing the HI-criticality mode in order to determine the remaining quantities as nec-
essary for Theorems 4 and 5.

5.4 � HI‑criticality mode

We are still missing the computation of the maximal duration of a HI-criticality 
mode execution quantity ΔHI

max
 , as well as the worst-case probability ���

HI

�
 of at 

least one deadline miss of any � job during any HI-criticality mode started within a 
hyperperiod, where � ∈ {LO, HI}.

∀0 ≤ t < HP ∶ PLO→HI(t) =
[
Pdm(t) + Pbe(t) + Pov(t)

]1
,

PHP

LO→HI
=

[ ∑
0≤t<HP

PLO→HI(t)

]1

.

ΔLO

exp
=

(⌈
1

PHP

LO→HI

⌉
− 1

)
⋅ HP.



	 Real-Time Systems

1 3

To this end, we will determine HP different worst-case HI-criticality mode sce-
narios, one for each starting time 0 ≤ t < HP relative to the beginning of a hyperper-
iod. In other words, we will investigate HP different HI-criticality mode executions 
and then use the maximum of their durations as ΔHI

max
 , and the maximum of their 

deadline miss probabilities to determine upper bounds that at least one HI or LO task 
misses its deadline during a single HI-criticality mode execution. These quantities 
will then be combined with the probability PLO→HI(t) that a lo → hi switch happens 
at relative starting time t in order to determine ���

HI

�
 , i.e., the worst-case probabil-

ity of at least one deadline miss of any � critical job during any HI-criticality mode 
started within a hyperperiod.

Broadly speaking, hi-criticality mode has three differences with lo-criticality 
mode. First, jobs released in hi-mode have different execution times: lo jobs are 
released in degraded mode, and hi jobs do not have the condition that they do not 
overrun their Cthr

i
 execution time threshold. Second, ‘carry-over’ jobs, which are 

released in lo-criticality mode but whose deadlines are after the mode switch, are 
present in hi-criticality mode and they need to be accounted for. Third, the initial 
system-level backlog is not zero, but depends on the mode switch time trigger. 
To account for these differences, we present the following worst-case HI-critical 
execution task-set. It is created such that it is pessimistic what ever the mode 
switch trigger may be, and it accounts for both carry-over jobs and jobs released 
during hi-mode.

The worst-case HI-mode scenario for starting at time t will be defined as 
follows:

Definition 12  (Worst-Case HI-Criticality Execution) We define HP task set Π̂(t) , one 
for each starting time 0 ≤ t < HP . It differs from the original task set Π as follows: 

1.	 The phase offsets �i are implicitly changed such that all jobs are already available 
in 0 ≤ t < HP , i.e., we allow for negative job indices j.

2.	 We consider all jobs with starting times after t, i.e., j ≥ (t − �i)∕Ti + 1 . They have 
a known execution time Ĉi which is not larger than the degraded mode WCET Cdeg

i
 

for LO criticality jobs, and a known execution time Ĉi = Ci for HI criticality jobs.
3.	 We consider jobs whose release time is smaller than t and deadline is larger than 

t. These included jobs �i,j ∈ T̂ with (t − 𝜙i)∕Ti + 1 < j < (t + Di − 𝜙i)∕Ti + 1 have 
execution times Ĉi = Ci for both lo and hi criticality jobs; i.e. for lo jobs the 
execution times are not degraded, and for hi jobs they may or may not overrun 
their Cthr

i
 threshold.

4.	 In addition, for each hi-criticality mode starting time t, 0 ≤ t < HP , we introduce 
the initial backlog at time t and priority levels 1 ≤ i ≤ N , B̂i(t) . If a overrun can 
not happen at time t, due to the fact there is no hi job released whose deadline has 
passed by time t, the initial backlog is as follows: 
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 where Bi(t) denotes an upper bound on the ith priority backlog in the modified 
lo-criticality system according to Theorem 2. If an overrun can happen at time 
t, due to at least one hi job having its release time before t and its deadline after, 
then the initial backlog at time t is the following: 

 where B
��

i
(t) denotes an upper bound on the ith priority backlog in the modified 

lo-criticality system according to Theorem 2, but with the added condition that 
at least one of the released hi jobs whose deadline is after time t has overrun its 
threshold execution time Cthr

i
.

	   Let us now describe how B
��

i
(t) can be computed.

	   To this end, we solve 

 Here, Bi(t) denotes an upper bound on the ith priority backlog in the modified 
lo-criticality system according to Theorem 2. B

��+��

i
(t) is also an upper bound 

on the ith priority backlog according to Theorem 2, but the system used for its 
computation is slightly modified. It is the lo-criticality system with the differ-
ence that hi jobs released before time t whose deadlines are after that time have 
no condition on whether they overrun their Cthr

i
 execution time or not—we use 

their normal execution times Ci in calculating the backlog. The probability that 
none of these hi jobs overrun their respective Cthr

i
 execution times is noted ℙ(��) , 

while the ℙ(��) = 1 − ℙ(��) is the probability that at least one of these hi jobs 
overruns. ℙ(��) is obtained directly from execution times of these hi jobs, 
ℙ(��) =

∑
𝜏i,j∈S

ℙ
�
Ci > Cthr

i

�
 , where S =

{
𝜏i,j | 𝜒i = HI ∧ ri,j ≤ t ∧ di,j > t

}
.

Condition 2 includes all tasks which are released during HI-criticality mode, 
noting that lo jobs are degraded and hi jobs have Ci execution times. The third 
condition deals with carry-over jobs from LO - to HI-criticality mode, whose dead-
line misses have not yet been accounted for in the LO-criticality mode analysis. 
Note that here the worst case comes from the assumption that all hi jobs may 
overrun. Finally, condition 4 includes the worst-case backlog at the starting time 
t, as it is the backlog with the condition that an overrun of at least one hi job 
occurred, but also it is limited by the maximal backlog Bmax . Simpler construc-
tions of the worst-case task-set lead to high overestimations to the length and 
deadline miss probabilities of hi-criticality mode.

ℙ(�Bi(t) = u) =

⎧
⎪⎨⎪⎩

ℙ(Bi(t) = u) u < Bmax∑∞

v=Bmax
ℙ(Bi(t) = v) u = Bmax

0 u > Bmax

ℙ(�Bi(t) = u) =

⎧
⎪⎨⎪⎩

ℙ(B
��

i
(t) = u) u < Bmax∑∞

v=Bmax
ℙ(B

��

i
(t) = v) u = Bmax

0 u > Bmax

ℙ(B
��+��

i
(t) = u) = ℙ(��) ⋅ ℙ(Bi(t) = u) + ℙ(��) ⋅ ℙ(B

��

i
(t) = u).
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Starting from the worst-case scenarios for the HI-mode for each time instant t, 
0 ≤ t < HP , we now evaluate each scenario and determine the corresponding worst-
case durations as well as the deadline miss probabilities. To do this, we apply the 
results from Sect. 4 and use the function ����

(
B̂i(t), Π̂, i, t, u

)
 to compute all rele-

vant backlogs for the task sets from Definition 12. The successive computation of 
the backlogs stops whenever the system gets idle for the first time: B̂i(ts) = 0 for all 
priority levels i. This time is an upper bound on the hi → lo switching time. Using 
the response time analysis, see (10), we can finally determine all jobs that miss their 
deadline during the HI-mode. Additionally, for the response time analysis for calcu-
lating the deadline miss probabilities of hi carry-over jobs, we substitute the execu-
tion time of the carry-over job under analysis Ĉi with the conditional execution time 
ℙ(Ci > Cthr

i
) , in order to get the deadline miss probability with the condition that the 

hi carry-over job overran its Cthr
i

 execution time threshold.

Lemma 9  The first time tidle, the execution of the task set Π̂(t) from Definition  12 
yields a system-level backlog which is zero, determines an upper bound ΔHI

max
(t) on 

the duration of a HI-criticality mode starting at time t relative to the beginning of 
any hyperperiod of the original task system Π:

Let us define the probability pi,j(t) that some job �i,j of task set Π̂(t) from Defini-
tion 12 misses its deadline in the time interval [t, t + ΔHI

max
(t)] . Then ���

HI

�
(t) is an 

upper bound on the probability that there is at least one deadline miss of any � criti-
cal job with � ∈ {LO, HI} within a HI-criticality mode execution starting at time t 
relative to the beginning of any hyperperiod in the original task system Π:

Note, […]1 indicates the expression is limited to a maximum value of 1.

Proof  The main part of the proof is to show that the task set Π̂(t) indeed defines a 
worst-case scenario in terms of duration and deadline miss probabilities, when the 
HI-criticality mode starts at time t relative to the beginning of any hyperperiod. Note 
that the second condition in Definition 12 ensures that all tasks which are released 
during a HI-criticality mode in the worst case, are included in the HI-criticality task 
set as well. Moreover, we consider the exact execution times for all of these jobs, 
namely the degraded execution times Ĉi which are not longer than Cdeg

i
 for LO criti-

cality jobs, and Ĉi = Ci for HI criticality jobs. The third condition adds the worst-
case carry-over jobs from LO - to HI-criticality mode whose deadline misses have 
not yet been accounted for in the LO-mode analysis. All jobs who missed their dead-
line before the lo → hi mode switch have been considered already in the LO-mode 

∀0 ≤ t < HP ∶ ΔHI

max
(t) = tidle − t.

∀0 ≤ t < HP ∶ ���
HI

𝜒
(t) =

⎡⎢⎢⎣
�

𝜏i,j∈S(t)

pi,j(t)

⎤⎥⎥⎦

1

S(t) = {𝜏i,j ∈ �Πi(t) � 𝜒i = 𝜒}.
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analysis, but their possible backlog at t will be considered. Therefore, we just need 
to explicitly include jobs whose release time is before and whose deadline is after 
the lo → hi mode switch. The corresponding execution times are taken as worst-case 
as well, namely for each carry-over hi job individually, for calculating its deadline 
miss probability we assume it overruns its execution time threshold. Finally, we look 
at the worst-case backlog at the starting time t. It encompasses the remaining execu-
tion times of jobs who were released before t but not yet finished. Due to the trigger-
ing condition of a mode switch, we assume the worst-case that at least one hi job has 
overrun its Cthr

i
 execution time. Also according to triggering conditions, the backlog 

is never larger then Bmax for all priority levels. Note that the backlog also contains 
jobs whose deadline is within the HI-mode, i.e., the carry-over jobs who have been 
explicitly included as tasks.

In order to determine the upper bound on the deadline miss probability ���
HI

�
(t) 

of any �-critical job we again do not assume independence of individual miss events 
and use the sum of the corresponding probabilities as an upper bound.  	� ◻

As a result of this Lemma we can determine the desired quantities, namely 
maximal duration and upper bound on deadline misses, for each time point t rela-
tive to the starting of a hyperperiod. The computations are based on simple simu-
lations of HP executions of worst-case HI-criticality mode scenarios. The simula-
tion times are finite as long as there exists a finite time in Π̂(t) when the system 
gets the first time idle. The following Lemma leads to a necessary and sufficient 
condition.

Lemma 10  A set of finite bounds ΔHI

max
(t) on the duration of HI-criticality modes 

exists if and only if the maximal system utilization in hi-criticality mode in the origi-
nal system is less than one.

Proof  Let us look at the modified task set Π̂(t) starting at time t. If the maximal 
system utilization in hi-criticality mode is less than one, then the maximal system 
level backlog at time t + (n + 1) ⋅ HP is strictly smaller than the maximal system 
level backlog at time t + n ⋅ HP for n > 1 , because the arriving jobs in time inter-
val [t + n ⋅ HP, t + (n + 1) ⋅ HP) are identical for all n > 1 and there is less additional 
accumulated computation time from all arriving jobs than its length HP . Therefore, a 
time instance will exist when the maximal system level backlog is zero and the sys-
tem is idle. If the maximal system utilization in hi-criticality mode is larger or equal 
than one, then the maximal system level backlog at time t + (n + 1) ⋅ HP could be 
equal or greater than the maximal system level backlog at time t + n ⋅ HP . Therefore, 
in the worst case, the system level backlog never gets to zero and the hi-criticality 
mode could last for ever.  	�  ◻

Based on these results, we can now aggregate the computed quantities in order to 
determine the maximal duration of a HI-criticality mode execution quantities ΔHI

max
 as 

well as the worst-case probability ���
HI

�
 of at least one deadline miss of any � job 

during any HI-criticality mode started within a hyperperiod, where � ∈ {LO, HI}.
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Theorem 7  ΔHI

max
 is an upper bound on the maximal duration of any HI-criticality 

mode in the original task system Π, where

 ���
HI

�
 is a bound on the worst-case probability of at least one deadline miss of 

any � critical job with � ∈ {LO, HI} during any HI-criticality mode started within a 
hyperperiod in the original task system, where

with PLO→HI(t) as determined in Theorem 6. Note, […]1 indicates the expression is 
limited to a maximum value of 1.

Proof  According to Lemma  9, ΔHI

max
(t) is an upper bound on the duration of a HI

-criticality mode starting at relative time t within a hyperperiod. Clearly, the maxi-
mum for all relative time instances provides the maximal duration for any time 
instance. The probability of a deadline miss within a HI-mode execution is the prob-
ability of the union of deadline misses at any time instance within the hyperperiod. 
As we cannot assume independence, we upper bound this probability by the sum of 
individual probabilities. The probability of a deadline miss within a HI-mode start-
ing at relative time t is clearly the probability that a a mode switch happens, i.e., 
PLO→HI(t) , times the probability that a deadline miss happens within the HI-mode, 
i.e., ���

HI

�
(t).

	�  ◻

This concludes the schedulability analysis of probabilistic Mixed-Criticality Sys-
tems according to Definition 5, as all required quantities for Theorems 4 and 5 have 
been determined in Sects. 5.3 and 5.4 .

Of course, the tightness of the analysis can be improved through various 
approaches. Some of them as well as limitations of the described analysis are noted 
in the conclusion.

ΔHI

max
= max

0≤t<HP
ΔHI

max
(t).

𝖣𝖬𝖯
HI

𝜒
=

[ ∑
0≤t<HP

PLO→HI(t) ⋅ 𝖣𝖬𝖯
HI

𝜒
(t)

]1

Table 2   Scheduling schemes used throughout Sect. 6

Deterministic schemes
 DMPO Deadline Monotonic Priority Ordering Audsley et al. (1991)
 AMC Adaptive Mixed Criticality Baruah et al. (2011)
 UB-HL Upper Bound on Fixed Priority Preemptive MC Schemes Baruah et al. (2011)

Probabilistic schemes
 pDMPO Probabilistic Deadline Monotonic Priority Ordering Díaz et al. (2002)
 pMC Probabilistic Mixed Criticality this work
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6 � Experimental results

In order to illustrate our probabilistic Mixed Criticality (pMC) schedulability analy-
sis, this section first shows one sample task-set. The sample task-set is inspired by 
applications from the avionics industry. Then, experiments on randomly generated 
task-sets are used to compare pMC scheduling with other schemes: a probabilis-
tic but non-Mixed Criticality scheme ‘Probabilistic Deadline Monotonic Priority 
Ordering’ pDMPO, the deterministic ‘Adaptive Mixed Criticality’ scheme (AMC), 
and a deterministic non-MC ‘Deadline Monotonic Priority Ordering’ scheme. These 
are all listed in Table 2, and described in detail below. For the experiments, we gen-
erated randomized task-sets with all but one parameter the same, in order to see the 
effect this one parameter has.

Three experiments are conducted. The first experiment serves to show the impact 
of the system utilization, the second experiment varies the probability each hi task 
overruns its Cthr

i
 execution time threshold ℙ(Ci > Cthr

i
) , and finally the impact of the 

maximal system-level backlog is visualized in the third experiment. In general, we 
show that pMC dominates all other schemes, except in situations when hi-criticality 
mode is entered too often. In these cases, we find that there is too much degradation 
of lo jobs, therefore scheduling using the probabilistic but non-Mixed Criticality 
pDMPO yields better results.

Baseline schemes To evaluate pMC scheduling, we have used three deterministic 
and one probabilistic baseline scheme, as listed in Table 2. All schemes are based on 
fixed-priority preemptive scheduling. The first deterministic scheme is a non-Mixed 
Criticality one, Deadline Monotonic Priority Ordering (DMPO). As the name sug-
gests, tasks are prioritized only by their deadlines, and scheduled according to their 
Cmax
i

 WCETs.
The next scheme is Adaptive Mixed Criticality (AMC), as described by Baruah 

et al. (2011). The scheme features two modes of operation. The system starts in lo-
criticality mode where hi tasks are scheduled according to their Cthr

i
 threshold execu-

tion times. If any hi job overruns this value, a switch to hi-criticality mode happens, 
where all lo tasks are released in degraded mode. The scheme does not quantify the 
duration of these two modes, only the schedulability of them.

As a deterministic baseline scheme we introduce the UB-HL bound (Baruah et al. 
2011). The bound is a necessary test for all fixed priority preemptive MC schemes, 
and such it provides an upper bound on the performance of all fixed priority preemp-
tive deterministic MC schemes.

Finally, the Probabilistic Deadline Monotonic Priority Ordering (pDMPO) 
scheme represents the analysis as introduced by Díaz et al. (2002). In pDMPO, tasks 
are given priorities based on their deadlines, they are scheduled using their complete 
Ci execution times, and there is only one mode of operation. The scheme can be 
viewed as a border case of pMC, where hi-criticality mode is never entered.

Task Execution Times To model task execution times Ci , Weibull distributions 
were used, with a condition that they do not take values greater than the task’s 
WCET Cmax

i
 . These distributions have been used in related work for modeling the 

distribution of long but unlikely execution times (Cucu-Grosjean et al. 2012).
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Weibull distributions are functions of parameters k and � . To generate an execu-
tion time, we first choose k uniformly from [1.5, 3]. Then, the parameter � is com-
puted the following way. For lo tasks, � was computed such that the cumulative den-
sity function at the task’s WCET Cmax

i
 is 1 − 10−8 . Similarly, for hi tasks, we choose 

� so the cumulative density function at the task’s execution time threshold Cthr
i

 is 
1 − 10−8 , unless stated otherwise. This is the way we set the probability a hi task 
overruns its threshold execution time. Finally, all values of the probability density 
function above Cmax

i
 are set to be 0, and the rest of the distribution is normalized. 

This way, we have a valid execution time modeled by a Weibull distribution, with 
the condition it never exceeds the task’s WCET Cmax

i
 , and for which the probability a 

hi task overruns its execution time threshold is Cthr
i

.

6.1 � Sample system

Here we introduce a task-set modelling a sample system, to which we applied our 
proposed schedulability analysis. We explored the task-set, first by varying execu-
tion times of all tasks, and then by varying deadlines. This was done to illustrate 
probabilistic Mixed Criticality scheduling. We present the three schedulability val-
ues: ���HI(1h) , ���LO(1h) , and ���deg , and we also show the expected duration of 
lo-criticality mode ΔLO

exp
 , and the maximal duration of hi-criticality mode ΔHI

max
.

The system’s lo and hi tasks are inspired by the ROSACE (Pagetti et al. 2014) and 
FMS (Durrieu et al. 2014) applications, respectively. The hi tasks are inspired by an 
industrial implementation of the flight management system (FMS). This application 

Table 3   The sample system’s parameters

Note that values relating to execution times are a function of parameter fc

Task �i �i Pr. Period Ti Cmax
i

⋅ f −1
c

Cthr
i

⋅ f −1
c C

deg

i
⋅ f −1

c

sens_c1 hi 5 7.5 ms 648 μs 259 μs –
loc_c1 hi 4 7.5 ms 365 μs 146 μs –
loc_c2 hi 3 60 ms 13 μs 5 μs –
loc_c3 hi 2 60 ms 73 μs 24 μs –
loc_c4 hi 1 60 ms 13 μs 5 μs –
engine lo 16 750 μs 23 μs – 8 μs
elevator lo 15 750 μs 22 μs – 8 μs
aircraft_dynamics lo 14 750 μs 161 μs – 54 μs
h_filter lo 13 1.5 ms 11 μs – 4 μs
az_filter lo 12 1.5 ms 12 μs – 4 μs
Vz_filter lo 11 1.5 ms 12 μs – 4 μs
q_filter lo 10 1.5 ms 11 μs – 4 μs
Va_filter lo 9 1.5 ms 12 μs – 4 μs
altitude_hold lo 8 3 ms 6 μs – 2 μs
Vz_control lo 7 3 ms 6 μs – 2 μs
Va_control lo 6 3 ms 6 μs – 2 μs
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consists of one task which reads sensor data, and four tasks that compute the loca-
tion of the aircraft. For lo tasks, the open source avionic benchmark ROSACE was 
modeled. It is made up of three tasks which simulate pilot’s instructions, and eight 
tasks implementing a controller.

Setup Table  3 lists the tasks’ periods and execution time values: worst-case 
execution times (WCETs) Cmax

i
 , thresholds for hi tasks Cthr

i
 , and degraded WCETs 

C
deg

i
 for lo tasks. Execution time values are functions of the parameter fc , which 

we vary from 0.05 to 7.5 in 0.05 steps. Note that for hi tasks, Cmax
i

 values are 2.5 
times larger than the corresponding Cthr

i
 , while for lo tasks the worst-case execution 

time in degraded mode is Cdeg

i
= 0.33 ⋅ Cmax

i
 , rounded up to the nearest integer. The 

deadline of each task has been constrained by a factor of fd , Di = Ti ⋅ fd , where fd is 
varied from 0.005 to 1 in steps of 0.005. Next, initial phases for tasks are 0, while 
tasks’ priority assignments are given in the table. Note that we use deadline mono-
tonic priority assignment.

We model probabilistic execution times of tasks with Weibull distributions, as 
described in the beginning of this section. The probability that a hi task executes 
for longer than its threshold execution time Cthr

i
 is ℙ(Ci > Cthr

i
) = 10−8 , for every hi 

task. For the maximal system-level backlog, we used Bmax = 5ms. The hyperperiod 
lasts for 60ms, and inside one there are 500 lo jobs and 19 hi jobs. Regardless of the 
parameter fc , the utilization of lo tasks is 5.73 times higher than the utilization of hi 
tasks.
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Fig. 2   Metrics characterizing the sample task-set. Left: with fixed deadlines fd = 1 but various utiliza-
tion. Right: with fixed utilization fc = 2 but scaling all deadlines
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In Fig. 2, the two left plots have results when deadlines are fixed ( fd = 1 ), but execu-
tion times values from Table 3 are varied with fc ∈ (0, 7.5] . In the two right plots of 
Fig. 2, shown are results when deadlines are varied fd ∈ (0, 1] , but all execution time 
values are fixed ( fc = 2).

Results As expected, the deadline miss probability per hour for both hi and lo jobs, 
���HI(1h) and ���LO(1h) , increases as the utilization increases, or as the deadlines 
become more constrained. In this example, ���LO(1h) is larger than ���HI(1h) , even 
though hi criticality tasks have the lowest priority. This is mainly because there are 
more lo than hi jobs, i.e. 500 versus 19 jobs per hyperperiod. As for the probability that 
a lo job is released in degraded mode, ���deg , we notice it follows a similar trend. In 
this experiment, the value never goes to zero, because there is always a non-zero prob-
ability a lo → hi criticality mode switch occurs.

In the bottom right plot of Fig. 2, the expected duration of lo-mode is shown to 
resemble the inverse of ���deg . Except when the deadlines are very constrained 
( fd < 0.12 ), lo-criticality mode lasts for an expected ΔLO

exp
= 88 h before a trigger event 

occurs. The maximal duration of hi-criticality mode ΔHI

max
 depends only on the system 

utilization. This is shown in the bottom left plot as a function of fc . The value is 1.1 ms 
for fc = 2 , and 21.7 ms for fc = 7.5 . Both values are smaller than ΔLO

exp
 by orders of 

magnitude.

6.2 � Randomized systems

Now we continue, and present three further experiments. They demonstrate the 
impact of three design parameters on schedulability: the system utilization, the 
probability that a hi tasks overruns its execution time threshold Cthr

i
 , and the 

choice of the maximal system-level backlog.
More specifically, the first experiment shows whether task-sets of different 

system utilizations are (�HI, �LO, �deg)-schedulable using probabilistic Mixed Crit-
icality (pMC) scheduling, as well as other scheduling schemes.

The second and third experiments compare pMC with the probabilistic but 
non-MC scheme pDMPO. They demonstrate that pMC leads to improved sched-
ulability, except when hi-criticality mode is entered too often, either because of 
the first or the third mode switch trigger, respectively.

For all three experiments, tasks were randomly generated as described below.
Task-Set Generation For each of the three experiments presented, the UUni-

fast-Discard algorithm (Davis and Burns 2011) was used to randomly generate 
task-sets, with the following parameters we found reasonable.

–	 First, periods and maximal execution times in lo-criticality mode ( Cthr
i

 values 
for hi tasks and Cmax

i
 for lo tasks) were generated by the UUnifast algorithm. 

Periods were chosen between {50 μ s, 100 μ s, 200 μ s, 250 μ s, 500 μ s, 1000 μs}.
–	 All initial phases were set to 0, and tasks’ deadlines are equal to their period.
–	 Then, every task’s criticality is assigned to be hi with a probability of 0.5 

(i.e. parameter CP = 0.5).
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–	 For every hi task, the worst case execution time (WCET) Cmax
i

 is a fixed mul-
tiplier of the corresponding threshold Cthr

i
 , Cmax

i
= 1.5 ⋅ Cthr

i
 (i.e. parameter 

CF = 1.5 ). For lo tasks, their degraded WCET is set to be a third of their 
actual WCET, Cdeg

i
= 0.33 ⋅ Cmax

i
.

–	 To model task execution times Ci , we have used Weibull distributions as 
explained at the beginning of this Section. The probability each hi job �i,j 
overruns its execution time threshold is ℙ(Ci > Cthr

i
) = 10−8 , unless stated oth-

erwise.
–	 The number of tasks per task-set is 60.
–	 Finally, the maximum backlog Bmax is 500 μ s, unless stated otherwise.

For the system utilization and other details, we refer the reader to the setup sec-
tion of each experiment.

Priority Assignment For the probabilistic scheduling schemes pMC and 
pDMPO, we have used deadline monotonic priority assignment. Note that 
(Maxim et  al. 2011) shows that this assignment is in general not optimal for 
probabilistic systems, they suggest instead Audsley’s priority assignment algo-
rithm. For the deterministic scheduling schemes, AMC uses Audsley’s priority 
assignment which is optimal for this scheme, while DMPO by definition uses 
deadline monotonic priorities.

6.2.1 � ‘Utilization’ experiment

In this first experiment, we examine the schedulability of systems with various sys-
tem utilizations. More precisely, we check whether randomly generated systems of 
utilization 0.1 through 2.0 are (�HI, �LO, �deg) = (10−8, 10−6, 10−5)-schedulable under 
probabilistic Mixed Criticality (pMC) scheduling, under a probabilistic but non-MC 
scheme (pDMPO), as well as under deterministic baseline schemes: DMPO, AMC, 
and UB-HL. We also examine the values relevant to pMC scheduling as functions of 
maximum system utilization: the probability of deadline miss per hour for hi or lo 
jobs ���HI(1h) and ���LO(1h) , and the probability of degraded lo jobs ���deg.

Setup We ranged the system utilization from 0.1 to 2.0 with 0.1 steps, and for 
each step we created 1000 task-sets according to the previously given description. 
To reiterate, the following parameters were used: the ratio between the WCET 
Cmax
i

 and execution time threshold Cthr
i

 for every hi task is CF = Cmax
i

∕Cthr
i

= 1.5 , 
the probability each task is assigned hi criticality is CP = 0.5 , the probability a hi 
job overruns its execution time threshold ℙ(Ci > Cthr

i
) = 10−8 , the degradation of lo 

tasks is Cdeg

i
= 0.33 ⋅ Cmax

i
 , there are 60 tasks in each task-set, and the maximal sys-

tem-level backlog is Bmax = 500 μs.
Tasks’ execution times Ci depend on the utilization and task-set in question. We 

found the mean of the execution times to be between 2.84 and 16.38 μ s, with the 
maximal execution time Cmax

i
 among all tasks in a task-set being between 21 and 

387 μs.
Results Figure 3 presents the most important result of our experiments. For task-

sets of different system utilizations, the (10−8, 10−6, 10−5)-schedulability under vari-
ous scheduling schemes is given in Fig. 3 Top. To understand better how utilization 
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impacts pMC schedulability, Figure  3 Middle and Bottom show statistics on the 
���HI(1h) , ���LO(1h) and ���deg metrics. The box-plots visualize the 10th, 25th, 
50th, 75th, and 90th percentile of each metric.

Regarding the three deterministic schemes, we see that they perform similarly 
as in related work, for example (Baruah et al. 2011). Remember that for determin-
istic schemes, a task-set is either ‘completely’ schedulable or it is not, as there is no 
notion of probabilities.

In Fig. 3 Top, we can see that deadline monotonic priority ordering (DMPO) has 
the lowest schedulability among all tested schemes. This is because DMPO attempts 
to schedule a task-set using only WCET ( Cmax

i
 ) values. The adaptive Mixed Critical-

ity (AMC) scheme performs better, as it performs a lo → hi mode switch every time 
hi jobs need more execution time. Still, the schedulability of deterministic fixed pri-
ority preemptive schemes is upper-bounded by the UB-HL bound.

For the probabilistic schemes pDMPO and pMC, we can confirm that they out-
perform deterministic schemes. Probabilistic schemes allow a system with a utili-
zation greater than one to be schedulable, because they take into account the low 
probability that a long execution time is observed. Let us first focus on probabilistic 
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Fig. 3   The (10−8, 10−6, 10−5)-schedulability of task-sets, as a function of utilization under pMC and other 
schemes (Top), and the impact utilization has on ���LO(1h) , ���HI(1h) (Middle) and ���deg (Bottom)
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deadline monotonic priority ordering (pDMPO). We understand from Díaz et  al. 
(2002) that deadline misses under pDMPO happen when the backlog is large, i.e. 
when one or more jobs take a long time to execute. The bigger the utilization is, the 
likelier it is that the backlog is large.

As for probabilistic Mixed Criticality (pMC), it features three lo → hi mode 
switch triggers. All three triggers are indicators that the backlog is large: the first 
trigger activates when a hi job executes for a long time, the second trigger indicates 
that a hi job missed its deadline due to a large backlog blocking its execution, and 
finally the third trigger explicitly notes that the system-level backlog is too large. 
After detecting these high-backlog situations, the system under pMC transitions to 
hi-criticality mode where lo jobs are degraded, and thus the backlog is decreased. 
This ensures that deadline miss probabilities of both lo and hi tasks are reduced, 
at the cost of having some lo jobs released in degraded mode. Most importantly, 
this is demonstrated in Fig. 3 Top, where pMC outperforms pDMPO as well as all 
other schemes. Furthermore, in Fig.  3  Middle, we see how both ���HI(1h) and 
���LO(1h) increase gradually with the increase of utilization. The small difference 
between ���HI(1h) and ���LO(1h) comes from the fact that the system switches to 
hi-criticality mode whenever a hi jobs overruns its Cthr

i
 threshold, which helps hi jobs 

keep their deadline. Finally, Fig. 3 Bottom shows the probability a lo job is released 
with degradation. This slight increase is a sign of being in hi-criticality mode more 
often, and this quantifies the cost of probabilistic Mixed Criticality scheduling.

6.2.2 � ‘Execution Threshold’ experiment

In this experiment, we varied a design parameter relating to tasks’ execution times 
Ci : the probability that a hi job overruns its execution time threshold Cthr

i
 . We then 

inspected how this impacts schedulability under probabilistic Mixed Criticality 
(pMC) and the probabilistic non-Mixed Criticality pDMPO scheme. Because we 
used a utilization of 1.4, deterministic schemes could not schedule any task-sets. 
The probability each hi job �i,j overruns its execution time threshold ℙ(Ci > Cthr

i
) is 

ranged from 5 ⋅ 10−12 to 10−4 . Ultimately, this experiment demonstrates that it makes 
sense to use probabilistic Mixed Criticality scheduling if hi-criticality mode is not 
entered too often, and the importance of the ���deg metric is justified.

Setup A total of 16 configurations, each with 1000 task-sets, were generated for 
this experiment. The configurations have the same parameters, except for the prob-
ability each hi job �i,j overruns its execution time threshold ℙ(Ci > Cthr

i
) . The follow-

ing values for ℙ(Ci > Cthr
i
) were used: {5 ⋅ 10−12, 10−11, 5 ⋅ 10−11, ..., 10−4} . Besides 

this, the system utilization for all configurations is 1.4, while all other parameters are 
according to the description mentioned at the beginning of Sect. 6.2.

Regardless of the fact that ℙ(Ci > Cthr
i
) is varied by 8 orders of magnitude, we 

found that the mean execution time per configuration changes little. It is between 
8.69 and 8.70 μ s. Among all tasks in every task-set, the worst case execution time 
Cmax
i

 is 287 μs.
Results The results of this experiment are shown in Fig. 4. In the top figure, we 

present (10−8, 10−6, 10−5) - and (10−8, 10−6, 1)-schedulability under pMC, as well as 
(10−8, 10−6,−)-schedulability under pDMPO. Since by definition ���deg ≤ 1 , we can 
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interpret (�HI, �LO, �deg = 1)-schedulability under pMC as a schedulability test which 
ignores the ���deg metric. In the middle and bottom figures, the box-plots visualize 
the 10th, 25th, 50th, 75th, and 90th percentile of each metric.

In Fig. 4 Top, let us first focus on comparing pDMPO and pMC when �deg = 1 . 
In this case, when the ���deg metric is ignored, we see that more task-sets are always 
schedulable under pMC than under pDMPO. The reasons pMC scheduling is better 
in this case are the same reasons as in the ‘utilization’ experiment: by switching to 
hi-criticality mode after certain triggering events, the system under pMC scheduling 
reduces the backlog in these situations, which ultimately makes deadline misses less 
likely.

Now, let us examine pMC with a realistic ���deg bound, i.e. �deg = 10−5 . As 
shown in the top figure, it is clear that there exists a limit after which pMC schedul-
ing is not useful at all, as it leads to too much degradation. This can be understood 
by viewing Fig. 4 Bottom, where we see the cost of switching to hi-mode. On one 
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extreme case, when ℙ(Ci > Cthr
i
) = 10−4 , the system switches to hi-mode often, on 

average once every 48.93 ms (not shown in figure). Then, an average ratio of 0.046 of 
lo jobs are released in degraded mode. In a moderate case, for ℙ(Ci > Cthr

i
) = 10−8 , 

hi jobs overrun their execution time threshold Cthr
i

 less often, and lo-mode lasts 
on average 8.34 min. Here, an average ratio of 4.19 ⋅ 10−6 of lo jobs are degraded. 
Finally, on the other extreme case, when ℙ(Ci > Cthr

i
) = 5 ⋅ 10−12 , lo-mode lasts for 

278.00 h on average, and only a tiny fraction of 2.09 ⋅ 10−9 lo jobs are released in 
degraded mode. For many realistic applications, there exists a limit on the degrada-
tion which can be tolerated, before a complete loss of function happens. Thus we 
argue that this experiment demonstrates why the ���deg metric is crucial for proba-
bilistic Mixed Criticality scheduling.

Finally, let us comment on ���LO(1h) and ���HI(1h) , found in Fig. 4 Middle. 
These are similar, except ���HI(1h) is larger for higher ℙ(Ci > Cthr

i
) values. We have 

found that this increase in ���HI(1h) appears as a result of pessimistic assump-
tions introduced in Definition 12. We comment more about this pessimism the next 
experiment.

6.2.3 � ‘Maximal Backlog’ experiment

In the final experiment on randomized systems, the maximum system-level backlog 
Bmax was varied. This affects how often hi-criticality mode is entered, while it has 
no effect on the lo-criticality mode. When the occurrence of hi-criticality mode is 
artificially increased, we can see the pessimism in the analysis of that mode—which 
we found mostly to be introduced by pessimistic assumptions on the initial condi-
tions in hi-mode, as per Definition  12. As in the previous experiment, we tested 
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the (10−8, 10−6, 10−5)-schedulability of task-sets under pMC and pDMPO, and 
(10−8, 10−6, 1)-schedulability under pMC scheduling.

Setup For this experiment, we first generated 1000 task-sets with a system utiliza-
tion of 1.2. This high utilization guarantees that no deterministic scheme can be used 
to schedule task-sets. All parameters except for the maximum system-level backlog 
are according to the description at the beginning of this section. Then, the maxi-
mum system-level backlog Bmax was varied from 40 to 600 μ s, and all of the 1000 
task-sets are analyzed for every Bmax value. Each generated task-set has 60 tasks, the 
mean execution time among all tasks in every task-set is 10.61 μ s, while the maxi-
mum execution time overall is 255 μs.

Results Figure 5 visualizes the results of this experiment. As done in the previ-
ous experiment, we conducted a (10−8, 10−6, 10−5)-schedulability test under pMC 
and pDMPO, as well as a schedulability test under pMC when the ���deg metric 
is ignored (i.e. �deg = 1 ). The box-plots visualize the 10th, 25th, 50th, 75th, and 
90th percentile of each evaluated metric. By definition, the maximum system-level 
backlog Bmax does not impact scheduling under pDMPO at all, so the schedulability 
under this scheme is constant.

Regarding the impact on pMC scheduling, specifically on ���HI(1h) and on 
���LO(1h) , we see two cases. On the one hand, when the maximum system-level 
backlog Bmax is sufficiently large, i.e. ≥ 200 μ s, we see that it has a negligible impact 
on ���HI(1h) and ���LO(1h) values. On the other hand, when a small Bmax causes 
hi-mode to be entered often, ���HI(1h) and ���LO(1h) both increase. Ideally, how 
often hi-mode is entered should not impact ���HI(1h) and ���LO(1h) . The increase 
is a result of pessimism introduced in point 4 of Definition 12. As the reader recalls, 
there we make a pessimistic assumption that all hi jobs are overrunning their execu-
tion time thresholds Cthr

i
 at the time of the mode switch. This pessimistic assumption 

is mainly introduced to reduce the number of cases under which hi-criticality mode 
is analyzed.

The impact the backlog Bmax has on ���deg is straightforward. As hi-mode is 
entered more often, ���deg increases. Because of this increase, we find that few 
task-sets are (10−8, 10−6, 10−5)-schedulable under pMC for Bmax values less than 
200 μ s. We can therefore conclude thus the pessimism of hi-criticality mode analysis 
does not play a major role in the schedulability analysis of task-sets under realis-
tic requirements for the maximal permitted degradation of lo jobs �deg . Finally, we 
observe again the main result from the ‘execution threshold’ experiment: probabilis-
tic Mixed Criticality (pMC) scheduling is better than the non-MC scheme pDMPO, 
except when hi-criticality mode is entered too often.

7 � Conclusion

Modeling tasks’ execution times with random variables in Vestal’s mixed-criticality 
model allows for a schedulability analysis based on the ‘probability of deadline miss 
per hour’. We presented a dual-criticality system which operates in either lo- or hi-
criticality mode. In lo-criticality mode, both lo and hi jobs run normally, but certain 
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optimism towards hi jobs exists: they are required not to overrun their Cthr
i

 execu-
tion time threshold, a value analogues to the optimistic WCET in Vestal’s model. hi-
criticality mode is entered when a violation of this optimistic condition is detected, 
or when one of the following two events happen: a hi job misses its deadline, or the 
system-level backlog exceeds its maximal value. In this mode, lo jobs are degraded 
by having a shorter time budget for execution, so hi jobs have more resources avail-
able. This mode lasts until the system becomes idle.

To characterize such a system, we first defined (�HI, �LO, �deg)-schedulability, 
which quantifies the soft schedulability of a probabilistic mixed-criticality sys-
tem. The schedulability conditions determine whether the probability of deadline 
miss per hour for hi jobs, the probability of deadline miss per hour for lo jobs 
and the probability a lo job is started in its degraded mode are less that the given 
(�HI, �LO, �deg) limits.

Then, we presented an analysis approach. This was done by splitting the system 
into two—the lo- and the hi-criticality mode system—and combining the results. 
On one hand, a steady state analysis was carried out for lo-criticality mode, in 
which the system is expected to stay for a long time. This enabled us to pessimisti-
cally bound the deadline miss probability of each job, which we then used to find 
the probability that any job misses its deadline while in lo-mode in a certain time 
period. On the other hand, a simulation of the transient hi-criticality mode was used 
to bound its duration, and to obtain the probability of deadline miss of jobs inside 
it. This, together with the probability a lo → hi mode switch happens, enabled us to 
find the probability any job misses its deadline while in hi-mode in a certain time 
period.

Finally, simulation results illustrate all of the metrics on a sample task-set, and 
experiments involving schedulability analysis show how various design choices 
impact schedulability. Here, we show how probabilistic Mixed Criticality scheduling 
compares to other schemes, and make a clear case that using pMC makes sense for 
most cases, except when the amount of lo job degradation is too high.

Limitations and Future Work Our analysis applies for fixed priority preemptive 
scheduling, but it could be extended to dynamic scheduling schemes as well. On the 
one hand, probabilistic response-time calculus already exists for dynamic schemes 
(Díaz et  al. 2002). In addition, dynamic-priority Mixed-Criticality schemes are 
found to be relevant (Baruah et al. 2011; Guo et al. 2015).

Regarding our proposed scheme, its main limitation is the pessimism of the anal-
ysis of hi-criticality mode. This pessimism is due to the fact that we have a single 
analysis whatever the reason for making the lo → hi transition was.

In a future work, it would be possible to do a less pessimistic analysis of hi-mode 
by deconstructing the analysis into three sub-classes, one for each lo → hi mode 
switch reason. For example, if a mode switch was caused by a maximal system-level 
backlog exceedance, the initial backlog would surely be exactly Bmax . If the mode 
switch was not caused by an overrunning job, there would be no need to assume that 
carry-over jobs of hi criticality surely overrun. If the mode switch was caused by 
an overrunning hi job, one could introduce cases depending on which job cause the 
mode switch.
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The pessimism of the analysis for the lo-criticality mode could be reduced as well, 
but arguably this would bear less fruit. One idea here is to estimate the percentage 
of time a system spends in lo-criticality mode. In calculating ���� (T) in our work, 
we assumed the system is in lo-mode all the time. Replacing this assumption with a 
better estimate would bring improvement, however only for systems which spend a 
non-negligible amount of time in hi-criticality mode, which is usually not assumed to 
be the case. Another idea is to use a less pessimistic model of hi tasks in lo-mode, by 
modeling their executions with conditional ‘truncated’ execution times as is done in 
several related works (Draskovic et al. 2016; Maxim et al. 2017). However, this would 
require performing two lo-mode analyses: the one presented here would be used to 
calculate initial conditions in hi-mode, and the other with the less pessimistic model of 
hi tasks would be used to calculate deadline miss probabilities in lo-criticality mode.

Appendix: Computational complexity of the analysis

Here we comment on the computational complexity of our proposed probabilis-
tic Mixed Criticality (pMC) schedulability analysis. Algorithm A presents a high-
level recapitulation of the analysis, where all pseudo-commands are as explained in 
Sect. 5.

The computational complexity of the analysis is O(n2 ⋅ HP ⋅ c log c) , where n is 
the number of jobs in one hyperperiod, HP is the length of one hyperperiod, and c is 
the length or number of values in the execution time distributions.

In the analysis, the most complex atomic command is the convolution. When 
using FFT, one convolution has a cost of O(c log c).

Let us now comment on the complexity of the analysis in detail. Accord-
ing to Sect.  4.1, the steady state backlog is approximated by Bi(k ⋅ HP) , where 
k is the smallest natural number satisfying inequality  (9). To calculate Bi(k ⋅ HP) , 
a convolution is needed for every one of the n ⋅ k jobs, thus the cost of line  2 is 
O(n ⋅ k ⋅ c log c) . Similarly, according to point 4 of Definition  12, backlog B̂i(t) is 
defined as a combination of two steady state backlogs, and the cost of line 14 is also 
O(n ⋅ k ⋅ c log c) . The number k depends on the required numerical precision (9), but 
we have found it to be in the same order of magnitude as n, k ∼ n.

To compute deadline miss probabilities, i.e. lines 4 and, 17, response time analy-
sis is used as defined by Algorithm 1. Line 6 is based on response time analysis as 
well (Lemma 8). To find the response time of a job, we need to do as many con-
volutions as there are jobs preempting the said job. Thus, the cost of these lines is 
O(n ⋅ c log c).

Table 4   pMC analysis runtimes, for different number of jobs in a hyperperiod n 

Tasks per task-sets 13 25 60 75 100
Jobs in hyperperiod n 50–125 150–200 350–475 450–650 650–825
Utilization 0.5 1.0 1.2 1.5 2.0
Average runtime 5s 19s 1min 59s 4min 21s 23min 42s
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Finally, when analyzing hi-mode, the maximal duration of the mode ΔHI

max
 plays 

a role. When calculating ΔHI

max
 in line 15, and when computing deadlines miss prob-

abilities of jobs in lines 16 and 17, we need to take into account all jobs that are 
released in hi-mode. Regardless on when hi-mode is entered or exited, the number 
of these jobs is at most n ⋅ ΔHI

max
∕HP . For schedulable systems, we found that ΔHI

max
 is 

in the same order of magnitude as HP , ΔHI

max
∼ HP and ΔHI

max
∕HP ∼ 1.

Event though the computational complexity of this scheme is high, we find it 
to be acceptable. The analysis only needs to be done offline, while designing the 
system. Furthermore, parts of Algorithm A are parallelizable. Each iteration of the 
for-loop in line 13 can be run independently, meaning that the analysis of hi-mode 
can be done in parallel on HP processes, each of complexity O(n2 ⋅ c log c) . Conse-
quently, this would be the computational complexity of the whole Algorithm, if we 
were to have unlimited resources.

Runtimes For Sect. 6.2, we ran the analysis of each task-set on a single core of a 
Dual Deca-Core Intel Xeon E5-2690 v2, running at 3.00GHz. As defined in the task-
set generation, all task-sets have HP = 1000 and c ∼ 1000 . In Table 4, we noted the 
average analysis runtimes for task-sets of different utilizations and number of jobs.

Appendix: Notation

See Table 5.
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Table 5   Notations

Random variable A

Probability function pA(u) = ℙ(A = u)

Vector representation pA = [pA(umin )… pA(umax )]
⊺

Comparison of random variables A ⪰ B

Upper bound on random variable A ⪰ A

Task set, number of tasks, task i, job j Π , N, �i , �i,j
Task period Ti

Length of a hyperperiod HP

Relative deadline of task i Di

Absolute deadline of �i,j di,j

Release time of �i,j ri,j

Initial phase �i

Criticality level �i ∈ {LO, HI}

Probabilistic execution time Ci ≤ Cmax
i

Threshold of execution time for HI-jobs Cthr
i

Maximal execution time for degraded LO-jobs C
deg

i

Trimmed execution time of HI-jobs C
LO

i

Threshold of backlog Bmax

Response time of �i,j Ri,j

Deadline miss probability of �i,j ���i,j

Upper bound on deadline miss probability of �i,j ���i,j

Deadline miss prob. within T for HI - and LO-jobs ���HI(T) , ���LO(T)

One hour 1h
Degradation probability of LO-jobs ���deg

Backlog at priority level i and time t Bi(t)

Convolution operator ⊕

Shrinking function of B at value m shrink(B,m)(u)

Backlog function ����
(
Bi(t), Π, i, t, u

)
Response time function ���

(
Bi(ri,j), Π, �i,j

)
Maximum duration of any HI-mode execution ΔHI

max

Expected length of a LO-mode execution ΔLO

exp

w.c. prob. of a lo → hi mode switch at time t ∈ {0,…HP − 1} within a 
hyperperiod

PLO→HI(t)

w.c. prob. of a lo → hi mode switch at time t ∈ {0,…HP − 1} due to 
deadline miss

Pdm(t)

w.c. prob. of a lo → hi mode switch at time t ∈ {0,…HP − 1} due to 
backlog exceedance

Pbe(t)

w.c. prob. of a lo → hi mode switch at time t ∈ {0,…HP − 1} due to 
execution time overrun

Pov(t)

w.c. prob. of at least one lo → hi mode switch within a hyperperiod PHP

LO→HI

w.c. prob. of at least one deadline miss of any � job during any HI mode 
started within a hyperperiod

���
HI

�

w.c. prob. of at least one deadline miss of any � job during a hyperperiod 
during LO mode execution

���
LO

�
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