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Abstract

The need for analog-to-digital (A/D) and digital-to-analog (D/A) conver-
sion is a ubiquitous part of many of today’s practical applications. The
research fields of A/D and D/A conversion are multi-disciplinary, involv-
ing topics such as discrete- and continuous-time signal processing, circuit
theory, and circuit design. State-of-the-art achievements have refined the
practical aspects of traditional converter architectures to a point where
performance is reaching its physical limits and progress is stagnating.

In this thesis, we present an alternative perspective of analog-to-digital
and digital-to-analog conversion called control-bounded conversion. This
new perspective utilizes standard circuit components to build up un-
conventional circuit architectures through a novel theoretical framework
between analog and digital. Ultimately, this versatile design principle
allows less constrained analog and digital circuit architectures at the
expense of a digital post-processing step.

We demonstrate the control-bounded conversion principle by a selection
of converter examples. First we consider the chain-of-integrators and the
leapfrog analog-to-digital converters, which emphasize the division of the
analog and digital parts of a control-bounded analog-to-digital converter.
In particular, these examples reveal the global nature of the analog design
task compared to the local digital part, which can be decomposed into
independently operated, sub-circuits.

Next, the chain-of-oscillators analog-to-digital converter shows how the
control-bounded converter can be adapted for the problem of converting
non-baseband signals as is common in communication systems. Specifi-
cally, the modulation task (frequency shifting) is incorporated into the
digital part of the circuit, removing the need for a pre-processing step.
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vi Abstract

To suppress the influence of circuit imperfections, we introduce the
Hadamard analog-to-digital converter that separates the physical and the
logical signal dimensions of a control-bounded converter. This separation
enables circuit architectures where the sensitivity to component mismatch
and thermal noise can be distributed equally throughout the circuit
architecture components, thereby minimizing its impact on conversion
performance.

The overcomplete digital control shows how the digital part’s complexity
can be increased, resulting in better conversion performance, without
substantially increasing the sensitivity to circuit imperfections. This idea
relates to using higher-order quantization but partitions the analog part
of the circuit in a novel way.

We demonstrate that the control-bounded analog-to-digital conversion
concept can provide improved conversion performance when converting
multiple signals jointly as opposed to independent conversion.

Finally, we show how the control-bounded conversion principle can be
adopted for digital-to-analog conversion.

Keywords: Analog-to-digital conversion; digital-to-analog conversion;
control-bounded conversion; Delta-Sigma modulation; Gaussian message
passing; Wiener filter.



Kurzfassung

Die Notwendigkeit einer Analog-Digital (A/D) und Digital-Analog (D/A)
Konvertierung ist ein allgegenwärtiger Bestandteil vieler heutiger Pra-
xisanwendungen. Forschungsgebiete der A/D- und D/A-Wandlung sind
interdisziplinär und umfassen Themen wie zeitdiskrete und zeitkonti-
nuierliche Signalverarbeitung, Schaltungstechnik und Netzwerkanalyse.
Durch die neusten technischen Errungenschaften wurden die praktischen
Aspekte traditioneller Umsetzerarchitekturen so weit verfeinert, dass
dessen Leistungsfähigkeit an ihre physikalischen Grenzen stößt und der
Fortschritt stagniert.

In dieser Arbeit wird eine alternative Perspektive der Analog-Digital- und
Digital-Analog-Umwandlung vorgestellt, die als steuerungsbegrenzende
Umwandlung (control-bounded conversion) bezeichnet wird. Diese neue
Perspektive verwendet Standardschaltungskomponenten, um unkonven-
tionelle Schaltungsarchitekturen anhand eines neuartigen theoretischen
Rahmens zwischen der analogen und der digitalen Welt aufzubauen.
Letztendlich ermöglicht dieses vielseitige Entwurfsprinzip weniger einge-
schränkte analoge und digitale Schaltungsarchitekturen auf Kosten eines
digitalen Nachbearbeitungsschritts.

Das Prinzip der steuerungsbegrenzenden Konvertierung wird anhand ei-
ner Auswahl von Konverterbeispielen demonstriert. Zuerst werden die
Integratorkette und die Leapfrog-Analog-Digital-Wandler behandelt, wel-
che die Aufteilung eines steuerungsbegrenzenden Analog-Digital-Wandlers
in einen analogen und einen digitalen Teil hervorheben. Insbesondere
zeigen diese Beispiele die globale Natur der analogen Entwurfsaufgabe
im Vergleich zum lokalen digitalen Teil, der in unabhängig betriebene
Teilschaltungen zerlegt werden kann.
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viii Kurzfassung

Danach wird mit dem Oszillatorenkette-Analog-Digital-Wandler (chain-
of-oscillator ADC) aufgezeigt, wie der steuerungsbegrenzende Wandler
angepasst werden kann für das in Kommunikationssystemen übliche Pro-
blem der Konvertierung von nicht bandbegrenzten Signalen. Dabei wird
die Modulationsaufgabe (Frequenzverschiebung) in den digitalen Teil der
Schaltung integriert, wodurch die Notwendigkeit eines Vorverarbeitungs-
schritts entfällt.

Um den Einfluss von Unregelmässigkeiten von Schaltungskomponenten
zu unterdrücken, wird der Hadamard-Analog-Digital-Wandler eingeführt,
welcher die physikalischen und logischen Signal Dimensionen eines steue-
rungsbegrenzenden Wandlers voneinander trennt. Diese Trennung ermög-
licht Schaltungsarchitekturen, bei denen die Empfindlichkeit gegenüber
Komponentenfehlanpassung und thermischem Rauschen gleichmäßig auf
die Komponenten der Schaltungsarchitektur verteilt wird, wodurch deren
Auswirkungen auf die Konvertierungsleistung minimiert wird.

Die übervollständige digitale Steuerung zeigt, wie die Komplexität des
digitalen Teils erhöht werden kann, was zu einer besseren Konvertierungs-
leistung führt, ohne dabei die Empfindlichkeit gegenüber Unregelmäs-
sigkeiten von Schaltungskomponenten wesentlich zu erhöhen. Diese Idee
bezieht sich auf die Verwendung von Quantisierung höherer Ordnung,
aber teilt jedoch den analogen Teil der Schaltung auf neuartige auf.

Es wird aufgezeigt, dass das steuerungsbegrenzende Analog-Digital-
Wandlungskonzept eine verbesserte Konvertierungsleistung bieten kann,
wenn mehrere Signale gemeinsam anstatt unabhängig konvertiert werden.

Abschließend wird gezeigt, wie das Prinzip der steuerungsbegrenzenden
Wandlung für die Digital-Analog-Wandlung übernommen werden kann.

Stichworte: Analog-Digital-Umsetzer; Digital-Analog-Umsetzer; steue-
rungsbegrenzende Wandler; Delta-Sigma modulation; Gaussian message
passing; Wiener filter.
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û(t) estimated input signal
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Chapter 1

Introduction

We live in an analog world flooded by digital interactions. At the
present state of technology, it is hard to comprehend the synergies

between these two worlds. The interconnection is enabled by messages,
called signals, that act as intermediaries between entities in either world.
As both the digital and the analog world are of a vastly different nature,
crossing from one to the other requires a conversion process. We call the
process of converting an analog signal into a digital signal, analog-to-
digital (A/D) conversion, and similarly, the reversed process digital-to-
analog (D/A) conversion.

In this work, we will primarily focus on A/D conversion. However, most
of the presented ideas also apply to D/A conversion, as will be covered
in the last part of this thesis.

The field of A/D conversion is well studied, and most of today’s analog-
to-digital converters (ADCs) derive from the elegant mathematical frame-
work known as sampling theory. Unfortunately, some of the involved
operations are impossible to implement using electrical circuits. As a
result, in an implementation the theory is skillfully approximated by so-
phisticated engineering that pushes the involved circuitry towards its
physical limits.

However, the sampling theory perspective is not the only theoretical
framework capable of describing the A/D conversion problem. In this
thesis, we pursue another promising perspective that we refer to as control-

1



2 Introduction

bounded A/D conversion. In essence, this theoretical framework defines a
new conceptual interface between analog and digital that divides the A/D
conversion task according to the strengths of each domain. This can be
seen as an intermediate step between sampling theory and practice, where
the actual conversion process is designed with the physical properties of
the underlying circuits in mind and the end result is a digital object from
which we can sample.

The control-bounded ADC can informally be thought of as an analog
system (electronic circuit) that performs various fundamental analog
operations (additions, subtractions, derivatives, and integrations) with
the purpose of amplifying an input signal fed into the system. The
analog operations are such that, when fed an input signal, the internal
state of the analog system quickly becomes overloaded, or equivalently
grows outside its permissible range of operation. The analog system is
prevented from overloading, by a digital control. The digital control’s
operation is primitive as it only observes low-resolution partial snapshots
of the internal analog system states at fixed points in time. Based on
these crude observations, the digital control interacts with the analog
system using control actions to counteract the internal analog-system
state growth. In other words, the digital control stabilizes the analog
system via one or potentially many control loops. The digital control
might be primitive, but as it systematically offloads fixed-sized portions
of the accumulated internal analog system states over time, its combined
effect results in a sophisticated digital representation of the internal
analog system state trajectory.

The beauty of this approach is that, while the focus is to stabilize an
analog system using digital control, it implicitly amounts to an analog-to-
digital conversion process. Specifically, an estimate of the input signal can
be obtained by solving an inverse problem, i.e., estimating what the input
signal must have been in order to have triggered the specific sequence of
control actions for the given analog system. Combining complex analog
systems with multiple primitive digital controls results in remarkably
precise estimates of the input signal, as will be demonstrated repeatedly
throughout the examples given in this thesis.

Ultimately, control-bounded A/D conversion enables a large and mostly
unexplored design space where the actual circuit design can be optimized
for new and more practical circuit criterions, (potentially) exceeding
the performance limits of conventional methods. A major part of this
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thesis is committed to developing and proposing new ADC architectures
from the control-bounded perspective. These examples are intended
not only to show actual implementations but also to demonstrate the
control-bounded converter’s rich design and feature space.

1.1 Outline of the Thesis
This thesis is organized in three parts. The first, Chapters 2-4, introduces
the fundamental concept, background, and generalized tools for describing,
simulating, and evaluating the control-bounded ADC. The second part,
Chapters 5-10, presents a series of control-bounded ADC examples. These
examples are chosen such that they demonstrate important features of the
control-bounded design space. Finally, the third part, Chapter 11 shows
how the control-bounded principle can be adopted for D/A conversion.

Part I - Generalized Control-Bounded A/D Conversion

• Chapter 2 - Describes the fundamental problem of A/D conversion.
In particular, we try to highlight the role of sampling and motivate
the potential of unconventional approaches to A/D conversion.

• Chapter 3 - Gives a brief overview of conventional approaches to
A/D conversion and introduces standard notation and concepts
when characterizing the conversion performance of an ADC.

• Chapter 4 - Introduces the generalized control-bounded A/D con-
version concept.

Part II - Control-Bounded A/D Conversion Examples

• Chapter 5 - Covers the chain-of-integrators control-bounded ADC.
This example nicely emphasizes the separation between the analog
and digital part of the ADC. The chain-of-integrators serves as the
default example from which the following examples extends.

• Chapter 6 - Shows the leapfrog ADC, which in turn demonstrates
one way that the analog part of the ADC can be enhanced via pole
and zero placement.
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• Chapter 7 - Adopts the control-bounded A/D conversion concept for
signals that do not reside at the baseband frequencies. Specifically,
we show a similar structure as in Chapter 5 called the chain-of-
oscillators ADC.

• Chapter 8 - Focuses on how the analog part of the converter can
be made more robust against imperfections such as component
mismatch, thermal noise and limit cycles. The proposed solution is
referred to as the Hadamard ADC.

• Chapter 9 - Establishes a digital control principle that interacts
with the analog part through many independent but overlapping
digital control paths. This concept relates to A/D conversion with
higher-order quantizers but partitions the analog part of the ADC
in a new way. The proposed digital control principle is referred to
as an overcomplete digital control.

• Chapter 10 - Demonstrates how multiple control-bounded ADCs
can be combined such that multiple input channels can be converted
jointly, resulting in better overall performance.

Part III - Control-Bounded D/A Conversion

• Chapter 11 - Extends the control-bounded A/D conversion concept
to D/A conversion. Specifically, all previously presented examples
can be repurposed into digital-to-analog converters (DACs).

1.2 Contributions
The main contribution of this thesis is the advancement of the control-
bounded ADC conversion concept. In particular, we develop analytical
tools, derive fundamental properties, and demonstrate several unique
features to this A/D conversion principle. As a result, the control-
bounded A/D converter has matured into an intuitive and capable design
paradigm that resonates with fundamental circuit theory.

Among the many individual contributions throughout this thesis, we
want to highlight particularly:

• The overcomplete digital control in Chapter 9 that divides the
control task into multiple components such that its complexity
can be scaled robustly. The overcomplete digital control is also a
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fundamental building block towards non-traditional A/D conversion
scenarios such as multi-channel A/D conversion.

• The chain-of-oscillator ADC in Chapter 7 that extends the control-
bounded A/D conversion concept for non baseband applications.
Specifically, it uses modulation in the digital control that opens
up new ways of building and scaling A/D converters for single or
multi-band A/D conversion.

• The Hadamard ADC from Chapter 8 shows how the analog signal
representation can be distributed uniformly among the involved
circuit components to achieve a robust circuit implementations.

1.3 Related Work
The control-bounded A/D conversion concept is based on the work
from [2–5,17,38] and was first presented in its current form in [19,20].

A substantial effort has been made to adopt conventional performance
metrics to the control-bounded A/D conversion concept. As part of this
process, we have relied on [8,9,25,32] to make meaningful comparisons to
state-of-the-art ADCs. Additional related work will follow in Chapter 3.





Chapter 2

A Representation
Problem

This chapter has two goals. Firstly, to define the A/D conversion problem
and thereby serve as background for those not familiar with the concept.
Secondly, to highlight where the current theory and practice diverge and
thereby motivate the benefits of alternative approaches.

Formally, A/D conversion is the process when an analog signal u : R→ R
is converted into a digital representation uR, i.e., a finite collection of
binary digits (bits). Ideally, uR is such that u is uniquely described by
it. However, finding such a representation is a fundamentally ill-posed
problem since, in a general analog setting, u is one out of infinitely many
signals and would require a digital representation consisting of an infinite
number of bits.

Instead, the process of A/D conversion can be thought of as finding a
digital representation from which we could construct an approximate
signal û : R→ R that best resembles u with respect to some cost function.
This is illustrated in Figure 2.1. The construction of an approximate

u(t) Analog Digital uR DAC û(t)

Figure 2.1: Conceptual A/D conversion.
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signal û(t) is indicated in the figure by the dashed DAC block. This does
not mean that a DAC accompanies every ADC. However, we think of
the A/D conversion as being approximately reversible by some, at least
conceptual, inverse mapping û(t) = DAC(uR).

Figure 2.1 also indicates that A/D conversion has an analog part and
a digital part. In particular, the analog part applies a preconditioning
operation to limit the possible input signals into a subset U . The operation
simplifies the A/D interface by ensuring certain properties of the signals
in U .

An example of a preconditioning operation would be to limit the input
signals to the set of bandlimited signals using an anti-aliasing filter. In a
more general view the preconditioning operation symbolizes the physical
limitations of the underlying analog circuitry. Note that U might still
contain an infinite number of signals.

2.1 Sampling Theory
After the preconditioning operation the next step in the A/D conversion
process is the actual conversion. Here there are multiple approaches as
the progression of A/D conversion field has inspired numerous competing
techniques for finding uR given u, some of which will be mentioned in
Chapter 3. These ADCs have at least one thing in common, and that
is that they all result in a digital representation uR that is a sequence
of samples u[k], i.e., a series of fixed-point or floating-point numbers
representing u(t) evaluated at different times t. This representation is
not a coincidence and brings us to the topic of sampling theory.

Classical sampling theory [15, 27, 37] is a closely related field to A/D
conversion where one seeks the solution to the problem of perfectly
reconstructing a function x: R → R using only a sequence of samples,
i.e. x evaluated at some points in its domain. One of the most classical
results is the Shannon-Nyquist sampling theorem [10] which states that:

Theorem 1. (The Shannon-Nyquist theorem) For a function x ∈ L2
with a continuous-time Fourier transform X(ω), that is bandlimited by
the frequency 1/TB, i.e. X(ω) = 0 for all |ω| ≥ π/TB, the function x(t)
can be uniquely described by the samples x(`TB) as

x(t) =
∑
`∈Z

x(`TB) sinc
(
t− `TB
TB

)
(2.1)
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where

sinc(t) 4= sin(πt)
πt

. (2.2)

Using samples to represent the analog signal u(t) is a natural thing and
is convenient for further digital processing.

Furthermore, the sampling concept is far more general than bandlimited
signals and uniform samples. Some examples are the concept of wavelets,
or more generally frames [21,31], that could efficiently represent other sets
than bandlimited signals. Regardless which form, representing analog
signal using samples (coefficients), corresponding to signal basis functions,
is the natural output data type of an ADC.

Sample-Centric Analog-to-Digital Conversion

For good reasons, the sampling theorem has had an enormous impact
on the A/D conversion community, which is evident as most of today’s
ADCs are preconditioned by an anti-aliasing filter and a sampling stage.
In this view, the A/D conversion process can be thought of as a grid
search, as illustrated in Figure 2.2. The figure shows a snapshot of a
bandlimited analog signal (in red) as a function of time. The grid in
the figure represents the discretization in both time and amplitude. The
vertical lines of the grid correspond to sampling times, and therefore, only
the analog signal evaluated at these lines (red crosses) are accessible to the
actual conversion process. The horizontal lines correspond to the different
digital representation, and thus the A/D conversion process amounts to
assigning the signal, for each sample (red cross), to the closest grid point
as indicated by the blue markers in the figure. This intuitive approach
has its advantages as, among other things, the separation in time and
amplitude allows us to solve the involved operations in sequential steps.

2.2 The Proposition
The inconvenient truth is that sampling theory, at least in the classical
sense, does not entirely address the A/D conversion problem [14]. Specif-
ically, individual samples still need an unrealistic digital representation
with an infinite number of bits to represent the signal u perfectly. In
other words, the samples uR[k] cannot be perfectly represented, which
raises the question of whether sampling is a restriction, rather than an
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t

u(t)

Figure 2.2: A sampling and quantization grid where the A/D conversion
process, of the signal u(t) (in red), amounts to: for every
time step (black crosses) choosing the closets amplitude
grid points (blue dots) of the signal.

enabler, as a part of the preconditioning step in the A/D conversion proc-
ess. This proposition might seem outrageous since sampling reduced the
A/D conversion problem from handling continuous-time analog signals
to working with discrete-time analog samples.

However, there are arguments for alternative approaches such as the
control-bounded ADC concept that is the main topic of this thesis. One
argument for abandoning the sample-centric view is that sampling theory
strives to represent as much information (signal) as possible using as
few samples as possible. However, in the world of circuits, there is no
such thing as a perfect measurement. Instead, the task of the ADC
can be better described as trying to collect as much signal information
as possible, using imperfect components of partly unknown values, in
an environment that is naturally filled with heavy interferers. This
means that the conversion task needs an A/D interface that is not only
theoretically sound but also provides redundancy, and thereby robustness,
towards the imperfections faced in a practical implementation.

One way of creating redundancy is to oversample, i.e., to take more
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samples than what is strictly necessary according to the sampling theorem.
This technique is employed by several conventional ADC architectures,
see Section 3.2. However, there is no theoretical principle that proposes
this to be an optimal, or even efficient, way of creating redundancy
(seen from the overall number of bits used in the digital representation).
Furthermore, this principle cannot be scaled unconditionally as for a
large enough sampling frequency, the sampler’s precision becomes the
bottleneck of such an ADC architecture.

An alternative way of creating redundant digital representations is the
concept of control-bounded ADC presented in Chapters 4-10. These
are examples of non-sample-centric architectures where redundancy is
naturally induced by considering the conversion process as stabilizing
an analog system with a digital control rather than directly reading
out sampled and quantized signal values. Specifically, since the digital
control’s goal is not to cancel the internal analog state but instead
maintain bounded internal analog system states, each digital control
interaction, most likely, results in a non-zero analog state remainder.
This means that the impact of a digital control decision, at any given
time, potentially impacts all future such decisions. Furthermore, as there
is a substantial overlap between the effect of digital control decisions taken
at different times, there might be many such control decision sequences
that effectively suppress a given input signal. In other words, we recognize
that merely controlling a state within a bound, as opposed to directly
observing and or canceling signal contribution, implicitly creates highly
redundant digital representations.

A consequence of using redundant digital representations is that several
of the otherwise performance-critical aspects of a conventional converter,
such as anti-aliasing filtering, sampling, and quantization, are relaxed or
otherwise implicit. For instance, as the digital control makes its decisions
based on the internal states of the analog system, and these states are
the result of amplifying wanted signal characteristics of the sought signal,
out-of-band components, that would otherwise need to be filtered out
prior to conversion, are implicitly suppressed by the analog system itself.
Furthermore, in the case of many independent digital controls, it is
not the quantization and sampling specification of a single control that
determines the system’s performance. Instead, it is the cumulative control
effort that relaxes the constraints on any single quantizer or sampler.

We believe that the control-bounded converter concept presents an op-
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portunity that would benefit the circuit designer and provide a powerful
post-processing and sampling platform. Specifically, the circuit design
boils down to realizing a robust and performant analog design from
continuous-time analog specifications using digital control circuits to
stabilize the system. Furthermore, this design task would not require
advanced digital signal processing, such as continuous-time to discrete-
time conversions. Instead, the fundamental conversion performance is
implicit as long as the system provides sufficient open-loop analog ampli-
fication and a digital control stabilizes the system. In a separate step,
the sought signal representation is extracted from the highly redundant
digital representation produced by the digital control(s), as we perform
a post-processing digital filtering step. Here the redundant represen-
tation is converted into a signal representation (samples) that is best
suited for the given application. We think of this process as first combin-
ing the redundant representation into a digital object, representing the
continuous-time evolution of the input signal. From this digital object,
we can then sample at arbitrary times and therefore change sampling
rates with ease and produce complex sampling patterns if needed. It is
worth pointing out that this post-processing step reduces to a linear filter
for uniform samples and can therefore be implemented without excessive
computational requirements.

In summary, the control-bounded A/D conversion concept provides a
novel interface for the A/D conversion process, which gives much design
freedom for both the converter’s analog and digital parts, thus promoting
each domain’s strengths while only imposing minor restrictions on their
interconnection.



Chapter 3

Conventional
Analog-to-Digital
Conversion

Analog-to-digital conversion is a well-researched field where not only
one but multiple techniques co-exist among state-of-the-art approaches.
Some examples are flash converters, sub-ranging converters, successive
approximation converters, integrating converters, and ∆Σ modulators.
They all have different advantages and shortcomings and therefore target
different applications.

The content presented in this chapter is, for the most part, standard in
the A/D community and is only repeated here to establish the necessary
terminology and language to make meaningful comparisons to the control-
bounded ADC presented in the succeeding chapters. Therefore, we will
not go into specifics of particular ADCs mentioned above. The only
exception is the continuous-time ∆Σ modulators, covered in Section 3.3.
For in-depth description of conventional ADCs, the reader is directed
to [25,32] and references within.

13
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3.1 Sample-per-Sample Converters
The classical, sample-centric, view on A/D conversion dictates a conver-
sion chain as shown in Figure 3.1. This perspective divides the conversion
task into three separate operations: preconditioning (anti-aliasing filter-
ing), sampling, and quantizing.

u(t) Pre
ũ(t)

û[k]

Figure 3.1: The sample-centric view on A/D conversion.

The preconditioning task is an analog filter. As this operation precedes
the others, any imperfections or noise is directly destructive for the
conversion process. Therefore, it is paramount to implement the analog
filter with sufficient precision.

Next in the conversion chain is the sampler. The sampler converts the
continuous-time signal into a discrete-time signal by extracting snapshots
of ũ(t) at specific times. The performance of the sampler depends on a
stable clock as clock jitter causes jitter-induced noise. Furthermore, at
high sampling rates, the energy consumption becomes substantial as a
result of switching losses.

The last step in the conversion chain is the quantizer. The quantizer’s
task is to discretize the sampled signal’s amplitude and thereby map
the sampled signal to a digital representation. For sample-per-sample
converters, much of the design effort goes into realizing the quantizer with
sufficient resolution. This task is highly non-trivial. The quantization
is also where most of the state of the art converters diverge in their
approach.

For example, the flash converter realizes the quantizer by simultaneously
comparing its input with predefined references and outputting a digital
representation corresponding to the closest reference. Similarly, a sub-
ranging converter repeats the previously mentioned strategy in multiple
rounds and additionally “zooms” by subtracting the determined reference
and amplifies the resulting signal in between rounds. Notice that the sub-
ranging conversion process still is a sample-per-sample type conversion
since only one sample at a time is processed even though the quantization
process can stretch multiple clock periods.
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3.2 Oversampling Converters
Another approach is to extend the quantization task to incorporate
multiple samples. In other words, a form of vector quantization. This
approach is referred to as oversampling and is popular for high-resolution
applications.

The simplest version of an oversampling converter quantizes each sample
individually, as before, and then combines the digitized samples by
averaging, i.e., some sort of low-pass filter. The success of this approach
is dependent on the fact that the converted signal resides in a sub-band
of the Nyquist bandwidth, i.e., the sample rate is much higher than the
Nyquist rate.

Better performance can be attained by not quantizing the samples one by
one but instead introduce a feedback path from the quantizer output to
its input, possibly inserting a loop filter G(eiΩ) in between as shown in
Figure 3.2. Such a system is known as a ∆Σ modulator. The loop filter,
together with the feedback path, suppresses the error in some frequency
bands and thereby enhances the resolution in the same frequency bands.
This concept is known as “noise shaping”. The name comes from the
fact that when the quantization error is modeled as an additive noise
term, the feedback loop together with the loop filter effectively shapes
the power spectral density (PSD) of the quantization noise seen at the
output.

u(t) Pre
ũ(t)

+ G(eiΩ) Dec û[k]
−

s[k]

∆Σ modulator

Figure 3.2: Discrete-time ∆Σ modulator including the decimation filter.

For frequencies not suppressed by the loop filter and feedback path,
the conversion error is unaltered. This part of the estimate’s frequency
spectrum is referred to as out-of-band noise and typically contains a sub-
stantial part of the estimate’s signal energy. Therefore, a ∆Σ modulator
requires an additional post-processing step to suppress the out-of-band
noise generated by the modulator. This additional post-processing step is
referred to as decimation filter, marked (Dec) in Figure 3.2. In addition
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to filtering out the quantization error, the decimation filter downsamples
the signal to the Nyquist sample rate.

3.3 Continuous-Time Delta-Sigma
Modulation

There exists a continuous-time version of the ∆Σ modulator which is
shown in Figure 3.3 [22]. In this version, the preconditioning task, as well

u(t) + G(ω)

D/A

Dec û[k]
s[k]

−

Figure 3.3: Continuous-time ∆Σ modulator.

as the sampling, are included in the feedback loop of the ∆Σ modulator.
This approach is particularly interesting since the task of sampling and
quantizing are joined via the feedback loop. Additionally, even though it
is not the standard, the preconditioning task can be incorporated in the
loop filter G(ω).

The continuous-time ∆Σ modulator is thus a hybrid between a continuous-
time and discrete-time system. To analyze the ∆Σ modulator from
Figure 3.3 the non-linear quantizer is replaced by an additive discrete-
time error signal z[k] denoted the quantization error signal. This is
illustrated in Figure 3.4. From the linearized model, in Figure 3.4, we

u(t) + G(ω) +

z[k]1

Dec û[k]
s[k]

−

Figure 3.4: Linearized model of a continuous-time ∆Σ modulator.

recognize that the quantization error signal and input signal reach the
estimate û[k] via different paths and therefore have different transfer
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functions. The system’s continuous/discrete-time nature complicates
the analysis compared to a fully discrete-time system, as is the more
typical ∆Σ modulator. The transfer function analysis for the given
system is worked out in detail in Appendix B. For a bandlimited input
signal u(t) and loop filter G(ω), the analysis results in the noise transfer
function (NTF) and signal transfer function (STF)

NTF(eiΩ) = S(eiΩ)
Z(eiΩ) (3.1)

= 1
1 + L1(eiΩ) (3.2)

and

STF(eiΩ) = S(eiΩ)
Ũ(eiΩ)

(3.3)

= L0(eiΩ)
1 + L1(eiΩ) (3.4)

where S(eiΩ) is the discrete-time Fourier transform of s[k], Z(eiΩ) is
the discrete-time Fourier transform for z[k], Ω = ωTs. Note that the
derivations assume an unity quantization gain and that the dynamical
range of the quantizer scale with the choice of G(ω). Furthermore,

Ũ(eiΩ) 4= 1
Ts

∑
k∈Z

U

(
Ω− 2πk
Ts

)
, (3.5)

L0(eiΩ) 4=
∑
k∈Z

G

(
Ω− 2πk
Ts

)
, (3.6)

L1(eiΩ) 4= 1
Ts

∑
k∈Z

G

(
Ω− 2πk
Ts

)
D

(
Ω− 2πk
Ts

)
, (3.7)

Ts is the sample period, U(ω) is the continuous-time Fourier transform
of u(t), and D(ω) is the continuous-time transfer function of the D/A
converter’s impulse response.

Notice that the transfer function does not include the decimation filter
Dec. This is intentional as the decimation filter is a post-processing step
that is typically addressed separately. The ideal effect of the decimation
filter would be a brick wall filter, i.e., only passing through the frequency
bands corresponding to the Nyquist rate of the input signal.
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3.4 Performance Measures
One of the key performance measures of an ADC is the effective amplitude
resolution of the samples. For an ideal sample-per-sample converter
circuit, the effective resolution is determined by the number of bits
used for each digital codeword in the quantizer. In reality, the effective
resolution is not necessarily limited by the number of bits used but
rather by imperfections such as thermal noise, component mismatch,
sampling jitter, and non-linearities. Therefore, we use the term conversion
error that amounts to the total effect of all errors seen at the output
samples of the converter. One of the contributors to the conversion error
is the previously described quantization error that will be covered in
Section 3.4.3.

Furthermore, the effective resolution is described using the signal-to-noise
ratio (SNR). This means that the resulting samples are decomposed
into a signal component û[k] and a conversion error component ε[k].
Furthermore, the mean squared value of both these discrete-time signals
are computed, and the SNR is defined as

SNR 4= Pû
Pε

(3.8)

where Pû is the mean squared value of the estimated input signal, and
Pε is the mean squared value of the conversion error, respectively. The
SNR is typically expressed in decibels which will be denoted SNRdB.

For oversampling converters, as in Section 3.2, half the Nyquist frequency
(fB), or equivalently the bandwidth of the input signal, is typically
much smaller than the sampling frequency fs

4= 1/Ts. This is typically
described using the oversampling ratio (OSR)

OSR 4= fs
2fB

. (3.9)

We refer to the portion of the frequency band determined by the Nyquist
rate as the frequency band of interest, and define it as

B 4= {2πf : |f | ≤ fB}. (3.10)

Furthermore, the decimation filter’s task is to suppress the out-of-band
noise of the estimate. Therefore, when discussing the SNR of a ∆Σ
modulator, we only consider the frequency band of interest since the
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remaining spectrum is filtered out in a later stage. This can be directly
translated to the mean squared value as

Pû = 1
2π

∫
ω∈B

Sû(eiωTs) dω (3.11)

and

Pε = 1
2π

∫
ω∈B

Sε(eiωTs) dω (3.12)

where Sû(eiωTs) and Sε(eiωTs) are the PSD of the signal and conversion
error, respectively.

3.4.1 Sinusoidal Test Signal
From the SNR expression in (3.8) it is clear that the performance depends
on the input signal u. Therefore, it is customary to measure the SNR for
a given test input signal. For oversampling converters, the standard test
scenario is to excite the converter with a full-scale sinusoidal input signal.
Subsequently, the SNR can be determined from numerical integration of
the estimate’s PSD. By a full-scale signal, we refer to a signal where the
largest amplitude is the same as the largest permissible amplitude umax of
the system. An example spectrum is shown in Figure 3.5. From the figure
a main peak is clearly visible at ωTs/2π ≈ 0.002. To compute the SNR,
we identify the main peak as well as any harmonics within the frequency
band of interest as the signal component of the estimate and compute
their combined mean squared value as Pû. Similarly, the remaining
frequency bins within the frequency band of interest are identified as
noise; their mean squared value results in Pε.

A related quantity is the signal-to-noise and distortion ratio (SNDR)
which is computed almost identically but where the signal is only identified
as the main peak of the spectrum and therefore the harmonics are added
to the noise term.

Both these measures are exemplified in Figure 3.6. The figure demon-
strates a clear linear relationship between the input signal strength and
the SNR performance. Additionally, as the input amplitude comes close
to full-scale, the performance drops rapidly. Note that Figure 3.6 is
an artificial example and the given SNR and SNDR relationships are
manufactured to demonstrate the expected behavior.
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Figure 3.5: The PSD example plot of the estimate û[k] for a ∆Σ mod-
ulator.
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Figure 3.6: Demonstration of typical SNR, SNDR vs input signal power
relationship.
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3.4.2 Computing the Power Spectral Density
As the PSD is an essential part of evaluating the performance of a ∆Σ
modulator, we will next describe this in detail. Furthermore, these
computations will also apply to the control-bounded converters in the
upcoming chapters, as the same principle determines their performance.

In this thesis, the PSD will only be computed for discrete-time signals with
an underlying uniformly spaced sample grid. The discrete-time signals
often contain a random component, which makes a directly computed fast
Fourier transform (FFT) appear “noisy” and thereby visually troublesome
to evaluate. Therefore, instead of directly computing the PSD using a
FFT, we estimate the PSD by dividing the discrete-time signal into
smaller segments and averaging their corresponding FFTs. Specifically,
we use the Welch method as described in [36]. In this thesis, the Welch
algorithm is parameterized equally for all PSDs computations using a
segment length of L = 216, a Hann data window, and a 50% overlap
between segments.

3.4.3 Quantization Error
The quantization error is determined by the distance between the refer-
ences corresponding to two adjacent digital codewords in the quantizer.
Typically, these references are uniformly distributed throughout the per-
missible input amplitude range of the quantizer, and then the largest
possible error is determined as

2∆max = umax − umin

2b (3.13)

where b is the number of bits used in the codeword and (umax, umin)
represents the largest and smallest permissible input amplitude to the
quantizer, respectively. The magnitude of the quantization error at any
given time depends on the input signal to the quantizer.

However, for the sake of a tractable analysis, it is standard to model
the quantization noise samples as i.i.d. uniformly distributed random
variables with a zero-mean and a variance

σ2
q = ∆2

max
12 . (3.14)

The PSD of the quantization noise, under the stated assumptions, follows
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as

Sq(eiΩ) = ∆2
max

24πfs
(3.15)

where the noise is assumed to be bandlimited, i.e., having zero energy
for |f | ≥ fs/2.

3.4.4 Expected SNR of a Delta-Sigma Modulator
The SNR for the continuous-time ∆Σ modulator from Section 3.3 is
computed as

SNR∆Σ =
∫
ω∈B |STF(eiωTs)|2Su(eiωTs) dω∫
ω∈B |NTF(eiωTs)|2Sε(eiωTs) dω . (3.16)

For a sinusoidal input of amplitude A, frequency f , and a quantization
error modeled as in Section 3.4.3, the expected SNR can be approximated
as

SNR∆Σ ≈ A2/2
(∫

ω∈B

1
1 + L1(eiωTs) dω

)−1
2πfs

12
∆2

max
(3.17)

with the assumption that f is within the frequency band of interest, i.e.,
assuming |G(2πf)| � 1.

The Taxonomy of a ∆Σ Modulator

As shown in [8], the SNR of a plain N -th order ∆Σ modulator, with a
loop filter comprising chains of integrators, can be approximated by

SNRmax ≈
3 · 2b(2N + 1)OSR2N+1

2π2N (3.18)

where we have assumed a sinusoidal input with amplitude umax−umin
2

and the quantization error variance as in Section 3.4.3. As indicated by
(3.18), the performance can be tuned by changing the number of bits in
the quantizer b, the system order N , and the OSR. (3.18) is also often
approximated directly in decibel (dB) as

SNRmaxdB ≈ 6.02b+ 1.76
+10 log(2N + 1) + 10(2N + 1) log(OSR)
−20N log(π). (3.19)
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The SNR can also be expressed as effective number of bits (ENOB),
i.e., the number of bits an ideal quantizer would require to achieve the
same SNR. The expression can be derived from (3.18) and is commonly
approximated as

ENOB ≈ SNRmaxdB − 1.76
6.02 . (3.20)

3.4.5 Discrete-Time-to-Continuous-Time
Transformation

As nicely covered in [22], the analog loop filterG(ω) of the continuous-time
∆Σ modulator from Section 3.3 is typically first designed using discrete-
time analysis and then transformed into an approximated continuous-time
form. This process is called discrete-time-to-continuous-time transfor-
mation, and multiple approaches exist. Typically this means that the
discrete-time filter is approximated in the time domain, at the correspond-
ing sample points, or in the frequency domain, at discrete frequencies, by
a continuous-time filter. Such approximations are, in general, involved as
many unknown parameters need to be determined. However, the topic of
discrete-time-continuous-time transformations is well supported in the
literature, see [22] and references within.

This additional design complexity is often considered a negative attribute
of the continuous-time ∆Σ modulator and often outweighs the potential
advantages of using continuous-time over discrete-time filters. As a result,
the majority of ∆Σ modulators found in both academia and industry are
predominantly discrete-time designs.

In contrast to designing a continuous-time ∆Σ modulator, for the control-
bounded ADC of the following chapters, see Section 4.5, the analog part
of the system is directly considered a continuous-time system. Therefore,
we avoid transformations from continuous-time to discrete-time in the
corresponding loop filter (analog system) design for the control-bounded
perspective.

3.5 MASH Delta-Sigma Converter
Due to the non-linearity introduced by the quantizer and DAC in Fig-
ure 3.4 it is not straightforward to determine for what parameter settings
a ∆Σ modulator is stable or not. This is especially true for systems with
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higher-order loop filters G(ω) in combination with a low-order quantizer,
and low-order DAC. Therefore, the design process requires long tran-
sient simulations and tuning to ensure stability. Furthermore, such an
empirical validation results in no theoretical stability guarantees.

One approach to remedy this problem is the multi-stage noise shaping
(MASH) ∆Σ converter. In this approach, the high-order loop filter is
divided into small order filters where each such stage has its own dedicated
A/D and D/A feedback loop. An example of a MASH ∆Σ converter is
given in Figure 3.7. As shown in the figure, the MASH is described using

u[k]
G1(eiΩ)

x1[k] y1[k]

DAC

G2(eiΩ)
x2[k] y2[k]

DAC

...
...

...

GN (eiΩ)
xN [k] yN [k]

DAC

H1(eiΩ)

H2(eiΩ)

HN (eiΩ)

û[k]

Figure 3.7: A continuous-time MASH ∆Σ modulator.

multiple discrete-time ∆Σ modulator in contrast to the continuous-time
version from Section 3.3. The reason for changing the continuous-time to
the discrete-time ∆Σ modulator, is that the digital cancellation principle
is better illustrated in this domain. However, we do recognize that there
exists a continuous-time version of the MASH ∆Σ modulator presented
next.

The main concept behind dividing the conversion task into multiple ∆Σ
modulators is that, starting from the second stage, the error signal of the
previous conversion is the input signal to the next converter stage. This
means that y1[k] is a sampled and quantized version of a filtered version
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of u(t) whereas y2[k], . . . , yN [k] are filtered version of the previous stage
conversion error.

Digital Cancellation Logic

The multi-output nature of the MASH ∆Σ converter requires a recon-
struction step in order to produce a final estimate û[k]. This step is
commonly referred to as the digital-cancellation logic, also represented in
Figure 3.7 by the digital filters H1(eiΩ), . . . ,HN (eiΩ). The given struc-
ture of the MASH results in very characteristic cancellation logic filters,
as we construct the linear system of equations

STF1(eiΩ)H1(eiΩ) = T (eiΩ) (3.21)
NTF1(eiΩ)H1(eiΩ) + STF2(eiΩ)H2(eiΩ) = 0 (3.22)

...
NTFN−1(eiΩ)HN−1(eiΩ) + STFN (eiΩ)HN (eiΩ) = 0 (3.23)

where STF1(eiΩ), . . . ,STFN (eiΩ) and NTF1(eiΩ), . . . ,NTFN (eiΩ) are
the STF and NTF of each sub system. The sub systems are constructed
similarly as in (3.4) and (3.2) with the modification that

STF1(eiΩ) = Y1(eiΩ)
Ũ(eiΩ)

, (3.24)

STF2(eiΩ) = Y2(eiΩ)
Z1(eiΩ) , (3.25)

...

STFN (eiΩ) = YN (eiΩ)
ZN−1(eiΩ) , (3.26)

and

NTF`(eiΩ) = Y`(eiΩ)
Z`(eiΩ) . (3.27)

Furthermore, T (eiΩ) represents the target transfer function for the input
signal. This is typically a simple filter like a single sample delay. What the
equation system describes is the cancellation of the previous conversion
error. Note that a perfect cancellation is only possible in the discrete-time
version of the MASH ∆Σ converter. For the continuous version, we can
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Figure 3.8: The PSD of a MASH ∆Σ Converter as in Figure 3.7 were
the loop filters G1(ω), . . . , GN (ω) are first-order analog
systems and we use one-bit quantizers. The notation (1-
...-1) represents different MASH configurations where the
number indicates the loop filter system order, and each
number represents a node in the MASH structure.

only approximate cancellation at the sampling times. Regardless the
specified system of equations results in

Û(eiΩ) = T (eiΩ)Ũ(eiΩ) +H1(eiΩ)
∏N
`=1 NTF`(eiΩ)∏N
m=2 STFm(eiΩ)

ZN (eiΩ)(3.28)

as we solve the systems of equations for H1(eiΩ), . . . ,HN (eiΩ). From
(3.28) we see that the estimate only has one error term, the conversion
error from the last stage ZN (eiΩ). Furthermore, this error term is shaped
by the product of all previous NTFs, i.e., we retain the same performance
as a higher-order system but ensure stability. The performance of a
MASH ∆Σ converter is shown in Figure 3.8.

We will generalize the conventional digital-cancellation logic in Section 4.7
as we compare the MASH approach to that of the control-bounded
converters.



Chapter 4

Control-Bounded
Analog-to-Digital
Conversion

The control-bounded analog-to-digital converter (ADC) approaches the
A/D conversion task differently compared to conventional A/D converters
from Chapter 3. Specifically, the A/D conversion task is broken down into
an analog system (AS), a digital control (DC), and a digital estimator
(DE) step, as illustrated in Figure 4.1. Before going into detail and
motivating the overall ADC structure, we briefly summarize each step
and describe their respective objective.

• The AS (preconditioning filter) is constructed such that it greatly
amplifies, possibly in an unstable way, the sought signal character-
istics of u(t).

• The DC observes a sampled and quantized version of the internal
states of the AS and subsequently produces a control signal
s[k] =

(
s1[k], . . . , sM [k]

)T to counteract the growth of these states.
The control signal, which is a digital discrete-time signal, gets
enforced by feeding back an analog continuous-time version s(t),
denoted the control contribution, to the AS.

27
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• The DE computes a continuous-time representation û(t) by solving
the inverse problem (g ∗ û) (t) = (g ∗ s) (t) where g(t) is the impulse
response of the AS. Additionally, the representation is such that we
can sample from it at arbitrary times t. These samples constitute
the output of the control-bounded ADC.

u(t) AS
s̃(t)

DC

s(t)

DE
s[k]

û(t)

Figure 4.1: The control-bounded view on A/D conversion.

In general, each of the signals u(t), s̃(t), s[k], and s(t) are vector-valued.

In the special case when u(t), s̃(t), and s(t) are scalar-valued functions,
the structure in Figure 4.1 does partially resemble that of a continuous-
time ∆Σ converter from Figure 3.3. Indeed, replacing the decimation
filter with the DE and recognizing the DAC as part of the DC, results in
a structure similar to that of a control-bounded ADC. This comparison
also reveals a fundamental conceptual difference: the interpretation of
the intermediate quantity s[k]. In the conventional view this is a sampled
and quantized version of input signal u(t) seen at the output of the ∆Σ
modulator, whereas in the control-bounded perspective this is a control
signal that stabilized the system and is therefore only indirectly related
to the input signal. These two perspectives result in two different ways
of estimating û(t).

However, the main contribution of the control-bounded ADC concept
is not an alternative decimation filter to the current state-of-the-art
continuous-time ∆Σ modulators. Instead, the control-bounded conver-
sion perspective defines a new interface between analog and digital domain
that enables ASs and DCs combinations which were previously unimag-
inable. We will come back and elaborate on this new design paradigm in
Section 4.5. To fully grasp the design aspects, we must first develop the
necessary mathematical foundation to describe the functionality and in-
teractions of each of the three control-bounded A/D conversion building
blocks. This will be done in the succeeding three sections (Section 4.1,
Section 4.2, and Section 4.3).
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The goal of this chapter is to describe the fundamental aspects of a
generalized control-bounded ADC structure. Several examples of control-
bounded ADCs will follow in the Chapters 5, 6, 7, 8, and 10.

4.1 Analog System
The preconditioning filter, from here on referred to as the the analog
system (AS), is an analog continuous-time filter. The role of the AS is to
enhance specific signal attributes of u(t) while simultaneously suppressing
unwanted attributes. Typically, this means amplifying one or multiple
frequency bands of u(t) while suppressing others. In general, larger
amplification and sharp transitions between the passband and stopband
require more complex, higher-order ASs. The overall performance of a
control-bounded converter will be inherently linked to the AS’s ability
to amplify the wanted signal characteristics, as we will return to in
Section 4.5.

Furthermore, since the AS will be controlled via the DC, it can be thought
of as an open-loop system. This means that stability is not necessary for
the AS to operate as stability will be enforced via the DC loop.

4.1.1 State Space Model
To describe the dynamics of the AS, we use a state space model notation,
illustrated in Figure 4.2. Specifically, the relation between a multi-channel
input signal

u(t) 4=
(
u1(t), . . . , uL(t)

)T ∈ RL, (4.1)

the AS state vector

x(t) 4=
(
x1(t), . . . , xN (t)

)T ∈ RN , (4.2)

and the control contribution

s(t) 4=
(
s1(t), . . . , sM (t)

)T ∈ RM (4.3)

are given by the system of ordinary differential equations (ODEs)

ẋ(t) = Ax(t) +Bu(t) + Γs(t). (4.4)

We say that such a system has L inputs, M controls, and N states.
Furthermore, the system matrix A ∈ RN×N , input matrix B ∈ RN×L,
and control input matrix Γ ∈ RN×M are all real-valued matrices.
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u(t) B +

∫
...∫ x(t)

Γ̃T s̃(t)

CT y(t)

Γ

s(t)

A

Analog System (AS)

Figure 4.2: State space model of the AS.

The AS additionally has two outputs: the control observation s̃(t) and the
signal observation y(t). The former is an actual physical signal that the
DC uses when determining the control signal. The latter is a conceptual
signal used by the DE when forming the estimate û(t). Specifically, the
DC observes the control observation s̃(t), which is a linear mapping of
the state vector via the control observation matrix Γ̃T ∈ RM̃×N as

s̃(t) 4= Γ̃Tx(t) ∈ RM̃ . (4.5)

Similarly, the DE uses Ñ state linear mappings as

y(t) 4= CTx(t) (4.6)

where CT∈ RÑ×N is the signal observation matrix. Note that since both
y(t) and C are purely conceptual quantities, they have no part in the
actual physical design of the AS. This is indicated in Figure 4.2 by the
dashed markings.

Furthermore, the number of controls M and the number of control
observations M̃ are not required to be the same. Also, note that we have
assumed the control contribution s(t) to enter the AS in an additive way.
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4.1.2 Transfer Function & Impulse Response Matrix
The given system of ODEs result in a transfer function matrix

G(ω) = CT (iωIN −A)−1
B ∈ CÑ×L (4.7)

and impulse response matrix

g(t) = CT exp (At)B ∈ RÑ×L, (4.8)

both describing the relation from u(t) to y(t), where (4.7) is denoted the
analog transfer function (ATF) matrix and similarly (4.8) as the analog
impulse response matrix. In the expression above exp(·) denotes the
matrix exponential function.

4.1.3 Anti-Aliasing Filter
The control-bounded converter does not require an explicit anti-aliasing
filter to precede it. Furthermore, as we do not consider DC signals to
be samples, aliasing effects do not directly affect the control-bounded
conversion process, as is the case for conventional converters. Specifically,
in the control-bounded converter, aliasing effects manifest themselves as
we sample the control contributions s̃(t). It is the AS’s task to suppress
the out-of-band signals possibly originating from either the input signal
or the control contributions. In this view, the AS also functions as an
anti-aliasing filter for the control observations. However, as suppressing
out-of-band signals while amplifying the in-band signals is part of the
fundamental design criteria of AS; additional anti-aliasing related circuitry
is typically not necessary.

4.2 Digital Control
In contrast to the AS, the DC operates in a discrete-time setting where
every operation is synchronized with a global clock, having a clock period
denoted T . We will often refer to this clock period as the control period
T . Furthermore, with the exception of the control contribution, see
Section 4.2.1, all internal variables are discrete-time digital signals.

It is the task of the DC to maintain bounded AS states. To this end, the
DC observes a sampled and quantized version of the control observations
(4.5) and produces a control contribution in response. In other words,
the DC internally includes both conventional ADCs, to observe the
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control observation s̃(t), and DACs to produce the control contribution
s(t), which is a continuous-time analog signal. In all the examples of
this thesis, we only consider 1-bit quantizers. However, it is possible,
but not recommended, to use higher-order quantization as discussed
in Section 4.2.3. Clearly, for any properly designed control-bounded
converter the effective resolution of the estimated samples û(t), generated
by the DE, greatly exceed those of the internal quatizers of the DC.

As previously stated, the task of the DC is to counteract the growth of the
AS states caused by the input signal and previous control contributions.
Its success is determined by the magnitude of the elements of the resulting
state vector x(t). A DC that can maintain a bounded AS state for a
bounded input signal is called effective. Effective controls will be the
topic of Section 4.2.2.

4.2.1 Control Contribution
The control contribution s(t) was introduced as an analog continuous-time
version of the control signal s[k]. Specifically, the relation is determined
by the DC’s corresponding DAC waveforms [22] as

s(t) = D(t− kT )s[k] (4.9)

where D(t) is a diagonal matrix as

D(t) 4= diag
((
d1(t), . . . , dM (t)

)T
)

(4.10)

Here d`(t) is the continuous-time DAC waveform associated with control
signal’s `-th element s`[k].

In this work, we will mostly use the square DAC waveform, i.e.,

d`(t)
4=
{

1 if t ∈ [0, T )
0 otherwise.

(4.11)

However, it is straightforward to extend the control-bounded ADC for
other DAC waveforms. This is the case for the switched capacitor DC in
Section 5.3.2 and the chain-of-oscillators DC in Section 7.4.

4.2.2 Effective Control
The performance of a control-bounded converter is inherently linked to
the ability of bounding the AS state vector, or equivalently, the conversion
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error signal seen at the AS’s fictional output, i.e., −y(t), as will be covered
in Section 4.3.1. This is done by the DC which observes a sampled and
quantized version of the control observation (4.5), and produces a control
contribution s(t) in response.

Prior knowledge of the input signal set can be incorporated into the DC
design. As an example, the input signals might be bandlimited, or their
amplitude are bounded by a known value. Throughout this thesis, all
input signals are assumed bounded, i.e.

u(t) ∈ U 4= {v(t) : ‖v(t)‖∞ ≤ bu, ∀t} (4.12)

for a bu > 0. Furthermore, we call a DC effective if it guarantees bounded
state vectors, i.e.

x(t) ∈ X 4= {x̃(t) : ‖x̃(t)‖∞ ≤ bx, ∀t} (4.13)

for a bx > 0 and a bounded input signal.

Note that, in general, ∆Σ modulators as those in Section 3.3, have no
stability guarantees for larger order filters and bounded input signals. By
stability, we mean that the magnitude of one or multiple elements of the
state vector does not exceed some bound resulting from physical limits
of the AS, which in turn leads to that the ∆Σ modulators hang and or
requires a reset during operation.

We can also formulate an effective control using the dynamical system
from (4.4). Specifically, by evalutating the solution to the system of
ODEs, the conditions for an effective control can be written as

max
x(t)∈X ,u∈U,t∈[0,T )

‖g̃(t) · x(0) + (g̃ ∗ s)(t) + (g̃ ∗ u)(t)‖∞ ≤ bx

(4.14)

where

g̃(t) 4= exp (At) (4.15)

(g̃ ∗ s) (t) =
∫ t

0
g̃(t− τ)Γs(τ) dτ (4.16)

(g̃ ∗ u) (t) =
∫ t

0
g̃(t− τ)Bu(τ) dτ. (4.17)

Note that s(t) is a function of x(0) as the DC observes a quantized version
of the control observation s̃(0) = Γ̃x(0), and based on this observation,
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produces its control signal and control contribution. This comes from
the assumption, without loss of generality, of a control period t ∈ [0, T ).
A natural consequence of a bounded state vector ‖x(t)‖∞ ≤ bx is that
the fictional signal observation also will be bounded as

‖CTx(t)‖∞ = ‖y(t)‖∞ (4.18)
≤ by (4.19)
= α · bx (4.20)

for a constant α > 0. This is of great importance since the bounded
signal observation will be a key component of the DE in Section 4.3.

Typically, for a specific AS paired with a specific DC, (4.14) can be
greatly simplified. An example will be given in Section 5.3 called the
local DC.

Remainder and Growth Term

The left-hand side of condition (4.14) can be upper bounded, using the
triangle inequality, as

max
x(t)∈X ,u∈U,t∈[0,T )

‖g̃(t) · x(0) + (g̃ ∗ s)(t) + (g̃ ∗ u)(t)‖∞ ≤

max
x(t)∈X ,t∈[0,T )

‖g̃(t) · x(0) + (g̃ ∗ s)(t)‖∞︸ ︷︷ ︸
max
t∈[0,T )

R(t)

+ max
u∈U,t∈[0,T )

‖(g̃ ∗ u)(t)‖∞︸ ︷︷ ︸
max
t∈[0,T )

G(t)

.

(4.21)

From the expression in (4.21) we identify two terms namely the remainder
term R(t) and the growth term G(t). The remainder term can be thought
of as the difference between the applied control signal and the state
trajectory. It is the goal of the DC to make this term as small as possible
for all t ∈ [0, T ) but in particular at the end of the control period T .

The growth term represents how much input signal can be fed into the
dynamical system during one control period without exceeding the bound.
In contrast to the remainder term, the growth term cannot be minimized
directly by the DC. Instead, only after the control period T can the DC
observe the growth terms effect and start to “digest” the newly introduced
signal contribution. As this is an upper bound,

max
t∈[0,T )

(R(t) +G(t)) ≤ bx (4.22)
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implies that the DC is effective.

4.2.3 Higher-Order Quantizers
In the ∆Σ literature, it is customary to use higher-order quantizers in
the feedback loop at the expense of a more complex ADC and DAC in
the signal path. This results in better performance and can, to some
degree, mitigate artifacts such as limit cycles.

Using higher-order quantizers in the control-bounded converter achieves
the same effect since the DC can maintain a smaller state-bound bx for
the same class of input signals. However, this is not the preferred way to
increase the complexity of the DC. Instead, we advocate the concept of
overcomplete control, described in Chapter 9, which achieves the same
effect but with additional robustness advantages and low-order quantizers
and DACs.

4.2.4 Independent Digital Controls
For the control-bounded ADC examples that will follow, the DC will
distribute the control task such that multiple controls operate indepen-
dently of each other. We call this independent DC. This design choice
results in less complicated hardware implementations of the DC since the
different control observations do not need to be coordinated. Construct-
ing control signals based on multiple control observations could render
superior performance but will not be pursued further in this thesis.

A general control-bounded ADC where the DC uses independent DC is
shown in Figure 4.3.

4.3 Digital Estimator
The third part of the control-bounded conversion process is the digital
estimation (DE) step. Here, the DE forms an estimate û(t) of u(t) based
on the control signal s[k], its corresponding control contribution s(t),
and the knowledge of the AS system parameters.

4.3.1 Statistical Estimation Problem
The first step of the digital estimation is to forget that the control
signal s[k] also represents a sampled and quantized version of some
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û
(t)

Γ
s
(t)

D
(t)

A

A
n
alog

S
y
stem

(A
S
)

D
igita

l
C
on

tro
l

(D
C
)

F
igure

4.3:
A

control-bounded
A
D
C

using
independent

D
C
s.

N
ote

that
the

dashed
m
arkings

referrers
to

conceptualquantitiesthatare
notpartofany

hardware
design

butbelongsto
the

D
E
and

isfurther
explained

in
Section

4.3.



4.3 Digital Estimator 37

linear mapping of the state vector. Instead, we focus on the control
contribution s(t) : R→ RM that we know results in an effective DC, i.e.,
its contribution to the state vector x(t) must resemble a mirrored version
of the input signal’s contribution to the same vector. It follows that the
same can be said for the fictional signal observation y(t) as this is simply
a linear mapping of the state vector. To formalize this approach imagine
the fictional signal

y̆(t) 4= (g ∗ u)(t) ∈ RÑ , (4.23)

i.e., the signal observation that would have resulted in the absence of a
DC. The actual signal observation can then be written as

y(t) = y̆(t)− q(t) (4.24)

where q(t): R → RÑ is the control contribution seen at the signal
observation. Note that q(t) is fully determined by the control signal s[k]
and is therefore known to the DE.

In contrast to y(t), both y̆(t) and q(t) are not bounded by by. On the
contrary, these two quantities magnitudes might, at times, be substantial.
In fact, allowing ‖y̆(t)‖∞ � by while ‖y(t)‖∞ ≤ by will be synonymous
with small conversion errors, as will explained further below.

For the sake of tractable analysis, we will now assume that the system
dynamics (4.4) are invariant and stable. This assumption only applies to
the analysis in this section. In particular, the actual digital estimation
filter Section 4.3.2 will not be limited by these assumptions.

We formulate an estimate û(t) of u(t) of the form

û(t) = (h ∗ q)(t) ∈ RL (4.25)

where h(t) : R→ RL×Ñ is the impulse response matrix of the estimation
filter. Furthermore, by (4.24), it follows that the estimate can be written
as

û(t) = (h ∗ y̆)(t)− (h ∗ y)(t) (4.26)
≈ (h ∗ y̆)(t) (4.27)
= (h ∗ g ∗ u)(t) (4.28)

where the quality of the approximation in (4.27) relies on that the elements
of y̆(t) have a much larger magnitude than those of y(t). Furthermore,
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we recognize −y(t) as the conversion error signal seen at the signal ob-
servation output of the AS. The whole estimation process is summarized
in Figure 4.4.

u(t) G(ω) +
y̆(t)

−y(t)

H(ω)
q(t)

û(t)

Figure 4.4: The estimation problem of a control-bounded converter,
where q(t) is known to the DE.

It remains to determine h(t). To this end, we construct a statistical esti-
mation problem where u(t) and y(t) are both assumed to be independent,
multivariate, centered, and wide-sense stationary stochastic processes.
Furthermore, the objective is to find the filter with impulse response
matrix h(t) such that

h(t) = argmin
h̄(t)

E
[
(û(t)− u(t))2] (4.29)

= argmin
h̄(t)

E
[
((h̄ ∗ q)(t)− u(t))2] . (4.30)

Note that t has no apparent meaning in (4.30) since both q(t) and u(t) are
assumed weakly stationary. In fact, we know q(t) to be cyclostationary
with period T . However, assuming it to be weakly stationary turns out
to give satisfactory results. The optimization problem in (4.30) has an
analytical solution which, via the orthogonality principle, is determined
by the conditions

E
[
((h ∗ q)(t)− u(t)) q(t+ τ)T] = 0L×Ñ (4.31)

for any τ ∈ R. (4.31) can also be written as

E
[
(h ∗ q)(t)q(t− τ)T] = E

[
u(t)q(t− τ)T] (4.32)

(h ∗RqqT)(τ) = RuqT(−τ) (4.33)

where

RqqT(τ) 4= E
[
q(t)q(t+ τ)T] (4.34)

RuqT(τ) 4= E
[
u(t)q(t+ τ)T] (4.35)
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are the autocovariance and cross-covariance respectively. The Equation
(4.33) is commonly known as the Wiener-Hopf equation.

By taking the Fourier transform on both sides of (4.33) we obtain

H(ω)
(
G(ω)SuuT(ω)G(ω)H + SyyT(ω)

)
= SuuT(ω)G(ω)H (4.36)

where H(ω) is the element-wise Fourier transform of h(t) and the PSDs

SuuT(ω) 4=
∫ ∞
−∞

E
[
u(t)u(t+ τ)T] e−iωτ dτ (4.37)

SyyT(ω) 4=
∫ ∞
−∞

E
[
y(t)y(t+ τ)T] e−iωτ dτ. (4.38)

In the case both u(t) and y(t) are assumed i.i.d. multivariate Gaussian
stochastic processes, their spectral densities can be written as

SuuT(ω) = σ2
uIL (4.39)

SyyT(ω) = σ2
yIN . (4.40)

Consequently, the condition from (4.36) can be rearranged such that the
reconstruction filter follows as

H(ω) = G(ω)H (G(ω)G(ω)H + η2IN
)−1 (4.41)

where η2 4= σ2
y/σ

2
u. (4.41) is also known as a Wiener filter [1, 13]. The

steps from (4.32) to (4.33) and in particular (4.36) are covered in detail
in Appendix A.

Revisiting the approximation in (4.27) we can write the conversion error
signal as

ε(t) 4= û(t)− (h ∗ g ∗ u)(t) (4.42)
= −(h ∗ y)(t). (4.43)

From (4.43) it is clear that the error is “shaped” by H(ω). With this in
mind, we will refer to the reconstruction filter H(ω) as the noise transfer
function (NTF) matrix. By rewriting the estimate from (4.26) in the
Fourier domain as

Û(ω) = H(ω)G(ω)︸ ︷︷ ︸
STF(ω)

U(ω)−H(ω)︸ ︷︷ ︸
NTF(ω)

Y (ω) (4.44)
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we can also identify the signal transfer function (STF) matrix as

T (ω) 4= STF(ω) (4.45)
= H(ω)G(ω). (4.46)

The Scalar Input Case

In the scalar input signal case the ATF matrix (4.7) is a column vector.
Therefore, the matrix inverse in (4.41) can be reduced to a scalar division
using the matrix inversion lemma. Subsequently, the NTF and STF from
(4.44) can be written in a simplified form as

H(ω) = NTF(ω) = G(ω)H

‖G(ω)‖22 + η2 ∈ C1×Ñ (4.47)

and

STF(ω) = ‖G(ω)‖22
‖G(ω)‖22 + η2 ∈ R. (4.48)

Setting the Bandwidth

The bandwidth of the DE filter is regulated using the parameter η > 0.
In the scalar input case, assuming a monotonically decreasing ‖G(ω)‖∞
in ω, the bandwidth of the DE can be determined as

‖G(ωcrit)‖22 = η2 (4.49)

where the frequency band of interest is determined by 0 ≤ |ω| ≤ ωcrit

Additionally, at the critical frequency the ratio of the STF and NTF

STF(ωcrit)
‖H(ωcrit)‖2

= ‖G(ωcrit)‖22
‖G(ωcrit)‖22 + η2

(
‖G(ωcrit)‖2

‖G(ωcrit)‖22 + η2

)−1
(4.50)

= ‖G(ωcrit)‖2 (4.51)
= η. (4.52)

4.3.2 Digital Estimation Filter
The estimate in (4.25) is not straightforward since it involves continuous-
time convolution and possibly unbounded quantities. Fortunately, there is
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a non-standard Kalman smoothing algorithm [19] that, when computing
samples of û(t), converges to the estimate in (4.25) as the considered
time window extends towards infinity. Furthermore, the algorithm is
indifferent to the stable AS assumption that was made in the analysis in
the previous section.

The algorithm is derived using factor graphs [4, 5, 18]. However, in-depth
knowledge of factor graphs is not necessary for applying the algorithm
as it reduces to a linear filter. Therefore, we will proceed by presenting
the resulting filter. A derivation of this algorithm can be found in
Appendix D.1 or alternatively in [20].

In principle, this algorithm can be adjusted for any set of samples
{t1, t2, . . . }. However, the expressions below are computed for regu-
lar sampling grid, i.e., uniformly spaced samples {. . . , (k − 1)T, kT, . . . }
where T is the control period from the DC.

The algorithm reduces to three steps: firstly, a forward recursion
−→mk+1

4= Af
−→mk +Bfs[k], (4.53)

a backward recursion
←−mk−1

4= Ab
←−mk +Bbs[k − 1], (4.54)

and finally the estimate

û(tk) 4= W T (←−mk −−→mk

)
. (4.55)

An offline and online implementation of these recursions, and their cor-
responding complexity, will be further discussed in Section 4.3.4 and
Section 4.3.5.

To compute the quantities Af , Bf , Ab, Bb, and W we first need to
compute the symmetric steady-state forward and backward covariance
matrices −→V ∈ RN×N and ←−V ∈ RN×N which are of the same dimensions
as A. The forward steady-state covariance matrix can be computed by
finding the limit

−→
V
4= lim
τ→0

lim
`→∞

−→
V ` (4.56)

where
−→
V `+1

4= −→V ` + τ

(
A
−→
V ` +

(
A
−→
V `

)T
+BBT − 1

η2
−→
V `CC

T−→V `

)
(4.57)
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or equivalently by solving the continuous-time algebraic Riccati (CARE)
equation

A
−→
V ` +

(
A
−→
V `

)T
+BBT − 1

η2
−→
V `CC

T−→V ` = 0N×N . (4.58)

The backward steady state covariance matrix is computed almost identi-
cally but with a sign change resulting in the continuous-time algebraic
Riccati equation

A
←−
V ` +

(
A
←−
V `

)T
−BBT + 1

η2
←−
V `CC

T←−V ` = 0N×N . (4.59)

The matrix W ∈ RL×N follows from solving the linear equation system(−→
V +←−V

)
W = B (4.60)

with respect to W . The Af ∈ RN×N matrix is defined as

Af
4= exp

((
A− 1

η2
−→
V CCT

)
T

)
(4.61)

and similarly the Ab ∈ RN×N matrix is defined as

Ab
4= exp

(
−
(
A+ 1

η2
←−
V CCT

)
T

)
. (4.62)

Furthermore, the Bf ∈ RN×M matrix is defined as

Bf
4=
∫ T

0
exp

((
A− 1

η2
−→
V CCT

)
(T − τ)

)
ΓD(τ) dτ (4.63)

and the Bb ∈ RN×N matrix is defined as

Bb
4= −

∫ T

0
exp

(
−
(
A+ 1

η2
←−
V CCT

)
(T − τ)

)
ΓD(T − τ) dτ.

(4.64)

4.3.3 Parallel Digital Estimation Filter
Equations (4.53), (4.54) and (4.55) can also be casted as a fully parallel
version where

−→̃
mk+1,n

4=
−→̃
λ n
−→̃
mk,n +

−→̃
f n(s[k]) (4.65)

←−̃
mk−1,n

4=
←−̃
λ n
←−̃
mk,n +

←−̃
f n(s[k − 1]) (4.66)
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and

û`[k] =
N∑
n=1

−→̃
w n,`
−→̃
mk,n +←−̃w n,`

←−̃
mk,n (4.67)

Note that (4.65), (4.66) and (4.67) are all scalar expressions. The in-
dex n in (4.65)–(4.67) and the index ` in (4.67) refer to the respective
vector components. The coefficients

−→̃
λ n and

←−̃
λ n are obtained from the

eigenvalue decomposition

Af = Qf
−→̃
ΛQ−1

f (4.68)

Ab = Qb
←−̃
ΛQ−1

b (4.69)

where
−→̃
Λ = diag(

−→̃
λ 1, . . . ,

−→̃
λ N ) and

←−̃
Λ = diag(

←−̃
λ 1, . . . ,

←−̃
λ N ) are the

eigenvalues of Af and Ab respectively. The scalar functions
−→̃
f n(·) and←−̃

f n(·) are the n-th elements of the vectorized functions
−→̃
f (s[k]) 4= Q−1

f Bfs[k] (4.70)
←−̃
f (s[k]) 4= Q−1

b Bbs[k], (4.71)

and −→̃w n,` and
←−̃
w n,` are the (n, `)-th elements of the matrices

−→
W

4= −QT
fW (4.72)

←−
W

4= QT
bW . (4.73)

4.3.4 Offline Batch Estimation
The DE filter, as specified by (4.53), (4.54), and (4.55), result in an offline
version of the DE filter. Specifically, we can estimate the input signal
û(kT ) for a batch of samples k ∈ [K0,K0 +K1 − 1] where K1,K0 ∈ Z+.
Computing the batch requires the control signals {s[K0], . . . , s[K0 +K1−
1]} as well as the precomputed filter coefficients from (4.61), (4.62), (4.63),
(4.64), and (4.60).

A pseudo code implementation of the described recursions are given in
Algorithm 2 that is found in Appendix E.1. In summary, the algorithm
first does a forward recursion followed by a backward recursion and
estimation step.
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Similarly, the parallel recursions from (4.65), (4.66) and (4.67) result in an
offline algorithm as given in Algorithm 3 that is found in Appendix E.1.2.
In the pseudo code we have highlighted the possibility of executing code
in parallel by the do in parallel statement. The main difference between
Algorithm 2 and Algorithm 3 is the number of required multiplications
scale linearly in the latter compared to quadratic in the former. Note that
this has nothing to do with previously mentioned parallelism. The linear
scaling of number of multiplications is of great value from a computa-
tional effort viewpoint but comes with an additional caveat. Specifically,
the parallel version requires complex arithmetics as the eigenvalue decom-
position, from (4.68) and (4.69), typically results in complex eigenvalues
and eigenvectors.

Computational Complexity for Offline Version

Before discussing the computational complexity of these offline batch
algorithms we remind ourselves that, as also given in Table 4.1,

• K1 is the number of samples in the batch,

• L is the number of input channels,

• M is the number of independent scalar controls used by the DCs,

• and N is the number of states in our AS.

The computational effort of Algorithm 2 and Algorithm 3 are summa-
rized in Table 4.2 and Table 4.3 respectively where we have assumed a
naive implementation of the matrix vector operations. Specifically, these
results follow from the general notion that a L×N matrix and N vector
product requires LN multiplications and L(N − 1) additions. Further-
more, assuming a binary control signal s[k] the product Bfs[k], Bbs[k],
Q−1
f Bfs[k], and Q−1

b Bbs[k] each reduces to M(N − 1) additions.

Alternatively, due to the digital nature of s[k], these computations could
be precomputed and implemented using a lookup table. Specifically, such
a lookup table would map 2M unique control signal sample combinations
to twice as many N -dimensional scalar vectors. This approach would
dramatically decrease the total number of additions, especially for Algo-
rithm 3, as shown in Table 4.2 and Table 4.3. However, as the memory
requirements grows exponentially in M such an approach is only feasible
for a relatively low number of independent controls M .
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For Algorithm 2 the binary control signal results in K1(N(N − 1) +
N(M−1)+N) additions in the forward recursion (row 8 in Algorithm 2),
K1(N(N − 1) +N(M − 1) + 2N) additions in the backward recursion
(row 12 in Algorithm 2), and K1L(N − 1) additions in the estimate (row
13 in Algorithm 2).

For Algorithm 3 we account for the complex arithmetics by the notion
that a complex multiplication results in 4 real arithmetic multiplications
and a complex addition requires 2 real additions. As the computations
in Algorithm 3 are all scalar valued, the total number of multiplications
and additions follows directly from the expressions.

In terms of memory allocation, the algorithm requires the storage of
{s[K0], . . . , s[K0 +K1 − 1]} control signals which amounts to K1M bits.
Furthermore, the mean matrix and estimation matrix, from rows 4 and 5
in Algorithm 2, requires storing another N(K1 + 1) + LK1 real-valued
scalar values. In Algorithm 3, this number is 4N(K1 + 1) + 2LK1 real-
valued scalar values. Finally, the filter coefficients amounts to
2N2 + 2MN + LN scalar values.

In the batch computation above we are not taking the effect of windowing
into account. Therefore, to achieve a target performance, the batch must
include additional samples on both sides, such that the estimates in the
middle of the batch are sufficiently unaffected from windowing effects to
reach a target performance criteria.

Computational Effort per Estimated Sample

Based on the results presented in Table 4.2 and Table 4.3 we can express
the computational effort per estimated scalar sample, i.e. we divide the
batch’s computational effort by K1L, the number of estimated scalar
values per batch. Furthermore, we use the big O notation to describe
the general complexity scaling.

The default offline batch estimator from Algorithm 2 in Appendix E
consumes

• O
(
N2

L

)
real-valued scalar multiplications,

• O
(
N2+MN

L

)
real-valued scalar additions,

• and requires M
L bits and N

L + 1 real-valued scalar values to be kept
in memory
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per estimated scalar sample. In comparison the parallelized version, as
in Algorithm 3, consumes

• O (N) real-valued scalar multiplications,

• O
(
N(L+M)

L

)
real-valued scalar additions, or alternatively O (N)

when using a lookup table,

• and requires M
L bits and 4NL + 2 real-valued scalar values to be kept

in memory

per estimated scalar sample.

4.3.5 Online Filter Estimator
The algorithm from the previous section described an offline algorithm
for computing a batch of estimates. In this section we will generalize the
batch algorithm for the purpose of computing sequences of consecutive
batches. In essence, this will involve specifying a time horizons and a batch
size to balance fundamental sample delay, computational complexity, and
memory allocation.

Fundamentally, this is achieved by adopting a sliding window type filter as
illustrated in Figure 4.5. For this approach, computational steps outlined
in Section 4.3.4 remains. Additionally, we now considering the effects
of windowing by explicitly including a lookahead computation involving
K2 control signal samples that succeed the last estimated sample in the
batch. As both the proposed batch estimators are recursive it is only
in the, forward time direction that we require a lookahead computation.
For looking back in time, the previous filter trajectory can simply be
incorporated by passing a single initial mean vector corresponding to
the last batch state vector from the preceding batch computation. The
online version of Algorithm 2 and Algorithm 3 are given in Algorithm 4
and Algorithm 7 respectively. Further implementation details can be
found in Appendix E.2.

The principle difference between these online versions and their corre-
sponding offline versions is the K2 lookahead computations. In particular,
K2 needs to be chosen large enough such that the effect of windowing is
smaller than the sought resolution for the last estimate û[(`+ 1)K1 − 1]
of the `-th batch. Additionally, K1 +K2 makes up, the worst case, sam-
ple delay between a control signal sample and a input estimate sample
involved in the same batch.
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û
[(`

+
1)K

1 ]
···

û
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Computational Complexity for Online Filter Estimator

As for the offline version we summarize the computational effort of both
these online estimators in Table 4.5 and Table 4.6.

When considering the computational effort per scalar estimate Algo-
rithm 4 results in

• O
(
N2

L (1 + K2
K1

)
)
real-valued scalar multiplications,

• O
(
N2+MN

L (2 + K2
K1

)
)
real-valued scalar additions,

• and requires (1+K2+1
K1

)M
L bits and N+1

L + 1 real-valued scalar values
to be kept in memory

per estimated scalar sample. Alternatively, the parallel version in Algo-
rithm 7 scales as

• O
(
N(1 + K2

K1L
)
)
real-valued scalar multiplications,

• O
(
N
(

1 + M
L (1 + K2

K1
)
))

real-valued scalar additions,

• and requires (1+K2+1
K1

)M
L bits and 4N+1

L real-valued scalar values to
be kept in memory

per estimated scalar.

We will next summarize the involved tradeoffs in terms of the DE online
version parameters K1, the estimated samples per batch, and K2 the
lookahead per batch.

Starting with K2. This parameter scales with the ultimate targeted
resolution per sample as a finer resolution requires a longer lookahead
to suppress the impact of windowing. This value can be determined by
simulation and ideally should be chosen no larger than required.

Secondly, by selecting a large batch size K1 the relative computational
cost associated with the lookahead diminishes as can be seen from the
scalings above. The fundamental drawback of a large batch size is that
the fundamental sample delay K1 +K2 increases which might be a severe
disadvantage for a real time application. Another aspect with increasing
the batch size is that, even though the relative memory allocation per
estimated sample does not increase, the total memory requirement grows
linearly in K1.
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4.3.6 Sub-Sampling
In Section 4.3.2, the digital filter was derived for samples spaced uniformly
with the control period T . Another common scenario is to sample less
densely. This could, for instance, be the Nyquist rate of the frequency
band of interest as would be the case for a decimation filter commonly
used in combination with a ∆Σ modulator, see Section 3.2. For a sample
period Tu = ξT where ξ is an integer, we modify (4.53) and (4.54) as

−→mk+1
4= Ãf

−→mk +
ξ−1∑
`=0

B̃`
fs[kξ + `], (4.74)

←−mk−1
4= Ãb

←−mk +
ξ−1∑
`=0

B̃`
bs[kξ − `− 1], (4.75)

where Ãf , Ãb are computed as in (4.61) and (4.62) but with T replaced
by Tu,

B̃`
f
4=
∫ Tu

0
exp

((
A− 1

η2
−→
V CCT

)
(T − `Tu − τ)

)
ΓD(τ) dτ,

(4.76)

and

B̃`
b
4= −

∫ Tu

0
exp

(
−
(
A+ 1

η2
←−
V CCT

)
(T − `Tu − τ)

)
ΓD(Tu − τ) dτ.

(4.77)

Note that the final estimate computation from (4.55), as well as the
computation of the steady-state covariances, remains unchanged.

4.3.7 Digital Estimator as an Impulse Response
The recursions described in (4.53), (4.54), and (4.55) can be organized as
a mixed infinite impulse response (IIR) and finite impulse response (FIR)
filter or alternatively as a FIR filter. In the following derivations we
use the control period T to determine the spacing between samples. It
is possible to adjust these expressions for other sample spacings as, for
example, as in Section 4.3.6.
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For the mixed IIR/FIR filter version this is achieved by writing out the
estimate from (4.55) as

û(tk) = −W T−→mk +
K−1∑
`=0

h̃`s[k + `] (4.78)

with

h̃`
4= W TA`

bBb ∈ RL×M (4.79)

and −→mk recursively computed as in (4.53). We recognize K > 0 as the
lookahead and this needs to be chosen large enough such that the filter’s
window size is not the limiting precision bottleneck, see Section 4.3.5.

Similarly, the forward recursion can also be expanded resulting in FIR
filter version

û(tk) =
K2−1∑
`=−K1

h̆`s[k + `] (4.80)

where h̆` ∈ RL×M follows as

h̆`
4=
{
W TA`

bBb if ` ≥ 0
−W TA−`+1

f Bf else.
(4.81)

In this version the resulting FIR filter has two window length parameters.
Namely, K2 > 0 which is the lookahead as in the FIR/IIR filter version
and K1 > 0 which similarly represents how the time window reaches back
in time. Note that (4.80) in comparison to (4.78) needs an additional
K1 − 1 filter taps to ensure sufficient resolution.

Note that the IIR and FIR filter coefficients above are, for a general
control-bounded converter, matrices and not scalars which differs from
how IIR/FIR filters are typically described. Clearly, this does not ef-
fect the FIR/IIR implementation other than scalar multiplications and
additions become their matrix/vector equivalent.

4.3.8 The Digital Estimator as a Quadratic Program
Alternatively, to all the recursive estimators outlined in the previous
sections, the digital estimation problem can be seen as the constrained
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quadratic program

û(t) = argmin
ũ(t)

∫ ∆

−∆

(
‖y(τ)‖22 + η2‖ũ(τ)‖22

)
dτ (4.82)

such that
ẋ(t) = Ax(t) +Bũ(t) + Γs(t), t ∈ [−∆,∆]
y(t) = CTx(t)

where ∆ > 0 determines a time window. (4.82) can also been seen as a
variation of Kalman smoothing [13, 18] where the estimate û(t) is known
to converge to that of (4.25) with h(t) as the Wiener filter (4.41) for
∆→∞.

4.4 Performance Measure
To formulate the design principle of a control-bounded ADC, we first
need to determine a performance measure. To this end, we will adapt
the standard SNR measure that is commonly used in the ∆Σ community,
see Section 3.4. Additionally, due to our estimate and conversion error’s
continuous-time nature, the standard SNR definition needs to be slightly
adjusted.

To make the following analysis more transparent, we restrict the input
signal u(t) to the scalar case. The steps here can be fully extended to the
multivariate case. However, this would require a generalized definition of
SNR.

In the scalar input case, the mean squared values of the signal and
conversion error can be written as

Pu
4= E

[
u(t)2] (4.83)

= 1
2π

∫ ∞
−∞
|T (ω)|2SuuT(ω) dω (4.84)

and
Pε

4= E
[
ε(t)2] (4.85)

= 1
2π

∫ ∞
−∞

H(ω)SyyT(ω)H(ω)H dω (4.86)

where y(t) is modeled as a stationary stochastic process with PSD matrix

SyyT(ω) 4=
∫ ∞
−∞

E
[
y(t)y(t+ τ)T] e−iωτ dτ. (4.87)
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Note that y(t) being stationary is a statistical assumption that we know
to not be true for many input signals of interest. Additionally, we assume
the spectrum of the signal observation vector y(t) to be bandlimited i.e.,

Pε|B = 1
2π

∫
ω∈B

H(ω)SyyTH(ω)H dω (4.88)

=
σ2
y|B

2π · B (4.89)
= Pε (4.90)

where B is defined as in (3.10). This cannot be literally true. Regardless,
both these assumptions provide a useful model for the analysis as

SyyT(ω) ≈ σ2
y|BIM . (4.91)

Consequently, we can write

Pε|B ≈
σ2
y|B

2π

∫
ω∈B

H(ω)H(ω)H dω (4.92)

=
σ2
y|B

2π

∫
ω∈B

‖G(ω)‖22
(‖G(ω)‖22 + η2)2 dω (4.93)

≈
σ2
y|B

2π

∫
ω∈B

1
‖G(ω)‖22

dω (4.94)

4.5 Design Principle
When designing a control-bounded ADC, the design task naturally splits
into two subsequent steps. Firstly, to design the AS such that sufficient
gain is provided in the signal band of interest. Secondly, an effective DC
is determined that ensures a bounded state vector.

In the first step, the AS is optimized towards a target ‖G(ω)‖22 specified
over the signal band of interest. In this step, we do not concern ourselves
with stability constraints meaning this is a purely analog, continuous-
time, and possibly unstable design step. Note that since it is the norm
of the transfer function that is optimized, i.e., G(ω)HG(ω), increasing
the amplification by positive feedback (having unstable poles) does not
necessarily increase the overall system amplification.

In the second step, when designing the DC, the goal is to bound the AS
state vector. This means that the DC can be designed without concern
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of any overall transfer function or AS amplification. As an example, the
local control from Section 5.3 divides the control task into local DC tasks
for every individual state of the AS.

These two design goals are nicely emphasized in the conversion error
approximation from (4.94). Namely, the SNR or alternatively, the con-
version error suppression, as in (3.8), is determined by the AS’s ‖G(ω)‖22
norm integrated over the signal band of interest and the noise variance
σ2
y|B. The magnitude of σ2

y|B follows from the digital controls ability to
bound the state vector. In other words, a large AS amplification, in the
band of interest, together with a tight control bound, results in a large
SNR.

It is possible to consider these two steps independently. However, the DC
does depend on the choice of AS. Therefore, there is some value to also
optimizing the AS such that it can be more easily controlled for a given
DC strategy. An example would be to make a more complicated AS
that amplifies the signal band of interest and also suppresses out-of-band
signals. For such a system, the DC does not need to have a wideband
DAC waveform, which could enable tighter state bounds.

Based on the AS, the DC, and a fixed bandwidth parameter η2, the DE
can be computed as in Section 4.3.2. Note that the DE does not pose
any additional constraints on the design of the AS or the DC.

4.6 Non-Idealities
The performance measure of Section 4.4 can be extended to also account
for thermal noise and component mismatch. For simplicity, we restrict
ourselves to the case where u(t) is scalar as in Section 4.4.

4.6.1 Thermal Noise
Let z(t) be a single thermal noise signal entering at some point in the AS
and let gz(t) be the vector of impulse responses from this noise source to
y(t). Under the stated assumptions we can rewrite the signal observation
from (4.24) as

y(t) = (g ∗ u)(t) + (gz ∗ z)(t)− q(t). (4.95)
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Subsequently, the estimate from (4.25) follows as

û(t) = (h ∗ q)(t) (4.96)
= (h ∗ g ∗ u)(t) + (h ∗ gz ∗ z)(t)− (h ∗ y)(t), (4.97)

where the term
εz(t)

4= (h ∗ gz ∗ z)(t) (4.98)

is the additional error due to z(t).

Assume that, within the frequency band of interest B, z(t) is a stationary
stochastic process with a flat PSD

Sz(ω) = σ2
z|B. (4.99)

The contribution of (4.98) to the noise power (4.85) is then easily deter-
mined to be

Pεz =
σ2
z|B

2π

∫
B
H(ω)Gz(ω)Gz(ω)HH(ω)H dω (4.100)

=
σ2
z|B

2π

∫
B

|G(ω)HGz(ω)|(
‖G(ω)‖22 + η2

)2 dω, (4.101)

where Gz(ω) is the elementwise Fourier transform of gz(t).

Finally, the total contribution, of multiple such thermal noise sources
z1(t), z2(t), . . . to the noise power (4.85), follows as Pεz1

+ Pεz2
+ . . ..

4.6.2 Mismatch
Let g̃, q̃, and h̃ be the nominal (i.e., assumed by the DE) values of the
actual quantities g, q, and h, respectively. We still have

y(t) = (g ∗ u)(t)− q(t), (4.102)

but as the DE does not know the nominal AS parameters the estimate
from (4.25) follows as

û(t) = (h̃ ∗ q̃)(t) (4.103)
= (h̃ ∗ (q̃ − q))(t) + (h̃ ∗ q)(t) (4.104)
= (h̃ ∗ (q̃ − q))(t) + (h̃ ∗ g ∗ u)(t)− (h̃ ∗ y)(t). (4.105)
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The total conversion error can then be written as

ε(t) 4= û(t)− (h̃ ∗ g̃ ∗ u)(t) (4.106)
= (h̃ ∗ (g − g̃) ∗ u)(t) + (h̃ ∗ (q̃ − q))(t)− (h̃ ∗ y)(t). (4.107)

The three terms in (4.107) are of a very different nature. The last term,
−(h̃ ∗ y)(t), is the nominal conversion error as in (4.43), to which the
analysis in Section 4.4 applies essentially unchanged. In other words, the
contribution of this term to the in-band noise power (4.85) is essentially
unaffected by the mismatch.

The first term in (4.107),

εg̃(t) 4= (h̃ ∗ (g − g̃) ∗ u)(t), (4.108)

accounts for a modification of the STF. In principle, this term can be
neutralized by calibrating post-filtering. Furthermore, if this term is
considered as noise, its magnitude depends on the signal u(t).

If we assume u(t) to be white noise within the band of interest B, the
contribution of (4.108) to the in-band noise power can be expressed by
an obvious modification of (4.100).

The second term in (4.107) is more troublesome

εq̃(t) 4= (h̃ ∗ (q̃ − q))(t) (4.109)

=
(
h̃ ∗

M∑
`=1

(g̃q` − gq`) ∗ s`

)
(t), (4.110)

where g̃q` and gq` are the nominal and the actual transfer functions,
respectively, from s`(t) to y(t).

If we boldly assume s1(t), . . . , sM (t) to be stochastic processes with a flat
PSD, within the band B of interest, the contribution of (4.110) to the
in-band noise power can also be expressed by an obvious modification of
(4.100). However, depending on the DC, the white-noise assumption may
be too bold, cf. Figure 5.20 from the chain-of-integrators ADC example.
In any case, the PSD of s(t) (for a specific input signal u(t)) can be
determined by simulations.
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4.7 Relation to Delta-Sigma Modulators
We already acknowledged that for the special case of a single state, single
input, and single control contribution, the control-bounded ADC and the
∆Σ modulator result in an identical AS and DC. We also established
that the DE, alternatively the digital cancellation and decimation filter
in the conventional view, were fundamentally different approaches in
terms of how the signal is represented and post-filtered. We will next
investigate the two different filters for the same AS and DC. Furthermore,
in Section 4.7.2 we will show how the MASH ∆Σ modulator can be
described as a control-bounded ADC. Subsequently, in Section 4.7.3 we
generalize the concept of digital-cancellation logic such that this principle
can be compared, at the same level of abstraction, to the general DE of
the control-bounded ADC.

4.7.1 Transfer Function Comparison
To demonstrate the difference between the DE from Section 4.3 and the
standard ∆Σ modulator approach we compare the STF and NTF for
each case as well as the SNR. In other words we are comparing (3.2)
and (3.4), from the ∆Σ modulator case, with (4.41) and (4.44) from the
control-bounded ADC case. As these expressions depend on the AS, or
alternatively the loop filter, we set

GCI1(ω) = β

iω
(4.111)

i.e., a first-order integrator system. Furthermore, we set the control
period and the sample period equally as

T = Ts (4.112)
= 1/(2β). (4.113)

This parameter choice will ensure an effective controller and is further
described in Section 5.3. The four different transfer functions are shown
in Figure 4.6.

We know that the definition of SNR depends on the integral of the
signal’s and error’s PSD over the frequency band of interest. However,
from Figure 4.6, it is not immediately clear how this compares for the two
approaches. Therefore, we conceptually apply a full scale sinusoidal test
signal with a frequency of f . Furthermore, we assume a bandlimited flat
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Figure 4.6: Comparison of NTF and STF for a first order integrator
system. The black lines represents the control-bounded
ADC as in (4.44). The red lines represent the continuous-
time ∆Σ modulator system as in (3.2) and (3.4), i.e. the
STF and NTF of the corresponding ∆Σ modulator from
input to bitstream without subsequent filtering. Note that
the control-bounded DE filter implicitly applies a low pass
filter which is not the case for the ∆Σ modulator.

spectrum PSD conversion error/quantization error of the same expected
square magnitude per unit time in both cases. The resulting SNR is
shown in Figure 4.7. From the figure, it is clear that for signals with
the frequencies well below the unit gain of the AS, the two different
approaches perform essentially equivalent.

The proposed analysis could additionally be applied for a higher-order
system G(ω). However, note that in this case, additional assumptions
need to be made. Specifically, the control-bounded ADC has N outputs,
and as many NTFs, for a N -th order system, whereas the ∆Σ modulator
only has one.
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Figure 4.7: SNR plot for a sinusoidal input signal of frequency f and
assuming the same PSD for both the conversion error as in
(4.40) and the quantization error as in (3.15). Similarly as in
Figure 4.6 the black line corresponds to the control-bounded
ADC case and the red to the ∆Σ modulator.

4.7.2 MASH State Space Representation

A continuous-time version of the MASH ∆Σ converter from Section 3.5
can also be rearranged in the same form as in Figure 4.1 with a state
space representation

AMASH =



A1
−B2C

T
1 A2

. . . . . .

−BNCN−1 AN


, (4.114)

BMASH =

 B1
0N×L

...

 , (4.115)
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CT
MASH =

C
T
1

CT
2

. . .

 , (4.116)

ΓMASH(ω) =


D1(ω)
D1(ω) D2(ω)

D2(ω) D3(ω)
. . . . . .

 , (4.117)

and Γ̃MASH = CT
MASH. Furthermore, in the given representation each

subsystem G1(ω), G2(ω), . . . , GN (ω) are additionally written in state
space form such that

G`(ω) = CT
`

(
iωIN̆` −A`

)−1
B` (4.118)

where N̆` is the system order of the `-th system and D`(ω) represents
the frequency response of the `-th DAC.

4.7.3 Generalized Digital Cancellation Logic
The MASH ∆Σ converter relies on a digital cancellation filter to produce
its estimate. This concept can be extended for many of the control-
bounded ADCs presented in this thesis. We will generalize this concept
such that the MASH digital-cancellation logic can be compared at the
same level of abstraction as the digital filter of the control-bounded ADC
approach. The goal of this generalization is to highlight the difference in
the approaches and finally to see why the control-bounded ADC allows
more general ADC systems. Note that the state space representation
used here is the general one from Section 4.1.1 and need not be the one
presented in the context of the MASH ∆Σ.

Firstly, following the steps in Section 3.3 by modeling the quantizers as
additive white noise results in the approximated model as in Figure 4.8.
The model from Figure 4.8 does not directly translate to a traditional
state space form. To emphasize the quantization error seen as an input
to the system, we use the given model’s linearity to redraw the figure as
in Figure 4.9. Subsequently, the frequency response of the output y[k]
follows as

Y (eiΩ) =
(
IÑ + G̃Γ(eiΩ)

)
Z(eiΩ) + G̃B(eiΩ)Ũ(eiΩ) (4.119)
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u(t) B +

∫
...∫

A

x(t)
Γ̃

y(t)
+

z[k]

Γ(ω)

y[k]
H(eiΩ)

(
1, . . . , 1

)
û[k]

Figure 4.8: The linearized model as in Figure 3.4 for the MASH ∆Σ
converter.

u(t) B +

∫
...∫

A

x(t)
Γ̃

Γ(ω)

+
y[k]

H(eiΩ)
(
1, . . . , 1

)
û[k]

z[k] Γ(ω)

Figure 4.9: A MASH ∆Σ converter represented using a state space
model where the quantization error is modeled as an input
signal.

where

G̃B(eiΩ) =
∑
k∈Z

Γ̃G̃
(

Ω− 2πk
Ts

)
B ∈ CÑ×L, (4.120)

G̃Γ(eiΩ) = 1
Ts

∑
k∈Z

Γ̃G̃
(

Ω− 2πk
Ts

)
Γ
(

Ω− 2πk
Ts

)
∈ CÑ×M ,

(4.121)

G̃(ω) =
(
iωIN −A−

1
Ts

∑
`∈Z

Γ̃Γ(ω − 2π`/Ts)
)−1

∈ CN×N ,

(4.122)

Ω = ωTs, and both Ũ(eiΩ) ∈ RL and Z̃(eiΩ) ∈ RM are as in Section 3.3
but extended to the multidimensional setting.

From (4.119) we recognize the multi-dimensional NTF and STF of the
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system as

NTF(eiΩ) = IÑ + G̃Γ(eiΩ) ∈ CÑ×M (4.123)
STF(eiΩ) = G̃B(eiΩ) ∈ CÑ×L (4.124)

The digital-cancellation logic filters H(eiΩ) =
(
H1(eiΩ), . . . ,HÑ (eiΩ)

)T

would ideally be determined by solving the linear equation system(
STF(eiΩ)T

NTF(eiΩ)T

)
H(eiΩ)T =

(
T (eiΩ)
0M×1

)
(4.125)

as this would result in the estimate

Û(eiΩ) =
(
1, . . . , 1

)
H(eiΩ)

(
NTF(eiΩ)Z(eiΩ) + STF(eiΩ)Ũ(eiΩ)

)
(4.126)

= T (eiΩ)Ũ(eiΩ) (4.127)

where T (eiΩ) ∈ CL is the multidimensional target transfer function.

However, as in the MASH ∆Σ case, this system of equations is overde-
termined, having M + L > Ñ equations for Ñ variables, meaning that
we cannot cancel all M quantization error contributions.

In the MASH ∆Σ converter from Section 3.5, there is a clear hierarchy
between the scalar quantization errors in Z(eiΩ), such that suppressing
all but the last dimension is the optimal strategy, i.e.(

IM−1 0M×1
)(STF(eiΩ)T

NTF(eiΩ)T

)
H(eiΩ)T =

(
T (eiΩ)

0(M−1)×1

)
. (4.128)

This system of equations, in contrast to (4.125), could potentially be fully
determined and if so results in Ñ digital cancellation filters. However,
for a more general control-bounded converter, there might not be a clear
smallest quantization error candidate and requires additional assumptions
to formulate a cancellation strategy. As an alternative, it would be
possible to find the least-squares solution of (4.125). We will not spend
more time addressing these issues as they are only relevant in case we
wanted to use conventional tools for the new generalized control-bounded
ADC presented in this thesis.

However, an important insight from the given analysis is that, regardless
of how the cancellation conditions are chosen, there are choices of B and
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Γ that prohibits this generalized digital-cancellation logic. An example
would be when Γ contains B within its columns. In that case, the
quantization error corresponding to those columns cannot be canceled
since that would contradict the input signal to be part of the estimate.
A clear example is the chain-of-integrators example in Chapter 5.

On the contrary, for the DE of Section 4.3, there are no conditions to be
specified or that could be violated. In fact, as was the topic of Section 4.5,
for the control-bounded ADC the AS design and the DC can essentially
be done separate steps and the DE follows from their parametrization.

In summary, we recognize that the control-bounded ADC can be viewed
as a generalization of the MASH ∆Σ concept with a less restrictive
cancellation logic (DE) that enables a greater AS and DC design space.

4.8 Simulating a Control-Bounded
Analog-to-Digital Converter

By simulating a control-bounded ADC we refer to the interaction between
the AS and DC as the system is excited by an analog input signal
u(t), see Figure 4.1. In other words, we are simulating the underlying
analog circuitry and this should not be confused with the purely digital
operations of the DE. The operation and implementation of the DE is
covered separately in Section 4.3.4, Section 4.3.5, and Appendix E.

We established in Section 4.1 that AS is modeled by a system of ODEs

ẋ(t) = Ax(t) +Bu(t) + Γs(t). (4.129)

Due to the linear relationship between the input, control signal, and prior
state vector in the system of ODEs (4.129), a general solution, at time t,
will be of the form

x(t) = exp (A(t− t0))x(t0)

+
∫ t

t0

exp (A(t− τ))Bu(τ) dτ

+
∫ t

t0

exp (A(t− τ)) Γs(τ) dτ (4.130)

where we remind the reader that exp(·) refers to a matrix exponential
and t0 ∈ R represents some initial starting time.
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What is not immediately clear, from the used notation, is that the general
solution in (4.130) is a function of a quantized version of the AS state
vector x(t) as the control signal s(t) is updated by the DC at regular
time intervals. Specifically, as the DC interaction is synchronous with
a global clock operating with a clock period T , the control signal at
times (k − 1)T ≤ t < kT is determined based on the state vector at time
x((k−1)T ). Therefore, simulating the analog part of the control-bounded
ADC amounts to evaluating the AS state vector at uniformly spaced
times {t0, t0 + T, . . . , t0 + kT, . . . } where the previous state evaluation
determines the control signal for the next state evaluation. The described
procedure reduces to solving a sequence of inital value problems (IVPs).
Specifically, the k-th step involves

1. Determining the control signal s(t) for the times t ∈ [(k−1)T, kT ) by
evaluating a quantized version of the Γ̃x((k−1)T ). This corresponds
to the control update done by the DC.

2. Solving the IVP, i.e. computing x(kT ), given the previous solution
x((k− 1)T ), and evaluating the control contribution s(t) and input
signal u(t) for the times t ∈ [(k − 1)T, kT ). This corresponds to
the state evolution seen in the AS.

Solving IVPs is a standard problem in many engineering disciplines and
therefore there exists a multitude of numerical techniques and software
tools that can be used when simulating the control-bounded ADC. Typi-
cally, this means using numerical analysis techniques such as the family
of Runge-Kutta methods.

4.8.1 Precomputed Control Contributions
For the proposed iterative scheme of solving IVPs the part of the solution
involving the control-contribution, from here on denoted xs(t), is time-
invariant except for the control signal, i.e.

xs(kT ) =
∫ kT

(k−1)T
exp (A(kT − τ)) Γs(τ) dτ

=
∫ kT

(k−1)T
exp (A(kT − τ)) ΓD(τ − (k − 1)T )s[k − 1] dτ

= Γxs[k − 1] (4.131)
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where we used the control contribution definition from (4.9) resulting in
the precomputed control contribution definition

Γx
4=
∫ T

0
exp (A(T − τ)) ΓD(τ) dτ. (4.132)

We recognize the mentioned time-invariance as xs(t) only depends on
the control signal s[k] for t ∈ {. . . , (k − 1)T, kT, (k + 1)T, . . . }.

As (4.132) only needs to be computed once this can be done at higher
precision thereby improving the overall quality of the simulation. Fur-
thermore, using precomputed control contributions simplifies the IVP as
(4.129) reduces to

ẋ(t) = Ax(t) +Bu(t) (4.133)

and thereby the general solution follows by

x(kT ) = exp (A(T ))x ((k − 1)T )

+
∫ t

t0

exp (A(t− τ))Bu(τ) dτ

+Γxs[k − 1] (4.134)

Additionally, we recognize that the precomputed IVP solution from
(4.132) resembles that of the precomputed filter coefficients Bf and Bb

from (4.63) and (4.64) respectively. This is no coincidence as the digital
estimation filter from Section 4.3.2 results in yet another IVP. This
means that we can use similar IVP solvers when computing the DE’s
filter coefficients. However, we once more remind ourselves that the
simulation, i.e. the interaction between the AS and DC, is a separate
problem from that of the DE.

4.8.2 Adding Noise Sources
When simulating analog circuits it is often relevant to additionally include
the effects of noise processes such as thermal noise. In general, adding
random processes into our ODEs transforms them into stochastic differ-
ential equations (SDEs). These are typically much more demanding to
simulate and evaluate. In this thesis we restrict ourselves to noise sources
in the form of additive stochastic Gaussian processes. This greatly simpli-
fies the general SDEs simulation as we can use the previously proposed
IVP solvers with and additional step as described below.
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Using the precomputed control contributions from Section 4.8.1, the
system of SDEs follows from ODEs in (4.133) as

dx(t) = Ax(t) dt+Bu(t) dt+ Ψ dW (t) (4.135)

where Ψ ∈ RN×V is referred to as the noise steering matrix,

dW (t) 4= dW (t)
dt · dt, (4.136)

and W (t) is a vectorized standard Brownian motion, i.e. W (0) = 0V
almost surely, E[W (t)] = 0V , and E

[
W (t)W (t)T] = t · IV . Note that

in the expressions above the dimensioning is such that we consider V
independent noise sources.

Due to the additive nature of the Brownian motion, the solution to the
SDE from (4.135) at times t ∈ {. . . , (k − 1)T, kT, (k + 1)T, . . . } reduces
to a normal random vector. Therefore, the corresponding multivariate
Gaussian density, at time t, is parameterized by a mean vectorm(t) ∈ RN
and a covariance matrix Σx(t) ∈ RN×N . The mean vector m(t) is
determined, as previously covered, by the deterministic solution as in
(4.130). Furthermore, the covariance matrix, evaluated at some time t,
can be estimated by solving the IVP

Σ̇x(t) = AΣx(t) + Σx(t)AT + ΨΨT (4.137)
Σx(0) = ΨΨT. (4.138)

In principle we could solve a vectorized version of (4.137) by the methods
previously discussed. However, there is a closed form solution

Σx(t) 4=
∫ t

0
exp (Aτ) ΨΨT exp

(
ATτ

)
dτ. (4.139)

Note that this general solution implies that

Σ̇x(t) = exp (At) ΨΨT exp
(
ATt

)
(4.140)

which does not obviously agree with the condition (4.137). However, this
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can be confirmed by the following manipulations

Σ̇x(t) = AΣx(t) + Σx(t)AT + ΨΨT (4.141)

=
∫ t

0
A exp (Aτ) ΨΨT exp

(
ATτ

)
dτ

+
∫ t

0
exp (Aτ) ΨΨT exp

(
ATτ

)
AT dτ + ΨΨT (4.142)

=
[
exp (Aτ) ΨΨT exp

(
ATτ

)]τ=t
τ=0 + ΨΨT (4.143)

= exp (At) ΨΨT exp
(
ATt

)
−ΨΨT + ΨΨT (4.144)

= exp (At) ΨΨT exp
(
ATt

)
(4.145)

where (4.142) follows from plugging in the solution (4.139) and (4.144)
follows from the fact that exp (0N×N ) = IN .

In summary, solving the system of SDEs divides into a sequence of
steps where the solution at each time t ∈ {..., kT, (k + 1)T, ...}, corre-
sponding to a control update, is computed by

1. Determining the control signal s(t) for the times t ∈ [(k−1)T, kT ) by
evaluating a quantized version of the Γ̃x((k−1)T ). This corresponds
to the control update done by the DC.

2. Compute the mean vector m(kT ) by solving the IVP as in (4.134)
given the previous solution x((k− 1)T ), and evaluating the control
contribution s(t) and input signal u(t) for t ∈ [(k − 1)T, kT ).

3. Solve the SDE at time t = kT by sampling the state vector x(kT )
from the multivariate Gaussian density N (m(kT ),Σx(T )).



Chapter 5

Chain-of-Integrators
Analog-to-Digital
Converter

The chain-of-integrators ADC, first introduced in [19,38] and extended
in [20], is in several ways the textbook example of a control-bounded
ADC. Partly because of the straightforward analog structure that in
turn demonstrates most of the key concepts behind the control-bounded
ADCs, and partly because it resembles and performs similarly to a MASH
∆Σ converter from Section 3.5.

The chain-of-integrators ADC demonstrate excellent nominal conversion
performance. However, a naive implementation is error-prone due to its
sensitivity to circuit imperfections and limit cycles. Additionally, the
chain-of-integrators converter serves as a starting point for the converters
presented in the following chapters.

5.1 General Structure
The chain-of-integrators AS and DC are shown in Figure 5.1. As sug-
gested by the name, the analog part is a chain-of-integrators with an
amplification factor β` for each `-th node in the chain. Furthermore, the
DC independently interacts with each node in the chain via a single bit

69
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u(t) + β1
∫ x1(t)

ρ1

κ1

s1(t)

+ β2
∫ x2(t)

ρ2

κ2

s2(t)

· · · + βN
∫ xN (t)

ρN

κN

sN (t)

Figure 5.1: The chain-of-integrators ADC where each AS state is con-
nected sequentially, thus forming a chain. Furthermore, the
DC is local to each state. The figure only shows the AS
and the DC as control-bounded ADCs has a general DE,
outlined in Section 4.3.

quantizer, DAC and the weight κ`. We call such a DC local, and this
will be the topic of Section 5.3.

The local DC together with the chain AS structure makes a very modular
architecture where we can simply, at least in principle, add or remove
nodes to achieve target performance.

5.2 Analog System
The simplistic structure is also revealed when writing out the correspond-
ing state space representation

ẋ(t) = ACIx(t) +BCIu(t) + ΓCIs(t) (5.1)

where

ACI =


ρ1
β2 ρ2

. . . . . .
βN ρN

 ∈ RN×N (5.2)

BCI =
(
β1 0 · · · 0

)T ∈ RN×1 (5.3)

ΓCI =

β1κ1
. . .

βNκN

 ∈ RN×N . (5.4)

Additionally, the control observation matrix follows as Γ̃T
CI = IN .
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The chain-of-integrators ADC has a scalar input. However, the signal
observation

y(t) = CT
CIx(t) (5.5)

is not necessarily scalar. This leaves us with two reconstruction modes.
Firstly, we could choose a scalar output signal via the signal observation
matrix

CT
CIs

=
(
0 . . . 0 1

)
∈ R1×N . (5.6)

This choice is equivalent to selecting the last state xN (t) as the signal
observation and is motivated by the chain-like structure were the largest
amplification is sustained at the end of the chain. Secondly, choosing all
of the states as observations by the signal observation matrix

CT
CIm

= IN (5.7)

generally gives better performance at the expense of more involved
analysis. Notice that the DE computational complexity is unchanged for
both of these reconstruction modes. Note that the observation matrixCCI
is a purely conceptual quantity that does not effect the implementation
of the AS or DC. However, the difference between (5.6) and (5.7) can be
described as that the DE considers all or only the last of the AS’s state
bounded.

Transfer Function Analysis

To analyse the transfer function of the chain-of-integrators converter
we require the ATF matrix G(ω), see (4.7), of the system. As we only
consider scalar inputs, the elements of the ATF matrix (now being a
column vector) are computed as

Gk(ω) =
k∏
`=1

β`
iω − ρ`

. (5.8)

The two reconstruction modes presented above results in different AS
amplifications. Specifically,

‖GCIS (ω)‖22 = |GN (ω)|2 (5.9)

=
(

β2

ω2 + ρ2

)N
(5.10)
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Figure 5.2: The amplitude response for the AS of chain-of-
integrators converter where the ATF matrix G(ω) =(
G1(ω), . . . , G5(ω)

)T, is parameterized as β1 = · · · = β5 =
β and ρ1,= · · · = ρ5 = −β/10.

for the single-output case, i.e., CCIs , and

‖GCI(ω)‖22 =
1−

(
ω2+ρ2

β2

)N
(
ω2+ρ2

β2

)N (
1− ω2+ρ2

β2

) (5.11)

for the multi-output case, i.e., CCIm , where we have fixed the param-
etrization as β1 = · · · = βN = β and ρ1 = · · · = ρN = ρ to make the
expressions more tractable. The two transfer function norms are visu-
alized in Figure 5.2 for ρ = −β/10. From the figure, the incremental
performance gain is visible as the chain goes from a single node chain
G1(ω), to a five node chain G5(ω). Additionally, for low frequencies, we
see the amplification-increase flatten out as a result of the local negative
feedback ρ. Notice that only where the amplification difference is small,
i.e., in the proximity of the unit-gain frequency of the AS

f0dB =
√
β2 − ρ2

2π , (5.12)
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do we recognize a substantial difference between the single-output AS
and the multi-output AS approaches.

In summary, the multi-output AS reconstruction always outperforms the
single-output AS. However, for analysis purposes, the single-output AS
reconstruction is often more tractable. Also, as seen from Figure 5.2, the
single-output AS reconstruction is a good proxy for a large portion of
the frequency spectrum.

5.3 Local Digital Control
As is evident from Figure 5.1, for the chain-of-integrators ADC, each
AS state is controlled via a dedicated local control. Furthermore, each
local DC is of very low complexity as it interacts by choosing between
two control contributions s`(t) ∈ {+d`(t − kT ),−d`(t − kT )} for any
t ∈ [kT, (k + 1)T ) given a binary control observation s̃`(kT ) ∈ {+1,−1},
see Section 4.2.1. Clearly, the local DCs low complexity is attractive
from an implementation point of view. Additionally, it provides us with
a recursive way of ensuring an effective control.

5.3.1 Effective Control
The local DC recursively ensures a bounded output given a bounded
input for each node in the chain. To see this, we first only consider the
first node of the chain. Furthermore, we denote the corresponding system
impulse response by g1(t), its scalar state x1(t), and we assume the DAC
waveform to be square as in (4.11). For an input signal, upper and lower
bounded by ±bu = ±bx, the growth term can then be written as

G1(t) = max
u∈U
|(g1 ∗ u)(t)| (5.13)

= step(t) · bu (5.14)

where

step(t) 4=
{
β1t if ρ1 = 0,
β1
ρ1

(
e
t
ρ1 − 1

)
otherwise.

(5.15)

Note that G`(t) represents the growth term and not the transfer function
element G`(ω).
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Similarly, the remainder term can be written as

R1(t) = max
x1(0)∈[−bx,bx]

|g1(t) · x1(0) + (g1 ∗ s1)(t)| (5.16)

= max
x1(0)∈[−bx,bx]

{
step(t)κ1, e

t
ρ1 · x1(0)− step(t)κ1

}
. (5.17)

From (5.17) we recognize two extreme cases. The first one is when the
state x1(0) ≈ 0 and the control superimpose with the growth term. The
other extreme case occurs when the state is initially at its very maximum
value x1(0) = ±bx, and therefore the control must reduce the magnitude
of the state at a rate greater than the equivalent growth rate. It remains
to determine, β1, T, κ1 such that a bounded AS state can be maintained
for a worst-case input signal and initial AS state. To better illustrate the
conditions presented next, Figure 5.3 depicts the growth term, remainder
term, and the maximum state value as a function of time t. Specifically,
all possible state trajectories are indicated by the shaded area contained
within xmax

1 (t) and xmin
1 (t), the maximal and minimum state value x1(t)

respectively at time t. Additionally, we assume, without loss of generality,
the initial state to be positive, i.e. x1(0) ∈ [0, bx]. Furthermore, for
illustrative purposes both the “positive”, G1(t), R1(t) and “negative”,
G

(−)
1 (t), R(−)

1 (t) are included. The negative remainder term corresponds
to the case where control contribution and signal superimpose and the
initial state is zero.

From Figure 5.3 we recognize several intuitive results. Firstly, as previ-
ously mentioned, if κ1 is chosen so small that the growth rate exceeds the
decay of the remainder rate, the DC cannot maintain a bounded state.
This is exemplified in Figure 5.3a, Figure 5.3d, and Figure 5.3g where the
AS state bound is immediately exceeded for an initial state x(0) = bx. In
contrast, for a control gain κ1 exceeding the growth rate, overpowering
the growth rate is no problem. However, the time until the superposi-
tion of input and control exceed the bound is reduced, and thereby this
choice requires a shorter control period T to maintain a bounded state.
This is exemplified in Figure 5.3c, Figure 5.3f, and Figure 5.3i. Finally,
we notice that the effect of having a stable system (negative feedback
ρ1 < 0), reduces the growth term and thereby relaxes the necessary con-
trol, Figure 5.3b, as compared to the marginally stable case Figure 5.3e.
Similarly, an unstable system (positive feedback ρ1 > 0), has the opposite
effect as can be seen from Figure 5.3h.

The previous discussion determined when a given set of parameters β1,
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Figure 5.3: The state vector trajectories for permissible input and initial
state configurations. Note that for all these figures we plot
x(t)/bx on the y-axis against time on the x-axis.
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κ1, and ρ1 result in a bounded output, and if so, which control period
T that would be necessary. A bounded output means that the input
of the subsequent node will have a bounded input. Subsequently, β`,
κ`, and ρ` can recursively be set and thereby ensure all states to be
bounded. This approach results in an upper bound to the global growth
and remainder term from (4.21) since we have locally upper-bounded
each node separately.

Conditions for Effective Control

For the chain-of-integrators AS the conditions for an effective control can
be summarized as

G`(t) ≤ R`(t) (5.18)
G`(T ) +R`(T ) ≤ bx (5.19)

for any ` ∈ [1, . . . , N ] and t ∈ (0, T ].

Specifically, for pure integrators, i.e., ρ` = 0, the conditions result in

|κ`| ≥ bx (5.20)
Tβ` (|κ`|+ bx) ≤ bx. (5.21)

Operating at the border of stability is achieved when having equality in
both of these two expressions. Equivalently, this is the same as having
the largest permissible β` and T pair. In this case, their relation can be
summarized as

β` = 1
2T , κ` = bx. (5.22)

In a hardware implementation, it might not always be preferred to operate
at the very border of stability as in (5.22). Instead, the T or β` might be
slightly scaled-down such that we have a margin to the stability bound.
To describe this behavior, we define the stability margin as

ε
4= max{ε1, . . . , εN} (5.23)

where the local stability margin ε` is defined as

ε`
4= 1
β`T

≥ 2. (5.24)

The equality in the previous expressions corresponds to operating at the
border of stability or equivalently, having no stability margin.
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Figure 5.4: Higher-order quantizers example where the control period
can be extended as the number of bits Q used in the quan-
tizer increases. Furthermore, ρ = 0 and κ = 1 and the axes
of the figures are as in Figure 5.3.

In the case of positive or negative feedback, ρ` 6= 0, (5.21) changes as

β`
ρ`

(
e
T
ρ` − 1

)
(|κ`|+ bx) ≤ bx (5.25)

cf. (5.15). Subsequently, the related conditions can be adapted accordingly.

Higher-Order Quantizers

Increasing the number of bits in the quantizer, i.e., improving the quality
of the control observation, enables us to decrease the stability margin ε`
further. Specifically, the remainder term from (5.17) decreases for a Q
bit quantizer as

R`(t) = min
q∈Q

max
x1(0)∈[−bx,bx]

{
2(1−Q)step(t)κ1, e

t
ρ1 · x1(0)− q

2Q−1 step(t)κ1

}
(5.26)

where Q = {1, . . . , 2Q−1} are the positive levels of the corresponding
DAC and ρ = 0. The new remainder term, combined with the growth
term, is shown in Figure 5.4. From this figure, it is clear that, for the
same growth rate, the control period can be substantially extended as
we increase the number of bits Q in the quantizer and DAC.



78 Chain-of-Integrators Analog-to-Digital Converter

Furthermore, for a higher-order quantizer, the conditions from (5.21) can
be adapted as

Tβ`

(
2(1−Q)|κ`|+ bx

)
≤ bx. (5.27)

In other words, the remainder term is kept smaller at the end of the control
period T , which means that we can increase the relative amplification
without violating the bound. This can be visualized by the minimum
stability margin as

εmin = 1 + 2(1−Q) (5.28)

and where, for Q→∞, εmin → 1.

5.3.2 Switched Capacitor Control
Switched capacitor circuits are popular for discrete-time ∆Σ modulators.
One of their attractions is that the precision at which the ratio of two
capacitors can be realized in CMOS technology can be advantageous [22].

The switched capacitor is a discrete-time concept. However, that does
not mean that it cannot be used by the DC in the control-bounded
ADC. For example, using the circuit from Figure 5.5 as the DAC of

Vref

−Vref

Cκ`
is`

s`[k] ≥ 0

s`[k] < 0

φ2

φ1

φ1

φ2

−

+

C`

vx`

R`

Figure 5.5: One-bit switched capacitor DAC where φ1 and φ2 are two
clock phases that makeup one switch capacitor clock period.
The dashed box symbolizes an integrator implemented using
an operational amplifier and is thus part of the AS of the
ADC.

the local DC is an alternative to the default square DAC waveform.
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Specifically, the switched capacitor is operated with some time period
TSC = Tφ1 + Tφ2 = T/Φ where Φ is a positive integer. Furthermore,
the capacitor Cκ` gets charged with a positive or negative voltage Vref,
depending on s`[k], during the first phase φ1 and then discharged through
R` onto C` during the second phase φ2. In a switched capacitor circuit,
the resistor R` would be as small as possible such that the charge is
moved from Cκ` almost instantaneously. Ultimately, it is the opamp’s
speed that sets the fundamental limit on how quickly charge can be
moved. Nevertheless, the R` provides a parameter to gradually control of
the equivalent DAC’s output shape. This offers additional flexibility as
decreasing the switched-capacitor time period, or equivalently increasing
Φ, a larger control feedback signal can be sustained. The previous
statement assumes that φ1, together with the switch resistance, to be
such that the capacitor gets sufficiently charged during φ1. In the other
extreme case, for φ1 → 0, Cκ` →∞, and Φ = 1 we approach the default
square DAC waveform.

The proposed switched capacitor control requires adaptations of the local
control conditions, from (5.18) and (5.19), as (5.15) will now change due
to the new DAC waveform. Specifically,

dSC(t) = −
T/Tsc−1∑
ξ=0

e
−
t−ξTsc−Tφ1
R`Cκ` · dsq(t− ξTsc − Tφ1) (5.29)

κ` = Vref (5.30)

β` = 1
R`C`

(5.31)

where

dsq(t) =
{

1 if t ∈ [0, Tφ2)
0 otherwise

(5.32)

is a unit step lasting the length of the second phase φ2. Note that
the digital estimator changes as (4.63) and (4.64) depends on the DAC
waveform through D(t).

Interestingly, these changes only apply to the offline computations in
the DE. Therefore, both the DC and the DE’s operational complexity
remains unchanged when using a switched capacitor DC.
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Figure 5.6: STF and NTF of a fifth order, N = 5, chain-of-integrators
ADC

5.4 Digital Estimator
We remind ourselves that the DE is determined by the choice of AS and
DC as was outlined in Section 4.3. In particular, the NTF and STF
of the chain-of-integrators ADC follows from the expressions in (4.47)
and (4.48) where we have plugged in the norm of the ATF matrix from
(5.11). Figure 5.6 shows the STF and NTF as a function of frequency
for a system parameterized as β1 = · · · = βN = β and ρ1 = · · · = ρ = 0.
From the figure, we see that for this configuration, the DE filter mostly
relies on the last output via the transfer function H5(ω). Interestingly,
as the frequency increase, the other states will contribute more and more
to the estimate. At the unit-gain frequency of the filter, (5.12), all five
signal observations contribute equally in magnitude to the estimate.

5.4.1 White Noise Analysis
The expected performance of a chain-of-integrators ADC can be approxi-
mated in a similar way as for ∆Σ modulators [8]. Specifically, we follow
the steps in Section 4.4, and assume the signal observation y(t), (4.24),
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to be bandlimited and have a white spectrum within the frequency band
of interest as in (4.91). For the following analysis we assume a pure
integrator chain ρ1 = · · · = ρN = 0 and each node in the chain to be
parameterized equally as β1 = · · · = βN = β and κ1 = · · · = κN = κ. Ex-
panding the approximated squared conversion error from (4.94) with the
specific AS norm we can write

Py|B ≈
σ2
y|B

2π

∫
B

ω2N

β2N dω (5.33)

=
σ2
y|B

2π ·
2

2N + 1 · β
−2Nω2N+1

B (5.34)

where ωB = 2πfB corresponds to the frequency band of interest expressed
in radians per second. We recognize the OSR for the control-bounded
ADC as

OSR = 1
2TfB

. (5.35)

Notice that strictly speaking, the term OSR might appear misleading as
we have made a point of not considering the control signals s[k] as samples.
Regardless, we use this terminology as it is well established in the ∆Σ
community and have the same functional meaning for control-bounded
ADC.

Using the OSR definition together with the stability margin from (5.23)
we can rewrite (5.34) as

Py|B ≈
σ2
y|B

T
· 1

2N + 1 · (επ)2N · (OSR)−2N−1
. (5.36)

Furthermore, by approximating

σ2
y|B ≈ αT

(2bx)2

12 (5.37)

we can write the SNR, for a full-scale sinusoidal input signal with ampli-
tude A as

SNR ≈ α−1 · 3A2

2b2x
· (2N + 1) · (επ)−2N · (OSR)2N+1. (5.38)

The SNR approximation in (5.38) is almost identical to the one of a N -th
order ∆Σ as shown in Section 3.4.4. The two expressions only differ by
the stability margin ε ≥ 2.
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Furthermore, notice the importance and possible reward of keeping
a tightly controlled bound, as shown in the approximation in (5.37).
Additionally, the T factor in (5.37) accounts for the fact that the AS
state vector is dominated by the control contributions Γs(t). Furthermore,
since E

[
s`(t)2] = 1, for any `, the PSD of s(t) must scale with T . The

same applies to the PSD of the signal observation y(t). Finally, the scale
factor α > 0 accounts for the discrepancy between the assumed uniform
probability density on y(t) and the actual one. α can be determined
through simulation.

5.4.2 Closing the Gap to Delta-Sigma Modulation
As previously mentioned, there is a ε−2N discrepancy between the SNR
approximation for control-bounded ADC and the one for conventional
∆Σ modulators. This does not mean that one is inferior to the other but
can instead be remedied in two different ways.

Firstly, increasing the number of bits used in the quantizer has already
been established to decrease ε towards one, i.e., leveling the two SNR
expressions. Furthermore, as the remainder term shrinks so does the
bound bx in (5.37). From simulations, we have established roughly a 6
dB improvement per increased bit, which is the expected outcome in an
equivalent ∆Σ modulator.

Secondly, the local DC used for the chain-of-integrators ADC is derived
in a very restrictive way, i.e., we have bounded the output for the worst
of all possible adversarial input signals imaginable. Thus it might be
possible to venture beyond these bounds and thereby giving up the
stability guarantee. This approach would require extensive simulations
to ensure stability for any given set of input signals. However, this is the
standard approach for most high order ∆Σ modulators as they operate
without any stability guarantees.

5.4.3 Single vs. Multi-Output Analog System
We previously established that there exists two different modes for the
DE of the chain-of-integrators ADC. Namely, considering all the state of
the AS to be outputs of the system, using (5.7) or alternatively to only
consider the last state xN (t) to be the output, using (5.6). A comparison
of the STF and NTF for each mode is given in Figure 5.7. From the figure,
we see that the multi-output AS approach outperforms the single-output
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Figure 5.7: Comparison of STF and NTF for single output (CCIs), and
multiple output (CCIm), reconstruction.

AS one. The SNR stretches over a broader frequency band of interest,
and the NTF is lower for the same bandwidth. For a large OSR the
difference diminishes.

5.4.4 Spline Basis Signal Processing
An intriguing observation is that for the chain-of-integrators AS and DC,
the resulting control contribution q(t) seen at the signal observation, see
(4.23), can be written as a weighted sum of B-splines. To see this, we first
recognize that the square DAC waveform is a zero-order B-spline [30].
Furthermore, integrating a square DAC waveform for a control period
T results in another B-spline with an order that is increased by one.
Therefore, the contribution, originating from the `-th local control in the
chain to the final output, is a (N − `)-th order B-spline weighted by s`[k].
The same applies to the other outputs of the AS. In other words, the
proposed local DC uses B-spline waveforms to control the states of the
AS.

The significance of this insight becomes clear when we consider some post-
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processing filtering step to the samples of the estimate û(t). Specifically,
as the DE is a linear filter, we can reverse the order of the DE and
any post-filtering operation. However, if we now describe this post-
processing filter by a B-spline basis function and coefficients as proposed
in [30], the continuous-time filtering operation amounts to discrete-time
filtering of the control signal s[k] and the post-filter spline coefficients.
Reversing the order of the digital-estimation filter and any post-filter can
be computationally beneficial; this is mainly because s[k], as opposed to
u(kT ), is, for the examples considered in this thesis, a vector containing
binary elements. Therefore, the discrete-time filtering, between the
control signal and B-spline filter coefficients, results in much simpler
arithmetic operations. This could potentially make the post-filtering step
very computationally attractive in a hardware implementation.

Note that the B-spline filtering proposed above also requires adaptation
to the underlying spline basis, since convolving two B-splines involves
computing new coefficients and also increases the B-spline basis order.
For a given post-processing B-spline order this can be incorporating into
D(t) and thereby the offline computations in Equations (4.63) and (4.64).

5.4.5 Computational Complexity
The computational complexity of the DE was covered in Section 4.3.4
(offline version) and Section 4.3.5 (online version). As the chain-of-
integrators ADC only considerers scalar input signals (L = 1) and has
as many independent DC control paths as AS states (N=M), we can
summarize the DE computational complexity as

• O (N) real-valued scalar multiplications,

• O
(
N2) real-valued scalar additions,

• and requires N bits and 4N + 2 real-valued scalar values to be kept
in memory

per estimated sample when implemented using the offline batch estimator
from Algorithm 3 in Appendix E.

5.5 Simulations
To verify the functionality of the chain-of-integrators ADC we now pro-
ceed by conducting a series of simulations. This is done by simulating
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the system of ODEs (4.4) for a given input signal u(t), as described in
Section 4.8. Subsequently, we reconstruct uniform samples as described
in Section 4.3.2 and compute the corresponding PSD of the estimate as
covered in Section 3.4.2.

For all simulations in this chapter we will assume a default parame-
terization β1 = · · · = βN = β = 10, κ1 = · · · = κN = κ = 1.05,
ρ1 = · · · = ρN = ρ = 0, bx = 1, T = 1/21.5, and therefore ε = 2.15.

The bandwidth of the ADC is determined as in (4.49). For the single
output system, CCIs , and given the equally parameterized nodes, this
can be written as

ωcrit = |β|
η

1
N

(5.39)

using the OSR notation the bandwidth parameter could also directly be
written as

η =
(
OSR
επ

)N
. (5.40)

Note that these relations do not strictly hold for the multi-output AS
case as it will have a slightly larger ATF matrix norm. However, they can
still be used as a reasonably good approximation even in the multi-output
AS case.

The resulting PSD is given in Figure 5.8. In this simulation, we excite
the system with a full-scale sinusoidal input signal. For N = 1, the
spectrum is heavily influenced by harmonics from the input signal and
differs substantially from the white noise assumption, shaped by H(ω),
cf. Section 5.4.1. However, as the number of nodes increases, the spectrum
flattens, making the mentioned white noise analysis more applicable. This
is also confirmed by the corresponding SNR plot shown in Figure 5.9.
From the figure, it seems that α = 1 is too large as the simulations
outperform the expected performance for N > 1. This indicates that the
signal observation vector y(t) cannot have a flat frequency response in
the frequency band of interest as assumed in the white noise analysis.
Regardless the correct α can be determined from the simulations.
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Figure 5.8: PSD of the estimate û(kT ), see (4.55), for a chain-of-
integrators ADC as the number of nodes is increased from
one to five.

Note that the scaling in the x-axis in Figure 5.9 refers to decibel full
scale (dBFS) with respect to the input signal, meaning 0 dB corresponds
to a full scale input sinusodial signal.

Additionally, the zero input case, i.e. if the system is without input
signal, is shown in Figure 5.10. From the figure, we recognize that, for
N > 1, the PSD is almost identical except for the input signal peak seen
in Figure 5.8. This confirms that the conversion error, which is a linear
mapping of the signal observation y(t), see (4.43), is largely independent
of the input signal u(t). This can also be seen in the time domain as
shown in Figure 5.11. The point of this figure is that it is hard, if not
impossible, to distinguish which of the two-state trajectories corresponds
to a sinusoidal input signal or a zero input signal.

5.5.1 Fundamental Resource Scaling
As is made clear from Figure 5.8 and Figure 5.9 the nominal conversion
performance of the chain-of-integrators ADC is closely related to N , the
number of integrators in the chain. Next we summarize what increasing
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Figure 5.9: SNR for a chain-of-integrators ADC as the number of nodes
is increased from one to five, and the input amplitude
increases from zero to the full-scale amplitude. The dashed
lines correspond to the approximation in (5.38) for the same
number of nodes and an α = 1.
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Figure 5.10: Same simulation setup as in Figure 5.8 except u(t) = 0.
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Figure 5.11: A snapshot of the time evolution of the x5(t) for a control-
bounded ADC excited with two different input signals u(t),
one of them being u(t) = 0 and the other a sinusoidal
input signal with significant amplification.

N entails for the AS, DC, and DE. Starting with the AS, as each
integrator represents a single analog state, increasing N also increases
the number of analog states. Subsequently, also the dimensions of ACI,
BCI, and CCI increase correspondingly as given in (5.2), (5.3), and (5.5).
Furthermore, as the chain-of-integrators DC has one local DC path per
integrator the number of DC paths also scales with N and thereby also
the corresponding dimensions of ΓCI and Γ̃CI, see (5.4). As for the
computational complexity of the DE this is outlined in Section 5.4.5 but
essentially boils down to a computational complexity where the number of
multiplications grows linearly and the number of additions quadratically
with N .

5.5.2 Limit Cycles
The chain-of-integrators ADC does however come with some caveats.
Arguably, the biggest one is its sensitivity to limit cycles. As an example,
Figure 5.12 shows the PSD of a simulation as in Figure 5.10 where
the input signal is a constant signal with a small input amplitude as
u(t) = 0.003. A standard strategy against limit cycles is to use some sort
of dithering [12, 23, 24, 28]. This is certainly applicable to the general
control-bounded ADC as well.
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Figure 5.12: PSD of û(kT ) where the input signal is a constant signal
with an offset u(t) = 0.003. This signal choice exposes a
limit cycle visible at Ω/(2πT ) = 0.003T = 0.0645. Except
for the input signal the simulation parameters are as in
Figure 5.8.

However, the general control-bounded ADC offers an additional implicit
way of adding a dithering effect without actually adding noise to the
estimate û(t). The dithering effect is achieved by the DC structure shown
in Figure 5.13. Specifically, by feeding small contributions of all the
controls back to the first stage, we effectively randomize the control
signals. This method relies on the effective randomness of the control
signals for large N and obviates the need for an additional source of
randomness. Extensive simulations (as exemplified in Figure 5.12) have
shown this method to be highly effective. Note that the augmented
system as in Figure 5.13 still fits into the general scheme of Figure 4.1. In
particular, the new feedback signals are known to the digital estimation
filter, which can remove their effect on the analog signals. Note that, this
cancellation is implicit since the control input matrix Γ changes for the
DE computations.

When implementing this method, it should be noted that the additional
feedback increases the required stability margin of the first stage. However,
this increase is minor as the additional feedback can be quite small and
yet enforce a dithering effect.
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u(t) + β1
∫ x1(t)

ρ1

κ1

s1(t)

+ β2
∫ x2(t)

ρ2

κ2

κ̆2
s2(t)

· · · + βN
∫ xN (t)

ρN

κN

κ̆N
sN (t)

+
...

Figure 5.13: The chain-of-integrators where each analog state is con-
nected to the next in a chain and the DC is local to each
state.

In principle, a single κ̆n 6= 0 would suffice for creating a dithering
effect. However, simulations indicate that a better effective randomness
is achieved for many such feedback paths. Furthermore, this concept can
be further expanded by introducing additional feedforward and feedback
paths among the control signals as

Γ =

κ1
. . .

κN

+

 κ̆1,1 . . . κ̆1,N
... . . . ...

κ̆N,1 . . . κ̆N,N

 (5.41)

where κ̆k,` represents the dithering control paths.

5.5.3 Mismatch

The proposed dithering technique also turns out to mitigate the effects
of mismatch. Figure 5.14 shows a mismatch simulation where the chain-
of-integrators ADC as in Figure 5.1 is shown with solid lines and the
dithered control version, Figure 5.13 in dashed lines. Furthermore, the
black lines correspond to a 2% variation from the nominal values in the
elements of the control matrix Γ. The red lines correspond to a 2%
variation in the elements of the system matrix A. Both these simulations
are for a zero input test signal u(t) = 0. From Figure 5.14, we see that
the dithering mechanism spreads the errors over the spectrum avoiding
disturbing peaks and ensuring a better overall SNR.
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Figure 5.14: PSD of û(kT ) for a mismatch simulations where the test
input signal is u(t) = 0. Where the red lines correspond
to a 2% mismatch in the elements of Γ and the black
lines 2% mismatch in the elements of A. The dashed
lines correspond to the chain-of-integrators ADC using
the dither feedback from Figure 5.13, and the solid lines
correspond to the regular version as in Figure 5.1.

5.5.4 Comparison to MASH Converters
The chain-of-integrators ADC is not a MASH ∆Σ converter, as in Sec-
tion 3.5. This can be seen as s1(t) and u(t) enters the system at the same
sum node and therefore have the same transfer function to each signal ob-
servation. In other words, the general cancellation condition from (4.128)
will be overdetermined for any N > 1; for the chain-of-integrator ADC,
perceiving s1[k], . . . , sN [k] as sampled and quantized versions of the input
signal, will be limiting. This means that from the conventional viewpoint,
using a generalized digital-cancellation logic, the chain-of-integrators
ADC would, never outperform a first-order ∆Σ modulator.

Regardless, the structural similarities of the MASH ∆Σ and chain-of-
integrators ADC makes their comparison interesting. In the following
simulation we compare the fifth order, N = 5, chain-of-integrators ADC
as in Figure 5.1 with a 1-1-1-1-1 discrete-time MASH ∆Σ modulator.
The MASH ∆Σ is simulated using the python library [33], which in
turn derives from the Schreier’s MATLAB toolbox. Comparing to a
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Figure 5.15: PSD of û(kT ) comparison between a MASH ∆Σ modula-
tor and the chain-of-integrators ADC.

discrete-time MASH ∆Σ, and not a continuous-time, is motivated by
the fact that the continuous-time versions are typically designed to
approximate discrete-time versions. Therefore, nominal performance
from a discrete-time ∆Σ modulator should function as a “best case”
scenario of a continuous-time version. To make the comparison fair,
the discrete-time system parameters are derived from the AS of the
chain-of-oscillators nodes using the concepts from [26]. In this simulation
we normalize the PSD such that equivalently T = 1. Note that the
stability margin ε = 2 is unchanged compared to previous simulations.
The resulting comparison is given in Figure 5.15. From the figure we
see that the 1-1-1-1-1 MASH ∆Σ almost performs equally to that of the
fifth order chain-of-integrators ADC. Therefore, we can conclude that
the chain-of-integrators ADC nominally performs similarly to its MASH
∆Σ modulator counterpart.

5.6 Hardware Implementation
To further prove the basic functionality of the chain-of-integrators ADC a
hardware prototype was built1. The implementation follows the proposed
architecture of Figure 5.13 where each node of the chain-of-integrators

1The hardware prototype was constructed by Jonas Biveroni and Patrik Strebel.
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was realized using an inverting amplifier op-amp design as in Figure 5.16.

−

+

vx`−1
Rβ`

vs`
Rκ`

C`

vx`

Figure 5.16: A single node of the chain-of-integrators AS.

Note that the hardware prototype was not designed to excel in terms of
speed or accuracy, nor power consumption. Instead, it was meant as a
proof of concept for the control-bounded conversion principle. Figure 5.17
shows a photo of the described prototype.

5.6.1 Results
Some measurements results of the hardware prototype are shown in
Figure 5.18 and Figure 5.19. These measurements were conducted using
a sinusoidal input signal with a frequency of 72.4 Hz. Figure 5.19 shows
the PSD of the estimated input signal that generated the largest SNR
measurement from Figure 5.18. The results show a spurious-free dynamic
range (SFDR) of approximately 83 dB as well as a maximal SNDR of
74.5 dB.

5.6.2 Parametrization
The hardware prototype was made with N = 5 identically parameter-
ized nodes. The integrators were realized with an operational amplifier
(AD8615). The control period was T = 54µs. The nominal value of the ca-
pacitor C was 10 nF and the nominal value of both resistors (Rβ and Rκβ)
were 16 kΩ, resulting in β = 1/(RβC) = 6250/sec and κ = 1.25. For the
first stage, the feedback contributions are Rκ1,2β = . . . = Rκ1,5β = 64 kΩ.
The operating voltage was 5V, but all signals were confined to the range
0. . . 2.5V; “zero” in Figure 5.13 translates to V0 = 1.25V. The resistors
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Figure 5.18: SNR for different input amplitudes of the hardware pro-
totype. The solid black line corresponds to the SNR and
the red one to the SNDR respectively (lines virtually coin-
cides). Furthermore, the dashed black line is the analytical
expression from (5.38) for α = 1.

and capacitors are standard surface-mount devices with 1% tolerance;
they were not preselected, and their actual values were not measured.

The control contribution s`(t) (i.e., the voltage vs` in Figure 5.16) is
generated from vx` using a separate threshold circuit (TLV3201) and a
separate analog switch (TS5A9411). The whole circuitry is realized on a
printed circuit board, which is piggybacked on an Arduino board.

For the empirical results shown in Figure 5.18 and Figure 5.19, the DE
works with nominal values of β and κ; neither the hardware prototype
nor the digital filter uses any calibration or adjustment for actual (rather
than nominal) values.

The parameter η of the digital filter is set according to (5.40) with
OSR = 32 and ε = 2.
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Figure 5.19: PSD of the estimate û(kT ) for the hardware prototype.
The input signal corresponds to the one that had the
largest measured SNR in Figure 5.18.

5.6.3 Influence of Mismatch & Thermal Noise
Next, we derive the specific mismatch and thermal noise transfer functions
for the given hardware prototype. In the following analysis, we refer
to the single output reconstruction mode. Mismatch or thermal noise
originating from the `-th node in the chain to the signal observation of
the chain-of-integrators ADC, has the transfer function

G`(ω) = ψ ·
(
β

iω

)n−`−1
(5.42)

to the signal observation of the chain-of-integrators ADC. In the given
expression ψ = 1− β̄

β or ψ = 1− κ̄
κ respectively, depending if the mismatch

is in β or κ. Furthermore, β̄ and κ̄ denote the nominal values while β
and κ are the actual values of the circuit prototype. Additionally, in the
thermal noise case ψ = 1. Furthermore, the product of (5.42), and the
NTF of the digital estimator, constitute the conversion error contribution
from a specific mismatch or thermal noise source.

As previously stated, the nodes of the hardware implementation are all
dimensioned equally. Therefore, the prototype will be primarily sensitive
to errors introduced in the first nodes of the chain. Using the analysis
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Figure 5.20: PSD of the control signals for hardware full-scale input
test signal.

from Section 4.6, at room temperature, the thermal noise caused by the
resistors, see Figure 5.16, should cause a noise floor in û(t) at roughly
−157 dB/1Hz. From Figure 5.19, we can determine that thermal noise is
not the dominating error source of the hardware prototype as the noise
floor is significantly larger than −157 dB/1Hz.

Instead, the prototype is most likely limited by component mismatch. In
principle the analysis of Section 4.6 applies, but the PSD of the control
signals, shown in Figure 5.20, contradicts the white noise assumption.
These control signals are the result of the full-scale input test signal as
in Figure 5.19.

Interestingly, instead of having a flat spectrum, the control signals, and
in particular s1[k], are very favorably shaped as its distribution tends to
be more concentrated at higher frequencies outside the band of interest.
This observation has been observed, empirically, to generalize for other
types of input signals as well.





Chapter 6

Leapfrog
Analog-to-Digital
Converter

The leapfrog ADC is a control-bounded ADC, much like the chain-of-
integrators from Chapter 5, with a particular analog feedback structure.
The feedback enables complex conjugate pole pairs in the AS transfer
function and can therefore provide both more amplification as well as a
sharper transition between passband and stopband compared with the
chain-of-integrators AS.

6.1 General Structure
The general structure of the AS and DC is given in Figure 6.1. From
the figure, we notice a local DC identical to that from Section 5.3. We
also notice a chain-of-integrators structure where each node is connected
by the scalar amplification factors β1, . . . , βN . The feedback structure,
defined by ρ1, . . . , ρN , connects the last analog state xN (t), and any
intermediate state, with the first x1(t) via a series of feedback loops. The
given structure is also known as a leapfrog filter, which has given this
control-bounded ADC its name. There are two features associated with
the proposed AS. Firstly, the feedback structure enables complex pole

99
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u(t) + β1
∫ x1(t)

ρ1

κ1

s1(t)

+ β2
∫ x2(t)

ρ2

κ2

s2(t)

+ β3
∫ x3(t)

ρ3

κ3

s3(t)

· · · + βN
∫ xN (t)

ρN· · ·

κN

sN (t)

Figure 6.1: The AS and DC of a leapfrog ADC. Notably, the leapfrog
ADC has the same DC as the chain-of-integrators ADC in
Figure 5.1. The AS has a leapfrog type feedback structure
which also warrants its name.

pairs, which can enhance the amplification in the signal band of interest.
Secondly, the leapfrog filter’s transfer function are known to have low
sensitivity to component mismatch. Note that the mentioned mismatch
insensitivity applies to the overall AS and not necessarily the component
mismatch between the DE and AS as was analyzed in Section 4.6.2.

6.2 Analog System
The dynamical system of a leapfrog ADC, as in Figure 6.1, can be
described by the system of ODEs

ẋ(t) = ALFx(t) +BLFu(t) + ΓLFs(t) (6.1)

where the state transition matrix is

ALF =



ρ1 ρ2
β2 0 ρ3

β3 0 . . .
. . . . . . ρN

βN 0

 . (6.2)

Furthermore, the input vector BLF, the control input matrix ΓLF, the
control observation matrix Γ̃T

LF, and the signal observation matrix CT
LF

are all of the same form and parametrization as the chain-of-integrators
ADC, cf. (5.3)-(5.7). For the remainder of this chapter we will only con-
sider the single-output reconstruction, i.e. CT

LF as in (5.6). However, the
material presented below also apply to the multi-output AS mode. The
reason for using the single-output AS mode is that the resulting analyti-
cal expressions, more clearly, highlight the fundamental functionality. A
consequence is that all ATF matrices in this chapter will be scalars.
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6.2.1 Transfer Function Analysis
The given state space representation results in an ATF matrix which can
be written as

GLF(ω) = CT
LF (iωIN −ALF)−1

BLF (6.3)

= CT
LF

adj (iωIN −ALF)
det (iωIN −ALF)BLF (6.4)

where adj (iωIN −ALF) ∈ CN×N computes the adjugate matrix of the
inverse which is the same as the transpose of the cofactor matrix and
det (iωIN −ALF) ∈ C is the determinant of the same inverse.

Interestingly, the structure of theALF matrix is such that the determinant,
or equivalently the poles of the system, can be written recursively as

det (iωIN −ALF) = pN (iω) (6.5)
= iω · p(N−1)(iω)− βN · ρN · p(N−2)(iω) (6.6)

where

p0(iω) = 1 (6.7)
p1(iω) = iω − ρ1. (6.8)

For the single-output AS estimator mode, only the (N, 1)-th element of
the adjugate matrix need to be computed. Subsequently, the ATF matrix
expression from (6.4) can be written as

GLF(ω) =
∏N
`=1 β`

pN (iω) . (6.9)

The transfer function matrix from (6.9) has the same nominator as the
corresponding chain-of-integrators (5.10), the denominator on the other
hand, for parameter choices β`ρ` < 0, can have complex pole pairs.

Introducing Zeros in the Nominator

For greater flexibility we might consider adding zeros to the ATF matrix
in (6.9). One way to achieve this is by altering the input matrix as

BLF =
(
β1, β̃2, . . . , β̃N

)T (6.10)
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which results in the ATF matrix

GLF(ω) =
∏N
j=1 βj +

∑N
k=2 β̃kpk−1(iω)

∏N
`=k+1 β`

pN (iω) . (6.11)

This gives the possibility to implement any general N -th order transfer
function polynomial

GLF(ω) =
∑N
`=0 b`(iω)N−`

(iω)N +
∑N
k=1 aks

N−k
(6.12)

by the parameter choices β1, . . . , βN , β̃2, . . . , β̃N , and ρ1, . . . , ρN . Notice
that, as discussed in Section 4.5, the AS performance is determined
by ‖GLF(ω)‖2 and it is therefore not only a unit gain filter but also a
substantial gain filter, which is of interest when designing (6.12).

Loop Filter Topologies

For higher-order ∆Σ modulators, and a given target loop filter transfer
function, there are multiple ways of realizing the actual filter topol-
ogy. Examples are cascade-of-integrator with feedforward structure
(CIFF), cascade-of-integrator with feedback structure (CIFB), cascade-of-
resonators with feedforward structure (CRFF), and cascade-of-resonators
with feedback structure (CRFB) [25]. All these variations demonstrate
different ways of constructing excellent ASs and, when combined with a
local DC, would most likely make interesting alternatives to the leapfrog
AS proposed in this chapter. However, this falls outside the scope of this
thesis.

6.2.2 A Special Case
A particular interesting case of the leapfrog ADC is when

β1 =
√
β · ωp/2 (6.13)

ρ1 = 0 (6.14)

ρ2 = − 1√
β
· ωp/2 (6.15)

β2 = · · · = βN = β1, ρ3 = · · · = ρN = ρ2, and β̃2 = . . . , β̃N = 0.
Specifically, for this parametrization, the poles of the system are defined
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by

pN (iω) =
N∏
k=1

(
iω − i2ωp/2 cos

(
kπ

N + 1

))
. (6.16)

The particular pole pattern results in a ATF matrix as shown in Figure 6.2
where N = 10, β = 1, ωp/2 = π/8. From the figure we see that the ATF
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GCI(ω)

GLF(ω)

Figure 6.2: ATF matrix for a tenth order (N=10) chain-of-integrators
ADC and leapfrog ADC respectively. As the poles are
spread over the frequency band of interest for the leapfrog
ADC, it has a larger bandwidth for the same amplification.

expression has a larger bandwidth at the expense of a more constant
amplification in the frequency band of interest compared to the chain-
of-integrators ADC. Additionally, the poles are visible from the transfer
function as spikes in the passband. Note that since the poles only have
an imaginary part, the AS amplification at the frequency corresponding
to the poles will have an infinite amplification.

6.3 Digital Estimator
The greater bandwidth of the leapfrog ADC can have a dramatic effect
on the STF and NTF of the reconstruction filter. To see this we use the
AS and parameterization presented in Section 6.2.2. Furthermore, we
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consider ωp/(4π) = 1/16 as the cutoff frequency of the leapfrog’s ATF
expression, see (6.16), and thereby determine

η2
LF = ‖GLF(ωp)‖22. (6.17)
η2

CI = ‖GCI(ωp)‖22. (6.18)

For comparison we use a chain-of-integrators ADC with the same N and
β.

Using the given parameter settings the two STF and NTF are shown
in Figure 6.3. The figure reveals a massive reduction of the leapfrog’s

10−2 10−1 100

−100

−50

0

ω/(4πβ)

[d
B
]

STFCI(ω)
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STFLF(ω)

NTFLF(ω)

Figure 6.3: Comparison of the STF and NTF for a leapfrog vs a chain-
of-integrators ADC given the same parametrization. The
leapfrog ADC has a significantly lower NTF at the cutoff
frequency with the expense of a flat overall NTF in the
frequency band of interest and ripples in the STF.

NTF’s magnitude close to the cutoff frequency compared to the chain-of-
integrators. The leapfrog NTF also has a more constant magnitude at
roughly −100 dB for the frequency band of interest.

Ripples in the STF Passband

Figure 6.3 also shows another difference between the two ASs; the leapfrog
STF has ripples in the passband. Figure 6.4 shows a different scaling of
the y-axis of the mentioned STFs where the ripples are clearly visible.
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Figure 6.4: The leapfrog ADC can have ripples in the passband STF.

The reason for these ripples can be determined directly from (4.48) and
when considering the ‖GLF(ω)‖22 as shown in Figure 6.2. Specifically, as
‖GLF(ω)‖22 is not monotonically increasing with ω, the influence of η2 in
the denominator of (4.48) becomes visible.

The ripples can be suppressed by choosing η2 � ‖GLF(ωp)‖22. An example
is given in Figure 6.5 and Figure 6.6, where the STF and NTF is shown
for two identical leapfrog systems with an digital estimator parameterized
with different η2.

As is shown in Figure 6.5, suppressing the passband ripples in the STF by
lowering the η2 additionally extends the bandwidth of the estimate. This
means that additional post-filtering might be necessary to suppress any
unwanted out-of-band signal that now could appear (the green dashed
line in Figure 6.6 in the estimate.

Computational Complexity

As the leapfrog ADC only differs from the chain-of-integrators ADC in
terms of the AS parameters ALF and CT

LF the computational complexity
of these two DEs are identical, see Section 5.4.5.
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Figure 6.5: Leapfrog ADC STF for two different η2 parameterizations
where STFLF,η2 has an η2 as in (6.17) and STFLF,η̃2 with
η̃2 = 10−3η2.
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Figure 6.6: Same as in Figure 6.5 with a different y and x-axis scaling.
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6.4 Proposed Hardware Implementation
The leapfrog AS using the parametrization from Section 6.2.2 clearly
resembles the transmission line model with additional amplification.
Next, we propose a hardware implementation of the leapfrog AS and DC
inspired by such a lossless transmission line model. The amplification
will be done using transconductance amplifiers. This will also allow
us to circumvent the need for coils. A gm-C circuit implementation is
shown in Figure 6.7 for N = 5. From the figure we also see the current
going into the `-th capacitor as ix` and similarly vx` as the voltage drop
over the same capacitor. The latter will symbolize the states of the AS.
Specifically, we see that

ix`(t) = gmβ · vx`−1(t)− gmρ · vx`+1(t)− gmκ · s`(t) (6.19)

v̇x`(t) = 1
C
ix` (6.20)

where vx0(t) = u(t) and the last output’s current is given by

ixN (t) = gmβ · vxN−1(t)− gmκ · sN (t). (6.21)

The corresponding state space parameters can then be written as

ALF =



0 − gmρ

C

gmβ

C

. . . . . .

. . .
− gmρ

Cgmβ

C 0

 , (6.22)

BLF =
( gmβ

C , 0, . . .
)T
, (6.23)

ΓLF = −gmκ

C
IN , (6.24)

and

Γ̃T
LF = IN . (6.25)
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Chapter 7

Chain-of-Oscillators
Analog-to-Digital
Converter

The chain-of-integrators ADC from Chapter 5 described an A/D conver-
sion principle which was designed to convert baseband analog signals,
cf. Figure 5.2. In other words, the frequency band of interest was cen-
tered around f = 0 Hz. However, there are applications were the signal
band of interest is centered around a carrier frequency fc 6= 0. Clearly,
for such an application, we could extend the gain β of the AS to also
include this off-centered frequency band of interest. Such an increase
in amplification requires a reduction in the control period T in order to
maintain an effective DC. Specifically, the β ·T product cannot be scaled
unconditionally, as was covered in Section 5.3.1.

An alternative approach is to down-convert the signal, using a modulator,
such that the signal is re-centered around f = 0 prior to the ADC.
There also exist hybrid solutions where the signal is modulated to some
intermediate frequency that is more suited for A/D conversion.

The chain-of-oscillators ADC presented next, takes another route; here,
the AS amplifies around the fc, and up- and down-conversion only applies
to the DC. There are two main advantages to this approach. Firstly,
the DC can be operated with a control period T determined by the
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frequency band of interest (as in previous chapters), regardless of where
the frequency band is centered. Secondly, as the modulation is not part of
the signal path of the converter, it can be implemented with less precision.
Note that using modulation as a pre-processing step to the ADC requires
the modulator to have superior precision compared to the ADC since
any imperfection is directly destructive for the conversion process.

7.1 General Structure
The AS and DC structure of a chain-of-oscillators ADC is given in Fig-
ure 7.1. The figure shows a series of analog oscillators consisting of two
integrators connected by a specific feedback pattern with the multipli-
cation ω`. The feedback is such that each oscillator has a resonance
frequency of ω`/(2π). Additionally, each node has two scalar inputs that
enter the AS state vector via four multiplicative weights β`,1,1, β`,1,2,
β`,2,1, and β`,2,2. Each node has two local DCs, with the correspond-
ing control signals s`,1[k] and s`,2[k], which interact with the integrators
through a local modulator. Note that since the state vector and control
contribution are grouped in pairs, we introduce the index n as the num-
ber of oscillator nodes in the chain-of-oscillators ADC. The total number
of AS states can therefore be determined as N = 2n.

At this point, it might not be clear that the chain-of-oscillators ADC
have similar performance properties as the chain-of-integrators ADC
from Chapter 5. To see this, we will need to cover several fundamental
properties of oscillators. The general description of the AS and DC will
therefore continue in Section 7.3.

7.2 Oscillator Node
We recognize that a single chain-of-oscillators node resembles the concept
of a frequency translating ∆Σ modulator, cf. [7,29]. This means that from
an implementation standpoint, best practices of the frequency translating
∆Σ modulator can be used. However, since the control-bounded A/D
conversion framework focuses on the continuous-time nature of this
structure, we must diverge from the traditional explanation model [25].

For a single chain-of-oscillators node `, the corresponding state space
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representations follows as

d

dt

(
x`,1(t)
x`,2(t)

)
=
(

0 −ω`
ω` 0

)
︸ ︷︷ ︸

A`

(
x`,1(t)
x`,2(t)

)
+
(
β`,1,1 β`,1,2
β`,2,1 β`,2,2

)
︸ ︷︷ ︸

B`

(
x`−1,1(t)
x`−1,2(t)

)

+ κ`I2︸︷︷︸
Γ`

(
s`,1(t)
s`,2(t)

)
(7.1)

where (
x0,1(t)
x0,2(t)

)
=
(
u1(t)
u2(t)

)
. (7.2)

Additionally, the parameters of the input matrix are constrained to the
form

B`
4= β`Θ(φβ`) (7.3)

where φβ` ∈ (0, 2π], β` ∈ R is the per node amplification, and Θ(φ) is a
rotation matrix, see Appendix C.

The control observations matrix is defined as(
s̃`,1(t)
s̃`,2(t)

)
=
(

cos(ω`t) sin(ω`t)
− sin(ω`t) cos(ω`t)

)
︸ ︷︷ ︸

Γ̃(t)=Θ(−ω`t)

(
x`,1(t)
x`,2(t)

)
. (7.4)

The time-variate structure of the control observations matrix amounts to
a demodulation stage and will be further described in Section 7.4

7.2.1 Two-Dimensional Input Signal
A fundamental difference between the chain-of-integrators node and the
chain-of-oscillators node is that the latter has a two-dimensional input
vector, i.e.,

u(t) =
(
u1(t)
u2(t)

)
. (7.5)

The two-dimensional nature of the input signal originates from the fact
that a general scalar sinusoidal signal can be decomposed as

u(t) = a1(t) cos(ωut+ φu)− a2(t) sin(ωut+ φu), (7.6)
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where a1, a2 : R → R. Furthermore, the largest AS gain is achieved
for a two-dimensional input signal where the two terms from (7.6) are
separated as

u(t) =
(

u(t)
u (t− π/2)

)
(7.7)

=
(

a1(t) cos(ωut+ φu)− a2(t) sin(ωut+ φu)
a1(t) cos(ωut+ φu − π

2 )− a2(t) sin(ωut+ φu − π
2 )

)
, (7.8)

i.e., the signal is paired together with a π
2 phase-shifted version of itself.

Another way of describing this division is by decomposing the signal into
an in-phase and quadrature component [11], which are common concepts
for frequency modulation in communication system applications.

We refer to this process as phase splitting. The decomposition in (7.8)
is ideal and might be difficult to realize in a physical circuit. As an
alternative, neglecting the phase splitting by assigning

u(t) =
(

1
0

)
u(t), (7.9)

results in an AS amplification reduction. The use of phase splitting will
be discussed further in Section 7.2.3.

7.2.2 Amplification Behavior
To see the largest possible amplification of an chain-of-oscillators node,
we consider an input signal as in (7.8) where the signal’s frequency and
the resonance frequency of the node are the same, i.e., ωu = ω1 and
a1(t) = 1 and a2(t) = 0.

Feeding the input signal into the oscillator node, and assuming initial
states as x1,1(t0) = x1,2(t0) = 0, results in the states at time t1 > t0 as

x1(t1) =
(
x1,1(t1)
x1,2(t1)

)
(7.10)

=
∫ t1

t0

exp (A1(t1 − τ))B1u(τ) dτ (7.11)

=
∫ t1

t0

Θ(ω1(t1 − τ))B1u(τ) dτ (7.12)

= β1

∫ t1

t0

Θ (ω1(t1 − τ) + φβ1)u(τ) dτ (7.13)
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= β1

∫ t1

t0

(
cos (ω1(t1 − τ) + φβ1 + ωuτ + φu)
sin (ω1(t1 − τ) + φβ1 + ωuτ + φu)

)
dτ (7.14)

= β1

(
cos (ω1t1 + φβ1 + φu)
sin (ω1t1 + φβ1 + φu)

)∫ t1

t0

dτ (7.15)

= (t1 − t0) ·B1u(t1). (7.16)

The derivations above used several properties of rotation matrices. These
are covered in Appendix C. Specifically, (7.12) follows from the property
(C.1), and (7.13) and (7.14) uses the property from (C.8).

From the resulting expression in (7.16), we see that the oscillator inte-
grates the input signal onto the oscillating states of the oscillator nodes.
Similar to the integrator case the ‖x(t)‖2 term grows linearly with time
for a sinusoidal input signal of the resonance frequency.

Note that for a a2(t) 6= 0 the steps above need to be repeated twice but
results in the same expression (7.16).

Sinusodial Input Signal not at a Resonance Frequency

For an input signal as in (7.8), where the signal’s frequency and the
resonance frequency of the node are not the same, i.e., ωu 6= ω1, a1(t) = 1,
and a2(t) = 0, the states at time t1 can be computed in a similar way.
Specifically, the computational steps from (7.11)-(7.13) are identical.
Furthermore, we recognize that the order at which rotation matrices are
multiplied does not matter as (7.13) becomes

x1(t1) = B1Θ (ω1t1)
∫ t1

t0

Θ (−ω1τ)u(τ) dτ (7.17)

= B1Θ (ω1t1)
∫ t1

t0

(
cos((ωu − ω1)τ + φu)
sin((ωu − ω1)τ + φu)

)
dτ (7.18)

= B1Θ(ω1t1 + φu) 1
∆ω

(
sin (∆ωt1)− sin (∆ωt0)
cos (∆ωt0)− cos (∆ωt1)

)
(7.19)

where ∆ω
4= ωu − ω1. Interestingly, as ∆ω → 0, we recover the previous

solution (7.16) as

lim
∆ω→0

(
t1 sin(∆ωt1)

t1∆ω
− t0 sin(∆ωt0)

t0∆ω
cos(∆ωt0)−cos(∆ωt1)

∆ω

)
= (t1 − t0)

(
1
0

)
(7.20)
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where we have used limx→0
sin(x)
x = 1 and L’Hôpital’s rule, such that

lim
∆ω→0

cos(∆ωt0)− cos(∆ωt1)
∆ω

= lim
∆ω→0

t1 sin(∆ωt1)− t0 sin(∆ωt0)

= 0 (7.21)

for a t1, t0 ∈ R. Additionally, as (7.19) is monotonically increasing for
both ∆ω → 0+ and ∆ω → 0−, we conclude that the largest amplification
is given for an input signal of a frequency corresponding to the resonance
frequency of the chain-of-oscillators node.

7.2.3 Phase Splitting
As previously mentioned, the scalar input signal u(t) needs to be converted
into a vector-valued version u(t) by the process of phase splitting. The
name is suggestive since the ideal result would be a decomposition as in
(7.8). In the latter, we essentially achieve a π/2 phase delay between the
two elements of the vector for every frequency in the frequency band of
interest without altering each element’s amplitude.

Before digging deeper into this operation, let us motivate it by considering
an input vector with no phase delayed element as in (7.9) and with
a1(t) = 1, a2(t) = 0. For this input, (7.17) becomes

x1(t1) = B1Θ (ω1t1)
∫ t1

t0

(
cos(−ω1τ)
sin(−ω1τ)

)
cos(ωuτ + φu) dτ (7.22)

= B1Θ (ω1t1) 1
2

∫ t1

t0

(
cos(∆ωτ + φu) + cos(∆ω̃τ + φu)
sin(∆ωτ + φu)− sin(∆ω̃τ + φu)

)
dτ

(7.23)

where ∆ω̃ = (ω1 + ωu). Evaluating the integral from (7.23) results in

x1(t1) = B1Θ (ω1t1)
(

1
2∆ω

(
sin(∆ωt1 + φu)− sin(∆ωt0 + φu)
cos(∆ωt0 + φu)− cos(∆ωt1 + φu)

)

+ 1
2∆ω̃

(
sin(∆ω̃t1 + φu)− sin(∆ω̃t0 + φu)
cos(∆ω̃t1 + φu)− cos(∆ω̃t0 + φu)

))
. (7.24)

The first term of (7.24) closely resemble that of (7.19) with the exception
of a 1

2 scaling. Additionally, as ωu → ω1, we have the same behavior as
in (7.19). The second term in (7.24) resides at a much higher frequency
ω1 + ωu and since, for a typical application, β � ω1 this term vanishes.
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Therefore, to avoid the complex expressions, additional signal terms, and
loss of amplification, we advocate not assigning u(t) as in (7.9).

One way of realizing the phase splitting is by filtering the scalar input
signal with a first-order high-pass and low-pass filter, with transfer
functions as

HHP(ω) = iω

ω1 + iω
(7.25)

HLP(ω) = ω1

ω1 + iω
(7.26)

respectively. The proposed phase splitter would then result in a input
vector

u(t) =

ρ1(ω) exp
(
i
(
π
2 − arctan

(
ωu
ω1

)))
ρ2(ω) exp

(
−i arctan

(
ωu
ω1

))  (7.27)

where ρ1(ω), ρ2(ω) : R→ R. The expression shows the desired π
2 phase

shift behavior between the two elements of u(t). However, the amplitude
response of ρ1(ω) and ρ2(ω) has a frequency dependent effect on the
corresponding amplitudes of each input vector element. Therefore, this
essentially only achieves the desired effect of (7.8) in a narrow frequency
band centered around ω1. Better phase splitting can perhaps be obtained
by using all-pass filters instead of the high and low-pass filters presented
above. In this thesis, this topic will not be pursued further.

7.2.4 Transfer Function Analysis
We will next analyse the ATF matrix of the chain-of-oscillators node.
Since A1 is a two-by-two matrix, the matrix inverse in (4.7) has a closed
form solution as

GO(ω) = CT
1 (iωI2 −A1)−1

B1

(
1
−i

)
(7.28)

= CT
1

(
iω ω1
−ω1 iω

)−1
B1

(
1
−i

)
(7.29)

= 1
ω2

1 − ω2C
T
1

(
iω −ω1
ω1 iω

)
B1

(
1
−i

)
(7.30)

= 1
ω2

1 − ω2C
T
1B1

(
iω −ω1
ω1 iω

)(
1
−i

)
(7.31)
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where (7.31) follows from (C.18). The CT
1 = I2 has no effect on these

expression and will therefore, from here on, be neglected. Furthermore,
the right most vector

(
1 −i

)T corresponds to the ideal phase splitting
as in (7.8).

The system amplification can then be written as

‖GO(ω)‖22 = GO(ω)HGO(ω) (7.32)

= β2
1

(ω2
1 − ω2)2

(
1 i

)(−iω ω1
−ω1 −iω

)(
iω −ω1
ω1 iω

)(
1
−i

)
(7.33)

= β2
1

(ω2
1 − ω2)2

(
1 i

)(ω2
1 + ω2 i2ωω1
−i2ωω1 ω2

1 + ω2

)(
1
−i

)
(7.34)

= 2β2
1 ·

(ω1 + ω)2

(ω2
1 − ω2)2 (7.35)

= 2β2
1 ·

(ω1 + ω)2

((ω1 − ω)(ω1 + ω))2 (7.36)

= 2β2
1

(ω1 − ω)2 (7.37)

where (7.33) follows from BT
1B1 = β2

1I2.

Additionally, for the non-phase split input vector as in (7.9) the expression
can be modified as

‖GOnps(ω)‖22 = β2
1

(ω2
1 − ω2)2

(
1 0

)(ω2
1 + ω2 i2ωω1
−i2ωω1 ω2

1 + ω2

)(
1
0

)
(7.38)

= β2
1 ·

ω2
1 + ω2

(ω2
1 − ω2)2 . (7.39)

Once more, it can be seen that, in the frequency band of interest, this
amounts to a reduction in amplification as

‖GO(ω)‖22
‖GOnps(ω)‖22

= 2(ω1 + ω)2

ω2
1 + ω2 (7.40)

= 2 + 4 ωω1

ω2
1 + ω2 . (7.41)
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7.3 Analog System
We now consider the actual chain-of-oscillators ADC by considering n > 1.
The AS is specified in terms of its corresponding state space model

ẋ(t) = ACOx(t) +BCOu(t) + ΓCO(t)s(t) (7.42)
s̃(t) = Γ̃T

CO(t)x(t) (7.43)
y(t) = CT

COx(t) (7.44)

where the state vector, the control contribution vector, the control obser-
vation vector, the signal observation on vector, and the input vector are
organized in consecutive pairs as

x(t) =
(
x1,1(t), x1,2(t), x2,1(t), x2,2(t), . . .

)T ∈ R2n (7.45)
s(t) =

(
s1,1(t), s1,2(t), s2,1(t), s2,2(t), . . .

)T ∈ R2n (7.46)
s̃(t) =

(
s̃1,1(t), s̃1,2(t), s̃2,1(t), s̃2,2(t), . . .

)T ∈ R2n (7.47)
y(t) =

(
y1,1(t), y1,2(t), y2,1(t), y2,2(t), . . .

)T ∈ R2n (7.48)
u(t) =

(
u1(t), u2(t)

)T ∈ R2 (7.49)

Furthermore, the chain structure, as in the chain-of-integrators AS (5.2),
is recognized when considering

ACO =


A1
B2 A2

. . . . . .
Bn An

 ∈ R2n×2n (7.50)

where A` and B` are the local oscillator state specified as in (7.1). Also,
the input matrix, the signal observation matrix, the control input matrix,
and the control observation matrix are specified as

BCO =
(
B1, 02×2, . . . , 02×2

)T ∈ R2n×2 (7.51)
CT

CO = I2n (7.52)

ΓCO =

κ1I2
. . .

κnI2

 ∈ R2n×2n (7.53)

Γ̃T
CO(t) =

Θ(−ω1t)
. . .

Θ(−ωnt)

 ∈ R2n×2n. (7.54)
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The time-dependent control observation matrix Γ̃CO(t) will be further
explained in Section 7.4.1.

Transfer Function Analysis

Due to the chain structure, the transfer function of a chain-of-oscillators
follows from multiplying the individual oscillator node transfer functions
from Section 7.2.4. Specifically, the transfer function from the input to
the `-th node in the chain follows as

GCO`(ω) =
(∏̀
k=1

1
ω2
k − ω2Bk

(
iω −ωk
ωk iω

))(
1
−i

)
(7.55)

assuming β1 = · · · = βn = β, ω1 = · · · = ωn = ωp, and φβ1 = · · · =
φβn = φβ the expression can be written as

GCO`(ω) =
(

β

ω2
p − ω2

)`
Θ (`φβ)QΛ`Q−1

(
1
−i

)
(7.56)

where we have used the eigendecomposition from (C.17) as(
iω −ωk
ωk iω

)
= QΛQ−1 (7.57)

and subsequently resulting in

‖GCO`(ω)‖22 = 2
(

β

ωp − ω

)2`
. (7.58)

The resulting expression for

‖GCO(ω)‖2 = ‖
(
GCO1(ω), . . . , GCOn(ω)

)
‖2 (7.59)

i.e. for CT
CO = I2n, is shown in Figure 7.2 and Figure 7.3. Both figures

show the ATF matrix norm for a fifth-order, n = 5, chain-of-oscillators
ADC. Additionally, the figures confirm a similar frequency behavior as
for the chain-of-integrators, cf. Figure 5.2. The main difference being
that the ATF norm is centered around fc 6= 0.
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Figure 7.2: The AS amplification as in (7.59) for the chain-of-oscillators
ADC. Note that the x-axis is centered around the carrier
frequency fc.
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Figure 7.3: Same as in Figure 7.2 but only showing half of the spectrum
with an logarithmic x-axis as was done for the chain-of-
integrators ADC Figure 5.2.
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7.4 Digital Control
The chain-of-oscillators from Figure 7.1 includes both a demodulation
step between the AS states x(t) and the control-observations s̃(t), and
a modulation step between the control signal s[k] and the control con-
tribution s(t). Both these operations are done independently for each
chain-of-oscillators node. The purpose of the modulation is removing
and adding the frequency offset fc respectively, such that the control
task can be done without concern for the actual resonance frequency of
the chain-of-oscillators AS node. The described modulator is shown in
Figure 7.4.

x`,2(t) x`,1(t)

sin(ω`t)

90◦

90◦

90◦+ +

s`,2(t)s`,1(t)

s`,1[k] s`,2[k]

Modulator

× × ××

+

s̃`,1(t)

+

s̃`,2(t)

Demodulator

Figure 7.4: The figure shows a modulator block as those given in Fig-
ure 7.1. The modulator converts signals to and from a
given frequency ω`/(2π). Note that due to the binary na-
ture of s`,1[k], s`,2[k] the multiplication in the modulation
step can be simplified using only switches.
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7.4.1 Control Contribution
For the chain-of-oscillator DC we think of the modulation task, i.e., the
left side of Figure 7.4, as part of the DAC waveform d`(t), as was covered
in Section 4.2.1. Specifically, the relation between the control signal and
control contribution can be written as(

s`,1(t)
s`,2(t)

)
=
(

cos(ω`t) − sin(ω`t)
sin(ω`t) cos(ω`t)

)
︸ ︷︷ ︸

d`(t)

(
s`,1[k]
s`,2[k]

)
(7.60)

for t ∈ (kT, (k+ 1)T ]. From the expression (7.60) we once more recognize
the rotation matrix that appeared frequently in Section 7.2. Furthermore,
when comparing (7.60) to (7.8) we recognize that s`,1(t) is of the same
form as the input vector from (7.8) for a1(t) = s`,1[k], a2(t) = 0, and
likewise s`,2(t) is of the same form as when a1(t) = 0, a2(t) = s`,2[k].
This is not a coincidence, in fact, s`,1(t) can be thought of as the control
contribution intended for the quadrature input component and similarly,
s`,2(t) the control contribution corresponding to the in-phase component.

Since the rotation matrix is rotating with the same frequency as the res-
onance frequency of the oscillator node, we can use the result from (7.16)
to determine how the AS state evolves for different controls. Specifically,
the four possible control combinations(

s`,1[k]
s`,2[k]

)
∈
{(

1
1

)
,

(
1
−1

)
,

(
−1
1

)
,

(
−1
−1

)}
(7.61)

=
{
s(1,1), s(1,−1), s(−1,1), s(−1,−1)

}
(7.62)

result in the control contributions(
x`,1(t)
x`,2(t)

)
= κ`Θ (ω`t1)

∫ t

kT

Θ (−ω`τ)d`(τ)
(
s`,1[k]
s`,2[k]

)
dτ (7.63)

= κ`(t− kT ) (Θ(ω`t)−Θ(ω`kT ))
(
s`,1[k]
s`,2[k]

)
(7.64)

where we have assumed t ∈ (kT, (k + 1)T ]. The expression from (7.64) is
visualized in Figure 7.5. The figure is normalized for unit growth during
one time period of the oscillator resonance frequency. Furthermore, the
figure shows the state evolution for three such time periods. As is evident
from the figure. The proposed control contribution results in a ‖x`(t)‖2
term, which grows linearly over time.
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Figure 7.5: AS state evolution (7.64) visualized for the four different
control signal configurations as in (7.62). The x and y-axis
are normalized for unit growth with respect to the time
period at oscillation frequency ω`. The figure shows the
growth during three such time periods

Demodulation

The demodulation from Figure 7.4 can be written in a similar way as in
(7.60) namely,(

s̃`,1(t)
s̃`,2(t)

)
=
(

cos(ω`t) sin(ω`t)
− sin(ω`t) cos(ω`t)

)
︸ ︷︷ ︸

Θ(−ω`t)

(
x`,1(t)
x`,2(t)

)
. (7.65)

Interestingly, for an arbitrary AS state vector as(
x`,1(t)
x`,2(t)

)
= a`,1(t)

(
cos(ω`t+ φ`)
sin(ω`t+ φ`)

)
+ a`,2(t)

(
− sin(ω`t+ φ`)
cos(ω`t+ φ`)

)
(7.66)
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the demodulation operation results in(
s̃`,1(t)
s̃`,2(t)

)
=
(
a`,1(t)
a`,2(t)

)
cos(φ`). (7.67)

In other words, the demodulation process separates the two control
dimensions defined by the modulated DC as in (7.64). One way to
visualize this is by considering the AS state trajectory of an oscillator
node without input(

x`,1(t)
x`,2(t)

)
= κ`t

(
s`,1[0]

(
cos(ω`t)
sin(ω`t)

)
+ s`,2[0]

(
− sin(ω`t)
cos(ω`t)

))
+ Θ(ω`t)

(
x`,1(0)
x`,2(0)

)
(7.68)

for t ∈ (0, T ]. From the expression we recognize the general state form
from (7.66) with

a`,1(t) = κ`ts`,1[0] + x`,1(0) (7.69)
a`,2(t) = κ`ts`,2[0] + x`,2(0) (7.70)

As an alternative, the demodulation could also be implemented as(
s̃`,1(t)
s̃`,2(t)

)
=
(

cos(ω`t) 0
0 cos(ω`t)

)(
x`,1(t)
x`,2(t)

)
(7.71)

as for an arbitrary oscillator node state in (7.66),

(7.71) can then be written as(
s̃`,1(t)
s̃`,2(t)

)
= a`,1(t)

2

(
cos(−φ`) + cos(2ω`t+ φ`)
sin(2ω`t+ φ`)− sin(−φ`)

)
+ a`,2(t)

2

(
sin(−φ`)− sin(2ω`t+ φ`)
cos(2ω`t+ φ`) + cos(−φ`)

)
. (7.72)

Furthermore, by elementwise low-pass filtering the expressions above,
the 2ω` terms are suppressed, and the demodulated signal is obtained.
The difference of this latter approach (7.71) is that only two mixing
operations are necessary for the demodulation at the expense of an
additional low-pass filtering step.
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7.4.2 General Remarks
Note that the demodulation task does not need to be implemented with
the same precision as the modulation task. This is because the 1-bit
quantizers only use the demodulated signal, whereas the modulated
signal adds to the signal path. Thankfully, due to the binary nature of
the control signals s`,1(t), s`,2(t), the modulation can be implemented
as switching between a different phase-delayed version of a global free-
running oscillator.

Furthermore, as the same oscillator is used for both modulation and
demodulation, see Figure 7.4, the absolute phase of the oscillator has no
influence for the modulation and demodulation of the controls and states
respectively.

For an n-th order chain-of-oscillators the control input and observation
matrix follows as shown in (7.53) and (7.54). The expression in (7.54)
reveals that each oscillator node is demodulated independently as in
(7.65). For the control contribution, the modulation is described as part
of the DAC waveform. Therefore,

D(t) =

d1(t)
. . .

dn(t)

 ∈ R2n×2n (7.73)

where each DAC waveform d`(t) is as in (7.60).

A key argument for using the DC as described above is the fact that
the modulation and demodulation reduce the control problem to the
same as in the chain-of-integrators. This means that β`, κ` and T can
be dimensioned exactly as outlined in Section 5.3.1.

Finally, note that during nominal conditions the oscillator nodes can be
completely stabilized by the DC. This means that the involved oscillators
could ideally be operated without an oscillation amplitude limiter.

7.4.3 Non-Oscillating Digital Control
The oscillator nodes, as in Section 7.2, can also be controlled via a DC
without any oscillating DAC waveforms. An extreme example would be
to use the previously used square DAC waveform as was done for both
the chain-of-integrators ADC as well as the leapfrog ADC. To be precise,
what is proposed is to remove the modulator block from Figure 7.1 such
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that the DC directly control the AS states using 2n independent local
DCs. For a single oscillator node, the proposed DC would result in the
state vector(

x`,1(t1)
x`,2(t1)

)
= κ`Θ (ω`t1)

∫ t1

t0

Θ (−ω`τ) dτ
(
s`,1[k]
s`,2[k]

)
(7.74)

= κ`Θ(ω`t1) (ψ`(−ω`t0)−ψ`(−ω`t1))
(
s`,1[k]
s`,2[k]

)
(7.75)

= κ` (ψ`(ω`(t1 − t0))−ψ`(0))
(
s`,1[k]
s`,2[k]

)
(7.76)

where

ψ`(φ) 4= 1
ω`

(
sin(φ) cos(φ)
− cos(φ) sin(φ)

)
(7.77)

= 1
ω`

Θ
(
φ+ π

2

)
. (7.78)

The corresponding trajectories are given in Figure 7.6. From the figure
we recognize that the resulting state trajectories are periodic with the
time period Tω` = 2π

ω`
corresponding to the resonance frequency of the

oscillator node. Specifically, each of the four control contributions returns
to
(
0, 0
)
at the beginning of time period Tω` . To demonstrate this

more clearly, Figure 7.7 shows the state trajectory resulting from the
control contribution s`,1(t) = s`,2(t) = 1. From the figure we see that
the oscillator node state vector norm ‖

(
x`,1(t), x`,2(t)

)
‖2 reaches its

largest and smallest value at the times t = ξ
Tω`

2 and t = ξTω` respectively,
where ξ is a positive integer. A direct consequence is that for a control
period T = ξTω` the control contribution has no effect at the end of a
control period and cannot control the oscillator node states.

For a T = ξTω` + Tω`
2 , the resulting state vector can be written as(

x`,1(T )
x`,2(T )

)
= 2κ`

ω`

(
−s`,2[k]
s`,1[k]

)
(7.79)

which is also confirmed from Figure 7.7. These cases also correspond to
the largest AS state trajectories from a square DAC control contribution.
Furthermore, we notice that the expression from (7.76) does not grow
linearly with t1 like in the case for the oscillating DC, cf. (7.64). This
means that for a carrier frequency much greater than the frequency band
of interest, an excessively large κ` might be necessary to control the
oscillator node’s state vector.
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Figure 7.6: AS state trajectories for a single oscillator node from a
control contribution given by a square DAC waveform. Note
that the trajectories are all periodic with the time period
Tω` = 2π

ω`
.

Furthermore, the control observation needs to be aligned such that the
control ends up opposing the state at the end of each control period.
This can be done by a fixed rotation, i.e., independent of time(

s̃`,1(t)
s̃`,2(t)

)
= Θ (φ`)

(
x`,1(t)
x`,2(t)

)
(7.80)

where

φ` = −
(
ω`T + π

2

)
. (7.81)

The proposed rotation can be incorporated into the control observation
matrix as

Γ̃CO =

Θ(φ1)
. . .

Θ(φn)

 . (7.82)
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Figure 7.7: Resulting state trajectory for s`,1(t) = s`,2(t) = 1. The
evolution follows the drawn line in counterclockwise di-
rection and the specific time of ξTω` , ξ
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indicated for any positive integer ξ.

Note that the control observation matrix is not time dependent, which
was the case for the oscillating DC, cf. (7.54).

The steps presented in this section can be repeated for non-oscillating
DAC waveforms other than the squared one. In particular, the switched
capacitor DC from Section 5.3.2 is particularly interesting since, if the
discharge of the capacitor is much smaller than Tω` , it behaves very
similar to how it operates for a chain-of-integrators ADC.

7.5 Digital Estimator
The DE of the chain-of-oscillators ADC is similar to that of the chain-
of-integrators DE presented in Section 5.4. In particular, for n = 5,
ω1 = · · · = ω5 = 2πfc, and β1 = · · · = β5 = β, the norm of the NTF and
STF are evaluated in Figure 7.8 as a function of frequency. Note that
in that figure, the x-axis is centered around fc. Furthermore, the same
figure with an logarithmic x-axis is shown in Figure 7.9. In this case, we
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Figure 7.8: The resulting STF and NTF plotted for the chain-of-
oscillators ADC. Note that we have centered the x-axis
around the resonance frequency of the oscillator node.

only show the positive half of the frequency band of interest.

The Figure 7.9 closely resemble that of Figure 5.6 which once more confirm
that the chain-of-oscillators ADC behaves like a chain-of-integrators ADC
centered around some frequency fc.

Computational Complexity

What is particularly noteworthy with the chain-of-oscillator DE is that
the time-dependent DAC waveform does not affect the digital estimation
filter’s complexity. Instead, these are incorporated in the offline precom-
putations of (4.63) and (4.64). Also, note that the control observation
matrix Γ̃T

CO(t) takes no part in the DE. In other words, the digital es-
timation filter follows, as before, from Equations (4.53)-(4.55), and the
resulting filter coefficients (matrices) are time-invariant.

Therefore, the chain-of-oscillators DE computational complexity scales
similarly to the chain-of-integrators DE, with the number of oscillator
nodes as M = N = 2n and L = 1. Using the derivations of Section 4.3.4,
we can summarize the DE’s computational complexity as

• O (n) real-valued scalar multiplications,
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Figure 7.9: The positive half of Figure 7.8 plotted with a logarithmic
x-axis.

• O
(
n2) real-valued scalar additions,

• and requires 2n bits and 8n+ 2 real-valued scalar values to be kept
in memory

per estimated sample when implemented using the offline batch estimator
from Algorithm 3 from Appendix E.



Chapter 8

Hadamard
Analog-to-Digital
Converter

The goal with the Hadamard ADC is to distribute component mismatch
sensitivity equally over the involved circuit components. The desired
effect is achieved by separating the signal dimensions, or the logical signal
paths, from the physical ones. The Hadamard ADC by itself will not
render any nominal performance improvement. However, it is a significant
building block together with the overcomplete control from Chapter 9
for the multi-input ADC presented in Chapter 10.

Furthermore, the Hadamard ADC examples presented here are all ex-
tensions of the chain-of-integrators ADC from Chapter 5. However, the
general principle could just as well be applied to any control-bounded
ADC.

8.1 Analog System
The mentioned separation of physical and logical states or signal dimen-
sions is achieved by rotating the state space. The rotation is done with
a scaled Hadamard matrix HN , which also warrants the name of this
control-bounded ADC.

131
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A Hadamard matrix can be defined recursively as

HN
4= H2 ⊗HN/2 (8.1)

where

H2
4=
(

1 1
1 −1

)
, (8.2)

and ⊗ is the Kronecker product. From (8.1) it is clear that the Hadamard
matrix is only defined for N being powers of two.

Furthermore, the Hadamard matrix has two, especially nice, properties
that we will highlight next. In particular, the Hadamard matrix is
symmetric, i.e., HN = HT

N and its inverse is a scaled version of itself as

HT
NHN = N · IN (8.3)

or equivalently, H−1
N = 1

NH
T
N .

The mentioned rotation is implemented by applying the Hadamard trans-
formation to the state vector of the AS. This means that the Hadamard
ADC’s AS is described by the equations

ẋ(t) = AHx(t) +BHu(t) + ΓHs(t) (8.4)
y(t) = CT

Hx(t) (8.5)
s̃(t) = Γ̃T

Hx(t) (8.6)

where

AH = 1
N
HNACIH

T
N , (8.7)

BH = 1
N
HNBCI, (8.8)

CT
H = CT

CIH
T
N , (8.9)

Γ̃T
H = Γ̃T

CIH
T
N , (8.10)

and

ΓH = 1
N
HNΓCI, (8.11)

whereHN is a Hadamard matrix and ACI, BCI, CCI, ΓCI, and Γ̃CI refers
to the chain-of-integrators parameterization from Equations (5.2)-(5.7).
Notice the scaling in (8.7), (8.8) and (8.11). These are necessary to
maintain an effective control and will be motivated in Section 8.2.
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Transfer Function Analysis

The transfer function analysis of the Hadamard ADC is identical to that
of the chain-of-integrators ADC from Section 5.2. To see this consider
the following manipulations

GH(ω) = CT
H (iωIN −AH)−1

BH (8.12)

= CT
CIH

T
N

(
iωIN −

1
N
HNACIH

T
N

)−1 1
N
HNBCI (8.13)

= CT
CIH

T
N

(
1√
N
HN (iωIN −ACI)

1√
N
HT
N

)−1 1
N
HNBCI (8.14)

= CT
CIH

T
N

(
1√
N
HT
N

)−1
(iωIN −ACI)−1

(
1√
N
HN

)−1 1
N
HNBCI

(8.15)

= CT
CI

(
1
N
HT
NHN (iωIN −ACI)−1 1

N
HT
NHN

)
BCI (8.16)

= CT
CI (iωIN −ACI)−1

BCI (8.17)
= GCI(ω), (8.18)

where (8.14) follows from (8.3).

8.2 Digital Control
As the Hadamard A/D converter operates in a transformed signal space,
additional care has to be taken with respect to the DC. The fundamental
problem is that our nominal performance is determined by ‖GH(ω)‖22,
whereas the effective control until now has been ensured locally via
bounding the state vector as ‖x(t)‖∞. This is illustrated in Figure 8.1.

Assuming a second order system, N = 2, Figure 8.1a indicates the per-
missible state by the dashed box. Additionally, the blue circle represents
the maximal AS gain (‖ · ‖2).

As seen in Figure 8.1b, rotating the state space, means shrinking the blue
circle, i.e., the permissible AS amplification, for the same ‖ · ‖∞ bound
of the state vector.

At first sight, the reduction in amplification appears to be a significant
performance limitation essentially reducing the expected SNR by a factor
of (1/N)N if applied to every node of the chain. However, Figure 8.1b
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Figure 8.1: States and control bounds for a chain-of-integrators and a
Hadamard ADC.

also presents the solution; as the AS gain is reduced, so is the growth
term, and subsequently, less control gain κ is necessary, which means
that also the remainder term shrinks, cf. Section 4.2.2. This means that
both amplification and the control bound by are scaled down equally,
and therefore, the nominal SNR of the converter is preserved.

The mentioned scaling can be translated to the state space parameteri-
zation in Equations (8.7)-(8.11) in three steps. First, rotating the state
space with 1√

N
·HN preserves the L2 norm and is therefore realized as

AH ←
1√
N
·HT

NACIHN ·
1√
N

(8.19)

BH ←
1√
N
·HNBCI (8.20)

ΓH ←
1√
N
·HNΓCI (8.21)

CT
H ←

1√
N
·CT

CIH
T
N (8.22)

Γ̃T
H ←

1√
N
· Γ̃T

CIH
T
N (8.23)

Secondly, we scale down both the input matrix BH and control input
matrix ΓH by an additional 1√

N
as previously discussed. Finally, scaling

up the two signal observation matrices CT
H and Γ̃T

H by
√
N does not

violate any bounds. In particular, for the CT
H matrix this is especially

uneventfully, since this is a conceptual quantity only used in the offline
computations of the DE. The scaling in CT

H results in an increased



8.2 Digital Control 135

control bound by and amplification such that these are identical to the
corresponding chain-of-integrators example.

Additionally, these rotations means that we can apply the same local
DC strategy, as in Section 5.3, to ensure an effective control. The only
difference being that the bounded states lie in a rotated state space
compared to the physical one.

Misaligned Control and Signal Dimensions

Rotating the signal space does not necessarily imply that the control also
must be rotated as in (8.10) and (8.11). In fact, maintaining the local
control as in the chain-of-integrators ADC from Chapter 5 turns out to
suppress high-frequency noise coming from the local DC, see Figure 8.2
and Figure 8.3.

To be precise, a Hadamard ADC using local control can be described by
the state space description

AH = 1
N
HNACIH

T
N , (8.24)

BH = 1
N
HNBCI, (8.25)

CT
HLC

= CT
CI, (8.26)

Γ̃T
HLC

= Γ̃T
CI, (8.27)

and

ΓHLC = ΓCI. (8.28)

An immediate effect of this parameter choice is that we cannot maintain
the same bound on the signal observation y(t) as in the regular Hadamard
ADC or an equivalent chain-of-integrators ADC. This can be seen from
the geometry of Figure 8.1b where, as before, we have to reduce the gain
but are unable to maintain the tighter bound due to the misalignment.

Figure 8.2 shows the PSD for a full-scale input at a frequency Ω/(2πT ) ≈
0.062, for N = 5. The figure shows both the regular Hadamard converter
(HC) and the Hadamard converter with local control (HCL). From the
figure, we notice a clear difference between the two approaches at high
frequencies; the local control has much less control artifacts. This makes
the misaligned local control especially interesting for higher-order systems
operated with small OSR.
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Figure 8.2: The PSD of û(kT ) for a Hadamard converter with local
control (HCL) compared to the standard version (HC).
For the simulations a full-scale sinusoidal input signal at
Ω/(2πT ) ≈ 0.062 and OSR = 4 has been used.

The misaligned local DC can alternatively be viewed as a way of creating
a dithering effect, much like in Figure 5.13 from Section 5.5.2. This view
is confirmed by the results from the limit cycle simulation in Figure 8.3.
The limit cycle at Ω/(2π) = 0.003 essentially vanishes for the Hadamard
ADC when using local control, as compared to the standard version.

8.3 Digital Estimator
Interestingly, the digital estimator filter coefficients (4.60)-(4.64) are
identical to those of the chain-of-integrators DE for any orthonormal
Γ matrix when the AS as in (8.7)-(8.11). In other words, the chain-of-
Integrators DE can be used on the control signals s[k] to form the final
estimate. This insight once more highlights that the Hadamard ADC is
means of enhancing the robustness properties of AS. However, it does
not fundamentally change the underlying structure in terms of nominal
performance.

Clearly, the identical filter coefficients does not apply for the misaligned
control case, (8.24)-(8.28), as this both changes the DE filter coefficients
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Figure 8.3: The PSD of û(kT ) for a limit cycle simulation where u(t) =
0.003 as in Figure 5.12, comparing the Hadamard converter
with local control (HCL) and the standard version (HC).

and futhermore the characteristics of the AS and DC interaction.

Finally, for any square matrix HN the DE computational complexity
is unchanged and identical to that of the chain-of-integrators DE from
Section 5.4.5.

8.4 Proposed Hardware Implementation
As previously stated, the Hadamard ADC does not increase the nominal
performance. Instead, it was motivated by its mismatch suppression ca-
pabilities and non-centralized design. This can be visualized in terms of
a possible hardware implementation as in Figure 8.4. This architecture
is essentially the Hadamard extension to the chain-of-integrators ADC
from Section 5.6 for N = 4. Furthermore, the Hadamard matrix {1,−1}
multiplications can be implemented conveniently using differential ampli-
fiers, since it amounts to crossing, alternatively not crossing, the wires of
resistors. Using differential amplifiers also means that the signal is repre-
sented as the voltage potential between a positive and a negative wire
as opposed to a wire and a signal ground. To illustrate this, we use the
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notation

x+
` (t)− x−` (t) = x`(t) (8.29)

and

s̃+
` (t)− s̃−` (t) = s̃`(t). (8.30)

Specifically, the fully differential operational amplifiers with capacitive
feedback make up the integrators from Figure 8.4 and the H4(R) blocks
ensure the rotated state space. Note that the capacitors shown in the
figure are all dimensioned the same way, with a capacitance C. Further-
more, there are multiple ways to implement these Hadamard networks,
either as a passive resistor network as in Figure 8.5 or by using additional
voltage buffers, as shown in Figure 8.6. The latter is inspired by the fast
Walsh-Hadamard transform, where the additions are broken down into
log2(N) steps.

To accommodate the specific scaling from (8.7), (8.8), (8.11), several
adaptations are made. Specifically, the time constant RC is adapted such
that

√
N

RC
= β. (8.31)

Furthermore, (8.8) is ensured by restricting

bu = bx√
N
. (8.32)

Finally, the scaling in (8.11) is realized by increasing the resistance
in the corresponding Hadamard resistor network by a factor

√
N = 2.

Additionally, R∞ symbolizes resistor values which are merely used for
averaging and are not part of the gain constant. Therefore, R∞ is
preferably chosen relatively large to limit power consumption.

The Hadamard converter utilizes many more resistors (N2) than the
corresponding chain-of-integrators ADC (N). However, for a fixed C,
and due to the increased R according to (8.31), each resistor consumes less
power, since the power consumption is distributed over a larger number of
resistors. This will be covered in detail in Section 8.4.3, showing that the
total current into each capacitor, and therefore the total power consumed
by all the resistors, remain constant between the Hadamard ADC and
the chain-of-integrators ADC.
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û
(t
)

H
4
(2
R
)

F
ig
ur
e
8.
4:

C
irc

ui
t
im

pl
em

en
ta
tio

n
of

th
e
co
nt
ro
l-b

ou
nd

ed
H
ad

am
ar
d
co
nv

er
te
r
fo
r
N

=
4.

A
lte

rn
at
iv
e

im
pl
em

en
ta
tio

n
fo
r
th
e
re
sis

to
r
ne
tw

or
ks
H

4(
R

)
ar
e
sh
ow

n
in

Fi
gu

re
8.
5
an

d
Fi
gu

re
8.
6.

T
he

ca
pa

ci
to
rs

in
th
e
fig

ur
e
ar
e
al
lo

fe
qu

al
siz

e
an

d
de

no
te
d
C
.
Fu

rt
he

rm
or
e,

fe
ed

ba
ck

am
pl
ifi
er
s

re
pr
es
en
ts

vo
lta

ge
bu

ffe
rs
.



140 Hadamard Analog-to-Digital Converter

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Figure 8.5: A H4(R) Hadamard resistor network where the k-th differ-
ential output is connected to the `-th differential input via
the k-th row `-th column resistor pair in the figure.
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Figure 8.6: A H4(R) network implemented in the style of a fast Walsh-
Hadamard transform where the left hand side terminals are
the inputs and the right hand side terminals the outputs
of the network. Note that in comparison to Figure 8.5 this
implementation requires eight additional voltage buffers.
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Notably, both the input and analog feedback paths feed into all of
the integrators. A direct consequence is a uniform sensitivity to the
involved circuit components, since no signal observation dimension is
defined by a single state, or equivalently, a single circuit component.
Additionally, each path is connected via N resistors stacked in parallel.
This is advantageous since small independent component imperfections
are averaged out with respect to the AS’s signal dimension. The effect of
this averaging becomes dramatic when considering a component mismatch
scenario as in Figure 8.7. Here the resistor components of the different
architectures are altered during simulation by randomly selecting them
from a uniform distribution with a support of 1% deviation from their
respective nominal values. In contrast, the digital estimation is done
with nominal values.
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Figure 8.7: Averaged PSD of the estimate û(kT ) for a mismatch simula-
tion where the resistors of each architecture, are randomly
selected with a deviation up to 1% from their nominal
values. Furthermore, CI is the chain-of-integrators from
Chapter 5, HC is the Hadamard ADC using the Hadamard
resistor network from Figure 8.5, and HCT is the Hadamard
ADC with the resistor network as in Figure 8.6.

Figure 8.7 shows the average PSD, of the estimate û(t), for each archi-
tecture as a result of more than 500 mismatch simulations. The nominal
case and the mismatched chain-of-integrators converter architecture from
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Chapter 5, are also included in the figure.

The simulation results show significant performance degradation for
the chain-of-integrators ADC where harmonics, due to the introduced
mismatch, are visible in PSD spectrum. The Hadamard converter using
the resistor network (marked HC in Figure 8.7) as in Figure 8.5, averages
these imperfections and thereby suppresses the harmonic distortion.
Additionally, we see the noise floor rising compared to the nominal
case. Furthermore, the Hadamard converter using the resistor network
from Figure 8.6 (marked HCT in Figure 8.7) is essentially unaffected
by the mismatch and almost maintain the noise floor of the nominal
case. The robustness of this HN implementation, as opposed to the one
from Figure 8.5, comes from the fact that the circuit not only averages
the involved components but furthermore averages products of averages.
This will be further described below in Section 8.4.2

8.4.1 Misalignment due to Mismatch

The Hadamard converter architecture has an additional benefit. Namely,
that any mismatch creates significant misalignment between the state
vector and the DC, which for the digital estimation filter appears similar to
that of dithering. This means that in any practical implementation, there
is naturally occurring dithering that in turn suppresses limit cycles. The
same does not apply for the chain-of-integrators circuit implementation
from Chapter 5.

8.4.2 Fast Walsh-Hadamard Transform

In this section, we have showed two versions of the Hadamard resistor
network. The latter from Figure 8.6, denoted HCT, uses the concept
of a fast Walsh-Hadamard transform to break down the corresponding
Hadamard matrix into log2(N) steps. Traditionally, the Walsh-Hadamard
transform is a divide-and-conquer algorithm, with much resemblance to
the fast Fourier transform, which reduces the computational complexity
when computing the Walsh spectrum. However, for our application, it is
not motivated by the number of necessary additions, but instead from
its robustness properties. For the case when N = 4, as in the hardware
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prototype, the equivalent matrix product can be written out as

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (8.33)

=


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 . (8.34)

Note that the rightmost matrix corresponds to the resistor network (R∞)
before the voltage buffers in Figure 8.6, and similarly, the left matrix
corresponds to the resistor network after the same voltage buffer.

Furthermore, for a general N -th order Hadamard matrix the same prin-
ciple can be applied recursively as

HN =
(
IN/2 IN/2
IN/2 −IN/2

)(
HN/2 0

0 HN/2

)
(8.35)

8.4.3 Power Consumption
It is hard to make sure that the different circuits in Figure 8.7, and more so
the corresponding resistor networks, are scaled fairly. One way to argue for
the presented comparison is by considering the power consumption. We
will next compare the Hadamard ADC to the chain-of-integrators ADC
by computing the power consumption for both cases. Specifically, we will
expose each ADC to the largest permissible input ‖u(t)‖∞ = bu combined
with the largest permissible initial state ‖x(t)‖∞ = bx. Furthermore, we
will neglect any power consumption associated with amplifiers.

For the chain-of-integrators, each node’s power consumption, as in Fig-
ure 5.16, can be written as

Px` =
v2
x`−1

Rβ`
+
v2
s`

Rκ`
(8.36)

≤ 2
v2
bx

R
(8.37)

where bu = κ = bx, vbx = maxt(vsl(t), vx`−1(t)), and R = Rβ` = Rκ` .
This means that the proposed parameter settings result in a stability
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margin of ε = 2. Subsequently, a N -th order chain-of-integrators ADC
could consume up to NPx` Watt.

Applying the same reasoning to the Hadamard circuit from Figure 8.4,
we can write the power consumed with respect to a single maximum
input signal and initial AS state as

Px` =
N∑
`=1

v2
s̃`

RH
+

N∑
`=1

v2
s`√
NRH

. (8.38)

For this to be true we have assumed the R∞ to consume no power. As
already discussed, the Hadamard circuit’s resistors are larger than their
corresponding chain-of-integrators version. Specifically, from (8.31),

RH =
√
NR (8.39)

for the same amplification factor β and capacitance C. Furthermore,
the control observation s̃(t) is smaller compared to its equivalent chain-
of-integrators version due to the scaling done in Section 8.2. The same
applies to the voltage, which can be at most vs̃` = 1√

N
vbx , whereas

maxt vs`(t) = vbx as before. All these things considered, (8.38) is upper
bounded by

Px` ≤ 2
v2
bx

R
, (8.40)

i.e., given the stated assumptions, the Hadamard converter consumes the
same power as the chain-of-integrators circuit with respect to the analog
signal paths, at most.

The computations above were an upper bound on the power consumption
since we assumed a worst-case signal and initial state. To get a bet-
ter understanding of the average consumed power, we next estimate the
probability density function of the control observations s̃(t) when sim-
ulating a full-scale sinusoidal input signal. For the chain-of-integrators
ADC, the control observation and the actual physical states is the same
thing as Γ̃T

H = IN . The estimated probability densities are given in Fig-
ure 8.8. From the figure, we conclude the

√
N = 2 scaling difference

between the different amplitudes and an average norm that is far from
the assumed worst-case scenario, which would be ‖s̃(t)‖2 =

√
N or N 1

4

for each case respectively. This means that both the average and maxi-
mum power consumption can be assumed substantially lower than the
one given in (8.37) and (8.40).
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Figure 8.8: The estimated probability density function of the L2 norm
of the control observations s̃(t), as in (4.5), for the chain-
of-integrators and Hadamard converter, respectively. Each
ADC is excited with a full-scale sinusoidal input signal.

8.5 Thermal Noise Suppression
We already concluded that rotating the state space, using the Hadamard
matrix, essentially distributes all signal paths over all the involved circuit
components. More precisely, signals from each node of the equivalent
logical chain can be found on all integrators of the AS.

This means that the power invested in the circuit to suppress thermal
noise, is consumed uniformly by all integrators. This is certainly a big
difference compared to the chain-of-integrators from Chapter 5, where
essentially all of the mentioned power would have to be consumed in the
first node of the chain to avoid this being the performance bottleneck
from a thermal noise point of view.

For the Hadamard ADC this can be taken one step further by not
allocating the state space equally among the signal dimensions of the AS.
Practically, this means increasing amplification for some signal dimensions
with the expense of decreasing the amplification for others (to maintain
an effective control). The net effect of not having uniform amplification
between nodes of the chain is nominal performance degradation since
the AS norm depends on products of amplification. On the other hand,
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increasing the amplification for the first signal dimension, i.e., where the
input signal enters the circuit, can significantly increase the thermal noise
insensitivity with respect to this signal dimension. It is a general fact that,
for chain-of-integrator type structures, we are always more sensitive to
disturbance at the first node. In other words, the possibility of allocating
power consumption unequally over the different signal dimensions could
increase overall conversion performance. Especially, for the case when
the ADC is limited by thermal noise.

The results of a thermal noise simulation, for a N = 4 Hadamard ADC, is
shown in Figure 8.9. Simulating thermal noise is outlined in Section 4.8.2.
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Figure 8.9: The results of a thermal noise simulation, where a N = 4
Hadamard ADC performance is limited by the simulated
thermal noise. The four different simulations correspond
to differently allocated signal dimensions as more space
is given to the first signal dimension, and thus rendering
better noise suppression capabilities.

For the given simulation the thermal noise has an relative average power
of −87 dB/b2x. This is confirmed by the PSD in Figure 8.9 as the blue
line has a noise floor corresponding to −87 dB/1Hz. Additionally, this
tells us that the simulated system’s performance is limited by the added
thermal noise source.
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The four different simulations vary as

β1 = υ · β̃ (8.41)

β2 = 1
υ
· β̃ (8.42)

and β̃ is normalized such that ‖
(
β1, . . . , βN

)
‖1 = Nβ. The proposed

scaling ensure that the local DC remains effective, given that it was
effective for υ = 1. Note that for υ = 1, we retain the previously used
scaling for the Hadamard ADC.

From Figure 8.9 we confirm the previously stated tradeoff. Namely, as we
give more room to the first dimension, the thermal noise floor decreases
at the expense of the nominal performance. Additionally, we notice that
the high-frequency DC noise intensifies as we increase the amplification of
the first dimension. Finally, we notice that substantial noise suppression
can be achieved for relatively small nominal performance loss.

Note that the v parameter does not change the general structure of
neither the AS, the DC, or the DE therefore there are no complexity
penalties associated with this variable.

In summary, being able to allocate the state space between different
signal dimensions can be a powerful tool for tuning the power efficiency
of the Hadamard ADC. However, a non-uniform allocation results in
a nominal performance degradation as the overall AS amplification is
reduced.

8.6 Generalized Transformation
This chapter covered how a chain-of-integrators ADC could be trans-
formed into a Hadamard ADC using a Hadamard matrix HN . This
concept more generally applies to any orthonormal matrix HN and,
equally important, these transformations could be applied to any control-
bounded ADC’s AS and DC.

In summary, transformations that rotate the logical signal dimensions
relative to the physical states is a mean to enhance the AS physical
properties without changing the nominal performance, i.e., the underlying
transfer functions and the DC interaction with the system. We have
demonstrated this using the Hadamard transformation. However, there
might be more interesting transformations tailored to a given scenario. In
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particular, in the case of prior knowledge on the underlying distribution
of u(t), one could optimize HN to further distribute the signal energy
among the AS’s physical states.



Chapter 9

Overcomplete Digital
Control

The overcomplete DC concept is inspired by several of the previously men-
tioned topics such as the higher-order quantizer concept in Section 5.3.1,
the self dithering control shown in Figure 5.13, and the misaligned control
from Section 8.2.

The the overcomplete DC’s objective is to enable a scaling of the com-
plexity of the DC in a distributed way and, by doing so, avoiding im-
plementation bottlenecks. Increasing the complexity of a DC refers to
increasing the resolution at which the DC can interact with the AS. This
could mean both increasing the order of the quantizers used for observ-
ing the AS control observations as well as increasing the total number of
possible control contributions. In this context, we do not consider short-
ening the control period T , i.e., to oversample, as a means of increasing
the DC complexity.

The issue related to increasing the complexity of the DC by using higher-
order quantizers is that the required component precision also increases.
Therefore, this approach becomes impractical even for moderate com-
plexity as the corresponding decision thresholds (in the quantizer) and
digital representation references (in the DAC) needs to be implemented
with finer and finer precision.

One proposed solution to this problem is to use types of dynamic-element

149
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x1

x2

(a) Higher-order quantization.

x1

x2

(b) Overcomplete DC.

Figure 9.1: Visualization of the control task for the local DC using
higher-order quantizers compared to the overcomplete DC.

matching or mismatch shaping, cf. [25]. Dynamic-element matching effec-
tively averages out imperfections but this comes with significant overhead
since it requires many more circuit components (to allow averaging) and
additional control logic to administrate it.

As an alternative to using higher-order quantizers, we propose the over-
complete DC principle. This DC aims at increasing complexity while
maintaining a relative mismatch sensitivity. Additionally, the DC should
be composed of many independently operated scalar DCs to promote a
simpler hardware implementation.

9.1 Overlapping Reach
Before further describing the overcomplete DC, we will consider how a
local control using a higher-order quantizer divides the control task. In
Figure 9.1a, two AS states are shown together with uniform thresholds
from a higher-order quantizer. Since the local control controls each state
independently, the higher-order quantization thresholds form a square
grid where the blue lines correspond to the local control of x1(t), and
similarly, the red ones correspond to x2(t). Equivalently, higher-order
quantization results in thresholds that can be viewed as inner products
with affine hyperplanes. As previously mentioned, a bottleneck when
using higher-order quantizers is to implement these offsets with sufficient
precision. In practice, it is the DAC, and not the quantizer, that is the
bottleneck. Regardless, the same analogy applies to the DAC.
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The overcomplete DC divides the state space in a different way, as
illustrated in Figure 9.1b. Specifically, the corresponding threshold
hyperplanes are not affine, as there are no offsets. Furthermore, they are
inherently not local, since essentially every physical dimension can be
projected into every individual DC’s control hyperplane. The same thing
can be said for an arbitrary signal dimension. Subsequently, almost every
element of the control signal takes part in the control task of every state.
As a result, the control task is now divided among many control signals,
and thereby the importance of a single control contribution becomes less
critical. This results from the cumulative control effort.

When describing the overcomplete DC it is neither the elements of the
control signal s[k] vector nor the control contribution s(t) vector that
are the focus. In fact, these operate identically as in the local DC, i.e.,
independently and in synchronization with a global clock. Instead, it is
the control input matrix

Γ =
(
γ1, . . . , γM

)
∈ RN×M (9.1)

and the control observation matrix

Γ̃ =
(
γ̃1, . . . , γ̃M

)
∈ RN×M , (9.2)

that defines the overcomplete DC. Furthermore, the vectors from (9.1)
and (9.2) are N -dimensional column vectors. Figure 9.2 illustrates the
general structure of a overcomplete DC.

Γ̃T

x1(t)

...

xN (t)

s̃1(t)

...

s̃M (t)

@@r s1[k]
d1(t)

s1(t)

@@r sM [k]
dM (t)

sM (t)

Γ ...

to
analog
system

...
...

...
...

Figure 9.2: An overcomplete DC where we have more independent DC
paths M compared to the number of states of the AS N .

The first thing to note is that for an overcomplete DC M > N , i.e.,
we have more independent controls than states of the AS. Also as
is shown in Figure 9.2, we only use 1-bit quantizers and thereby 1-
bit DACs. Furthermore, γ` and γ̃` need not to be distributed as in
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Figure 9.1b. However, the column vectors of Γ or Γ̃ are required to form
an overcomplete set.

Definition 9.1.1. An overcomplete set of vectors X is such that, for
any subset Y = X \ {x}, where x ∈ X , the span of both X and Y are
identical.

A trivial example would be to take any of the previously suggested con-
trol input matrices Γold and duplicate its column vectors. Note that
every column vector of Γold needs to be duplicated for this to become
an overcomplete set of column vectors. The proposed approach certainly
battles mismatch as the combined control contribution now will be the
average of all duplicates. However, the performance is unchanged as du-
plication does not affect the control’s capabilities in terms of maintaining
bounds.

To increase performance, we want each column of Γ to be unique. In fact,
the more dissimilar each column vector of Γ is, the better since this divides
the reach and overlap of each control dimension. This inspires uniformly
spaced polar angles, in polar coordinates, as in Figure 9.1b. Similarly,
for a third-order AS, the same could be done by partitioning polar and
azimuthal angles uniformly. However, for an N -th order system, it is less
clear how an overcomplete DC would most advantageously partition the
AS state space or, equivalently, divide the control task.

Finding an Overcomplete Control Set

To find a good partitioned set of overcomplete N -dimensional vectors, we
propose using the algorithm given in Algorithm 1. The algorithm starts
with a non-empty set of vectors G and recursively adds vector elements
until the set has a cardinality |G| = M .

This algorithm is quite idealistic since the optimization problem from
row 6 is a non-convex problem as soon as rank(T ) = N . Instead, the
solution space has many local minimums, and finding a global optimum
quickly becomes unrealistic. In this thesis, this was practically managed
by gradient type algorithms with many restarts. In retrospect, the
practical implementation results in quite poor numerical precision, and,
especially for M ≈ N , the partitioning ended up far from optimal. This
did not seem to be of great importance as for a large M and significant
mismatch, having good enough separation between the control vectors
gave satisfactory results. This will be evident from the simulations in
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1 Function OverCompleteSet(G, M):
input :G - set of initial vectors.

M - sought cardinality of G.
output : overcomplete set of vectors with cardinality M

2 while |G| < M do
3 // create matrix from G
4 T ←

(
γ1, . . . ,γ|G|

)
∈ RN×|G|,γ` ∈ G

5 // find an unit norm vector that has the largest
Euclidean distance to the vectors in G.

6 γnew ← argminγ̃
‖T Tγ̃‖2
‖γ̃‖2

7 G ← G ∪ {γnew}
8 end
9 return G

10 end
Algorithm 1: Finding an Overcomplete Set

Section 9.4.

9.2 Effective Digital Control
Since the overcomplete DC is no longer local to each AS state vector
element, we cannot apply the same recursive procedure, where each node
is considered in successive order. Instead, by design, each independent
control signal vector element s`[k] is involved in the control of each state
of the AS, which makes ensuring an effective control very complicated
for large M .

It is clear that since increasing M results in many overlapping control
contributions, the magnitude of each column vector of Γ must be scaled
down accordingly to avoid instability for a given AS. To describe this
scaling we denote

Γ = κT (9.3)

where κ is a general scaling and T ∈ RN×|G| contains the previously men-
tioned hyperplanes corresponding to each independent DC. Normalizing
T as

T ←
(
TT T)− 1

2 T (9.4)
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and scaling the global magnitudes as

κ = 1
M
· β (9.5)

has empirically shown to result in effective DC.

Similarly, the control observation matrix Γ̃T can be constructed from Γ
as

Γ̃T = 1
‖Γ‖2

· ΓT (9.6)

where the matrix norm refers to the largest singular value of Γ.

As the scaling above have no stability guarantees whatsoever, extensive
simulations have to be conducted to ensure that bounded AS states are
maintained. As an example, Figure 9.3 shows the estimated probability
density function of the L∞ norm of the AS state vector for a Hadamard
ADC, as in Chapter 8. The columns of Γ are chosen in accordance with
Algorithm 1 and the input matrix and the control observation matrix
are scaled as in (9.5). Furthermore, the input signal is a sinusoidal signal
of the largest permissible amplitude bu. The L∞ norm essentially picks
the largest element of the state vector, and the state vector is evaluated
at the end of each control period T . From the figure, it is clear that
the suggested scaling is overly pessimistic since no element of the AS
state vector has any support close to the AS state bound bx. Also, in
comparison with the default Hadamard ADC configuration, this scaling
appears more restrictive.

In Figure 9.3, we considered the worst-case scenario by estimating the
probability density function of the L∞ norm of the AS state vector.
Repeating the same setup but estimating with respect to the L2 norm
results in Figure 9.4. The L2 norm density figure provides additional
insights since the density, and thereby also the averaged power consumed
by the control signals, concentrates at ‖x(t)‖2/bx = 0.11, for the given
scaling.

To conclude this section: We have seen a way of scaling the control
input and observation matrix, which by a heuristic approach, has been
determined to ensure an effective DC. In contrast to all other DCs
presented so far, this approach has at this time no known theoretical
guarantees.
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Figure 9.4: Estimated probability density function as in Figure 9.3 but
with respect to the L2 norm.
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9.3 Digital Estimator
The overcomplete DC changes the DE filter coefficients as both Bf and
Bb from (4.63) and (4.64) are dependent on Γ. In terms of computational
complexity, we repeat the findings of Section 4.3.4, where we concluded
that the offline parallelized batch Algorithm 3 from Appendix E utilizes

• O (N) real-valued scalar multiplications,

• O
(
N(L+M)

L

)
real-valued scalar additions,

• and requires M
L bits and 4NL + 2 real-valued scalar values to be kept

in memory

per estimated scalar sample. We remind ourselves that in these expres-
sions: L is the number of inputs, N is the number of analog states in the
AS, and M is the number of independent scalar controls.

9.4 Mismatch Simulations
The proposed scaling in Section 9.2 has heuristically been determined
to give approximately 3 dB increased SNR at each doubling of M . This,
in turn, is inferior to the 6 dB, which is expected if the same amount of
bits are invested in a higher-order quantizer combined with a local DC.
Heuristic experimentation has shown that, when the involved parameters
are tuned carefully, SNR improvements above 6 dB per doubling of M
can be sustained. However, any such generalized parameter tuning has
failed to scale for an arbitrary M and will, therefore, not be reported
specifically here.

Regardless of the inferior nominal performance scaling, to fully appreciate
the overcomplete DC structure we must consider a mismatch scenario
as in Figure 9.5. Here we essentially repeat the mismatch simulations
from Figure 8.7, i.e., each component of Γ are randomly distorted such
that they could differ up to 1% from their nominal values. Figure 9.5,
demonstrate that, even though we have substantial component mismatch,
the nominal 3 dB SNR improvement is approximately sustained as we
double the number of independent DCs M .

Admittedly, the scaling is not completely without problems, as is clear
from the harmonics that rise from the noise spectrum as M > 32. These
could perhaps be addressed by improving the implementation of Γ as
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Figure 9.5: PSD of the estimate of û(kT ) as in Figure 8.7 (HC) where
the elements of Γ are subject to mismatch. Additionally,
the same AS is equipped with an overcomplete DC using
M independent controls (HC-M) that are simulated using
components of the same level of imperfection.

done in Figure 8.6 for the Hadamard matrix. More importantly, note
that the general conversion noise floor consistently shrinks as we increase
the complexity of DC. This is a result of the distributed nature of the
overcomplete DC, where, as we increase M , each imperfection gives less
influence to the overall control contribution and thereby also the estimate.

Finally we summarize the impact of the M parameter on the resources
associated with the AS, DC, and DE. Starting with the DC we recognize
that the M parameter determines the number of independent scalar
controls. As for the AS M determines the number of columns in Γ and
Γ̃, see (9.1) and (9.2). Finally, the computational complexity of the DE
is given in Section 9.3 but essentially boils down to a linear increase in
the number of scalar additions per estimated scalar sample.
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9.5 Controlling a Subspace
In all examples given above, M > N , which guarantees overcompleteness
for nontrivial cases of Γ as the column rank would exceed the the number
of rows. However, it is not necessary for the columns of Γ to span the
whole AS state space. The overcomplete concept can equally well be
applied to cases where the rank of Γ is less than N . One such example
would be for scenarios where M ≤ N and the column vectors of Γ still
form an overcomplete set. Fundamentally, when the rank of Γ is less
than N , an overcomplete DC would imply that the DC only controls a
subspace of the AS state space in an overcomplete way.

Particularly, interesting scenarios for controlling only a subspace would
be the multi-input case which will be the topic of Chapter 10. Specif-
ically, for a given class of multi-dimensional input signals that mainly
excite a subspace of the AS state space (think of correlated input signal
dimensions). The DC’s Γ matrix could be optimized such that its col-
umn vectors span only the mentioned subspace. This would then enable
a comparatively more precise DC and possibly reduce the required num-
ber of control bits for a given target specification. Another, interesting
example would be a DC that could reconfigure its control input matrix
Γ and thereby dynamically optimize its control interactions with the AS
as the AS state vector’s statistics would change over time. Note that
extending the DE to compute statistics over x(t) only requires minor
modifications to the given DE filter.



Chapter 10

Multi-Input
Analog-to-Digital
Converters

The examples of the control-bounded converters presented so far were all
scalar input ADCs. In this chapter, we will explore multi-input ADCs.

Already in Chapter 4 the generalized control-bounded ADC was described
with a multi-channel input, i.e. u(t) ∈ RL for L > 1. Any of the
previously given examples could be extended to the multi-input scenario
where signal dimensions are separately divided among the different inputs.
This multi-input scenario is not particularly interesting since it would
nominally be the same as converting them using independent ADCs.

However, the overcomplete control from Chapter 9 in combination with
the Hadamard type AS from Chapter 8, brings yet another dimension to
multi-input ADC conversion.

159
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10.1 Shared Analog System
& Digital Control

Imagine an AS with the state space parametrization

A = 1
N
HN

A1
. . .

AL

HT
N ∈ RN×N , (10.1)

B = 1
N
HN

B1
. . .

BL

 ∈ RN×L, (10.2)

where A` ∈ RN`×N` and B` ∈ RN` are AS parametrizations of converters
as presented in previous chapters and N =

∑L
`=1N`. Furthermore, Γ

and Γ̃ are determined by an overcomplete set as in Section 9.1 where
M � N .

The proposed AS essentially has L ASs stacked in parallel in the trans-
formed state space, but with an overcomplete DC. The idea of this
approach is that the different input channels share the state space and
can, therefore, allocate a larger portion of the AS state space conditioned
on the other input channels being less active. A larger allocated AS state
space means greater amplification and thus larger dynamical range for
the same AS state control bound. Additionally, the overcomplete DC
jointly controls the AS state space by its overlapping reach.

This idea promotes adapting amplification and control bounds of the
overall ADC with respect to an average multi-channel signal activity,
as opposed to designing each respective ADC towards their worst case.
An example, for four jointly converter input signals (L = 4), is given in
Figure 10.1. The figure shows the PSD of the estimated input(s) for a
forth-order, N = 4, Hadamard ADC with a M = 32 overcomplete DC
(marked HC-32 in the figure) in comparison to a multi-input signal where
four of the mentioned converters (L = 4) are combined as described above.
Furthermore, three of the inputs, are fixed as u2(t) = u3(t) = u4(t) = 0
thereby allowing u1(t) to allocate a larger portion of the state space. This
means u1(t) can increase its amplitude by a factor

√
L without affecting

the corresponding control bound. From the SNR definition in (3.8), we
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Figure 10.1: PSD of the estimated input(s) û(kT ) for a Hadamard
ADC as in Figure 9.5 in comparison with a multi-input
control-bounded ADC. Note that the estimates of HC-
32-u2, HC-32-u3, and HC-32-u4 completely overlay each
other in the figure and are therefore indistinguishable.

realize that increasing the amplitude by a factor a amounts to a SNR
increase of 10 log(a) dB.

This can be confirmed from Figure 10.1 as HC-32-l1 is 6 dB taller than the
default overcomplete Hadamard ADC. In other words, the multi-input
overcomplete Hadamard ADC can allow a 10 log(L) dB larger dynamic
range for each input conditioned on the others being zero, i.e.,

SNR ∝ L. (10.3)

For a large L this means that the amplification and control bounds can
be adapted towards E[‖u(t)‖2] instead of L · maxt ‖u(t)‖∞ as long as
{‖u‖∞ >

√
L · bx} remains sufficiently unlikely.

10.2 Adaptive Beamforming ADC
An obvious application of this scaling would be an adaptive beamforming
application where the signal lies in a subspace of the input channels and
changes over time. For this case, individually converting each input means
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that each channel needs to be dimensioned for the worst-case scenario of
all signal power residing in a single channel, i.e.chain-of-integrators ADC

‖u(t)‖∞ ≤ bu (10.4)

for any t ∈ R. In contrast, the multi-input control-bounded converter
only needs to be bounded as

‖u(t)‖2 ≤
√
Lbu (10.5)

which results in a L increase in SNR. To illustrate this, consider an input
signal

u(t) = u(t) · v ∈ RL (10.6)

where u(t) is a scalar input as before and the amplitude vector v =(
v1, . . . , vL

)T ∈ RL is normalized, depending on the two different cases
described above.

Furthermore, as a post-processing step the ADC estimate û[k] is combined
into a scalar estimate by projecting it onto v as

û[k] = 〈v, û[k]〉
‖v‖22

. (10.7)

The proposed beamforming setup is simulated with an A and B as in
Section 10.1, and all subsystems are identical N` = 4 Hadamard ADCs.
Furthermore, L = 8 and v is randomly generated and scaled according to
(10.5). The overcomplete control is designed with M = 128, i.e., M` = 16
if all channels where converted individually. In comparison, the individual
A/D conversion case requires a more restrictive amplification scaling since
the max signal power could, however unlikely, be contained in a single
converter. The results are shown in Figure 10.2. As can be seen from the
figure there is a substantial benefit, in this case ≈ 21 dB increase in SNR,
when doing joint A/D conversion compared to converting each channel
individually. Note that Figure 10.2 is the averaged result of more than a
100 random vector realizations v.

10.3 Mismatch Sensitivity
A fair concern with the proposed multi-input ADC is its sensitivity to
mismatch. Specifically, as for this ADC conversion strategy, multiple
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Figure 10.2: PSD of û(kT ) for a beamformed signal, as in (10.7). The
figure shows the relative advantage of converting multiple
input channels jointly in comparison with individual con-
version. Note that both these simulations use the same
amount of independent DCs and AS states per scalar in-
put. However, as the number of scalar additions in the
DE scales quadratically with M HC-128-L8 is more com-
putationally demanding for the DE than HC-16 per scalar
input.

input signals share the same circuit components, non-ideal circuitry
might cause performance degradation as the different signal components
“leak” into each other. On the other hand, both the Hadamard ADC
architecture and the overcomplete DC were motivated by, among other
things, their robustness to component mismatch. To resolve this matter, a
mismatch simulation is given in Figure 10.3. The mismatch simulation is
conducted with four full-scale sinusoidal input signals with four different
frequencies and a 1% tolerance on the components corresponding to A,
B, and Γ for a circuit setup similar to that of Figure 8.4 but with an
overcomplete DC.

The figure confirms signal leakage between the input channels as small
peaks rise in the PSD of each input at the frequencies of the other inputs
signals. On the other hand, the overall mismatch performance, including
the mentioned leakage, is still relatively good. For example, consider
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Figure 10.3: Mismatch simulation with a 1% variation of the compo-
nents in the corresponding circuit components of A, B
and Γ for a ADC setup as in Figure 10.1.

the PSD for a chain-of-integrators ADC simulated with the same 1%
mismatch as in Figure 8.7.

The severity of the inter-channel leakage in the estimate also depends on
the application. As an example, for an adaptive beamforming application,
as in Section 10.2, the increased dynamic range would not be heavily af-
fected by the mismatch. This is due to the fact that any such mismatch
can be seen as a distortion to the amplitude vector v, see (10.6). Subse-
quently, the distortion is accounted for as this vector is estimated in a
digital post-processing step.

In summary, we conclude that the multi-input ADC is an interesting
concept in terms of efficiently distributing the conversion problem and
resources. However, due to the increased sensitivity to mismatch-induced
leakage between estimation channels, it might not be advantageous for
every A/D conversion application.

10.4 Fundamental Resource Scaling
The multi-input ADC enables circuit resource sharing as multiple, other-
wise independent, conversion processes are combined. Next, we summa-
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rize how this impacts the resources used by the AS, DC, and DE. The
number of integrators, or equivalently AS states, remains constant per
scalar input signal. However, the number of connections, the A ∈ RN×N
matrix, grows quadratically in the number of states. The same applies to
the input vector B ∈ RN×L. The DC’s number of independent controls
also remains constant per scalar input signal. However, the number of el-
ements in the control contribution matrix Γ ∈ RN×M , and the control
observation matrix Γ̃ ∈ RM×N might substantially increase. We remind
the reader that the mentioned increase in connections above does not nec-
essarily make the system more power-consuming as the many connections
are normalized in an L2 sense.

Finally, the computational complexity, per scalar input signal, of the
DE, increases as follows from the analysis in Section 4.3.4. Specifically,
the number of scalar additions scales quadratically in M and therefore
as M2/L, per scalar input signal, when we combine multiple converters
into one. Interestingly, the number of scalar multiplications remains
constant per scalar input signal. It is essential to note that this additional
computational complexity did not account for the fact that the multi-input
ADC also potentially enables massive gains, see Section 10.2. Therefore,
the actual cost per benefit would be application-specific and a topic that
requires more careful consideration.





Chapter 11

Reciprocal Problem

The control-bounded A/D conversion concept that has been the focus
throughout all previous chapters can be adapted for the purpose of D/A
conversion.

11.1 Control-Bounded Digital-to-Analog
Conversion

It is already clear from previous examples that the AS is capable of creat-
ing complex analog waveforms via the interaction of a DC. Furthermore,
the more complex these ASs become, the richer the variety of the analog
signals they produce, and this motivates the use of such ASs, combined
with DC, for the process of D/A conversion. By adapting the DC and
DE we can transform the previously proposed control-bounded ADCs
into control-bounded DACs. The general system description is given in
Figure 11.1.

The control-bounded DAC is operated by reversing the control-bounded
ADC concept. Specifically, based on a sequence of samples u[k], we
estimate what the AS state vector must be such that the continuous-time
output û(t) approaches u[k] at the given sample times kTs, (k + 1)Ts, ....
The estimated AS state vector is realized using a DC which ensures a
bounded error between the actual state vector and the sought trajectory.
The concept is illustrated in Figure 11.1. We briefly summarize the DE,

167



168 Reciprocal Problem

Γ
+

∫...∫
x
(t)

A

C
T

û
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DC, and AS role as:

• The DE converts the target samples u[k] into a corresponding AS
state vector x(t) evaluated at the end of each control period T .
The state vector is the target trajectory for the DC.

• The DC compares the target AS state vector to an estimated
version. Consequently, the DC decides on a control signal s[k] that
minimizes the error for each control period.

• The AS takes the control contributions and thereby excites the
AS state vector such that continuous-time analog output approx-
imates the specified trajectory. Specifically, the AS output û(t)
approximates the target samples at the sampling times.

11.2 Digital Estimator
The task of the DE is to solve an inversion problem where we assume
a fictional continuos-time input signal y(t) being fed into the AS. The
input signal is such that the resulting fictional output is an approximation
of the target samples u[k].

For this estimation problem, it is not the fictional input signal y(t) that
is of primary interest but instead the resulting state trajectories x(t). In
a later step, the DC will control the AS such that it follows these state
trajectories. Furthermore, as x(t) is a continuous-time object, we sample
it at the end of each control period T . In other words, the output of the
DE is the sampled estimated state trajectories.

The estimation task can be written as an optimization problem

argmax
x(t)

∑
k∈Z

(
u(kTs) +CTx(kTs)

)H (
u(kTs) +CTx(kTs)

)
+ η2

∫ ∞
−∞

y(τ)Ty(τ) dτ (11.1)

such that
ẋ(t) = Ax(t) +By(t). (11.2)

Estimating x(t) implicitly also entails estimating the fictional input
signal y(t). Furthermore, the optimization problem can be solved, at
specific times . . . , (k− 1)T, kT, . . . , using a Kalman smoothing algorithm.
Specifically, we will use the BIFM factor graph message passing rules,
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cf. [34], given in Appendix D.2. This algorithm is closely related to the one
presented in Section 4.3.2. In particular, it is in the same computational
complexity class. Furthermore, the algorithm is parameterized by some
model assumptions: The input y(t) is modeled as a zero-mean stationary
stochastic process where the process, integrated over a unit time step,
results in the covariance matrix

Σu = 1
η
· IL. (11.3)

where L is the dimension of the fictional input signal, i.e., y(t) : R→ RL.

Similarly, the input samples u[k] are modeled as being noisy observations
where the noise is assumed i.i.d. zero-mean Gaussian random variables
with a covariance matrix

Σz = η · IM (11.4)

where M is the dimension of the samples, i.e., u(kTs) ∈ RM .

Estimating the posterior mean of the state vector x(kTs) reduces to a
linear filter split up in a forward and backward recursion as

ξ[k] = Abξ[k + 1] +Bby[k] (11.5)
x(kTs) = Afx((k − 1)Ts) +Bfξ[k] (11.6)

where the Af , Ab, Bf , and Bb follow from Appendix D.2 as

Ab = eA
TTs

(
IN −W

(
Σ−1
u,Ts

+W
)−1

)
∈ RN×N (11.7)

Af = AT
b ∈ RN×N (11.8)

Bb = CTΣ−1
z ∈ RN×M (11.9)

Bf =
(
Σ−1
u,Ts

+W
)−1
∈ RN×N (11.10)

and W is the solution to the discrete-time algebraic Riccati equation

W = eA
TTsW eATs − eA

TTsW
(
Σ−1
u,Ts

+W
)−1

W eATs +CΣ−1
z C

T.

(11.11)

The expression above originates from the work presented in [4, 5, 18,35].
A brief derivation from the underlying statistical estimation problem is
given in Appendix D.2.
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Signal Transfer Function

The continuous-time input estimation enforces a certain type of PSD on
the final estimate; as the message passing reduces to a Wiener filter we
can formulate a transfer function between the target samples u[k] and
the estimated fictional input signal y(t). Namely,

Y (ω) = G̃(ω)H (G̃(ω)G̃(ω)H + η2IN
)−1︸ ︷︷ ︸

HDAC(ω)

U(eiωT ) (11.12)

where

G̃(ω) 4=
∑
`∈Z

G

(
ω − `2π

T

)
(11.13)

as shown in [6] (Section 5.3) and Y (ω) is the continuous-time Fourier
transform of the estimated fictional input signal ŷ. Note that the ATF
matrix G(ω) of the AS is defined as previously stated in (4.7). Addition-
ally, we see the implicit aliasing resulting from mapping the discrete-time
samples into a continuous-time version. The effect of aliasing in the
estimate is visible in later simulations, cf. Figure 11.3.

The fictional input signal will appear at the AS output û(t) as a filtered
version. Specifically, the filter

STF(ω) = G(ω)HDAC(ω) (11.14)

determines the transfer function between the discrete-time target sample
signal u[k] and the continuous-time output of the AS û(t).

This insight suggest that the AS can be seen as an interpolation kernel that
the DE uses to interpolate the discrete-time samples into a continuous-
time version. Furthermore, the DC realizes the interpolation by using a
digital control loop and control contributions.

11.3 Digital Control
As for the control-bounded ADC, the control-bounded D/A converter’s
DC operates in a discrete-time setting. Additionally, as shown in Fig-
ure 11.1, the DC can be recognized as a conventional control system from
control theory. Specifically, for a given estimated target trajectory x̂[k]
given by the DE, the control produces a control signal s[k] which tries
to minimize the error between the target and the observed state vector.
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A significant difference to the previously seen DCs is the state observer.
The objective of the state observer is to produce an estimated version of
the AS state vector. This is a well-known concept in control-theory, and
traditionally involves an additional Kalman estimation step. One extreme
would be to completely base the state estimate on the previously applied
control signals s[k] together with the prior knowledge of the system
parameters of the AS. This approach is attractive from a computational
point of view, but also has its caveats. Specifically, as it leaves the
AS as an open-loop system, minor modeling errors might result in AS
instabilities. These issues could partially be resolved by ensuring the AS
to be stable.

Alternatively, the state observer could additionally incorporate conven-
tional ADCs to observe the actual AS state vector. The latter approach
stabilizes the AS by a control loop, but this results in a significantly more
complex DC. Furthermore, using AS state observation would require the
DC to incorporate a conventional ADC as well as a more computationally
demanding state observer algorithm.

Except for the state observer, the DC operates much like in the ADC
counterpart. Specifically, after subtracting the state estimate from the
sought state trajectory, multiple simple independent controls determines
the control signal s[k].

The Conversion Error

A key feature of the proposed DE scheme is that the fictional input
signal ũ(t) is substantially smaller than any target samples u[k], given
‖G(ω)‖2 � 1 in the frequency band of interest. This can be confirmed
from (11.12) as for a scalar input and output system

‖HDAC(ω)‖22 ≈
1

‖G̃(ω)‖22
. (11.15)

Based on this insight, the DC can be designed with much smaller ampli-
fication, i.e., the scaling of the Γ matrix. Specifically, for a sequence of
target samples u[k], bounded by bu, the fictional input signal ũ(t) will
be bounded as

bũ = ‖HDAC(ωcrit)‖∞ · bu (11.16)

where ωcrit is the frequency with the smallest amplification ‖G(ω)‖2 in
the frequency band of interest. To demonstrate this, assume we would
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apply the local DC from Section 5.3. Subsequently, the largest state error

xε(t) = x̂(t)− x(t) (11.17)

would also be bounded as ‖xε(t)‖∞ ≤ bũ.

For the control-bounded DAC, this illustrates how the conversion perfor-
mance manifests itself as the bound of the state error is approximately
inversely proportional to the overall AS amplification.

11.4 Analog System
The AS from Figure 11.1 resembles the AS from Figure 4.2. However, the
control-bounded DAC lacks the input matrix B, since this is a conceptual
quantity only relevant to the DE. Furthermore, for the DAC the signal
observation matrix CT is an actual matrix, and is a part of the hardware
of the AS.

Additionally, as the AS input has changed roles with the AS output,
the signal observation matrix CT ∈ RL×N has a different role since it
essentially mixes the N analog states into L analog output signals.

11.5 Performance Measure
The performance measure of the control-bounded DAC is closely related
to the ADC one from Section 4.4. Specifically the signal power can be
determined as in (4.84) when considering the STF from (11.14).

Similarly, the conversion error follows as

Pε
4= E

[
ε(t)2] (11.18)

= 1
2π

∫ ∞
−∞

CTSxεxT
ε
(ω)C dω (11.19)

where xε(t) is assumed a stationary stochastic process with PSD matrix

SxεxT
ε
(ω) 4=

∫ ∞
−∞

E
[
xε(t)xε(t+ τ)T] e−iωτ dτ. (11.20)

For the sake of analysis we once more make a bandlimited assumption
on the spectrum of the AS state vector error xε(t), i.e,

Pε = 1
2π

∫
ω∈B

CTSxεxT
ε
(ω)C dω (11.21)
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where B is defined as in (3.10). Additionally, we assume a flat spectrum
of SxεxT

ε
in the frequency band of interest B, i.e.,

SxεxT
ε
(ω) ≈

σ2
bũ|B

‖G(ωcrit)‖22
IM (11.22)

where we have indicated the impact of the much smaller DC amplification.
It follows that

Pε ≈
σ2
bũ|B|B|

2π‖G(ωcrit)‖22
CTC (11.23)

which confirms that the combination of an AS generating large amplifica-
tion in the frequency band of interest in combination with a DC structure
that ensures a tight bound for the state vector results in better DAC per-
formance. By comparing (4.94) to (11.23) we can also see that the D/A
conversion error behaves similarly as in the case of the control-bounded
ADC.

11.6 Chain-of-Integrators Digital-to-Analog
Converter

Next, we will demonstrate an example of a control-bounded DAC. Spe-
cifically, we will adapt the chain-of-integrators ADC from Chapter 5 into
a control-bounded DAC. The local nature of the chain-of-integrators
is maintained as each AS state is controlled individually by a local DC
based on the DE state estimate. Furthermore, we can repeat the recur-
sive bounded-input bounded-output concept from Section 5.3.1, to ensure
an effective DC.

To demonstrate this, we assume an AS as in Figure 5.1 with a

ADA =


0
β 0

. . . . . .
β 0

 ∈ RN×N (11.24)

BDA =
(
β 0 · · · 0

)T ∈ RN×1 (11.25)

ΓDA =

βκ . . .
βκ

 ∈ RN×N (11.26)
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CT =
(
0 . . . 0 1

)
∈ R1×N . (11.27)

As the given parameter settings imply a scalar input and output, we will
refer to the input signal as û(t) and the ATF matrix as G(ω) to indicate
their scalar nature.

Furthermore, we assume the target samples u[k] ∈ [−1, 1] and as indicated
by the expression above β1 = · · · = βN = β, ρ1 = · · · = ρN = 0, and
κ1 = · · · = κN = κ. For an output target bounded between ±1, the
fictional input signal y(t) must be substantially smaller. This follows
from the Wiener filter perspective as

Y (ω) = HDAC(ω)U(eiωTs) (11.28)

=
¯̃G(ω)

|G̃(ω)|2 + η2
U(eiωTs) (11.29)

≈ 1
G(ω)U(eiωTs) (11.30)

=
(
iω

β

)N
U(eiωTs) (11.31)

where we have assumed ‖G̃(ω)‖22 � η2 and approximated G̃(ω) = 0 for
ω ≥ 2π/T .

The DC could bound this input at the first node of the chain, using a
|κ| ≈ 1/|G(ωcrit)|. The chosen control amplification, in combination with
a stability margin chosen as before, results in bx = κ.

As in the case for the chain-of-integrators ADC, each node of the chain
can then be bounded recursively, resulting in a bound on the last AS state
error. For the given C, the same bound can be sustained for the error
on the signal observation û(t), which then is bounded by bx. In other
words, the control-bounded DAC can maintain an error signal bounded
by bx ≈ bu/|G(ωcrit)| around the given state trajectory.

Simulation

To demonstrate this principle we simulate the chain-of-integrators DAC
for N = 5, βT = 0.5, OSR = 16, and κ = −1/G(ωcrit). The simulation
results are shown in Figure 11.2. From the figure, we see the full-scale
input sinusoidal and the noise floor for both the estimated and simulated
PSD. Interestingly, the estimated PSD reveals aliasing terms at higher
frequencies of the spectrum. These aliasing terms originates from the
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estimation task in the DE, and have nothing to do with the DC or AS
operation. This can be confirmed by plotting the NTF and STF as in
(11.12) and (11.14) for the chain-of-integrators DAC. The results is shown
in Figure 11.3. From this figure, we recognize aliasing at multiples of the
sampling frequency.

11.7 Control-Bounded Transceivers
Another interesting application is that of a communication system. In
this setting the objective is to transmit a sequence of digital represen-
tations to another digital domain using an communication channel. As
the communication channel is inherently analog, the sequence of digital
representations first needs to be converted into the analog domain, trans-
mitted over some channel and then converted back into its digital form.
It turns out that for this specific application, the A/D and D/A conver-
sion performance can be improved by matching a control-bounded ADC
to a control-bounded DAC.

A basic communication setting is outlined in Figure 11.4. As opposed
to before, it is not the analog signals, ŷ(t) and y̆(t), that are the prime
focus here. Instead, the combined A/D and D/A conversion task is to
represent u[k] (using a waveform encoder and an ADC) as an analog
signal that is easily converted back into the digital domain (by the DAC
and waveform decoder) as shown in Figure 11.4.

The control-bounded converter principle allows us to incorporate the
waveform encoder and decoder into the conversion process.

It turns out that a joint conversion scheme, i.e., when the ASs of the
ADC and DAC are matched, results in better conversion performance in
comparison to two independent conversion schemes. To see this, consider
two ASs. The first one belongs to the DAC and is defined by the system
of ODEs

ẋ(t) = ADACx(t) +BDACũ(t) + ΓDACs(t) (11.32)
y(t) = CT

DACx(t). (11.33)

Similarly, the second one belongs to the ADC and can be defined by the
ODEs

ẋ(t) = AADCx(t) +BADCy̆(t) + ΓADCs(t) (11.34)
ˆ̆y(t) = CT

ADCx(t). (11.35)
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Figure 11.2: The PSD of û(kT ) for a simulated chain-of-integrators
DAC. The simulated u(kT ) refers to the sampled output of
AS as a result of the control contributions s(t). Similarly,
the dashed line corresponds to the estimated output by
the DE.
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Figure 11.3: NTF and STF of chain-of-oscillator DAC for an OSR =
16.
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Figure 11.4: A simplified view of a communication scenario describing
the steps involved to transmit a digital signal over an
analog domain.

We match the two ASs by setting

ADAC = −AT
ADC (11.36)

BDAC = CADC (11.37)
CT

DAC = −BT
ADC (11.38)

The control input matrices ΓADC and ΓDAC are such that we can ensure
an effective DC for both the ADC and DAC as we have seen from previous
examples.

The corresponding transfer functions can be written as

GADC(ω) = CT
ADC (iωIN −AADC)−1

BADC (11.39)

and

GDAC(ω) = −BT
ADC

(
iωIN − (−AT

ADC)
)−1

CADC (11.40)

=
(
CT

ADC (iωIN −AADC)−1
BADC

)H
(11.41)

= GADC(ω)H. (11.42)

As seen from (11.42), the two ATF matrices are matched; they are each
other’s Hermitian transpose. Furthermore, the relation from (11.36) has
the additional side effect that for a stable ADC AS, the DAC’s AS will
be unstable and vice versa. However, as we have seen from previous
chapters, the stability of each system is managed by the corresponding
DC.

In the following analysis, we focus on the digital-to-digital conversion
process as shown in Figure 11.5. In this setting we have replaced the
channel by an additive white Gaussian noise term z(t). Furthermore, the
waveform encoder and decoder are not explicitly mentioned in the setup.
We exclude these two steps since the focus is on the digital-to-analog
and analog-to-digital aspects of the communication channel. Naturally,
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any additional errors caused by these operations will add to the overall
conversion error. Furthermore, we note that the waveform encoder is
essentially a part of the DAC process as described in Section 11.2 and
the waveform decoder can be included in a post-processing filtering step
of the ADC. Therefore, we will assume an already generated fictional
ỹ(t) and cover the conversion between ỹ(t) and the digital representation
of ˆ̆y(t).

Additional A/D conversion performance can be attained by incorporating
prior knowledge of the D/A conversion process. Specifically, since the
ADC’s DE knows of the parametrization of the DAC it includes the DAC’s
AS matrix in its DE. This means that the ADC forms an estimate of
ỹ(t) rather than y̆(t). The NTF of the resulting digital estimation filter
can then be written as

H(ω) = G(ω)G(ω)H (G(ω)HG(ω)G(ω)G(ω)H + η2IN
)−1(11.43)

For the sake of tractable analysis, we next assume a single transmission
channel and a single waveform, thus making both B,C ∈ RN column
vectors. Naturally, any prior knowledge of the communication channels
transfer function can be incorporated, into the DE of both the A/D and
D/A conversion steps. The Fourier transform of the estimate can then
be written as

ˆ̆
Y (ω) = ‖G(ω)‖42

‖G(ω)‖42 + η2 Ỹ (ω)

+ ‖G(ω)‖32
‖G(ω)‖42 + η2G(ω) (Z(ω) + ε1(ω))

+ ‖G(ω)‖22
‖G(ω)‖42 + η2 ε2(ω) (11.44)

where ˆ̆
Y (ω), Ỹ (ω), Z(ω), ε1(ω), and ε2(ω) are the continuous-time Fourier

transforms of their continuous-time signal counterpart.

Notably, the resulting expressions in (11.44) are similar to those when
performing A/D and D/A conversion individually. However, the A/D
magnitude of the conversion error |ε2(ω)| is approximately 1

‖G(ω)‖2
smaller

than for individual conversion. Also the same applies to ε1(ω). The
difference can be illustrated further by applying the white noise analysis
as in Section 4.4 and Section 11.5. Subsequently, the total conversion
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error can be written as

Pε|B ≈
1

2π

∫
ω∈B

(
σ2
ε2|B

‖G(ω)‖42
+

σ2
bỹ|BC

T
DACCDAC

‖G(ωcrit)‖22‖G(ω)‖22
+

σ2
z|B

‖G(ω)‖22

)
dω

(11.45)

From (11.45) we recognize that both the A/D and D/A conversion errors
(the first two expressions in the parenthesis) are lowered by a factor

1
‖G(ω)‖2

2
compared to the errors when conversion is performed individually.

This means that for a matched ADC and DAC, each individual conversion
error specification can be relaxed for a fixed target performance.

Naturally, the channel noise term’s impact on the conversion error remains
unchanged for the joint conversion method compared to individually
performing D/A and A/D conversion.





Chapter 12

Conclusions & Outlook

Throughout this thesis, we have seen multiple examples demonstrating
the capabilities and features enabled by the control-bounded converter
concept. The common theme among these examples was the DE that
allowed an alternative interface between analog and digital and thereby
new designs of ASs and DCs. The new approach fundamentally changed
the converter design principle into designing an AS, using continuous-
time analysis and analog circuitry while enforcing stability using a DC.
The design task differed substantially between the two components as
the AS performance is determined by concepts familiar to the analog
circuit designer, such as amplification and frequency filtering. At the
same time, the DC reduced to a low complexity control problem without
direct concern for signal paths and transfer function analysis.

While the control-bounded ADC is conceptually different, in terms of
how we think of A/D conversion, it shares many commonalities with
∆Σ modulators. In fact, the control-bounded ADC could be viewed as
a generalization of the ∆Σ modulator concept that allows more flexible
AS and DC interactions and thereby designs.

As the control-bounded conversion concept still is an emerging concept,
several aspects still require further research. In particular, as the field of
A/D conversion already is a much-refined art, many best practices regard-
ing circuit design must be adapted before a competitive control-bounded
ADC could realistically be realized in a modern circuit technology. There-
fore, a competitive control-bounded converter would most likely involve
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refinements to the ASs and DCs presented in this thesis. This is expected
as the examples are intended to demonstrates concepts rather than opti-
mized implementations. Due to the DE’s flexibility, such changes to both
the AS and the DC are typically accounted for by minor modifications
to the DE without affecting its computational complexity or operating
principle.

As has been repeatedly stated, the DE is a central part of the control-
bounded conversion concept and also the enabler resulting in the extended
AS and DC design spaces. However, as with all good things, this comes
at a cost. For the control-bounded converters, this is the computational
complexity of DE. As was discussed in Section 4.3.4 and Section 4.3.5,
the increase in computational complexity is not overwhelming as we re-
main within a linear complexity class. However, the proposed DE cannot
compete with scalar decimation filters in terms of the absolute num-
ber of multiplications and additions per scalar estimate. Regardless,
we believe that this additional cost is motivated as it essentially moves
complexity and, in our view, unnecessary design constraints from the
analog part of the ADC into the digital domain. Something that also
resonates with how circuit technology has evolved over the last decades.
By “moving complexity” from analog to digital, we do not suggest that
all things are better done in digital. On the contrary, the core idea of
the control-bounded converter is to divide the conversion task accord-
ing to each domain’s strengths. In other words, the control-bounded
converter concept promotes an analog frontend, unconstrained by digi-
tal constraints and considerations, where analog operations enhance the
acquisition process as part of the digitalization. Furthermore, with the
flexibility in choosing sampling patterns in the DE, this means that the
control-bounded converter concept not only is an A/D and D/A con-
verter in the conventional sense but also serves as a design framework
for complex analog signal processing and advanced sampling techniques
when converting signals between the analog and digital domain.

Even though the DE is conceptually more complicated than conventional
postprocessing of a ∆Σ modulator’s bitstream, the AS and DC’s design
task is not. The AS design task resembles that of analog filter design,
which is a classical analog circuit discipline. Also, designing the DC
proves straightforward as it is nothing else than a low complexity control
problem.

Among the examples given in this thesis, the overcomplete DC, from
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Chapter 9, is perhaps the one whose appearance most distinguish itself
from state of the art ADCs. In particular, the overcomplete DC chal-
lenges the way we think of higher-order quantization and instead reuse
these resources to control overlapping subspaces of the AS’s state space.
Conceptually, it is much harder to think of the relation between these
overlapping DCs and the sought input signal. However, for the DE, the
complex interactions are irrelevant as the computational complexity and
general operation is maintained. We know that the overcomplete DC
has much potential as it fundamentally distributes the control task and
enables tighter control bounds by many overlapping, and thus cumula-
tive, control tasks. However, this does present us with one of the major
missing pieces in this work, namely how to dimension the overcomplete
DC. Therefore, the overcomplete DC concept, is a topic that remains
open for much further research. It is clear that determining overcom-
plete DC that are also effective, i.e., guarantee stability for a bounded
input, is considerably more involved than for a local DC, as the one in
the chain-of-integrators architecture from Chapter 5. Additionally, the
significance of stability guarantees and the ability to handle the worst
possible adversarial input signals can be questioned as encountering such
signals might be extremely unlikely. As an example, for ∆Σ-modulators,
stability is often determined by testing the converter against a set of test
input signals. In a similar setting, one could envision that dimensioning
the overcomplete DC could be done by data-driven approaches, and the
resulting DC would then be tailored for a specific class of input signals.

In Chapter 10, we saw examples of multi-channel input conversion. This
is another topic that is a natural extension of the control-bounded scalar
ADC. In essence, for multi-input signal scenarios there are potentially
large performance gains as for many applications the corresponding scalar
input signals are not well captured by an jointly independent assump-
tion on their underlying distributions. In such scenarios, the AS and DC
resources can be better combined to enhance overall conversion perfor-
mance. Chapter 10 shows an example of this that utilized the concepts
from Chapter 8 and Chapter 9. However, this topic deserves more con-
sideration as it potentially is very application dependent. Furthermore,
multi-input A/D conversion requires us to rethink how we quantify per-
formance measures as the conversion objective is fundamentally changed.
Regardless, in our view, multi-input A/D conversion holds massive po-
tential for many of today’s and emerging applications and is, therefore a
most interesting direction for future research.
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12.1 Summary
In this work, we have demonstrated the general principle and several
individual aspects and features of the control-bounded conversion concept.
In particular, we have seen that the control-bounded ADC can be seen
as a generalization of the continuous-time ∆Σ modulator. Specifically,
the digital estimator enables greater freedom in terms of the analog and
the digital circuit architecture.

We have shown several modular designs where conversion performance
can be attained by combining multiple smaller systems. One such exam-
ple was the chain-of-oscillators ADC, which demonstrates how to make
A/D conversion at higher frequency bands. Another example was the
Hadamard converter, which transformed the physical signal representa-
tion and demonstrated how we could robustify the circuit implementation.
Furthermore, the overcomplete DC shows how we can increase the com-
plexity of the DC in a robust way, without component mismatch becoming
a conversion performance bottleneck.

All these examples represent fundamental building blocks that can be
combined into a very versatile A/D or D/A converter structure. We have
also shown the possible benefits of considering multi-input conversion
as circuit resources can be shared among multiple conversion processes.
Furthermore, we argued that such a converter has the benefit of being
dimensioned towards an average rather than a worst-case input signal.

12.2 Outlook
During the process of developing the content of this thesis, many exciting
extensions have presented themselves. Several of them did not materialize
into this thesis, mainly due to time constraints. We will next discuss some
promising and interesting extensions with the intent to inspire future
work.

12.2.1 Calibrated Digital Estimator
Both hardware and software calibration are standard tools for refining
precision circuitry. However, for control-bounded ADCs, there are some
aspects that make this particularly interesting. Firstly, the purpose of
calibrating the partially unknown circuit components is to suppress the
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effects of mismatch, which is often the limiting factor for a high-resolution
ADC.

For control-bounded ADC, we propose a software calibration of the DE.
We do not consider hardware calibration since component variations do
not have a substantial impact on the AS ability to amplify the input
signal, nor the DC ability to remain effective. In other words, we can
have a significant mismatch in both the AS and DC without substantially
effecting the potential conversion performance.

Another aspect that seems promising is that the control-bounded ADC is
by itself a data acquisition device. Therefore, for a given test input signal,
the ADC can measure itself without the need for additional circuitry.

Finally, for an overcomplete DC, not every control dimension is strictly
needed to maintain an effective control. Alternatively, we could iteratively
fix some elements of the control signal, thus creating a test input signal,
while controlling the AS state vector using the remaining elements of the
control signal. In other words, we can implicitly create test signals by
small changes to the DC’s operating principle.

In summary, the control-bounded converters are, with minor adaptation,
capable of calibrating themselves. Furthermore, the calibration task is
essentially a textbook example of a system identification problem where
standard approaches, as in [16], would apply.

12.2.2 Clock-Jitter Estimation
The DC of the control-bounded ADC works in synchronization with a
global clock. In a practical circuit, the global clock will suffer from timing
jitter, meaning variation in the length of each clock cycle. As in the
case of component mismatch, the mentioned clock jitter does not have a
significant impact on the potential conversion performance. Specifically,
a well-designed DC can sustain a substantial amounts of clock jitter
without jeopardizing the stability or compromise the amplification of the
AS. On the other hand, if the DE does not account for such timing jitter,
the estimate is undoubtedly affected.

One way of addressing this issue is to estimate the clock jitter in addition
to the converted input signal. Again this idea builds on the fact that
the control-bounded ADC is a data acquisition device. In other words,
extending the input signal and AS to manifest the clock jitter as a
measured signal, for example with an additional dimension containing
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the clock pulse (or a zero input), gives the control-bounded ADC the
possibility of observing and inferring additional timing information of the
clock. Furthermore, there are multiple ways that the DE can be extended
to also estimate and thereby suppress the effect of clock jitter. Clearly,
such an estimator would require additional computational resources,
possibly changing the filters overall computational complexity class.

12.2.3 Multi-Band Frequency A/D Conversion
The multi-channel input A/D conversion of Chapter 10 can also be
applied to broadband signals. In particular, for an application where a
narrowband signal resides in an unknown sub-band of some broadband
frequency range, as in Xampling [10], several chain-of-oscillators ADCs,
using the Hadamard conversion principle Chapter 8, could share the AS
state space and thereby have a significantly higher conversion performance
compared to converting each narrowband separately.

By the same principle, we can also imagine building general broadband
A/D converters with shared circuit components.

12.2.4 Configurable ADCs
Using configurable control-bounded ADCs, we can imagine multi-channel
input estimation scenarios where, by alterations to the AS and or the DC,
the effective resolution is reassigned between the multiple input channel
on demand.

Additionally, this could also amount to a power-saving ADC that “turns
off” certain parts of the AS and corresponding DC on demand. For
low-power applications, this is of particular interest as the A/D converter
could be using a subset of the converter (AS states and independent DCs)
in an idle state and, upon signal detection, adjust effective resolution
and power consumption by an adaptive principle.

12.2.5 General Filter Design
When designing ∆Σ modulators, there are excellent optimization tools
for developing the loop-filter transfer function utilizing zero and pole
placement. The control-bounded AS design steps would benefit from such
tools. However, some additional constraints concerning the largest value
of each AS state and the necessary adaptations to the accompanying DC
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need to be incorporated. Adapting these tools for the control-bounded
ADC design procedure would be a significant contribution to the design
procedure.





Appendix A

Wiener-Hopf Equations

The statistical estimation problem in (4.30) resulted, via the orthogonality
principle, in the following conditions

E
[
((h ∗ q)(t)− u(t)) q(t+ τ)T] = 01×N (A.1)

for any τ ∈ R. This can be rewritten as

E
[
(h ∗ q)(t)q(t− τ)T] = E

[
u(t)q(t− τ)T] (A.2)

E
[∫ ∞
−∞

h(v)q(t− v)q(t− τ)T dv
]

= E
[
u(t)q(t− τ)T] (A.3)∫ ∞

−∞
h(v)E

[
q(t− v)q(t− τ)T] dv = E

[
u(t)q(t− τ)T] (A.4)∫ ∞

−∞
h(v)E

[
q(t)q(t− τ + v)T] dv = E

[
u(t)q(t− τ)T] (A.5)∫ ∞

−∞
h(v)RqqT(v − τ) dv = RuqT(−τ) (A.6)∫ ∞

−∞
h(v)RqqT(τ − v) dv = RuqT(−τ) (A.7)

(h ∗RqqT)(τ) = RuqT(−τ) (A.8)

where in (A.7) we have made use of the fact that the autocovariance
function is symmetric for wide sense stationary stochastic processes. Note
that (A.8) is commonly known as the Wiener-Hopf equation. Furthermore,
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the autocovariance and cross-covariance functions follows as

RqqT(τ) 4= E
[
q(t)q(t+ τ)T] (A.9)

RuqT(τ) 4= E
[
u(t)q(t+ τ)T] . (A.10)

By taking the Fourier transform on both sides of (A.8) we obtain

H(ω)
(
G(ω)SuuT(ω)G(ω)H + SyyT(ω)

)
= SuuT(ω)G(ω)H (A.11)

where H(ω) is the element-wise Fourier transform of h(t) and the PSD

SuuT(ω) 4=
∫ ∞
−∞

E
[
u(t)u(t+ τ)T] e−iωτ dτ (A.12)

SyyT(ω) 4=
∫ ∞
−∞

E
[
y(t)y(t+ τ)T] e−iωτ dτ. (A.13)

The left hand side of (A.11) follows from∫ ∞
−∞

(h ∗RqqT)(τ)e−iωτ dτ (A.14)

= H(ω)
∫ ∞
−∞

E
[
q(t)q(t+ τ)T] e−iωτ dτ (A.15)

= H(ω)
∫ ∞
−∞

E
[
(y̆(t)− x(t)) (y̆(t+ τ)− x(t+ τ))T

]
e−iωτ dτ

(A.16)

= H(ω)
∫ ∞
−∞

(
E
[
y̆(t)y̆(t+ τ)T]+ E

[
x(t)x(t+ τ)T]) e−iωτ dτ

(A.17)
= H(ω)

(
G(ω)SuuT(ω)G(ω)H + SyyT(ω)

)
(A.18)

where (A.16) follows from (4.24), and (A.17) from the independence
between u(t) and x(t). Furthermore, we have used∫ ∞
−∞

E
[
y̆(t)y̆(t+ τ)T] e−iωτ dτ (A.19)

=
∫ ∞
−∞

E
[
y̆(t)y̆(t− τ)T] e−iωτ dτ (A.20)

=
∫ ∞
−∞

E
[
(g ∗ u)(t)(g ∗ u)(t− τ)T] e−iωτ dτ (A.21)
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=
∫∫∫

g(τ2)E
[
u(t− τ2)u(t− τ − τ3)T] g(τ3)Te−iωτ dτ2 dτ3 dτ (A.22)

=
∫∫∫

g(τ2)E
[
u(t− τ2)u(t− τ2 + τ4)T] g(τ3)Te−iω(τ2−τ3−τ4) dτ2 dτ3 dτ4

(A.23)
= G(ω)SuuT(ω)G(ω)H (A.24)

where (A.20) follows from the fact that wide sense stationary stochastic
process must have a symmetric autocovariance function, (A.21) follows
from (4.23), (A.22) from rearranging convolution and expectation, and
(A.23) from the variable transformation τ4

4= τ2 − τ3 − τ . Similarly, the
right hand side of (A.11) follows from∫ ∞

−∞
RuqT(−τ)e−iωτ dτ (A.25)

=
∫ ∞
−∞

E
[
u(t)q(t− τ)T] e−iωτ dτ (A.26)

=
∫ ∞
−∞

E
[
u(t) (y̆(t− τ)− x(t− τ))T

]
e−iωτ dτ (A.27)

=
∫ ∞
−∞

E
[
u(t) (g ∗ u) (t− τ)T] e−iωτ dτ (A.28)

=
∫∫

E
[
u(t)u(t− τ − τ2)T] g(τ2)Te−iωτ dτ dτ2 (A.29)

=
∫∫

E
[
u(t)u(t+ τ3)T] g(τ2)Teiω(τ2+τ3) dτ2 dτ3 (A.30)

= SuuT(ω)G(ω)H (A.31)

where (A.27) follows from (4.24), (A.28) is due to the independence
between x(t) and u(t) and (4.23), (A.29) comes from the definition
of convolution, and (A.30) follows from the variable transformation
τ3
4= −τ − τ2.





Appendix B

Continuous-Time &
Discrete-Time
Fourier Transformations

The results in this section are common knowledge in the signal processing
community, see [10]. However, for sake of completeness, we restate them
here.

Theorem 2. For a signal

x(t) =
∑
k∈Z

y[k]h(t− kTs) (B.1)

where y : Z→ R and h : R→ R, the continuous-time Fourier transform
is:

X(ω) = Y (eiωTs)H(ω). (B.2)

Proof. From the definition of the continuous-time Fourier transform

X(iω) =
∫ ∑

k∈Z
y[k]h(t− kTs)e−iωt dt (B.3)

=
∑
k∈Z

y[k]
∫
h(t− kTs)e−iωt dt (B.4)
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=
∑
k∈Z

y[k]e−iωkTs
∫
h(t)e−iωt dt (B.5)

= Y (eiωTs)H(ω) (B.6)

Similarly,

Theorem 3. A continuous-time signal x(t) sampled uniformly with a
sample period Ts has the spectrum

X̃(eiωTs) = 1
Ts

∑
k∈Z

X (ω − 2πk/Ts) , (B.7)

where X̃ is the discrete-time Fourier transform of Ts spaced samples of
x(t).

Proof. The sampled signal can be expressed as:

x[k] 4= x(kTs) (B.8)

for all k. We are going to show that (B.7) is a necessary condition for
(B.8) to hold. Subsequently, for

x[k] = 1
2π

∫ 2π

0
X̃(eiΩ)eiΩk dΩ (B.9)

= 1
2π

∫ 2π

0

1
Ts

∑
n∈Z

X

(
Ω− 2πn

Ts

)
eiΩk dΩ (B.10)

= 1
2πTs

∑
n∈Z

∫ 2π

0
X

(
Ω− 2πn

Ts

)
eiΩk dΩ (B.11)

= 1
2π
∑
n∈Z

e−2πnk
∫ 2π(k+1)/Ts

2πk/Ts
X (ω̃) eiω̃kTs dω̃ (B.12)

= 1
2π

∫ ∞
−∞

X (ω̃) eiω̃kTs dω̃ (B.13)

= x(kTs) (B.14)

where (B.10) follows from plugging in the definition in Theorem 3, (B.11)
is a result from Fubini’s theorem where we assume that X(ω) is square
integrable, the variable transformation ω̃ 4= Ω−2πn

Ts
leads to (B.12), and

finally (B.13) and (B.14) is the fundamental theorem of calculus and the
definition of the continuous Fourier transform.
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Using Theorem 2 and 3 the discrete-time Fourier transform of the output
of the ∆Σ modulator in Figure 3.4 can be written as

S(eiωTs) = Z
(
eiωTs

)
+ 1
Ts

∑
k∈Z

G (ω − 2πk/Ts)U (ω − 2πk/Ts)

+ 1
Ts

∑
k∈Z

G (ω − 2πk/Ts)D (ω − 2πk/Ts)S
(
eiωTs

)
(B.15)

where

U(ω) 4=
∫
u(t)e−iωt dt (B.16)

Z(eiωTs) 4=
∑
k∈Z

z[k]e−iωTsk (B.17)

S(eiωTs) 4=
∑
k∈Z

s[k]e−iωTsk, (B.18)

and G(ω) and D(ω) are the transfer functions of the filter and DAC
respectively.

From (B.15) we can also write the transfer functions as

S
(
eiωTs

)
=
Z
(
eiωTs

)
+ 1

Ts

∑
k∈ZG (ω − 2πk/Ts)U (ω − 2πk/Ts)

1 + 1
Ts

∑
k∈ZG (ω − 2πk/Ts)D (ω − 2πk/Ts)

(B.19)
Further assuming, both a bandlimited input signal u(t) and system G(ω),
the expression simplifies as:

S
(
eiωTs

)
=
Z
(
eiωTs

)
+ L0(eiωTs)Ũ

(
eiωTs

)
1 + L1(eiωTs)

(B.20)
where

Ũ(eiωTs) = 1
Ts

∑
k∈Z

U(ω − 2πk/Ts) (B.21)

L0(eiωTs) 4=
∑
k∈Z

G(ω − 2πk/Ts) (B.22)

L1(eiωTs) 4= 1
Ts

∑
k∈Z

G (ω − 2πk/Ts)D (ω − 2πk/Ts) . (B.23)





Appendix C

Rotation Matrices

Chapter 7 uses several commonly known properties of rotation matrix.
For convenience they are restated here. Firstly, a rotation matrix is
defined as

Θ(φ) 4=
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
. (C.1)

Furthermore, we recognize that the matrix exponential of a feedback
structure as each node in the chain-of-oscillators Figure 7.1 results in a
rotation matrix as

exp
((

0 −φ
φ 0

))
= I2 +

(
0 −φ
φ 0

)
− 1

2!

(
−φ2 0

0 −φ2

)
+ 1

3!

(
0 φ3

−φ3 0

)
+ 1

4!

(
φ4 0
0 φ4

)
− 1

5!

(
0 −φ5

φ5 0

)
+ . . . (C.2)

=
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
(C.3)

(C.4)

where we have identified the Taylor series

cos(φ) = 1 + 1
2!φ

2 + 1
4!φ

4 + . . . (C.5)

sin(φ) = φ− 1
3!φ

3 + 1
5!φ

5 − . . . (C.6)
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Secondly, when considering products of rotation matrices we recognize
that

Θ(φ1)Θ(φ2) =
(

cos(φ1) − sin(φ1)
sin(φ1) cos(φ1)

)(
cos(φ2) − sin(φ2)
sin(φ2) cos(φ2)

)
(C.7)

=
(

cos(φ1 + φ2) − sin(φ1 + φ2)
sin(φ1 + φ2) cos(φ1 + φ2)

)
(C.8)

= Θ(φ1 + φ2) (C.9)

where we have used the trigonometric identities

cos(φ1 + φ2) = cos(φ1) cos(φ2)− sin(φ1) sin(φ2) (C.10)
sin(φ1 + φ2) = cos(φ1) sin(φ2) + sin(φ1) cos(φ2). (C.11)

(C.8) also shows that rotation matrices commute, i.e. Θ(φ1)Θ(φ2) =
Θ(φ2)Θ(φ1). Another immediate result is that a rotation matrix’s inverse
matrix is itself with a negative rotation, i.e.

Θ(φ)Θ(−φ) = Θ(−φ)Θ(φ) = I2. (C.12)

The rotation matrix is also an orthogonal matrix since Θ(φ)T = Θ(−φ).

Yet another interesting property of rotation matrices is that its derivative
with respect to its argument

d

dφΘ(φ) =
(
− sin(φ) − cos(φ)
cos(φ) − sin(φ)

)
(C.13)

=
(

cos(φ+ π
2 ) − sin(φ+ π

2 )
sin(φ+ π

2 ) cos(φ+ π
2 )

)
(C.14)

= Θ
(
φ+ π

2

)
(C.15)

= Θ
(π

2

)
Θ (φ) (C.16)

can be written as a π/2 rotation of itself.

Furthermore, the inverse matrix from (7.31), can be written as the
eigendecomposition matrix(

iω −ω`
ω` iω

)
= 1√

2

(
1 i
i 1

)
︸ ︷︷ ︸

Q

(
i(ω − ω`) 0

0 i(ω + ω`)

)
︸ ︷︷ ︸

Λ

(
1 −i
−i 1

)
1√
2︸ ︷︷ ︸

Q−1

(C.17)
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Additionally, the rotation matrix and the matrix (C.17) commute, i.e.

Θ(φ)
(
a −b
b a

)
=
(
a cos(φ)− b sin(φ) −b cos(φ)− a sin(φ)
b cos(φ) + a sin(φ) a cos(φ)− b sin(φ)

)
=
(
a −b
b a

)
Θ(φ) (C.18)





Appendix D

Factor Graphs and
Gaussian Message
Passing

D.1 A/D Digital Estimation Filter
In this appendix, we give a brief and condensed derivation of the algorithm
of Section 4.3.2. This derivation was stated in [20] and is repeated here
for convenience. Furthermore,

We first observe that the filter (4.41) is formally a multivariate extension
of the continuous-time Wiener filter [1] that estimates a multivariate
zero-mean white Gaussian noise “signal” U(t) from the signal

Ỹ (t) 4= (g ∗U)(t) +Z(t), (D.1)

where Z(t) is m-dimensional zero-mean white Gaussian noise that is
independent of U(t). In this statistical model, the average

Ũ(t,∆) 4= 1
∆

∫ t

t−∆
U(τ) dτ (D.2)

(for ∆ > 0) is a L-dimensionalzero-mean Gaussian random variable with
covariance matrix σ2

U

∆ IK . The covariance matrix σ2
Z

∆ Im of Z(t) is defined
analogously.
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X(tk−1)
eA∆ +

s(tk−1)

Γ∆

+

N (0, σ
2
U

∆ IK)

Ũ(tk,∆)

B∆

X(t−k )
=

X(tk)

CT

+
N (0, σ

2
Z

∆ Im)

0

Figure D.2: One section of the factor graph of the state space model
with plugged-in digital control signals s(t). The total factor
graph consists of many such sections. The representation
is exact only in the limit ∆ = tk − tk−1 → 0, where
eA∆ → In +A∆.
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By “estimating U(t)”, we really mean to estimate the random variable(s)
(D.2) for any fixed t, and then taking the limit ∆→ 0 [5]. In this setting,
the MAP estimate, the MMSE estimate, and the LMMSE estimate agree
and equal the mean of the posterior distribution of Ũ(t,∆) conditioned
on the observation of Ỹ (t). The Wiener filter computes this estimate
(for ∆→ 0) as

Û(t) = (h ∗ Ỹ )(t) (D.3)

where the Fourier transform of h(t) is (4.41) with

η2 = σ2
Z/σ

2
U . (D.4)

Applying this Wiener filter to the signal q(t) as in (4.25) means that we
solve the statistical estimation problem for the observation Ỹ (t) = q(t).

The same statistical estimation problem can also be solved by a variation
of Kalman smoothing. In contrast to the Wiener filter, the Kalman
approach is based on the state space equations (4.4) and (4.6), which
leads to recursive estimation algorithms. We will use a discrete-time
approximation of the state space model with discrete times1 t1, t2, . . .
and fixed tk − tk−1 = ∆ > 0; our continuous-time results will then be
obtained by taking the limit ∆→ 0.

From now on, we will use factor graphs as in [18], which allow to compose
recursive estimation algorithms from lookup tables of “local” compu-
tations. A factor graph of (the discrete-time approximation of) our
statistical model in state space form is shown in Figure D.1. Note that
Figure D.1 represents the uncontrolled analog system with the observa-
tions Ỹ (tk) = q(tk).

Now we plug in the (known and piecewise constant) control signals
s(t) = (s1(t), . . . , sn(t)) into the state space model. We thus obtain the
factor graph of Figure D.2, where all the observed signals are now zero.
This second factor graph is easy to work with and then to take the limit
∆→ 0 to continuous time.

Using the notation of [18], we now consider the quantities −→mX(t) and
−→
V X(t) as well as ←−mX(t) and ←−V X(t). The former denote the mean vector
and the covariance matrix, respectively, of the forward sum-product

1The discrete times t1, t2, . . . in this appendix (with tk − tk−1 = ∆ → 0) are
unrelated to the discrete time steps in Section 4.3.2.
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message, which equals the Gaussian probability density of the time-t
stateX(t) given past observations (up to a scale factor); the latter denote
the mean vector and the covariance matrix, respectively, of the backward
sum-product message, which equals the likelihood of the (given) future
observations conditioned on X(t) (up to a scale factor).

From Figure D.2, we determine these quantities using Tables II–IV of [18]
as follows. From (III.1) and (II.7) of [18], we have

−→
V X(t−

k
) = eA∆−→V X(tk−1)(eA∆)T + σ2

U∆BBT, (D.5)

and from (IV.2) and (IV.3) of [18], we have
−→
V X(tk) = −→V X(t−

k
)

−
−→
V X(t−

k
)C

(
σ2
Z

∆ Io +CT−→V X(t−
k

)C

)−1

CT−→V X(t−
k

)

(D.6)

For ∆ ≈ 0, we have

eA∆ ≈ In + ∆A; (D.7)

thus (D.5) becomes
−→
V X(t−

k
) ≈
−→
V X(tk−1)

+ ∆
(
A
−→
V X(tk−1) + (A−→V X(tk−1))T + σ2

UBB
T
)

(D.8)

and (D.6) becomes

−→
V X(tk) ≈

−→
V X(t−

k
) −

∆
σ2
Z

−→
V X(t−

k
)CC

T−→V X(t−
k

). (D.9)

Combining (D.8) and (D.9) yields Equations (4.56)-(4.58) as the steady-
state condition for

−→
V

4= −→V X(t)/σ
2
U (D.10)

in the limit ∆→ 0.

The derivation of (4.59) is essentially identical except that the matrix
eA∆ is replaced by its inverse, which amounts to a sign change in A.
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As for −→mX(t), we have
−→mX(t−

k
) = eA∆−→mX(tk) + Γs(tk−1)∆ (D.11)

from (III.2) and (II.9) of [18], and
−→mX(tk) = −→mX(t−

k
)

−
−→
V X(t−

k
)C

(
σ2
Z

∆ Io +CT−→V X(t−
k

)C

)−1

CT−→mX(t−
k

)

(D.12)

from (IV.1) and (IV.3) of [18]. For ∆ ≈ 0, we obtain with (D.7)

−→mX(tk) = −→mX(tk−1) + ∆
(
A−→mX(tk−1)

+ Γs(tk−1)− 1
η2
−→
V CCT−→mX(tk−1)

)
, (D.13)

where we have used the normalized stationary covariance matrix (D.10).
Note that (D.13) is exact in the limit ∆ → 0 and amounts to the
differential equation

d

dt
−→mX(t) =

(
A− 1

η2
−→
V CCT

)
−→mX(t) + Γs(t). (D.14)

The solution of this differential equation (for t > 0) is

−→mX(t) = eÃt−→mX(0) + eÃt
∫ t

0
e−ÃτΓs(τ) dτ (D.15)

with Ã 4= A−
−→
V CCT/η2. This solution applies to any interval between

tk and tk+1 in Section 4.3.2 and yields (4.53) with (4.61) and (4.63).

The derivation for ←−mX(t) is essentially identical except for a sign change
in both A and Γ, where the latter is due to (II.10) of [18].

Finally, we use the result from [4] that the MAP/MMSE/LMMSE es-
timate of U(t) (i.e., the posterior mean of (D.2) for ∆ → 0) is given
by

û(t) = σ2
UB

TW̃ (t)
(←−mX(t) −−→mX(t)

)
(D.16)

with

W̃ (t) 4=
(−→
V X(t) +←−V X(t)

)−1
, (D.17)
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which yields (4.55) and (4.60). Note that (D.16) and (D.17) may also be
obtained directly from Figure D.2 using (II.12), (III.8), and (III.9) of [18]
and then taking the limit ∆→ 0.

D.2 D/A Digital Estimation Filter
The D/A digital estimation task is a variation from the A/D digital
estimation task shown in Appendix D.1. Specifically, the observations
are not continuous-time observations. Instead these correspond to a
sequence of M -dimensional samples. In the following we will assume
these to be uniformly spaced with a time period Ts. In contrast, to the
discrete-time observations the input signal is a continuous-time estimate
as defined in (D.2). The estimation setup is illustrated in Figure D.3. In
particular, if we let ∆→ 0 the input contribution between two samples
can be expressed as an additive zero mean multi-variate Gaussian random
variable with a covariance matrix

Σu,Ts =
∫ Ts

0
eAτBΣuBTeA

Tτ dτ ∈ RN×N (D.18)

where Σu is the instantaneous input covariance matrix.

The resulting factor graph is a discrete-time factor graph as illustrated
in Figure D.4. The posterior mean of the state vector X(kTs)

4= X[k]
can then be computed using standard Gaussian messaging as proposed
in [18]. In the following we use a particular version called the backward
information filter, forward marginal (BIFM) as in [35]. Furthermore, we
assuming that the recursions reach a steady state, i.e.,

W = eA
TTsW eATs − eA

TTsW
(
Σ−1
u,Ts

+W
)−1

W eATs +CΣ−1
z C

T.

(D.19)

Were we recognize the expression from (D.19) as an algebraic Riccati
equation. Acquiring a steady state W ∈ RN×N that satisfy (D.19) is a
standard problem in control theory.

The recursion can be written as

ξ[k] = Abξ[k + 1] +Bby[k] (D.20)
x[k] = Afx[k − 1] +Bfξ[k] (D.21)
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. . . eATs +

N (0,Σu,Ts)

=
X[k]

CT

N (y(kTs),Σz)

eATs +

N (0,Σu,Ts)

=
X[k + 1]

CT

N (y(kTs),Σz)

. . .

Figure D.4: The discrete-time factor graph of a state space model with
random variables as inputs and outputs.

where

Ab = eA
TTs

(
IN −W

(
Σ−1
u,Ts

+W
)−1

)
∈ RN×N (D.22)

Af = AT
b ∈ RN×N (D.23)

Bb = CTΣ−1
z ∈ RN×M (D.24)

Bf =
(
Σ−1
u,Ts

+W
)−1
∈ RN×N . (D.25)

Similarly to the A/D estimation algorithm from Appendix D.1 the Equa-
tions (D.22)-(D.25) can be computed offline. The x[k] in (D.21) is the
posterior mean vector of the state evaluated at kTs. This is also the
output of the DAC’s digital estimation filter.

In the expressions above the posterior means are computed at the sample
times dictated by Ts. We note that any sample in between the given
sample can be computed as proposed in [5].

Finally, a sensible initialization is to set the initial x[0] = ξ[∞] = 0N .





Appendix E

Digital Estimation Filter
Implementation

Several alternative DE implementations were suggested in Section 4.3.4
and Section 4.3.5. In this appendix we will describe them in more detail.

E.1 Offline Estimation
In an offline setting the objective is to estimate a batch of input signal
samples {û(K0T ), . . . , û((K0 +K1 − 1)T )} where we are given a batch
of control signals {s[K0], . . . , s[K0 +K1− 1]} as well as the precomputed
filter coefficients.

E.1.1 Digital Estimation Filter
The plain vanilla version uses the recursions

−→mk+1
4= Af

−→mk +Bfs[k], (E.1)

←−mk−1
4= Ab

←−mk +Bbs[k − 1], (E.2)

and

û(tk) 4= W T (←−mk −−→mk

)
(E.3)
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which are described in Section 4.3.2 and repeated here for convenience.
Note that the filter coefficients, corresponding to the matrices Af , Bf ,
Ab, Bb, and W , are all precomputed. A pseudo code version of these
computations is given in Algorithm 2.

1 Function BatchEstimator(s, K1):
input : s - a batch of control signals of dimensions M ×K1.

K1 - the number of samples in the batch.
output :A batch of estimates û of dimensions L×K1.

2 // initalize data vectors
3 M ← 0N×(K1+1)
4 M̃ ← 0N
5 û← 0L×K1

6 // compute the forward recursion
7 for k1 ← 1 to K1 − 1 do
8 M [k1]← AfM [k1 − 1] +Bfs[k1 − 1]
9 end

10 // compute the backward recursion and estimate
11 for k2 ← K1 to 1 do
12 M̃ ← AbM [k2] +Bbs[k2 − 1]
13 û[k2 − 1]←W T (M̃ −M [k2 − 1]

)
14 M [k2 − 1]← M̃

15 end
16 return û
17 end
Algorithm 2: Estimating a batch of samples using the filter
recursions from Section 4.3.2.

Furthermore, we remind ourselves that the matrix

0N×K1
4=
(
0N . . . 0N

)
∈ RN×K1 (E.4)

and

0N
4=
(
0 . . . 0

)T ∈ RN . (E.5)

Also, M [k] refers to the k-th column vector of the matrix M where our
indexing starts from 0. These conventions will be used throughout this
appendix.
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E.1.2 Parallel Digital Estimation Filter
An alternative offline estimator uses the parallelized filter recursions

−→̃
mk+1,n

4=
−→̃
λ n
−→̃
mk,n +

−→̃
f n(s[k]) (E.6)

←−̃
mk−1,n

4=
←−̃
λ n
←−̃
mk,n +

←−̃
f n(s[k − 1]) (E.7)

and

û`[k] =
N∑
n=1

−→̃
w n,`
−→̃
mk,n +←−̃w n,`

←−̃
mk,n (E.8)

as described in Section 4.3.3. Furthermore, note that the filter coefficients−→̃
λ n,
−→̃
f n(·),

←−̃
λ n,
←−̃
f n(·), −→̃w n,`, and

←−̃
w n,` are precomputed. The algorithm

is expressed using pseudo code in Algorithm 3.

Note that for this version all computations are expressed as scalar opera-
tions. As the filter coefficients are typically complex, this filter requires
complex arithmetics. We also observe that many of the computations in
this algorithm allows parallelization as is highlighted by the do in parallel
statements in the for loops.

E.2 Online Estimator
In a conventional ADC the estimated samples are not computed offline in
a subsequent processing step but rather incorporated into the continuous
stream of samples. Next we discuss modifications to the previously
proposed offline estimators (Section E.1) such that they generate streams
of batches. For the online estimators we imagine an endless stream
of control signals s[k] denoted the inStream that we can access in a
sequential order. Similarly, the objective of the estimator is to gradually
populate an outStream with estimated signal samples û[k].

The online version of the offline estimator from Section E.1.1 is given in
Algorithm 4.

In addition to the general program we recognize that the reading and
writing operations from and to the inStream and outStream are given in
Algorithm 5 and Algorithm 6 respectively.

Additionally, the mod operator from row 31 in Algorithm 4 refers to
the modulus operator and represents the use of a circular buffer for the
control signal buffer.
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1 Function ParallelBatchEstimator(s, K1):
input : s - a batch of control signals of dimensions M ×K1.

K1 - the number of samples in the batch.
output :A batch of estimates û of dimensions L×K1.

2 // initalize data vectors

3
−→
M ← 0N×(K1+1)

4
←−
M ← 0N×(K1+1)

5 û← 0L×K1

6 // compute the forward and backward recursion
7 for n← 1 to N do in parallel
8 for k2 ← 1 to K1 do
9

−→
M [n, k2]←

−→̃
λ n
−→
M [n, k2 − 1] +

−→̃
f n(s[k2 − 1])

10 k3 ← K1 − k2 + 1
11

←−
M [n, k3]←

←−̃
λ n
←−
M [n, k3 + 1] +

←−̃
f n(s[k3])

12 end
13 end
14 // compute estimates
15 for `← 1 to L do in parallel
16 for k4 ← 1 to K1 do in parallel
17 û[`, k4 − 1]←

∑N
n=1
−→̃
w n,`
−→
M [n, k4] +←−̃w n,`

←−
M [n, k4]

18 end
19 end
20 return û
21 end
Algorithm 3: Estimating a batch of samples using the parallel
recursions from Section 4.3.3.
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1 Function OnlineEstimator(inStream, outStream, K1, K2):
input : inSteam - providing M dimensional samples s[k].

outStream - accepting L dimensional estimates û[k].
K1 - batch size.
K2 - lookahead size.

2 // intialize data buffers and auxilary variable
3 M ← 0N×(K1+1)
4 M̃ ← 0N , M̃0 ← 0N
5 û← 0L×K1

6 s← 0M×(K1+K2+1)
7 K3 ← K1 +K2
8 // start online algorithm
9 repeat

10 // retrive K1 new samples as in Algorithm 5
11 s← RetriveSamplesFromStream(s, inStream, K1, K2)
12 // compute lookahead mean vector
13 for k1 ← K3 to K1 + 1 do
14 M [K1 + 1]← AbM [K1 + 1] +Bbs[k1]
15 end
16 // compute batch of estimates
17 for k2 ← 1 to K1 − 1 do
18 M [k2]← AfM [k2 − 1] +Bfs[k2 − 1]
19 end
20 M̃0 ←M [K1 − 1]
21 for k3 ← K1 to 1 do
22 M̃ ← AbM [k3] +Bbs[k3 − 1]
23 û[k3 − 1]←W T (M̃ −M [k3 − 1]

)
24 M [k3 − 1]← M̃

25 end
26 // set inital mean for next batch
27 M [0]← M̃0
28 // reset lookahead mean vector
29 M [K1 + 1]← 0N
30 // shift control signal buffer
31 s[k]← s[mod(k +K1, K3)]
32 // write batch to outStream as in Algorithm 6
33 SubmitEstimatesToStream(û, outStream, K1)
34 until inStream closes
35 end

Algorithm 4: Online filter computations.
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1 Function RetriveSamplesFromStream(s, stream, K1, K2):
input : s - buffer to write samples to.

stream - input stream to read samples from.
K1 - batch size.
K2 - offset.

2 // retrive K1 new samples
3 for `← 1 to K1 do
4 s[K2 + `]← stream
5 end
6 return s
7 end
Algorithm 5: Auxiliary function for reading from a stream.

1 Function SubmitEstimatesToStream(û, stream, K1):
input : û - buffer of estimates to be written.

stream - output stream to write samples to.
K1 - batch size.

2 // write new batch of samples to stream
3 for `← 0 to K1 − 1 do
4 stream ← û[`]
5 end
6 end
Algorithm 6: Auxiliary function for writing to a stream.
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Similarly, the online version of the parallelized two-way filtering is given
in Algorithm 7.
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1 Function ParOnlineEstimator(inStream, outStream, K1, K2):
input : inSteam - providing M dimensional samples s[k].

outStream - accepting L dimensional estimates û[k].
K1 - batch size.
K2 - lookahead size.

2 // intialize data buffers and auxilary variable

3
−→
M ← 0N×(K1+1);

←−
M ← 0N×(K1+1); û← 0L×K1 ;

s← 0M×(K1+K2+1); K3 ← K1 +K2
4 // start online algorithm
5 repeat
6 // retrive K1 new samples as in Algorithm 5
7 s← RetriveSamplesFromStream(s, inStream, K1, K2)
8 for n← 1 to N do in parallel
9 // compute lookahead mean vector

10 for k1 ← K3 to K1 + 1 do
11

←−
M [n,K1 + 1]←

←−̃
λ n
←−
M [n,K1 + 1] +

←−̃
f n(s[k1])

12 end
13 // compute batch of estimates
14 for k2 ← 1 to K1 do
15

−→
M [n, k2]←

−→̃
λ n
−→
M [n, k2 − 1] +

−→̃
f n(s[k2 − 1])

16 k3 ← K1 − k2 + 1
17

←−
M [n, k3]←

←−̃
λ n
←−
M [n, k3 + 1] +

←−̃
f n(s[k3])

18 end
19 end
20 for `← 1 to L do in parallel
21 for k4 ← 1 to K1 do in parallel
22 û[`, k4 − 1]←

∑N
n=1
−→̃
w n,`
−→
M [n, k4] +←−̃w n,`

←−
M [n, k4]

23 end
24 end
25 // prepare mean vectors for next batch

26
−→
M [0]← −→M [K1 − 1]; ←−M [K1 + 1]← 0N

27 // shift control signal buffer
28 s[k]← s[mod(k +K1, K3)]
29 // write batch to outStream as in Algorithm 6
30 SubmitEstimatesToStream(û, outStream, K1)
31 until inStream closes
32 end

Algorithm 7: Parallel online filter computations.



Bibliography

[1] B. D. O. Anderson and J. B. Moore, Optimal Filtering. New York:
Prentice Hall, 1979.

[2] J. Biveroni, “On A/D converters with low-precision analog circuits
and digital post-correction,” Ph.D. dissertation, ETH Zurich, 2012.

[3] L. Bolliger, H. Loeliger, and C. Vogel, “Simulation, MMSE esti-
mation, and interpolation of sampled continuous-time signals using
factor graphs,” in 2010 Information Theory & Applications Workshop
(ITA), 2010, pp. 1–4.

[4] L. Bolliger, H. Loeliger, and C. Vogel, “LMMSE estimation and
interpolation of continuous-time signals from discrete-time samples
using factor graphs,” 2013, arXiv: 1301.4793 [cs.IT].

[5] L. Bruderer and H.-A. Loeliger, “Estimation of sensor input signals
that are neither bandlimited nor sparse,” in 2011 Information Theory
& Application Workshop (ITA), San Diego, CA, USA, Feb. 9-14 2014.

[6] L. Bruderer, “Input estimation and dynamical system identification:
New algorithms and results,” Ph.D. dissertation, ETH Zurich, 2015.

[7] P. M. Chopp and A. A. Hamoui, “A 1-V 13-mW single-path
frequency-translating ∆Σ modulator with 55-dB SNDR and 4-MHz
bandwidth at 225-MHz,” IEEE Journal of Solid-State Circuits,
vol. 48, no. 2, pp. 473–486, 2013.

[8] J. M. de la Rosa, “Sigma-Delta modulators: Tutorial overview,
design guide, and state-of-the-art survey,” IEEE Transactions on
Circuits & Systems I, vol. 58, no. 1, pp. 1–21, 2011.

221



222 Bibliography

[9] J. M. de la Rosa, R. Schreier, K.-P. Pun, and S. Pavan, “Next-
generation Delta-Sigma converters: Trends and perspectives,” IEEE
Journal of Emerging and Selected Topics in Circuits & Systems,
vol. 5, no. 4, pp. 484–489, 2015.

[10] Y. E. Eldar, Sampling Theory: Beyond Bandlimited Systems, 1st ed.
Cambridge, UK: Cambridge University Press, 2015.

[11] S. Haykin, Communicaton Systems, 4th ed. John Wiley & Sons,
Inc., 2001.

[12] K. Hosseini and M. P. Kennedy, “Maximum sequence length MASH
digital Delta-Sigma modulators,” IEEE Transactions on Circuits &
Systems I, vol. 54, no. 12, pp. 2628–2638, 2007.

[13] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. New
York: Prentice Hall, 2000.

[14] A. Kipnis, Y. C. Eldar, and A. J. Goldsmith, “Analog-to-digital
compression: A new paradigm for converting signals to bits,” IEEE
Signal Processing Magazine, vol. 35, no. 3, pp. 16–39, May 2018.

[15] H. Landau, “Sampling, data transmission, and the Nyquist rate,”
Proc. IEEE, vol. 55, no. 10, pp. 1701–1706, 1967.

[16] L. Ljung, System Identification: Theory for the User, 2nd ed. Pren-
tice Hall, 1999.

[17] H.-A. Loeliger, L. Bolliger, G. Wilckens, and J. Biveroni, “Analog-
to-digital conversion using unstable filters,” in 2011 Information
Theory & Application Workshop (ITA), UCSD, La Jolla, CA, USA,
Feb. 6-11 2011.

[18] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R.
Kschischang, “The factor graph approach to model-based signal
processing,” Proc. IEEE, vol. 95, no. 6, pp. 1295–1322, 2007.

[19] H.-A. Loeliger and G. Wilckens, “Control-based analog-to-digital
conversion without sampling and quantization,” in 2011 Information
Theory & Application Workshop (ITA), San Diego, CA, USA, Feb.
1-6 2015.

[20] H.-A. Loeliger, H. Malmberg, and G. Wilckens, “Control-bounded
analog-to-digital conversion: Transfer function analysis, proof of
concept, and digital filter implementation,” 2020, arXiv: 2001.05929.



Bibliography 223

[21] S. Mallat, A wavelet tour of signal processing, 3rd ed. San Diego,
USA: University Press, 2008.

[22] M. Ortmanns and F. Gerfers, Continuous-Time Sigma-Delta A/D
Conversion: Fundamentals, Performance Limits and Robust Imple-
mentations, 1st ed. Berlin: Springer, 2005.

[23] S. Pamarti and I. Galton, “Lsb dithering in MASH Delta-Sigma D/A
converters,” IEEE Transactions on Circuits & Systems I, vol. 54,
no. 4, pp. 779–790, 2007.

[24] S. Pamarti, J. Welz, and I. Galton, “Statistics of the quantization
noise in 1-bit dithered single-quantizer digital Delta-Sigma modu-
lators,” IEEE Transactions on Circuits & Systems I, vol. 54, no. 3,
pp. 492–503, 2007.

[25] S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta-Sigma
Data Converters, 2nd ed. New York: Wiley, 2017.

[26] R. Schreier and B. Zhang, “Delta-Sigma modulators employing
continuous-time circuitry,” IEEE Transactions on Circuits & Sys-
tems I, vol. 43, no. 4, pp. 324–332, 1996.

[27] C. E. Shannon, “Communication in the presence of noise,” Proc.
IRE, vol. 37, no. 1, pp. 10–21, 1949.

[28] J. Song and I.-C. Park, “Spur-free MASH Delta-Sigma modulation,”
IEEE Transactions on Circuits & Systems I, vol. 57, no. 9, pp.
2426–2437, 2010.

[29] H. Tao and J. M. Khoury, “A 400-Ms/s frequency translating band-
pass Sigma-Delta modulator,” IEEE Journal of Solid-State Circuits,
vol. 34, no. 12, pp. 1741–1752, 1999.

[30] M. Unser, “Splines: A perfect fit for signal and image processing,”
IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22–38, 1999.

[31] M. Unser and P. D. Tafti, An introduction to Sparse Stochastic
Processes, 1st ed. Cambridge, UK: Cambridge University Press,
2014.

[32] R. J. van de Plassche, CMOS Integrated Analog-to-Digital and
Digital-to-Analog Converters, 2nd ed. Boston: Kluwer Academic
Publishers, 2003.



224 Bibliography

[33] G. Venturini, “python-deltasigma,” [Online]. Avaliable:
http://www.python-deltasigma.io, 2016.

[34] F. Wadehn, L. Bruderer, J. Dauwels, V. Sahdeva, H. Yu, and
H. Loeliger, “Outlier-insensitive Kalman smoothing and marginal
message passing,” in 2016 24th European Signal Processing Confer-
ence (EUSIPCO), 2016, pp. 1242–1246.

[35] F. Wadehn, “State space methods with applications in biomedical
signal processing,” Ph.D. dissertation, ETH Zurich, 2019.

[36] P. Welch, “The use of fast Fourier transform for the estimation
of power spectra: A method based on time averaging over short,
modified periodograms,” IEEE Transactions on Audio and Electroa-
coustics, vol. 15, no. 2, pp. 70–73, 1967.

[37] E. T. Whittacker, “On the functions which are represented by the
expansions of the interpolation theory,” Proc. Roy. Soc. Edinburgh,
vol. 35, pp. 181–194, 1915.

[38] G. Wilckens, “A new perspective on analog-to-digital conversion of
continuous-time signals,” Ph.D. dissertation, ETH Zurich, 2013.



Index

∆Σ modulator, 15

adaptive beamforming analog-to-digital converter, 162
analog impulse response matrix, 31
analog signal, 7
analog system (AS), 27, 29, 70, 100, 118, 131, 173
analog transfer function (ATF) matrix, 31, 71, 101, 133
analog-to-digital conversion, 7
anti-aliasing, 8, 31
autocovariance function, 192

B-spline, 83
bandwidth, 40
bounded signal, 33, 74
Brownian motion, 67

calibration, 186
carrier frequency, 109
chain-of-integrators analog-to-digital converter, 69
chain-of-integrators digital-to-analog converter, 174
chain-of-oscillators analog-to-digital converter, 109
clock period, 31
clock-jitter, 187
complex pole pairs, 99
component mismatch, 55, 90, 96, 142, 156, 163
computational complexity, 47, 49, 84, 88, 105, 130, 137, 165
configurable analog-to-digital converter, 188
continuous-time ∆Σ modulator, 16
continuous-time algebraic Riccati equation (CARE), 42

225



226 Index

control contribution, 27, 29, 32, 37, 122
control input matrix, 29, 151
control observation, 30, 33
control observation matrix, 30, 70
control period, 31, 34, 77
control-bounded transceivers, 176
conversion error, 18, 37, 38, 173
cross-covariance function, 192
cumulative control effort, 151

DAC waveform, 66, 79, 83, 122, 128
decimation filter, 16, 19
demodulation, 124
digital cancellation logic, 61
digital control (DC), 27, 31, 33, 73, 121, 133, 149, 171
digital estimation filter, 41
digital estimator (DE), 27, 35, 80, 103, 128, 136, 156, 169
digital representation, 7
digital-cancellation logic, 25, 58, 61
digital-to-analog conversion, 167
digital-to-analog converter waveform, 32
discrete-time algebraic Riccati equation, 170
dithering, 89, 136
dynamic-element matching, 150

effective control, 32, 73, 135, 153
effective number of bits (ENOB), 23

factor graph, 41, 203
fast Walsh-Hadamard transform, 143
filter coeffienents, 42
flash analog-to-digital converter, 13
flash converter, 14
Fourier transformation, 195
frequency band of interest, 19, 109

growth term, 34, 73, 74

Hadamard analog-to-digital converter, 131
Hadamard matrix, 132
Hadamard networks, 138



Index 227

hardware implementation, 93
higher-order quantization, 78

impulse response, 51
independent digital control, 35
inital value problem, 65
input matrix, 29

leapfrog analog-to-digital converter, 99
limit cycles, 35, 88
local digital control, 70, 73
lookup table, 44
loop filter, 15, 102, 188

MASH ∆Σ converter, 24, 60, 91
memory allocation, 47, 49, 84
misaligned digital control, 135
multi-input analog-to-digital converter, 159
multi-output analog system, 73, 83

noise shaping, 15
noise transfer function (NTF), 40
Nyquist rate, 18

open-loop system, 29
ordinary differential equations, 64
orthogonality principle, 191
oscillator node analog-to-digital converter, 110
overcomplete digital control, 149
overcomplete set, 152
overlapping reach, 150, 160
oversampling, 11
oversampling converter, 15
oversampling ratio (OSR), 18, 81

phase splitting, 113, 115
physical dimensions, 131
power spectral density (PSD), 21
preconditioning filter, 14, 29
preconditioning operation, 8

quadratic program, 53



228 Index

quantization, 14
quantization error, 16, 21

recursive, see recursive, 228
remainder term, 34, 73, 74
ripples in passband, 104
rotation matrix, 199
Runge-Kutta methods, 65

sample-centric analog-to-digital conversion, 9
samples, 8
sampling, 14
sampling frequency, 18
sampling theory, 8
Shannon-Nyquist theorem, 9
signal dimensions, 131
signal observation, 30
signal observation matrix, 30, 71, 135
signal transfer function (STF), 40
signal-to-noise and distortion ratio (SNDR), 19
signal-to-noise ratio (SNR), 18
single-output analog system, 73, 83
square digital-to-analog converter waveform, 32
stability margin, 76, 81, 89
state space model (SSM), 29
state vector, 29
steady-state covariance matrix, 41
stochastic process, 66
sub-ranging analog-to-digital converter, 13
sub-ranging converter, 14
successive approximation analog-to-digital converter, 13
switch capacitor control, 78
system matrix, 29

thermal noise, 55, 96, 145
transmission line model, 107

unit-gain frequency, 73, 80

vector quantization, 15

Welch algorithm, 21



Index 229

Wiener filter, 39
Wiener-Hopf equation, 39, 192
windowing, 46, 47

Xampling, 188





About the Author

Hampus Malmberg was born in Gothenburg, Sweden, on the 21st of
July in 1988. In 2009 he enrolled in the electrical engineering program
at Chalmers University of Technology in Gothenburg, Sweden, from
which he completed his BSc degree in electrical engineering in 2012.
During this time, he also did an internship for the biomedical company
Unfors RaySafe AB. Subsequently, In 2014 he received his MSc degree in
electrical engineering and information technology from ETH Zürich.

Since 2014, he has been a PhD candidate and research assistant at the
Signal and Information Processing Laboratory (ISI) under the supervision
of Prof. Hans-Andrea Loeliger.

Except for A/D and D/A conversion, his research interests also include
sparse Bayesian learning, Gaussian message passing, machine learning,
and electronics.

Furthermore, he has a profound interest in scientific computing, program-
ming, and teaching.

231





Series in Signal and Information Processing 
 

edited by Hans-Andrea Loeliger 
 

Vol. 1:  Hanspeter Schmid, Single-Amplifier Biquadratic MOSFET-C Filters. ISBN 

3-89649-616-6 
 

Vol. 2:  Felix Lustenberger, On the Design of Analog VLSI Iterative Decoders. 

ISBN 3-89649-622-0 
 

Vol. 3:  Peter Theodor Wellig, Zerlegung von Langzeit-Elektromyogrammen zur 

Prävention von arbeitsbedingten Muskelschäden. ISBN 3-89649-623-9 
 

Vol. 4:  Thomas P. von Hoff, On the Convergence of Blind Source Separation and 

Deconvolution. ISBN 3-89649-624-7 
 

Vol. 5:  Markus Erne, Signal Adaptive Audio Coding using Wavelets and Rate 

Optimization. ISBN 3-89649-625-5 
 

Vol. 6:  Marcel Joho, A Systematic Approach to Adaptive Algorithms for 

Multichannel System Identification, Inverse Modeling, and Blind 

Identification. ISBN 3-89649-632-8 
 

Vol. 7: Heinz Mathis, Nonlinear Functions for Blind Separation and Equalization. 

ISBN 3-89649-728-6 
 

Vol. 8: Daniel Lippuner, Model-Based Step-Size Control for Adaptive Filters. 

ISBN 3-89649-755-3 
 

Vol. 9: Ralf Kretzschmar, A Survey of Neural Network Classifiers for Local Wind 

Prediction. ISBN 3-89649-798-7 
 

Vol. 10:  Dieter M. Arnold, Computing Information Rates of Finite State Models 

with Application to Magnetic Recording. ISBN 3-89649-852-5 
 

Vol. 11:  Pascal O. Vontobel, Algebraic Coding for Iterative Decoding. 

ISBN 3-89649-865-7 
 

Vol. 12:  Qun Gao, Fingerprint Verification using Cellular Neural Networks.  

ISBN 3-89649-894-0 
 

Vol. 13: Patrick P. Merkli, Message-Passing Algorithms and Analog Electronic 

Circuits. ISBN 3-89649-987-4 
 

Vol. 14:  Markus Hofbauer, Optimal Linear Separation and Deconvolu-tion of 

Acoustical Convolutive Mixtures. ISBN 3-89649-996-3 
 

Vol. 15: Sascha Korl, A Factor Graph Approach to Signal Modelling, System 

Identification and Filtering. ISBN 3-86628-032-7 
 

Vol. 16: Matthias Frey, On Analog Decoders and Digitally Corrected Converters. 

ISBN 3-86628-074-2 
 

Vol: 17: Justin Dauwels, On Graphical Models for Communications and Machine 

Learning: Algorithms, Bounds, and Analog Implementation.  
ISBN 3-86628-080-7 

 



Vol. 18: Volker Maximillian Koch, A Factor Graph Approach to Model-Based 

Signal Separation. ISBN 3-86628-140-4 
 

Vol. 19: Junli Hu, On Gaussian Approximations in Message Passing Al-gorithms 

with Application to Equalization. ISBN 3-86628-212-5 
 

Vol. 20: Maja Ostojic, Multitree Search Decoding of Linear Codes.  

ISBN 3-86628-363-6 
 

Vol. 21: Murti V.R.S. Devarakonda, Joint Matched Filtering, Decoding, and Timing 

Synchronization. ISBN 3-86628-417-9 
 

Vol. 22: Lukas Bolliger, Digital Estimation of Continuous-Time Signals Using 

Factor Graphs. ISBN 3-86628-432-2 
 

Vol. 23: Christoph Reller, State-Space Methods in Statistical Signal Processing: New 

Ideas and Applications. ISBN 3-86628-447-0 
 

Vol. 24: Jonas Biveroni, On A/D Converters with Low-Precision Analog Circuits 

and Digital Post-Correction. ISBN 3-86628-452-7 
 

Vol. 25: Georg Wilckens, A New Perspective on Analog-to-Digital Conversion of 

Continuous-Time Signals. ISBN 3-86628-469-1 
 

Vol. 26: Jiun-Hung Yu, A Partial-Inverse Approach to Decoding Reed-Solomon 

Codes and Polynomial Remainder Codes. ISBN 3-86628-527-2 
 

Vol. 27: Lukas Bruderer, Input Estimation and Dynamical System Identification: 

New Algorithms and Results. ISBN 3-86628-533-7 
 

Vol. 28: Sarah Neff, A New Approach to Information Processing with Filters and 

Pulses. ISBN 3-86628-575-2 
 

Vol. 29: Christian Schürch, On Successive Cancellation Decoding of Polar Codes 

and Related Codes. ISBN 3-86628-580-9 
 

Vol. 30: Nour Zalmaï, A State Space World for Detecting and Estimating Events 

and Learning Sparse Signal Decompositions. ISBN 978-3-86628-594-1 
 

Vol. 31: Federico Wadehn, State Space Methods with Applications in Biomedical 

Signal Processing. ISBN 978-3-86628-640-5 
 

Vol. 32: Reto A. Wildhaber, Localized State Space and Polynomial Filters with 

Applications in Electrocardiography. ISBN 978-3-86628-652-8 

 

 

 

 

 

 

 

 

Hartung-Gorre Verlag,  Konstanz  http://www.hartung-gorre.de 


	Title Page
	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Symbols
	1 Introduction
	1.1 Outline of the Thesis
	1.2 Contributions
	1.3 Related Work

	2 A Representation Problem
	2.1 Sampling Theory
	2.2 The Proposition

	3 Conventional Analog-to-Digital Conversion
	3.1 Sample-per-Sample Converters
	3.2 Oversampling Converters
	3.3 Continuous-Time Delta-Sigma Modulation
	3.4 Performance Measures
	3.4.1 Sinusoidal Test Signal
	3.4.2 Computing the Power Spectral Density
	3.4.3 Quantization Error
	3.4.4 Expected SNR of a Delta-Sigma Modulator
	3.4.5 Discrete-Time-to-Continuous-Time Transformation

	3.5 MASH Delta-Sigma Converter

	4 Control-Bounded Analog-to-Digital Conversion
	4.1 Analog System
	4.1.1 State Space Model
	4.1.2 Transfer Function & Impulse Response Matrix
	4.1.3 Anti-Aliasing Filter

	4.2 Digital Control
	4.2.1 Control Contribution
	4.2.2 Effective Control
	4.2.3 Higher-Order Quantizers
	4.2.4 Independent Digital Controls

	4.3 Digital Estimator
	4.3.1 Statistical Estimation Problem
	4.3.2 Digital Estimation Filter
	4.3.3 Parallel Digital Estimation Filter
	4.3.4 Offline Batch Estimation
	4.3.5 Online Filter Estimator
	4.3.6 Sub-Sampling
	4.3.7 Digital Estimator as an Impulse Response
	4.3.8 The Digital Estimator as a Quadratic Program

	4.4 Performance Measure
	4.5 Design Principle
	4.6 Non-Idealities
	4.6.1 Thermal Noise
	4.6.2 Mismatch

	4.7 Relation to Delta-Sigma Modulators
	4.7.1 Transfer Function Comparison
	4.7.2 MASH State Space Representation
	4.7.3 Generalized Digital Cancellation Logic

	4.8 Simulating a Control-Bounded Analog-to-Digital Converter
	4.8.1 Precomputed Control Contributions
	4.8.2 Adding Noise Sources


	5 Chain-of-Integrators Analog-to-Digital Converter
	5.1 General Structure
	5.2 Analog System
	5.3 Local Digital Control
	5.3.1 Effective Control
	5.3.2 Switched Capacitor Control

	5.4 Digital Estimator
	5.4.1 White Noise Analysis
	5.4.2 Closing the Gap to Delta-Sigma Modulation
	5.4.3 Single vs. Multi-Output Analog System
	5.4.4 Spline Basis Signal Processing
	5.4.5 Computational Complexity

	5.5 Simulations
	5.5.1 Fundamental Resource Scaling
	5.5.2 Limit Cycles
	5.5.3 Mismatch
	5.5.4 Comparison to MASH Converters

	5.6 Hardware Implementation
	5.6.1 Results
	5.6.2 Parametrization
	5.6.3 Influence of Mismatch & Thermal Noise


	6 Leapfrog Analog-to-Digital Converter
	6.1 General Structure
	6.2 Analog System
	6.2.1 Transfer Function Analysis
	6.2.2 A Special Case

	6.3 Digital Estimator
	6.4 Proposed Hardware Implementation

	7 Chain-of-Oscillators Analog-to-Digital Converter
	7.1 General Structure
	7.2 Oscillator Node
	7.2.1 Two-Dimensional Input Signal
	7.2.2 Amplification Behavior
	7.2.3 Phase Splitting
	7.2.4 Transfer Function Analysis

	7.3 Analog System
	7.4 Digital Control
	7.4.1 Control Contribution
	7.4.2 General Remarks
	7.4.3 Non-Oscillating Digital Control

	7.5 Digital Estimator

	8 Hadamard Analog-to-Digital Converter
	8.1 Analog System
	8.2 Digital Control
	8.3 Digital Estimator
	8.4 Proposed Hardware Implementation
	8.4.1 Misalignment due to Mismatch
	8.4.2 Fast Walsh-Hadamard Transform
	8.4.3 Power Consumption

	8.5 Thermal Noise Suppression
	8.6 Generalized Transformation

	9 Overcomplete Digital Control
	9.1 Overlapping Reach
	9.2 Effective Digital Control
	9.3 Digital Estimator
	9.4 Mismatch Simulations
	9.5 Controlling a Subspace

	10 Multi-Input Analog-to-Digital Converters
	10.1 Shared Analog System & Digital Control
	10.2 Adaptive Beamforming ADC
	10.3 Mismatch Sensitivity
	10.4 Fundamental Resource Scaling

	11 Reciprocal Problem
	11.1 Control-Bounded Digital-to-Analog Conversion
	11.2 Digital Estimator
	11.3 Digital Control
	11.4 Analog System
	11.5 Performance Measure
	11.6 Chain-of-Integrators Digital-to-Analog Converter
	11.7 Control-Bounded Transceivers

	12 Conclusions & Outlook
	12.1 Summary
	12.2 Outlook
	12.2.1 Calibrated Digital Estimator
	12.2.2 Clock-Jitter Estimation
	12.2.3 Multi-Band Frequency A/D Conversion
	12.2.4 Configurable ADCs
	12.2.5 General Filter Design


	A Wiener-Hopf Equations
	B Continuous-Time & Discrete-Time Fourier Transformations
	C Rotation Matrices
	D Factor Graphs and Gaussian Message Passing
	D.1 A/D Digital Estimation Filter
	D.2 D/A Digital Estimation Filter

	E Digital Estimation Filter Implementation
	E.1 Offline Estimation
	E.1.1 Digital Estimation Filter
	E.1.2 Parallel Digital Estimation Filter

	E.2 Online Estimator

	Bibliography
	Index
	About the Author

