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Abstract. Neurons derived from human induced pluripotent stem cells
(iPSCs), provide new means to study aspects of severe neurological dis-
eases in vitro. Network features extracted from electrophysiological record-
ings of iPSC-derived neurons could be useful to better understand and
study disease phenotypes. However, up to this date, there is no fully-
validated method to infer connectivity between neurons when using spike
trains as input. In this study, we compare two types of human iPSC-
derived dopaminergic neurons: wild type cells and cells with a genetic
mutation associated with Parkinson’s disease. Moreover, we use graph
kernels to train a classifier on the inferred functional networks and probe
which connectivity inference parameters generate networks with more
discriminative features.

Keywords: Connectivity estimation · classification · graph kernels

1 Introduction

Several electrophysiological studies have demonstrated that network-level fea-
tures of in vitro developing human iPSC-derived neurons, such as their topology
and network dynamics, are informative features to study disease-relevant pheno-
types in vitro [1]. However, it is not well understood which inference technique
is most appropriate to derive these features and existing inference methods have
varying stances in selecting parameters, such as the delay and embedding win-
dow, to infer functional connectivity from pairwise spike trains [2]. In this work
we compare three different connectivity inference methods [3–5]. Our goal is to
better understand the relation between connectivity method and classification
accuracy when having to distinguish between two types of cells: wild type (WT)
and A53T mutant (Parkinson’s disease). Additionally, we study the effect of the
embedding parameter on functional connectivity and classification accuracy.
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2 Methods

In the following, we provide an overview of our workflow (Figure 1). All data
analyzed in this study was in-house recorded, along with the analysis pipeline
and experimental protocol.

Fig. 1. Workflow of our analysis to compare connectivity inference algorithms.

2.1 Cell culture

Electrophysiological recordings were obtained using high-density microelectrode
arrays (HD-MEA)[6] developed in our group and commercialized by MaxWell
Biosystems [7]. The HD-MEA can record from up to 1024 electrodes simultane-
ously at a sampling rate of 20 kHz. Commercially available (FUJIFILM Cellular
Dynamics [8]) dopaminergic (DA) neurons (100.000) and astrocytes (20.000)
were seeded and co-cultured on HD-MEA for over 4 weeks. We followed the
standard culturing protocol developed in the group. Recordings from week 2
were used for this analysis (n = 18, 9 WT and 9 A53T).

2.2 Spike sorting and preprocessing of HD-MEA data

Recordings were spike-sorted using SpyKING Circus 0.8.5 [9] and the sorted
templates were screened based on firing rate and refractory period violation, fol-
lowing the standard protocol developed in the group. The output of this step were
binary spike trains (bin size = 1 ms) of the full-length spike-sorted recordings
(15 min). These spike trains were used to infer connectivity between neurons, as
detailed below.

2.3 Inference and validation of functional/effective connectivity

We focus on methods that can deal with HD-MEA recordings with a size of
>800 neurons per recording and a duration of 15 min of length. Specifically, we
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compared three methods in order of increasing complexity: i) simple counting
(SC) of cross-correlogram bins within mono-synaptic delay inspired by [4], ii)
total spiking probability edges (TSPE) [3] and iii) delayed / higher-order transfer
entropy (TE) [5]. Additionally, we set out to study the differential effect on
phenotype classification accuracy as we increase the embedding (SC, TSPE <
TE) and delay window between neuron pairs (SC < TSPE, TE). As shown in the
transfer entropy equation 1, embedding is the past time bins that are assumed
to have an effect onto the future state of the target neuron.

TEJ→I(k, l) =
∑

i∈I,j∈J

p(it+d, j
l
t, i

k
t ) log

p(it+d | jlt, ikt )

p(it+d | ikt )
(1)

where k and l are embedding lengths for target and source neurons, respec-
tively (e.g., k, l = 2 and [i1, i2, j1, j2] = [0, 1, 1, 0]). Depending on the choice of
d, different delay lengths can be computed.

We used default parameter settings for TSPE (details can be found in [3]).
To compute the counts in SC, we used 5 bins (1, 2, . . . , 5 ms.) and averaged
them. For TE we compared different embedding value pairs (k, l) where k = l
and k, l ∈ {1, 2, 3, 4} and 20 ms. delay. In order to facilitate the comparability
between computed connectivity and subsequent results from our graph kernels
analysis, we proportionally thresholded the inferred networks to have graphs with
the same number of nodes (N=480), to have undirected edges and a comparable
density (5%).

2.4 Classification using graph kernels

Graph kernels measure similarity between graphs and are used in learning
tasks consisting of graph-structured data [10]. For our analysis, we computed
different graph kernels on the connectivity networks inferred by the methods
listed above. The Weisfeiler-Lehman (WL) kernel [11] with h = 3 performed
best in the training set and was thus used throughout the analyses. The ker-
nel matrices obtained via the WL kernel constituted the input to the kernel
machines: SVM for classification and kernel PCA for visualization.

Classification with SVM required an external 3-fold cross-validation with
an additional internal 2-fold cross-validation to optimize the parameter C of
the SVM. The cross-validation schemes were stratified to maintain balanced
datasets. The kernel matrix K was computed once for all data points. The cross-
validation required the partitioning of K to guarantee that no graph in the test
set was used during training or for parameter optimization.

Implementation The graph kernels were obtained using the Python package
graphkernels [12]. The SVM classifier and kernel PCA were implemented with
Scikit-learn [13]. Proportional thresholding of the inferred networks was done
with the NCCT toolbox [14].
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3 Results

We performed classification of the electrophysiological recordings in our balanced
dataset (n1 = 9 WT samples and n2 = 9 A53T samples). For each sample, we
derived a network using the three network inference algorithms described in Sec-
tion 2.3 (SC, TSPE and TE). For a given method, 18 networks were obtained and
the WL graph kernel with h = 3 iterations was used to compute a kernel matrix
K. The kernel matrix was fed to an SVM classifier, which computed an average
accuracy and standard deviation. The results are shown in Table 1. The last
row in the table shows the classification effect of the TE method upon extending
the embedding to 4 ms. For TE we see a monotonic increase in classification
performance as the embedding goes from 1 to 4 ms. The discriminative power of
the computed graph kernels, in terms of average accuracy, is larger than when
using TE with the minimum embedding of 1 ms.

Table 1. Classification performance of SVM with precomputed kernels obtained from
the WL graph kernel (h = 3)

Network inference method Avg. accuracy Std. dev.

SC 0.611 0.079
TSPE 0.444 0.157
TE with embed=1 ms. 0.722 0.157
TE with embed=2 ms. 0.722 0.157
TE with embed=3 ms. 0.778 0.208
TE with embed=4 ms. 0.833 0.136

Using graph kernels as proxy, we can reduce the dimensionality of HD-MEA
network data and obtain a plot of the recordings using the first two principal
components of a kernel PCA [15] (Figure 2.a). The mean roc curve of the SVM
classifier based on the networks inferred by TE with an embedding of 4 ms is
shown in Figure 2.b

4 Discussion

Our results confirm that network-level features inferred from HD-MEA record-
ings of iPSC-derived DA neurons allow us to effectively classify WT and A53T
cultures. Moreover, we found that using longer embedding windows for functional
connectivity inference resulted in inferred networks with better discriminative
power; accounting for longer histories (embeddings) enables us to derive more
discriminative networks for the phenotypes of interest.

Graph kernels are an ideal tool for settings with small sample size, like ours.
Because the number of nodes in all networks are similar and nodes/edges are un-
labeled, other graph kernels based on histograms of nodes/edges do not perform
well (data not shown). The WL graph kernel aggregates neighborhood infor-
mation and, as a result, detects differences in neighborhood structures between
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(a) (b)

Fig. 2. For networks derived from TE with embed=4 and WL kernel (h = 3), (a)
samples plotted with the first 2 principal components of kernel PCA and (b) Mean
ROC curve of SVM

WT and A53T. Despite this positive result, the small sample size of our study
raises caution about any final conclusions that can be derived. It is important to
note that the embedding lengths yielding more discriminative inferred networks
do not guarantee the best detection of actual synaptic connections. Our future
work will focus on i) increasing the number of recordings and ii) studying the
mechanism on how this longer embedding amplifies differential features between
networks.
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