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Abstract

Recent developments in few-shot learning have shown that during fast adaption,
gradient-based meta-learners mostly rely on embedding features of powerful pre-
trained networks. This leads us to research ways to effectively adapt features and
utilize the meta-learner’s full potential. Here, we demonstrate the effectiveness of
hypernetworks in this context. We propose a soft weight-sharing hypernetwork
architecture and show that training the hypernetwork with a variant of MAML is
tightly linked to meta-learning a curvature matrix used to condition gradients during
fast adaptation. We achieve similar results as state-of-art model-agnostic methods
in the overparametrized case, while outperforming many MAML variants without
using different optimization schemes in the compressive regime. Furthermore, we
empirically show that hypernetworks do leverage the inner loop optimization for
better adaptation, and analyse how they naturally try to learn the shared curvature
of constructed tasks on a toy problem when using our proposed training algorithm.

1 Introduction

The ability to generalize previous knowledge and adapt quickly to novel environments has been
subject of intense machine learning research in the past few years. One of the cornerstones of
recent progress of meta-learning algorithms are gradient-based methods such as Model-Agnostic
Meta-Learning (MAML) [1], which take the initial parameters of a model as its meta-parameters.
MAML recreates few-shot learning scenarios and trains the meta-parameters directly on how well
they can solve new tasks after a few gradient steps, see Section 2.1.

Recent work has shown that MAML is mostly learning general features rather than finding fast-
adaptable weights deep inside its model. In fact, it was demonstrated that few-shot learning in the
hidden layers of a network has little to no effect on the performance of MAML [2, 3]. Furthermore,
powerful models trained on rich enough data and without explicit meta-learning were shown to
outperform most gradient-based meta-learning methods [4]. This is consistent with huge models
being few-shot learners without explicit training at all [5]. These previous findings point to the
untapped potential of fast adaptation within the neural network as a promising area of improvement
for such meta-learning methods.

One promising scalable approach is to separate the model into shared meta-parameters and context
parameters [6]. Here, the context parameters are the only parameters updated in the inner loop.
This way, the context parameters can learn task specific information and quickly adapt while the
meta-parameters are used as general reusable features.

Other approaches attempt to explicitly modulate the inner-loop training procedure by meta-learning
learning rates or factorised preconditioning matrices [7–9]. Here, the actual model stays untouched
and additional parameters are learned only to modulate the gradient with respect to the model
parameters while learning new tasks.
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Here, we provide new insights on how hypernetworks [10, 11] implicitly combine these two seemingly
different approaches. When trained with a variant of MAML, we show that hypernetworks implicitly
modulate the inner loop optimization and adapt hidden layer features in a task-dependent manner.
More generally, we demonstrate that hypernetworks learn features that directly support fast adaptation
without any hand-designed add-ons or optimization variants. We propose a specific soft weight-
sharing hypernetwork architecture and show that it achieves state-of-the-art results compared to
other gradient-based methods. Our method performs comparable with MAML even if the number of
parameters is drastically compressed. Our main contributions are as follows:

• We demonstrate the effectiveness of hypernetworks for fast adaptation – both in the com-
pressed and overparametrized regime.

• By proposing a simple soft weight-sharing hypernetwork architecture, we outperform
most MAML variants without any explicit add-ons or optimization algorithm changes.
Furthermore, we show empirically that hypernetworks can indeed learn useful inner-loop
adaptation information and are not simply learning better network features.

• We show theoretically that in a simplified toy problem hypernetworks can learn to model
the shared structure that underlies a family of tasks. Specifically, its parameters model a
preconditioning matrix equal to the inverse of the tasks’ shared curvature matrix.

2 Background and Related Work

Our algorithm is intimately related to MAML, in particular to two of its variants, namely CAVIA
[6] and Meta-Curvature [7]. We next briefly reintroduce the MAML algorithm, while referring to
Appendix A.4 for a recapitulation of Meta-Curvature.

2.1 Model-Agnostic Meta-Learning

In the supervised learning setting, MAML optimizes the initial parameters of a model θ by minimizing
the validation loss obtained after a few gradient steps. To do so, the training data is separated into
training Dtrain and validation Dval sets. The validation loss is evaluated after one or more steps of
stochastic gradient descent with respect to the training tasks on the meta-parameters. For simplicity,
here we consider the case where only one gradient step is taken.

We now describe one iteration of MAML. First, we sample a set of B tasks, TB = {Tb}Bb=1, with
Tb ∼ p(T ) for some task distribution p(T ). A task T is associated with a loss function LT . For each
task Tb ∼ p(T ) we sample training and validation datasets Dtrain

b and Dval
b , respectively. Then, for

each task Tb, we obtain the adapted parameters θb:

θb = θ − η∇θ
1

|Dtrain
b |

∑
(x,y)∈Dtrain

b

LTb (fθ(x), y) . (1)

The initialization parameters θ are then updated to minimize the cumulative validation loss. This loss
is accumulated over the B tasks in TB :

θ ← θ − γ∇θ
1

B

B∑
b=1

1

|Dval
b |

∑
(x,y)∈Dval

b

LTb (fθb(x), y) . (2)

Above, η and γ denote the inner- and outer-loop learning rates, respectively.

2.2 Hypernetworks

For our approach, we draw direct inspiration from ideas related to fast-and-slow weights [10, 12, 13]
and the more recently introduced hypernetworks [11, 14, 15]. One specific approach to implement
these ideas is to express each layer as a learnable linear combination of templates. Since the templates
are the same for each layer, the linear coefficients contain information on how the templates are
shared across the model. Furthermore, it was shown that compression by using a small template bank
is possible without affecting generalization [11].
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More formally, assume that the parameters of a neural network represented as a vector of reals
w ∈ RNw are partitioned into C chunks, w = [w(1), . . . , w(C)]. Each chunk w(i) ∈ RNc has
dimension Nc = Nw/C (we assume Nw/C lies in N). Instead of learning the weights w directly, we
now define a set of template weight vectors, the columns of matrix θ = [t(1) . . . t(K)] with t(k) ∈ RNc .
We assign a different embedding vector α(i) ∈ RK to each chunk i.

A linear combination then yields the weights of chunk i:

w(i) :=

K∑
k=1

α
(i)
k t(k) = θ α(i). (3)

Note that θ is shared across the chunks, which results in a lower number of trainable parameters in
the network if NcK + C K < Nw. It is shown in [14] that the embedding parameters α learn to
reuse the various t(k) across layers in deep neural networks and share feature information throughout
multiple layers in the network after training.

More generally, a hypernetwork is any network that generates the weights of another network, given
an input. Numerous research studies show the usefulness of hypernetworks and their respective
variants in various areas such as visual-reasoning [16], continual learning [17, 18], transfer learning
[19] and few-shot learning [3]. We point the reader to [20] for a broad analysis of hypernetworks and
other multiplicative interactions within neural networks.

3 Meta-learning via Hypernetworks

Here, we investigate hypernetworks in the context of meta-learning. Differently from [21, 3], we focus
on the hypernetwork’s capability to implicitly modulate inner-loop optimization. More concretely,
we suggest that the hypernetwork parameters θ play a role similar to the preconditioning matrix M
introduced in the Meta-Curvature algorithm (reviewed in Appendix A.4).

Our meta-learning algorithm is a variant of CAVIA, which learns a general initialization for both
task embeddings and hypernetwork parameters. Thus, the hypernetwork weights θ as well as an
initialization for a task-specific embedding α are learned in the outer loop of our algorithm. Our
algorithm is also closely related to the T-Net model [22], the essential difference being the sharing of
a hypernetwork across multiple layers.

3.1 Soft Weight-Sharing Architecture

In the following, we present a simple linear, soft weight-sharing architecture for our hypernetwork
and leave more complicated deep hypernetworks for future research. Each row of the generated
network weight matrix will be a linear combination of hypernetwork templates. More precisely, we
parameterize a given convolutional layer W l ∈ RCin×Cout×Nkern×Nkern with Cin input channels, Cout
output channels and kernel size Nkern as follows: we construct for each input channel c a weight
chunk Rlc ∈ R1×Cout×Nkern×Nkern as a linear combination of templates t(1), . . . , t(K).

Conceptually, this can be seen as soft-sharing the rows of the parameter matrices across all layers.
We express Rlc for a specific input channel c at layer l as:

Rlc =

K∑
k=1

α
(l,c)
k t(k), (4)

and finally concatenate each channel to create the layer weights:

W l = [Rl1, . . . , R
l
Cin

] (5)

In this setting, α represents the task embedding and θ = (t(1), . . . , t(K)) the hypernetwork weights.

We are now ready to present our algorithm. We denote the prediction generated for some input x
when using task embedding α by fθ,α(x). In the inner loop, we first adapt the task embedding:

αb = α− η∇α
1

|Dtrain
b |

∑
(x,y)∈Dtrain

b

LTb (fθ,α(x), y) . (6)

3



Then, in the outer-loop, we train the hypernetwork as well as an initialization for the embeddings
using the validation loss, evaluated at the predictions generated using the adapted task embedding:

θ ← θ − γ∇θ
1

B

B∑
b=1

1

|Dval
b |

∑
(x,y)∈Dval

b

LTb (fθ,αb
(x), y) . (7)

α← α− γ∇α
1

B

B∑
b=1

1

|Dval
b |

∑
(x,y)∈Dval

b

LTb (fθ,αb
(x), y) (8)

We refer to a hypernetwork meta-learned in this fashion as a Meta-Hypernetwork (MH).

Our soft weight-sharing hypernetwork has the property that loss gradients∇α L with respect to the
task embedding are modulated (multiplied) by θ, for some task loss L ≡ LTb . This is most easily
seen for a fully-connected layer l with weights W l = θ Al (of size Nrow ×Ncol), with hypernetwork
weights θ ∈ RNrow×K and embedding matrix Al ∈ RK×Ncol . The gradient with respect to our
embedding matrix is then ∇Al L = θ> ( d

dW lL)>. Thus, the hypernetwork weights θ can be seen
as an implicit preconditioner of our task-specific embeddings, akin to the explicit preconditioner
introduced in the Meta-Curvature algorithm (Appendix A.4).

4 Experiments

To show the effectiveness of the hypernetwork in achieving fast adaptation, we conduct experiments
on standard few-shot regression and classification benchmarks.

4.1 Few-shot regression on Sinusoidal Task

Table 1: Few-shot regression loss measured by
mean-squared error (MSE). Mean ± std. over 5
seeds.

Method 5-shot (↓) 10-shot (↓)
MAML [1] 0.686±0.070 0.435±0.039
LayerLR [7] 0.528±0.068 0.269±0.027
Meta-SGD [8] 0.482±0.061 0.258±0.026
MC2 [7] 0.405±0.048 0.201±0.020
MH 0.501±0.082 0.281±0.072

Our first experiment follows the K-shot regres-
sion protocol outlined in [1, 8]. Given K input-
output pairs (x, f(x)), with x uniformly sam-
pled from [−5, 5] and f a sinusoidal determined
by random phase and amplitude in [0,π] and
[0.1, 5.0] respectively, the goal is to quickly
learn f(x) from these few examples.

For fair comparison, we use the same neural net-
work architecture proposed in [1], which con-
sists of a fully-connected network with 2 hidden
layers of size 40. For each of the rows of the
hidden layers, we generate the weights with a
linear combination of 40 templates. We use our Meta-Hypernetwork (MH) method to train the
meta-learner. MH performs comparably with current state-of-the-art MAML-variants, see Table
1. Results from methods we compare to are taken from [7]. Additional details can be found in
Appendix A.1.

4.2 Few-Shot Classification on MiniImageNet
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Number of Templates
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Figure 1: Difference in performance for 5-shot
5-way classification on MiniImageNet when adapt-
ing and not adapting the hypernetworks templates.

To further demonstrate the effectiveness of our
MH approach, we conduct experiments on the
classic few-shot classification benchmark Mini-
Imagenet [23]. For fair comparison, we again
use the model proposed in [1] for all experi-
ments, which consists of four convolutional lay-
ers with 64 filters, followed by a fully-connected
layer. Each row of these convolutional layers is
represented using one hypernetwork architecture
described above. Note that therefore θ is shared
across all convolutional layers in the network.
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The number of templates of the hypernetworkK controls the expressiveness of the inner-loop gradient
modulation. Our experiments show that the choice of K impacts the performance of our algorithm.
In the following, we investigate three versions of MH with different number of parameters compared
to the original model: compressed (MH-C), comparable (MH) and overparametrized (MH-O), with
50, 600 and 1500 templates respectively.

As expected, we observe a performance difference for our three variants in Table 2 in the 1-shot
and 5-shot setting and show the effectiveness of our approach in all scenarios compared to similar
gradient based methods using larger architectures or explicit gradient modulation.

4.3 Meta-hypernetworks leverage hidden layer capacity

Table 2: 5-way Few-shot classification accuracy
(%) on MiniImagenet. For comparison with larger
models, we include results for CAVIA with 3 dif-
ferent channel sizes for the convolutions used in
the network. See [6] for more details. Mean ±
std. over 5 seeds1.

Method 1-shot (↑) 5-shot (↑)
MAML [1] 48.07±1.75 63.15±0.91

CAVIA(32) [6] 47.24±0.65 59.05±0.54

CAVIA(128) 49.84±0.68 64.63±0.54

CAVIA(512) 51.82±0.65 65.85±0.55
REPTILE [24] 49.97±0.32 65.99±0.58

Meta-SGD [8] 50.47±1.87 64.03±0.94
LayerLR [7] 50.55±0.87 66.64±0.69
MC [7] 54.23±0.88 68.47±0.69

MH-C 48.64±0.33 64.52±0.51
MH 49.41±0.96 67.16±0.42
MH-O 52.50±0.61 67.76±0.34

To investigate the ability of MHs to shape inner-
loop learning of its embeddings in the neural
network hidden layers, we perform the experi-
ments described in [2]. After training the hyper-
network, we freeze the layers during fast adap-
tation and only update the fully-connected layer
(Frozen). This allows us to investigate the con-
tribution of the meta-learned hypernetwork to
the inner-loop optimization. Indeed, we observe
(see Table 3) a dramatic effect on performance
when disabling the training of hypernetwork em-
beddings. This effect is reinforced for larger
hypernetwork sizes, see Figure 1.

5 Theoretical
analysis on a toy problem

Recent work has shown that given a local
smooth and convex optimization landscape, lin-
earizing a network around some weights and
then taking the second-order Taylor expansion
of the loss function gives an accurate enough
quadratic objective [25]. This motivates the study of noisy quadratic models (NQMs) as analytically-
tractable simplifications of real-world problems [26]. In this following, we formulate a toy few-shot
regression learning problem using a NQM and show analytically that an optimal linear hypernetwork
trained with our proposed algorithm seeks to learn the underlying structure of the different tasks.

5.1 Problem Definition

Table 3: Usefulness of feature adaptation for 5-
shots on MiniImagenet. Results shown are mea-
sure in classification accuracy (%). Mean ±
std. over 5 seeds.

Methods Adapting Frozen

MAML [1] 63.15±0.91 61.50±0.50
MH-C 64.52±0.51 59.18±0.49
MH 67.16±0.42 46.21±0.27
MH-O 67.76±0.34 49.44±0.71

Let p(T ) be a distribution of tasks over T, such
that ∀ Tb ∈ T, the task Tb is the optimization
problem consisting in the minimization of the
loss

Lb =
1

2
(w − w∗b )T Hb (w − w∗b ) (9)

where Hb ∈ RNw×Nw is the Hessian of the
loss, w ∈ RNw×1 the weight to optimize, and
w∗b ∈ RNw×1 the target weight.

To model a shared underlying structure across tasks, we make the assumption that the tasks share
a common Hessian matrix, which we denote as H . Each task in T is therefore uniquely identified
by its optimal weight vector w∗b . We further assume the tasks Tb follow a distribution such that the
optimal weight w∗b ∼ N (w∗,Σ) is Gaussian-distributed.

1Results for related methods are taken from the cited papers (and ± std therein).
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We study a one-shot regression problem over T, and analyze the solution found by our proposed
algorithm. This meta-learning problem can be seen as learning over a NQM, where each task is a
Gaussian perturbation of the optimal weight vector w∗ to which the model needs to learn to quickly
adapt.

We consider the non-chunked, linear hypernetwork of the form

w = θ(α0 + α) (10)

where α ∈ RK×1 is the task-specific embedding initialized at 0 at the beginning of a task and adapted
in the inner loop, α0 ∈ RK×1 and θ ∈ RNw×K the hypernetwork parameters learnt in the outer loop.

5.2 Hypernetworks learn underlying task similarities

Fast adaptation in the given context is measured on the number of steps necessary to minimize (up to
a given error) the loss on a given new task. We begin by computing the gradient of the task loss w.r.t.
the hypernetwork embeddings for a task Tb ∈ T. Given

Lb(θ, α0, α) =
1

2
(θ(α0 + α)− w∗b )T H (θ(α0 + α)− w∗b ) (11)

we have
∂Lb
∂α

= θTH(w − w∗b ) (12)

resulting in the following change of b when taking a gradient step

∆w = w − θ(α0 + α− γ ∂Lb
∂α

) = −γ θ∂Lb
∂α

= −γ θθTH (w − w∗b ). (13)

We observe that if γ θθT = H−1, then we have ∆w = −(w − w∗b ), leading the weight to perfectly
solve the new task in a single step. In such case, the matrix θ acts as the optimal preconditioner
for the task embeddings α, allowing for fast adaptation to new tasks. The remainder of this section
outlines how the hypernetwork can implicitly learn this preconditioner when meta-learning over T.

During training, the task Tb sampled for the inner loop is used in the outer loop optimization as well.
The choice of reusing the same task in both loops is crucial for our algorithm to learn the common
structure of the tasks (see appendix for further justification).

Given a task, the outer loop loss L̃b is therefore the same as the inner loop loss Lb, but evaluated with
the updated task embedding after a single step, α = −γ ∂Lb

∂α :

L̃b = Lb(θ, α0,−γ
∂Lb
∂α

) =
1

2
(θ α0 − γ θ

∂Lb
∂α
− w∗b )T H (θ α0 − γ θ

∂Lb
∂α
− w∗b ) (14)

=
1

2

(
(I − γ θθTH)(θ α0 − w∗b )

)T
H
(

(I − γ θθTH)(θ α0 − w∗b )
)

(15)

In the outer loop, the hypernetwork weights θ, α0 are optimized based on the stochastic validation
loss L̃b such that the expectation of the gradient over task distribution reaches 0 i.e. when

ETb∼p(T )

[
∂L̃b
∂α0

]
= 0 and ETb∼p(T )

[
∂L̃b
∂θ

]
= 0. (16)

The system of equations (16) is solved when (I − γ H θθT ) = 0, i.e., when γ θθT = H−1 (see
Appendix B for additional details). This shows that our meta-learned hypernetwork weights can
recover the optimal preconditioner and therefore solve new tasks in a single step.

6 Conclusion

We showed that meta-learning a hypernetwork and adapting its embedding is a natural candidate
method to create good few-shot learners. The performance of our method MH demonstrates that
hypernetworks offer a good combination of feature acquisition and quick adaptation. MH is scalable
and simple enough to be adapted to different model architectures and its effectiveness sheds light on
the role of overparametrization in meta-learning.
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Broader Impact

Fast adaptation and generalization on a wide range of environments is key to improve future artificial
intelligent technologies. Although neural networks are highly flexible function approximators, they
often do not generalize well to unseen tasks. In this work, we shed light on this problem and offer
solutions to mitigate this problem. This line of research can have widespread impact in fields such as
robotics, data analytics and artificial intelligence.
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Algorithm 1: Meta-learning via hypernetworks
Require: Task distribution p(T ), inner loop learning rate η, outer loop

learning rate γ
Require: Hypernetwork-parameterized model fθ,α with randomly

initialized hypernetwork weights θ and embedding weights α
1 while not done do
2 Sample batch of tasks TB ∼ p(T )
3 // inner loop
4 forall tasks Tb ∈ TB do
5 (Dtrain

b ,Dval
b ) ∼ p(Tb)

6 αb ← α− η∇α 1
|Dtrain

b |
∑

(x,y)∈Dtrain
b
LTb (fθ,α(x), y)

7 // outer loop
8 α← α− γ∇α 1

B

∑B
b=1

1
|Dval

b |
∑

(x,y)∈Dval
b
LTb (fθ,αb

(x), y)

9 θ ← θ − γ∇θ 1
B

∑B
b=1

1
|Dval

b |
∑

(x,y)∈Dval
b
LTb (fθ,αb

(x), y)

Figure 1: Complete pseudocode for the proposed meta-learning via hypernetworks algorithm. For
generality, each task Tb is allowed to have its own loss function LTb .

Supplementary Material: Meta-Learning via Hypernetworks

A Experimental Setups

A.1 Few-shot Regression

We follow the same experiment described in [8, 1]. We perform few-shot regression on sinusoidal functions with
amplitude and phase randomly sampled from [0.1,5.0] and [0,π]. In both the 5-shot and 10-shot setting, our
meta model was trained on K simulated test datapoints, after training on K examples. At test time, similarly to
[8], we obtain the MSE for one task by testing on 100 datapoints after the K-shot adaptation.

As outlined in [1],we used 1 gradient step with learning rate 0.0001 at training and test time in the inner loop.
The outer loop was optimized with one gradient step using ADAM with learning rate 0.001. One training
iteration consists of a batch of 25 tasks. The training phase ran for 70000 iterations and the best model was
picked by early stopping on a held out validation set.

A.2 Few-shot Classification

We follow the same experimental setup as [1] on the MiniImageNet dataset. This dataset proposed by [27, 28] is
separated into 64 training classes, 12 validation classes and 24 test classes. We used the same hyperparameters for
the compressed,comparable and overparametrized model.The hypernetwork layers as well as the task embedding
were initialized orthogonally. For the 1-shot and 5-shot settings, we used batch sizes of 4 and 2 respectively. In
both settings, MH uses gradient steps with learning rate 0.05 in the inner loop and learning rate 0.001 in the
outer loop. Both were trained with 6 inner loop gradient steps and tested with 15 gradient steps. The outer loop
optimization was done with normal SGD. The best models for 1-shot and 5-shot classification were chosen with
early stopping on a validation set and were trained for 100 000 and 150 000 iterations respectively.

A.3 Frozen Features in Inner Loop

All models were trained following the experimental setup described in A.2. For the frozen features setting, we
follow [2] and fix the templates as well as the task embedding at test time. The only parameters updated in the
inner-loop are the weights of the head. If MH was learning good embeddings, the frozen features experiment
would show similar performance as the normal setting one (this is the case for MAML). We can see a drastic
difference between the two, showing that the hypernetwork is really helping during the adaptation phase.

A.4 Meta-Curvature

Recently, it has been shown that meta-learning a (compressed) preconditioning matrix M to modulate gradients
used in the inner loop yields state-of-the-art performance [7, 9]. Interestingly, Meta-Curvature does not affect
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the model itself. Unlike MAML, this algorithm only adapts parameter gradients through a learnable matrix of
meta-parameters:

θb = θ − ηM ∇θ
1

|Dtrain
b |

∑
(x,y)∈Dtrain

b

LTb (fθ(x), y) , (17)

θ ← θ − γ∇θ
1

B

B∑
b=1

1

|Dval
b |

∑
(x,y)∈Dval

b

LTb (fθb(x), y) , (18)

M ←M − γ∇M
1

B

B∑
b=1

1

|Dval
b |

∑
(x,y)∈Dval

b

LTb (fθb(x), y) . (19)

We note that the authors explore various interesting ways to construct the meta-parameter matrix M .

B Derivation for NQM model analysis

B.1 Same task used in inner and outer loop

Let Tb ∈ T. From (14), one can verify that

∂L̃b
∂α0

= θ>(I − γHθθ>)H(I − γθθ>H)(θα0 − w∗b ), (20)

∂L̃b
∂θ

=(I − γHθθ>)H(I − γθθ>H)(θα0 − w∗b )α>0

− γH
[
(θα0 − w∗b )(θα0 − w∗b )>(I − γHθθ>)

+ (I − γθθ>H)(θα0 − w∗b )(θα0 − w∗b )>
]
Hθ.

(21)

By taking the expectation of these gradients over the task distribution, since w∗b is sampled fromN (w∗,Σ), we
get:

ETb∼p(T )

[
∂L̃b
∂α0

]
= θ>(I − γHθθ>)H(I − γθθ>H)(θα0 − w∗), (22)

ETb∼p(T )

[
∂L̃b
∂θ

]
=(I − γHθθ>)H(I − γθθ>H)(θα0 − w∗)α>0

− γH(θα0α
>
0 θ
> + Σ− θα0w

∗> − w∗α>0 θ>)(I − γHθθ>)Hθ

− γH(I − γθθ>H)(θα0α
>
0 θ
> + Σ− θα0w

∗> − w∗α>0 θ>)Hθ.

(23)

We can see that the expected gradients (22) and (23) both vanish when γθθ>H = I .

B.2 Different task used in inner and outer loop

When computing the outer loop loss on a different task than that used in the inner loop, the noise appearing in
each of the loss are independent. By denoting by Tb, Td, the independently sampled inner and outer loop tasks
respectively, w∗b , w

∗
d their respective optimal weight vector, and L̃(b,d) = Ld(θ, α0,−γ ∂Lb

∂α
) the outer loop loss,

equations (20) and (21) become

∂L̃(b,d)

∂α0
= θ>H(I − γθ>θ>H)(θα0 − w∗d − γθθ>H(θα0 − w∗b )), (24)

∂L̃(b,d)

∂θ
=H(I − γθ>Hθθ>H)(θα0 − w∗d − γθθ>H(θα0 − w∗b ))α>0

− γH
[
(θα0 − w∗b )(θα0 − w∗d)> − γ(θα0 − w∗b )(θα0 − w∗b )>Hθθ>

+ (θα0 − w∗d)(θα0 − w∗b )> − γθθ>H(θα0 − w∗b )(θα0 − w∗b )>
]
Hθ.

(25)
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Taking the expectation of these gradients over the task distribution results in the following:

ETb∼p(T ),Td∼p(T )

[
∂L̃(b,d)

∂α0

]
=θ>H(I − γθ>θ>H)(θα0 − w∗ − γθθ>H(θα0 − w∗))

=θ>(I − γHθθ>)H(I − γθθ>H)(θα0 − w∗),

(26)

ETb∼p(T ),Td∼p(T )

[
∂L̃(b,d)

∂θ

]
=(I − γHθθ>)H(I − γθθ>H)(θα0 − w∗)α>0

− γH
[
(θα0 − w∗)(θα0 − w∗)>(I − γHθθ>)

+ (I − γθθ>H)(θα0 − w∗)(θα0 − w∗)>]Hθ

+ γ2H[θθ>H(Σ− w∗w∗>)(Σ− w∗w∗>)Hθθ>
]
Hθ.

(27)

We can see that taking independent noise in the inner and outer loop yields some covariance terms in (27) to be
replaced by w∗w∗>, resulting in an expected gradient which does not vanish in general when γθθ>H = I .
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