
ETH Library

Towards blood flow in the virtual
human: Efficient self-coupling of
HemeLB

Journal Article

Author(s):
McCullough, Jon W.S.; Richardson, Robin A.; Patronis, Alex; Halver, Rene; Marshall, R.; Ruefenacht, Martin; Wylie, Brian J.N.;
Odaker, Thomas; Wiedemann, Markus; Lloyd, Bryn; Neufeld, Esra; Sutmann, Godehard; Skjellum, Anthony; Kranzlmüller, Dieter;
Coveney, Peter V.

Publication date:
2021-02-06

Permanent link:
https://doi.org/10.3929/ethz-b-000465832

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Interface Focus 11(1), https://doi.org/10.1098/rsfs.2019.0119

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000465832
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1098/rsfs.2019.0119
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

royalsocietypublishing.org/journal/rsfs
Research
Cite this article: McCullough JWS et al. 2021
Towards blood flow in the virtual human:

efficient self-coupling of HemeLB. Interface

Focus 11: 20190119.
http://dx.doi.org/10.1098/rsfs.2019.0119

Accepted: 23 September 2020

One contribution of 11 to a theme issue

‘Computational biomedicine. Part II: organs

and systems’.

Subject Areas:
biomedical engineering, medical physics,

computational biology

Keywords:
high-performance computing,

blood flow modelling, virtual human,

lattice Boltzmann method

Author for correspondence:
P. V. Coveney

e-mail: p.v.coveney@ucl.ac.uk
© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5202157.
Towards blood flow in the virtual human:
efficient self-coupling of HemeLB

J. W. S. McCullough1, R. A. Richardson1, A. Patronis1,2, R. Halver2,
R. Marshall3, M. Ruefenacht3, B. J. N. Wylie2, T. Odaker4, M. Wiedemann4,
B. Lloyd5, E. Neufeld5, G. Sutmann2,6, A. Skjellum3, D. Kranzlmüller4

and P. V. Coveney1,7

1Centre for Computational Science, Department of Chemistry, University College London, London, UK
2Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
3SimCenter, University of Tennessee at Chattanooga, Chattanooga, TN, USA
4Leibniz Supercomputing Centre, Leibniz-Rechenzentrum (LRZ), Garching, Germany
5Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
6ICAMS, Ruhr-University Bochum, Bochum, Germany
7Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

JWSM, 0000-0002-9606-0408; RAR, 0000-0002-9984-2720; MW, 0000-0002-3366-0537;
PVC, 0000-0002-8787-7256

Many scientific and medical researchers are working towards the creation of a
virtual human—a personalized digital copy of an individual—that will assist
in a patient’s diagnosis, treatment and recovery. The complex nature of living
systems means that the development of this remains a major challenge. We
describe progress in enabling the HemeLB lattice Boltzmann code to simulate
3Dmacroscopic blood flow on a full human scale. Significant developments in
memory management and load balancing allow near linear scaling perform-
ance of the code on hundreds of thousands of computer cores. Integral to
the construction of a virtual human, we also outline the implementation of a
self-coupling strategy for HemeLB. This allows simultaneous simulation of
arterial and venous vascular trees based on human-specific geometries.
1. Introduction
The human body is comprised of several complex and interacting subsystems that,
in concert, determine its full operation. Each of these depend on mechanisms that
span multiple spatial and temporal scales, from sub-cellular processes to directly
observable macroscopic properties. The behaviour of these systems is influenced
by individual factors such as age, gender, genetics, environment and medical his-
tory. All of these must be considered when a patient presents to a clinician for
treatment. The development of a virtual human—a digital replica of an individual
and their physiological processes—will assist these decisions by allowingmultiple
courses of treatments to be considered and the optimal one enacted [1–4].

The transport of blood around the body is integral to physiological function.
Vessels transporting blood to and from the heart connect tissue, organs and
muscle, providing the oxygen and nutrients needed for their operation. This
fundamental nature of the vasculature makes it a pivotal component in the devel-
opment of a virtual human and is the focus of the present work. The extensive
computational and data requirements of modelling a full virtual human will
require the resources of next-generation exascale supercomputers. Taking full
advantage of these necessitates developing efficient simulation codes and
strategies for communication between them on the largest current machines.

Many previous studies of large sections of the human vasculature use a 1D
solver to capture the blood flow in some or all of the vessels [5–8]. While this
can be an efficient approach for simulating large, complex networks, it makes
many assumptions about the flow behaviour within a vessel. Modelling 3D

http://crossmark.crossref.org/dialog/?doi=10.1098/rsfs.2019.0119&domain=pdf&date_stamp=2020-12-11
mailto:p.v.coveney@ucl.ac.uk
https://doi.org/10.6084/m9.figshare.c.5202157
https://doi.org/10.6084/m9.figshare.c.5202157
http://orcid.org/
http://orcid.org/0000-0002-9606-0408
http://orcid.org/0000-0002-9984-2720
http://orcid.org/0000-0002-3366-0537
http://orcid.org/0000-0002-8787-7256
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190119

2
flow is more computationally demanding but allows high-
fidelity analysis of flow within all vessels. Coupled 1D–3D
models offer a compromise but still do not resolve all features.
Full 3D modelling permits local flow features to be identified
that are not possible in lower-dimensional models, such as
wall shear stress distribution throughout the surface of arteries.
The use of a 3Dmodel also permits exact simulation of an indi-
vidual’s vasculature. 1D models generally assume that vessels
have a circular cross-section that may vary between neighbour-
ing nodes and over time. Even with patient-specific
dimensions, these structural assumptions will lead to hom-
ogeneity of solutions between individuals. The use of a 3D
model allows simulation results to be exactly constructed for
a specific geometry without such assumption.

HemeLB [9,10] is an open-source 3D, lattice Boltzmann
based, fluid dynamics solver for the study of blood flow in
complex geometries. It has been developed in C++ for, cur-
rently, CPU cores only. Unlike many other, more general,
open-source lattice Boltzmann codes (e.g. Palabos, TCLB,
OpenLB and waLBerla [11–14]), HemeLB has been specifically
optimized to enable efficient simulation of the sparse geo-
metries that are characteristic of the vascular networks. Since
first being published in 2008 [15], HemeLB has been used to
study a number of different aspects of the cardiovasculature,
including cerebral flow, retinal flow, vascular remodelling
and magnetic drug targeting [16–18].

The development of a virtual human is an ongoing pro-
cess that will require many computational and algorithmic
developments to accurately and efficiently capture physio-
logical behaviour. The purpose of the present paper is to
discuss some recent advancements in HemeLB that bring
us closer to being able to conduct high-fidelity simulations
of the full human vascular tree. In this paper we present
proof-of-concept studies that demonstrate the capability of
these changes to run a large, 3D flow model on realistic geo-
metries of human-scale arterial and venous trees. These serve
as a stepping stone to highlight both the existing capability
and the areas which need ongoing development and
improvement. The results at this stage are not intended to
provide quantitative validation of full-human-scale blood
flow. This is a target for future work.

The paper is structured into three further sections. Section 2
discusses the computational advancements that have been
made within HemeLB to permit the modelling of full human
vasculatures. In particular, we discuss the incorporation of
next-generation Message Passing Interface (MPI) develop-
ments for data communication, the large-scale performance
characteristics of HemeLB and the self-coupling of HemeLB.
Section 3 describes the progress that has been made in using
the self-coupling of HemeLB to simulate the flow through
the arteries and veins of a specific human vasculature. We
present results for proof-of-concept models, including an
illustrative test case and coupled vascular trees of human
legs, important steps towards simulation of high-fidelity full-
human models on exascale machines. The paper concludes in
§4 with a discussion of pathways to continue with the current
work towards the modelling of a full virtual human.
2. Computational advancements
HemeLB solves 3D fluid flow using the lattice Boltzmann
method. This approach to solving the Navier–Stokes
equations is well known to possess excellent parallel
computational efficiency, particularly for bulk flow, and is
readily adaptable to complex geometries. The current work
uses a D3Q19 lattice with a single relaxation time collision
operator with pressure and velocity boundary conditions
implemented as appropriate. For a more technical description
of the core HemeLB implementation we refer the reader to
our previous publications [15,16,19]. Here, HemeLB assumes
vessel walls to be rigid and characterizes the blood as a
Newtonian fluid, although other rheological models are
available [16,20]. Although previous HemeLB studies have
successfully captured blood flow with these assumptions
[16,20], we recognize that as we progress towards the devel-
opment of a virtual human the physics captured by HemeLB
will need ongoing evaluation. For example it is known that
the compliance of vessels has an impact on flow behaviour
for both arterial and venous networks and can be a factor
in cardiovascular disease.

In order to successfully model a full virtual human, many
physiological and biological processes need to be captured
over sufficiently long time scales. In the context of blood
flow this pertains to the execution of several cardiac cycles.
HemeLB focuses on the macroscopic behaviour of vascular
transport and requires coupling to other codes to model
further system interactions. For example, a simulation of the
human heart using Alya Red [21], another high-performance
computing code, may also be included and coupled to the
boundaries of the arterial/venous tree. High-fidelity resol-
ution of the vasculature of a full human requires extremely
large quantities of geometry data (billions of data points).
Processing such quantities of data and conducting simu-
lations for physically meaningful time scales demands the
resources of cutting-edge supercomputers. Here we discuss
recent developments of HemeLB that enable this.

A drawback of the lattice Boltzmannmethod is that it stores
flow information in a memory-intensive manner. HemeLB
must initialize and distribute this data within the limits of the
available computer. On supercomputers, both of these tasks
are non-trivial, meaning that code efficiency is an ever-present
development concern. In this sectionwe discuss improvements
that have been developed for HemeLB to address these issues
and present scaling results to demonstrate their efficacy.
Additionally, we outline a framework for the self-coupling of
HemeLB that complements these development goals.
2.1. Reduction of data communication within MPI
One significant challenge in modelling the full human vascu-
lature is generating accurate geometries on which to conduct
simulations. Based on studies presented in §3, at least 108

lattice sites are required in order to simulate flow in the smal-
lest imaged vessels within the same model as large vessels
such as the aorta. Efficiently constructing geometries of this
magnitude is a significant computational challenge. Attempt-
ing to perform this task within the limitations of many
supercomputers can cause memory or time restrictions to
be exceeded. A particular problem that can be encountered
is exceeding the limit on the number of elements that can
be communicated within a single MPI operation. We refer
to this restriction as the BigCount problem.

BigCount is based on the premise that, in the early years of
32-bit computing, the need for an application to track more
than a billion items would be rare or too far into the future

application layer

Method 1 (Read Æ Read_at)

Method 2
(Read Æ io_module_file_read)

MPI layer

modular component architecture (MCA)

operating system

Figure 1. Two methods for working around the 32-bit limitation of MPI
communications by breaking large data into segments. Method 1 modifies
the existing MPI calls to permit MPI_Count types. Method 2 bypasses
the I/O section to allow usage of the MPI_Count type.

Listing 1 : MPI file read that accepts the MPI_Count datatype

MPI_File_read_x (
MPI_File fh, void *buf, MPI_Count count,

1
2

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190119

3
to be practical. In computing environments, a single byte using
8 binary bits can express 28 (or 256) unique values, such as the
set of integers from 0 to 255, or from−128 to 127. If amulti-pro-
cess application needs to send an array of 1000 items from one
process to another, the sending process would needmore than
1 byte to express to the receiving process a count of howmany
items to expect. Thus, the generic integer type int on a 32-bit
system was commonly allotted a width of 4 bytes, even as 64-
bit hardware and operating systems were entering the market.
To usemore or less than 4 bytes for an integer type, developers
using languages like C must often specify explicitly with key-
words such as long or double for the former, or char for the
latter. Earlier MPI standards defined counts and displace-
ments to use the generic integer type, which imposed the 32-
bit limit on their associated variables.

The first steps towards solving BigCount have already
been taken by the introduction of a new datatype called
MPI_Count into the MPI-3 standard. MPI_Count can sup-
port up to 128-bit integers, though its support in MPI-3 is
limited to a few functions [22]. As described in §2.1.3
below, the MPI-4 standard (currently in draft form and to
debut in 2021) [23] will include a solution to BigCount for
commonly used functions that impact this research. However,
its release in production MPI implementations was too far
into the future when this research was developed. Thus, the
approaches described next were implemented. Note that
work such as this helped motivate the standardization of
these operations. Displacements and offsets, values that
allow arbitrary access to memory locations in relation to a
starting address, are also vulnerable to the 32-bit limit. The
MPI_Offset type was added to the current standard,
designed to store explicit offsets that may be larger than
can be expressed with a 32-bit integer. The MPI_Aint type
is also in the current standard, and is meant to store
memory addresses larger than 4 bytes.

A number of transitional measures have been developed
to mitigate the BigCount problem until it is solved by the
MPI-4 standard. For example, derived datatypes have been
used to express and package large counts into contiguous
arrays with the introduction of generalized requests [24].
Some work has also been done to try to reduce the overhead
by offloading the work to graphical processing units [25].
Recent discussions among members of the MPI Forum
about handling BigCount have focused on possible solutions,
including function pointers, adding ‘_x’ variants to standard
functions [26], and using MPI_Offset or MPI_Aint to
handle large displacement values [27]. At a user level, other
options for addressing BigCount involve using extra software
libraries or making modifications to the existing code. BigMPI
is a library that introduces a set of MPI-related functions
which accept large counts as MPI_Count types that map to
MPI-3 calls [28]. BigMPI focuses more on native types over
derived types, as its purpose is to support counts that
exceed the system-defined maximum (INT_MAX) for com-
monly used functions such as send and receive types, most
of the collective operations, and remote memory access func-
tions. BigMPI converts input stored with large types (and
associated data) into a series of smaller supported types
(and contiguous data) by way of the MPI standard ‘_v’ var-
iants like scatterv for collectives.

HemeLB would be able to take advantage of exascale
machines today, but is hindered by limitations in the input/
output (I/O) component of MPI. At scale, HemeLB has the
opportunity to use a large number of data items that
exceed the 32-bit limit when calling MPI_File_read. To
work around this current limitation, the data is broken into
32-bit safe segments and read in sequence. Here we describe
two methods for achieving this: Method 1, which is function-
ally identical to application code used in a function called
read_x (provided in §1 of the electronic supplementary
material), and Method 2, an implementation-specific work-
around which bypasses the MPI layer and directly uses an
underlying I/O module. Schematic outlines are presented
in figure 1.
2.1.1. Method 1: Chunking at the MPI API level
The first method emulates a user space method at the appli-
cation programming interface (API) level that breaks file
reading operations into chunks with manageable count
values. We implemented it as a proposed MPI function
with the signature below.
As shown in figure 1, the new function resides on top of the
standard MPI_File_read, and accepts a MPI_Count type for
the item count. The function will make a series of calls to the
standard MPI_File_read_at, transparent to the user. We
expect this function to be more convenient for users who reg-
ularly deal with large data counts, but cannot modify their
MPI implementation. In most cases, we expect this method
to perform marginally faster than read_x(), since it makes
fewer internal MPI calls compared to the user implementation.

MPI_Datatype datatype, MPI_Status *status);3
2.1.2. Method 2: I/O module bypass of the MPI API
This method is specific to the OpenMPI implementation of
MPI, but it could possibly be adapted to other variants. What
makes OpenMPI particularly suitable for Method 2 is its struc-
ture, which includes the Modular Component Architecture
(MCA). By default, OpenMPI uses its base I/O module,
OMPIO, to read files. While 32-bit count values are accepted,
many of the OMPIO functions could support larger values.

user
Method 1
Method 2

average read times over increasing file sizes (lower is better)

file size

re
ad

 ti
m

e
(s

)

1 GB 2 GB 4 GB 8 GB 16 GB 32 GB

MPI_file_read_x

10

5

0

20

15

user
Method 1
Method 2

average read rates over increasing file sizes (higher is better)

file size

re
ad

 r
at

e
(G

B
ps

)

1 GB 2 GB 4 GB 8 GB 16 GB 32 GB

MPI_file_read_x

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a)

(b)

Figure 2. Comparison of the mean read time and read rate observed by user space file chunking versus two different BigCount workarounds in MPI_
File_read_x when reading files of various sizes. (a) Mean read times; (b) mean read rates.

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190119

4

We modified the function signatures through the hierarchy of
OMPIO functions to accept the MPI_Count type, which
works as long as the INT_MAX value for the system’s C library
is large enough to support 64-bit integers.

To evaluate the performance of the two methods, we
measured the run times of a user space chunking method
that avoids large counts against the API layer chunking
(Method 1) and the I/O module bypass (Method 2) by read-
ing a series of randomly generated files ranging from 1 to 32
GB in size, and the average time spent in MPI_File_read_x

over multiple runs.
Figure 2a shows the time spent in calls to MPI_File_

read_x as the file sizes increase, in which both methods
are observed to be clearly faster than the user space work-
around. This advantage becomes more apparent when read
rates are compared (figure 2b). Performance improvements
realized with these techniques will enable HemeLB to read
large datasets more efficiently.

Performance differences aside, the decision to use one
method over the other is a practical matter. Both methods
require adding MPI_File_read_x to the standard, though
Method 1 leaves the rest of the MPI implementation
untouched. Method 2 is specific to OpenMPI and requires
slight modification to the underlying I/O module. In either
method, the user only needs to ensure the type for the
count is MPI_Count.
2.1.3. Standardization in MPI-4
After the completion of the research described here, the MPI
Forum adopted the revised model of MPI transfers [23]. This
large-count model supports numbers of items to be trans-
ferred that are MPI_COUNT in size (normally 63-bit signed
integers on 64-bit architectures) versus 231 in MPI-3.1, plus
it supports all the corollary changes needed to make these
work for large transfer support of point-to-point, collective,
one-sided, datatype and I/O operations. A second API is pro-
vided in both C and Fortran that supports these new,
BigCount modes.
2.2. Extreme scale performance
HemeLB executions have been audited on different
HPC computer systems by the EU Centre of
Excellence Performance Optimisation and Productivity
(POP) (https://www.pop-coe.eu/). These performance
assessments, based on measurements taken with the
highly scalable open-source Scalasca/Score-P toolset
[29], found very good computation and communication
efficiencies, while identifying memory consumption and
load balance as issues to improve.

HemeLB has been previously demonstrated to scale
exceptionally well up to 100 000 cores [18]. We refer the
reader to Groen et al. [9] for a comparison of HemeLB’s

https://www.pop-coe.eu/

1

10

102

104 105 104103 105

1

10

102

cores

simulate
perfect

cores

sp
ee

d-
up

sp
ee

d-
up

simulate
perfect

(a) (b)

Figure 3. Scaling of HemeLB simulation time for 5000 lattice update steps of the coW-6.4um.gmy dataset on Blue Waters and SuperMUC-NG. Efficient strong
scaling is seen on both systems to very large core counts. (a) Speed-up relative to 300 nodes (16 cores/node) on Blue Waters; (b) speed-up relative to 18
nodes (48 cores/node) on SuperMUC-NG.

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190119

5

performance relative to other lattice Boltzmann codes.
Furthermore, the code was recently found to scale with
good efficiency on 288 000 AMD 6276 Bulldozer-based
Interlagos processor cores of 18 000 Cray XE nodes of
NCSA Blue Waters (figure 3a). The breakdown in perform-
ance at the largest scales on this machine is due to an
unfavourable surface-to-volume (communication-to-compu-
tation) ratio of partitions (subdomains). Larger models,
where computation dominates communication, are required
to sustain computational scaling in this regime. In this paper
we articulate more recent development on the SuperMUC-
NG machine that is based on newer processors with more
cores.

The SuperMUC-NG supercomputer [30] at the Leibniz-
Rechenzentrum (Germany) comprises 6480 compute nodes
with dual 24-core Intel Xeon Platinum 8174 @ 3.10 GHz (‘Sky-
lake’) processors. The 144 ‘fat’ compute nodes each have 768
GB memory, compared to only 96 GB memory for the remain-
ing 6336 ‘thin’ compute nodes bundled into eight domains
(known as ‘islands’). The internal interconnect is an Intel
OmniPath network, with a fat-tree topology within islands
and 1 : 4 pruned connection between islands. A high-per-
formance 50 TB parallel file system is provided by IBM
Spectrum Scale (GPFS), with SUSE Linux Enterprise Server
(SLES) 12 SP3 operating system.

HemeLB was built with the Intel 19.0.4.243 compiler and
MPI library. It was configured to use the MPI Shared
Memory model within each compute node to reduce
memory requirements when loading the initial lattice data.
For scalability testing, a circle of Willis geometry dataset of
21.15 GiB was used (similar to that used in [18] but with a lat-
tice spacing of approximately 6.4 μm). This domain is split into
a total of 1 138 236 832 blocks (1376 × 1087 × 761), of which
20 740 240 are non-empty. These non-empty blocks contain a
total of 10 154 448 502 lattice sites used for simulation. Exclud-
ing the initialization phase and data output, the simulation
time for 5000 update steps of blood flow was recorded to
establish a strong scaling benchmark on SuperMUC-NG.

The fat compute nodes were used for executions
with 864–6144 MPI processes (18–128 compute nodes); thin
nodes were used for larger runs. In all cases 48 MPI processes
(one per core) were executed on each compute node. Gener-
ally, only a single execution was done at each scale, during
regular operation of SuperMUC-NG, with run-to-run vari-
ation in the simulation time found to be small (potentially
due to variation in allocation of compute nodes and
communication interaction with other jobs).

Simulation speed-up relative to the smallest execution
configuration (18 compute nodes based on memory require-
ments) for different numbers of compute nodes is plotted
in figure 3b, along with a comparison to perfect linear scaling.
At half machine scale (147 456 cores), a speed-up factor of
128.7 was obtained for a 170.7 factor increase in compute
nodes. This corresponds to a scaling efficiency of 75%. At
full machine scale (309 696 cores) the speed-up factor
increased to 189.8 reducing simulation time to 83 s.

The Scalasca/Score-P assessment of the HemeLB results
on SuperMUC-NG showed that, overall, very good computa-
tional scaling above 87% is sustained. Efficient non-blocking
communication between neighbouring lattice blocksmaintains
excellent communication efficiency above 97%. The most
significant inefficiency at all scales tested is due to the load
balance, generally around 80% but dropping to 72% in
some larger execution configurations. While this is still fairly
good, it presents the largest opportunity for performance
improvement and motivated the inclusion of an improved
load-balancing framework into the HemeLB code. In §2.2.1,
we present initial results for the inclusion of the ALL (A Load-
balancing Library) framework.

With 792 compute nodes bundled within island domains,
and islands connected via an additional switch, it is notable
that no significant simulation performance advantage was
observed when inter-domain switches were avoided or
reduced. Small numbers of failed compute nodes throughout
SuperMUC-NG can therefore conveniently be avoided,
allowing full flexibility in allocating partitions.

The HemeLB version used on SuperMUC-NG incorpor-
ated optimizations which were essential to be able to set up
and run this size of simulation. In particular, these included
the use of more memory-efficient data structures and MPI
shared memory model for each compute node.

Hoekstra et al. [31] observe that the lattice Boltzmann
method possesses an algorithmic structure that will enable
it to continue its scaling performance on larger supercompu-
ters in the transition to exascale platforms. In part, this is due
to the fact that, unlike some algorithms, the lattice Boltzmann

HemeLB 1

world comm.

HemeLB 2

world comm.

universe

comm.

shared MPI comm.

computational universe

Figure 4. Schematic layout of the communications required to couple
HemeLB with itself. All communications are conducted using standard MPI
calls. This strategy can be extended to permit coupling of further HemeLB
worlds.

0

1

2

N

vi, Pi

v0, P0

Li, DPi

Figure 5. A one-to-many coupling is generated to link an arterial outlet
(red) with venous (blue) inlets. Each boundary site has an associated velocity,
v and pressure, P. The distance between each vein and artery, Li, is measured
and the associated pressure drop, ΔPi, is defined.

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190119

6
method does not possess a hard limit on scalability that inhi-
bits performance at large scale. This feature assists in
enabling HemeLB to study extremely large flow problems.

2.2.1. Load balancing
When conducting a simulation over hundreds or thousands of
compute cores, its parallel efficiency depends strongly on how
evenly the workload is distributed. In its default form,
HemeLB conducts a basic decomposition that can, when
partitioning certain geometries, result in an unbalanced work-
load between cores. In order to better distribute the HemeLB
workload, ongoing investigations have been conducted with
specific load-balancing libraries. A combination of Zoltan
[32,33] and ParMETIS [34] was found to require substantially
longer walltimes and more memory due to its extensive pre-
processing. Currently, the ALL package, developed by the
EU E-CAM Centre of Excellence (https://www.e-cam2020.
eu/), is being tested with HemeLB.

The original load-balancing approach successively assigns
workload to cores until a nominally even distribution is
obtained. Concave geometric domainsmay force this algorithm
to assign non-contiguous regions to the same core, leading to
unfavourable communication overhead. Initial studies with
ALL have used the package’s orthogonal recursive bisection
scheme combined with a histogram method. This combination
guarantees good load balancing for single connected and
convex domains. When compared to the native HemeLB
approach, we find both approaches give a balanced workload
distribution of workloadave=workloadmax � 80% with only a
slight dependence on the number of cores used. Inspection
shows that the work distribution, based on the prescribed
weight of the blocks, is close to being ideally balanced (greater
than 98%), which can be observed for the majority of cores.
However, the overall performance is limited by a few outliers,
which consume about 10–20% more time. Initial analysis
shows that this is not due to communication overhead and
also varies between runs with the same process allocation.
A possible reason for this behaviour may be found in
memory access patterns where memory cannot be allocated
contiguously and read/write operations get imbalanced as a
result of concurrent memory allocation of processes on the
nodes. A more detailed analysis of these results is currently
being conducted and this will, ultimately, be used to improve
the load balancing of HemeLB on exascale machines. Prelimi-
nary results from these studies are presented in §2 of the
electronic supplementary material.

2.3. Self-coupling of HemeLB
In order to create a realistic simulation of a virtual human,
HemeLB must be able to communicate with both other
HemeLB instances and other biophysical modelling codes.
In the first instance, coupling HemeLB to itself will establish
a framework for how this can be conducted. While motivated
by simulating coupled arterial and venous vasculatures, it
also provides a setting to enable simulation of regions at
different resolutions. The self-coupled version of HemeLB
constructs a common computational universe in which
multiple HemeLB instances are instantiated. Each instance
retains its own internal communications for executing the
simulation on the cores assigned to it. The master ranks of
each instance exchange boundary condition states at coupled
interfaces to generate interaction between HemeLB worlds.
This strategy is laid out schematically in figure 4. To mini-
mize the data needing to be passed between coupled
HemeLB instances, only the average value of macroscopic
properties is passed between coupled boundaries. The coup-
ling of the HemeLB instances is carried out by constructing a
mapping between the outlets of the first case and the inlets of
the second case. In the case of arterial and venous trees there
are typically many more venous inlets than arterial outlets,
resulting in a number of one-to-many interfaces. Between
each of the inlet–outlet pairings, a scaling factor of velocity
and pressure is assigned to represent the change in flow be-
haviour in the intervening vasculature between the two
geometries and used to construct local boundary conditions.
3. Arterial–venous coupling
The human circulatory system consists of vessels ranging from
the centimetre scale such as the aorta down tomicrometre sized
capillaries. These are classified (e.g. pulmonary/systemic,
arteries/veins) based on their transport direction and location.
Within a full human model, the resolution of the smallest
vessels and capillaries is often limited. To complete the connec-
tion of coupled arterial–venous flows, these vessels are
approximated as a sub-scale feature that can be represented
with a pressure and velocity drop between vessels on either
side. Using this approach, the self-coupling of HemeLB will
enable simultaneous blood flow simulations of arterial and
venous networks. If found to be necessary, future work may
involve developing and implementing more sophisticated
coupling strategies to represent the sub-scale material,

https://www.e-cam2020.eu/
https://www.e-cam2020.eu/

(a)

0 20 40 60 80 100

simulation steps (/100)

v i /
 v

0

inlet 1
inlet 2
inlet 3

(b)

0

0.2

0.4

0.6

0.8

1.0

Figure 6. Schematic layout and velocity ratio results of the 1 : 3 test domain for demonstrating performance of the self-coupling of HemeLB; arteries are the upper
section of the layout. (a) Test layout; (b) velocity ratios.

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190119

7

such as through incorporation of porous media models of
capillary beds.

To simulate coupled vascular networks, a strategy for
determining the pressure and velocity scaling factors between
coupled boundary locations was developed to ensure that
mass conservation is maintained. For a given vessel size
there are, generally, many more veins than arteries. In the
vascular networks simulated in this study (described later
in this section) there are 13 times more vein inlets than arter-
ial outlets. The first stage in defining a coupling map between
arteries and veins involves identifying which inlets and out-
lets of the independent geometries are linked. A naive initial
approach is based on the relative proximity of boundary
locations. A mapping algorithm was devised to ensure that
each arterial outlet is coupled to at least one vein. For each
artery, the list of venous inlets is inspected and the closest
is assigned to that vessel, then removed from the list. Once
complete, the remaining veins are assigned to their closest
artery. This generates a 1 :N coupling map for each arterial
outlet, as shown in figure 5. The distance between each
coupled pair is stored for later use.

To represent the sub-scale material between the macro-
scopic arteries and veins, a pressure drop between each inlet–
outlet pair is assigned to a random value between 0.3 and
0.7. This range represents physiologically expected values
[35] and permits variability of structure in the hypothetical
capillary network it represents. This correlates directly to the
pressure scale factor, ΔPi/P0, assigned to that pairing. The vel-
ocity scale factor, vi/v0, is determined byassuming that for each
inlet–outlet pair the pressure drop, ΔPi, is proportional to the
product of flow rate, qi, and length, Li,

DPi ¼ P0 � Pi ¼ kiqiLi: (3:1)

By comparison of units, it can be noted that ki is inversely pro-
portional to the area of the inlet, Ai. The scaling factor for
velocity is then determined by combining equation (3.1) for
each inlet i with mass conservation of the system (i.e.
q0 ¼

PN
i¼1 qi) to determine the scaling of velocity, vi, for each

inlet–outlet pair:

vi
v0

¼ A0

Ai

DPiL1Ai

DP1LiA1

XN
j¼1

DPjL1Aj

DP1LjA1

0
@

1
A

�1

: (3:2)

Note that a subscript of zero indicates values relating to the
arterial outlet.
These factors are used to construct the velocity boundary
conditions on the opposite geometry. In the ‘forward’ (i.e.
arterial-to-venous) direction, the scale factors are applied to
the average velocity at the arterial outlet to construct bound-
ary condition values to be applied at the coupled venous
inlets. In the ‘reverse’ direction (i.e. venous-to-arterial), the
boundary force values at the arterial outlets are determined
by taking the average of the average velocities at the inlets
scaled by the appropriate scaling factor. To represent the
volume of fluid existing in the capillaries between any
given coupled inlet and outlet, an explicit force is applied
to the outlet side based on the dynamic pressure at that
location using the approach of Guo et al. [36]. The coupling
strategy alternates between the ‘forward’ and ‘reverse’
directions each time boundary information is swapped.

As a demonstration of the performance of the coupling
strategy, we show the recorded velocity ratios at coupled
inlets and outlets in a simplified 1 : 3 geometry. This is illus-
trated in figure 6a. In this setting the imposed pressure
scaling factors were ΔPi/P0 = 0.30, 0.52, 0.69 for the i = 1, 2,
3 inlets; the corresponding velocity factors were vi/v0 = 0.13,
0.36, 0.52 with all boundaries of equal size. Figure 6b demon-
strates that these ratios are achieved between the appropriate
inlets when steady state is reached (again, after approxi-
mately 3000 simulation steps). These results verify the
boundary condition implementation by demonstrating that
the desired results are achieved.
3.1. Obtaining human-scale input data
We used the recently created computational anatomical model
Yoon-sun [37], which was segmented from high-resolution
(0.1 × 0.1 × 0.2 mm) colour photographs of cross-sections
from a frozen female cadaver obtained in the Visible Korean
project [38]. Yoon-sun, available as part of the Virtual Popu-
lation (ViP) library [39,40], was segmented at 0.2 × 0.2 ×
1.0 mm resolution, separating more than 1100 tissues, and pro-
vides unprecedented details in the peripheral nervous system,
muscles and arterial–venous system (figure 7). Yoon-sun was
created following standardized quality assurance guidelines
developed to ensure consistent segmentations across the ViP
library. The finest segmented vessels have a diameter in the
range of 1–2 pixels (0.2–0.4mm).

The surface model of the arteries and veins was clipped at
the vessel tips to improve the ability of HemeLB to apply

Figure 7. The female ViP model Yoon-sun with unprecedented detail of the (from left to right) skeleton and internal organs, muscles, peripheral nerves and
vasculature [38–40]. Colours represent different structures in each case. The section of the leg vessels highlighted by the box (and shown in figure 8) was
used for initial tests of human-scale vasculature simulations.

Figure 8. Illustration of vessel surface pre-processing for HemeLB, which detects locations for boundary conditions at open edges of the vessel surface. Centrelines
(red lines) are generated from the triangulated surfaces of arterial and venous trees. The vessel tips (depicted in blue) are clipped by a cutting algorithm.

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190119

8

boundary conditions to the geometry. To handle the large
number of vessel tips (more than 1500), this was automated
through the following algorithm: (i) surfaces of the vascula-
ture were extracted using the Marching Cubes algorithm
[41]; (ii) centrelines were extracted from this triangulated
surface using a skeletonization technique [42,43]; and, finally,
(iii) the vasculature model was clipped by cutting the surface
mesh at the end points of the centrelines (perpendicular to
the line orientation). This algorithm is implemented using
in-house C++ building-blocks, except for the skeletonization
which uses the CGAL library [43]. To limit the cut to the cor-
responding tip surface (i.e. to avoid cutting with an infinite
plane), a traversal algorithm was implemented, which starts
the cut at the vertex closest to the tip location. Figure 8
shows an example from the arterial tree.
3.2. Visualization of very large datasets
Additionally, we are developing a visualization method for
the analysis of data and communication of results produced
by HemeLB. Previous work with HemeLB datasets—devel-
oped in tandem with the ‘Virtual Humans’ IMAX movie
[44]—focused on simulating movement of particles based
on a much smaller dataset (about 160 million data sites/
time step) than is required for our virtual human-scale simu-
lation. This earlier work, using sparsely populated octrees,
was used for real-time visualization and data processing for
cinematic renderings [44]. However, this approach is no
longer viable due to the size and complexity of datasets
planned to be generated with the self-coupled HemeLB
code. Instead, we aim to provide precomputed flow data to
visualize flow in complex, large-scale datasets. While this

ve
l_

m
ag

0.0008

0.0006

0.0004

0.0002

ve
l_

m
ag

0.0008

0.0006

0.0004

0.0002

ve
l_

m
ag

1.0×10–4

ve
l_

m
ag

1.0×10–5

1.0×10–3

1.0×10–6

1.0×10–7

1.0×10–8

1.0×10–9

1.0×10–10

2.2×10–11

1.0×10–5

1.0×10–3

0.0010

1.0×10–6

1.0×10–7

1.0×10–8

1.0×10–9

1.0×10–10

2.2×10–11

2.2×10–11

0.0010

2.2×10–11

1.0×10–4

x

y z

x

y z

Figure 9. Field of velocity vectors (coloured by magnitude on a logarithmic scale) through the arterial (upper row) and venous (centre row) domains. The lower row
(arterial left and venous right) is a close-up view of the iliac bifurcation of the aorta at the top of the simulated geometry (right-hand side of full domain images). All
figures have been capped at the arterial venous velocity to illustrate the progression of flow through the domain at this point of the simulation. The full domain of the
venous tree contains approximately 700 000 vectors. These figures demonstrate the scale of 3D vascular models which we can currently simulate with HemeLB.

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190119

9

limits versatility of the visualization, it allows for real-time
exploration of the flow data that can be directed and altered
to investigate different scenarios.
3.3. Human-scale blood flow results
We simulate blood flow from just above the iliac bifurcation of
the Yoon-sun geometry, as indicated in figure 7. In this con-
figuration, the arterial tree has a single inlet and 38 outlets,
while the venous tree has 494 inlets and one outlet. For this
case study, the domain was resolved with a lattice spacing of
75 μm (total of 434 579 134 lattice sites across the arterial and
venous geometries). For more detailed simulations, a resol-
ution of perhaps 25 μm would be necessary to fully resolve
the finest vessels. Models of this scale would exceed 109 lattice
sites. Velocity conditions were applied at the inlets to domains
and pressure boundary conditions applied to the outlets. The
maximum velocity at the inlet to the arterial tree was set at a
constant 0.001 m s−1, smaller than physically expected at that
location but necessary to simulate stable flow for this resol-
ution model. This simulation is intended to provide a proof-
of-concept of the self-coupling strategy outlined in this paper
on human-scale vascular geometries rather than a rigorous
quantitative evaluation of its performance. The flow con-
ditions chosen are adequate for the current demonstration
purpose. Full validation of physiologically accurate flow will
be the subject of future work. The parameters applied to the
coupled boundary locations were determined by the self-

0 2 4 6
×10−5

×10−4

0

2

4

6

ve
lo

ci
ty

m
ag

ni
tu

de
(m

 s
–1

)

vessel area (m2)

Figure 10. Plot of flow velocity magnitude against vessel area after
1 000 000 simulation steps for the coupled arterial (red) and venous (blue)
networks of the region indicated in figure 7. Planes of vessels were extracted
at three locations along the length of the domain. The ‘negative’ region for
the arterial vessels is an artefact designed to keep the arterial and venous
points separated on the graph.

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190119

10
coupling strategy described in this paper. The simulations
used to generate this data were run for 1 000 000 steps, corre-
sponding to 100 s of physical time. This took approximately
13 h on 10 080 cores of SuperMUC-NG. The resulting velocity
distribution (figure 9) illustrates how the flow development
is occurring throughout the full geometry and around the
iliac bifurcation. The flow field is, qualitatively, as expected
throughout the domain. One issue with conducting simu-
lations on this scale and geometry is the time taken for flow
to develop throughout the domain. This highlights the need
to carefully consider the initialization state of large domains
so as to rapidly develop physiologically realistic states that
minimize simulation time.

To provide further qualitative validation of the simulation,
we examine the flow velocity experienced in vessels compared
to their size. Within the systemic circulatory system, the mean
velocity is maximal upon leaving the heart and reduces as it
travels through to smaller vessels. Within the venous system,
the velocity increases again on returning to the heart but at a
more gradual rate. Schematic illustrations of this are provided
in chapter 20.2 of [35]. Figure 10 illustrates the distribution of
velocity magnitude as a function of vessel area. Note that the
plot is organized from left-to-right based on general pro-
gression through the circulatory system; arteries are plotted
with a ‘negative’ area. These data points were obtained by
inserting a measurement plane at approximately one-quarter,
one-half and three-quarters of the way along the length of
the geometry. These were separated into cross-sections of the
various vessels and mean velocity calculated. The area was
estimated by taking a convex hull around the lattice points
associated with each vessel. The anticipated velocity reduction
in the arterial vessels is clearly observed. The results for the
venous tree also generally demonstrate the correct trend—an
increase in velocity with vessel area but at a much slower
rate of change than that seen in the arteries. A small number
of higher-velocity data points are still present in the venous
tree, particularly for smaller vessels. These may arise due to
an inappropriate coupling being generated by the naive and
automated initial strategy. This indicates that the coupling of
complex vascular networks may require a more subtle strategy
than the solely distance-based approach outlined here as an
initial proof-of-concept. It is also possible that these high-
velocity data points are driving instabilities that resulted in a
low inlet velocity being required in this simulation. The
assumption of rigid walls may also impact venous behaviour
more strongly than the arterial tree. Addressing these will be
a focus for future work.

The accuracy and stability of single relaxation time lattice
Boltzmann simulations are governed by two equations. The
first, ν = (1/3)(τ− 1/2)(Δx2/Δt), links fluid viscosity, ν, with
the grid spacing, Δx, time step, Δt, and relaxation time, τ.
The second, Ma ¼ (

ffiffiffi
3

p
vmaxDt)=Dx , 0:1, stipulates the valid

computational Mach number for a simulation. Typically it
is desired that τ∈ (0.5, 1] and preferably closer to one; and
the Mach number to be as small as possible. These are com-
peting objectives. Rough calculations suggest that for
physiologically realistic flows (e.g. 1 m s−1 in the aorta) a res-
olution of 25 μm and a time step of 1 μs represent the cusp of
achievable simulation parameters. Randles et al. [45] have
generated an arterial geometry with over 1011 sites at
10 μm, indicating that this is achievable. These values rep-
resent a reason for using large supercomputers to conduct
these simulations. Matching of Reynolds numbers with
increased fluid viscosity could assist in further relaxing
these requirements.

Once communication between the coupled instances of
HemeLB has been optimized, the full performance profile
of the coupling strategy can be assessed. This will require a
sufficiently large pair of geometries to study this ade-
quately, perhaps requiring at least 109 fluid sites each. As
demonstrated in §2.2, HemeLB has excellent strong scaling
performance as a single instance, although the coupling of
multiple instances reduces this behaviour due to
additional communication overhead. We plan to assess
this behaviour of self-coupled HemeLB in a future
publication.
4. Conclusion
Significant scientific and medical research effort is being
directed towards enabling the simulation of a virtual human.
The ultimate delivery of this goalwill allow for the prescription
of medical treatments personalized for every patient. The
virtual human would also allow healthy individuals to dis-
cover how they can improve their current lifestyle choices.
The performance of supercomputers is now reaching a level
at which the creation of a virtual human is feasible. This
paper brings together cutting-edge technologies and algor-
ithms for building and simulating virtual humans on the
latest high-performance computing platforms. Firstly, we
described software implementations that permit strong scaling
performance for complex domains with O(1010) lattice sites on
O(105) cores. In particular, this has involved modifying MPI
communication behaviour to allow for larger data communi-
cation. Achieving performance on this scale also requires
streamlining of internal HemeLB data structures and improved
load-balancing techniques. We have outlined a self-coupling
strategy to allow coupled simulations of arterial and venous
flows (a critical feature for modelling blood flow within a vir-
tual human). Here we demonstrate that the coupling strategy

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190119

11
is able to communicate information between several hundred
linked boundary locations and is able to reconstruct flow at
this scale.

In this paper, we have demonstrated that the self-coup-
ling of HemeLB is able to simulate blood flow in human-
scale geometries that capture the expected dynamic flow
features. In future developments of this work, we plan to
progress towards creating a virtual human by extending
the current simulation domain to the full human and conti-
nuing to expand the physics modelled by HemeLB. In
particular, we will look at methods for improving the coup-
ling behaviour between domains and relaxing HemeLB’s
structural and fluid assumptions. In future work, we plan
to validate the coupling model presented here by close com-
parison with physiological data. This will allow us to apply
the model to large-scale physiological and clinical situ-
ations. Visualization remains an essential element in
comprehension and communication of the large-scale data
generated by simulations of human-scale domains. We seek
to further develop techniques for the visualization of human-
scale blood flow in order to better enable understanding of
the virtual human. The advent of exascale computers will
greatly facilitate these endeavours. As many future exascale
machines are planned to incorporate the use of accelerators,
we are also developing a GPU-enabled version of HemeLB to
further capitalize on the performance capabilities of these
new machines.

Data accessibility. HemeLB code for single simulations can be found at
https://github.com/UCL-CCS/HemePure and coupled simulations
at https://github.com/UCL-CCS/HemePure_SelfCoupled. The
circle of Willis geometry used for scaling tests was provided by Fig-
ueroa [46]. The full human geometry datasets are available through
the IT’IS [37].
Authors’ contributions. J.W.S.M. and P.V.C. provided the scientific
direction and conceptualization of the manuscript. All authors con-
tributed to the overall methodology of the work presented here.
Particular contributions to software and development are as fol-
lows: (i) HemeLB coupling and scientific applications: J.W.S.M.,
R.A.R., A.P.; (ii) MPI: M.R., R.M., A.S.; (iii) code scalability and per-
formance: B.J.N.W., A.P.; (iv) load balancing: A.P., R.H., G.S.; (v)
virtual human vasculature: B.L., E.N.; and (vi) visualisation: T.O.,
M.W. Authors J.W.S.M. and P.V.C. prepared the initial draft and
all authors contributed to their specific sections and to the critical
revision of the overall manuscript. J.W.S.M. managed the data pre-
sented in this paper. P.V.C. and D.K. supervised the work
conducted here, including directing the main efforts for acquisition
of funding and supercomputing allocations. P.V.C. provided overall
project direction and management. All authors gave final approval
for publication and agree to be held accountable for the work per-
formed therein.

Competing interests. We declare we have no competing interests.

Funding. We acknowledge funding support from European Commis-
sion Centres of Excellence CompBioMed (grant nos 675451 and
823712), E-CAM (grant no. 676531) and POP (grant nos 676553
and 824080). Support from the Research Councils UK Engineering
and Physical Sciences Research Council under the project ‘UK Con-
sortium on Mesoscale Engineering Sciences (UKCOMES)’ (grant
no. EP/R029598/1) is gratefully acknowledged. We acknowledge
funding support from Research Councils UK Medical Research
Council (MRC) for a Medical Bioinformatics grant (no. MR/
L016311/1), and special funding from the UCL Provost. This
work was also performed with partial support from the National
Science Foundation under grant nos 1562306, 1713749, 1822191,
1821431 and 1918987. We acknowledge Innosuisse (CTI 25290.1
PFLS-LS) for funding the development of the anatomical model
used in this work through the NEUROMAN project.

Acknowledgements. The authors gratefully acknowledge the Gauss
Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding
this project by providing computing time on the GCS Supercomputer
SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.de).
This work used the ARCHER UK National Supercomputing Service
(www.archer.ac.uk).
References
1. Kohl P, Noble D. 2009 Systems biology and the
virtual physiological human. Mol. Syst. Biol. 5, 292.
(doi:10.1038/msb.2009.51)

2. Hunter P et al. 2010 A vision and strategy for the
virtual physiological human in 2010 and beyond.
Phil. Trans. R. Soc. A 368, 2595–2614. (doi:10.1098/
rsta.2010.0048)

3. Hunter P et al. 2013 A vision and strategy for the
virtual physiological human: 2012 update. Interface
Focus 3, 20130004. (doi:10.1098/rsfs.2013.0004)

4. Chase JG, Desaive T, Preiser J-C. 2016 Virtual
patients and virtual cohorts: a new way to think
about the design and implementation of
personalized ICU treatments. In Annual Update in
Intensive Care and Emergency Medicine (ed. JL
Vincent), pp. 435–448. Cham, Switzerland:
Springer. (doi:10.1007/978-3-319-27349-5_35)

5. Sheng C, Sarwal SN, Watts KC, Marble AE. 1995
Computational simulation of blood flow in human
systemic circulation incorporating an external force
field. Med. Biol. Eng. Comput. 33, 8–17. (doi:10.
1007/BF02522938)

6. Olufsen MS. 1999 Structured tree outflow condition
for blood flow in larger systemic arteries. Am. J.
Physiol. Heart Circ. Physiol. 276, H257–H268.
(doi:10.1152/ajpheart.1999.276.1.H257)

7. Qureshi MU, Vaughan GDA, Sainsbury C,
Johnson M, Peskin CS, Olufsen MS, Hill NA.
2014 Numerical simulation of blood flow and
pressure drop in the pulmonary arterial and
venous circulation. Biomech. Modeling
Mechanobiol. 13, 1137–1154. (doi:10.1007/
s10237-014-0563-y)

8. Audebert C, Bucur P, Bekheit M, Vibert E,
Vignon-Clementel IE, Gerbeau J. 2017 Kinetic
scheme for arterial and venous blood flow, and
application to partial hepatectomy modeling.
Comput. Methods Appl. Mech. Eng. 314, 102–125.
Special Issue on Biological Systems Dedicated to
William S. Klug. (doi:10.1016/j.cma.2016.07.009)

9. Groen D, Hetherington J, Carver HB, Nash RW,
Bernabeu MO, Coveney PV. 2013 Analysing and
modelling the performance of the HemeLB
lattice-Boltzmann simulation environment.
J. Comput. Sci. 4, 412–422. (doi:10.1016/j.jocs.2013.
03.002)

10. HemeLB, 2019. www.hemelb.org.
11. Palabos, 2019. See https://palabos.unige.ch/.
12. TCLB Reference Manual, 2019. See https://tclb-docs.
netlify.com/.

13. Krause MJ. 2019 OpenLB – Open Source Lattice
Boltzmann Code. www.openlb.net/.

14. Rüde U. 2019 waLBerla. www.walberla.net/index.
html.

15. Mazzeo MD, Coveney PV. 2008 HemeLB: a high
performance parallel lattice-Boltzmann code for
large scale fluid flow in complex geometries.
Comput. Phys. Commun. 178, 894–914. (doi:10.
1016/j.cpc.2008.02.013)

16. Groen D, Richardson RA, Coy R, Schiller UD,
Chandrashekar H, Robertson F, Coveney PV. 2018
Validation of patient-specific cerebral blood flow
simulation using transcranial Doppler measurements.
Front. Physiol. 9, 721. (doi:10.3389/fphys.2018.00721)

17. Bernabeu MO et al. 2014 Computer simulations
reveal complex distribution of haemodynamic
forces in a mouse retina model of angiogenesis.
J. R. Soc. Interface 11, 20140543. (doi:10.1098/rsif.
2014.0543)

18. Patronis A, Richardson RA, Schmieschek S, Wylie
BJN, Nash RW, Coveney PV. 2018 Modeling patient-
specific magnetic drug targeting within the

https://github.com/UCL-CCS/HemePure
https://github.com/UCL-CCS/HemePure
https://github.com/UCL-CCS/HemePure_SelfCoupled
https://github.com/UCL-CCS/HemePure_SelfCoupled
http://www.gauss-centre.eu
http://www.lrz.de
http://www.archer.ac.uk
http://dx.doi.org/10.1038/msb.2009.51
http://dx.doi.org/10.1098/rsta.2010.0048
http://dx.doi.org/10.1098/rsta.2010.0048
http://dx.doi.org/10.1098/rsfs.2013.0004
http://dx.doi.org/10.1007/978-3-319-27349-5_35
http://dx.doi.org/10.1007/BF02522938
http://dx.doi.org/10.1007/BF02522938
http://dx.doi.org/10.1152/ajpheart.1999.276.1.H257
http://dx.doi.org/10.1007/s10237-014-0563-y
http://dx.doi.org/10.1007/s10237-014-0563-y
http://dx.doi.org/10.1016/j.cma.2016.07.009
http://dx.doi.org/10.1016/j.jocs.2013.03.002
http://dx.doi.org/10.1016/j.jocs.2013.03.002
http://www.hemelb.org
https://palabos.unige.ch/
https://palabos.unige.ch/
https://tclb-docs.netlify.com/
https://tclb-docs.netlify.com/
https://tclb-docs.netlify.com/
http://www.openlb.net/
http://www.walberla.net/index.html
http://www.walberla.net/index.html
http://dx.doi.org/10.1016/j.cpc.2008.02.013
http://dx.doi.org/10.1016/j.cpc.2008.02.013
http://dx.doi.org/10.3389/fphys.2018.00721
http://dx.doi.org/10.1098/rsif.2014.0543
http://dx.doi.org/10.1098/rsif.2014.0543

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190119

12
intracranial vasculature. Front. Physiol. 9, 331.
(doi:10.3389/fphys.2018.00331)

19. Nash RW, Carver HB, Bernabeu MO, Hetherington J,
Groen D, Krüger T, Coveney PV. 2014 Choice of
boundary condition for lattice-Boltzmann simulation
of moderate-Reynolds-number flow in complex
domains. Phys. Rev. E 89, 023303. (doi:10.1103/
PhysRevE.89.023303)

20. Bernabeu MO, Nash RW, Groen D, Carver HB,
Hetherington J, Krüger T, Coveney PV. 2013
Impact of blood rheology on wall shear stress
in a model of the middle cerebral artery.
Interface Focus 3, 20120094. (doi:10.1098/rsfs.
2012.0094)

21. Vázquez M, Arís R, Aguado-Sierra J, Houzeaux G,
Santiago A, López M, Córdoba P, Rivero M, Cajas JC.
2015 Alya Red CCM: HPC-based cardiac computational
modelling. In Selected topics of computational and
experimental fluid mechanics (eds J Klapp, G Ruíz
Chavarría, A Medina Ovando, A López Villa, L Di G
Sigalotti), pp. 189–207. Cham, Switzerland: Springer.
(doi:10.1007/978-3-319-11487-3_11)

22. Message Passing Interface Forum. 2012 MPI: a
message passing interface standard. www.mpi-
forum.org/docs/mpi-3.1/mpi31-report.pdf.

23. Message Passing Interface Forum. 2020 The MPI
4.0 (DRAFT) Standard. www.mpi-forum.org/
mpi-40/.

24. Latham R, Gropp W, Ross R, Thakur R. 2007
Extending the MPI-2 generalized request interface.
In Recent advances in parallel virtual machine and
message passing interface. EuroPVM/MPI 2007 (eds
F Cappello, T Herault, J Dongarra). Lecture Notes in
Computer Science, vol. 4757, pp. 223–232. Berlin,
Germany: Springer. (doi:10.1007/978-3-540-75416-
9_33)

25. Shi R, Lu X, Potluri S, Hamidouche K, Zhang J,
Panda DK. 2014 HAND: a hybrid approach to
accelerate non-contiguous data movement using
MPI datatypes on GPU clusters. In 2014 43rd Int.
Conf. on Parallel Processing, Minneapolis, MN, 9–12
September, pp. 221–230. IEEE. (doi:10.1109/ICPP.
2014.31)
26. Ruefenacht M. 2019 BigCount—generic/
overloading interfaces. https://github.com/mpi-
forum/mpi-issues/issues/137.

27. Hammond J. 2018 Big MPI—large-count and
displacement support–collective chapter. https://
github.com/mpi-forum/mpi-issues/issues/80.

28. Hammond JR, Schäfer A, Latham R. 2014 To INT_MAX
… and beyond! Exploring large-count support in MPI.
In 2014 Workshop on Exascale MPI at Supercomputing
Conference, New Orleans, LA, 17 November, pp. 1–8.
IEEE. (doi:10.1109/ExaMPI.2014.5)

29. Geimer M, Wolf F, Wylie BJN, Ábrahám E, Becker D,
Mohr B. 2010 The Scalasca performance toolset
architecture. Concurrency Computat. Pract. Exper. 22,
702–719. (doi:10.1002/cpe.1556)

30. Leibniz Supercomputing Centre. 2019 SuperMUC-
NG. See https://doku.lrz.de/display/PUBLIC/
SuperMUC-NG.

31. Hoekstra AG, Chopard B, Coster D, Portegies Zwart
S, Coveney PV. 2019 Multiscale computing for
science and engineering in the era of exascale
performance. Phil. Trans. R. Soc. A 377, 20180144.
(doi:10.1098/rsta.2018.0144)

32. Boman E, Devine K, Fisk L, Heaphy R, Hendrickson
B, Leung V, Vaughan C, Catalyurek U, Bozdag D,
Mitchell W. 1999 Zoltan home page. www.cs.
sandia.gov/Zoltan.

33. Boman EG, Catalyurek UV, Chevalier C, Devine KD.
2012 The Zoltan and Isorropia parallel toolkits
for combinatorial scientific computing:
partitioning, ordering, and coloring. Sci.
Program. 20, 129–150. (doi:10.3233/SPR-
2012-0342)

34. Karypis G, Kumar V. 2009 MeTis: Unstructured Graph
Partitioning and Sparse Matrix Ordering System,
Version 4.0. www.cs.umn.edu/metis.

35. OpenStax. 2016 Anatomy & Physiology. OpenStax
CNX. See https://opentextbc.ca/anato
myandphysiology/.

36. Guo Z, Zheng C, Shi B. 2002 Discrete lattice effects
on the forcing term in the lattice Boltzmann
method. Phys. Rev. E 65, 046308. (doi:10.1103/
PhysRevE.65.046308)
37. IT’IS. 2019 Human Models—Yoon-sun. See https://
itis.swiss/virtual-population/virtual-population/vip3/
yoon-sun/.

38. Park JS, Chung MS, Hwang SB, Lee YS, Har D, Park
HS. 2005 Visible Korean Human: improved serially
sectioned images of the entire body. IEEE Trans.
Med. Imaging 24, 352–360. (doi:10.1109/TMI.2004.
842454)

39. Christ A et al. 2010 The Virtual Family—
development of surface-based anatomical models of
two adults and two children for dosimetric
simulations. Phys. Med. Biol. 55, N23–N38. (doi:10.
1088/0031-9155/55/2/N01)

40. Gosselin M et al. 2014 Development of a new
generation of high-resolution anatomical models for
medical device evaluation: the Virtual Population
3.0. Phys. Med. Biol. 59, 5287–5303. (doi:10.1088/
0031-9155/59/18/5287)

41. Lorensen WE, Cline HE. 1987 Marching Cubes:
a high resolution 3D surface construction
algorithm. In ACM SIGGRAPH Computer Graphics,
vol. 21, pp. 163–169. New York, NY: ACM. (doi:10.
1145/37401.37422)

42. Tagliasacchi A, Alhashim I, Olson M, Zhang H. 2012
Mean curvature skeletons. Comput. Graphics Forum.
31, 1735–1744. (doi:10.1111/j.1467-8659.2012.
03178.x)

43. Fabri A, Teillaud M. 2011 CGAL—the computational
geometry algorithms library. In 10e colloque national
en calcul des structures, Giens, France, May 2011, p. 6.
See https://hal.archives-ouvertes.fr/hal-00592685.

44. CompBioMed. 2018 CompBioMed Virtual Humans
Film. www.youtube.com/watch?v=1FvRSJ9W734.

45. Randles A, Draeger EW, Bailey PE. 2015
Massively parallel simulations of hemodynamics
in the primary large arteries of the human
vasculature. J. Comput. Sci. 9, 70–75. (doi:10.1016/j.
jocs.2015.04.003). Computational Science at the Gates
of Nature.

46. Figueroa CA. 2020 .stl file of Circle of Willis Benchmark
geometric model for hemodynamic simulation
software [Dataset]. University of Michigan Library,
Deep Blue Data. (doi:10.7302/xx1r-zg70)

http://dx.doi.org/10.3389/fphys.2018.00331
http://dx.doi.org/10.1103/PhysRevE.89.023303
http://dx.doi.org/10.1103/PhysRevE.89.023303
http://dx.doi.org/10.1098/rsfs.2012.0094
http://dx.doi.org/10.1098/rsfs.2012.0094
http://dx.doi.org/10.1007/978-3-319-11487-3_11
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/mpi-40/
https://www.mpi-forum.org/mpi-40/
http://dx.doi.org/10.1007/978-3-540-75416-9_33
http://dx.doi.org/10.1007/978-3-540-75416-9_33
http://dx.doi.org/10.1109/ICPP.2014.31
http://dx.doi.org/10.1109/ICPP.2014.31
https://github.com/mpi-forum/mpi-issues/issues/137
https://github.com/mpi-forum/mpi-issues/issues/137
https://github.com/mpi-forum/mpi-issues/issues/137
https://github.com/mpi-forum/mpi-issues/issues/80
https://github.com/mpi-forum/mpi-issues/issues/80
https://github.com/mpi-forum/mpi-issues/issues/80
http://dx.doi.org/10.1109/ExaMPI.2014.5
http://dx.doi.org/10.1002/cpe.1556
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
http://dx.doi.org/10.1098/rsta.2018.0144
http://www.cs.sandia.gov/Zoltan
http://www.cs.sandia.gov/Zoltan
http://dx.doi.org/10.3233/SPR-2012-0342
http://dx.doi.org/10.3233/SPR-2012-0342
http://www.cs.umn.edu/metis
https://opentextbc.ca/anatomyandphysiology/
https://opentextbc.ca/anatomyandphysiology/
https://opentextbc.ca/anatomyandphysiology/
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1103/PhysRevE.65.046308
https://itis.swiss/virtual-population/virtual-population/vip3/yoon-sun/
https://itis.swiss/virtual-population/virtual-population/vip3/yoon-sun/
https://itis.swiss/virtual-population/virtual-population/vip3/yoon-sun/
https://itis.swiss/virtual-population/virtual-population/vip3/yoon-sun/
http://dx.doi.org/10.1109/TMI.2004.842454
http://dx.doi.org/10.1109/TMI.2004.842454
http://dx.doi.org/10.1088/0031-9155/55/2/N01
http://dx.doi.org/10.1088/0031-9155/55/2/N01
http://dx.doi.org/10.1088/0031-9155/59/18/5287
http://dx.doi.org/10.1088/0031-9155/59/18/5287
http://dx.doi.org/10.1145/37401.37422
http://dx.doi.org/10.1145/37401.37422
http://dx.doi.org/10.1111/j.1467-8659.2012.03178.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03178.x
https://hal.archives-ouvertes.fr/hal-00592685
https://hal.archives-ouvertes.fr/hal-00592685
http://www.youtube.com/watch?v=1FvRSJ9W734
http://dx.doi.org/10.1016/j.jocs.2015.04.003
http://dx.doi.org/10.1016/j.jocs.2015.04.003
http://dx.doi.org/10.7302/xx1r-zg70

