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INTERPLAY BETWEEN LOEWNER AND DIRICHLET
ENERGIES VIA CONFORMAL WELDING AND FLOW-LINES

Fredrik Viklund And Yilin Wang

Abstract. The Loewner energy of a Jordan curve is the Dirichlet energy of its
Loewner driving term. It is finite if and only if the curve is a Weil–Petersson quasi-
circle. In this paper, we describe cutting and welding operations on finite Dirichlet
energy functions defined in the plane, allowing expression of the Loewner energy
in terms of Dirichlet energy dissipation. We show that the Loewner energy of a
unit vector field flow-line is equal to the Dirichlet energy of the harmonically ex-
tended winding. We also give an identity involving a complex-valued function of
finite Dirichlet energy that expresses the welding and flow-line identities simultane-
ously. As applications, we prove that arclength isometric welding of two domains is
sub-additive in the energy, and that the energy of equipotentials in a simply con-
nected domain is monotone. Our main identities can be viewed as action functional
analogs of both the welding and flow-line couplings of Schramm–Loewner evolution
curves with the Gaussian free field.

1 Introduction

Let η be a Jordan curve in Ĉ = C ∪ {∞}. The Loewner equation describes such a
curve by a real-valued continuous function on R called the Loewner driving term. The
Möbius invariant Loewner energy of η, denoted IL(η), is by definition the Dirichlet
energy of this driving term [RW19, Wan19b]. It was shown in [Wan19b] that if η
passes through ∞, then we have the following equivalent expression:

IL(η) =
1
π

∫
H

∣∣∇ log |f ′|∣∣2 dz2 +
1
π

∫
H∗

∣∣∇ log |g′|∣∣2 dz2. (1.1)

Here f and g map conformally the upper and lower half-planes H and H∗ onto,
respectively, H and H∗, the two components of C � η, while fixing ∞. (Here and
below dz2 denotes two-dimensional Lebesgue measure.) Moreover, a Jordan curve
has finite energy if and only if it is a Weil–Petersson quasicircle, that is, its nor-
malized welding homeomorphism belongs to the Weil–Petersson Teichmüller space
[Wan19b], which appears, e.g., in the context of closed string theory and has at-
tracted considerable interest from both mathematicians and physicists, see, e.g.,
[BR87, NS95, TT06, She18]. The link with the Loewner energy goes deeper and
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the energy itself is intimately connected to the geometry of the Weil–Petersson Te-
ichmüller space: it coincides with (a constant times) the universal Liouville action
of Takhtajan and Teo [TT06], a Kähler potential for the Weil–Petersson metric.

Another motivation to study the Loewner energy is that it is also the action func-
tional of the Schramm–Loewner evolution (SLE), a family of random fractal curves
arising as universal scaling limits of interfaces in critical planar lattice models. Pio-
neering work of Dubédat [Dub09] and Sheffield [She16] on couplings between SLEs
and the Gaussian free field (GFF) have led to remarkable and far-reaching results,
see, e.g., [MS16, DMS14]. Our main identities are in a certain sense deterministic
analogs of SLE/GFF coupling theorems, on the action functional level. We will fur-
ther comment on this at the end of the introduction. One of the original motivations
for this work was indeed to better understand the SLE/GFF relations. However, we
stress that our (short) proofs use only analytic tools, and we need no results about
the probabilistic models in this paper.

1.1 Cutting and welding. Our first theorem exhibits the close interplay be-
tween functions of finite Dirichlet energy in the plane and the Loewner energy of a
Jordan curve passing through ∞. To state the result, we write E(Ω) for the space of
real functions on a domain Ω ⊂ C with weak first derivatives in L2(Ω), and define
the Dirichlet energy of ϕ ∈ E(Ω) by

DΩ(ϕ) :=
1
π

∫
Ω

|∇ϕ|2dz2.

Theorem 1.1. (Cutting). Suppose η is a Jordan curve through ∞, let f and g
be conformal maps associated to η as above, and suppose ϕ ∈ E(C) is given. Then
we have the identity:

DC(ϕ) + IL(η) = DH(u) + DH∗(v), (1.2)

where

u = ϕ ◦ f + log
∣∣f ′∣∣ and v = ϕ ◦ g + log

∣∣g′∣∣ . (1.3)

It is natural to view the functions in Theorem 1.1 as real parts of “pre-pre-Schwarzian”
forms whose transformation law is given by (1.3). Note that the Dirichlet energy is
not invariant under this transformation. It is not hard to see that e2ϕdz2 defines a
locally finite measure on C, absolutely continuous with respect to Lebesgue measure
dz2. The transformation law (1.3) shows that e2udz2 and e2vdz2 are the pullback
measures by f and g of e2ϕdz2, respectively, see Section 3.1.

Theorem 1.1 shows that a finite energy curve η cuts a ϕ ∈ E(C) into two half-
plane forms in a way that conserves the total energy. Note also that when ϕ is
constant, (1.2) reduces to the identity (1.1). See Theorem 3.1 for the proof of The-
orem 1.1 and Theorem 3.6 for the corresponding identity for a bounded Jordan
curve.
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Given two half-plane functions of finite Dirichlet energy, one can recover ϕ and
η such that (1.2) holds. In fact, the operation converse to cutting is implemented
by conformal welding : An increasing homeomorphism h : R → R is said to be a
(conformal) welding homeomorphism if there is a Jordan curve η through ∞ and
conformal maps f, g of the upper and lower half-planes onto the two components of
C � η, respectively, such that h = g−1 ◦ f |R.

Suppose H and H∗ are each equipped with a boundary measure defining a dis-
tance between x < y by the measure of [x, y]. Under suitable assumptions on the
measures, the isometry h : R = ∂H → ∂H∗ = R fixing 0 is well-defined and a welding
homeomorphism. In this case, we say that h is an isometric welding homeomorphism
and the corresponding tuple (η, f, g) is a solution to the isometric welding problem
for the given measures.

In our setting we have the following result. See Theorem 3.2 for a complete
statement and Theorem 3.7 for the welding of disks.

Theorem 1.2. (Isometric conformal welding). Suppose u ∈ E(H) and v ∈ E(H∗)
are given. The isometric welding problem for the measures eudx and evdx has a
solution (η, f, g) and the welding curve η has finite Loewner energy. Moreover, there
exists a unique ϕ ∈ E(C) such that (1.2) and (1.3) are satisfied.

In the statement, dx is Lebesgue measure on R and the measures eudx and evdx are
defined using the traces of u, v on R. The solution (η, f, g) in Theorem 1.2 is in fact
unique if appropriately normalized, see Section 2.2.

We have the following consequence which justifies calling conformal welding the
inverse to cutting, see Corollary 3.3 for the precise statement. Let u ∈ E(H) and
v ∈ E(H∗) be forms with transformation law (1.3), and assume they “glue” to a
function ϕ ∈ E(C) along a Jordan curve. Then the interface is necessarily obtained by
the isometric welding of the boundary measures, and its Loewner energy is finite and
given by the difference DC(ϕ)−DH(u)−DH∗(v). In this way we may view the Loewner
energy as quantifying the “dissipation” of Dirichlet energies when performing this
gluing operation.

In order to prove Theorem 1.2, we first show that the welding curve η has finite
energy, which implies ϕ ∈ E(C � η). The idea is to then show that ϕ has matching
traces defined from both sides of η, and use this to conclude ϕ ∈ E(C). We may then
apply Theorem 1.1 to obtain (1.2).

Although finite energy curves are not C1 and may exhibit slow spirals [RW19]
(and so are not Lipschitz), there is still enough regularity to take traces using disk
averages of elements in E(C) (see “Appendix A”) giving rise to H1/2 spaces along
the curves and to employ BMO-space estimates. Conformal invariance properties
and the good interplay between arclength and harmonic measure on finite energy
curves are also important for the analysis. In relation to this, let us briefly explain
a simple consequence for a question in geometric function theory.

Suppose η1, η2 are locally rectifiable Jordan curves of the same length (possibly
infinite) bounding two domains Ω1 and Ω2 and mark a point on each curve. Let ψ
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be an arclength isometry η1 → η2 matching the marked points. Following Bishop
[Bis90], we are interested in whether there is a Jordan curve η (and whether it is
unique up to Möbius transformation), and conformal equivalences f1, f2 from Ω1

and Ω2 to the two connected components of C � η, such that f−1
2 ◦ f1|η1 = ψ, that

is, we are asking whether ψ is an arclength isometric welding. Rectifiability of η1

and η2 does not guarantee the existence nor the uniqueness of η, but the chord-
arc property does (see below for the definition). However, chord-arc curves are not
closed under isometric conformal welding: the welding curve can have Hausdorff
dimension arbitrarily close to 2, see [Dav82, Sem86, Bis90]. We will show that finite
energy curves behave much better. Theorem 1.1 and Theorem 1.2 together imply
the following result.

Corollary 1.3. The class of finite energy curves is closed under arclength isometric
welding. Moreover, if η is the welding curve corresponding to the arclength isometric
welding of η1 and η2, then

IL(η) � IL(η1) + IL(η2).

Remark. The inequality of Corollary 1.3 can be interpreted as an energy dissipation
of the arclength isometric welding into an ambient function in E(C). See Corollary 3.4
for the precise (in fact stronger) statement for unbounded curves, and Corollary 3.8
for bounded curves.

1.2 Flow-line identity. An elementary observation is that the Dirichlet energy
of a harmonic function is equal to the Dirichlet energy of its harmonic conjugate.
Therefore (1.1) can be written

IL(η) =
1
π

∫
H

∣∣∇ arg f ′∣∣2 dz2 +
1
π

∫
H∗

∣∣∇ arg g′∣∣2 dz2.

On the other hand, if η has finite energy, the boundary value of (a continuous branch
of) arg f ′◦f−1 gives the winding τ = arg η′ of η, and (Theorem 3.10) one can express
the Loewner energy as

IL(η) = DC�η(P[τ ]), (1.4)

where we write P[τ ] for the harmonic extension of τ to C � η on both sides, that is,
the restrictions are given by the solutions to the Dirichlet problem with boundary
data τ . (Actually, we will show that P[τ ] ∈ E(C) so (1.4) holds with DC�η replaced
by DC.)

Consider a unit vector field X(z) = eiϕ(z) on C. A flow-line of X through a point
z0 ∈ C is a solution to the differential equation

η̇(t) = X(η(t)), t ∈ (−∞, ∞), η(0) = z0.

Equation (1.4) can then be used to prove the following result, see Theorem 3.10.
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Theorem 1.4. (Flow-line identity). Let ϕ ∈ E(C)∩C0(Ĉ). Any flow-line η of the
vector field eiϕ is a Jordan curve through ∞ with finite Loewner energy and we have
the formula

DC(ϕ) = IL(η) + DC(ϕ0),

where ϕ0 = ϕ − P[ϕ|η].

Using these facts, we deduce that the energy of equipotentials is monotone, see
Corollaries 3.11 and 3.12. We summarize these results below, see also Corollaries 2.8
and 2.10. There are two different cases: η is a bounded finite energy Jordan curve
(resp. passing through ∞), and f a conformal map from D (resp. H) to one connected
component of C � η.

Corollary 1.5. Consider the family of analytic curves ηr := f(rT), where 0 < r <
1 (resp. ηr := f(R + ir), where r > 0). For all 0 < s < r < 1 (resp. 0 < r < s), we
have

IL(ηs) � IL(ηr) � IL(η), (resp. IL(ηs) � IL(ηr) � IL(η)),

and equalities hold if only if η is a circle (resp. η is a line). Moreover, IL(ηr) (resp.
IL(ηr)) is continuous in r and

IL(ηr)
r→1−−−−−→ IL(η); IL(ηr)

r→0+−−−−→ 0

(resp. IL(ηr) r→0+−−−−→ IL(η); IL(ηr) r→∞−−−→ 0).

Remark. Both limits and the monotonicity substantiate the intuition that the
Loewner energy measures the deviation of a Jordan curve from a circle. In par-
ticular, the vanishing of the energy of ηr as r → 0 can be thought as expressing the
fact that conformal maps asymptotically take small circles to circles.

We have the following corollary which expresses both welding and flow-line iden-
tities simultaneously, see Corollary 3.13 for the precise statement.

Corollary 1.6. (Complex identity). Let ψ be a complex-valued function on C with
finite Dirichlet energy and imaginary part continuous in Ĉ. Let η be a flow-line of
the vector field eψ and f, g the conformal maps as in Figure 1. Then we have

DC(ψ) = DH(ζ) + DH∗(ξ),

where ζ = ψ ◦ f + (log f ′)∗, ξ = ψ ◦ g + (log g′)∗ and z∗ is the complex conjugate of
z.
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f

g
η

0

0 0

1

1
h := g−1 ◦ f

H

H∗

H

H
∗

eu(x)dx

ev(x)dx

eϕ(z)|dz|

Figure 1: Isometric conformal welding: h = g−1 ◦ f is constructed from the measures eudx
and evdx, and their pushforward measures by f and g both give eϕ|dz| on η.

1.3 SLE/GFF discussion and heuristics. As we have indicated, the rela-
tions given in our main theorems can be interpreted as action functional analogs of
SLE/GFF coupling theorems. We will make some remarks related to this, but we
emphasize that we are not making rigorous statements here.

Recall that the GFF is a Gaussian random distribution whose correlation function
is given by the Green’s function for the Laplacian and that SLEκ is the family of
random curves obtained by using

√
κBt, where Bt is standard Brownian motion, as

driving function for the Loewner equation, see [She07, RS05].
If X is a centered Gaussian random variable with law μ, taking values in a

Banach space, the family of random variables (
√

κX)κ→0+ has large deviation rate
function equal to the action functional (associated Cameron-Martin norm) for μ. For
example, the large deviation rate function for the Neumann GFF on a domain Ω
is IGFF(ϕ) =

∫
Ω |∇ϕ(z)|2 /4π dz2 = DΩ(ϕ)/4. Moreover, since the one-dimensional

Dirichlet energy is the action functional for Brownian motion, we expect SLEκ and
the Loewner energy to be related as:

− κ log P {SLEκ loop stays close to η} ≈ IL(η), κ → 0+. (1.5)

See [Wan19a] for a precise statement in the chordal setting.
Sheffield’s quantum zipper couples SLEκ curves with quantum surfaces via a

cutting operation and as welding curves1 [She16, DMS14]. A quantum surface is
a domain equipped with a Liouville quantum gravity (γ-LQG) measure, defined
using a regularization of eγΦdz2, where γ =

√
κ ∈ (0, 2), and Φ is a Gaussian field

with the covariance of a Neumann GFF. There is another coupling known as the
forward SLE/GFF coupling, of critical importance, e.g., in the imaginary geometry
framework of Miller-Sheffield [Dub09, MS16]: very loosely speaking, an SLEκ curve
may be coupled with a GFF Φ and thought of as a (measurable) flow-line of the
vector field eiΦ/χ, where χ = 2/γ − γ/2.

Given these and similar observations, it is possible to guess our identities via
heuristic large deviation arguments analogous to (1.5) in the small γ limit. We start

1 The welding homeomorphisms that arise in the random setting here are very rough and solving
the associated welding problems directly in the analytic sense as in [AJKS11] is still an open problem.
In [She16] the coupling is constructed using the reverse SLE flow, and the fact that it corresponds
to isometric welding is checked a posteriori.



GAFA INTERPLAY BETWEEN LOEWNER AND DIRICHLET ENERGIES 295

from the probabilistic coupling theorems and express the independence as summa-
tion of action functionals on the deterministic side. Note that the leading order
log-singularities representing conical singularities in the relevant quantum surfaces
vanish as γ → 0+ and we have χ ∼ 2/γ. Let us finally remark that the complex
identity, Corollary 3.13, which expresses both welding and flow-line identities si-
multaneously, is actually the finite energy analog of the mating of trees theorem of
Duplantier, Miller, and Sheffield [DMS14]. This analogy is not as apparent as in the
other cases and details will appear elsewhere [VW19]. The picture that emerges can
be summarized in the following table. We will not go into further details here.

SLE/GFF Finite energy
SLEκ loop. Finite energy Jordan curve, η.
γ times Neumann GFF γΦ on H (on C). 2u, u ∈ E(H) (2ϕ, ϕ ∈ E(C)).
γ-LQG on quantum plane ≈ eγΦdz2. e2ϕ(z)dz2, ϕ ∈ E(C).
γ-LQG on quantum half-plane on H e2u(z)dz2, u ∈ E(H).
γ-LQG boundary measure on R ≈ eγΦ/2dx eu(x)dx, u ∈ H1/2(R).
Independent SLEκ cuts a
quantum plane into
independent quantum half-planes.

Finite energy η cuts ϕ ∈ E(C)
into u ∈ E(H), v ∈ E(H∗) and
IL(η)+DC(ϕ) = DH(u)+DH∗(v).

Isometric welding
of independent γ-LQG measures on R

produces SLEκ.

Isometric welding
of eudx and evdx, u, v ∈ H1/2(R)
produces a finite energy curve.

γ-LQG chaos w.r.t. Minkowski content
equals the pushforward of
γ-LQG measures on R.

eϕ|η |dz|, ϕ|η ∈ H1/2(η),
equals the pushforward of
eudx and evdx, u, v ∈ H1/2(R).

Bi-infinite flow-line of eiΦ/χ ≈ eiγΦ/2

is an SLEκ loop.
Bi-infinite flow-line of eiϕ

is a finite energy curve.
Mating of trees Complex identity

Conventions: Throughout the paper, we consider implicitly all Jordan curves
to be oriented, so that the complement has two connected components denoted H
and H∗ (Ω and Ω∗) when the curve is unbounded (bounded), where the curve winds
counterclockwise around H and Ω, and clockwise around H∗ and Ω∗. We also choose
the orientation for bounded curves so that Ω is the bounded component.

2 Preliminaries

For an open, connected set Ω ⊂ Ĉ, we write W 1,2(Ω) for the Sobolev space of real-
valued functions u such that both u and its weak first derivatives are in L2(Ω). We
use the norm ‖u‖W 1,2(Ω) = ‖u‖L2(Ω) +‖∇u‖L2(Ω) and denote by W 1,2

0 (Ω) the closure
of C∞

c (Ω) in W 1,2(Ω).
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Let E(Ω) be the homogeneous Sobolev space of functions on Ω with finite Dirichlet
energy, which differs from W 1,2(Ω) when Ω is unbounded. Note that C∞

c (C) is dense
in E(C) with respect to the semi-norm DC(·)1/2, see Lemma B.1. Since the Dirichlet
energy is conformally invariant so are the E(Ω) spaces: if f : Ω1 → Ω2 is conformal,
then for all u ∈ E(Ω2), DΩ1(u ◦ f) = DΩ2(u).

Let Eharm(Ω) ⊂ E(Ω) be the conformally invariant space of harmonic functions
on Ω with finite Dirichlet energy. Recall that Eharm(C) only consists of constant
functions.

Lemma 2.1. ([AF03, p.77]). Assume that ∂Ω is non-polar. For u ∈ W 1,2(Ω), we
have the unique decomposition

u = u0 + uh

where u0 ∈ W 1,2
0 (Ω) and uh ∈ Eharm(Ω).

We will use the following form of the Poincaré inequality which can be proved using
a scaling argument: if D ⊂ C is a disk or square and u ∈ W 1,2(D), then∫

D
|u − uD|2dz2 � 4 (diamD)2

∫
D

|∇u|2dz2.

Here and in the sequel we use the notation

uΩ =
1

|Ω|
∫

Ω
u dz2

for the average of u ∈ L1(Ω) over Ω and we write |Ω| for the Lebesgue measure of
Ω.

A quasidisk is a simply connected domain whose boundary is a quasicircle in
Ĉ, that is, the image of the unit circle or real line under a global quasiconformal
homeomorphism of C. Quasidisks are extension domains for both W 1,2 and E ; see,
e.g., Theorem 1 and the explicit quasiconformal reflection on p.72 of [Jon81]:

Lemma 2.2. Suppose Ω is a quasidisk and that u ∈ W 1,2(Ω) and v ∈ E(Ω). Then u
extends to a function ũ ∈ W 1,2(C) such that ũ|Ω = u and v extends to a function
ṽ ∈ E(C) such that ṽ|Ω = v.

A function u : C → R is said to have bounded mean oscillation, u ∈ BMO, if

sup
D

1
|D|

∫
D

|u − uD| dz2 =: ‖u‖∗ < ∞,

where D ranges over squares with sides parallel to the axes. The definitions for the
BMO spaces of functions on R or T are the same, replacing squares by intervals
and considering the appropriate Lebesgue measure. We have the John-Nirenberg
inequality, see Theorem VI.6.4 of [Gar07]: There exist c0, C such that for every u ∈
BMO and every cube D,

|{x : |u(x) − uD| > λ}|/|D| � C exp (−c0λ/‖u‖∗) . (2.1)
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2.1 H1/2 on chord-arc curves. We will see below that finite energy curves
are chord-arc, that is, they are Ahlfors regular quasicircles: there is a constant K so
that for every x, y on the curve η, the shorter arc ηx,y between x and y satisfies the
estimate

length (ηx,y) � K|x − y|.
(Recall that η is a quasicircle if and only if the same estimate holds, with length
replaced by diameter.) Equivalently, a chord-arc curve is the image of T or R under a
bi-Lipschitz homeomorphism of C, see [JK82]. It is easy to see that a curve through
∞ is chord-arc if and only if it is the Möbius image of a bounded chord-arc curve.

Suppose η is a chord-arc curve in Ĉ. We define the homogeneous Sobolev space

H1/2(η) =
{
u : η → R : ‖u‖H1/2(η) < ∞}

,

where

‖u‖2
H1/2(η) :=

1
2π2

∫∫
η×η

|u(z) − u(w)|2
|z − w|2 |dz||dw|

defines a semi-norm on H1/2(η). Since the measure 1/ |z − w|2 |dz| |dw| is invariant
under any Möbius transformation m of Ĉ, we have

‖u‖H1/2(η) = ‖u ◦ m−1‖H1/2(m(η)). (2.2)

In fact, the H1/2 space is also invariant under conformal mapping to another chord-
arc domain (see also Lemma A.6): if η is chord-arc and bounds the domain Ω and
ϕ : D → Ω is some choice of Riemann map, then u ◦ ϕ ∈ H1/2(T). Indeed, by
Möbius invariance we may assume η is bounded in C. Then there exists a bi-Lipschitz
homeomorphism of the plane ψ such that η = ψ(T) and it easy to check that u◦ψ ∈
H1/2(T). We may extend ϕ to a quasiconformal map of the whole plane and therefore
ψ−1 ◦ ϕ|T is a quasisymmetric homeomorphism of T. Since u ◦ ϕ = u ◦ ψ ◦ (ψ−1 ◦ ϕ),
the next lemma shows that u ◦ ϕ ∈ H1/2(T).

Lemma 2.3. If u ∈ H1/2(R) and h : R → R is a quasisymmetric homeomorphism,
then u ◦ h ∈ H1/2(R). Similarly, if u ∈ H1/2(T) and h : T → T is a quasisymmetric
homeomorphism, then u ◦ h ∈ H1/2(T).

See [NS95, Section 3] for a proof of Lemma 2.3 in the setting of the unit circle and
the proof for the line is the same.

Any element of Eharm(D) has non-tangential limits almost everywhere on T (ac-
tually outside a set of zero logarithmic capacity). The functions on T obtained in
this way coincides with the elements of H1/2(T). The Dirichlet energy of the Poisson
integral of a function in H1/2(T) can be expressed using Douglas’ formula, see e.g.
[Ahl73]: If u ∈ H1/2(T) and PD[u] is its harmonic extension into D, then

DD(PD[u]) = ‖u‖2
H1/2(T) (2.3)
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and by (2.2) the analogous formula holds for Eharm(H).
If u ∈ H1/2(R), then u has vanishing mean oscillation, u ∈ VMO(R) ⊂ BMO(R),

that is, u satisfies limδ↓0 supI:|I|�δ

∫
I |u − uI |/|I| dx = 0. (The VMO(T) space is de-

fined analogously.) To see this, let I be any bounded interval and set uI =
∫
I u/|I| dx.

Then,

1
|I|

∫
I
|u − uI |dx � 1

|I|2
∫∫

I×I
|u(x) − u(y)|dxdy

� c

(∫∫
I×I

|u(x) − u(y)|2
|x − y|2 dxdy

)1/2

.

For δ > 0, write

‖u‖δ,∗ := sup
I:|I|�δ

1
|I|

∫
I
|u − uI |dx � ‖u‖∗.

Then by the John-Nirenberg inequality (2.1), there exist c0, C such that for every
δ > 0, if |I| � δ, then |{x : |u(x) − uI | > λ}| � C|I| exp (−c0λ/‖u‖δ,∗) . It follows
that if u ∈ H1/2(R) then we have eu ∈ L1

loc(dx) by choosing δ so that ‖u‖δ,∗ < c0.
Moreover, there exists c = c(‖u‖δ,∗) such that

euI � 1
|I|

∫
I
eu(x)dx � ceuI (2.4)

and c → 1 as ‖u‖δ,∗ → 0.
Suppose u ∈ E(C) and that η is a chord-arc curve in Ĉ. It is possible to de-

fine a trace of u on η by taking averages, and this trace will lie in H1/2(η). See
“Appendix A” for more details. For now we just recall the definition: the limit

Rη[u](z) := lim
r→0+

uB(z,r), (2.5)

where B(z, r) = {w : |w−z| < r}, exists for arclength a.e. z ∈ η and Rη[u] ∈ H1/2(η).
The trace can also be defined from one side of the curve (Lemma A.2): suppose
∂Ω = η and let u ∈ E(Ω). Then

RΩ→η[u](z) := Rη[ũ](z), for arclength a.e. z ∈ η,

is independent of any choice of ũ ∈ E(C) such that ũ|Ω = u.

2.2 Conformal welding. Let h be an increasing homeomorphism of R. We say
that the triple (η, f, g) is a normalized solution to the conformal welding problem for
h if

• η is Jordan curve in Ĉ passing through 0, 1, ∞;
• f : H → H is the conformal map fixing 0, 1, ∞;
• g : H∗ → H∗ is conformal and g−1 ◦ f = h on R,
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where H, H∗ are the connected components of Ĉ � η. It is well-known that if h is
quasisymmetric, then the solution is unique and η is a quasicircle in Ĉ.

Let u, v ∈ H1/2(R) be given and define measures dμ = eudx and dν = evdx. We
define an increasing homeomorphism h by h(0) = 0 and then

h(x) =

{
inf {y � 0 : μ[0, x] = ν[0, y]} if x > 0;
− inf {y � 0 : μ[x, 0] = ν[−y, 0]} if x < 0.

(2.6)

Using Lemma 2.4 below, h is well-defined and μ([a, b]) = ν(h([a, b])) for any choice of
a � b. Proposition 2.5 will show that h is quasisymmetric. Hence h is the isometric
welding homeomorphism associated with μ and ν, see Figure 1.

Lemma 2.4. Suppose u ∈ H1/2(R) and dμ = eudx. Then μ(I) = ∞ for any un-
bounded interval I.

Proof. Changing coordinates to T using the Möbius invariance of H1/2, it is enough
to show that if u ∈ H1/2(T), then exp(u(θ) − 2 log |θ|)dθ has infinite integral on
J = [0, δ] for δ > 0. We know that u ∈ VMO(T) and this is in fact enough to
assume. By Lemma VI.1.1 of [Gar07] the BMO property implies there is a constant
c such that if |I| ⊂ |J | with |I| < |J |/2 then

|uI − uJ | � c log(|J |/|I|)‖u‖δ,∗

and since u ∈ VMO(T) we may assume δ is so small that |uI − uJ | � log(|J |/|I|)/2
whenever I ⊂ J is as above. Set Ik = (δ exp(−k − 1), δ exp(−k)] and let uk be the
average of u on Ik. Then |uk| � c + |uJ | + k/2 � c′ + k/2 where c′ depends only
on uJ but J is fixed from now on. Let Ek = {θ ∈ Ik : |u − uk| � k/2}. Then the
John-Nirenberg inequality (2.1) implies

|Ek| �
(

1 − C exp
(

− c0

2‖u‖δ,∗
k
))

|Ik| � exp(−k),

where � means inequality with a multiplicative constant (which does not depend
on k). It now follows that∫

J
exp(u − 2 log |θ|) dθ �

∑
k

exp(−|uk|)
∫

Ik

exp(−|u − uk| − 2 log |θ|) dθ

�
∑

k

exp(−|uk| + 2k) exp(−k/2)|Ek|

�
∑

k

exp(−k/2 + 2k − k/2 − k)

which is infinite as claimed. ��
Proposition 2.5. The function h defined as in (2.6) is an increasing quasisymmet-
ric homeomorphism of R such that log h′ ∈ H1/2(R).
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Proof. It follows from (2.4) that eudx, evdx are measures mutually absolutely con-
tinuous with respect to Lebesgue measure. Lemma 2.4 then implies that hu(x) :=∫ x
0 eu and hv(x) :=

∫ x
0 ev are increasing homeomorphisms of R. By construction,

log h′
u, log h′

v ∈ H1/2(R), and by Theorem 2.9 below, hu, hv are Weil–Petersson class
homeomorphisms and are in particular quasisymmetric. Therefore h := h−1

v ◦ hu is
also quasisymmetric and

log h′ = −(log h′
v) ◦ h + log h′

u.

Lemma 2.3 implies log h′ ∈ H1/2(R). ��
2.3 Loewner energy. There are several different characterizations of finite
Loewner energy curves; we collect here those that are relevant for this paper. It
is convenient to start with the bounded case. See [Cui00, She18, TT06, Wan19b] for
proofs of the results summarized in the next theorem.

Given a Jordan curve η in C, let Ω and Ω∗ be the connected components of
C � η, f a conformal map from D onto Ω, and g a conformal map from D∗ onto Ω∗

fixing ∞. The welding homeomorphism of η is h := g−1 ◦ f restricted to T.

Theorem 2.6. (Bounded finite energy domains). The following statements are
equivalent:

1. IL(η) < ∞;
2. ‖ log |f ′| ‖2

H1/2(T) = DD(log |f ′|) =
∫

D
|f ′′(z)/f ′(z)|2 dz2/π < ∞;

3. ‖ log |g′| ‖2
H1/2(T) = DD∗(log |g′|) < ∞;

4. The welding homeomorphism h is absolutely continuous and log |h′| ∈ H1/2(T).

Moreover,

IL(η) = DD(log
∣∣f ′∣∣) + DD∗(log

∣∣g′∣∣) + 4 log
∣∣f ′(0)

∣∣ − 4 log
∣∣g′(∞)

∣∣ , (2.7)

where g′(∞) := limz→∞ g′(z) = g̃′(0)−1 and g̃(z) := 1/g(1/z).

The curves satisfying the above conditions are also known as Weil–Petersson qua-
sicircles. The right-hand side of (2.7), first considered in [TT06], is called universal
Liouville action. This quantity depends only on the equivalence class of quasisym-
metric welding homeomorphisms of the circle modulo left Möbius transformations,
which is a model of universal Teichmüller space. The universal Liouville action is
a Kähler potential of the Weil–Petersson metric on the Weil–Petersson Teichmüller
space which consists of the (equivalence classes of) welding homeomorphisms satis-
fying Condition 4 of Theorem 2.6. We will refer to the set of such homeomorphisms
as the Weil–Petersson class of homeomorphisms. See [TT06] for background and
more details.

Let us make some quick remarks about the geometry of finite energy curves.
For simplicity, we assume η is bounded. Let f : D → Ω be a conformal map as in
Theorem 2.6. Since DD(log |f ′|) < ∞, log f ′ belongs to VMOA, the space of functions
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in the Hardy space H2 with vanishing mean oscillation. A theorem of Pommerenke
[Pom78] therefore shows that finite energy curves are asymptotically smooth, that is,
chord-arc with local constant 1: for all x, y on the curve, the shorter arc ηx,y between
x and y satisfies

lim
|x−y|→0

length (ηx,y)/|x − y| = 1.

Finite energy curves are not C1 however, and may, e.g., exhibit slow spirals, and
C3/2−ε does not imply finite energy, see [RW19]. Since η is rectifiable, f ′ ∈ H1 (the
Hardy space) and has non-tangential limits a.e. on T.

Next, we record a continuity property of the Loewner energy/universal Liouville
action which is implied by the L2-convergence of the pre-Schwarzian of the conformal
maps. To state the lemma, suppose η has finite energy and let {ηn}∞

n=1 be a family
of bounded finite energy curves, and let fn and gn be a choice of conformal maps
associated to ηn as above, and f and g associated to η.

Lemma 2.7. ([TT06] Corollary A.4. and Corollary A.6.). If f ′′
n/f ′

n → f ′′/f ′ in L2(D),
then we have

lim
n→∞ IL(ηn) = IL(η).

In fact, in this case, the welding homeomorphism of ηn converges to the weld-
ing homeomorphism of η with respect to the Weil–Petersson metric. We have the
following immediate corollary.

Corollary 2.8. If η is bounded and IL(η) < ∞, we have

lim
r→1−

IL(ηr) = IL(η) and lim
r→0+

IL(ηr) = 0,

and r �→ IL(ηr) is continuous, where (ηr := f(rT))0<r<1 are equipotentials of the
domain bounded by η.

Proof. It suffices to apply Lemma 2.7 with fr(z) := f(rz). Using Carathéodory’s
kernel theorem and the L2-integrability of f ′′/f ′, it is easy to see that f ′′

r /f ′
r converges

to f ′′/f ′ in L2(D) as r → 1− (see [Wan18], proof of Theorem 5.1). The continuity
of r �→ IL(ηr) follows similarly. Since f ′′/f ′ ∈ L2(D), we also have

lim
r→0+

∫
D

|f ′′
r (z)/f ′

r(z)|2dz2 = lim
r→0+

∫
|z|�r

|f ′′(z)/f ′(z)|2dz2 = 0

which then implies that the energy vanishes as r → 0+. ��

Remark. As a consequence of the flow-line identity, we will see that r �→ IL(ηr) is
non-decreasing, see Corollary 3.11.



302 F. VIKLUND, Y. WANG GAFA

Now assume that η is a Jordan curve through ∞, and H and H∗ are the two
connected components of C � η. Let f : H → H and g : H∗ → H∗ be conformal
maps fixing ∞. The Loewner energy of η can be expressed in terms of f and g as
(see [Wan19b] Theorem 6.1)

IL(η) = DH(log
∣∣f ′∣∣) + DH∗(log

∣∣g′∣∣). (2.8)

Moreover, IL(η) < ∞ if and only if DH(log |f ′|) < ∞.
There is also a characterization of finite energy curves in terms of the welding

homeomorphism g−1 ◦ f on the real line:

Theorem 2.9. ([ST18, STW18]). An increasing homeomorphism h of R is in the
Weil–Petersson class if and only if h is absolutely continuous and log h′ ∈ H1/2(R).

The “only if” part of the characterization also follows easily from (2.8). In fact,
if IL(η) < ∞, then the trace of log |f ′| and log |g′| are in H1/2(R). Since η is a
quasicircle, its welding homeomorphism h is quasisymmetric. Hence, a.e.,

log h′ = log
∣∣(g−1 ◦ f)′∣∣ = log

∣∣f ′∣∣ − log
∣∣g′ ◦ h

∣∣ ∈ H1/2(R).

(We may differentiate (a.e) since η is chord-arc.) In the last step we used Lemma 2.3.
We have also the convergence of the energy of equipotentials in the half-plane

setting.

Corollary 2.10. Let ηy := f(R + iy) for y > 0. Then we have

lim
y→0+

IL(ηy) = IL(η), lim
y→∞ IL(ηy) = 0

and y �→ IL(ηy) is continuous.

Proof. Choose m to be a Möbius transformation of Ĉ such that m(H) = D and such
that D̃ := m(H) is also bounded. We have that m(ηy) is the image of the horocycle
(a circle tangent to T at m(∞)) m(R + iy) by the conformal map f̃ = m ◦ f ◦ m−1 :
D → D̃. Since ∂D̃ = f̃(T) = m(η) is bounded, the Möbius invariance of the Loewner
energy and the same proof as in Corollary 2.8 applied to m(ηy) readily show that

lim
y→0+

IL(ηy) = lim
y→0+

IL(m(ηy)) = IL(m(η)) = IL(η),

and the continuity and limy→∞ IL(ηy) = 0 follow similarly. ��

3 Proofs of Main Results

3.1 Welding identity: half-plane version. In this section, we prove the weld-
ing identity in the half-plane setting, and all curves are assumed to pass through ∞,
see Section 3.2 where we discuss the analogous results in the finite case.
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If ϕ ∈ E(C), we have e2ϕ ∈ L1
loc(dz2). To see this, let D be a square with sides

parallel to the axes. By the Cauchy-Schwarz and Poincaré inequalities, there is a
universal constant C such that

1
|D|

∫
D

|ϕ − ϕD|dz2 � C

(∫
D

|∇ϕ|2dz2

)1/2

.

The last integral is uniformly bounded in D and tends to 0 with |D|. The John-
Nirenberg inequality (2.1) therefore shows that e2ϕ ∈ L1

loc(dz2), as claimed. Given
a Jordan curve η, let f, g be conformal maps from H, H∗ onto H, H∗ fixing ∞,
respectively. Next, define

u(z) = ϕ ◦ f(z) + log
∣∣f ′(z)

∣∣ , v(z) = ϕ ◦ g(z) + log
∣∣g′(z)

∣∣ . (3.1)

Then e2udz2 is the pullback of the measure e2ϕdz2 by f on H, and e2vdz2 is the
pullback of e2ϕdz2 by g on H∗.

If ψ : Ω → C is an analytic function, we will use the shorthand notation

σψ(z) := log
∣∣ψ′(z)

∣∣ , z ∈ Ω.

Theorem 3.1. Let ϕ ∈ E(C) and let η be a Jordan curve through ∞. We have
the formula

DC(ϕ) + IL(η) = DH(u) + DH∗(v). (3.2)

Proof. Since ϕ ∈ E(C), by conformal invariance of the Dirichlet energy, DH(u) = ∞
if and only if DH(σf ) = ∞ which is equivalent to IL(η) = ∞. The identity (3.2) thus
holds in the case IL(η) = ∞.

It remains to prove (3.2) assuming IL(η) < ∞. For this, using (1.1) it is enough
to verify that the cross terms arising from the integrals on the right in (3.2) cancel,
that is, we want to show that∫

H

〈∇σf (z), ∇(ϕ ◦ f)(z)〉 dz2 +
∫

H∗
〈∇σg(z), ∇(ϕ ◦ g)(z)〉 dz2 = 0. (3.3)

Let us first assume that η is smooth and ϕ ∈ C∞
c (C). By Stokes’ formula, the first

term on the left-hand side of (3.3) is equal to∫
R

∂nσf (x)ϕ(f(x))dx =
∫

R

k(f(x))
∣∣f ′(x)

∣∣ ϕ(f(x))dx =
∫

∂H
k(z)ϕ(z) |dz|

where k(z) is the geodesic curvature of η = ∂H at z using the identity ∂nσf (x) =
|f ′(x)|k(f(x)). The geodesic curvature at the same point z ∈ η considered as a prime
end of ∂H∗ equals −k(z). Therefore (3.3) follows in the smooth case.

For the general case, notice that from a change of variable (3.3) can be rewritten
as ∫

H

〈∇σf−1(z), ∇ϕ(z)
〉
dz2 +

∫
H∗

〈∇σg−1(z), ∇ϕ(z)
〉
dz2 = 0. (3.4)
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Let ηy = f(R + iy) which in particular is a smooth curve, let fy(·) = f(· + iy)
which is the conformal map from H to the component Hy of C � ηy contained in
H, and let gy be a conformal map from H∗ to the other component H∗

y fixing ∞. It
follows from (3.4) that∫

Hy

〈
∇σf−1

y
(z), ∇ϕ(z)

〉
dz2 +

∫
H∗

y

〈
∇σg−1

y
(z), ∇ϕ(z)

〉
dz2 = 0. (3.5)

Let K be a compact set in C � η. Then by the Carathéodory kernel theorem,
(f−1

y )′′/(f−1
y )′ converges uniformly to (f−1)′′/(f−1)′ in K as y → 0, for y such

that ηy ∩ K = ∅, and similarly for g. Therefore

lim
y→0+

(∫
Hy∩K

〈
∇σf−1

y
(z), ∇ϕ(z)

〉
dz2 +

∫
H∗

y ∩K

〈
∇σg−1

y
(z), ∇ϕ(z)

〉
dz2

)

=
∫

H∩K

〈∇σf−1(z), ∇ϕ(z)
〉
dz2 +

∫
H∗∩K

〈∇σg−1(z), ∇ϕ(z)
〉
dz2.

(3.6)

On the other hand, Corollary 2.10 implies that

lim sup
y→0+

(∫
Hy

∣∣∣∇σf−1
y

(z)
∣∣∣2 dz2 +

∫
H∗

y

∣∣∣∇σg−1
y

(z)
∣∣∣2 dz2

)
= lim sup

y→0+
πIL(ηy) =: C < ∞.

Hence, by Cauchy-Schwarz,

lim sup
y→0+

∣∣∣∣∣
∫

Hy∩Kc

〈
∇σf−1

y
(z), ∇ϕ(z)

〉
dz2 +

∫
H∗

y ∩Kc

〈
∇σg−1

y
(z), ∇ϕ(z)

〉
dz2

∣∣∣∣∣
�C

(∫
Kc

|∇ϕ(z)|2 dz2

)1/2

→ 0,

as K exhausts C � η and we similarly have,∣∣∣∣
∫

H∩Kc

〈∇σf−1(z), ∇ϕ(z)
〉
dz2 +

∫
H∗∩Kc

〈∇σg−1(z), ∇ϕ(z)
〉
dz2

∣∣∣∣ → 0

Together with (3.5) and (3.6) we obtain (3.4) for all finite energy curves η and
smooth ϕ.

Finally, by approximating ϕ ∈ E(C) by functions in C∞
c (C) in the Dirichlet semi-

norm (Lemma B.1), we have the equality for all finite energy η and all ϕ ∈ E(C).
��

Theorem 3.2. (Isometric conformal welding). Suppose u ∈ E(H) and v ∈ E(H∗)
are given with u, v ∈ H1/2(R) also denoting the corresponding traces on R. Let h be
the isometric welding homeomorphism of R constructed from the measures eudx and
evdx as in (2.6). There exists a unique normalized solution (η, f, g) to the conformal
welding problem for h. Moreover, η has finite energy and there exists ϕ ∈ E(C) such
that (3.1) and (3.2) hold.
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Proof. Proposition 2.5 shows that the welding homeomorphism h is quasisymmetric
and satisfies log h′ ∈ H1/2(R). Therefore the solution to the welding problem is
unique, and it follows from Theorem 2.9 that η has finite energy.

Using (2.8), we have IL(η) = DH(log |f ′|) + DH∗(log |g′|) < ∞. To satisfy (3.1),
we define

ϕ(z) =

{
(u − log |f ′|) ◦ f−1(z), if z ∈ H;
(v − log |g′|) ◦ g−1(z), if z ∈ H∗.

Since the Dirichlet energy is invariant by precomposing with a conformal map, we
immediately have DC�η(ϕ) < ∞ since u, v, log |f ′| and log |g′| all have finite Dirichlet
energy. Hence we only need to check that ϕ ∈ E(C). Indeed, if ϕ ∈ E(C), then
DC�η(ϕ) = DC(ϕ) since η has Lebesgue measure 0. Therefore DC(ϕ) < ∞, so
Theorem 3.1 applies and (3.2) follows.

We want to use the gluing Lemma A.4 and so we need to check that the traces of
ϕ from both sides of the curve match. By Lemma A.6 (precomposing by a Möbius
transformation), the conformal map f−1 commutes with the trace operator, and for
arclength a.e. z ∈ η,

ϕ+(z) := RH→η[ϕ](z) =
(RH→R

[
u − log

∣∣f ′∣∣]) ◦ f−1(z) =
(
u − log

∣∣f ′∣∣) ◦ f−1(z).

In the last expression above, f ′(x) stands for the non-tangential limit of f ′ at
x ∈ R and the last equality follows from linearity and Lemma A.5.

In fact, f ′(x) coincides with the tangential derivative of f a.e. and the arclength
of f(I) ⊂ η is given by

∫
I |f ′(x)|dx for any interval I of R, see [Pom92, Theorem 6.8].

Similarly,

ϕ−(z) := RH∗→η[ϕ](z) =
(
v − log

∣∣g′∣∣) ◦ g−1(z).

Since h is the welding homeomorphism for η, we have by construction
∫
I eudx =∫

h(I) evdx. On the other hand, since η is locally rectifiable, we have
∫

I
eu(x)dx =

∫
f(I)

eu◦f−1(z)|(f−1)′(z)||dz| =
∫

f(I)
eϕ+(z)|dz|,

and similarly
∫
h(I) evdx =

∫
g(h(I)) eϕ− |dz|. It follows that for every choice of a, b,

∫
η[a,b]

eϕ+ |dz| =
∫

η[a,b]
eϕ− |dz|,

which implies ϕ+ = ϕ− a.e. on η. From Lemma A.4, we conclude that ϕ extends to
a function in E(C) and this completes the proof. ��
Remark. The proof of Theorem 3.2 shows that the measure eϕ|dz| on η equals the
pushforward of both eudx by f and evdx by g on R. This is the analog of the equality
of the chaos measure with respect to Minkowski content on the SLE path and the
pushforward of the boundary LQG measures in the quantum zipper, see [Ben18].
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Corollary 3.3. Suppose u ∈ E(H) and v ∈ E(H∗) are given. Then there exists a
unique tuple (ϕ, η, f, g) such that:

1. η is a Jordan curve passing through 0, 1 and ∞;
2. f : H → H is the conformal map fixing 0, 1 and ∞ and g : H∗ → H∗ is a

conformal map fixing 0, ∞;
3. ϕ ∈ E(C) and (3.1) holds.

Moreover, η is obtained from the isometric conformal welding of H and H∗ according
to the boundary lengths eudx and evdx.

Proof. We only need to show that η is necessarily obtained from the isometric weld-
ing of eudx and evdx, since Theorem 3.2 then implies the existence and uniqueness
of the tuple as f is normalized to fix 0, 1, ∞ and η is a quasicircle and therefore
conformally removable.

Let (ϕ, η, f, g) be any tuple satisfying the above conditions. Then Theorem 3.1
implies that

IL(η) = DH(u) + DH∗(v) − DC(ϕ) < ∞.

It follows that η is chord-arc and since ϕ ∈ E(C), its trace ϕ|η ∈ H1/2(η) as in
“Appendix A”. As in the proof of Theorem 3.2, the length of a portion of η using
the corresponding metric can be computed as∫

η[a,b]
eϕ|η(z) |dz| =

∫
f−1(η[a,b])

eϕ|η◦f(x)
∣∣f ′(x)

∣∣ dx

=
∫

f−1(η[a,b])
eu(x)dx =

∫
g−1(η[a,b])

ev(x)dx.

Therefore f and g are given by the isometric welding of the measures eudx and
evdx. ��
Remark. Note that by Theorem 3.2, in that same setup, (3.2) shows that

IL(η) = DH(u) + DH∗(v) − DC(ϕ) � DH(u) + DH∗(v). (3.7)

We next show that finite energy curves are closed under arclength isometric
welding (see Figure 2) with the energy of the welding curves bounded above by
the sum of the energies of the initial pair of curves. We can view this inequality as
quantifying the dissipation of energy into the global function ϕ.

More precisely, let η1 and η2 be two Jordan curves through ∞ with finite en-
ergy. Let H1, H

∗
1 be the connected components of C � η1 and H2, H

∗
2 the connected

components of C � η2.

Corollary 3.4. Let η (resp. η̃) be the arclength isometric welding curve of the
domains H1 and H∗

2 (resp. H2 and H∗
1 ). Then η and η̃ have finite energy. Moreover,

IL(η) + IL(η̃) � IL(η1) + IL(η2).
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H1

H∗
2

H

H∗

η1

η2

F

G
ψ : η1 → η2 η

Figure 2: Arclength isometric welding of H1 and H∗
2 . The isometry ψ = G−1◦F |η1 identifies

arcs of the same length and F,G are conformal maps. The welding curve η has energy
bounded by the sum of the energies of η1 and η2.

Proof. For i = 1, 2, let fi be a conformal equivalence H → Hi, and gi : H∗ → H∗
i

both fixing ∞. By (2.8),

IL(ηi) = DH

(
log |f ′

i |
)

+ DH∗
(
log |g′

i|
)
.

Set ui := log |f ′
i |, vi := log |g′

i|. Then η is the welding curve obtained from The-
orem 3.2 with u = u1, v = v2 and η̃ is the welding curve for u = u2, v = v1. Then
(3.7) implies

IL(η) + IL(η̃) � DH (u1) + DH∗ (v2) + DH (u2) + DH∗ (v1) = IL(η1) + IL(η2)

as claimed. ��
Remark. In particular, we have the energy sub-additivity:

IL(η) � IL(η1) + IL(η2)

and equality holds only when DH (u2) = DH∗ (v1) = 0 which implies that both η1

and η2 are lines.

Given Corollary 3.4, it is natural to ask for when ϕ is constant so that (3.7)
becomes an equality. The following proposition aims to provide the geometrical
intuition that this happens if and only if e2udz2 and e2vdz2, considered as Rieman-
nian metrics, have matching geodesic curvatures at points identified by the welding
homeomorphism, and are flat in the bulk (Δu = Δv = 0). We restrict ourselves to
the smooth case in order to simplify the discussion and to have all the quantities
well-defined.

In the statement, ∂n and ∂n∗ denote the outer normal derivative on R = ∂H =
∂H∗ with respect to H and H∗.

Proposition 3.5. (Curvature matching). Let u ∈ C∞(H)∩E(H) and v ∈ C∞(H∗)∩
E(H∗). The function ϕ obtained in Theorem 3.2 satisfies DC(ϕ) = 0 if and only if u
and v are harmonic, and ∂nu + (∂n∗v) ◦ h · h′ ≡ 0 on R.

Proof. The “only if” part: since ϕ is constant, we have that u = log |f ′| + ϕ ◦ f
is harmonic and so is v = log |g′| + ϕ ◦ g. Let k(y) (resp. k∗(y)) be the geodesic
curvature at y ∈ ∂H (resp. y ∈ ∂H∗) under the metric e2ϕdy2 which also equals
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the geodesic curvature at z = f−1(y) ∈ ∂H under the metric e2udz2. We have the
following identity for all z ∈ R,

k(f(z)) = e−u(z) (k0(z) + ∂nu(z)) = e−u(z)∂nu(z),

where k0 ≡ 0 is the geodesic curvature of R as boundary of H under the Euclidean
metric. Hence for all intervals I ⊂ R,∫

I
∂nu(z)dz =

∫
I
eu(z)k(f(z))dz =

∫
I
|f ′(z)|k(f(z))eϕ(f(z))dz =

∫
f(I)

k(y)eϕ(y)|dy|.

Similarly for ∂n∗v, since ϕ is constant, we have∫
I
∂nu(z)dz =

∫
f(I)

k(y)eϕ(y)|dy| = −
∫

g◦h(I)
k∗(y)eϕ(y)|dy|

= −
∫

I
(∂n∗v) ◦ h(z)h′(z)dz.

It follows that ∂nu + (∂n∗v) ◦ h · h′ ≡ 0, as claimed.
The “if” part: we check that ϕ is harmonic everywhere in C. Let ρ ∈ C∞

c (C) be
a test function,

〈∇ϕ, ∇ρ〉
C

= 〈∇(ϕ ◦ f), ∇(ρ ◦ f)〉
H

+ 〈∇(ϕ ◦ g), ∇(ρ ◦ g)〉
H∗

= 〈∇u, ∇(ρ ◦ f)〉
H

+ 〈∇v,∇(ρ ◦ g)〉
H∗

= 〈∂nu, ρ ◦ f〉
R

+ 〈∂n∗v, ρ ◦ g〉
R

.

The second equality follows from
〈∇ log

∣∣f ′∣∣ , ∇(ρ ◦ f)
〉

H
+

〈∇ log
∣∣g′∣∣ , ∇(ρ ◦ g)

〉
H∗ = 0

as in (3.3) and the third equality above follows from the assumption that u and v
are harmonic. We have also that

〈∂n∗v, ρ ◦ g〉
R

=
〈
∂n∗v, ρ ◦ f ◦ h−1

〉
R

=
〈
(∂n∗v) ◦ h · h′, ρ ◦ f

〉
R

.

Since we assumed ∂nu+(∂n∗v)◦h ·h′ ≡ 0, we have 〈∇ϕ, ∇ρ〉 = 0 for all ρ. It follows
that ϕ is harmonic in C. Since the Dirichlet energy of ϕ is finite, ϕ is constant. ��
3.2 Welding identity: disk version. We will now discuss the welding identity
in the case when η is a bounded finite energy curve. Denote by Ω and Ω∗ the bounded
and unbounded connected components of C � η and let ϕ ∈ E(C). As in the half-
plane case, we associate to the pair (ϕ, η) two functions, this time defined on D and
D∗:

u = ϕ ◦ f + log
∣∣f ′∣∣ , v = ϕ ◦ g + log

∣∣g′∣∣ ,

where f : D → Ω and g : D∗ → Ω∗ represent some choice of Riemann maps, such
that g(∞) = ∞. It turns out that the correct action functional for the analog of
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Theorem 3.1 in the disk setting has an extra curvature term. (Or rather, that term
is identically 0 in the half-plane case.) More precisely, if u : Ω → R, we define

SΩ(u) := DΩ(u) +
2
π

∫
∂Ω

kΩ(z)u(z)dz

where kΩ is the geodesic curvature (using the Euclidean metric) of ∂Ω. Note that
we have kD = −kD∗ ≡ 1, so (2.7) can be written as

IL(η) = SD(log |f ′|) + SD∗(log |g′|). (3.8)

Theorem 3.6. Suppose ϕ ∈ E(C) and that η is a bounded finite energy curve.
Then we have the identity:

DC(ϕ) + IL(η) = SD(u) + SD∗(v). (3.9)

Proof. It suffices to prove that the cross-terms in the Dirichlet inner product satisfy

2
π

∫
D

〈∇ log
∣∣f ′(z)

∣∣ , ∇ϕ(f(z))
〉
dz2 +

2
π

∫
D∗

〈∇ log
∣∣g′(z)

∣∣ , ∇ϕ(g(z))
〉
dz2

= − 2
π

∫
∂D

ϕ(f(z))dz +
2
π

∫
∂D∗

ϕ(g(z))dz.

Assume first that η is smooth and ϕ ∈ C∞
c (C). Using Stokes’ formula, the first term

on the left-hand side is equal to

2
π

∫
∂D

∂n log
∣∣f ′(z)

∣∣ ϕ(f(z))dz

=
2
π

∫
∂D

kΩ(f(z))
∣∣f ′(z)

∣∣ ϕ(f(z))dz − 2
π

∫
∂D

kD(z)ϕ(f(z))dz

=
2
π

∫
∂Ω

kΩ(y)ϕ(y)dy − 2
π

∫
∂D

ϕ(f(z))dz,

since

∂n log
∣∣f ′(z)

∣∣ = kΩ(f(z))
∣∣f ′(z)

∣∣ − kD(z).

As kΩ(y) = −kΩ∗(y) for all y ∈ η, we have
∫

∂Ω
kΩ(y)ϕ(y)dy +

∫
∂Ω∗

kΩ∗(y)ϕ(y)dy = 0

which concludes the proof in the smooth case. The approximation of a general finite
energy η by equipotentials and ϕ ∈ E(C) by C∞

c (C) is the same as in the proof of
Theorem 3.1. ��
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For u, v ∈ H1/2(T), eu|dz| and ev|dz| define finite measures on T. We normalize
them to have total mass 1 by subtracting (from u) zu := log

∫
T

eu|dz| and (from v)
zv := log

∫
T

ev|dz|.
In a similar manner as in (2.6), we define a homeomorphism h of T which isomet-

rically identifies eu−zu |dz| and ev−zv |dz| and we may assume it fixes 1. A normalized
solution of the conformal welding problem for h is a triple (η, f, g), where η is a
Jordan curve in C with associated Ω, Ω∗ and conformal maps f : D → Ω fixing 0, 1,
and g : D∗ → Ω∗ fixing ∞, 1 such that h = g−1 ◦f |T. We also have log |h′| ∈ H1/2(T)
by the proof of Proposition 2.5. Theorem 2.6 implies that IL(η) < ∞. The proof of
Theorem 3.2 then gives:

Theorem 3.7. (Isometric welding of disks). Suppose u ∈ E(D) and v ∈ E(D∗)
are given with u, v ∈ H1/2(T) also denoting the corresponding traces on T. Let h be
the isometric welding homeomorphism of T constructed as above, and (η, f, g) the
normalized solution. Then there exists a unique ϕ ∈ E(C) such that

u − zu = ϕ ◦ f + log
∣∣f ′∣∣ , v − zv = ϕ ◦ g + log

∣∣g′∣∣ ,

and

DC(ϕ) + IL(η) = SD(u − zu) + SD∗(v − zv).

The analog of Corollary 3.4 also holds:

Corollary 3.8. Let η1 and η2 be two finite energy curves with the same arclength,
let Ωi and Ω∗

i be associated to ηi, and let η (resp. η̃) be the isometric welding curve
of Ω1 and Ω∗

2 (resp. Ω2 and Ω∗
1). Then

IL(η) + IL(η̃) � IL(η1) + IL(η2).

Proof. Without loss of generality, we assume that the arclength of η1 and η2 are 1.
We put for i = 1, 2, ui := log |f ′

i |, vi := log |g′
i|. Then η is the welding curve given by

Theorem 3.7 with u = u1 and v = v2. Similarly η̃ corresponds to u = u2, v = v1. We
obtain

IL(η) + IL(η̃) � S(u1) + S(v2) + S(u2) + S(v1) = IL(η1) + IL(η2)

as claimed since zui
= zvi

= 0. ��

In contrast with the cutting and welding operations, our flow-line identity is
specific to the half-plane setting for the Loewner energy: as we will see, all the
flow-lines are “bi-infinite” and go through ∞.
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3.3 Flow-line identity. Let η = η(s) be an asymptotically smooth Jordan
curve through ∞, parametrized by arclength. Let H, H∗ be the two connected com-
ponents of C � η and let f : H → H and g : H∗ → H∗ be conformal maps fixing
∞. We choose arg f ′ to be a (fixed) continuous branch of Im log f ′ in H. By Theo-
rem II.4.2 of [GM05], for a.e. ζ = η(s) such that η′(s) exists, arg f ′(z) has a limit as
z approaches f−1(ζ) in H and we denote this limit by τ(ζ). Moreover,

η′(s) = lim
t→s

η(t) − ζ

t − s
= ± lim

t→s±
η(t) − ζ

|η(t) − ζ| = eiτ(ζ). (3.10)

The second equality uses that η is asymptotically smooth. Having chosen a branch
of arg f ′, we choose one for arg g′ defined on H∗ so that the boundary values of
arg g′ ◦ g−1 agree with τ a.e. Finally, let P[τ ] be the Poisson extension of τ to C � η.

Lemma 3.9. Suppose η is a finite energy curve through ∞. Then we have

arg f ′(z) = P[τ ] ◦ f(z), ∀z ∈ H.

Proof. Since DH(arg f ′) = DH(log |f ′|) < ∞, it follows that (a.e.) τ ◦ f = arg f ′ ∈
H1/2(R). Since the trace operator Eharm(H) → H1/2(R) is one-to-one, using
Lemma A.6 we see that P[τ ] ◦ f = P[τ ◦ f ] = arg f ′. ��
Theorem 3.10. If η is a finite energy curve through ∞, we have the identity

IL(η) = DC(P[τ ]). (3.11)

Conversely, if ϕ ∈ E(C) is continuous and limz→∞ ϕ(z) exists, then for all z0 ∈ C,
any solution to the differential equation

η̇(t) = exp (iϕ(η(t))) , t ∈ (−∞, ∞) and η(0) = z0

is a C1 Jordan curve through ∞ with finite energy, and

DC(ϕ) = IL(η) + DC(ϕ0),

where ϕ0 = ϕ − P[ϕ|η].
Proof. Let f and g be conformal maps from H and H∗, respectively, associated to η
as above. From Lemma 3.9, we have that arg f ′(z) = P[τ ] ◦ f(z) for all z ∈ H and
similarly for g. The identity (3.11), with DC replaced by DC�η, then follows from
(2.8) using that DH(log |f ′|) = DH(arg f ′) and DH(P[τ ] ◦ f) = Df(H)(P[τ ]), together
with the analogous formulas for g. Since the traces of the harmonic extensions of τ
to H and H∗ agree almost everywhere, the gluing Lemma A.4 shows that we obtain
a function in E(C) and (3.11) holds.

For the converse statement, notice that exp(iϕ) defines a continuous unit vector
field on C. By the Cauchy-Peano existence theorem there exists a solution η (which
may not be unique) for all t ∈ R and t → η(t) is an arclength parametrized C1

curve.
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We claim that the solution η is a Jordan curve through ∞. We first prove that
η contains no closed loop in C. In order to derive a contradiction, assume that
η(0) = η(1) and [0, 1) → η[0, 1) is injective. Since η[0, 1] is a bounded Jordan curve,
it encloses a bounded simply connected domain Ω and we assume that η winds
counterclockwise around Ω (consider ϕ+π otherwise). Let ψ : D → Ω be a conformal
map. Since the vector field is continuous, ∂Ω has a continuous tangent, so arg ψ′

extends continuously to D and

exp(iϕ ◦ ψ(z)) = iz exp(i arg ψ′(z)), ∀z ∈ T.

However, log z does not have a continuous branch on T but since i(ϕ ◦ ψ(z) −
arg ψ′(z) − π/2) would provide one, we have a contradiction.

We next show that η is transient as t → ±∞. Assume this is not the case. Then
since η is a flow-line of a continuous unit vector field, there exists z ∈ C such that
for all r > 0, η visits the closed ball B(z, r) at least twice. Since ϕ is continuous,
there is r > 0 such that w ∈ B(z, 100r) implies |ϕ(w) − ϕ(z)| < 1/10. After η visits
B(z, r) for the first time (of the two times), η leaves B(z, 100r) from the sub-arc of
argument [ϕ(z) − 1/9, ϕ(z) + 1/9] of ∂B(z, 100r) and re-enters B(z, 100r) from the
arc of argument in [ϕ(z) + π/2 − 1/10, ϕ(z) + 3π/2 + 1/10]. We call the exit time
s and the re-enter time t. Now we modify ϕ inside B(z, 100r) such that ϕ remains
continuous and the unit vector field eiϕ generates a flow η̃ starting from η̃(0) = η(t)
hits η(s) at some time δ > 0, with η̃[0, δ] ⊂ B(z, 100r). But the existence of the loop
η[s, t] ∪ η̃[0, δ] then contradicts the fact, proved as in the previous paragraph, that
the flow of the modified continuous vector field contains no closed loop in C.

Therefore η is an infinite C1 simple curve and since limz→∞ ϕ(z) exists, η is
in fact the Möbius image of a bounded C1 Jordan curve. It follows that arg f ′

is bounded and harmonic, so P[arg f ′|R] = arg f ′. Using (3.10) again, we obtain
(arg f ′) ◦ f−1|η = ϕ|η and

DH(arg f ′) = DH(P[arg f ′|R]) = DH(P[arg f ′ ◦ f−1|η]) = DH

(P[ϕ|η]
)

= DH(ϕ) − DH(ϕ0),

where the last equality follows from the orthogonal decomposition (for the Dirichlet
inner product) as in Lemma 2.1 (after conformally mapping to a disk). We conclude
the proof by performing the same computation with g and then using (2.8). ��

The following corollaries are immediate consequences of the flow-line identity.
We consider first the family of analytic curves ηr := f(R + ir), where r > 0.

Corollary 3.11. Let η be finite energy curve through ∞. For 0 < r < s, IL(ηs) �
IL(ηr) � IL(η) and any equality holds if and only if η is a line.

Proof. By Lemma 3.9, P[τ ] ◦ f(z) = arg f ′(z), so for each r, ηr has tangent with
argument given by P[τ ] and we write it as τ r := P[τ ]|ηr . It follows from Theorem 3.10
and the fact that IL(ηr) < ∞,

IL(ηr) = DC(P[τ r]) = DC

(
P

[
P[τ ]

∣∣∣
ηr

])
� DC(P[τ ]) = IL(η).
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f : D → D

η
T

rT
ηr

C f (C)

Figure 3: Comparing the Loewner energy of equipotentials.

The ineqality uses the Dirichlet principle.
In case of equality, P[τ ] is harmonic in the complement of ηr. Since it is also

harmonic in the complement of η, it follows that P[τ ] ∈ Eharm(C), and consequently
constant. ��

Corollary 3.11 compares the Loewner energy of the image of a horocycle in the
upper half-plane which touches ∞. If we map H to D by a Möbius transformation,
the horocycle R + ir is mapped to a circle tangent to T. This allows us to compare
the energies of equipotentials inside of a bounded domain as follows.

Assume now that η is a bounded finite energy curve. Let Ω be the bounded
component of C� η, f a conformal map from D → Ω and ηr = f(rT), for 0 < r < 1.
Using Corollary 3.11, we compare IL(η) and IL(ηr) to IL(f(C)) where C is a circle
tangent to both T and rT as shown in Figure 3 and obtain:

Corollary 3.12. For 0 < s < r < 1, IL(ηs) � IL(ηr) � IL(η) and any equality
holds only when η is a circle.

3.4 Complex-valued function identity. Let us conclude with the following
identity which combines both welding and flow-line identities.

Let ψ be a complex-valued function on C with finite Dirichlet energy. We assume
that Im ψ ∈ C0(Ĉ). We say that η is a flow-line of the vector field eψ if η is a
flow-line of ei Im ψ. (The parametrization of η will not matter for our purposes.) Let
f, g be conformal maps associated to η as in Section 3.3.

Corollary 3.13. Let η be any flow-line of the complex field eψ. Define ζ = ψ ◦f +
(log f ′)∗ and ξ = ψ ◦ g + (log g′)∗. Then we have

DC(ψ) = DH(ζ) + DH∗(ξ).

Remark. From Corollary 3.13 we can easily recover the flow-line identity, by taking
Imψ = ϕ and Re(ψ) = 0. Similarly, the welding identity follows from taking Reψ =
ϕ and Imψ = P[τ ] where τ is the winding of the curve η as defined in Section 3.3.

Proof. By Theorem 3.10, η has finite Loewner energy and Lemma 3.9 shows that

arg f ′(z) = P[Imψ] ◦ f(z), ∀z ∈ H.
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Hence we can write,

ζ =
(
Re ψ ◦ f + log |f ′|) + i

(
Imψ ◦ f − arg f ′) = u + i Im ψ0 ◦ f ;

ξ = v + i Imψ0 ◦ g,

where u := Re ψ ◦ f + log |f ′| ∈ E(H), v := Re ψ ◦ g + log |g′| ∈ E(H∗) and ψ0 =
ψ − P[ψ|η]. From the welding identity, we have

DC(Re ψ) + IL(η) = DH(u) + DH∗(v).

On the other hand, the flow-line identity gives DC(Im ψ) = IL(η) + DC(Im ψ0).
Hence,

DC(ψ) = DC(Re ψ) + DC(Im ψ) = DC(Re ψ) + IL(η) + DC(Im ψ0)
= DH(u) + DH∗(v) + DC(Im ψ0)
= DH(ζ) + DH∗(ξ)

as claimed. ��

Acknowledgments

Open access funding provided by Royal Institute of Technology. F.V. acknowledges
support from the Knut and Alice Wallenberg foundation and the Swedish Research
Council. Y.W. is partially supported by the Swiss National Science Foundation grant
# 175505. Part of this work was carried out at IPAM/UCLA, Los Angeles. It is our
pleasure to thank Alexis Michelat for the proof of Lemma B.1, Michael Benedicks and
Scott Sheffield for discussions, and Juhan Aru, Wendelin Werner, and the referees
for very helpful comments on earlier versions of our paper. We are also happy to
thank Juhan Aru for asking a question that led us to Corollary 3.13.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Inter-
national License, which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/


GAFA INTERPLAY BETWEEN LOEWNER AND DIRICHLET ENERGIES 315

A Trace Operators on Chord-Arc Curves

The Sobolev space trace operator is usually defined for domains with Lipschitz
boundary. We are interested in domains bounded by finite energy curves (see Sec-
tion 2.3), which are chord-arc but not necessarily Lipschitz [RW19]. This appendix
recalls and develops the facts needed for this paper.
It will be convenient to work in the class of chord-arc domains, that is, simply
connected domains whose boundary η = ∂Ω is a chord-arc curve in Ĉ. We will
follow Jonsson and Wallin [JW84] to define for u ∈ E(C) a trace on η by considering
averages over balls and prove the gluing lemma (Lemma A.4) and the fact that the
trace operator commutes with the conformal mapping (Lemma A.6).

Lemma A.1. Suppose u ∈ E(C) and η is a chord-arc curve in Ĉ. The Jonsson–Wallin
trace of u on η is defined for arclength a.e. z ∈ η by the following limit of averages

Rη[u](z) := lim
r→0+

uB(z,r), (A.1)

where B(z, r) = {w : |w − z| < r}. Moreover, Rη[u] ∈ H1/2(η).

Proof. Assume first that η is bounded. Then without loss of generality (by local-
ization and the Poincaré inequality), we may assume that u ∈ W 1,2(C). Since η is
chord-arc, it follows from [JW84] Theorem VII.1, p.182, that Rη[u] ∈ H1/2(η).
This extends to the restriction of E(C) on η passing through ∞ via a Möbius trans-
formation. Indeed, let m be a Möbius transformation such that m(η) is bounded. By
conformal invariance of the Dirichlet energy, u ◦ m−1 ∈ E(C). Therefore Rm(η)[u ◦
m−1] ∈ H1/2(m(η)). For z ∈ η ∩ C,

Rη[u](z) = Rm(η)[u ◦ m−1] ◦ m(z),

since m is smooth in a neighborhood of z. Hence, we have

‖Rη[u]‖H1/2(η) = ‖Rm(η)[u ◦ m−1] ◦ m‖H1/2(η) = ‖Rm(η)[u ◦ m−1]‖H1/2(m(η)) < ∞,

where the second equality follows from (2.2). ��

The Jonsson–Wallin trace is also defined without ambiguity from one side of the
curve η: From Lemma 2.2, functions in E(Ω) can be extended to E(C). For u ∈ E(C),
we will denote by u|Ω the restriction of u to the domain Ω.

Lemma A.2. ([BMMM14] Theorem 5.1.). Let u ∈ E(Ω) and ũ ∈ E(C) such that
ũ|Ω = u. The operator RΩ→η defined as

RΩ→η[u](z) := Rη[ũ](z), for arclength a.e. z ∈ η,

does not depend on the choice of the extension ũ ∈ E(C).



316 F. VIKLUND, Y. WANG GAFA

The lemma is proved in [BMMM14] for u ∈ W 1,2. The passage from W 1,2 to E(C)
follows from a standard localization argument: Let v, w ∈ E(C) such that v|Ω =
w|Ω = u. For z ∈ η, let ρ be a smooth function supported in B(z, 2) which equals 1
in B(z, 1). We have ρv ∈ W 1,2(Ω). Moreover ρv|Ω = ρw|Ω. Applying Rη to ρv and
ρw, there is no ambiguity in defining the trace for ρu, and we get

Rη[ρv](y) = Rη[ρw](y), for a.e. y ∈ B(z, 1) ∩ η.

Since ρ ≡ 1 in a neighborhood of z, we have Rη[v](y) = Rη[w](y).
The lemma below states that W 1,2

0 (Ω) is exactly the kernel of RΩ→η which also
coincides with Sobolev functions that can be extended by 0. Let Ω∗ be the connected
component of C � η different from Ω.

Lemma A.3. ([BMMM14] Cor. 5.4 eq. (5.37), Lemma 5.10). For u ∈ W 1,2(Ω), if
we denote by ũ the function such that ũ|Ω = u and ũ|Ω∗ = 0, then

W 1,2
0 (Ω) = {u ∈ W 1,2(Ω) : RΩ→η[u] = 0 a.e.} = {u ∈ W 1,2(Ω) : ũ ∈ W 1,2(C)}.

Lemma A.4. (Gluing). If u ∈ E(Ω) and v ∈ E(Ω∗) have matching trace along η =
∂Ω = ∂Ω∗, that is, if

RΩ→η[u](z) = RΩ∗→η[v](z) a.e. z ∈ η,

then there exists a function w ∈ E(C) such that w|Ω = u and w|Ω∗ = v.

Proof. Using a partition of unity, we may assume u ∈ W 1,2(Ω) and v ∈ W 1,2(Ω∗).
Lemma 2.2 implies that there exists ṽ ∈ W 1,2(C) such that ṽ|Ω∗ = v and for a.e.
z ∈ η,

RΩ∗→η[v](z) = Rη[ṽ](z) = RΩ→η[ṽ](z).

Therefore RΩ→η[u− ṽ] = 0 a.e. on η. Note that (u− ṽ)|Ω ∈ W 1,2
0 (Ω) ↪−→ W 1,2(C) and

we let ϕ ∈ W 1,2(C) denote the extension of (u − ṽ)|Ω by zero. We set w := ϕ + ṽ ∈
W 1,2(C) which extends both u and v in the desired way. ��
We will now relate the Jonsson–Wallin trace to the function obtained by taking non-
tangential limits on η. Let α > 0 be given. We define the non-tangential approach
region to ζ ∈ η = ∂Ω (relative to Ω) by

Aα(ζ) = {z ∈ Ω : |z − ζ| � (1 + α)dist(z, η)}.

Since η is chord-arc, Aα(ζ) contains a path tending to ζ for all sufficiently large
α. A function f : Ω → C is said to have non-tangential limit w at ζ if for all
α large enough the limit of f along any path in Aα(ζ) tending to ζ equals w.
Conformal maps between quasidisks preserve non-tangential approach regions (with
quantitative bounds on constants), so taking a non-tangential limit commutes with
applying the Riemann map in our setting. See, e.g., Proposition 1.1 of [JK82].
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Note that for z ∈ Aα(ζ), we have B(z, Cα|z−ζ|) ⊂ A2α(ζ), where Cα = α/(2(1+α)2).
In particular, if there exists a path in Aα(ζ) tending to ζ, for all r > 0,

|A2α(ζ) ∩ B(ζ, 2r)| � |B(zr, Cαr)| � cr2, (A.2)

where zr is a point on the path in Aα(ζ) with |zr − ζ| = r and c > 0 is independent
of r.
The next lemma shows that the Jonsson–Wallin trace of a function in the harmonic
Dirichlet space on a chord-arc domain coincides with its non-tangential limits.
Given u ∈ Eharm(Ω), by Lemma A.2 we may extend u to a function in E(C) and the
Jonsson–Wallin trace is independent of the particular extension chosen so we may
write Rη[u] unambiguously.

Lemma A.5. Suppose η = ∂Ω is a chord-arc curve in Ĉ. Let u ∈ Eharm(Ω). Then for
arclength almost every ζ ∈ η, the non-tangential limit of u at ζ exists and agrees
with Rη[u](ζ) as defined in (A.1).

Proof. In the case Ω = D we know that u has non-tangential limits almost every-
where and the limiting function lies in H1/2(T). It then follows from the fact that
harmonic measure and arclength are mutually absolutely continuous on η that u has
non-tangential limits almost everywhere on η.
Let ζ ∈ η be a point such that both the Jonsson–Wallin trace and non-tangential
limit exist at ζ. Let ε > 0 be given. For r > 0, let ur = |Br|−1

∫
Br

u(z)dz2 where
Br := B(ζ, r). (Recall that we consider an extension of u.) By the Cauchy-Schwarz
and Poincaré inqualities,

1
|Br|

∫
Br

|u(z) − ur|dz2 � cEr, for Er :=
(∫

Br

|∇u(z)|2dz2

)1/2

.

Since u ∈ E(C), we have Er = o(1) and so for r small enough,

|{z ∈ Br : |u(z) − ur| > ε}| � c|Br|Er/ε < |Br|ε, (A.3)

where we used Markov’s inequality for the first bound. Hence, since Rη[u](ζ) =
limr→0+ ur, taking r smaller if necessary, we have

|{z ∈ Br : |u(z) − Rη[u](ζ)| � 2ε}| � (1 − ε)|Br|.
By (A.2) there exist α, c1 > 0 such that

|Aα(ζ) ∩ Br| � c1|Br|, (A.4)

for all r > 0 sufficiently small, where Aα(ζ) = {z ∈ Ω : |z − ζ| � (1 + α)dist(z, η)}
is the non-tangential approach region at ζ. Therefore, using (A.4) and if ε > 0 is
taken sufficiently small, (A.3) shows that the set {z ∈ Br : |u(z) − Rη[u](ζ)| � 2ε}
and Aα(ζ) must intersect for all sufficiently small r and so the limit taken in Aα(ζ)
equals Rη[u](ζ), as desired. ��
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Lemma A.6. Suppose ∂Ω is a chord-arc curve in Ĉ. Let u ∈ E(Ω) and suppose
ϕ : D → Ω is a Riemann mapping. Then,

RT[u ◦ ϕ] = Rη[u] ◦ ϕ ∈ H1/2(T). (A.5)

Proof. Assume first that u ∈ Eharm(Ω). Since taking non-tangential limits commute
with applying ϕ and since harmonic measure and arclength are mutually absolutely
continuous, (A.5) follows using Lemma A.5.
Let u ∈ E(Ω). We first assume that Ω is bounded. Then we have u ∈ W 1,2(Ω).
Next, let u0 ∈ W 1,2

0 (Ω) and uh ∈ Eharm(Ω) such that u = u0 + uh. It follows from
conformal invariance of the Dirichlet energy and from the Poincaré inequality that
the operator W 1,2(Ω) → W 1,2(D), u �→ u ◦ ϕ and its inverse are bounded. Since
W 1,2

0 (D) is the closure of C∞
c (D), we have W 1,2

0 (D) = W 1,2
0 (Ω) ◦ ϕ. In particular,

v ∈ W 1,2
0 (Ω) ⇔ v ◦ ϕ ∈ W 1,2

0 (D) ⇔ RT[v ◦ ϕ] = 0 a.e. on T

from Lemma A.3. Therefore Rη[u0] ◦ ϕ = 0 = RT[u0 ◦ ϕ] a.e. on T. We conclude by
applying (A.5) to uh.
When Ω is unbounded, let m be a Möbius transformation such that m(Ω) is bounded.
Since m is smooth in a neighborhood of η, Rm(η)[u◦m−1]◦m = Rη[u], and we have
a.e. on T,

Rη[u] ◦ ϕ = Rm(η)[u ◦ m−1](m ◦ ϕ) = RT[u ◦ ϕ].

The second equality follows from applying (A.5) to m(Ω) for ũ = u◦m−1, ϕ̃ = m◦ϕ.
��

B Density of C∞
c (C) in E(C)

Here we provide a proof of the fact that test functions are dense in the homogeneous
Sobolev space E(C) (based on a write-up by Alexis Michelat). The result must be
well-known, but we were not able to locate a precise reference in the literature.
Let (ρj)j∈N be a family of mollifiers such that for all f ∈ L2(C),

lim
j→∞

‖ρj ∗ f − f‖L2(C) = 0

and (ηj)j∈N a family of smooth function supported in B(0, 2j+1), such that ηj ≡ 1 in
B(0, 2j), 0 � η � 1, and ‖∇ηj‖L∞ � 1/2j . Let Aj denote the annulus B(0, 2j+1) �

B(0, 2j). Recall that we write uAj
for 1

|Aj |
∫
Aj

udz2.

Lemma B.1. For u ∈ E(C), let uj = ρj ∗ (
ηj(u − uAj

)
) ∈ C∞

c (C). We have

lim
j→∞

‖∇u − ∇uj‖L2(C) = 0.
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Proof. We have

∇uj = ρj ∗ (∇ηj(u − uAj
)) + ρj ∗ (ηj∇u).

Using Young’s convolution inequality we see that

‖ρj ∗ (∇ηj(u − uAj
))‖L2(C) � ‖ρj‖L1(C)‖∇ηj(u − uAj

)‖L2(C) = ‖∇ηj(u − uAj
)‖L2(C),

since ρj is a mollifier. By the Poincaré inequality in Aj and the fact that ‖∇ηj‖L∞ �
1/2j is supported in Aj , there is C < ∞ independent of j, such that

‖∇ηj(u − uAj
)‖L2(C) � 1

2j
‖u − uAj

‖L2(Aj) � C diam(Aj)
2j

‖∇u‖L2(Aj)

and the right-hand side tends to 0 as j → ∞. On the other hand,

lim
j→0

‖∇u − ρj ∗ (ηj∇u)‖L2(C) = 0

and this concludes the proof. ��
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