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ADVERSARIAL TRAINING AND PROVABLE DEFENSES:
BRIDGING THE GAP

Mislav Balunović, Martin Vechev
Department of Computer Science
ETH Zurich, Switzerland
{mislav.balunovic, martin.vechev}@inf.ethz.ch

ABSTRACT

We present COLT, a new method to train neural networks based on a novel com-
bination of adversarial training and provable defenses. The key idea is to model
neural network training as a procedure which includes both, the verifier and the
adversary. In every iteration, the verifier aims to certify the network using con-
vex relaxation while the adversary tries to find inputs inside that convex relaxation
which cause verification to fail. We experimentally show that this training method,
named convex layerwise adversarial training (COLT), is promising and achieves
the best of both worlds – it produces a state-of-the-art neural network with cer-
tified robustness of 60.5% and accuracy of 78.4% on the challenging CIFAR-10
dataset with a 2/255 L∞ perturbation. This significantly improves over the best
concurrent results of 54.0% certified robustness and 71.5% accuracy.

1 INTRODUCTION

The discovery of adversarial examples in deep learning (Szegedy et al., 2013; Biggio et al., 2013)
has increased the importance of creating new training methods which produce accurate and robust
neural networks with provable guarantees.

Existing work: adversarial and provable defenses Adversarial training (Goodfellow et al.,
2015; Kurakin et al., 2017) provides a framework to augment the training procedure with adversarial
inputs produced by an adversarial attack. Madry et al. (2018) instantiated adversarial training using
a strong iterative adversary and showed that their approach can train models which are highly ro-
bust against the strongest known adversarial attacks such as Carlini & Wagner (2017). This method
has also been able to train robust ImageNet models (Xie et al., 2019). While promising, the main
drawback of the method is that when instantiated in practice, via an approximation of an otherwise
intractable optimization problem, it provides no guarantees – it does not produce a certificate that
there are no possible adversarial attacks which could potentially break the model. To address this
lack of guarantees, recent line of work on provable defenses (Wong & Kolter, 2018; Raghunathan
et al., 2018; Mirman et al., 2018) has proposed to train neural networks that are certifiably robust
to a specific attacker threat model. However, these guarantees come at the cost of a significantly
lower standard accuracy than models trained using adversarial training. This setting raises a natural
question: can we leverage ideas from both, adversarial training techniques and provable defense
methods, so to obtain models with high accuracy and certified robustness?

This work: combining adversarial and provable defenses In this work, we take a step towards
addressing this challenge. We show that it is possible to train more accurate and provably robust neu-
ral networks using the same convex relaxations as those used in existing, state-of-the-art provable
defense methods, but with a new, different optimization procedure inspired by adversarial training.
Our optimization works as follows: (i) to certify a property (e.g., robustness) of the network, the ver-
ifier produces a convex relaxation of all possible intermediate vector outputs in the neural network,
then (ii) an adversary now searches over this (intermediate) convex region in order to find, what we
refer to as a latent adversarial example – a concrete intermediate input contained in the relaxation
that when propagated through the network causes a misclassification which prevents verification, and
finally (iii) the resulting latent adversarial examples are now incorporated into our training scheme
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using adversarial training. Overall, we can see this method as bridging the gap between adversarial
training and provable defenses (it can conceptually be instantiated with any convex relaxation). We
experimentally show that the method is promising and results in a neural network with state-of-the-
art 78.4% accuracy and 60.5% certified robustness on the challenging CIFAR-10 dataset with 2/255
L∞ perturbation (the best known existing results are 71.5% accuracy and 54.0% certified robustness
from concurrent work of Zhang et al. (2020)).

Main Contributions Our key contributions are:

• A new method, which we refer to as convex layerwise adversarial training (COLT), that can
train provably robust neural networks and conceptually bridges the gap between adversarial
training and existing provable defense methods.

• Instantiation of convex layerwise adversarial training using linear convex relaxations used
in prior work (accomplished by introducing a projection operator).

• Experimental results showing convex layerwise adversarial training can train neural net-
work models which achieve both, state-of-the-art accuracy and certified robustness on
CIFAR-10 with 2/255 L∞ perturbation.

• Complete implementation of our training and certification methods in a system which we
release at https://github.com/eth-sri/colt.

Overall, we believe the method presented in this work is a promising step towards training models
that enjoy both, higher accuracy and higher certification guarantees. An interesting item for future
work would be to explore instantiations of the method with other convex relaxations than the one
considered here.

2 RELATED WORK

We now discuss some of the closely related work on robustness of neural networks.

Heuristic adversarial defenses After the first introduction of adversarial examples (Szegedy
et al., 2013; Biggio et al., 2013), defense mechanisms to train robust neural networks were built
based on the inclusion of adversarial examples to the training set (Kurakin et al., 2017; Goodfel-
low et al., 2015). Models trained using adversarial training with projected gradient descent (PGD)
(Madry et al., 2018) were shown to be robust against the strongest known attacks (Carlini & Wag-
ner, 2017). This is in contrast to other defense mechanisms which have been broken by new attack
techniques (Athalye et al., 2018). While models trained using adversarial training achieve robust-
ness against strong adversaries, there are no guarantees that model is robust against any kind of
adversarial attack under the threat model considered.

Provable adversarial defenses There has also been considerable amount of work on methods to
train classifiers with robustness guarantees. These approaches are typically based on Lipschitz reg-
ularization Hein & Andriushchenko (2017), linear (Wong & Kolter, 2018) or semidefinite (Raghu-
nathan et al., 2018; Dvijotham et al., 2018a) relaxations, hybrid zonotope (Mirman et al., 2018) or
interval bound propagation (Gowal et al., 2018). While these approaches obtain robustness guaran-
tees, accuracy of these networks is relatively small and limits practical use of these methods.

There has also been recent work on certification of general neural networks, not necessarily trained
in a special way. These methods are based on SMT solvers (Katz et al., 2017), abstract interpretation
(Gehr et al., 2018), mixed-integer linear programs (Tjeng et al., 2019), linear relaxations (Weng
et al., 2018; Zhang et al., 2018; Singh et al., 2019c) or combinations of those (Singh et al., 2019b;a).

Another line of work proposes to replace neural networks with a randomized classifier (Lecuyer
et al., 2018; Cohen et al., 2019; Salman et al., 2019a) which comes with probabilistic guarantees
on its robustness. While these approaches scale to larger datasets such as ImageNet (although with
probabilistic instead of exact guarantees), their bounds come from the relationship between L2 ro-
bustness and Gaussian distribution. In this paper, we consider general verification problem where
input is not necessarily limited to an Lp ball, but arbitrary convex set, as explained in Section 3.
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3 BACKGROUND

In this work we consider a threat model where an adversary is allowed to transform an input x ∈ Rd0
into any point from a convex set S0(x) ⊆ Rd0 . The set S0 can capture wide range of specifications
such asLp perturbations (Wong & Kolter, 2018), geometric transformations (Balunović et al., 2019),
semantic perturbations (Mohapatra et al., 2019) or camera imaging (Yang & Rinard, 2019). In the
case of a threat model based on L∞ perturbations, which we experiment with later, the convex set
will be defined as S0(x) = {x′ ∈ Rd0 , ||x− x′||∞ < ε}.
A neural network consisting of k layers and parameters θ is represented as a function hθ where
hθ = hkθ ◦ h

k−1
θ · · · ◦ h1θ and hiθ : Rdi−1 → Rdi denotes a transformation applied at hidden layer i.

We also denote the function representing part of the neural network from layer i to the final layer k
as hi:kθ = hkθ ◦ h

k−1
θ · · · ◦ hiθ.

Our goal will be to prove a property on the output of the neural network, encoded via a linear
constraint:

cThθ(x
′) + d < 0,∀x′ ∈ S0(x) (1)

where c and d are property specific vector and scalar values, respectively. This formulation is
general enough to capture many interesting safety properties (Dvijotham et al., 2018b; Qin et al.,
2019), including robustness toLp perturbations. The standard approach to train a model hθ to satisfy
this constraint is to define a surrogate loss L and solve the following min-max optimization problem:

min
θ

E(x,y)∼D max
x′∈S0(x)

L(hθ(x
′), y) (2)

Because inner maximization is intractable, most existing approaches replace it with an approxima-
tion. Depending on the used approximation, we distinguish two families of techniques.

Adversarial training One family of methods, referred to as adversarial training (Goodfellow
et al., 2015; Kurakin et al., 2017), replaces the maximum loss with a lower bound which is ob-
tained using an adversarial attack. Madry et al. (2018) maximized the inner loss using a projected
gradient descent (PGD) attack and found that, perhaps surprisingly, this optimization procedure suc-
ceeds in training deep architectures which are robust against the strongest known adversaries. While
this provides strong empirical evidence that the resulting models are indeed robust, the approach
offers no guarantees. Thus, it remains unclear whether there exist even stronger attacks that could
break a model trained in this manner.

Provable defenses A second family of methods to train certified neural networks is based on the
computation of an upper bound to the inner loss, as opposed to a lower bound computed for adversar-
ial training. These methods are typically referred to as provable defenses as they provide guarantees
on the robustness of the resulting network, under any kind of attack inside the threat model. An
upper bound is typically computed using linear relaxations (Wong & Kolter, 2018), interval propa-
gation (Gowal et al., 2018) or methods combining interval bounds and linear relaxations (Mirman
et al., 2018; Zhang et al., 2020). However, these methods suffer from two disadvantages.

First, due to the convex relaxations, an upper bound on the loss is typically not tight and can be
quite loose. However, we believe this is less of an issue due to the fact that interval relaxations
were shown to experimentally be able to train more provably robust models than methods based on
linear relaxations (which usually produce tighter bounds than intervals). For example, Mirman et al.
(2018); Zhang et al. (2020) report ∼ 28% robust accuracy using pure interval training on CIFAR-10
with perturbation 8/255 while Wong et al. (2018) achieve 21% using linear relaxations.

Second, the way these methods construct the loss makes the relationship between the loss and the
network parameters significantly more complex than in standard training. Given a network with L
layers and at most N neurons in each layer, to compute the loss we have to perform O(LN2) oper-
ations for interval training and O(LN3) operations for linear relaxation based training. Intuitively,
while there are exceptions, we can expect that a loss involving more mathematical operations is more
difficult to minimize. We hypothesize that this complexity of loss computation (here quantified as
number of operations) causes the resulting optimization problem for training the network to be more
difficult, meaning these training methods often converge to a suboptimal solution. Our experimental
results confirm this – we substantially outperform existing methods both in terms of accuracy and
certified robustness using the same linear relaxation, but a different optimization procedure.
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Certification via convex relaxations We now formally describe how provable defenses perform
certification. We denote the set of possible intermediate concrete vectors at layer i that can be
obtained by propagating vector x′ ∈ S0(x) through the network as Si(x) = hiθ(Si−1(x)) ⊆ Rdi .
As it is difficult to explicitly compute the set Si(x), a standard approach is to approximate it via
a convex relaxation Ci(x). As the input set is already convex, there is no need to introduce a
relaxation, and thus we set C0(x) = S0(x). Given a neural network layer hiθ which transforms one
set of vectors into another, we represent its corresponding convex relaxation transformer as giθ. That
is, giθ will transform one convex set into another convex set. More formally, for any set D ⊆ Rdi−1 ,
giθ(D) is convex and hiθ(D) ⊆ giθ(D). Then, we recursively define the effect of giθ on a convex
relaxation as Ci(x) = giθ(Ci−1(x)) ⊆ Rdi . Finally, to certify robustness using the obtained convex
relaxation, it is enough to check whether all output vectors in Ck(x) satisfy the linear constraint in
Equation 1. If this is true, then all output vectors in Sk(x) satisfy the constraint as well due to the
fact that Sk(x) ⊆ Ck(x).

4 PROVABLE DEFENSE VIA CONVEX LAYERWISE ADVERSARIAL TRAINING

We now describe our convex layerwise adversarial training approach which yields a provable defense
that bridges the gap between standard adversarial training and existing provable defenses.

Motivation: latent adversarial examples Consider an already trained neural network model hθ
which we would like to certify using convex relaxations. A fundamental issue here is that certifi-
cation methods based on convex relaxations can struggle to prove the target property (e.g., robust-
ness) due to the iterative loss of precision introduced by the relaxation. More precisely, assume
the neural network actually satisfies the property from Equation 1 for an input x, meaning that
cThθ(x

′) + d < 0,∀x′ ∈ S0(x). Naturally, this also implies that the neural network behaves
correctly in the latent space of its first hidden layer in the region S1(x). Formally, this means that
cTh2:kθ (x′1)+d < 0,∀x′1 ∈ S1(x). However, if one would use a certification method which replaces
the region S1(x) by its convex relaxation C1(x), then it is possible that we would fail to certify our
desired property. This is due to the fact that there may exist an input x′1 ∈ C1(x) \ S1(x) such that
cTh2:kθ (x′1) + d ≥ 0. Of course, we could repeat the above thought experiment and possibly find
more violating latent inputs in the set Ci(x) \ Si(x) of any hidden layer i. The existence of points
found in the difference between a convex relaxation and the true region is a fundamental reason for
the failure of certification methods based on convex relaxations. For convenience, we refer to such
points as latent adversarial examples. Next, we describe a method which trains the neural network
in a way that aims to minimize the number of latent adversarial examples.

Layerwise provable optimization via convex relaxations Our key observation is that the two
families of defense methods described earlier are in fact different ends of the same spectrum: meth-
ods based on adversarial training maximize the cross-entropy loss in the first convex region C0(x)
while provable defenses maximize the same loss, but in the last convex region Ck(x). Both methods
then backpropagate the loss through the network and update the parameters using SGD. However,
as explained previously, certification methods may fail even before the last layer due to the presence
of latent adversarial examples in the difference of the regions Ci(x) and Si(x). A natural question
then is – can we leverage adversarial training so to eliminate latent adversarial examples from hidden
layers and obtain a provable network?

To this end, we propose adversarial training in layerwise fashion. The initial phase of training is
equivalent to adversarial training as used by Madry et al. (2018). In this phase in the inner loop we
repeatedly find an input in C0(x) which maximizes the cross-entropy loss and update the parameters
of the neural network so to minimize this loss using SGD. Note that the outcome of this phase is
a model which is highly robust against strong multi-step adversaries. However, certification of this
fact often fails due to the previously mentioned loss of precision in the particular convex relaxation
being used, which then leads to the existence of latent adversarial examples in the hidden layers.

The next step of our training method is visually illustrated in Figure 1. Here, we propagate the
initial convex region through the first layer of the network and obtain the convex region C1(x). We
then solve the optimization problem to find a concrete point x′1 inside of C1(x) which produces
the maximum loss when this point is propagated further through the network (this forward pass
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Figure 1: An iteration of convex layerwise adversarial training. Latent adversarial example x′1 is
found in the convex region C1(x) and propagated through the rest of the layers in a forward pass,
shown with the blue line. During backward pass, gradients are propagated through the same layers,
shown with the red line. Note that the first convolutional layer does not receive any gradients.

is shown with the blue line). Finally, we backpropagate the final loss (red line) and update the
parameters of the network so to minimize the loss. Critically, we do not backpropagate through the
convex relaxation in the first layer as standard provable defenses do (Wong & Kolter, 2018; Mirman
et al., 2018; Gowal et al., 2018). We instead freeze the first layer and stop backpropagation after the
update of the second layer. Because of this, our optimization problem is significantly easier – the
neural network only has to learn to behave well on the concrete points that were found in the convex
region Cl(x). This can be viewed as an extension of the robust optimization method that Madry
et al. (2018) found to work well in practice.

We then proceed with the above process for later layers. Formally, this training process amounts to
(approximately) solving the following min-max optimization problem at the l-th step:

min
θl+1:k

E(x,y)∼D max
x′l∈Cl(x)

L(hl+1:k
θ (x′l), y, θ) (3)

Note that for l = 0 this formulation is equivalent to the standard min-max formulation in Equation 2
because C0(x) = S0(x). Our approach to solve this min-max optimization problem for every layer
l is shown in Algorithm 1. We initialize every batch by random sampling from the corresponding
convex region. Then, in every iteration we use projected gradient descent (PGD) to maximize the
inner loss in Equation 3. We first updatex′j in the direction of the gradient of the loss and then project
it back to Cl(xj) using the projection operator Π. Note that this approach assumes an existence of
an efficient projection method to the particular convex relaxation the method is instantiated with. In
the next section, we show how to instantiate the training algorithm described above to a particular
convex relaxation which is generally tighter than a hyperrectangle and where we derive an efficient
projection operation.

Algorithm 1: Convex layerwise adversarial training via convex relaxations
Data: k-layer network hθ, training set (X ,Y), learning rate η, step size α, inner steps n
Result: Certifiably robust neural network hθ

1 for l ≤ k do
2 for i ≤ nepochs do
3 Sample mini-batch {(x1, y1), (x2, y2), ..., (xb, yb)} ∼ (X ,Y);
4 Compute convex relaxations Cl(x1),Cl(x2), ...,Cl(xb);
5 Initialize x′1 ∼ Cl(x1),x′2 ∼ Cl(x2), ...,x′b ∼ Cl(xb);
6 for j ≤ b do
7 Update in parallel n times: x′j ← ΠCl(xj)(x

′
j + α∇x′jL(hl+1:k

θ (x′j), yj));
8 end
9 Update parameters θ ← θ − η · 1b

∑b
j=1∇θL(hl+1:k

θ (x′j), yj);
10 end
11 Freeze parameters θl+1 of layer function hl+1

θ ;
12 end
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Figure 2: Projection to a region based on linear relaxation using change of variables.

5 CONVEX LAYERWISE ADVERSARIAL TRAINING USING LINEAR
RELAXATIONS

So far we described the general approach of convex layerwise adversarial training. Now we show
how to instantiate it for a particular convex relaxation based on linear approximations. If instead
one would use interval approximation (Mirman et al., 2018; Gowal et al., 2018) as the convex re-
laxation, then all regions Cl(x) would be hyperrectangles and projection to these sets is fast and
simple. However, the interval relaxation provides a coarse approximation which motivates the need
to train with relaxations that provide tighter bounds. Thus, we consider linear relaxations which are
generally tighter than those based on intervals.

In particular we leverage the same relaxation which was previously proposed in Wong & Kolter
(2018); Weng et al. (2018); Singh et al. (2018) as an effective way to certify neural networks. Here,
each convex region is represented as a set Cl(x) = {al +Ale | e ∈ [−1, 1]ml}. Vector al repre-
sents the center of the set and the matrix Al represents the affine transformation of the hypercube
[−1, 1]ml . This representation is also known as zonotope abstraction (Ghorbal et al., 2009). The ini-
tial convex region C0(x) is represented using a0 = x andA0 = εId0 is a diagonal matrix. Propaga-
tion of these convex regions through the network is out of the scope of this paper – a full description
can be found in Wong & Kolter (2018) or Singh et al. (2018). At a high level, the convolutional and
fully connected layers are handled by multiplyingAl and al by appropriate matrices. To handle the
ReLU activation, we apply a convex relaxation that amounts to multiplying Al and al by appropri-
ately chosen diagonal matrices which depend on whether the ReLU is activated or not. Using this
relaxation of ReLU, we recursively obtain all convex regions Cl(x). In practice, the term Ale can
be computed without explicitly constructing matrix Al because Ale = WlΛl−1Wl−2 · · ·M0e.
Due to the associativity of matrix multiplication, we can compute Ale by performing a chain of
matrix-vector multiplications from right to left (instead of more expensive chain of matrix-matrix
multiplications from left to right) and obtain vector Ale. We provide more detailed description of
this computation in Appendix A.

Projection to linear convex regions To use our training method we now need to instantiate Algo-
rithm 1 with a suitable projection operator ΠCl(x). The key insight here is that the vector x′ ∈ Cl(x)
is uniquely determined by auxiliary vector e ∈ [−1, 1]ml where x′ = al +Ale. Then instead of
directly solving for x′ which requires projecting to Cl(x), we can solve for e instead which would
uniquely determine x′. Crucially, the domain of e is a hyperrectangle [−1, 1]ml which is easy to
project to. To visualize this further we provide an example in Figure 2. The goal is to project the
red point x′ in the right picture to the convex region Cl(x). To project, we first perform change of
variables to substitute x′ with e and then project e to the square [−1, 1]× [−1, 1] to obtain the blue
point Π(e) on the left. Then, we again perform change of variables to obtain the blue point Π(x′)
on the right, which is the projection of x′ we were looking for.

Based on these observations, we modify Line 7 of Algorithm 1 to first update the coefficients ej
using the following update rule: ej ← clip(ej + αAT

l ∇x′jL(x′j , yj),−1, 1). Here clip is function
which thresholds its argument between -1 and 1, formally clip(t,−1, 1) = min(max(t,−1), 1).
This is followed by an update to x′j via x′j ← al +Alej , completing the update step.
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Efficient computation of convex regions While our representation of convex regions with matrix
Al and vector al has clean mathematical properties, in practice, a possible issue is that the matrix
Al can grow to be quite large. Because of this, propagating it through the network can be mem-
ory intensive and prohibit the use of larger batches. To overcome this difficulty, we propose two
methods.

First method is based on the observation thatAl is quite sparse. We start with a very sparse, diagonal
matrixA0 at the input. After each convolution, an element of matrixAl+1 is non-zero only if there is
a non-zero element inside of its convolutional kernel in matrixAl. We can leverage this observation
to precompute positions of all non-zero elements in matrix Al+1 and compute their values using
matrix multiplication.

Second method is based on the idea from Wong et al. (2018). Their key insight is that convex regions
Cl(x) can be computed approximately during training. They propose to use random projections
from Li et al. (2007) to estimate lower and upper bound for each neuron. While they operate in dual
framework, we apply the same approach in our primal view. In our experiments, we use this method
as it is more efficient than working with sparse representation. After training, during certification,
we compute regions Cl(x) exactly without the estimation.

This optimization is critical to enabling training to take place altogether. An interesting item for
future work is further optimizing the current relaxation (via a specialized GPU implementation) or
developing more memory friendly relaxations, so to scale the training to larger networks.

Regularization One issue with the method presented in Section 4 is that there is no explicit mech-
anism that tries to make convex relaxation Cl(x) as close as possible to the exact region Sl(x) in
order to avoid downstream loss of precision during later stages of the training, when layer l is already
frozen. To address this, we also incorporate additional regularizers similar to Xiao et al. (2019): L1

regularization and ReLU stability regularization. The purpose of L1 regularization is to learn sparse
weight matrices and the goal of ReLU stability regularization is to have fewer crossing ReLU units,
both of which are beneficial for precision. Our ReLU stability is different from Xiao et al. (2019)
since we directly minimize the area induced by our linear convex relaxation. More details for these
regularizers can be found in Appendix D.

6 CERTIFICATION OF NEURAL NETWORKS

After training a neural network via convex layerwise adversarial training, our goal is to certify
the target property (e.g., robustness). Here we leverage several recent advances in certification
techniques which are not fast enough to be incorporated into the training procedure, but which can
significantly speed up the certification or increase its precision.

Refinement of the linear approximation The linear relaxation of ReLU, which we are using,
is parameterized by slopes λ of the linear relaxation. Prior work which employed this relaxation
(Wong & Kolter, 2018; Weng et al., 2018; Singh et al., 2018) has chosen these slopes greedily by
minimizing the area of the relaxation. During training we also choose λ in the same way. However,
during certification, we can also optimize for the values of λ that give rise to the convex region
inside of which the maximum loss is minimized. This optimization problem can be written as:

min
λ∈[0,1]dl

max
x′∈Cl(x;λ)

L(hl+1:k
θ (x′), y)

Solving this is computationally too expensive inside the training loop, but during certification it is
feasible to approximate the solution. We solve for λ using the Adam optimizer and clipping the
elements between 0 and 1 after each update. We remark that the idea of learning the slope is similar
to Dvijotham et al. (2018b) who propose to optimize dual variables in a dual formulation, however
here we stay in the primal formulation.

Combining convex relaxations with exact bound propagation During convex layerwise adver-
sarial training we essentially train the network to be certified on all regions C0(x), ...,Ck(x). While
computing exact regions Sl(x) ⊆ Cl(x) is not feasible during training, we can afford it to some
extent during certification. The idea is to first propagate the bounds using convex relaxations until
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one of the hidden layers l and obtain a region Cl(x). If training was successful, there should not
exist a concrete point x′l ∈ Cl(x) which, if propagated through the network, violates the correctness
property in Equation 1. We can encode both, the property and the propagation of the exact bounds
Sl(x) using a Mixed-Integer Linear Programming (MILP) solver. Note that we can achieve this
because we represent the region Cl(x) using a set of linear constraints, which may not be possi-
ble for general convex shapes. We perform the MILP encoding using the formulation from Tjeng
et al. (2019). It is usually possible to encode only the last two layers using MILP due to the poor
scalability of these solvers for realistic network sizes. One further improvement we also include is
to tighten the convex regions Cl(x) using refinement via linear programming as described in Singh
et al. (2019b). We remark that this combination of convex relaxation and exact bound propagation
does not fall under the recently introduced convex barrier to certification Salman et al. (2019b).

7 EXPERIMENTAL EVALUATION

We now present an evaluation of our training method on the challenging CIFAR-10 dataset. All
of our code, datasets, trained models and scripts to reproduce the experiments can be found at
https://github.com/eth-sri/colt.

Experimental setup We perform all experiments on a desktop PC using a single GeForce RTX
2080 Ti GPU and 16-core Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz. We implemented training
and certification in PyTorch (Paszke et al., 2017) and used Gurobi 9.0 as a MILP solver.

Neural network architecture We evaluate on two architectures. First architecture is a 4-layer
convolutional network: first 3 layers are convolutional layers with filter sizes 32, 32, 128, kernel
sizes 3, 4, 4 and strides 1, 2, 2, respectively. Second architecture is a 3-layer convolutional network:
first 2 layers are convolutional layers with filter sizes 32 and 128, kernel sizes 5 and 4, strides 2 and
2, respectively. In both architectures, convolutional layers are followed by a fully connected layer
consisting of 250 hidden units. After each layer there is a ReLU activation. Final layer is a fully
connected layer with 10 output neurons.

Training During layerwise training we start with ε perturbation which is higher than the one we
certify, and then decrease it by a certain factor when the training progresses to the next layer. In each
stage of the training, we train for 200 epochs, starting from the same loss as in the previous stage and
gradually annealing it to the loss of the current stage during first 60 epochs. We optimize using SGD
with the initial learning rate 0.03 and after the initial 60 epochs we multiply the learning rate by 0.5
every 10 epochs. To find the best performing hyperparameters for training, we created a validation
set consisting of random 5000 images from the training set and used it to tune the hyperparameters
with SigOpt (Martinez-Cantin et al., 2018). We tuned batch size, initial ε, factor to decrease ε after
each layer, L1 regularization and ReLU stability factors. All hyperparameter values used in our
experiments are listed in Appendix C.1.

Certification After training completes, we perform certification as follows: for every image, we
first try to certify it using only linear relaxations (with the improvement of learned slopes, Section 6).
If this fails, we encode the last layer as MILP and try again. Finally, if this fails we encode the ReLU
activation after the last convolution using additional up to 50 binary variables and the rest using the
triangle formulation Ehlers (2017). We consider an image to be not certifiable if we fail to certify it
using these methods. We always certify the full test set of 10 000 images.

Comparison to prior work We first train a robust network using our method for the L∞ per-
turbation 2/255. In this experiment, we used larger architecture with 3 convolutional and 1 fully
connected layer. We perform convex layerwise adversarial training in 4 stages, for 200 epochs per
stage, for a total of 800 epochs. The training takes 53, 164, 228, 250 seconds per epoch in the four
respective stages of the training. It takes roughly 2 days to certify 10 000 images on a single GPU.
Results are shown in Table 1. We always compare to the best reported and reproducible results
in the literature on any architecture. We do not compare to smoothing-based approaches (Cohen
et al., 2019), as these provide probabilistic instead of exact guarantees. Extensions to Cohen et al.
(2019) such as Salman et al. (2019a) also use additional existing techniques such as pre-training
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Table 1: Evaluation on CIFAR-10 dataset with L∞ perturbation 2/255

Method Accuracy(%) Certified Robustness(%)

Our work 78.4 60.5
Zhang et al. (2020) 71.5 54.0
Wong et al. (2018) 68.3 53.9
Gowal et al. (2018) 70.2 50.0
Xiao et al. (2019) 61.1 45.9
Mirman et al. (2019) 62.3 45.5

Table 2: Evaluation on CIFAR-10 dataset with L∞ perturbation 8/255

Method Accuracy(%) Certified Robustness(%)

Our work 51.7 27.5
Zhang et al. (2020) 54.5 30.5
Mirman et al. (2019) 46.2 27.2
Wong et al. (2018) 28.7 21.8
Xiao et al. (2019) 40.5 20.3

on ImageNet and unlabeled data which are orthogonal. We also do not compare to using cascades
from Wong et al. (2018), as this improvement is also orthogonal to the method here. Thus, we only
consider their best single network architecture (inline with prior work Zhang et al. (2020) which
compares to a single architecture). We believe all methods listed in Table 1, including ours, would
benefit from additional techniques such as cascades, pre-training and leveraging unlabeled data. Ex-
perimentally, we find that the neural network trained using our method substantially outperforms all
existing approaches, both in terms of standard accuracy and certified robustness for 2/255. Note that
here we are using the same linear relaxation as Wong et al. (2018), but our optimization procedure is
different and shows significant improvements over the one used in their work. We also remark that
concurrent work Zhang et al. (2020) reports 59.7% robustness against PGD which implies that even
empirical robustness of their best model is lower than certified robustness of our network.

We also run the same experiment for L∞ perturbation 8/255 and present the results in Table 2. In
this experiment, we used smaller architecture with 2 convolutional and 1 fully connected layer. Here
we perform convex layerwise adversarial training in 3 stages, again for 200 epochs per stage, for a
total of 600 epochs. The training takes 20, 67, 87 seconds per epoch in the three respective stages of
the training. Here we do not include comparison with Gowal et al. (2018) as their results were found
to be not reproducible (Mirman et al., 2019; Xu, 2019; Zhang et al., 2019), and the best reproducible
results for this method can be found in Zhang et al. (2020). Here we substantially outperform all
existing approaches except for the concurrent work of Zhang et al. (2020) whose method is based on
a combination of interval and linear relaxation. We suspect that here the main issue is that our 3-layer
network lacks capacity to solve this task, and capacity was found to be one of the key components
necessary to obtain a robust classifier (Madry et al., 2018). Due to promising results for 2/255, we
believe achieving state-of-the-art results for 8/255 is very likely an issue of instantiating our method
with a convex relaxation that is more memory efficient, which we believe is an interesting item for
future work.

Analysis Next, we analyze the effect of our convex layerwise adversarial training, also on CIFAR-
10 with 2/255 and 8/255 L∞ perturbations. Recall that in the first stage, our training is equivalent
to PGD from Madry et al. (2018) and in each of the successive stages, we freeze the current layer
and retrain the rest of the network. In this experiment, we are interested in robustness of a model
against latent adversarial attacks during each stage of the training. To perform this experiment, after
each stage of the training we stored the intermediate model and ran latent adversarial attack on these
models, on each of the layers. For latent adversarial attack, we perform PGD in the latent space,
with 150 steps and step size of 0.01. Note that final models correspond to the models reported in
Table 1 and Table 2.
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Figure 3: Effect of proposed convex layerwise adversarial training. After each stage of the training,
we attack the model with a latent adversarial attack on each of the layers. Note that layer 0 represents
standard PGD attack (attack in the input space).

The results are shown in Figure 3a and Figure 3b, for 2/255 and 8/255 perturbations, respectively.
Each dot represents success rate of latent adversarial attack on a trained model, where each model is
shown in a different color. Red line shows the model trained after the first stage, which is equivalent
to PGD training from Madry et al. (2018). As expected, this model is robust against the standard
adversarial attack in the input space which is denoted as attack on layer 0. However, this Stage 1
model lacks robustness in the deeper layers which prevents us from certifying the robustness using
convex relaxations. Using convex layerwise adversarial training, the model progressively becomes
robust to perturbations in the deeper layers. For example, Figure 3a shows that final model, after
Stage 4, has 41% robustness in layer 4 which is significant improvement over Stage 1 model which
has only 18% robustness in layer 4. Note that this means we can certify 41% using only linear
relaxation, and 60.5% when learning the slopes and encoding part of the network as MILP, which is
explained in Section 6. We observe similar results for 8/255 perturbation shown in Figure 3b.

Other datasets To further evaluate our method, we also experimented with other datasets: Street
House View Numbers (SVHN) and MNIST Handwritten Digits. We report the full results in Ap-
pendix C.2 and give a brief summary here. On SVHN with L∞ perturbation 0.01 we also achieve
state-of-the-art accuracy and certified robustness. On MNIST, we evaluated with perturbations 0.1
and 0.3. With L∞ perturbation 0.1 we achieve results comparable with best results from prior work,
while with perturbation 0.3 our certified robustness is lower than the one achieved by approaches
based on interval bound propagation (Zhang et al., 2020). We believe that, because of large pertur-
bation of 0.3, random projections are imprecise and one would need to use the exact bounds which
introduces much higher cost at runtime. This is also reflected in the poor performance of Wong et al.
(2018) on this benchmark, as we use the same random projections as their work. We believe that
instantiating our method with a convex relaxation that is more memory friendly than what we used
would likely yield better results in this experiment.

8 CONCLUSION

We presented a new method to train certified neural networks. The key concept was to combine
techniques from provable defenses using convex relaxations with those of adversarial training. Our
method, named convex layerwise adversarial training (COLT), achieves state-of-the-art 78.4% ac-
curacy and 60.5% certified robustness on CIFAR-10 with a 2/255 L∞ perturbation, significantly
outperforming prior work when considering a single network (it also achieves competitive results
on 8/255 L∞). The method is general and can be instantiated with any convex relaxation. A promis-
ing future work item is scaling to larger networks: this will require tight convex relaxations with a
low memory footprint that allow for efficient projection.
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Here we provide additional details that were omitted in the main body of the paper.

A CONVEX RELAXATION USING LINEAR APPROXIMATIONS

In this section, we describe how to propagate convex relaxations of the form Cl(x) = {al +Ale |
e ∈ [−1, 1]ml} through the network, for a single input x. As explained before, these relaxations
were previously proposed in Wong & Kolter (2018); Weng et al. (2018); Singh et al. (2018). For the
sake of completeness we describe them here using our notation. Depending on the form of function
hiθ representing operation applied at layer i we distinguish different cases. Here we assume that we
have obtained region Ci−1(x) and our goal is to compute the region Ci(x) using convex relaxation
giθ of the function hiθ.

Initial convex region Let ε be L∞ radius which we are certifying. First, we compute minimum
and maximum pixel values for each pixel as xl = max(0,x − ε) and xu = min(1,x + ε). Then,
we define initial convex region as:

m0 := d0

a0 :=
1

2
(xl + xu)

A0 :=
1

2
Id0(xu − xl)

Convolutional and fully connected layers For both convolutional and fully connected layers, the
concrete update is given by x′i+1 = hi+1

θ (x′i) = Wi+1x
′
i + bi+1. Recall that x′i = ai +Aie where

e ∈ [−1, 1]mi . We can then compute:

hi+1
θ (x′i) = Wi+1x

′
i + bi+1

= Wi+1(ai +Aie) + bi+1

= Wi+1ai + bi+1 +Wi+1Aie

Using this formula, we define convex region Ci+1(x) = {ai+1 +Ai+1e | e ∈ [−1, 1]mi+1} where:

mi+1 := mi

ai+1 := Wi+1ai + bi+1

Ai+1 := Wi+1Ai

ReLU activation In this case hi+1
θ is ReLU activation function and x′i+1 = hi+1

θ (x′i) =
ReLU(x′i) = max(x′i, 0) applied componentwise. We will explain the transformation of a sin-
gle element x′i,j = ai,j +Ai,je. We first compute lower bound li,j and upper bound ui,j of element
x′i,j in the set Ci(x):

li,j = ai,j −
mi∑
k=1

|Ai,j,k|

ui,j = ai,j +

mi∑
k=1

|Ai,j,k|

If ui,j < 0 then ReLU(x′i,j) = 0 and if li,j > 0 then ReLU(x′i,j) = x′i,j . In the other case where 0
is between li,j and ui,j we define ReLU(x′i,j) = λi,jx

′
i,j + µi,jemi+j where emi+j ∈ [−1, 1] is a

coefficient for a new error term. Formulas for λi,j and µi,j are the following:

λi,j =
ui,j

ui,j − li,j

µi,j =
−ui,j li,j

2(ui,j − li,j)
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This computation can also be written in the matrix form as ReLU(x′i) = Λi+1x
′
i + Mi+1enew

where Λi+1 and Mi+1 are diagonal matrices with elements computed as above. More formally,
Λi+1 and Mi+1 are both di × di diagonal matrices with diagonal entries Λi+1,j,j = λi,j and
Mi+1,j,j = µi,j .

We can rewrite x′i+1 = Λi+1x
′
i + Mi+1enew = Λi+1(ai + Aie) + Mi+1enew. Finally, new

convex region Ci+1(x) = {ai+1 +Ai+1e | e ∈ [−1, 1]mi+1} is defined as:

mi+1 = mi + di

ai+1 = Λi+1ai

Ai+1 = [Λi+1Ai,Mi+1]

where [] denotes concatenation of matrices along the column dimension.

B STATISTICAL ESTIMATION OF BOUNDS USING RANDOM PROJECTIONS

Here we describe how we apply random projection approach from Wong et al. (2018) to estimate
the bounds during training. While Wong et al. (2018) operate in dual framework, their method to
statistically estimate the bounds during training can also be applied in primal framework which we
use in this paper. Recall that lower and upper bound for each neuron are computed as

li,j = ai,j −
mi∑
k=1

|Ai,j,k| (4)

ui,j = ai,j +

mi∑
k=1

|Ai,j,k| (5)

Thus, we need to compute ||Ai||1, which is L1 norm of each row in the matrix Ai. Wong et al.
(2018) propose a method, based on the result from Li et al. (2007), to estimate ||Ai||1 using Cauchy
random projections. Here Ai is a matrix with di rows and mi columns, where di is dimensionality
of the output vector in the i-th layer andmi is number of unit terms in the definition of region Ci(x).
The method of random projections samples standard Cauchy random matrixR of dimensionsmi×k
(k is number of projections) and then estimates ||Ai||1 ≈ median(|AiR|). First, we expandAi as:

Ai = [WiAi−1]

= [Wi[Λi−1Ai−2,Mi−1]]

= [WiΛi−1Ai−2,WiMi−1]

= [WiΛi−1Wi−2Ai−3,WiMi−1]

= [WiΛi−1Wi−2[Λi−3Ai−4,Mi−3],WiMi−1]

= [WiΛi−1Wi−2Λi−3Ai−4,WiΛi−1Wi−2Mi−3,WiMi−1]

= · · ·
= [WiΛi−1Wi−2Λi−3 · · ·M0, . . . ,WiΛi−1Wi−2Mi−3,WiMi−1]

In the formula above, we setM0 = A0. Now,

||Ai||1 = ||WiΛi−1Wi−2Λi−3 · · ·M0||1 + · · ·+ ||WiΛi−1Wi−2Mi−3||1 + ||WiMi−1||1
To calculateAiR we splitR = [R0,R2, ...,Ri−1] and compute:

AiR = WiΛi−1Wi−2Λi−3 · · ·M0R0 + Λi−1Wi−2Mi−3Ri−3 + · · ·+WiMi−1Ri−1

Crucially, each summand can now be efficiently computed due to the associativity of matrix multi-
plication by performing the multiplication from right ot left. Finally, we compute the elementwise
absolute value of AiR and take the median of each row, resulting in estimate of ||Ai||1. Using this
approach, we obtain statistical estimate of bounds li,j , ui,j in Equation 4.

C ADDITIONAL EXPERIMENTAL RESULTS AND HYPERPARAMETERS

In this section we present additional results on SVHN and MNIST datasets.
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C.1 HYPERPARAMETERS

Here we list all hyperparameters used in our experiments.

Table 3: Hyperparameter values for CIFAR-10 with L∞ perturbation 2/255

Hyperparameter Value

L1 regularizer 1e-5
εstart 1.05 · (2/255)
εinc 1.1
batch size 100
ReLU stability regularizer 0.005
ReLU stability increase factor 1.5

Table 4: Hyperparameter values for CIFAR-10 with L∞ perturbation 8/255

Hyperparameter Value

L1 regularizer 5e-6
εstart 1.05 · (8/255)
εinc 1.2
batch size 150
ReLU stability regularizer 0.003
ReLU stability increase factor 1.5

CIFAR-10 For the experiments on CIFAR-10 dataset, we show hyperparameter values for L∞
perturbation 2/255 in Table 3 and for 8/255 in Table 4. Across both experiments, we use 8 steps
during the latent adversarial attack and each step size is 0.25 (where perturbations are normalized
between -1 and 1). In both cases, we use initial learning rate 0.03 and multiply learning rate by 0.5
every 10 epochs, after the initial 60 epochs. During the first 60 epochs, we mix the loss from the
previous layer and the current layer (with current layer factor increasing linearily) and train each
stage for total of 200 epochs. The rest of the hyperparameters are tuned on the validation set using
Martinez-Cantin et al. (2018) for each experiment separately and shown in Table 3 and Table 4.

Table 5: Hyperparameter values for SVHN with L∞ perturbation 0.01

Hyperparameter Value

L1 regularizer 5e-5
εstart 0.01
εinc 1.2
batch size 200
ReLU stability regularizer 0.005
ReLU stability increase factor 1.5

SVHN For the experiments on SVHN dataset, we use 40 steps for the latent adversarial attack
with step size 0.035. We train using Adam (Kingma & Ba, 2014) with initial learning rate 0.0001
which is multiplied by 0.5 every 20 epochs, after the initial 60 epochs. Same as for CIFAR-10, we
mix the losses during the initial 60 epochs and train each stage for a total of 200 epochs. We did not
tune the hyperparameters for this experiment. The hyperparameters are shown in Table 5.

MNIST For the experiments on MNIST dataset, we use 40 steps for the latent adversarial attack
with step size 0.035. We train using Adam (Kingma & Ba, 2014) with initial learning rate 0.0001
which is multiplied by 0.5 every 10 epochs, after the initial mixing epochs. When training with
perturbation 0.1 we use 100 mixing and 300 total epochs, while for perturbation 0.3 we use 60
mixing and 150 total epochs for each stage of the training. We did not tune the hyperparameters for
this experiment. The hyperparameters are shown in Table 6 and Table 7.
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Table 6: Hyperparameter values for MNIST with L∞ perturbation 0.1

Hyperparameter Value

L1 regularizer 1e-5
εstart 1.5
εinc 1.0
batch size 100
ReLU stability regularizer 0.005
ReLU stability increase factor 1.5

Table 7: Hyperparameter values for MNIST with L∞ perturbation 0.3

Hyperparameter Value

L1 regularizer 1e-5
εstart 0.3
εinc 1.1
batch size 100
ReLU stability regularizer 0.0005
ReLU stability increase factor 1.0

C.2 EXPERIMENTAL EVALUATION ON SVHN AND MNIST

We also evaluated our method on SVHN and MNIST datasets.

SVHN We evaluated our method on SVHN dataset. For this experiment, we used convolutional
network with 2 convolutional layers of kernel size 4 and stride 1 with 32 and 64 filters respectively.
These convolutional layers are followed by a fully connected layer with 100 neurons. Each of the
layers is followed by a ReLU activation function. Results of this experiment are shown in Table 8.
We certified full SVHN test dataset consisting of 26 031 images. Our network has both, higher
accuracy and higher certified robustness, than networks trained using prior approaches.

MNIST In the next experiment, we evaluated on MNIST dataset. For this experiment, we used
convolutional network with 2 convolutional layers with kernel sizes 5 and 4, and strides 2 followed
by 1 fully connected layer. Each of the layers is followed by a ReLU activation function. We
certified the full test set, consisting of 10 000 images.

For perturbation 0.1, convolutional layers have filter sizes 32 and 64, and fully connected layer
has 100 neurons. Results are presented in Table 9. Here, our numbers are comparable to those of
state-of-the-art approaches.

For perturbation 0.3, convolutional layers have filter sizes 32 and 128, and fully connected layer
has 250 neurons. Results are presented in Table 10. Here, our certified robustness is lower than
state-of-the-art. We believe this is due to the imprecise estimates of lower and upper bound via
random projections. This is also reflected in relatively poor performance of Wong et al. (2018) who
also rely on the same statistical estimates. Thus, for MNIST dataset and perturbation 0.3 it is likely
necessary to use exact propagation instead of the estimates. However, as this also induces large cost
to the runtime, the most promising approach may be a new convex relaxation which is more memory
efficient.

D REGULARIZATION

During training, we use two regularization mechanisms to make our convex relaxation tighter, both
previously proposed in Xiao et al. (2019).

First, we use L1-norm regularization which is known to induce sparsity in the weights of the net-
work. Xiao et al. (2019) has shown that weight sparsity helps to induce more stable ReLU units
which in turn makes our convex relaxation tighter (as for stable ReLU units it is already precise).
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Table 8: Evaluation on SVHN dataset with L∞ perturbation 0.01

Method Accuracy (%) Certified robustness (%)

Our work 88.5 70.2
Gowal et al. (2018) 85.2 62.4
Wong & Kolter (2018) 79.6 59.3
Dvijotham et al. (2018a) 83.4 62.4

Table 9: Evaluation on MNIST dataset with L∞ perturbation 0.1

Method Accuracy (%) Certified robustness (%)

Our work 99.2 97.1
Gowal et al. (2018) 98.9 97.7
Zhang et al. (2019) 99.0 94.4
Wong et al. (2018) 98.9 96.3
Dvijotham et al. (2018a) 98.8 95.6
Mirman et al. (2019) 98.7 95.8
Xiao et al. (2019) 99.0 95.6

Second, in the i-th phase of training, we explicitly introduce a loss based on the volume of convex
region Ci+1. To make the relaxation tighter and minimize the volume, for each neuron j in layer
i + 1 we add a loss of the form max(0,−li+1,j) max(0, ui+1,j). This loss corresponds to the area
under ReLU relaxation, and derivation of this formula can be found in e.g. Singh et al. (2018) for a
derivation.

Table 10: Evaluation on MNIST dataset with L∞ perturbation 0.3

Method Accuracy (%) Certified robustness (%)

Our work 97.3 85.7
Gowal et al. (2018) 98.3 91.9
Zhang et al. (2020) 98.2 93.0
Wong et al. (2018) 85.1 56.9
Mirman et al. (2019) 96.6 89.3
Xiao et al. (2019) 97.3 80.7
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