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Abstract

About a decade ago, optically levitated nanoparticles have been proposed for
macroscopic tests of quantum mechanics. For such tests, the thermal motion of
the particle’s center of mass is required to be close to its ground state of energy.
Ever since these proposals, research groups around the world try to achieve
ground-state cooling of optically levitated glass particles.

In this dissertation, we cool the center-of-mass motion of a nanoparticle in
an optical trap. Based on the position measurement of the particle, we apply a
damping force in proportion to the particle’s speed, which leads to a cooling
effect. We find that the cooling performance of our cold damping scheme is
limited by the measurement imprecision. We analyze our detection principle
theoretically and find an ideal detection scheme whose imprecision is at the
fundamental noise level dictated by quantum mechanics. Such a Heisenberg-
limited detection would, in principle, allow for ground-state feedback cooling.
With these insights applied to our experiment, we cool the motion of our particle
to an average of four quanta. Moreover, we resolve an asymmetry between the
Stokes and anti-Stokes scattered light from the particle. This quantum effect
allows us to calibrate the system to the ground state energy.

Our work advances the research field of levitated optomechanics toward
quantum control and therefore toward macroscopic tests of quantum mechanics.
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Zusammenfassung

Vor rund zehn Jahren wurde vorgeschlagen, die Gesetze der Quantenmechanik
an makroskopischen Objekten mittels in Laserstrahlen schwebenden Nanopar-
tikeln zu testen. Seitdem versuchen Forschungsgruppen weltweit, die thermis-
che Partikelbewegung von solch schwebenden Glaspartikeln bis nah an ihren
Quantengrundzustand zu kühlen.

In dieser Dissertation kühlen wir die Schwerpunktsbewegung eines
Nanopartikels in seiner optischen Falle. Basierend auf einer Positionsmessung
legen wir eine dämpfende Kraft in Proportion zur Partikelgeschwindigkeit
an, was zu einer Kühlung der Bewegung führt. Wir beobachten, dass diese
Kühltechnik durch unsere Messungenauigkeit limitiert ist. Wir untersuchen
unsere optische Detektion theoretisch und finden ein ideales Messverfahren,
dessen Ungenauigkeit durch die fundamentalen Nullpunktfluktuationen
der Quantenphysik gegeben ist. Solch eine Heisenberg-limitierte Messung
würde es uns prinzipiell ermöglichen, das Partikel in seinen Grundzustand
zu kühlen. Mit dieser Einsicht angewandt auf unser Experiment kühlen
wir die Partikelbewegung zu vier Energiequanten. Damit können wir die
sogenannte Seitenbandasymmetrie zwischen Stokes und Anti-Stokes Streuung
auflösen. Dieser Quanteneffekt ermöglicht es uns, das System gegen die
Grundzustandsenergie zu kalibrieren.

Unsere Arbeit bringt das Forschungsfeld der schwebenden Optomechanik
einen Schritt näher in Richtung makroskopischer Tests der Quantentheorie.
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1
Introduction

The interaction of light and matter is at the heart of a host of precision measure-
ments, ranging from the detection of gravitational waves to the definition of the
international unit system [1, 2]. What makes light fields our probe of choice is
the availability of detectors and laser sources that operate at the fundamental
noise limit dictated by the laws of quantum mechanics. Recognizing the
potential of the laser to investigate fundamental physical processes, the scientific
community started to explore the possibilities of mechanical manipulation of
matter using the forces of light in optical traps [3–6]. These forces, more
specifically their fluctuations, can be interpreted as the inevitable consequence
of the measurement process resulting from light-matter interaction [7]. Thus,
optical forces and measurement precision are linked according to the Heisenberg
uncertainty principle. The investigation of these measurement backaction effects
has generated the field of optomechanics, which has developed experimental
platforms that allow both measurement and control of mechanical motion at the
quantum limit using light fields [8–12].

One of the many optomechanical systems are dielectric particles levitated
in optical traps [13–20]. These levitated systems complement traditional
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1 Introduction

mechanically tethered structures, in applications ranging from precision mea-
surements [21–24] to the investigation and control of quantum states of massive
objects [25]. For both levitated and mechanically clamped oscillators, inves-
tigation of unexplored physics, such as the experimental testing of collapse
models [26], requires cooling the oscillator’s motion to its quantum ground
state as a prerequisite. This feat has been achieved for cryogenically precooled
mechanically clamped systems using autonomous cavity cooling [27–29].
Cavity cooling is also a promising cooling technique for levitated systems [30–
35]. With the recent first report on cavity-based ground-state cooling [36], the
field is on the brink of developing quantum control over the optically levitated
particle.

In parallel to cavity-based cooling techniques, the field of levitated op-
tomechanics has experienced a fast development of active-feedback cooling.
Here, the levitated particle’s position is measured in real time and fed back
to the system using an electronic filter. The filter is tuned such that energy is
removed from the motion, leading to a cooling effect. Two versions of these
so-called cold-damping techniques exist, namely linear feedback [15, 37, 38]
and parametric feedback [18, 39, 40]. The forerunner in cooling the optical
levitated particle’s oscillation was in a single-beam optical trap and relied on
parametric feedback [41]. In this thesis, we analyze both theoretically and
experimentally the alternative, linear feedback cooling.

Our particle is a sub-wavelength sized dielectric sphere of fused silica in
close vicinity to the tight focus of a laser beam. In addition to gravity, the
particle is subject to both a gradient force pointing to the laser focus and a
scattering force pointing along the beam [42]. For a sufficiently strong focus,
the gradient force overcomes both the scattering force and the gravitational force
such that the particle can be stably trapped. The particle oscillates around the
equilibrium trap position in a harmonic motion along all three spatial directions.
For sufficiently small oscillation amplitudes, the three motions are independent
of each other and are nondegenerate in frequency. Details on this can be found
in PhD theses [43–45] and especially [46], which refers the exact setup upon
which this thesis is based.

This thesis is structured as follows. After this introduction, in chapter 2, we
focus on linear feedback cooling the motion along one spatial direction. Our
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feedback method applies a damping force in proportion to the particle’s speed.
We find a model for the motional energy under feedback in agreement with the
measured data. We show that for an optimal set of feedback parameters, the
cooling is more efficient than what has been shown with parametric feedback.

Moreover, we understand that the minimal energy is given by the
imprecision-backaction product. This quantity can be understood as the product
of the position measurement error δx and the momentum fluctuations δp
exerted on the particle by the environment. Heisenberg’s uncertainty relation
imposes a lower bound for this product with δxδp ≥ ~/2, where ~ is the
reduced Planck constant. This relation is satisfied with equality if both δx and
δp are only due to laser fluctuations at the fundamental quantum level. However,
at this stage of our experiment, neither δx nor δp are at their fundamental limit,
and in fact the product δxδp is a factor of 30 above the optimum.

In chapter 3 we analyze the theoretical limitations of the detection impre-
cision δx. We find that in a backscattering setup it can be reduced to within a
factor of two from the fundamental limit. Combined with an ultra-high vacuum,
which minimizes δp, and the feedback described before, this would allow for
ground-state cooling.

With this insight applied to our experiment, we observe a feedback-cooled
oscillation energy of about four quanta in chapter 4, which puts ground-state
cooling firmly within reach experimentally. Furthermore, we observe the
sideband asymmetry between Stokes- and anti-Stokes scattering associated with
the particle’s oscillation, an effect which is understood as a consequence of the
existence of the ground state of motion. Of more practical relevance for future
experiments, this effect allows us to calibrate the motional energy against a
quantum of energy ~Ω, where Ω is the particle’s oscillation frequency.

In chapter 5 we present a framework to describe our cavity-free system
theoretically as complementary to the standard (cavity-)optomechanics
framework. Finally in chapter 6, the conclusion, we summarize the thesis
and give an outlook toward creating macroscopic superposition states with an
optically trapped nanoparticle.

This introduction is partly based on the article F. Tebbenjohanns, M. Frimmer,
A. Militaru, V. Jain, and L. Novotny, Phys. Rev. Lett. 122, 223601 (2019).
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2
Linear feedback cooling

This chapter is based on the article F. Tebbenjohanns, M. Frimmer, A. Militaru,
V. Jain, and L. Novotny, Phys. Rev. Lett. 122, 223601 (2019).

We implement a cold-damping scheme to cool one mode of the center-
of-mass motion of an optically levitated nanoparticle in ultrahigh vacuum
(10−8 mbar) from room temperature to a record-low temperature of 100µK.
The measured temperature dependence on the feedback gain and thermal
decoherence rate is in agreement with a parameter-free model. For the
first time, we determine the imprecision-backaction product for a levitated
optomechanical system and discuss the resulting implications for ground-state
cooling of an optically levitated nanoparticle.

2.1 Introduction

In this chapter we implement an active feedback cooling technique to cool one
mode of the particle’s center-of-mass motion with the ultimate goal of transfer-
ring it into the quantum regime, where the motional energy is comparable to
the ground-state energy. Despite the remarkable development of cavity-based
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2 Linear feedback cooling

cooling techniques [30–32, 34], the most successful cooling method in levitated
optomechanics to date has been cold damping using parametric feedback in a
single-beam optical dipole trap [18, 39]. In this measurement-based cooling
technique, the measured position record is frequency doubled and fed back
to the trap beam. This endeavor has led to mean occupation numbers of the
center-of-mass motion below a hundred phonons [41]. In contrast, in the
realm of mechanically tethered oscillators and trapped ions, a different active
feedback cooling method has been developed [47–51]. This linear feedback
technique applies a direct force to the oscillator in proportion to its speed,
effectively leading to an increased damping rate [52]. Cold damping based
on linear feedback has recently been used to bring a cryogenically precooled,
cavity-coupled membrane to its quantum ground state of motion [29]. Given
the success of linear feedback in the context of cooling mechanically tethered
oscillators, it is a tantalizing prospect to adapt the technique to optically levitated
nanoparticles in single-beam dipole traps.

In this chapter we cool the center-of-mass motion of an optically levitated
nanoparticle along one axis to a temperature of 100 µK using linear feedback.
To this end, we exploit the Coulomb force acting on the net electric charge
carried by the particle [37, 53, 54]. We investigate the cooling performance as
a function of gas pressure and feedback gain to explore the limitations of the
method. Our system operates a factor of one thousand from the Heisenberg limit
of the imprecision-backaction product and provides a platform for studying
ground-state cooling of optically levitated oscillators.

2.2 Experimental setup

Our experimental setup is shown in Fig. 2.1. We optically trap a silica nanopar-
ticle (diameter 136 nm) in a linearly polarized laser beam (wavelength 1064 nm,
focal power 130 mW), focused by a microscope objective (0.85 NA) to a
diffraction-limited spot. The resulting oscillation frequencies of the particle’s
center of mass are Ωz = 2π × 45 kHz, Ωx = 2π × 125 kHz, and Ωy =

2π× 146 kHz, where z denotes the direction along the optical axis, while x (y)
is the coordinate in the focal plane along (orthogonal to) the axis of polarization.
We collect the forward scattered light with a lens and guide it to a standard

6



2.2 Experimental setup

Figure 2.1: A silica nanoparticle (nominal diameter 136 nm) carrying a finite
net charge q is optically trapped in vacuum using a laser beam (wavelength
1064 nm) focused by an objective. To measure the y motion of the particle,
the backscattered light is rerouted by a free-space circulator and mixed with
a local oscillator (frequency shifted by 1 MHz relative to the trap laser) to
a balanced split detection scheme, yielding the out-of-loop signal yol. The
forward scattered light is detected in another balanced split detection scheme
and yields the in-loop signal yil, which is processed by a linear, digital filterH .
The resulting feedback signal is applied as a voltage to a capacitor enclosing
the trapped particle.

homodyne detection system for the particle’s motion along all three axes,
which we call the in-loop detector (only shown for the y axis in Fig. 2.1) [18].
Throughout this chapter, the particle’s motion along the x and z directions is
cooled using parametric feedback to temperatures below 1 K, rendering non-
linearities of the trapping potential irrelevant [41, 55]. From here on, we solely
focus on the motion of the particle along the y axis. We exert a Coulomb force
on the net charge carried by the optically trapped nanoparticle by applying a
voltage to a pair of electrodes enclosing the trap [53]. To cool the particle’s
motion, this voltage is a feedback signal derived from the measurement signal
yil acquired from the forward scattered light. Our linear feedback filter with
transfer function H(Ω) consists of a series of digital, second-order biquad
filters, which essentially mimics a derivative filter, such that the feedback signal
is proportional to the particle’s velocity. More specifically, we use a band-pass
filter whose center-frequency is set to above the particle’s oscillation frequency
Ωy, such that the transfer function at Ωy increases linearly with frequency
while preserving a flat phase response [29]. Note that after performing these
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2 Linear feedback cooling

experiments, we found out that a simple time-delay of the signal in combination
with two notch filters suffices for feedback cooling. For more details see App. C.
Finally, we measure the out-of-loop signal yol with a heterodyne detection
system for the backscattered light, using a local oscillator which is frequency
shifted by 1 MHz from the trapping light. We calibrate our detectors in the
mildly underdamped regime at a pressure of 10 mbar using the equipartition
theorem in the absence of feedback cooling [56]. All data presented in this
chapter has been taken with the same particle.

2.3 Cooling performance

We now investigate the performance of our feedback cooling scheme at a
pressure of 1.4× 10−8 mbar. In Fig. 2.2(a) we show the single-sided power
spectral density (PSD) S̃ol

yy of the out-of-loop signal for different feedback
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Figure 2.2: (a) Single-sided power spectral densities S̃ol
yy of the motion of

the nanoparticle measured by the out-of-loop detector for different feedback
damping rates γFB. The solid lines are Lorentzian fits to the data. The
black datapoints denote the measured shot-noise level S̃ol

imp on the out-of-loop
detector. (b) Power spectral densities S̃ il

yy measured by the in-loop detector
for the same settings as in (a). Photon shot-noise S̃ il

imp is shown as black
datapoints. In contrast to (a), for large feedback gain (γFB = 2π × 3.0 kHz)
we observe noise squashing, i.e., the measured signal drops below the noise
floor.
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2.3 Cooling performance
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Figure 2.3: Mode temperature Ty derived from the out-of-loop signal yol as a
function of feedback gain γFB. The black circles denote the measured values
at a pressure of 1.4× 10−8 mbar. At a damping rate of γFB = 2π × 1 kHz,
we observe a minimum temperature of 100 µK. The solid black line is a
parameter-free calculation according to Eq. (2.3). The blue (red) dashed line
denotes the contribution of the first (second) term in Eq. (2.3). The grey
triangles and line show measured and calculated mode temperatures at a
higher pressure of 1.2× 10−7 mbar.

gains, which we express as damping rates γFB. We extract the damping rate
γFB from ring-down measurements as detailed further below. The measured
signal S̃ol

yy corresponds to a Lorentzian function added to a spectrally flat noise
floor due to the photon shot noise on our detector. The spectral width of the
Lorentzian is a measure for the total damping rate arising from feedback cooling
and residual gas damping. The latter is largely negligible under feedback at the
low gas pressures of our experiments. As expected, as we increase the feedback
gain, the Lorentzian broadens in width due to the induced feedback damping.
The area under the Lorentzian, on the other hand, is a measure for the energy
(i.e., temperature) of the particle’s oscillation mode. Thus, from the PSD of
the out-of-loop signal S̃ol

yy, we extract the energy kBTy in the y mode of the
levitated particle. For comparison, we show the PSD of the measured in-loop
signal S̃il

yy in Fig. 2.2(b) at the same gain values as in Fig. 2.2(a). For large
feedback gain, we observe that S̃il

yy drops below the shot noise level. This effect,
termed noise squashing, arises from correlations between the particle’s position
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2 Linear feedback cooling

and the measurement noise that is fed back by the control loop [48, 49].
In Fig. 2.3, we plot the measured mode temperature Ty as a function of

feedback damping rate γFB at a pressure of 1.4× 10−8 mbar as black circles.
At small feedback gains, we observe a decrease in oscillator temperature with
increasing feedback gain. However, there exists an optimal feedback gain of
about 1 kHz. For gain values larger than the optimum, the oscillator temperature
increases with increasing feedback gain. We additionally show measurements
performed at a higher pressure of 1.2× 10−7 mbar (grey triangles), where the
increased gas damping rate leads to a larger mode temperature as compared to
the low-pressure data.

2.4 Analysis

To understand our results, let us analyze our system from a theoretical per-
spective [48, 57]. The Fourier transform ŷ(Ω) of the time-dependent particle
position y(t) follows the equation of motion*

[
Ω2
y − Ω2 − iγΩ−H(Ω)

]
ŷ =

f̂fluct

m
+H(Ω)ŷimp, (2.1)

where Ωy is the y mode’s eigenfrequency, m the particle’s mass, and ŷimp is the
measurement shot noise on the in-loop detector, which measures ŷil = ŷ+ ŷimp.
The damping rate γ arises from the interaction with residual gas molecules. The
term f̂fluct describes the fluctuating force generated by the interaction with the
gas and from radiation pressure shot noise. Via the fluctuation dissipation
theorem, f̂fluct is inextricably linked to γ [59]. Within the bandwidth of
interest, the transfer function of our feedback circuit is well described by
a derivative filter H(Ω) = iγFBΩ. The feedback damping rate γFB can be set by
adjusting the feedback gain and incorporates the exact geometry of the capacitor
electrodes as well as the number of charges carried by the levitated particle.
Importantly, the feedback transfer function H(Ω) appears twice in Eq. (2.1),
which results from the fact that the input to the feedback circuit ŷil is the sum
of the true position ŷ and the measurement shot noise ŷimp. From Eq. (2.1), we

*Note, that in order to use a consistent definition of the Fourier transform within this thesis,
the sign of Ω is flipped compared to our publication [58].
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2.4 Analysis

obtain the two-sided PSD on the out-of-loop detector

Sol
yy(Ω) =

Sff/m
2 + γ2

FBΩ2Sil
imp(

Ω2
y − Ω2

)2
+ (γ + γFB)2 Ω2

+ Sol
imp, (2.2)

where Sff denotes the PSD of the fluctuating force f̂fluct, and Sil
imp (Sol

imp) are
the PSDs of the in-loop (out-of-loop) detector noise. Integrating the first term
of Eq. (2.2), which corresponds to the PSD of the true position y, in the limit
γFB � γ yields the variance*

〈
y2
〉

=
πSff

m2γFBΩ2
y

+ πγFBS
il
imp, (2.3)

which is a direct measure for the temperature Ty = mΩ2
y

〈
y2
〉
/kB of the

oscillator mode†. The first term contributing to the expression in Eq. (2.3)
scales with the inverse of the feedback cooling rate γFB. This term resembles the
desired action of the feedback, which is to reduce the impact of the heating term
given by the fluctuating force Sff . Importantly, the second term is proportional
to the feedback damping rate, which multiplies with the measurement noise
Sil

imp. This term resembles the undesired but inevitable effect of the control
loop heating the particle by feeding back measurement noise. Accordingly, our
model predicts the existence of an optimum feedback cooling rate, where the
mode temperature reaches its minimum value Tmin = 2πΩy

√
SffS

il
imp/kB , a

behavior that we observe in our measurements in Fig. 2.3.
For a quantitative comparison of measurement and theory, we have to

determine all parameters entering Eq. (2.3). We extract the in-loop measurement
noise Sil

imp from the PSD shown in Fig. 2.2(b). To obtain the feedback damping
rate γFB, we perform ring-down measurements. To this end, we toggle the
feedback gain back and forth between γFB for 30 µs and a much lower feedback
gain γlow

FB = γFB/300 for 50 µs. As shown in Fig. 2.4, we measure the mode

*For a formal integration of the Lorentzian function in Eq. (2.2), see App. A.5.
†Here, we assumed the equipartition theorem, according to which the kinetic and potential

energy are equal on average. Although in general this is not true under feedback [29, 60, 61], in
our case it holds because the feedback damping rate γFB is much smaller than eigenfrequency
Ωy . We analyze this effect, which we were not aware of at the time of publishing this work, in
App. B.
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2 Linear feedback cooling
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Figure 2.4: (a) Ring-down and reheating experiment. For the ring-down
experiment, we start with the oscillation mode at an elevated temperature,
reached by reducing the feedback gain. At time t = 0, we switch the feedback
damping rate to γFB and measure the decay of the mode temperature Ty(t)
(blue triangles). We fit Ty with a single exponential decay (black dashed
line) and extract the decay constant, which yields γFB = 2π × 47 Hz. For
the reheating experiment, we turn off the feedback-cooling at time t = 0
and measure the increasing mode temperature Ty(t) (red circles). A linear
fit (dash-dotted line) to the data yields the reheating speed dTy/dt = γTbath.
(b) Feedback damping rate γFB (blue triangles) and reheating speed dTy/dt
(red circles) as a function of pressure. The feedback damping rate is
independent of pressure and solely determined by the gain of the feedback
circuit. Within our pressure range the reheating follows a linear trend
(indicated as the dash-dotted line).

temperature as a function of time after the gain was switched from γlow
FB to γFB

at time t = 0. The blue triangles in Fig. 2.4(a) are the ensemble average over
100 such decay curves. We observe an exponential decay of the temperature
and extract its time constant, which equals γFB. When the feedback gain is
switched from γFB to γlow

FB at time t = 0, we observe the mode temperature
increasing linearly in time [red circles in Fig 2.4(a), averaged over 100 reheating
experiments]. Since the observed time is much shorter than the inverse damping
rate γ, we expect the temperature to increase as T (t) = γTbath t. Together
with the fluctuation dissipation theorem Sff = mγkBTbath/π, the measured
slope of the reheating curve therefore provides us with a direct measurement of
the first term in Eq. (2.3) [59]. Equipped with the experimentally determined
values for γFB, Sil

imp, and Sff , we calculate the mode temperature as a function
of feedback gain according to Eq. (2.3) and display it as the solid black line
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2.5 Discussion

in Fig. 2.3. The dashed lines show the two separate contributions from the
bath (blue) and measurement noise (red) to Eq. (2.3). Our model describes our
experimental findings very well. We stress that there is no free parameter or fit
involved.

Finally, we investigate the reheating speed and the ring-down rate γFB as a
function of pressure. The results are displayed in Fig. 2.4(b). We find that the
ring-down rates (blue triangles) do not depend on pressure. This observation
confirms that the damping rate under feedback is indeed fully dominated by
and therefore equivalent to the feedback induced damping rate γFB. The red
circles in Fig. 2.4(b) show the measured reheating speeds dTy/dt as a function
of pressure, which follow the expected linear behavior (dash-dotted line).

2.5 Discussion

Let us discuss the current limitations and future prospects of our linear feedback
cooling approach for levitated optomechanics. To this end, we return to
Eq. (2.3), whose two contributions are related by the imprecision-backaction
product (4π)2SffS

il
imp = ~2/η, with the measurement efficiency η ≤ 1 [59].

Using n̄ = kBTy/(~Ωy)− 1/2, we find that the effective occupation number n̄
assumes a minimum at the optimal feedback gain, which solely depends on η
as n̄min = (1/

√
η− 1)/2 [29]. At the Heisenberg limit of unit efficiency η = 1,

when the fluctuating force Sff driving the system under investigation is purely
due to measurement backaction, and the imprecision noise Sil

imp is minimized by
optimally detecting all photons scattered by the levitated particle, the particle’s
motion could, in principle, be brought to its quantum ground state nmin = 0.
In our case, at the lowest investigated pressure of 1.4× 10−8 mbar, we extract
a total efficiency of η = 9× 10−4 and hence an occupation number of about
16. Our measurements in Fig. 2.4(b) suggest that we can further reduce Sff by
moving to even lower pressures, before entering the regime where reheating is
fully dominated by photon recoil [41]. The factor Sil

imp in our case is limited
by the finite collection and detection efficiency. The latter is restricted by the
non-ideal mode overlap between the scattered dipole field and the Gaussian
trapping beam on the detector. In chapter 3 we analyze the theoretical detection
efficiency of our split detection scheme and show that it is limited to about 0.1
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2 Linear feedback cooling

even in the absence of loss. We furthermore show that we can reach a much
higher detection efficiency in a backscattering setup making cold damping to
the ground state feasible.

2.6 Conclusion

In conclusion, we have demonstrated feedback induced damping of the center-
of-mass motion of an optically levitated nanoparticle from room temperature
to 100 µK, corresponding to less than 20 phonons. We have determined the
optimal feedback-damping rate for our system, in agreement with a parameter-
free model. Together with photonic techniques under development [34, 62],
our results put ground-state cooling of optically levitated nanoparticles firmly
within reach. Besides setting a new temperature benchmark, we believe that
our feedback control scheme will serve as a model system for the levitated
optomechanics community. Putting this work into context, our approach is
complementary to parametric feedback cooling, the method of choice to control
charge-neutral optically levitated particles to date. While our system relies
on the levitated object carrying finite net charge, we note that one could
use the radiation-pressure force of another laser beam to achieve the same
feedback on charge-neutral particles [15]. While the linear feedback cooling
scheme outperforms parametric feedback in cooling power, in practice the
parametric scheme is simpler to set up since it only relies on an amplitude
modulation of the trap beam. So far, we have not implemented 3D cooling with
linear feedback but instead relied on the parametric feedback to stabilize the
trap in all three axes. Importantly, this work provides the direct connection
between established, mechanically tethered optomechanical technologies and
optically levitated oscillators [29, 48, 49]. By mapping our optically levitated
system onto the standard model of a cold-damped oscillator, for the first
time, we have determined the imprecision-backaction product for a levitated
optomechanical system. Accordingly, this work generates the opportunity
to leverage the insights gained with mechanically clamped systems to drive
levitated optomechanics forward.
During the time of publishing this work, we became aware of a partly overlap-
ping work [63].
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3
Optimal position detection

This chapter is based on the article F. Tebbenjohanns, M. Frimmer, and
L. Novotny, Phys. Rev. A 100, 043821 (2019).

We theoretically analyze the problem of detecting the position of a classical
dipolar scatterer in a strongly focused optical field. We suggest an optimal
measurement scheme and show that it resolves the scatterer’s position in three
dimensions at the Heisenberg limit of the imprecision-backaction product. We
apply our formalism to levitated-optomechanics experiments and show that
backscattering detection provides sufficient information to feedback cool the
particle’s motion along the optical axis to a phonon occupancy below unity
under realistic experimental conditions.

3.1 Introduction

In this chapter we analyze the position detection process of an optically levitated
particle. Let us start by revisiting the detection process in clamped optome-
chanical platforms, where the position of high-quality mechanically tethered
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3 Optimal position detection

oscillators is read out optically. The limits of this measurement process have
been understood since the early theoretical works in the context of designing
interferometer-based gravitational-wave detectors [7, 64, 65]. In the canonical
optomechanical setup, the position of a mirror reflecting a beam of light is
encoded into the field’s phase and is read out interferometrically [66]. At the
same time, the radiation-pressure fluctuations of the probe light influence the
mechanical motion of the mirror. Accordingly, the measurement of the mirror’s
position inevitably entails a perturbation of its momentum [11, 67, 68]. In the
limit of perfect detection efficiency, and in the absence of dephasing mecha-
nisms besides radiation pressure shot noise, the product of the measurement
imprecision and the measurement backaction satisfies the Heisenberg relation
with equality [59] (see also Ch. 2). In recent years, harnessing enhancement
effects provided by optical cavities, the optomechanics community has pushed
the position detection of mechanically clamped oscillators to operate essentially
at the Heisenberg limit [29].

In chapter 2 we showed cooling of the center-of-mass motion of an optically
levitated nanoparticle to a population of a dozen phonons using active feedback
cooling. The system operated three orders of magnitude from the Heisenberg
limit of maximum measurement efficiency [58]. At this stage, pushing optically
levitated systems into the quantum regime relies on improving the detection
efficiency for the position of a dipolar scatterer in a focused light field [69, 70].
To this end, remarkable progress has been made in recent years to couple
optically levitated nanoparticles to optical resonators [30–34], in efforts inspired
by the atomic physics community [71–74]. Interestingly, while sophisticated
detection systems using optical cavities are under development, the question
of the reachable position-detection efficiency for a dipolar scatterer in a single-
beam optical trap has remained unanswered.

In this chapter we theoretically analyze the problem of how to optimally
measure the position of an isotropic dipolar scatterer in a focused light field.
We derive a scheme to detect the motion of a nanoparticle optically trapped
in a focused light field which operates strictly at the Heisenberg limit of
optimal detection efficiency. Furthermore, we analyze the efficiencies of
detection schemes currently employed by the optical-levitation community.
Our results show that a simple backscattering configuration provides a detection
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3.2 Ideal measurement scheme

efficiency for the oscillation mode along the optical axis of more than 60%
of the Heisenberg limit. Accordingly, active feedback cooling of a levitated
nanoparticle’s center-of-mass motion to a phonon occupancy below unity is
feasible in a single-beam optical trap.

3.2 Ideal measurement scheme

We consider a laser beam, linearly polarized along the x direction and prop-
agating along the optical z axis, which is strongly focused, as shown in
Fig. 3.1. The focus defines the origin of the coordinate system. We furthermore
assume an isotropic dipolar scatterer with polarizability α located at position
r0 = (x0, y0, z0). The distance |r0| of the scatterer to the focus is much less
than a wavelength. At the scatterer position, the electric field reads

Efoc(r0) = E0nx exp (iAkz0), (3.1)

which resembles a plane wave traveling in the positive z direction (see Ap-
pendix D.1 for a derivation of the focal field). Here, nx is the unit vector
along x, E0 is the field amplitude at the focus, and k is the wavenumber. The

dp
det
(θ,φ)

dΩ

Eref

r0

z

x

Esc

Figure 3.1: Sketch of the ideal measurement scheme. An isotropic dipolar
scatterer is located at position r0 relative to the origin, which coincides with
the focal point of a beam of light traveling from left to right. An array of
detectors (only one is depicted for clarity, each covering a solid angle dΩ)
is covering a sphere centered on the origin with radius much larger than the
wavelength. A reference field Eref is added at the detector for homodyne
detection of the scattered field Esc.
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3 Optimal position detection

geometric factor 0.64 < A ≤ 1 is a result of the Gouy phase shift in a focused
beam and increases the effective wavelength close to the focus. We derive an
analytical expression for A in a strongly focused field in Appendix D.1. In a
mildly focused field, described as a Gaussian beam with Rayleigh range zR, we
find A = 1− (kzR)−1 [42, 70].

The dipolar scatterer acquires the dipole moment p = αEfoc(r0), and
radiates the scattered field Esc(r). At an observation point r much farther
from the scatterer than a wavelength, we can write the scattered field in the
Fraunhofer approximation as [42]

Esc(r) = Edip(r) exp [−ik · (r0 · nr −Az0)], (3.2)

where nr is the unit vector in the radial direction and Edip(r) is the far field
generated at the observation point r by an x oriented dipole located at the origin.
Importantly, the scatterer’s position r0 is contained in the phase of the scattered
field, which consists of two terms. The first term −kr0 · nr describes the phase
generated by the displacement of the dipole relative to the origin. The second
term Akz0 stems from the fact that the dipole is driven by a traveling wave
which acquires a phase shift during propagation. In the following, we use a
spherical coordinate system, where the angle θ denotes the polar angle relative
to the z axis, and φ denotes the azimuthal angle relative to x. Furthermore, we
introduce the differential power dpdip scattered by an x polarized dipole into
the solid angle dΩ = sin(θ)dθdφ:

dpdip =
3

8π
Pdip

[
1− sin(θ)2 cos(φ)2

]
dΩ, (3.3)

with the total scattered power Pdip.

3.2.1 Measurement backaction

In this subsection we analyze the measurement backaction arising from the
interaction of the scatterer with the electromagnetic field. This backaction takes
the form of a recoil force, which can be interpreted as an inevitable consequence
of the fact that the scattered field contains information about the scatterer’s
position. The measurement-backaction force along a certain direction (x, y, z)
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3.2 Ideal measurement scheme

can be quantified by its power spectral density. Along the transverse directions
x and y, the spectral densities of this measurement backaction read [41, 75]

Sxba =
1

5

~k
2πc

Pdip, (3.4a)

Syba =
2

5

~k
2πc

Pdip. (3.4b)

Note that along the x and y axes the result for the measurement backaction for
a (passive) dipole scattering a power Pdip equals the result for an active dipolar
source radiating the same power. In contrast to an active source, however, the
fluctuating force acting on a scatterer along the z axis has two contributions.
First, there is the contribution that equals Syba, which arises both for a passive
scatterer and an active dipolar source. However, for a passive scatterer, a
second term arises, which stems from the fluctuations of the radiation pressure
along the propagation direction of the beam. In close vicinity of the focus, for a
lossless dipolar scatterer, this radiation pressure force reads F zrp = APdip/c [42].
Summing both contributions, we find the total measurement backaction along
the z axis

Szba =

(
2

5
+A2

)
~k
2πc

Pdip. (3.4c)

We provide a derivation of Eqs. (3.4) in Appendix D.2 and note that our results
agree with a full quantum calculation [76].

3.2.2 Measurement imprecision

Having dealt with the measurement backaction, we now turn to the measurement
imprecision associated with locating a point scatterer in a focused light field.
Since the scatterer’s position r0 is encoded solely in the phase of the scattered
light according to Eq. (3.2), we make use of a homodyne measurement, where
we superpose the scattered light at the detector position r with a strong local
oscillator field. Note that we do not use the trapping field as a reference field
here (as is done in typical experimental schemes discussed in Sec. 3.3), which
is always possible by introducing a sufficiently strong additional reference. For
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3 Optimal position detection

optimal interference, we choose the (local) polarization of the reference to equal
that of the scattered light. Thus, we construct an ideal reference field

Eref(r) = −iγEdip(r) (3.5)

with γ � 1 (such that the reference field is much stronger than the scattered
field) and let it interfere with the dipole’s scattered light such that the field at
position r is Eref(r)+Esc(r). For small displacements r0, a detector positioned
at r covering the differential solid angle dΩ measures the power

dpdet(θ, φ) =
[
γ2 + 2γk (r0 · nr −Az0)

]
dpdip, (3.6)

where we have retained only the term linear in the scattered field (which is
much weaker than the reference field) and assumed |kr0| � 1. The first
term of Eq. (3.6) accounts for the power of the reference and the second term
accounts for the interference between reference and scattered fields. Being
linear in r0, the interference term represents a measure of position. Assuming
shot noise as the dominating noise source, the power spectral density of the
imprecision noise associated with a differential detector under direction (θ, φ)

is (see Appendix D.3 for detailed derivation)

sximp(θ, φ) =
~c

8πk sin(θ)2 cos(φ)2 dpdip
, (3.7a)

syimp(θ, φ) =
~c

8πk sin(θ)2 sin(φ)2 dpdip
, (3.7b)

szimp(θ, φ) =
~c

8πk[cos(θ)−A]2 dpdip
. (3.7c)

Next, we fill up the entire sphere surrounding the scatterer with differential
detectors. Importantly, Eqs. (3.7) show that the measurement imprecision
depends on the position (θ, φ) of the differential detector and is not uniformly
distributed. Accordingly, to minimize the total imprecision, we need to weight
each measurement by its inverse imprecision before averaging [77]. To obtain
the total imprecision, we exploit the fact that its inverse 1/Simp is given
by the integral over the inverse imprecisions 1/[simp(θ, φ)] contributed by
the differential detectors, such that we find (the calculation is detailed in
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Appendix D.3)

Sximp = 5
~c

8πk

1

Pdip
, (3.8a)

Syimp =
5

2

~c
8πk

1

Pdip
, (3.8b)

Szimp =
1

2
5 +A2

~c
8πk

1

Pdip
. (3.8c)

3.2.3 Discussion of the ideal measurement scheme

By comparing Eqs. (3.8) with Eqs. (3.4), we find that the imprecision-
backaction product SjimpS

j
ba = [~/(4π)]2 fulfills the Heisenberg uncertainty

relation with equality for all three axes j ∈ {x, y, z} [59]. Accordingly,
our measurement scheme decodes the scatterer’s position in an optimal way
along all three axes simultaneously. It is instructive to consider the angular
dependence of the contributions to the measurement imprecision in Eqs. (3.7).
To this end, we inspect their (normalized) inverse Ij(θ, φ) = Sjimp/s

j
imp(θ, φ).

This quantity resembles the angular information density about the scatterer’s
position along the axis j. As an example, let us consider motion along the x
axis, shown in Fig. 3.2(a). We plot Ix(θ, φ) such that its value is encoded as
the radial distance of the contour to the origin. We observe that the information
content Ix vanishes in the plane x = 0. This means that a detector located
anywhere in this plane cannot extract any information about the scatterer’s
position along x. This observation makes sense, since any displacement along
x (to linear order) has no influence on the phase of the field scattered in the
plane x = 0. Furthermore, also a detector located on the (positive or negative)
x axis cannot infer any information about the motion along x. This observation
might be surprising at first sight, since the phase shift of the scattered signal
along this direction should be most sensitive to the scatterer’s position along x.
However, a linearly polarized dipole radiates no far field along its axis and the
measurement signal vanishes along the x axis. In Fig. 3.2(b), we show a cross
section of Ix in a plane containing the x axis (which is an axis of symmetry
for Ix). We have cross-hatched the region where the signal dpdet(θ, φ) is
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Figure 3.2: Information radiation patterns. (a) Contour plot of the
information radiated into a unit solid angle. We plot the quantity Ix(θ, φ) as
the radial distance of the contour to the origin. (b) Cross section through Ix
in the plane xz. The cross-hatched region indicates where a displacement
x0 > 0 gives rise to a positive detector signal dpdet(θ, φ). (c) Contour plot
of Iy . (d) Cross sections of Iy in the plane xy (blue, inner area) and yz
(red, outer area). (e) Contour plot of Iz . Note that the information is mostly
radiated in the negative z direction. (f) Cross sections of Iz in the xz plane
(blue, inner area) and in the yz plane (red, outer area). Note the different radial
scale in the range −π/6 ≤ θ ≤ π/6. A was fixed to cos(π/6) = 0.866.
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positive for a positive displacement x0 of the scatterer, which is the case in
the half space x > 0. In Fig. 3.2(c), we show Iy(θ, φ). We see that most
information about the scatterer’s position along y is radiated along the y axis.
This observation makes sense, since both the radiation pattern of the dipolar
scatterer and the dependence of the phase of the scattered field on the position
along the y axis reach a maximum along that direction. In Fig. 3.2(d), we show
a cross section of Iy in the yz plane (red, outer area) and in the xy plane (blue,
inner area). The signal dpdet(θ, φ) is positive for positive y0 in the half space
y > 0.

The quantity Iz(θ, φ) shown in Fig. 3.2(c) is particularly interesting. In
contrast to Ix (Iy), which bears a symmetry relative to the plane x = 0

(y = 0), Iz has no symmetry relative to z = 0. This symmetry is broken
by the propagating nature of the beam illuminating the scatterer. It turns out
that more than 90% of the entire information about the position along the z
axis is contained in the field scattered in the backward direction (half space
z < 0). This observation can be intuitively understood in the limiting case of
a plane wave illuminating the scatterer (A = 1). In this case, the phase of the
field scattered in the forward direction on the optical axis is independent of the
scatterer’s position along the z axis.

Let us recap at this point the essential features of the optimal measurement
scheme discussed thus far. The first feature is the optimal reference field in
Eq. (3.5). This position-dependent field has to locally match the polarization
of the field radiated by the scatterer. Second, the optimal reference field has to
be phase shifted by π/2 relative to the scattered field. Finally, the differential
detector signal collected on a detector under the direction (θ, φ) has to be
appropriately weighted according to its inverse imprecision noise as given by
Eqs. (3.7) to obtain the optimal measurement of the scatterer’s position. The
total measurement imprecision of this scheme, given by Eqs. (3.8), multiplies
with the measurement backaction given by Eqs. (3.4) to fulfill the Heisenberg
uncertainty relation with equality in each direction (x, y, z).
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3.3 Realistic detection system

Thus far, we have analyzed the problem of detecting the position of a dipo-
lar scatterer and described an ideal measurement scheme that allows for a
Heisenberg-limited measurement of the scatterer’s position in three dimensions.
Two experimental difficulties make our ideal measurement scheme impractical.
First, it is challenging to generate a reference field, the phase and polarization of
which match those of a dipolar field, as required by Eq. (3.5). Reference fields
typically available in a laboratory setting are Gaussian beams with uniform
polarization. Second, this ideal measurement scheme requires a distribution
of infinitesimal detectors spanning the full 4π of solid angle, where the signal
from each detector is individually weighted according to its imprecision. In
contrast, in practice one typically uses a simple four-quadrant detector [69].

3.3.1 Forward detection

In this section we consider the performance of the most commonly used
detection system in optical trapping experiments, which relies on a standard
(four-quadrant) split detection scheme in the forward direction [69]. The
situation under consideration is sketched in Fig. 3.3. A first lens (termed
the ‘trapping lens’) focuses an x polarized plane wave (corresponding to a
strongly overfilled objective) such that the focal point coincides with the origin.
The optical axis is along z, and a second lens (termed the ‘collection lens’)

Figure 3.3: Laboratory detection system. A trapping lens with numerical
aperture NAtl = sin(Θtl) focuses an x polarized plane wave. On the opposite
side, the fields are collimated by a collection lens with numerical aperture
NAcl = sin(Θcl). A particle close to the focal point scatters the focused field.

24
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Figure 3.4: (a) Detection efficiency ηfw in the forward detection for a trapping
lens with NAtl = 0.85. We plot the detection efficiencies for motion in the
focal plane ηfw

x (red dashed), ηfw
y (green dotted) as a function of NAcl. The

detection efficiency along the optical axis ηfw
z (blue solid), multiplied by

factor 100, vanishes when NAtl = NAcl. In the range NAcl > NAtl, the
detection efficiencies stay constant, since no reference field is available in that
range. We also plot the fraction of the scattered power which is collected by
the optics (black dash-dotted). (b) Detection efficiency ηbw in the backward
detection. In the transverse directions, ηbw is identical to the case of forward
detection shown in (a). However, most information about the motion along z
is encoded in the backscattered field, such that ηbw

z (blue solid) reaches values
exceeding 0.6 for realistic trapping lenses with NAtl > 0.8.

recollimates the trapping beam. A dipolar scatterer is located close to the origin
and generates the scattered field Esc(r) given by Eq. (3.2). For detection in the
forward direction, the reference field Eq. (3.5) has to be replaced by the field of
the trapping beam arriving on the detector.

As detailed in Appendix D.4, and in analogy to Sec. 3.2.2, we calculate the
measurement imprecision Sj,fwimp of this forward detection scheme for all three
axes j ∈ {x, y, z}. In order to compare our results for forward detection with
the ideal case discussed in Sec. 3.2.2, we define the detection efficiency ηfw

j =

Sjimp/S
j,fw
imp for the axis j as the ratio of the result for forward scattering Sj,fwimp

and the measurement imprecision at the Heisenberg limit given by Eqs. (3.8).
Thus, the detection efficiency is a measure for how close to the Heisenberg limit
a detection system operates. Note that absorption losses or a limited quantum
efficiency of the detector further decrease the detection efficiency.

In Fig. 3.4(a), we plot the detection efficiencies ηfw
x (red dashed), ηfw

y (green
dotted), and ηfw

z (blue solid) in forward scattering as a function of the numerical
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aperture of the collection lens NAcl for a numerical aperture of the trapping lens
NAtl = 0.85. As expected, a larger NAcl generally leads to higher detection
efficiency for all three axes. However, the detection efficiency for the z axis
ηfw
z shows a remarkable feature. It turns out that ηfw

z vanishes for a symmetric
setup, i.e., when the numerical aperture of the trapping lens equals that of the
collection lens. We discuss this feature quantitatively in Appendix D.4. It can be
understood qualitatively by close inspection of Fig. 3.2(f) from the discussion
of the ideal measurement scheme. As indicated by the cross-hatched regions in
the polar plot, the signal changes sign in the half space z > 0. In the specific
case of a symmetric setup (NAtl = NAcl), the integration over θ is truncated
such that the result strictly vanishes.

Let us apply our insights to realistic experimental conditions. For typical
values of NAcl = 0.7, the detection efficiency of the transverse modes in the
forward direction is around ηfw

x ∼ ηfw
y ∼ 0.1, while for the longitudinal mode

it is about two orders of magnitude smaller (ηfw
z ∼ 0.001).

3.3.2 Backward detection

We now turn to detection in the backward direction. Here, the backscattered
light is collected by the trapping objective and then interfered with an external
reference field [39]. In contrast to forward scattering, where the reference
beam is naturally phase locked with the right phase shift (due to the common-
path arrangement together with the Gouy phase shift), backward scattering is
technically more involved, since the phase shift of the reference beam relative to
the scattering signal has to be actively stabilized to a value of π/2. To compare
with forward scattering, we consider a reference field that has the same spatial
distribution as the trapping beam (a truncated plane wave).

In Appendix D.4.2 we derive expressions for the detection efficiencies ηbw
j

in the backward direction, which are plotted in Fig. 3.4(b) as a function of
the numerical aperture of the trapping lens NAtl. We find that the detection
efficiencies for motion in x and y directions are the same for forward and
backward detection, i.e., ηbw

x = ηfw
x and ηbw

y = ηfw
y . This result is expected,

since the information about motion along x and y is radiated symmetrically in
the forward and in the backward direction [compare Figs. 3.2(a,c)]. On the other
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hand, for motion along the z direction, we find that the detection efficiency is
much higher in the backward direction than in the forward direction. This result
can be anticipated from the distribution of radiated information content shown
in Figs. 3.2(e,f). For a typical value of the numerical aperture of the trapping
lens NAtl = 0.8, we find the efficiency to be as high as ηbw

z = 0.6.

3.3.3 Discussion of real-world measurement schemes

Let us recap the most important insights gained from our analysis. Clearly,
forward and backward detection using quadrant detectors fall short of reaching
the Heisenberg limit of maximum detection efficiency η = 1, where the
imprecision-backaction product has its minimum. Several factors contribute to
this imperfection. First, the numerical aperture collecting the light scattered by
the dipole is finite and, as a result, part of the information about the dipole’s
position is not collected. We plot the fraction of collected power as a function
of numerical aperture in Fig. 3.4 as the black dash-dotted lines. Importantly, not
every collected photon carries the same amount of information. For example,
motion along the z axis is predominantly encoded in the field scattered in
the backward direction, allowing for a large detection efficiency for the z
motion in backscattering. Another factor limiting the detection efficiency is
the imperfect overlap of the reference field (with homogeneous polarization)
with the field scattered by the dipole (the polarization of which varies spatially).
Finally, an ideal detection system must not only collect the measurement signal
across the full solid angle surrounding the scatterer, but must also weight
the individual contributions according to their information content as given
by the measurement imprecision. Clearly, a quadrant detector offers very
limited capability to perform this weighting procedure. Consider, for example,
detection of the y motion. It is clear from Fig. 3.2 that practically no information
is contained in the signal striking the detector close to the z axis. Nevertheless,
a standard detector will sum the shot-noise contribution generated in this region
by the reference field and add it to the output signal. A possible alternative to
a spatially resolving detector would be a reference field with an appropriately
shaped spatial intensity distribution. Such a field distribution could, for example,
be generated using a spatial light modulator.
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In this chapter we solely consider a dipolar scatterer much smaller than the
wavelength. For particles comparable to or even larger than the wavelength
[14, 15, 23, 24], one in general needs to solve the full scattering problem in
order to calculate the far field and its phase dependence on the object’s position.
Following an analysis analogous to the one described here, one can then find
both the total measurement backaction as well as an ideal local-oscillator field
allowing for detection at the Heisenberg limit.

Finally, let us consider the repercussions of our findings for active feedback
cooling of a levitated nanoparticle’s motion. Considering the finite transmis-
sivity of optical components, the finite quantum efficiency of photodetectors,
and our finding that the detection efficiency for the motion along the optical
axis in backward scattering can reach ηbw

z ∼ 0.8, we conclude that a total
efficiency of 0.35 appears well within reach. Adding the fact that at sufficiently
low pressures the reheating of a levitated particle is dominated by measurement
backaction [41], active feedback by means of cold damping [58, 63] should
be able to cool a levitated nanoparticle in a free-space configuration with
only a single laser beam to mean phonon occupation numbers as low as
n = (1/

√
η − 1)/2 = 0.35 along the optical axis, and thus to the quantum

ground state of motion.

3.4 Conclusions

We have theoretically analyzed the problem of determining the position of
a dipolar scatterer in a focused field. We have proposed an ideal detection
scheme locating the scatterer in three dimensions at the Heisenberg limit of the
imprecision-backaction product. Furthermore, we have analyzed configurations
commonly used in experiments and derived their measurement efficiencies.
We have found that for realistic experimental setups, the detection efficiencies
for motion transverse to the optical axis are limited to ηx,y ∼ 0.1. On the
other hand, our analysis shows that the motion along the optical axis is most
efficiently detected in backscattering, where the detection efficiency of the
longitudinal motion can be as high as 80%, such that ground-state cooling of a
levitated particle in a single beam optical trap should be feasible.
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Motional sideband asymmetry

This chapter is based on the article F. Tebbenjohanns, M. Frimmer, V. Jain,
D. Windey, and L. Novotny, Phys. Rev. Lett. 124, 013603 (2020).

The hallmark of quantum physics is Planck’s constant h, whose finite
value entails the quantization that gave the theory its name. The finite value of
h gives rise to inevitable zero-point fluctuations even at vanishing temperature.
The zero-point fluctuation of mechanical motion becomes smaller with growing
mass of an object, making it challenging to observe at macroscopic scales.
Here, we transition a dielectric particle with a diameter of 136 nm from the
classical realm to the regime where its zero-point motion emerges as a sizable
contribution to its energy. To this end, we optically trap the particle at ambient
temperature in ultrahigh vacuum and apply active feedback cooling to its
center-of-mass motion. We measure an asymmetry between the Stokes and
anti-Stokes sidebands of photons scattered by the levitated particle, which is a
signature of the particle’s quantum ground state of motion.
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4 Motional sideband asymmetry

4.1 Introduction

A paradigm of quantum mechanics is a mass bound in a harmonic potential with
angular oscillation frequency Ω. According to quantum theory, the state of the
mass can be described as a superposition of energy eigenstates. These states are
enumerated by the quantum (or occupation) number n with respective energies
En = ~Ω(n+ 1/2), where ~ = h/(2π) is the reduced Planck constant [78–80].
For a harmonic oscillator coupled to a thermal bath at temperature T , the mean
occupation number is given by

n̄ =

[
exp

(
~Ω

kBT

)
− 1

]−1

, (4.1)

known as the Bose-Einstein distribution (with kB the Boltzmann constant) [59].
For thermal energies large compared to the energy quantum (kBT � ~Ω),
the mean energy of the harmonic oscillator is Ē = kBT in agreement with
classical statistical mechanics, and ~ makes no appearance. However, for zero
temperature, the oscillator retains the zero-point energy E0 = ~Ω/2, whose
existence can be interpreted as a result of the finite value of Planck’s constant.

A particularly striking experiment to demonstrate the existence of the
quantum ground state of an oscillator is Raman scattering, where light at the
angular frequency ω is scattered into a Stokes sideband at ω − Ω and an anti-
Stokes sideband at ω + Ω. Stokes scattering is an inelastic process raising the
population of the mechanical oscillator by a single quantum of energy (termed
phonon), while anti-Stokes scattering corresponds to lowering the oscillator’s
population by one quantum. Importantly, anti-Stokes scattering is impossible
by an oscillator in its quantum ground state. As a result, the powers in the
anti-Stokes and Stokes sidebands differ. In the limit of Ω � ω, their ratio is
given by

n̄

n̄+ 1
= exp

(
− ~Ω

kBT

)
(4.2)

and can serve as a temperature measurement calibrated relative to the quantum
of energy of the system ~Ω [59]. In molecular systems, the oscillator frequency
Ω can be sufficiently high to make the Raman-sideband asymmetry a feature
of quantum mechanics routinely exploited even at room temperature [81–
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83]. Furthermore, pioneering experiments using laser-cooling techniques have
investigated atoms and atom clouds in their motional ground states in optical
traps [84–86].

During the last decades, quantum mechanics has been tested on increasingly
massive objects [87]. In particular, macroscopic mechanical oscillators are now
being used for optical measurements operating at the limits set by quantum
theory [7, 88, 89]. Together with the remarkable progress in measurement
precision, optical techniques have been developed to not only sense but also
control mechanical motion at the quantum level [90–94]. Using the forces of
light, nano- and micro-mechanical oscillators have been cooled to their quantum
ground states in schemes relying both on autonomous [27, 28] and active-
feedback mechanisms [29]. Thus far, besides requiring cryogenic precooling, all
experiments demonstrating optical quantum control of mesoscopic mechanical
oscillators rely on coupling the mechanical degree of freedom to an optical
resonator to boost the light-matter interaction strength [12, 95].

Here, we transition a mesoscopic mechanical oscillator from the classical to
the quantum domain without the need for cryogenic cooling nor requiring
coupling to an optical cavity. The oscillator is a dielectric sphere with a
diameter of 136 nm, levitated in ultrahigh vacuum in a single-beam optical
dipole trap [13, 16, 18, 25, 41]. We use measurement-based linear-feedback
cooling (as described in Ch. 2) to reduce the effective temperature of the
particle’s center-of-mass motion from room temperature by seven orders of
magnitude to observe the emergence of the Raman-sideband asymmetry in
the light scattered by the particle. Sideband thermometry yields a phonon
occupation number of n̄ = 4.

4.2 Experimental setup

Our experimental setup is shown in Fig. 4.1. We focus a linearly polarized
laser beam (wavelength 1064 nm, focal power 130 mW) with a microscope
objective (0.85 NA) in vacuum (7.5× 10−9 mbar) to generate an optical dipole
trap for a silica nanoparticle (diameter 136 nm). The oscillation frequencies
of the particle’s center of mass are Ωz = 2π × 50 kHz, Ωx = 2π × 130 kHz,
and Ωy = 2π × 150 kHz, where z denotes the direction along the optical axis
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d/dt
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Figure 4.1: Experimental setup. A silica nanoparticle carrying a finite net
charge q is optically trapped in vacuum using a laser beam focused by an
objective. To measure the z motion of the particle, the backscattered light is
rerouted by a free-space circulator and mixed with two local oscillators (LO)
for simultaneous homodyne (homo) and heterodyne (hetero) detection. The
time derivative of the homodyne signal is applied to a capacitor consisting of
the holders for the trapping objective and the collection lens, and enclosing
the particle for cold damping. The heterodyne signal is recorded for sideband
thermometry.

and x (y) denotes the coordinate in the focal plane along (orthogonal to) the
axis of polarization. By means of parametric feedback, we cool the particle
motion along the x and y directions to temperatures below 1 K to eliminate
nonlinear cross-coupling between the translational degrees of freedom [41]. In
the following, we focus on the particle’s motion along the optical z axis.

To profit from a maximized measurement efficiency as explained in chap-
ter 3, we detect the motion of the particle along the z axis using the light
scattered back into the trapping objective [96]. The backscattered light is sent
through a Faraday rotator and detected in a balanced detection scheme. Here,
we mix the signal beam with both a homodyne and a heterodyne (shifted by
±1 MHz) reference beam. We refer to the homodyne backscattering mea-
surement as the in-loop signal, since we use it to derive a feedback signal
proportional to the particle’s velocity ż along the optical axis [58]. This
feedback signal is applied as a voltage to a capacitor enclosing the trapped
particle. The particle carries a finite net charge, such that the feedback signal
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4.3 Results

directly translates into the Coulomb force Ffb = −mγfbż acting on the particle,
with feedback gain γfb and mass m. The heterodyne signal measured in
backscattering is used for an out-of-loop measurement of the particle motion. It
provides a simultaneous measurement of the Stokes and anti-Stokes sidebands
and therefore allows for sideband thermometry [92].

For more details of the experimental setup and the limits of our feedback
scheme, we refer to appendices C and B, respectively.

4.3 Results

In Fig. 4.2, we show the heterodyne sidebands generated by the motion of
the particle along the z axis. A feedback gain of γfb = 2π × 4 kHz is used
and the local-oscillator frequency is shifted by −1 MHz relative to the trap
laser. Each sideband has the shape of a Lorentzian function on top of an
approximately constant noise floor. We observe that the left sideband at a

80 60 40 20
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20 40 60 80
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Figure 4.2: Motional sideband asymmetry. The figure shows single-sided
power spectral densities S̃het

zz(f) obtained by the heterodyne out-of-loop
measurement. The frequency difference ∆f is measured relative to the
(absolute) local-oscillator frequency shift of 1 MHz. Spectra are taken
simultaneously under linear feedback cooling with γfb = 2π × 4 kHz. We
observe an asymmetry in the power contained in the two sidebands. The gray
solid lines indicate the noise floor (limited by technical laser noise). The
vertical dashed lines indicate the integration range. The calibration of the
signal to absolute units follows the procedure outlined in Ref. [56].
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Figure 4.3: Mean occupation number as a function of feedback gain. The
red diamonds are obtained by integrating the left sideband of the heterodyne
spectrum according to Eq. (4.5). The black circles show the mean occupation
number extracted from the sideband asymmetry according to Eq. (4.4). The
black solid line corresponds to a parameter-free model according to Ref. [58].
Error bars (one standard deviation) are smaller than the symbol size.

frequency ∆f = −50 kHz (corresponding to Stokes scattering) carries more
power than the right sideband at ∆f = +50 kHz (corresponding to anti-Stokes
scattering). The power difference corresponds to the phonon energy ~Ωz of the
oscillator [59, 90–92, 97]. As a result, the mean occupation number n̄ is related
to the sideband asymmetry

R− =

∫
df S̃het,r

zz (f)∫
df S̃het,l

zz (f)
, (4.3)

where S̃het,r
zz (S̃het,l

zz ) is the power spectral density of the right (left) sideband. We
derive R− from the measured power spectral densities shown in Fig. 4.2. The
integration range used throughout this work is indicated by the gray vertical
dashed lines, and the horizontal gray solid line shows the noise floor that is
subtracted before integration of the signal. We note that the measurement im-
precision is not limited by quantum shot noise but by technical noise of the laser
source. Importantly, the ratio R− can be influenced by the frequency-dependent
transfer function of the measurement system. The measured asymmetry hence is
R− = RTF n̄/(n̄+ 1), where RTF is the ratio of the transfer function at the two
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sidebands. To eliminate this classical effect as a possible source for the sideband
asymmetry, we swap the position of the left and the right sideband by switching
the frequency shift of the heterodyne reference from−1 MHz to +1 MHz. With
this reversed frequency shift, the left (right) sideband corresponds to anti-Stokes
(Stokes) scattering, and we determine the corresponding sideband asymmetry
R+ = RTF (n̄ + 1)/n̄. Based on the sideband asymmetries R+ and R−, we
can extract the mean phonon occupation n̄ from the relation [59]

√
R−
R+

=
n̄

n̄+ 1
. (4.4)

In Fig. 4.3, we plot as black circles the mean occupation number n̄ of the z mode
of the particle as deduced from the sideband asymmetry according to Eq. (4.4)
as a function of feedback gain γfb. At a feedback gain of γfb = 2π× 4 kHz, we
obtain an occupation of n̄ = 4.

In the following, we provide two cross-checks to corroborate our sideband-
thermometry measurements. As a first check, we directly relate the power in
the Stokes sideband to the energy of the motion, as commonly done in levitated
optomechanics, using the relation

n̄+ 1 = c

∫
df S̃het, l

zz (f). (4.5)

The resulting phonon occupation is shown as red diamonds in Fig. 4.3. Impor-
tantly, this procedure relies on a calibration factor c which is determined in the
mildly underdamped regime at 10 mbar, where the particle is equilibrated to
room temperature and behaves entirely classically* [56]. Therefore, the red
diamonds in Fig. 4.3 can be interpreted as an energy measurement relative to
the classical quantity kBT (with T ∼ 300 K). In contrast, the black circles in
Fig. 4.3 represent a measurement relative to the quantum of energy ~Ωz . The
agreement between the two methods is satisfying. The observed difference
can be ascribed to a systematic error of the classical calibration constant c,
which is known to drift when reducing the pressure in the vacuum chamber [56].
We note that we have excluded any influence of (classical) laser intensity

*A detailed description of our calibration procedure is given in App. C.2.1
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4 Motional sideband asymmetry

noise on the asymmetry exceeding the statistical uncertainty. To this end, we
have compared sideband-thermometry measurements at different levels of laser
intensity noise in the trap [94]. Details on our active laser stabilization can be
found in App. C.1.

As a second consistency check, we compare our experimental results to the
model of a cold-damped oscillator [48], following the procedure outlined in
Ref. [58]. To this end, we quantify the coupling of the particle to the thermal
bath by performing ring-down and reheating experiments. Together with the
noise floor of the in-loop measurement, we obtain a parameter-free calculation
of the expected energy under feedback cooling (black line in Fig. 4.3). The
model (which relies on the classical energy-calibration constant) is in excellent
agreement with the classically obtained measurements (red diamonds).

4.4 Discussion and conclusion

We have carried out two different measurements of the center-of-mass energy
of a levitated oscillator. First, we have measured the energy relative to room
temperature (red diamonds in Fig. 4.3). Second, we have measured the energy
relative to the ground state energy ~Ωz/2 (black circles) and found satisfactory
agreement between both methods. Thus, our experiments bring an optically
levitated oscillator from the classical to the quantum regime, where zero-point
fluctuations have a sizable contribution to the particle’s energy. Let us discuss
the limits of our cooling experiments. Detection of the oscillation along the
optical axis (z mode) in backscattering should allow the phonon population to
be cooled below unity [96]. A straightforward route toward reaching this limit
is to reduce laser noise on the detector to the shot noise limit in combination
with a reduction in pressure by an order of magnitude to eliminate gas heating.

In conclusion, we have measured the sideband asymmetry in the motional
spectrum of a levitated oscillator. This asymmetry is an unambiguous signature
of the quantum ground state of the harmonic oscillator and arises in the limit of
small phonon occupation numbers. Using active feedback cooling, we have
compressed the center-of-mass energy of a harmonic oscillator by more than
seven orders of magnitude, transitioning the system from the classical realm
to the quantum regime. Importantly, all previous demonstrations of cooling a
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mechanical oscillator to the quantum regime relied on cryogenic precooling and
were accompanied by coupling to an optical cavity, either in order to capitalize
on autonomous resolved sideband cooling, or to boost the measurement
efficiency in an active feedback cooling scheme. In contrast, we use a single
laser beam to trap a nanoparticle in free space. This configuration requires
little experimental overhead and offers the advantage of largely unobstructed
measurements and the opportunity to control the trapping potential spatially and
temporally via the light field. These features of optically levitated oscillators
hold promise for fundamental tests of physics in yet unexplored parameter
regimes [21, 22]. At the same time, the absence of an optical resonator removes
any timing constraints posed by the finite response time of a cavity. This fact
might prove beneficial for optomechanical control schemes relying on fast
pulse sequences [98].
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5
Optomechanics in free space

5.1 Introduction

In this thesis we strive toward bringing both measurement and control of the
center-of-mass motion of an optically levitated nanoparticle to the quantum
limit. Much of our work is inspired by cavity optomechanics, but notably
we do not have an optical cavity in our setup. Over the last decades, a rich
framework of cavity optomechanics has been developed [12, 66, 99]. In the
canonical setting, a laser light field is sent to an optical cavity and the reflected or
transmitted light is analyzed on a photodetector. The cavity field can exchange
energy with a mechanical (phononic) mode through radiation pressure, which
allows for both control and analysis of the mechanical motion through the input
and output light fields.

In this chapter we provide a theoretical framework of a cavity-free optome-
chanical setup including a heterodyne detection scheme of the output field.
Our toy model consists of a mirror in harmonic motion, off which we reflect a
probe laser. The reflected laser beam is analyzed on a photodetector and the
resulting photocurrent represents a measure of the mirror’s position. In Sec. 5.2,
we derive input-output relations for our system in the spirit of the theory by
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5 Optomechanics in free space

Gardiner and Collett [100] and find an expression for the reflected light field.
In Sec. 5.3, we analyze the photodetection process based on the theory put
forward by Glauber [101] and find the statistical properties of the photocurrent
as a function of the light field, which is impinging on the detector. In Sec. 5.4,
we extend the detection scheme to allow for heterodyne detection. Combining
the previously obtained results, in Sec. 5.5, we compute the spectrum of a
heterodyne detector which measures the output field of our optomechanical
setup. A feature of the computed spectrum is the motional sideband asymmetry,
which we have observed experimentally in Ch. 4.

We note that in the optomechanics literature, an alternative model of the
heterodyne detection process in contradiction to Glauber’s theory is often used.
We repeat the computation of the detected spectrum with this alternative model
and compare both results. Our conclusion agrees with that of Børkje for a cavity-
based system [102]. Both models predict the same spectrum, but depending
on the chosen detection model, the sideband asymmetry is either due to the
zero-point fluctuations (ZPF) of the mechanical motion or the ZPF of the light.
Finally, in Sec. 5.6, we map our framework to cavity optomechanics. This
allows us to extract system parameters like the quantum cooperativity and the
measurement rate, which can then be compared to cavity setups.

5.2 Input-output formalism

The canonical description of quantum optomechanics consists of two resonators,
an optical cavity and a mechanical oscillator, which are coupled through

(a) (b)

Figure 5.1: (a) Mirror on a spring in cavity-free setup. Symbols are explained
in the text. (b) For comparison: Canonical optomechanical setup with a
cavity with resonance frequency ωc and linewidth κ, coupled to a mechanical
oscillator.

40



5.2 Input-output formalism

radiation pressure. As depicted in Fig. 5.1(b), the input and output optical
fields interact solely with the cavity field, which in turn interacts with the
mechanics. Commonly, the outputs of the system are described in terms of
the inputs in a scattering picture [100]. Here, we describe our levitated and
oscillating particle as a mirror on a spring, off which we reflect light without
the need of a cavity. Compared to cavity optomechanics, we therefore have
a slightly simpler setup, where the input and output fields directly couple to
the motion of the mirror. In the following derivation, we describe the system
classically and later quantize the fields. The found expressions reflect those
found in cavity optomechanics [66, 100].

Our toy model is depicted in Fig. 5.1(a). Our mirror with mass m and
position x is forming a harmonic oscillator with eigenfrequency Ω and damping
rate γ. A coherent light field bin(t) at frequency ωL is reflected off the mirror to
the output mode bout(t). In our notation, the fields are scaled such that |bin(t)|2

(|bout(t)|2) is the photon flux of the probe (reflected) beam in units of Hz. The
equation of motion of x is that of a harmonic oscillator

ẍ+ γẋ+ Ω2x =
Fth(t)− Frp(t)

m
, (5.1)

driven by a fluctuating force Fth(t) due to the thermal bath and by radiation
pressure Frp(t) due to the probe beam. Since each photon delivers momentum
2~k with wavenumber k to the mirror upon reflection, we can express the
radiation pressure force as [42]

Frp(t) = 2~k|bin(t)|2. (5.2)

The reflected light beam carries an additional phase factor 2kx(t) as compared
to the impinging light. For small displacements |2kx| � 1, we find for the
output mode

bout(t) = bin(t)e−2ikx(t) ≈ bin(t)[1− 2ikx(t)]. (5.3)

Note that the sign of the phase factor 2kx(t) must be negative in this case due
to our choice of the coordinate system. Now, we will quantize the mechanics
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x → x̂(t) and the input light field bin(t) → β + b̂in(t), where x̂(t) and b̂in(t)

are operators in the Heisenberg picture, and β = 〈bin(t)〉 is the mean value of
the light field. The operator b̂in(t) is therefore zero mean and solely describes
the vacuum fluctuations of the probe beam. While in principle β is complex
valued, its phase is a global phase that we cannot detect and we can set β to
be real. Assuming that we are driving the system with a large coherent field,
that is, β largely exceeds b̂in(t), we can linearize the radiation-pressure force in
Eq. (5.2) as

F̂rp(t) ≈ 2~k
[
β2 + βb̂†in(t) + βb̂in(t)

]
. (5.4)

The first, constant term is a DC force, which only results in a shift of the
oscillator’s mean position, and we will omit it in the following. For the same
assumptions (large coherent drive and small mechanical oscillations), we find
for the output field [Eq. (5.3)]

bout(t)→
[
β + b̂in(t)

]
[1− 2ikx̂(t)]

≈ β + b̂in(t)− 2iβkx̂(t)

=: β + b̂out(t).

(5.5)

We see that the (constant) amplitude β of the reflected light is the same as
that of the input, but the fluctuations b̂out(t) are increased by the motion of the
mechanics. To summarize, we have the following equations of motion of the
system:

x̂(t) = χ(t) ~
[
F̂th(t)− 2~kβ

[
b̂in(t) + b̂†in(t)

]]
, (5.6a)

b̂out(t) = b̂in(t)− 2iβkx̂(t). (5.6b)

Here, χ(t) denotes the mechanical susceptibility in time domain and ~ stands
for convolution. In Fourier space, the susceptibility takes its Lorentzian form

χ[ω] =
1

m

1

Ω2 − ω2 − iγω
. (5.7)

The (thermal) bath forcing term Fth(t) is now also a quantum mechanical
operator F̂th(t). From Eq. (5.6a), we can see that the mirror is driven by the
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amplitude quadrature b̂†in(t) + b̂in(t) of the light in addition to the thermal drive
F̂th(t). The signal x̂(t) is then imprinted on the phase quadrature b̂†out(t)−b̂out(t)

of the reflected light, see Eq. (5.6b).
Equations (5.6) describe the time evolution of the system’s output mode

b̂out(t) as a function of the inputs F̂th(t) and b̂in(t). In this input-output
formalism, the mechanical mode x̂(t) is merely an internal state which cannot be
observed or controlled directly. In standard cavity optomechanics, an additional
equation describes the time evolution of the cavity field mode [100].

Let us calculate the power spectral density (PSD) of the position operator
x̂(t) from Eq. (5.6a). We find

Sx̂x̂(ω) = |χ[ω]|2
[
Sth
F̂ F̂

+ 4~2k2β2
(
Sin
b̂†b̂†

+ Sin
b̂b̂

+ Sin
b̂†b̂

+ Sin
b̂b̂†

)]
, (5.8)

where we used Eqs. (A.13) and χ[−ω] = χ[ω]∗. We also assumed that the
thermal force fluctuations are independent of the light field’s fluctuations. The
superscript in indicates that the spectral densities belong to the input mode. For
a shot noise limited input beam, we know that [66]
〈
b̂in(t+ τ)b̂†in(t)

〉
= δ(τ), (5.9a)

〈
b̂†in(t+ τ)b̂in(t)

〉
=
〈
b̂in(t+ τ)b̂in(t)

〉
=
〈
b̂†in(t+ τ)b̂†in(t)

〉
= 0. (5.9b)

The corresponding input spectral densities hence are (note our definition of
cross- and autocorrelations in App. A)

Sin
b̂†b̂†

=
1

2π
, (5.10a)

Sin
b̂†b̂

= Sin
b̂b̂†

= Sin
b̂b̂

= 0. (5.10b)

This allows us to simplify Eq. (5.8) to

Sx̂x̂(ω) = |χ[ω]|2
[
Sth
F̂ F̂

(ω) + Sba
FF

]
, (5.11)

where Sba
FF = 2~2k2β2/π is the back-action force noise. We can see that in

addition to the thermal drive Sth
F̂ F̂

(ω), the light field acts on the mechanics like
a white background proportional to the light intensity β2. Quantum mechanics
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dictates the thermal force PSD Sth
F̂ F̂

(ω) to be asymmetric in frequency with [59,
66, 102]

Sth
F̂ F̂

(±ω) =
mγ~ω
π

(
nBE +

1

2
± 1

2

)
, (5.12)

where nBE is the Bose-Einstein occupation factor [see Eq. (4.1)]. Positive and
negative frequencies are associated with absorption and emission of energy by
the oscillator, respectively. Both processes are inherently asymmetric due to the
existence of a ground state from which the oscillator cannot emit energy.

Note that, despite the fact that both F̂th(t) and x̂(t) are Hermitian operators
with real expectation values, their respective PSDs are asymmetric in frequency
with Sx̂x̂(−ω) 6= Sx̂x̂(ω). This is impossible for classical, real-valued pro-
cesses. In the following, we will analyze how this asymmetry can be measured
in the spectrum of a (real-valued) photocurrent.

For later convenience, let us also compute the PSD Sout
b̂b̂

(ω) of the output

light b̂out(t). From the input-output relation Eq. (5.6b) we find

Sout
b̂b̂

(ω) = Sin
b̂b̂

(ω) + 4β2k2Sx̂x̂(ω) + 4βkImSin
b̂x̂

(ω)

= 4β2k2Sx̂x̂(ω),
(5.13)

where we made use of Eqs. (A.7), (5.10), and of

Sin
b̂x̂

= −2~kβχ[ω]∗
(
Sin
b̂b̂

+ Sin
b̂b̂†

)
= 0. (5.14)

5.3 Absorption-based photodetection

Consider an electromagnetic field mode â(t) which impinges on an absorption-
based photodetector. We assume unity detection efficiency such that each
photon is converted into an electron. The photon flux (in Hz) must be described
by the quantum-mechanical operator î(t) = â†(t)â(t), while the electron flux
is generally described by a classical, real variable i(t), since we assume that
we can arbitrarily amplify, copy, and store it. In general, i(t) is a random
Gaussian process fully described by its first two momenta 〈i(t)〉 and Gii(τ).
The latter is the autocorrelation function, for which we assume both stationarity
and ergodicity of i(t).
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In this section we derive 〈i(t)〉 and Gii(τ) as functions of the quantum-
mechanical operator â(t). One might be tempted to simply replace both
quantities by their quantum-mechanical counterparts, i.e.,

〈
î(t)
〉

and Gî̂i(τ).

This, however, is unphysical since î(t) does not necessarily commute with itself
at different times and hence Gî̂i(τ) can be complex valued, while Gii(τ) must
be real valued (see Sec. A.2). Also, the corresponding PSD Sî̂i(ω), given by the
Fourier transform of Gî̂i(τ), can in general be asymmetric in frequency, while
its classical counter-part Sii(ω) must be symmetric in frequency.

According to the photodetection theory put forward by Glauber [101], and
Kelley and Kleiner [103], the correlators of absorption-based photocurrents,
must be replaced by the normally ordered version of their quantum-mechanical
counterparts. In such a treatment, the first two momenta of the classical
photocurrent i(t) are [97, 104–107]

〈i(t)〉 =
〈

: î(t) :
〉
t

=
〈
â†(t)â(t)

〉
t

(5.15)

and

Gii(τ) =
〈

: î(t+ τ )̂i(t) :
〉
t
+ δ(τ)

〈
: î(t) :

〉
t

=
〈
â†(t)â†(t+ τ)â(t+ τ)â(t)

〉
t
+ δ(τ)

〈
â†(t)â(t)

〉
t
,

(5.16)

where the colons stand for normal and time ordering. Normal ordering means
that anything in between the colons needs to be expressed in terms of ladder
operators and all creation operators need to shifted before all annihilation
operators. Time ordering demands that from left to right the time arguments
are increasing in creation and decreasing in annihilation operators [105]*. Note
the second, delta-like term in the autocorrelation function. Carmichael showed
that we need this correction factor at τ = 0 [104]. It comes from the fact that at
τ = 0 we correlate identical absorption events, whereas for τ 6= 0, we always
correlate different events. In his proper derivation, he introduces a detector
“shutter time” τd during which he counts photon arrivals. The correlation then
has different results for τ < τd and τ > τd. In the limit of a fast detector
(τd → 0) he arrives at Eqs. (5.16).

*We therefore implicitly assumed τ > 0 here.
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5 Optomechanics in free space

In the optomechanics community, an alternative way to express 〈i(t)〉 and
Gii(τ) as a function of â(t) is often used [91, 93–95, 108]. There, the authors
replace the quantum-mechanical correlators by their symmetrized version. The
photocurrent autocorrelation function is then Ḡii(τ) = [Gî̂i(τ) +Gî̂i(−τ)]/2.
In this chapter, we follow the above described theory by Glauber and rely on
normal ordering of operators. In App. E.1, we then repeat the analysis using
symmetrized correlators. In Sec. 5.5, we comment on different interpretations
that arise due to the different detector models.

5.4 Heterodyne interferometry

We now consider the common case of heterodyne detection of a weak signal b̂(t).
For this, b̂(t) is mixed on a beamsplitter with a strong, coherent local-oscillator
(LO) field α̂(t), as sketched in Fig. 5.2. For the LO we have α̂(t) |ψ〉 =

αeiωLOt |ψ〉, where |ψ〉 is the quantum state of the LO field. All light-field
operators in this chapter are in a rotating frame at the optical frequency ωL, that
is, they have an additional phase factor e−iωLt in the lab frame. For ωLO = 0

we speak of homodyne detection, and for ωLO 6= 0 we speak of heterodyne
detection. In our definition of time t, a red-shifted LO beam has a positive
frequency shift ωLO > 0 and vice versa [42]. The two beamsplitter outputs
are individually measured with photodetectors and the resulting photocurrents

Figure 5.2: Heterodyne detection principle. The input b̂(t) is mixed with
a strong local oscillator mode α which is detuned by ωLO. The resulting
interference is measured on a balanced photodetector.

46



5.4 Heterodyne interferometry

are subtracted before amplification. Up to undetectable phase-factors, the two
detected modes read

â1(t) =
b̂(t) + α̂(t)√

2
,

â2(t) =
b̂(t)− α̂(t)√

2
,

(5.17)

where we assumed a 50:50 beamsplitter. For each mode, we can find the
photon-flux operator

î1(t) = â†1(t)â1(t) =
b̂†b̂+ α̂†α̂+ b̂†α̂+ α̂†b̂

2
,

î2(t) = â†2(t)â2(t) =
b̂†b̂+ α̂†α̂− b̂†α̂− α̂†b̂

2
,

(5.18)

where we omitted the time argument t. Next, we calculate the statistical
properties of the resulting (classical) electron flux i1,2(t), as described in
Sec. 5.3. Ultimately, we are interested in the difference current i(t) = i1(t)−
i2(t) and its correlations

〈i(t)〉 = 〈i1(t)〉 − 〈i2(t)〉 , (5.19a)

Gii(τ) = Gi1i1(τ) +Gi2i2(τ)−Gi1i2(τ)−Gi2i1(τ), (5.19b)

where Gi1i2(τ) and Gi2i1(τ) are the cross-correlation functions between both
photocurrents. Their value is given by the normally ordered version of their
quantum counterpart [101, 105]

Gi1i2(τ) =
〈

: î1(t+ τ )̂i2(t) :
〉
t
. (5.20)

Contrary to a photocurrent autocorrelation function, this cross-correlation does
not have a correction factor at τ = 0. This is, because even at τ = 0 the
detection events are from different photons, namely those arriving at detector
1 and detector 2. Together with Eqs. (5.16), we now have all ingredients to
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5 Optomechanics in free space

reexpress Eqs. (5.19) in terms of the input mode b̂(t):

〈i(t)〉 =
〈
î1

〉
t
−
〈
î2

〉
t

= α∗
〈
e−iωLOt

〉
t

〈
b̂(t)
〉

+ c.c., (5.21a)

Gii(τ) = |α|2
[
δ(τ) +Gb̂b̂(τ)eiωLOτ +Gb̂b̂(−τ)e−iωLOτ

]

+
[
α2
〈

eiωLO(2t+τ)
〉
t
Gb̂b̂†(−|τ |) + c.c.

]
.

(5.21b)

We assumed
〈
α̂†(t)α̂(t)

〉
= |α|2 �

〈
b̂†(t)b̂(t)

〉
, and α̂ and b̂ to be indepen-

dent. The derivation is detailed in App. E.2. So far we did not assume ωLO 6= 0

and the found expression can be used for a homodyne detector, as well.
We now turn to heterodyne interferometry (ωLO 6= 0) and find for the

heterodyne photocurrent’s correlations:

〈ihet(t)〉 = 0, (5.22a)

Ghet
ii (τ) = |α|2

[
δ(τ) +Gb̂b̂(τ)eiωLOτ +Gb̂b̂(−τ)e−iωLOτ

]
. (5.22b)

The heterodyne detector current ihet(t) will therefore be zero on average and
all information is in the second-order correlation Ghet

ii (τ). Let us calculate the
corresponding photocurrent’s PSD (see App. A.2 for the definition). We find

Shet
ii (ω) = |α|2

[
1

2π
+ Sb̂b̂(ωLO + ω) + Sb̂b̂(ωLO − ω)

]
. (5.23)

The first, constant term is associated with photon shot noise. From this
expression, it is clear that Shet

ii (ω) = Shet
ii (−ω). The photocurrent’s spectrum

is thus symmetric in frequency, just as it has to be because it is the PSD of a
real-valued photocurrent. Let us look at the spectrum at a frequency ωLO + ω

with |ω| � ωLO. There we find

Shet
ii (ωLO + ω) = |α|2

[
1

2π
+ Sb̂b̂(−ω) + Sb̂b̂(2ωLO + ω)

]

≈ |α|2
[

1

2π
+ Sb̂b̂(−ω)

]
.

(5.24)

Typically, the local oscillator frequency |ωLO| is much larger than all system
frequencies, which might appear in the correlations of b̂(t). We therefore
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5.5 Interpretation of sideband asymmetry

approximated Sb̂b̂(2ωLO + ω) ≈ 0 in the last expression. We observe that
this type of measurement directly probes the PSD of b̂(t), shifted to the LO
frequency. In particular, any asymmetry of Sb̂b̂(ω) around DC in its spectrum
will be visible on the detector around the LO frequency.

5.5 Interpretation of sideband asymmetry

In Sec. 5.2, we have found expressions for the statistical properties of the optical
output mode b̂out(t) of our cavity-free toy model. In Sec. 5.4, we then found
an expression for the photocurrent PSD of a heterodyne detector in terms of
the input mode b̂(t). Now, we combine both results, Eq. (5.13) and Eq. (5.24),
and use b̂out(t) as an input to our heterodyne detector. We find the PSD of the
detected signal at ω away from the LO frequency to be

Shet
ii (ωLO + ω) = c2

het[S
het
imp +

Sx̂x̂(−ω)︷ ︸︸ ︷
|χ[ω]|2

(
Sth
F̂ F̂

(−ω) + Sba
FF

)
], (5.25)

where Sba
FF = 2~2k2β2/π is the back-action force noise, Shet

imp = 1/(8πβ2k2)

is the measurement imprecision noise due to shot noise, and chet = 2|α|βk is
the calibration factor of our detector.

Let us discuss Eq. (5.25), which is the central result of this chapter. In the
absence of thermal noise, the imprecision-backaction product of our heterodyne
detection scheme is Shet

impS
ba
FF = 4~2/(4π)2. This is a factor four above the

Heisenberg limit ~2/(4π)2. A factor of two can be attributed to the fact that
half the time we are measuring the amplitude quadrature of the light, which
does not carry any information about the mirror position x̂(t). In contrast, a
homodyne detector always measures the light’s phase quadrature. The other
factor of two reflects that we distribute the signal into two sidebands, such that
the effective noise bandwidth is twice as large as compared to a homodyne
detector [66]. In App. E.3 we derive the imprecision noise Shom

imp on a homodyne
detector, which is a factor four lower than Shet

imp for the heterodyne detector,
making the homodyne detector Heisenberg limited.

Further, we can see that our heterodyne detector is capable of measuring the
two-sided and potentially asymmetric PSD Sx̂x̂(ω) of the mechanical motion.
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5 Optomechanics in free space

We can choose which side to measure by choosing the sign of ω (as long as it is
smaller than ωLO).

Based on our derivation, we interpret the measured sideband asymmetry
as a quantum feature of the mechanical motion. In molecular systems, where
the sideband asymmetry is usually measured spectroscopically in Raman-type
setups [81–83, 109, 110], this interpretation is undebated. In optomechanics,
however, where the Stokes and anti-Stokes sidebands are usually resolved on a
heterodyne detector, the origin of the asymmetry has been debated in literature.
Some authors argue that it proves the quantum nature of the mechanics [85,
90, 111], whilst others claim that the effect is really due to the quantum
nature of light [91, 93–95, 108]. As recognized by Børkje in Ref. [102], the
interpretation of the asymmetry depends on the model for the heterodyne
detection process. In this chapter we used normally ordered correlators and
came to the conclusion that the asymmetry shows a quantum feature of the
mechanical motion. The above mentioned references [91, 93–95, 108] on the
other hand, use a symmetrized PSD to describe the photocurrent correlation.

In App. E.1 we repeat the above analysis with symmetrized correlators. The
heterodyne photocurrent spectrum S̄het

ii then reads [Eq. (E.5)]

S̄het
ii (ωLO + ω) = c2

het

[
Shet

imp +
Sx̂x̂(ω) + Sx̂x̂(−ω)

2
−

ImSin
b̂†x̂

(ω)

2βk

]
. (5.26)

Clearly, the asymmetry in Sx̂x̂(ω) and therefore in Sth
F̂ F̂

(ω) cannot be resolved
with this detector. Instead, an additional term appears, containing a correlation
between the sensing noise and the back-action noise [95]. We can evaluate it as

−
ImSin

b̂†x̂
(ω)

2βk
= ~Sin

b̂†b̂†
Imχ[ω]∗ =

−mγ~ω
2π

|χ[ω]|2. (5.27)

Note, that this term is an odd function of ω and therefore asymmetric in
frequency. It is this asymmetry that appears in the photocurrent’s PSD. By using
a symmetrized PSD to account for the detection, we should therefore interpret
the asymmetry as an effect of the quantum nature of the input light field as it
appears due shot noise Sin

b̂†b̂†
= 1/(2π).

Finally, let us insert the expression for Sx̂x̂(ω) [Eq. (5.11)] in combination
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5.6 Mapping to cavity optomechanics

with Sth
F̂ F̂

(ω) [Eq. (5.12)] in the photocurrent PSD Shet
ii (ω). Independent of the

detector model [Eq.(5.25) or Eq.(5.26)], we find the same photocurrent PSD
(ω > 0):

Shet
ii (ωLO ± ω) = c2

het

[
Shet

imp +
mγ~ω
π
|χ[ω]|2

(
ntot +

1

2
∓ 1

2

)]

ntot = nBE + 2
~k2β2

mγω

(5.28)

We see that the oscillator’s occupation number ntot is given by the sum of the
bath occupation number nBE and a factor proportional to the light’s intensity
β2, which can be understood as the measurement back action. We can also see
that for a red-shifted LO beam, as we have assumed above, the Stokes sideband
[∝ (ntot + 1)] appears at ωLO−Ω and the anti-Stokes sideband [∝ ntot] appears
at ωLO + Ω on the heterodyne detector. This agrees with our observations in
Ch. 4. For a blue-shifted LO beam, the sidebands exchange their positions.

5.6 Mapping to cavity optomechanics

Before we conclude this chapter, we map our framework to standard cavity
optomechanics. For this, we rephrase the input-output relations [Eqs. (5.6)] in
terms of the quadrature operators

Q̂(t) =
1√
2

x̂(t)

xZPF
,

P̂in(t) =
xZPFF̂th(t)

~√γ
,

X̂{in,out}(t) =
1√
2

[
b̂†{in,out}(t) + b̂{in,out}(t)

]
,

Ŷ{in,out}(t) =
i√
2

[
b̂†{in,out}(t)− b̂{in,out}(t)

]
,

(5.29)
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5 Optomechanics in free space

where we use the same definitions as Ref. [66]. We then find

Q̂(t) =
√

2γmΩχ(t) ~
[
P̂in(t)−

√
2CX̂in

]
,

X̂out(t) = X̂in(t),

Ŷout(t) = Ŷin(t)− 2
√
γCQ̂(t),

(5.30)

where

C =
4β2k2x2

ZPF
γ

. (5.31)

We see that Eqs. (5.30) exactly reflect the input-output relations in cavity
optomechanics* and we identify C as the cooperativity of our system. In cavity-
based systems, the cooperativity is C = 4g2/(γκ) on resonance, where g is
the light-enhanced optomechanical coupling rate and κ is the cavity linewidth.
Since we do not have a cavity, it is difficult to find an equivalent coupling
rate, but the scaling C ∝ {β2, k2, x2

ZPF} is identical to the scaling of g2 for a
cavity-system in each parameter. In this analogy, we replace the number of
cavity-photons by the photon flux β2.

Finally, we can extract two more parameters of our system, namely the
measurement rate

Γmeas = γC = 4β2k2x2
ZPF (5.32)

and the quantum cooperativity [12]

Cq =
C

n̄BE
=

Sba
FF

Sth
F̂ F̂

(−Ω)
. (5.33)

The quantum cooperativity thus is the ratio of the mechanical heating due
to photon backaction and thermal fluctuations. This result is identical to
cavity optomechanics [12], and we could have used it to define the (quantum)
cooperativity in the first place. We can evaluate Cq for free-space levitated op-

*Note that in Ref. [66] the susceptibility is defined as χBM(t) = mΩχ(t).
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tomechanics by inserting the respective force PSDs [Eq. (5.12) and Eqs. (3.4)]:

Cq =
1

5




1

2

2 + 5A2




Pdip

2c2mγnBE
≈ 1

5




1

2

2 + 5A2




~kPdip

2cmγkBTb
. (5.34)

Here, we assumed a bath temperature Tb � ~ω/kB . The elements of the vector
represent the three motional directions x, y, z of the particle in its trap (see
Ch. 3).

Let us put the found expressions into context of feedback cooling. In Ch. 2
we showed that with linear feedback, we can cool the oscillator’s motion to an
occupation number that is solely given by the measurement efficiency η, which
describes how close the system is to the Heisenberg limit of the imprecision-
backaction product. For a homodyne detector with detection efficiency ηd, we
find in App. E.4 Shom,ηd

imp = 1/(32πβ2k2ηd). From the discussion in Sec. 5.5,
we know that the total force noise Stot

FF = Sth
FF+Sba

FF has a thermal contribution
(Sth
FF ) and a measurement-backaction contribution (Sba

FF ). We therefore find
the overall measurement efficiency of our homodyne detector [29]

η =
~2/(4π)2

Shom,ηd
imp Stot

FF

=
~2/(4π)2

Shom,ηd
imp Sba

FF (1 + 1/Cq)
=

ηd
1 + 1/Cq

. (5.35)

To achieve quantum control (η → 1), we have to maximize both the detection
efficiency and the quantum cooperativity. In Ch. 3 we discussed how to achieve
a large detection efficiency ηd in our cavity-free setup. On the other hand,
we can maximize Cq by reducing the bath temperature Tb (for example in a
cryostat) or by minimizing the coupling γ to the bath via the pressure. Other
parameters that can be tuned in the laboratory are the trap laser power Ptrap, the
radius R of the sphere, and the wavelength λ of the light. The scattered dipole
power scales as Pdip ∝ R6Ptrap/λ

4 [42] and the intrinsic gas damping rate as
γ ∝ 1/R2 [18]. The quantum cooperativity hence scales as Cq ∝ Ptrap(R/λ)5

and can be increased linearly in the trap power. Interestingly, it scales with fifth
power of the ratio R/λ, which suggests to use large particles. Note, however,
that for this derivation we assumed a dipolar scatterer, which fails when R
approaches λ.
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5 Optomechanics in free space

5.7 Conclusions

We developed a framework to compute the classical signals on a heterodyne
detector in free-space optomechanics. We found equations of motion of the
light and mechanical degrees of freedom in analogy to the canonical cavity-
optomechanics framework. By comparing to the canonical framework, we could
extract quantities like the quantum cooperativity and the measurement rate,
which can be directly compared to other systems. We analyzed the mechanism
by which the intrinsic sideband asymmetry, arising from zero-point fluctuations,
appears in the heterodyne spectrum. We concluded that it can be traced back to
the mechanical ZPF, if the heterodyne detector is modeled by normally ordered
correlators. If, on the other hand, the detector is modeled with symmetrized
correlators, we traced back the asymmetry to the light’s ZPF. This result is
in accordance with the findings of Børkje [102]. For the future, it would be
intriguing to find an experiment that would clearly differentiate the two detector
models. It might, however, turn out that both models always predict the same
result.

We think that the framework provided in this chapter, might be valuable for
the levitated optomechanics community for experiments that strive to achieve
quantum control over the levitated object in free space.
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Conclusions and outlook

Can an object be in two locations at once? This might be one of the oldest ques-
tions in the context of quantum mechanics, which stimulated Erwin Schrödinger
to come up with his famous Gedankenexperiment where a cat is both alive and
dead simultaneously [112]. While this thesis does not address this question
directly, it might serve as a stepping stone to prepare a macroscopic cat state
of a levitated nanoparticle in the future as proposed in Refs. [25, 113, 114].
Almost all observations in this thesis, and in fact in the whole of levitated
optomechanics so far, can be explained purely classically. In phase space of
position and velocity, the particle is therefore well located at a single point.
Before we return to the introductory question, let us recap the contents of this
thesis with a focus on the “quantum ingredients” at each step.

In chapter 2 we analyzed, both theoretically and experimentally, a linear
feedback cooling technique of our levitated nanoparticle. We assumed all
classical equations of motion and showed that we can cool the motional energy
to

EFB = 2πΩ
√
SffSimp, (6.1)

where Ω is the particle’s oscillation frequency. This minimal oscillation energy
was given by the product of the detection (imprecision) noise Simp and the
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force noise Sff acting on the particle. By applying Heisenberg’s uncertainty
principle, which can be phrased as SimpSff ≥ [~/(4π)]2 [59], we found that
under optimal Heisenberg-limited detection we would have been able to cool
to the oscillator’s ground-state energy EFB = ~Ω/2. Assuming that this is
indeed the lowest possible energy, we hence concluded that our linear feedback
technique is as good as permitted by (quantum) physics.

However, the imprecision-backaction product SimpSff was still a factor
1000 above the Heisenberg limit at this stage and we were still far in the
classical regime. In chapter 3 we analyzed our optical detection principle of
the scattering particle theoretically. We assumed classical light fields, which
fluctuate to account for photon shot noise. Based on this, we calculated both
the imprecision noise Simp of a position detector as well as the force (back
action) noise Sba

ff acting on the scatterer due to photon recoil. We found an
ideal detection scheme, which in principle resolves the position along all three
directions at the Heisenberg limit SimpS

ba
ff = [~/(4π)]2, but which demands

exotic beam shapes that are usually not available in the laboratory. We then
returned to a more realistic setting, where we used Gaussian beams only, and
computed the expected detection efficiency as a function of the numerical
aperture of the optics generating the trap. We found that the detection efficiency,
which describes how close the detector imprecision is to the fundamental noise
level, depends strongly on the direction of motion. The longitudinal z motion
can be resolved in a backscattering scheme with an appreciably high detection
efficiency above 0.6. This should suffice for feedback cooling of the z motion
to below one phonon in the future.

In chapter 4 we applied this knowledge and changed the setup accordingly.
This allowed us to cool the z motion to about four quanta. Moreover, in a
heterodyne interference measurement we were able to resolve the asymmetry
between Stokes and anti-Stokes scattering, which served as an energy measure-
ment calibrated against the quantum of motional energy ~Ωz . Although the
exact origin of this effect is debated in literature, a purely classical theory would
not predict this effect [102]. In chapter 5 we provided a theoretical framework
of optomechanics without a cavity and explored the debate about the origin of
the sideband asymmetry. We concluded that depending on the model for the
photodetector the interpretation of the origin differs slightly.
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Let us return to the initial question of whether an object can be in two
places at once. In our experience, particles have one single location at all times
and therefore the answer is no. But in the realm of quantum mechanics, the
position of any particle is described by a wavefunction, which is a measure
of the probability of finding a particle at a certain position. A conceivable
wavefunction of a single particle is a cat state, which has two distinct maxima
separated by a large distance in space. In this situation, the particle could
be found at any of the two locations (maxima) with a certain probability.
Importantly, we cannot interpret this situation as the particle being either in one
or the other location. This is because the wavefunction can interfere with itself
at a later time, just like a classical wave would, and the resulting interference
pattern would not be present if the particle were described by a single location at
all times. This effect, which is demonstrated in Youngs’ double-slit experiment,
is in stark contradiction with our daily experience. It has nonetheless been
observed experimentally with systems of ever-growing masses ranging from
(mass-less) photons over electrons (10−30 kg) to protons (10−27 kg) and even
C60 molecules (10−24 kg) [115].

Optically levitated nanoparticles with masses exceeding 10−18 kg have
been proposed as prime candidates to further push the scales at which quantum
mechanics can be tested by creating macroscopic superposition states [25, 113,
114]. The proposed experimental protocols are as follows. First, a nanoparticle
is confined in an optical trap before the trapping light is switched off. This lets
the particle freely fall and its wavefunction to grow larger than the particle’s
dimension. A short interaction with light realizes an effective double-slit
experiment which leaves the particle in a cat state. After another short time
of free fall, the two parts of the wavefunction interfere with each other and a
final position measurement will feature an interference pattern. What makes
levitated nanoparticles promising candidates for testing quantum mechanics at
macroscopic scales is their “unclampedness”. In particular, by simply switching
off the trap beam, the particle’s wavefunction expands in free space to a size
comparable to the particle dimension or the wavelength. In mechanically
clamped systems on the other hand, such a largely extended state would require
a high potential energy to be put into the system, which represents a source
of decoherence. Recent advances in the field of levitated particles, especially
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in free-fall experiments [116], in combination with optical cavities [30–36],
and in combination with electric Paul traps [31, 117–120] make such proposals
appear feasible in future experiments.

The final result in such experiments, i.e., the interference pattern, can only
be observed by averaging many experimental trials. This, however, requires
the system’s quantum state to be as pure as possible, where purity essentially
means that the wavefunction is identical every time the experiment is repeated.
The purity of a thermal state of a harmonic oscillator with mean occupation n̄
is 1/(2n̄ + 1) [121]. The only thermal state with a purity of 1 is the ground
state with n̄ = 0. In this thesis, we therefore showed that under linear feedback
with measurement efficiency η, we can achieve a purity of

√
η.

Within this intriguing quest of generating macroscopic superposition states,
in this thesis we have focused on the state initialization. We provided a road map
to purify the state of an optically levitated nanoparticle in space. Experimentally,
we realized a mean occupation number n̄ = 4 and therefore a purity of about 0.1.
By further reducing the gas interaction, for example in a cryogentic environment,
we expect to reach a purity of above 0.5 in future experiments.

With potentially many imponderables ahead, we are slowly but surely
moving toward realizing a Schrödinger cat state with our particle.
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A
Mathematical tools

A.1 Fourier transform

Throughout this thesis, we use the following definition of the Fourier transform
of a time-dependent function f(t):

f [ω] = F{f}(ω) :=

∫
dt f(t)eiωt. (A.1)

Whenever integrals are shown without boundaries, they are implicitly assumed
to be −∞ and∞. The first two time derivatives are Fourier transformed in the
following way:

F
{
ḟ
}

(ω) =

∫
dt ḟ(t)eiωt = −iωf [ω], (A.2a)

F
{
f̈
}

(ω) =

∫
dt f̈(t)eiωt = −ω2f [ω]. (A.2b)

The harmonic oscillator equation for γ, Ω > 0 is therefore transformed as

F
{
f̈ + γḟ + Ω2f

}
(ω) =

(
Ω2 − ω2 − iγω

)
f [ω]. (A.3)
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A time delay τ turns into a phase in frequency space as

F {f(t− τ)} (ω) =

∫
dt f(t− τ)eiωt = eiωτf [ω]. (A.4)

A.2 Correlation functions and spectral densities

Throughout this work, we use the following definition of the cross-correlation
function of time-dependent operators â(t) and b̂(t):

Gâb̂(τ) =
〈
â†(t+ τ)b̂(t)

〉
t
. (A.5)

The brakets 〈·〉 represent the expected value operator and the subscript ·t refers
to time averaging. For stationary and ergodic processes, the result is bound and
only depends on τ . The cross-spectral density Sâb̂(ω)is then defined as 1/(2π)

times the Fourier transform of Gâb̂(τ) according to

Sâb̂(ω) =
1

2π

∫
dτ eiωτGâb̂(τ). (A.6)

In the following, we list a few important symmetry relations:

Gâb̂(−τ) =
〈
â†(t)b̂(t+ τ)

〉
t

=
〈
b̂†(t+ τ)â(t)

〉∗
t

= Gb̂â(τ)∗, (A.7a)

Sâb̂(ω)∗ =

∫
dτ
2π

e−iωτGâb̂(τ)∗ =

∫
dτ
2π

eiωτGb̂â(τ) = Sb̂â(ω). (A.7b)

The autocorrelation function Gââ(τ) and the power spectral density (PSD)
Sââ(ω) of â(t) are special cases of the cross-correlation function and the cross-
spectral density, repsectively. We find

Gââ(−τ)∗ = Gââ(τ), (A.8a)

Sââ(ω)∗ = Sââ(ω) ∈ R. (A.8b)

All above identities apply equally for classical random processes. For the
special, but important case of a real-valued random process i(t), we have
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A.3 Parseval’s theorem

Gii(τ) ∈ R and hence

Gii(−τ) = Gii(τ), (A.9a)

Sii(−ω) =
1

2π

∫
dτ e−iωτGii(τ) =

1

2π

∫
dτ eiωτGii(−τ) = Sii(ω).

(A.9b)

The PSD of a real-valued classical random process is therefore symmetric in
frequency, while the PSD of an operator can be asymmetric in frequency. In all
theoretical derivations throughout this work, we use the above defined spectral
densities, which are two-sided and depend on angular frequency ω. When
we measure real time traces in experiments, we state one-sided PSDs, which
depends on real frequency f > 0, as

S̃ii(f) = 2

∫
dτ e2πifτGii(τ) = 4πSii(2πf). (A.10)

When a measured time trace is processed, S̃ii(f) is usually estimated by the av-
eraged absolute squared value of the fast Fourier transform of the measurement
record, as explained in Ref. [44].

A.3 Parseval’s theorem

For a real, random process i(t) with PSD Sii(ω), the variance of the process
can be calculated as the integral over the PSD:

∫
dω Sii(ω) =

1

2π

∫
dω
∫

dτ eiωτGii(τ)

=
1

2π

∫
dτ Gii(τ)

∫
dω eiωτ

=

∫
dτ Gii(τ)δ(τ) =

〈
i(t)2

〉
.

(A.11)

Here, we used
∫

dω eiωτ = 2πδ(τ), where δ(τ) is Dirac’s delta function.
Eq. (A.11) is known as Parseval’s theorem and for the single-sided PSD S̃ii(f)
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A Mathematical tools

it reads
∫ ∞

0
df S̃ii(f) = 4π

∫ ∞

0
df Sii(2πf) =

∫ ∞

−∞
dω Sii(ω) =

〈
i(t)2

〉
,

(A.12)

where we used Sii(ω) = Sii(−ω).

A.4 Cross-correlation and convolution

For two time dependent operators Â(t) and B̂(t) and a function f(t), we have
the following relationships:

SÂ(f~B̂)(ω) =

∫
dτ
2π

eiωτ
〈
Â†(t+ τ)

∫
dt′ f(t′)B̂(t− t′)

〉

t=0

=

∫
dt′ f(t′)e−iωt′

∫
dτ
2π

eiω(τ+t′)
〈
Â†(t+ τ)B̂(t− t′)

〉
t=0

=

∫
dt′ f(t′)e−iωt′SÂB̂(ω) = f [−ω]SÂB̂(ω),

(A.13a)

S(f~Â)B̂(ω) =

∫
dτ
2π

eiωτ
〈∫

dt′ f∗(t′)Â†(t+ τ − t′)B̂(t)

〉

t=0

=

∫
dt′ f∗(t′)eiωt′

∫
dτ
2π

eiω(τ−t′)
〈
Â†(t+ τ − t′)B̂(t)

〉
t=0

=

(∫
dt′ f(t′)e−iωt′

)∗
SÂB̂(ω) = f [−ω]∗SÂB̂(ω).

(A.13b)

A.5 Integral of Lorentzian functions

A reoccurring task in this thesis is to find integrals over the PSD of harmonic
signals in order to find the associated energy. This involves integrals of the
Lorentzian function, which we show in this section to be

∫
dω |χ[ω]|2 =

∫
dω

1

(Ω2 − ω2)2 + γ2ω2
=

π

γΩ2
, (A.14)
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A.5 Integral of Lorentzian functions

where
χ[ω] =

1

Ω2 − ω2 − iγω
(A.15)

is the susceptibility of a harmonic oscillator with mass m = 1 [compare
Eq. (5.7)]. To calculate the integral, we use Parseval’s theorem [Eq. (A.11)]
and solve it in time space, which requires us to know χ(t). Let us look at the
following Fourier integral for ω0, γ > 0:
∫ ∞

0
dt e−

γt
2 sin(ω0t)eiωt =

1

2i

∫ ∞

0
dt e−

γt
2

(
ei(ω+ω0)t − ei(ω−ω0)t

)

=
ω0

γ2/4 + ω2
0 − ω2 − iγω

.
(A.16)

We can therefore conclude

χ(t) = Θ(t)
1

ω0
e−

γt
2 sin(ω0t), (A.17)

where we substituted ω0 =
√

Ω2 − γ2/4 and where Θ(t) is the Heaviside step
function. Note, that the found expression for χ(t) is true even if Ω < γ/2, in
which case ω0 becomes imaginary. Since we then have γ/2 >

√
γ2/4− Ω2 =

|ω0|, the integral in Eq. (A.16) still converges.
Now we can compute the integral in Eq. (A.14):

∫
dω |χ[ω]|2 =

∫
dω
[∫

dt χ[t]eiωt
]∗ ∫

dt′ χ[t′]eiωt′

= 2π

∫
dt
∫

dt′ χ[t]∗χ[t′]δ(t′ − t)

= 2π

∫
dt |χ[t]|2 = 2π

∫ ∞

0
dt

1

ω2
0

e−γt sin(ω0t)
2

=
π

γ

4

γ2 + 4ω2
0

=
π

γΩ2
.

(A.18)
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When integrating the PSD of the velocity of a harmonic oscillator, we come
across the following integral:

∫
dω

ω2

(Ω2 − ω2)2 + γ2ω2
=

∫
dω |−iωχ[ω]|2 = 2π

∫
dt
∣∣∣∣

d
dt
χ[t]

∣∣∣∣
2

= 2π

∫ ∞

0
dt

1

ω2
0

e−γt
[
−γ

2
sin(ω0t) + ω0 cos(ω0t)

]2
=
π

γ
.

(A.19)

A.6 Power spectral density of shot noise

This section is about the PSD of shot noise. It is not meant as a rigorous proof,
which can be found elsewhere [75, 104]. We know from quantum theory that
for a coherent state, the number of excitations is Poisson distributed. Let us
assume a shot-noise limited beam of average photon flux ī, which impinges on
an ideal photon counter. The flux i(t) of detection events is a random process
with mean 〈i(t)〉 = ī. Its fluctuations δi(t) = i(t)− ī is a zero-mean process,
which is uncorrelated in time. The autocorrelation function is therefore [104]

Gδiδi(τ) = 〈δi(t+ τ)δi(t)〉 = īδ(τ). (A.20)

We can verify this result by calculating the statistical properties of the number
N(t) =

∫ t
0 dt′ i(t′) of clicks on the detector in the time interval [0, t]. First,

we subtract the mean 〈N(t)〉 = īt from N(t) to find the fluctuations δN(t) =

N(t)− īt =
∫ t

0 dt′ δi(t′). Now we can find the variance of N(t), which is

Var[N(t)] =
〈
δN(t)2

〉
=

∫ t

0
dt′
∫ t

0
dt′′

〈
δi(t′)δi(t′′)

〉

= ī

∫ t

0
dt′
∫ t

0
dt′′ δ(t′ − t′′) = īt = 〈N(t)〉 .

(A.21)

This result verifies that the variance of N(t) equals the mean of N(t), which
is an essential property of a Poisson distribution. From the autocorrelation
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A.6 Power spectral density of shot noise

Gδiδi(τ), we can find the two-sided PSD of the flux fluctuations as

Sδiδi(ω) =
ī

2π
. (A.22)

Experimentally, we usually measure the photon flux as an optical power P (t) =

~ωLi(t), where ωL is the laser frequency. The two- and single-sided PSDs of
the power fluctuations are then

SPP (ω) =
~2ω2

Lī

2π
=

~ωLP̄

2π
, (A.23a)

S̃PP (f) = 2~ωLP̄ , (A.23b)

where P̄ = ~ωLī is the average power.
Let us exchange photons for electrons and look at the shot noise of an electric
current I(t) = qi(t) with average current Ī = qī and elementary charge q. The
two- and single-sided PSDs of the current fluctuations read [75]

SII(ω) =
q2ī

2π
=
qĪ

2π
,

S̃II(f) = 2qĪ.

(A.24)

Let us finally assume a photodetector with quantum efficiency ηQ < 1. This
detector converts an optical power P̄ into a photocurrent Īphot = RP̄ , where
R = ηQq/(~ωL) is the detector’s responsivity. The detector can be modeled as
an ideal photodetector with unity quantum efficiency and a beamsplitter with
transmission coefficient ηQ in front of the optical input. The input power to the
ideal photodetector is then P̄id = ηQP̄ . This power fluctuates due to shot-noise
with PSD Sid

PP (ω) = ~ωLηQP̄ /(2π). Equivalently, the photocurrent PSD is

S
phot
II (ω) =

(
q

~ωL

)2

Sid
PP (ω) =

qĪphot

2π
. (A.25)

We see that in a shot-noise limited detection scheme, the photocurrent fluctua-
tions are exactly given by the current shot noise due to the mean photocurrent
Īphot. If we interpret the photocurrent Īphot as a measure for the optical power
P̄ = Īphot/R, then we find that the PSD of the imprecision of this power
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measurement is Sphot
II (ω)/R2 = ~ωLP̄ /(2πηQ) = SPP (ω)/ηQ. Only in the

limit of unity quantum efficiency, this is equal to the optical shot noise SPP (ω)

[Eq. (A.23a)] due to input power P̄ . In other words, the measurement noise
increases as the detector quantum efficiency decreases. In App. C.8 we describe
how to measure shot noise on a photodetector experimentally.
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B
Equipartition under linear feedback cooling

In this appendix we analyze our measurement based feedback from chapter 2.
We note that in general, a harmonic oscillator under linear feedback breaks the
equipartition theorem [29, 60, 61], a fact that we became aware of after writing
the papers [58] and [122]. In these papers, which form the basis of Ch. 2 and
Ch. 4, the feedback damping rate is much smaller than the eigenfrequency of
the system. Here we show that in that limit, where the system is underdamped
even under feedback, the equipartition theorem still holds.

Let us revisit the equation of motion of a harmonic oscillator x with
eigenfrequency Ω and mass m under a linear feedback. In frequency space, it
reads [compare Eq. (2.1)]

x[ω] = χ̃FB[ω]

(
ffluct[ω]

mΩ2
+ hFB[ω]ximp[ω]

)
(B.1)

with the (unitless) mechanical susceptibility under feedback

χ̃FB[ω] =
1

1− ω2

Ω2 − iγ0ω
Ω2 − hFB[ω]

. (B.2)
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B Equipartition under linear feedback cooling

Here, γ0 is the natural damping rate, ffluct is a fluctuating force driving the
oscillator, and ximp is the imprecision noise on the in-loop detector. The
feedback filter function hFB[ω] is normalized to be unitless. In analogy to the
analysis in Ch. 2, we calculate the position power spectral density (PSD)

Sxx(ω) = |χ̃FB[ω]|2
(

Sff
m2Ω4

+ |hFB[ω]|2Simp

)
, (B.3)

where we assume ffluct and ximp to be white noise processes with constant PSDs
Sff and Simp, and to be statistically independent. For the following discussion,
it is useful to replace Sff and Simp by two new parameters, the measurement
efficiency

η =
~2

(4π)2

1

SffSimp
(B.4)

and

γxopt =
1

mΩ

√
Sff
Simp

. (B.5)

Heisenberg’s uncertainty relation demands that η ≤ 1 [59] (see discussion in
Ch. 2). We will later see that γxopt is the feedback damping rate, which minimizes
the position fluctuations for a perfect derivative filter. In terms of η and γxopt, we
have

Sxx(ω) =
x2

ZPF
2π
√
ηΩ
|χ̃FB|2

(
γxopt

Ω
+ |hFB|2

Ω

γxopt

)
, (B.6a)

Spp(ω) = m2ω2Sxx(ω) =
p2

ZPF
2π
√
ηΩ

ω2

Ω2
|χ̃FB|2

(
γxopt

Ω
+ |hFB|2

Ω

γxopt

)
, (B.6b)

where Spp(ω) is the momentum PSD. We used the position and momentum
zero-point fluctuations x2

ZPF = ~/(2mΩ) and p2
ZPF = m~Ω/2, respectively.

The variance of the position and momentum fluctuations are then
〈
x2
〉

=∫
dω Sxx(ω) and

〈
p2
〉

=
∫

dω Spp(ω). The total energy of the motion under
feedback is

EFB =
~Ω

4

(〈
x2
〉

x2
ZPF

+

〈
p2
〉

p2
ZPF

)
. (B.7)

Next, we need to assume a specific filter type. Let us start with a perfect
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derivative filter in analogy to the discussion in Ch. 2. That is hFB = hderiv =

iωγFB/Ω
2 with a feedback damping rate γFB. Using Eqs. (A.14) and (A.19) we

can analytically find the position fluctuations to be

〈
x2
〉

deriv =
x2

ZPF
2
√
η

(
γxopt

γFB
+
γFB

γxopt

)
. (B.8)

Here, we assumed the feedback induced damping to largely exceed the natural
damping (γFB � γ0), a condition that is usually valid. This expression is
minimized by optimizing the feedback, and we see that a feedback damping rate
of γFB = γxopt minimizes the position fluctuations. In the following discussion in
Ch. 2, we assumed the equipartition theorem, according to which

〈
p2
〉
/p2

ZPF =〈
x2
〉
/x2

ZPF. With this assumption, the energy under feedback is Ederiv =

~Ω/(2
√
η) such that we can cool to the ground state energy EGS = ~Ω/2 for

unity measurement efficiency.
Importantly however, the feedback in general breaks the equipartition

theorem [29, 60, 61]. In the following discussion, we will find that this effect
is strong when γFB approaches Ω. For a resonant system under feedback with
γFB � Ω, however, the equipartition theorem still holds and the analysis in
chapters 2 and 4 is correct.

0 1 2 3 4
/
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1.2 Sderiv
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Sdelay
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Sderiv
pp ( )

Sdelay
pp ( )

Figure B.1: Sxx(ω) (dashed) in units of x2ZPF/Ω and Spp(ω) (solid) in units
of p2ZPF/Ω according to Eqs. (B.6). The feedback filter is a perfect derivative
filter in blue and a delay filter in red with parameters γxopt = γFB = Ω/4 and
η = 1.
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B Equipartition under linear feedback cooling

Let us look at the momentum PSD Spp(ω) under a derivative filter. We see
that for large frequencies, Spp(ω) does not decay to zero since the last term in
Eq. (B.6b) scales as (ω/Ω)4|χFB[ω]|2 → 1 as ω → ∞. This means that the
derivative filter induces white momentum fluctuations for large frequencies such
that the oscillator would have infinite kinetic energy. This is clearly unphysical
and any real feedback has a certain bandwidth, which limits the energy. Also,
note that this energy is fed back at large frequencies far off resonance. In
Fig. B.1 we show the position and momentum PSD for a derivative filter as a
blue dashed and a blue solid line, respectively. We assume a relatively large
feedback damping of γFB = γxopt = Ω/4 here. While we can clearly see that for
large frequencies Sderiv

pp does not decay to zero, the system is still resonant with
most energy close to the resonance frequency Ω.

In the following, we assume the filter bandwidth to be 4Ω, which limits
the total kinetic energy. With this assumption, we show in Fig. B.2 the total
energy under feedback Ederiv according to Eq. (B.7) as a function of the applied
γFB (blue lines) and for various values of γxopt (blue circles). For each γxopt

we numerically find an optimum feedback value γopt, which minimizes the

0.001 0.01 0.1 1
FB/ , opt/

0.4

0.6

0.8

1.0

1.2

1.4
Ederiv( FB)
Edelay( FB)

rderiv( opt)
rdelay( opt)

Figure B.2: Comparison of derivative (blue symbols) and delay filter (red
symbols). We show the motional energy as a function of the feedback
damping rate γFB for various values of γxopt =

√
Sff/Simp/(mΩ) (solid

and dashed lines). The energy is given in units of ~Ω/
√
η. For each curve,

the value of γxopt is indicated as a circle. We observe that the actual optimal
feedback rate γopt, which minimizes the energy, is smaller than γxopt for γxopt

approaching Ω. The crosses indicate the squeezing parameter at γopt. The
black line indicates the theoretical limit of ~Ω/(2

√
η).
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energy instead of the position fluctuations. For each optimal feedback value,
we compute a squeezing parameter r defined as

r =

〈
p2
〉

p2
ZPF

x2
ZPF
〈x2〉

(B.9)

and show r as blue crosses in Fig. B.2.
We see that in the limit of small feedback damping γxopt � Ω, the optimal

feedback damping rate γopt equals γxopt. In the same limit, we see that the
squeezing parameter approaches unity and the energy under feedback reaches
Eopt = ~Ω/(2

√
η) (black line). We interpret this result that the equipartition

theorem holds in this limit, and that the filter can cool the motion to its quantum
ground state for η → 1. In the opposite limit (γxopt / Ω) however, the mo-
mentum fluctuations start to exceed the position fluctuations and equipartition
does not hold. In that limit, the optimal feedback damping which minimizes
the energy, is smaller than γxopt and the feedback does not achieve ground-state
cooling.

As detailed in App. C.5, in the lab we typically do not implement a
derivative filter, but rely on a delay filter, which mimics a derivative filter
on resonance by delaying the signal for a quarter of an oscillation period. The
filter transfer function then reads hFB = hdelay = (γFB/Ω) exp [iπω/(2Ω)],
see Eq. (A.4). We cannot integrate the susceptibility |χ̃delay|2 analytically in
this case, but need to rely on numerical integration. In Fig. B.1, we show
the position and momentum PSD for a delay filter as a red dashed and a red
solid line, respectively. Contrary to the previously discussed derivative filter,
the momentum PSD for this filter does decay to zero limiting the total kinetic
energy without the need of a finite filter bandwidth*. In Fig. B.2, we perform
the same analysis for the delay filter in red symbols as for the derivative filter
before. We note that in the small feedback damping limit (γxopt � Ω) both
filters behave identical without breaking the equipartition theorem and both
can reach the quantum ground state. In the other limit of γxopt / Ω, the delay
filter, too, breaks equipartition and cannot reach the ground state. In contrast
to the derivative filter, however, it leads to smaller momentum than position

*This result can also be understood without numerical evaluation by noting that |hdelay| =
γFB/Ω is independent of frequency and therefore Spp(ω →∞)→ 0.
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B Equipartition under linear feedback cooling

fluctuations with rdelay < 1.
Let us put our results in the perspective of the experiments described in

chapters 2 and 4, where we used a delay filter. In chapter 2 we had an oscillation
frequency in the transverse y direction of 150 kHz and found an optimal cooling
rate of about 1 kHz so that γopt/Ω ≈ 7× 10−3. In chapter 4 we feedback cooled
with γFB ≈ 4 kHz an oscillator with Ω = 50 kHz such that γFB/Ω ≈ 8× 10−2.
From the analysis shown here, we can estimate the squeezing parameter to be
rdelay ≈ 0.9997 and 0.993 in the two cases. We conclude that the equipartition
theorem largely holds in both cases. The filter limit is a factor of less than 1 %

and 10 % above the theoretical limit of Ederiv = ~Ω/(2
√
η).

The derivation provided here is purely classical with the exception that we
assumed a Heisenberg limit for the imprecision-backaction product. In the
future, we should make a quantum analysis of the problem inspired by cavity
optomechanics, which would include a stochastic master equation [61, 123–
126].
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C
Detailed experimental setup

In this appendix, we detail the experimental setup used to obtain the measure-
ments in chapters 2 and 4. This document is addressed to experimentalists, who
are building up a similar experiment. We first give an overview of the setup and
then zoom into the various blocks in the following sections. Additionally, we
detail how to calibrate a photodetector against shot noise in Sec. C.8.

The setup is based on the dissertation by Vijay Jain [46] and sketched in
Fig. C.1. A 1064 nm laser * is intensity modulated by an electro-optical modu-

*Coherent Mephisto 2W

Backscatter
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Trap in
vacuum

PLLs

Forward
detector

EOM
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generation

Distribution
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Electric
feeback
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Figure C.1: Experimental setup overview.
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lator (EOM)*. Most of the light is sent through a free-space circulator to the
vacuum chamber, which contains the optical trap. The forward scattered light
is sent to a split detection scheme [43, 44, 46, 69] whilst the backscattered light
is collected at the third port of the circulator and sent to another interferometric
detector. In forward scattering, the trap light serves as a local oscillator (LO),
which does not exist in backscattering. We therefore send a fraction of the
laser light to a “LO generator”, which controls both phase and frequency of
the LO beam. It interferes on the “backscatter detector” with the backscattered
light from the particle. The electric signal from this detector is used to lock
the path length difference between the particle and the LO light. The detector
signal is then used to feedback-cool the center-of-mass motion of the particle
electrically. In order to stabilize the particle in the trap, we use parametric
feedback cooling [18, 43] based on phase-locked loops (PLLs) [41, 46]. Finally,
to exclude classical noise effects in the asymmetry measurements in chapter 4,
we stabilize the relative intensity noise of the laser actively by feeding back the
measured intensity to the EOM. All parts of the setup are individually explained
below.

C.1 Laser distribution and stabilization

In Fig. C.2 we show how the laser is split between the various blocks of the
setup. The EOM is optically biased using circular light from a quarter-wave
plate (QWP) such that its response to the voltage input Vmod is maximized. This
way we can avoid a large DC voltage at the EOM, which could be subject to
noise. In practice, the EOM is driven by less than 10 V peak-to-peak without
the need of a high-voltage amplifier. The EOM’s output light, which is phase-
modulated in one field component by the applied voltage Vmod, is sent through
a polarizing beamsplitter (PBS P2), which turns the phase modulation into an
amplitude modulation. The light is then split using combinations of half-wave
plates (HWPs) and PBSs (P3 - P5). The light used for trapping (about 300 mW)
and the LO light (about 50 mW) are coupled into two polarizing-maintaining
(PM) fibers. A small fraction of the light is sent in free space to the z-detector in

*Conoptics M350-210.
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Figure C.2: Laser distribution and stabilizer. The components are explained
in the text. The circles at the fiber collimators and mirrors M1 and M2 indicate
degrees of freedom needed to couple the light into the fibers. The electric
input Vmod is used for intensity modulation of the laser. The dashed lines at
PBS outputs indicate that the PBS’ input polarization is chosen such that the
intensity at this output is minimized.
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Figure C.3: Measured laser RIN with (light red) and without (light blue)
active stabilization. The straight lines indicate the average value (see legend)
including the frequency range of averaging. The single-sided spectra are
measured with a lock-in amplifier and normalized by the DC value. A
RIN reduction of about 13 dB is achieved. The apparent increase of the
spectra at the edges is an artifact of the demodulation process. The measured
photocurrent was 1.5 mA, which amounts to a shot noise contribution of
−156.7 dB/Hz to RIN [Compare Eq. (A.24)].
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forward scattering for balancing [43]. About 2 mW are sent to two independent
photodetectors* in order to measure the laser’s relative intensity noise (RIN).
The output signal of one of the detectors is band-pass filtered, amplified, and
fed back to the EOM in order to reduce the RIN of the laser actively. The other
detector signal VRIN represents an out-of-loop measurement of the laser RIN,
the normalized PSD of which we plot in Fig. C.3 (see caption for details). We
achieve a RIN reduction of 13 dB at 45 kHz.

The implemented feedback is all analog and relies on a first-order high-pass
(HPF) and a first-order low-pass filter (LPF). The filters are home built and are
implemented by three capacitors as indicated in Fig. C.2. The DC-blocking
(center) one is a 1 µF ceramic capacitor, which leads to a cut-off frequency
of the HPF of 1.6 kHz due to the 50Ω resistors at the detector output and the
amplifier† input. This way we make sure that we do not feed back the DC
power. Importantly, the loop gain must be negative, which we ensure by biasing
the EOM with circular light of the correct handedness. Since the loop has
a decreasing phase with frequency (due to the respective transfer functions
of the detector, the BNC cables, and the EOM), the loop gain turns positive
for large enough frequency. For stable operation, the (absolute) gain must be
small enough at that frequency. For this, the LPF is implemented by two 10 nF

capacitors to ground with a cut-off frequency of about 320 kHz. The feedback
therefore reduces laser RIN in the frequency range from 1.6 kHz to 320 kHz.

C.2 Optical trap and backscatter detector

This section is devoted to the most central part of our setup, which consists of
the optical trap and the backscatter detector as depicted in Fig. C.4. The trap
light comes from a PM fiber and, using a HWP and the PBS P1, the residual
polarization modulations are turned into intensity modulations. The PBS P2 and
the following Faraday rotator (FR) form a free-space circulator, the function of
which we describe below. The reflected port of P2 is sent to a Photodiode (Vtrap),
which monitors the trap power in real time. The FR‡ rotates the polarization by

*Thorlabs PDA10CS and Thorlabs PDA20CS
†Femto HVA-10M-60-B with 60 dB gain.
‡Qioptiq LINOS FI-1060-5SC HP
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Figure C.4: Optical trap and backscatter detector. For chapter 2, the box
labeled “y-det” replaced the box “z-det”.

45° before PBS P3 cleans the polarization again (P3 is mounted to the FR at an
angle of 45° to match the polarization axis). A HWP rotates the polarization to
vertical in the lab frame before the two mirrors M1 and M2 steer the beam into
the trap. Finally, the trap is formed using an overfilled 0.85 NA objective*. We
installed an electrode close by the trap, which we can use to electrically drive
the particle using the Coulomb force and to apply a damping force. Before
turning to the forward scattered detection in Sec. C.4, here we concentrate on
the particle light (about 10 µW) that is scattered back into the trap objective.
Because the particle is trapped at the focal spot (or very close to it on the optical
axis), its scattered light travels back on the same beam path as the trap light.
The polarization of the scattered light is rotated by another 45° in the FR, such
that it reflects out at P2. This way, we split the trap beam and the backscattered
beam.

In order to have an interferometric position measurement of the trapped
particle, the backscattered light is combined with a local oscillator (LO) beam
(about 4 mW), which comes from another PM fiber. We monitor the LO
power with a photodetector (VLO in the figure). In Ch. 4, we sketched a 50:50

*Olympus LCPLN100XIR
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C Detailed experimental setup

beamsplitter in Fig. 4.1, which combines the beams. In the lab however, we use
a combination of two PBSs (P4 and P5) with a HWP in between. By rotating
the HWP, this combination acts like a R:T beamsplitter, where the reflection
and transmission coefficients R and T can be tuned by the HWP angle. We
tune the angle such that the following photodetector with output voltage Vback

is balanced, which means that R ≈ T ≈ 1/2. This home-built photodetector
(Vback) is the central photodetector. It locks the interferometer (see Sec. C.3.1
for details on the lock) and provides us with both a homodyne readout of
the particle position z(t) along the optical axis and a heterodyne readout for
sideband thermometry, simultaneously.

All other components that are present in Fig. C.4 have the sole purpose
of aligning the two beams (the backscattered beam from the particle and the
LO beam). Due to backreflections from interfaces in the beam path, there is
in general a lot more reflected light than just the particle scattering. These
reflections can be spatially separated by slightly tilting the interfaces from
normal incidence. A pinhole is then used to block them. For overlapping both
beams, a flip mirror is installed such that the beams can be sent to a camera*,
where both beams are imaged individually (by blocking one of the paths). We
use a combination of two 50:50 beamsplitters to generate a second (spatially
separated) image on the camera at a distance L ≈ 1 m further down the optical
path. The two mirrors M3 and M4 are used to beam steer the backscattered
light until both beams are aligned on the camera. It turned out useful to have
the scattered beam steerable rather than the LO beam, because it contains much
less light and therefore the balancing of the detector does not change when the
beam is steered.

For the measurements in chapter 2, where we were focusing on the trans-
verse y motion, we used a slightly different setup in backscattering (inset in
Fig. C.4 labeled “y-det”). We used a D-shaped mirror to implement a split
detection scheme, which is sensitive to transverse motion, at one output of P6.
Note that the other PBS output was not detected and in this scheme one would
require a second balanced photodiode to maximize the detection efficiency.

*Point Grey Research CMLN-13S2M
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C.2.1 Calibration of backscatter detector

The purpose of the photodetectors is to measure the particle position and hence
a calibration is necessary to convert from volt to meter. We calibrate the forward
detectors (see Sec. C.4) in the mildly underdamped regime at a pressure of
10 mbar by equating the measured oscillation amplitude to a temperature of
300 K [56]. In backscattering however, we were not able to copy this procedure.
This was because of the high detection efficiency in backsacttering, which led
to a strong non-linear position detection when the particle was equilibrated to
300 K. We therefore used a different approach and translated the calibration
from the forward detectors. At a low pressure (below 10−5 mbar), we stabilized
the particle with some weak parametric feedback, and applied an RF tone to the
electrode close by the trap, driving the particle’s oscillation coherently close
to its resonance frequency. We made the tone strong enough to have a good
signal-to-noise ratio in both backward and forward scattering. By equating the
signal power on both detectors, we calibrated the backscatter detector (both the
homodyne and heterodyne readout).

C.3 Local oscillator generation

We use a combination of two acousto-optical modulators (AOMs), to frequency
and phase control the LO beam as depicted in Fig. C.5. The light from the input
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Figure C.5: Local oscillator generation.
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fiber is polarized by PBS P1 before entering the first AOM1, which is driven
by an 80 MHz radio-frequency (RF) tone*, which can be frequency modulated
(FM) by voltage VFM. The negative first-order light (labeled “-1”), which is
detuned by −80 MHz, is separated spatially and sent to the second AOM2,
which is driven by the sum two RF-tones of equal power†. The first RF tone
is at 80 MHz and the second can be switched between 79 and 81 MHz. From
AOM2 we separate the positive first order light (labeled “+1”) and couple it into
a PM fiber.

The input light field to our LO generator is a coherent laser field of the
form Eine

−iωLt with some amplitude Ein and laser frequency ωL. The AOM
combination described before generates the following light field in the output
fiber:

ELO(t) =
(
Ehom + Ehete±iωLOt

)
eiφLOe−iωLt. (C.1)

The output light is the sum of two light fields due to the fact that we drive
AOM2 by the sum of two RF tones. We choose the RF tones with equal power,
such that Ehom ≈ Ehet. The field Ehet has a negative (positive) frequency shift
of ωLO = 2π × 1 MHz with respect to the laser if the switchable RF frequency
is set to 79 (81) MHz. The output phase φLO is controlled by the FM voltage
VFM as

φLO = KO

∫ t

0
dt′ VFM(t′), (C.2)

where KO is the controlled-oscillator gain (in rad Hz/V).
Note that we use the AOMs in single-pass configuration, which means that

the angle of the output beam depends to first order on the applied frequency.
We mitigate this problem by coupling into another PM fiber, such that beam
pointing modulations turn into amplitude modulations. In other words, |Ehet|2

slightly changes when the RF frequency is switched between 79 and 81 MHz.

*Source: PeakTech 4046 arbitrary waveform generator, amplified by Mini-Circuits ZHL-
3A+. For the measurements in chapter 4, we used moglabs XRF421 as a frequency source.

†Adder: Mini-Circuits ZFSC-2-4B-S+
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C.3 Local oscillator generation

C.3.1 Locking the interferometer

With the setup described in sections C.2 and C.3, we built an interferometer
with the photodetector labeled Vback in Fig. C.4. When balanced, this detector
has the following output voltage, which is due to the interference between the
LO and the backsacttered particle light:

Vback = KD

[
sin(k̃z + φerr − φLO) + sin(k̃z + φerr − φLO ∓ ωLOt)

]
(C.3)

Here, KD is the detector’s gain (in V) and is proportional to the amplitudes
of both the LO and the particle light (we assumed Ehet = Ehom). The particle
position signal z appears on this detector with some factor k̃, which is in
the order of the wavenumber k, but the exact value of which depends on the
geometry of the system (see Ch. 3). Due to drifts of the interferometer, there will
always be a slowly varying phase error φerr present, which we cannot control.
The second sine term in Eq. (C.3) represents the heterodyne measurement of
our particle signal, the frequency components of which are solely around the
LO frequency of 1 MHz. We omit it in the following and concentrate on the
homodyne interference, which reads

Vback = KD

[
sin(φerr − φLO) + k̃z cos(φerr − φLO)

]
, (C.4)

where we assumed k̃z � 1, which is usually given. In order to have a most
sensitive position readout of the particle, we therefore require the homodyne
interferometer to be locked with φLO−φerr ≈ 0, in which case we have (to first
order in the phase error)

Vback = KD(φerr − φLO + k̃z). (C.5)

To achieve phase locking, we feed Vback to a PI-controller*, whose output VFM

controls the LO phase φLO. In the following, we explain how to choose the
proportional (P) and integral (I) gains of the PI controller such that stable
locking is achieved.

Note that φLO is not proportional to the applied voltage VFM, but to its time

*Zurich Instruments HF2LI
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integral due to the FM modulation [see Eq. (C.2)]. It turns out that locking this
interferometer is equivalent to locking a second-order phase-locked loop [127].
Around DC, we find

Vback = KD (φerr − φLO) = KD

(
φerr −KO

∫ t

0
dt′VFM

)

= KDφerr −KDKO

∫ t

0
dt′
(
PVback + I

∫ t′

0
dt′′Vback

)
,

(C.6)

where we used Eq. (C.2) and plugged in the PI-controller equations. We
differentiate the above equation twice with respect to time and find in Fourier
space (see App. A):

Vback[ω]
[
−ω2 +KDKO (−iωP + I)

]
= −ω2KDφerr[ω]. (C.7)

Now we can find the transfer function from phase error to detected voltage and
find

Vback[ω]

φerr[ω]
= KD

−ω2

−ω2 − iωKDKOP︸ ︷︷ ︸
ω0
Q

+KDKOI︸ ︷︷ ︸
ω2
0

. (C.8)

This is a second-order high-pass filter with natural frequency ω0 =
√
KDKOI

and quality factor Q = ω0/(KDKOP ). Slow drifts of the interferometer with
frequencies below ω0 are therefore balanced away. For stable operation, we set
Q = 1/

√
2 [127]. With this assumption, we can express the P and I values in

terms of the lock bandwidth ω0 and the system parameters KD and KO:

I =
ω2

0

KDKO
,

P =

√
2

KDKO
ω0.

(C.9)

Finally, we need to measure both KD and KO in our system. For this, we
apply a constant voltage to VFM such that φLO = KOVFMt. This leads to an
oscillating detector voltage Vback = KD sin (φerr −KOVFMt). By measuring
the oscillation frequency fmod and amplitude Vamp, we find KD = Vamp and
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C.4 Forward detection scheme

KO = 2πfmod/VFM. In practice, we usually apply VFM = 0.1 V and measure
fmod = 6 Hz and Vamp = 15 mV such that KD = 15 mV and KO = 2π ×
60 Hz/V. For a desired lock bandwidth of ω0 = 2π × 20 Hz, we find P = 31

and I = 2.8 kHz. These values can be used to configure the PI loop in the lab.
Note that we want our lock bandwidth ω0 to be much smaller than our signal
frequency, which is the particle’s oscillation frequency.

C.4 Forward detection scheme

The forward scattered light by the particle is collimated by an aspheric collection
lens* inside the vacuum chamber and send through a Faraday isolator†, which
minimizes backreflections into the trap, to a set of photodetectors. For the
measurements in chapter 2, this setup was identical to the one described by
Vijay Jain [46]. Most of the light (about 80 mW) was directed to a home-built,
high-power balanced photodetector [128] measuring the y-motion, while small
fractions were directed to two more detectors (x and z).

In chapter 4, we made use of the backscattered light and changed the
forward detection setup as depicted in Fig. C.6. A small fraction (1 mW) of the
light is sent to a quadrant photodiode‡ to measure the transverse motions (x and
y). About 20 mW are sent to a balanced photodiode to measure the longitudinal
motion and about 80 mW are dumped at a beam block (not shown). It turns
out that there is enough signal from the transverse directions (x and y) on the

*Lightpath 355330, C-coated, NA=0.77
†Qioptiq LINOS FI-1060-3SC HP
‡Thorlabs PDQ30C

Vz
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Faraday

Vy
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QPDlens

Figure C.6: Forward detection scheme.
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backscatter detector to stabilize the particle sufficiently, such that the forward
scattered detector can also be completely removed including the collection lens.

C.5 Electric feedback scheme

In order to electrically feedback cool the particle motion using a linear feedback
force, we employ both analog and digital electronics as depicted in Fig. C.7. In
this section we explain the details of the electronic setup, which was used in
chapters 2 and 4. Ideally, the feedback would be a perfect derivative filter with
arbitrary gain*, which means VFB ∝ −γFBdVd/dt, where VFB is the voltage
applied to the electrode at the trap, Vd is the detector voltage measuring the
particle position, and γFB is the feedback gain which should be tunable (see
Ch. 2). In Fourier space we have VFB[ω] ∝ iγFBωVd[ω].

Our particle’s motion is resonant with center frequency Ω and small band-
width. Instead of implementing a derivative filter, we mimic its effect by delay-
ing the signal for time τ = π/(2Ω). In frequency space, this means VFB[ω] ∝
γFB exp[iπω/(2Ω)]Vd[ω] = iγFBVd[ω] exp[iπ∆/(2Ω)] [see Eq. (A.4)], where
∆ = ω−Ω is the detuning from the system’s center frequency. This delay filter
mimics a derivative filter, but makes both a phase and an amplitude error for
∆ 6= 0. To first order, the phase error is π∆/(2Ω) and the relative amplitude
error is −∆/Ω.

After this general introduction, let us turn our attention to the implementa-
tion. The delay is implemented digitally (see Sec. C.6) with a time-step size of
32 ns and a maximum delay of 32.8 µs. Since the delay is a quarter of a period

*Note the discussion in App. B.
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Figure C.7: Electric feedback scheme.
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C.6 FPGA implementation of electronic feedback

as explained above, the range of delay corresponds to oscillation frequencies
from 7.6 kHz to the 10 MHz regime. At a frequency of 50 kHz, like in chapter 4,
we can tune the phase with an accuracy of 2π 50 kHz · 32 ns = 0.576°.

We use two digital, second-order notch filters with quality factor 5 and
tunable center frequency to remove the oscillation frequencies from the other
two particle modes (along the axes we are not interested in) from the signal. The
final digital component allows us to fine-tune the overall gain of the feedback.
All of the digital filters described above are implemented on an FPGA on the
platform Red Pitaya. A detailed description of this is given in Sec. C.6.

We need our filter to function over many orders of magnitude of gain. Using
a set of analog amplifiers and attenuators, we can control the gain in a range of
86 dB, across which the feedback noise is limited by its input noise. The first
amplifier’s* gain can be controlled from the Red Pitaya across a range of 50 dB

with 10 dB steps. Afterward, a high-voltage amplifier† amplifies the signal up
to ±150 V. A combination of an RF attenuator‡ and a relay at the output of the
high-voltage amplifier increases the total range of the analog gain to 86 dB.

To perform reheating measurements (chapter 2), a fast RF switch§ can be
controlled from the Red Pitaya. When switched, it bypasses the first analog
amplifier, effectively lowering the feedback gain by at least 30 dB, depending
on the amplifier’s gain setting.

In1
In2

DEC
÷4

DEC
÷32 𝜏 BIQ

1
BIQ
6 Out1

Out2

BIQ
2

fS=125 MHz 31.25 MHz ≈ 977 kHz

Figure C.8: Biquad filter implementation on Red Pitaya. Each component
can be configured via Ethernet.
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C.6 FPGA implementation of electronic feedback

A central part of the previously described feedback are digitally implemented
filters running on a versatile open-source platform called Red Pitaya. We
implemented a set of six so-called biquad filters (BIQ) that can be independently
configured from a PC. This section gives an overview of our implementation but
does not serve as a comprehensive documentation of the code. A related project
developed during this PhD is a fully functional phase-locked loop running on
the Red Pitaya platform. A documentation can be found online*.

At the heart of each Red Pitaya is a field-programmable gate array (FPGA)†,
which can be freely programmed. In addition to the configurable hardware, a
Red Pitaya includes a small CPU and memory running Linux for easy access.
Peripherals include two analog-to-digital converters (ADCs) and two digital-to-
analog converters (DACs), all of which run at a clock frequency of 125 MHz

and a resolution of 14 bits, as well as an Ethernet connection. A high-level
schematic of the FPGA circuitry is shown in Fig. C.8. At first, the 14-bit samples
from the two ADCs at a sample frequency of 125 MHz are downsampled by a
factor of four in a decimation filter (DEC) to 31.25 MHz. This also serves as the
clock frequency for the following hardware and hence the clock period is 32 ns.
A multiplexer selects one of the input signals, which is further downsampled
by a factor 32 to 976.5625 kHz. The frequency of the input signal is therefore
(Nyquist)-limited to about 488 kHz, which is half the sample frequency. Note
the difference between sample and clock frequency. Samples propagate through
the system at the sample frequency, while the underlying logic operates at the
clock frequency. The next element is a delay filter, which can delay the signal
by up to 32 steps at the sample rate (977 kHz) and by another 32 steps at the
clock frequency (31.25 MHz). This allows for delays of up to 32.8 µs with a
step size of 32 ns. Next, the signal enters a pipeline of six BIQs, which we
describe below. Finally, we can (at runtime) connect the output ADCs to any of

*Femto DHPVA-201
†Falco Systems WMA-300
‡Mini-Circuits BW-S30W5+
§Mini-Circuits ZX80-DR230+
*https://git.ee.ethz.ch/tefelix/redpitayapll
†Xilinx Zynq 7010 SoC
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C.7 Vacuum system

the BIQs or to the delay filter using another multiplexer.
Each biquad filter implements the following difference equation

yn = a0xn + a1xn−1 + a2xn−2 − b1yn−1 − b2yn−2, (C.10)

where a1,2,3 and b1,2 are real parameters. yn (xn) is the current output (input)
sample. The output depends on previous input samples xn−i and also previous
output samples yn−i. Such a filter is called infinite-impulse response (IIR) filter
of second order. The five parameters can be configured at runtime. This way,
each BIQ can implement a second-order low-, high-, or band- pass as well as
a notch (band-stop) filter. A helpful blog about this topic with a coefficient
calculator can be found under Ref. [129]. The necessary accuracy of each of
the parameters roughly scales with the ratio of sample to natural frequency
of the filter. This motivates to minimize the sample frequency as much as
possible. Since our system frequencies are in the 10-100 kHz regime, we
chose to downsample to about 1 MHz, as described above. Each BIQ can also
attenuate or amplify the signal, which we use to fine-tune the feedback gain
in Sec. C.5. The digital implementation of the BIQs is based on the blog in
Ref. [130]. The filter values are controlled via Ethernet connection and a python
script from the laboratory PC.
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Figure C.9: Schematic of the vacuum system. All vacuum components from
the trap to the turbo pump have CF flanges with copper gaskets. The prepump
system has KF flanges.
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C.7 Vacuum system

The vacuum system (see Fig. C.9) was built by Vijay Jain (Ref. [46]) and
consists of a vacuum chamber* with the optical trap. It is pumped with a
combination of three pumps, a turbo pump (TP) † backed by a scroll pump ‡,
and an ion getter pump (IGP)§. We slightly modified the system from Ref. [46]
with the goal to pump to lower pressure. We removed a 2 m long flexible bellow
between the TP and the chamber reducing the vacuum volume, such that the
pump lies on the optical table now. We can observe its rotation frequency in the
spectrum, but importantly this does not affect trapping and we can close a gate
valve to disconnect the TP from the chamber and switch it off. In this case, the
chamber’s pressure is kept constant solely by the IGP. Just before writing this
thesis, we exchanged the vacuum windows ¶ which included Viton O-rings for
ones without O-rings ||. This clearly improved the base pressure of the chamber
to 2× 10−9 mbar.

C.8 Photodetector characterization against shot noise

An important task in characterizing a photodetector is to resolve photon shot
noise. This section is intended to serve as a guideline for other experimentalists.
First, we concentrate on a single photodiode detector and then turn to a balanced
photodetector.

We focus a laser beam of power P on a photodetector with known transfer
function ZTF(f). ZTF(f) describes the gain from photocurrent I to the detector
voltage V in units of Ω. It is usually a first-order low-pass filter with DC
transimpedance gain ZTF(0) and should be specified in the detector’s datasheet.
We first measure the responsivity R = I/P of the photodiode to estimate
the coupling efficiency. For this, we measure the DC voltage V and divide
by the DC transimpedance gain ZTF(0) to get I . In order to exclude detector

*Kimball Physics MCF600-SphOct-F2C8
†Agilent TwisTorr 304 FS
‡Agilent S110
§SAES NEXTorr D 200-5
¶Thorlabs VPCH42-C
||Torr Scientific VPZ38, AR coated at 1064 nm
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C.8 Photodetector characterization against shot noise

nonlinearities, we should repeat this at different power levels P and fit the linear
regime for small powers. By comparing the measured to the specifiedR, we get
an idea of how well we couple the light into the photodiode. Note, however, that
any error in the original power measurement (e.g. with a dedicated power meter)
will directly translate into an error in the measured R. Next, we measure a
single-sided PSD S̃V V (f) of the detector voltage. We refer to dissertation [44]
for details on this procedure. We convert to the PSD of the photocurrent
S̃II(f) = S̃V V (f)/|ZTF(f)|2, which we can compare to the known (constant)
value of shot noise S̃sn

II(f) = 2qI [Eq. (A.24)].
Every real measurement is subject to other noise sources, such that the

measured noise S̃II(f) always exceeds shot noise S̃sn
II . At least, there will be

input noise of the measurement device, electronic noise of the detector, and
excess RIN of the laser. By disconnecting the detector, or better by shorting the
input to the measurement device with a 50Ω termination, we measure the input
noise. Electronic detector noise is measured by blocking the optical power.
Both of these should be much smaller than the optical noise floor. Laser RIN
exceeding shot noise will be present for large optical power and depends on the
laser’s stability.

Another way to identify shot noise in an optical measurement is to look at
the scaling of S̃II(f) with the input power P [131]. Electronic noise arising in
the detector does not scale with the input power, and excess RIN scales with a
square law. Only shot noise should scale linearly with the input power, and this
way the three processes can be differentiated. Importantly, this method fails if
the optical power P is tuned by active elements, which add noise themselves.
The power P should be tuned passively, e.g. using neutral density filters, in this
scaling method.

In a balanced detection scheme, excess RIN can be removed because it is
common mode to both photodiodes. Note that characterizing the responsivity
R can be more challenging here. This is because we often put a large power on
each photodiode, which would saturate the detector if it would not be balanced
by the other diode. The DC detector voltage, however, is now a measure for
the detector imbalance and not for the optical input power, which gives rise to
shot noise. In this case, we characterize the responsivity R by using a small
power on only one of the photodiodes without saturating the detector. The
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following procedure of comparing the measured noise floor to shot noise is then
in analogy to the case of a single photodiode detector.
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D
SI: Optimal position detection

Here we present supplementary information to chapter 3. This supplement
was published with the article F. Tebbenjohanns, M. Frimmer, and L. Novotny,
Phys. Rev. A 100, 043821 (2019).

D.1 Effective wavelength of focused field

In this Appendix, we show that a strongly focused field in the focal region
appears, to first order, as a plane wave propagating along the optical axis with
an effective wavelength determined by the numerical aperture of the focusing
lens. We start with the focal field generated by a highly overfilled objective,
which can be written analytically in cylindrical coordinates (ρ, φ, z) as [42]

Efoc ∝



I00 + I02 cos(2φ)

I02 sin(2φ)

−2iI01 sin(φ)


 , (D.1)
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D SI: Optimal position detection

where the incoming light is polarized along x. The integrals I00, I01, and I02

depend on coordinates ρ and z:

I00 =

∫ Θtl

0
dθ
√
cs(1 + c)J0(kρs)eikzc, (D.2a)

I01 =

∫ Θtl

0
dθ
√
cs2J1(kρs)eikzc, (D.2b)

I02 =

∫ Θtl

0
dθ
√
cs(1− c)J2(kρs)eikzc, (D.2c)

where c = cos(θ) and s = sin(θ). Furthermore, Jn are the Bessel functions of
the first kind for n ∈ {0, 1, 2}, which we expand to first order as J0(x) = 1,
J1(x) = x/2, and J2(x) = 0. The x component of Efoc to first order reads
C + ikzD ≈ C exp (ikzD/C) where C and D are integrals over θ which are
independent of any coordinates. The electric field component along y vanishes
to first order. The phase of the z component of the field is constant to first
order, but its amplitude is linear in the transverse directions and vanishes at the
origin. Importantly, the z component of the field is π/2 out of phase with the
x polarization such that it appears only to second order in standard homodyne
detection schemes. We hence conclude that the focal field in close vicinity to
the focus can be approximated as an x polarized plane wave traveling in the
positive z direction according to Efoc = E0nx exp (iAkz), with

A =

∫ Θtl
0 dθ s

√
c(1 + c)c

∫ Θtl
0 dθ s

√
c(1 + c)

. (D.3)

See App. D.5 for an analytical expression for A.

D.2 Derivation of measurement backaction

The differential power dpdip radiated by an x polarized dipolar scatterer into
solid angle dΩ = sin(θ)dθdφ is given by Eq. (3.3). This power exerts a
radiation pressure force dF xrp = −(nx · nr)dpdip/c on the scatterer along the
x direction. Assuming shot noise to dominate the fluctuations of the scattered
power, we find for the power spectral density of the scattered power dpdip along
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direction nr*

dspp(θ, φ) =
~kc
2π

dpdip. (D.4)

Due to these fluctuations, the radiation pressure force along nx fluctuates with
power spectral density dsxba = (nx · nr)2 dspp(θ, φ)/c2. We integrate this
differential contribution to the measurement backaction over the unit sphere to
find the backaction noise spectral density along the x direction:

Sxba =

∫
dsxba(θ, φ) =

1

5

~k
2πc

Pdip. (D.5)

By analogous derivations, we find the values for Syba and Szba as given by
Eqs. (3.4). As described in the main text, along the z direction, Szba needs to be
amended by an additional contribution for a scatterer polarized by a traveling
wave, which exerts a radiation pressure force along its propagation direction.
While our derivation rests on a semiclassical treatment, our results match a full
quantum derivation for a two-level system in the classical limit [76].

D.3 Derivation of optimal measurement imprecision

In this Appendix, we derive the measurement imprecision of our ideal mea-
surement scheme. Equation (3.6) in the main text is the differential power
impinging on a detector covering a solid angle dΩ and located at (θ, φ). Let us
temporarily assume that the scatterer is only displaced along the x axis, such
that y0 = z0 = 0. Then, the locally measured power

dpdet(θ, φ) = [γ2 + 2γk sin(θ) cos(φ)x0]dpdip (D.6)

linearly depends on position x0 and therefore is a measure for the scatterer’s
position x0. The first term contributing to dpdet is independent of x0, but
dominates the fluctuations of the measurement through photon shot noise. The
power spectral density of the fluctuations is

dsdet
pp (θ, φ) =

~kc
2π

γ2dpdip. (D.7)

*Compare Eq. (A.23).
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D SI: Optimal position detection

In order to extract the position x0 from the differential detector signal Eq. (D.6),
it needs to be divided by the pre-factor dβ(θ, φ) = 2γk sin(θ) cos(φ)dpdip.
Accordingly, we translate the fluctuations given in Eq. (D.7) to fluctuations of
the position as

sximp(θ, φ) =
dsdet
pp (θ, φ)

dβ(θ, φ)2
. (D.8)

In analogy, we derive syimp(θ, φ) and szimp(θ, φ) given in Eqs. (3.7). Recall that

sjimp(θ, φ) for j ∈ {x, y, z} are the power spectral densities of the measurement
imprecision associated with a differential detector located at (θ, φ). Importantly,
we find sjimp(θ, φ) ∝ 1/(dΩ), meaning that as the solid angle dΩ goes to zero
the imprecision noise of the detector diverges to infinity. This intuitively makes
sense, since the signal vanishes together with the detector area.

As mentioned in the main text, we perform inverse-variance weighting [77]
in order to minimize the total imprecision when the signals from all detectors
covering the unit sphere are combined. The local reading of x0 is hence
weighted with the inverse of sximp(θ, φ) before averaging over the unit sphere.
The total imprecision then turns out to be [see Eq. (D.28)]

Sximp =

[∫
1

sximp(θ, φ)

]−1

=

[∫
dβ(θ, φ)2

dsdet
pp (θ, φ)

]−1

= 5
~c

8πk

1

Pdip
, (D.9)

where the integral runs over the full unit sphere. The results for all three axes
are given in Eqs. (3.8).

Finally, let us drop our assumption that the scatterer is only displaced along
one axis and allow for the position r0 to have three non-zero components. In this
case, dpdet depends on a linear superposition of x0, y0, and z0 and, therefore,
also the local reading for the position along x

x̃0(θ, φ) =
dpdet(θ, φ)− γ2dpdip

dβ(θ, φ)

= x0 + y0 tan(φ) + z0
cos(θ)−A

sin(θ) cos(φ)

(D.10)

includes contributions by y0 and z0. Nevertheless, when combining the informa-
tion from all differential detectors correctly, following the procedure of inverse
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variance weighting, we indeed find

x0 = Sximp

∫
dβ(θ, φ)2

dsdet
pp (θ, φ)

x̃0(θ, φ), (D.11)

meaning that the contributions of y0 and z0 cancel. Analogously, y0 and z0 can
be extracted from the measurements dpdet using

ỹ0(θ, φ) =
dpdet − γ2dpdip

2γk sin(θ) sin(φ) dpdip
, (D.12a)

z̃0(θ, φ) =
dpdet − γ2dpdip

2γk[cos(θ)−A] dpdip
, (D.12b)

together with an appropriately adjusted version of Eq. (D.11).

D.4 Derivation of realistic measurement imprecision

The situation under consideration is sketched in Fig. D.1. An x polarized plane
wave is focused by a trapping lens with numerical aperture NAtl = sin(Θtl)

z

(θ,φ)
CL

Θ
TL

Θ
CL

(θ,φ)
TL

E
inc

x

r
0

Figure D.1: Laboratory detection system. A trapping lens with numerical
aperture NAtl = sin(Θtl) focuses an x polarized plane wave. On the opposite
side, the fields are collimated by a collection lens with numerical aperture
NAcl = sin(Θcl). The coordinate pair (θ, φ) denotes a point both on the
collection and on the trapping lens. A particle close to the focal point scatters
the focused field.
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D SI: Optimal position detection

before being recollimated by a collection lens with numerical aperture NAcl =

sin(Θcl). A dipolar scatterer is positioned at r0 in close vicinity to the focus
located at the origin. The scattered field, given by Eq. (3.2), is interfered with
the trapping beam on the reference surface of the collection lens. We formulate
the fields using the formalism laid out in Ref. [42], such that the electric field
on the reference sphere of the trapping lens reads

E∞ = Einc [− sin(φ)nφ + cos(φ)nθ]
√

cos(θ). (D.13)

Here, nφ and nθ are spherical unit vectors along the azimuthal and polar
direction, respectively. Note that in our notation, the polar angle θ spans the
range [0 . . . π/2], while the azimuthal angle φ spans [0 . . . 2π]. Therefore, the
coordinate pair (θ, φ) denotes both a point on the trapping lens and a point
on the collection lens (lying diametrically opposite relative to the origin). In
this notation, the trapping field on the collection lens (where it serves as the
reference field in a forward-scattering detection scheme) takes the exact same
form as the field in Eq. (D.13), besides an additional (irrelevant) phase factor
accounting for propagation through the focal region.

D.4.1 Quadrant detection in the forward direction

We first turn our attention to the case of detection in the forward direction, where
the field trapping the particle naturally serves as a self-aligned reference field.
The total field on the reference sphere of the collection lens reads E∞ + iEsc,
with Esc the field scattered by the particle from Eq. (3.2). The relative phase
between both fields is fixed to π/2, since the field in the focal region (driving
the dipolar scatterer) carries the Gouy phase shift relative to the field on the
reference sphere (and the polarizability of the particle is assumed to be purely
real) [42].

Under the assumption of a strong reference field and a small particle
displacement r0 from the origin, the differential power in direction (θ, φ) per
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unit solid angle is

dpcl(θ, φ)

dΩ
= Pinc cos(θ) +

√
3PdipPinc cos(θ)/(2π)

×
[
sin(φ)2 + cos(φ)2 cos(θ)

]

× k (r0 · nr −Az0) .

(D.14)

Here, Pinc ∝ E2
inc is the power of the trapping beam. Note that the polarization

of the scattered dipole field Edip ∝ [nx − (x/r)nr] differs from the reference
field. As usual in homodyne detection, we find two contributions to the power.
The first contribution is independent of the scatterer’s position and dominates
the associated photon shot noise, while the second (interference) term is a
measure for the scatterer’s position r0.

Typically, the intensity distribution on the reference sphere is not spatially
resolved. Instead, the fields are sent to a quadrant photodetector aligned along
the x and y axes. The detector measures the integrated power striking the
individual quadrants. The power PQ1 in the first quadrant is given by

PQ1 =

∫ Θcl

0
dθ sin(θ)

∫ π/2

0
dφ pcl(θ, φ)

=Pinc
π

4
NA2

cl + k
√

3PincPdip/(2π)Bfwr0.

(D.15)

The powers PQn in the other quadrants (n = 2, 3, 4) are equivalent with the
replacements x0 → −x0 for n ∈ {2, 3} and y0 → −y0 for n ∈ {3, 4}. In
Eq. (D.15), we have furthermore introduced the quantity

Bfw =

∫ Θcl

0
dθ s
√
c




s(1 + 2c)/3

s(2 + c)/3

π(c−A)(1 + c)/4


 , (D.16)

where we use the abbreviations s = sin(θ) and c = cos(θ). An analytical
solution of the third component Bfw

z is given in Appendix D.5. We note that
the particle position r0 can be extracted from the values PQn of the quadrant
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detector. Specifically we have

(PQ1 + PQ4 )− (PQ2 + PQ3 ) =P cal
x kx0, (D.17a)

(PQ1 + PQ2 )− (PQ3 + PQ4 ) =P cal
y ky0, (D.17b)

4∑

n=1

PQn − PincπNA2
cl =P cal

z kz0, (D.17c)

with the calibration factors

P cal
j =

√
24PincPdip/π B

fw
j , j ∈ {x, y, z}, (D.18)

where Bfw
j is the jth vector component of Eq. (D.16). To get access to z0, a

constant reference power has to be subtracted. Assuming that the detection
is shot-noise limited, each of the position measurements will be subject to
fluctuations with a white power spectrum

SQPP =
~kc
2
PincNA2

cl, (D.19)

arising from the first term in Eq. (D.15). By dividing these fluctuations by the
calibration factor (P cal

j k)2, we find the imprecision noise spectral density for
the motion of the particle along the j axis

Sj,fwimp =
SQPP

(P cal
j k)2

=
~c
kPdip

πNA2
cl

48
(
Bfw
j

)2 . (D.20)

As detailed in Sec. 3.3, we compare the calculated imprecision noise of the
realistic detection system to the one obtained in the ideal case [Eqs. (3.8)] to
obtain the measurement efficiencies in forward scattering, which are plotted in
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Fig. 3.4(a):

ηfw
x =

30
(
Bfw
x

)2

π2NA2
cl
, (D.21a)

ηfw
y =

15
(
Bfw
y

)2

π2NA2
cl
, (D.21b)

ηfw
z =

1

1 + 5
2A

2

15
(
Bfw
z

)2

π2NA2
cl
. (D.21c)

Finally, we discuss the feature that ηfw
z plotted in Fig. 3.4(a) vanishes for

a symmetric setup. This feature can be understood by looking at Bfw
z =

(π/4)
∫ Θcl

0 dθ s
√
c(c − A)(1 + c) from Eq. (D.16), with c = cos(θ) and s =

sin(θ). The factor [cos(θ)−A] in the integrand changes sign as the collection
angle θ passes a certain critical value. For a symmetric setup (NAtl = NAcl), the
integration over θ is truncated such that it strictly vanishes. This result can be
obtained directly by plugging Eq. (D.3) into Bfw

z and assuming NAtl = NAcl.
Note that the derivation presented here tacitly assumed NAcl < NAtl, since

when θ exceeds the maximum angle of the trapping beam Θtl = sin−1(NAtl)

the reference power drops to zero, such that there is no signal (but also no
excess noise). For this reason, the detection efficiencies plotted in Fig. 3.4(a)
are constant for NAcl > NAtl.

D.4.2 Quadrant detection in the backward direction

To analyze the case of backscattering detection, we assume a reference field,
which has the same spatial distribution as the trapping field. The reference beam
is then identical to Eq. (D.13) by our choice of coordinates. Following the same
derivations as in Sec. D.4.1, with the field scattered by the dipole expressed
in the coordinate system given by the reference spheres, we find expressions
for the imprecision noise spectral densities in backward scattering Sj,bw

imp . They
are identical to Eq. (D.20) under the substitutions Θcl → Θtl, NAcl → NAtl, as
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well as Bfw → Bbw, with

Bbw =

∫ Θtr

0
dθ s
√
c




s(1 + 2c)/3

s(2 + c)/3

π(c+A)(1 + c)/4


 , (D.22)

where s = sin(θ) and c = cos(θ). Note that Bbw differs from Bfw only in the
third vector component. Since both A and Bbw depend on Θtl, the z component
can be further simplified by inserting Eq. (D.3) for A, which yields

Bbw
z =

π

2

∫ Θtl

0
dθ s
√
c(1 + c)c. (D.23)

An analytical solution of Bbw
z is given in Appendix D.5. In analogy to forward

scattering, we compare the obtained imprecision noise Sj,bw
imp to the one for

an ideal measurement given by Eqs. (3.8), in order to compute the detection
efficiencies in backscattering ηbw

j , as plotted in Fig. 3.4(b).

D.5 Analytical solutions

In this appendix, we calculate analytical solutions of Eqs. (D.3), (D.16), and
(D.23). To ease our notation, we define

C(Θ) =

∫ Θ

0
dθ s
√
c(1 + c), (D.24a)

D(Θ) =

∫ Θ

0
dθ s
√
c(1 + c)c, (D.24b)

where s = sin(θ) and c = cos(θ). We can solve both integrals analytically and
find

C(Θ) = 2

(
8

15
− cos(Θ)3/2

3
− cos(Θ)5/2

5

)
, (D.25a)

D(Θ) = 2

(
12

35
− cos(Θ)5/2

5
− cos(Θ)7/2

7

)
. (D.25b)
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This allows us to find solutions of the following integrals in terms of the
functions C(Θ) and D(Θ):

A =
D(Θtl)

C(Θtl)
, (D.26a)

Bfw
z =

π

4
[D(Θcl)−AC(Θcl)] , (D.26b)

Bbw
z =

π

2
D(Θtl). (D.26c)

D.6 Inverse variance weighting

Given n independent Gaussian random variables Xi with i = 1, 2, . . . , n with
identical mean but different variances σ2

i , one can find that the weighted average,
which minimizes the variance, is given by [77]

X = σ2
n∑

i=1

Xi

σ2
i

(D.27)

with

σ2 =




n∑

j=1

1

σ2
j



−1

. (D.28)

We see that X is a random variable with 〈X〉 = 〈Xi〉 and Var(X) = σ2.
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E
SI: Optomechanics in free space

Here we present supplementary information to chapter 5.

E.1 Symmetrized power spectral density

In the main text, in sections 5.3, 5.4, and 5.5, we derived the correlations of the
photocurrent from a heterodyne detector measuring the motion of a vibrating
mirror. Following Glauber and Carmichael, we derived the photocurrent statis-
tics in a normally ordered treatment to model the detection process. There is a
common alternative way found in literature, where the photocurrent correlations
are taken to be the symmetrized version of their quantum mechanical counter
parts. In this appendix, we repeat the derivations of chapter 5 using symmetrized
correlations. In the following, we point out which equations in the main text
need to be adapted in this alternative detection model.

The correlations of the measured photocurrent, Eq. (5.15) and Eq. (5.16),

103



E SI: Optomechanics in free space

now read

〈i(t)〉 =
〈
î(t)
〉
t

=
〈
â†(t)â(t)

〉
t
, (E.1a)

Ḡii(τ) =
1

2

[〈
î(t+ τ )̂i(t)

〉
t
+
〈
î(t)̂i(t+ τ)

〉
t

]

=
1

2

〈
â†(t+ τ)â(t+ τ)â†(t)â(t)

〉
t

+
1

2

〈
â†(t)â(t)â†(t+ τ)â(t+ τ)

〉
t
.

(E.1b)

The (symmetrized) photocurrent’s correlation function Ḡhet
ii (τ) and the spectrum

S̄het
ii (ω) on our heterodyne detector [compare Eqs. (5.22) and (5.23)] now

read [94]

Ḡhet
ii (τ) =

|α|2

2

[
Gb̂b̂(τ)eiωLOτ +Gb̂†b̂†(τ)e−iωLOτ

+ Gb̂b̂(−τ)e−iωLOτ +Gb̂†b̂†(−τ)eiωLOτ
]
,

(E.2a)

S̄het
ii (ω) =

|α|2

2

[
Sb̂b̂(ω + ωLO) + Sb̂†b̂†(ω − ωLO)

+ Sb̂b̂(−ω + ωLO) + Sb̂†b̂†(−ω − ωLO)
]
,

(E.2b)

S̄het
ii (ωLO + ω) =

|α|2

2

[
Sb̂b̂(−ω) + Sb̂†b̂†(ω)

+ Sb̂b̂(2ωLO + ω) + Sb̂†b̂†(−2ωLO − ω)
]
.

(E.2c)

A detailed derivation can be found in App. E.2. As in Eq. (5.24), we can neglect
Sb̂b̂(2ωLO + ω) if the LO frequency is chosen large enough. Equally, all non-
constant components of Sb̂†b̂†(−2ωLO − ω) can be neglected, but importantly,
this term (due to its anti-normal order) includes a constant, shot-noise term,
which cannot be neglected.

Next, we use the reflected mode b̂out(t) from our vibrating mirror
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[Eq. (5.6b)] as an input to our photodetector and find

S̄het
ii (ωLO + ω) =

|α|2

2

[
Sout
b̂b̂

(−ω) + Sout
b̂†b̂†

(ω) + Sout
b̂†b̂†

(−2ωLO − ω)
]

=
|α|2

2

[
Sin
b̂b̂

(−ω) + Sin
b̂†b̂†

(ω) + Sin
b̂†b̂†

(−2ωLO − ω)

+4β2k2 [Sx̂x̂(−ω) + Sx̂x̂(ω)]

+ 4βkIm
[
Sin
b̂x̂

(−ω)− Sin
b̂†x̂

(ω)
]]
,

(E.3)

where we neglected all terms which include the mechanical motion x̂(t) at
2ωLO. The last cross-correlation can be solved in terms of the inputs as

Sin
b̂†x̂

(ω) = −2~kβχ[ω]∗
[
Sin
b̂†b̂†

(ω) + Sin
b̂†b̂

(ω)
]
. (E.4)

All other correlations are given in the main text [Eqs. (5.8) and following] and
we find

S̄het
ii (ωLO + ω) =

|α|2

2π


1 +

−4πβkImSin
b̂†x̂

(ω)

︷ ︸︸ ︷
4~β2k2Imχ[ω]∗

+8πβ2k2

[Sx̂x̂(ω)+Sx̂x̂(−ω)]/2︷ ︸︸ ︷
|χ[ω]|2

([
Sth
F̂ F̂

(ω) + Sth
F̂ F̂

(−ω)
]
/2 + 2~2k2β2/π

)
].

(E.5)

Clearly, the asymmetric spectrum of the force correlations vanishes in this
expression and in fact, any asymmetry in Sx̂x̂(ω) cannot be probed. However,
there is an additional non-vanishing term containing correlations between the
input light field and the motion Sin

b̂†x̂
(ω) due to the probe light driving the

motion. The implications of these findings are discussed in the main text.

E.2 Derivation of Eq. (5.21b) and Eq. (E.2a)

In this appendix, we find the photocurrent autocorrelation function Gii(τ)

[Eq. (5.21b)] in terms of the input field b̂(t) by inserting Eqs. (5.18) into
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Eq. (5.19b). For this, we first note that we can write Eqs. (5.18) as

î1(t) = A+B,

î2(t) = A−B
(E.6)

with

2A = b̂†b̂+ α̂†α̂,

2B = b̂†α̂+ α̂†b̂,
(E.7)

where we dropped the time arguments. Now we will write the following
current-current operators in terms of A and B:

î1(t+ τ )̂i1(t) = AτA+BτB +AτB +BτA,

î2(t+ τ )̂i2(t) = AτA+BτB −AτB −BτA,
î1(t+ τ )̂i2(t) = AτA−BτB −AτB +BτA,

î2(t+ τ )̂i1(t) = AτA−BτB +AτB −BτA.

(E.8)

The subscript τ abbreviates a time delay of the argument by τ , i.e., Aτ =

A(t+ τ). Now we can solve for the difference-current autocorrelation operator
Ĝii(τ) assuming α̂ and b̂ to be independent:

Ĝii(τ) =î1(t+ τ )̂i1(t) + î2(t+ τ )̂i2(t)

− î1(t+ τ )̂i2(t)− î2(t+ τ )̂i1(t)

=4BτB

=b̂†τ b̂α̂τ α̂
† + b̂τ b̂

†α̂†τ α̂+ b̂†τ b̂
†α̂τ α̂+ b̂τ b̂α̂

†
τ α̂
†.

(E.9)
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Assuming that the photocurrent’s autocorrelation function is given as the normal-
and time-ordered version of Ĝii(τ) as detailed in chapter 5, we find

Gii(τ) =
〈

: Ĝii(τ) :
〉

+ δ(τ)
〈

: î1(t) + î2(t) :
〉

=4 〈: BτB :〉+ 2 〈: A :〉 δ(τ)

=
〈
b̂†τ b̂
〉〈

α̂†α̂τ

〉
+
〈
b̂†b̂τ

〉〈
α̂†τ α̂

〉
+
〈
b̂†b̂†τ

〉
〈α̂τ α̂〉

+
〈
b̂τ b̂
〉〈

α̂†α̂†τ

〉
+
(〈
b̂†b̂
〉

+
〈
α̂†α̂

〉)
δ(τ),

(E.10)

where we assumed τ > 0 for time ordering. Next, we assume α̂ to be a coherent
field with α̂ |ψ〉 = αeiωLOt |ψ〉 like in the main text. We are in a rotating frame
at the optical frequency ωL, such that all operators have an additional phase
factor e−iωLt in the real frame, which we skip. With this, we find Eq. (5.21b):

Gii(τ) = |α|2Gb̂b̂(τ)eiωLOτ + |α|2Gb̂b̂(−τ)e−iωLOτ +
(〈
b̂†b̂
〉

+ |α|2
)
δ(τ)

+ α2Gb̂b̂†(−|τ |)
〈

eiωLO(2t+τ)
〉
t
+ (α∗)2Gb̂†b̂(|τ |)

〈
e−iωLO(2t+τ)

〉
t

(E.11)

Note that for a heterodyne detector where ωLO 6= 0, the third and forth term
vanish due to averaging in time. For a homodyne detector with ωLO = 0,
however, they do not vanish. The absolute value operator that appears in the
third and forth terms results from time ordering.

In contrast to the normally ordered treatment above, in App. E.1 we use the
symmetrized version of the correlation function. In this case, we find Ḡhet

ii (τ)

[Eq. (E.2a)]:

Ḡhet
ii (τ) =

1

2

〈
Ĝii(τ) + Ĝii(−τ)

〉

=
1

2

〈
b̂†τ b̂α̂τ α̂

† + b̂τ b̂
†α̂†τ α̂+ b̂†τ b̂

†α̂τ α̂+ b̂τ b̂α̂
†
τ α̂
†
〉

+
1

2

〈
b̂†b̂τ α̂α̂

†
τ + b̂b̂†τ α̂

†α̂τ + b̂†b̂†τ α̂α̂τ + b̂b̂τ α̂
†α̂†τ

〉

=
|α|2

2

[
Gb̂b̂(τ)eiωLOτ +Gb̂†b̂†(τ)e−iωLOτ

+ Gb̂b̂(−τ)e−iωLOτ +Gb̂†b̂†(−τ)eiωLOτ
]

+ δ(τ)
〈
b̂†b̂
〉
.

(E.12)
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We assumed heterodyne detection (ωLO 6= 0) and we averaged over oscillations
of the type e±2iωLOt. We also assumed α̂ and b̂ to be independent and used the
fact

〈
α̂τ α̂

†〉 = δ(τ) +
〈
α̂†α̂τ

〉
. Note that in general, a similar equation is not

true for b̂. For a strong reference α̂, the last term δ(τ)
〈
b̂†b̂
〉

is much smaller
than the other terms and can be neglected.

E.3 Homodyne detection

For completeness, let us now turn to a homodyne detector, for which ωLO = 0

in Eq. (E.11). Furthermore we write α = |α|eiθ, where θ is called the analyzer
angle. We now find

〈ihom(t)〉 = |α|
(

e−iθ
〈
b̂(t)
〉

+ eiθ
〈
b̂†(t)

〉)
(E.13a)

Ghom
ii (τ) = |α|2

[
δ(τ) +Gb̂b̂(τ) +Gb̂b̂(−τ)

+ e2iθGb̂b̂†(−|τ |) + e−2iθGb̂†b̂(|τ |)
] (E.13b)

Shom
ii (ω) = |α|2

[
1

2π
+ Sb̂b̂(ω) + Sb̂b̂(−ω)

+ e2iθSb̂†b̂(−ω)∗ + e−2iθSb̂†b̂(ω)
] (E.13c)

From Eq.(E.13b) to Eq. (E.13c) we tacitly assumed that Gb̂†b̂(|τ |) = Gb̂†b̂(τ)

such that their Fourier transform Sb̂†b̂(ω) is even. Later we plug Sout
b̂†b̂

(ω) into
this equation, which indeed is an even function, see Eq. (E.15). As expected,
this spectrum is symmetric in frequency and any asymmetry of Sb̂b̂(ω) cannot
be seen.

In analogy to Sec. 5.5, we now send the reflected probe light b̂out(t) of a
vibrating mirror to the homodyne detector. From the main text, we know

Sout
b̂b̂

(ω) = 4β2k2Sx̂x̂(ω). (E.14)
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Using the input-output relations [Eqs. (5.6)], we furthermore find

Sout
b̂†b̂

(ω) = Sin
b̂†b̂

(ω)− 4β2k2Sx̂x̂(ω)− 2iβk
[
Sin
b̂†x̂

(ω) + Sin
x̂b̂

(ω)
]

= −4β2k2Sx̂x̂(ω) +
2i~
π
β2k2χ[ω]∗

= −4β2k2Sx̂x̂(ω) + Sx̂x̂(−ω)

2
+

2i~
π
β2k2Reχ[ω].

(E.15)

where we used Eqs. (5.10) for the input correlations and χ[−ω] = χ[ω]∗. For
the last identity, which proves that Sout

b̂†b̂
(ω) = Sout

b̂†b̂
(−ω) is an even function, we

used

Sx̂x̂(ω)− Sx̂x̂(−ω)

2
= |χ[ω]|2mγ~ω

2π
=

~
2π

Imχ[ω]. (E.16)

Let us further analyze the homodyne detection by fixing the analyzer angle
to θ = π/2. This makes the detector phase sensitive, since then ihom(t) ∝
i[b̂†(t)− b̂(t)]. The homodyne PSD then becomes

Shom
ii (ω) = c2

hom

[
Shom

imp +
Sx̂x̂(ω) + Sx̂x̂(−ω)

2

]
, (E.17)

where Shom
imp = 1/(32πβ2k2) is the imprecision noise of the homodyne detector

with unit detection efficiency and chom = 4|α|βk is the calibration factor. Our
homodyne detector thus measures the symmetrized position PSD [Sx̂x̂(ω) +

Sx̂x̂(−ω)]/2, as expected. In the main text we show that this detector operates
at the Heisenberg limit of the imprecision-backaction product.

E.4 Inefficient detection

In chapter 5, we derived models for a heterodyne and a homodyne detection
scheme of a vibrating mirror in Eq. (5.25) and Eq. (E.17). For the derivation,
we assumed unity detection efficiency, which is typically not given in the
lab. Specifically, in levitated optomechanics we show in Ch. 3, that detecting
a specific direction of motion of the particle is associated with a detection
inefficiency due to the finite NA of the trapping optic and a non-ideal mode
overlap. Here, we enrich the framework developed in Ch. 5 by introducing a
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detection efficiency ηd < 1. For this, we attenuate the signal mode b̂(t) (see
Fig. 5.2), which we model by a beamsplitter with transmission coefficient ηd.
The new mode ĉ(t) at the input of the 50:50 beamsplitter then reads

ĉ(t) =
√
ηdb̂(t) +

√
1− ηdb̂vac(t), (E.18)

where b̂vac(t) are inevitable vacuum fluctuations [66]. These vacuum fluctua-
tions are independent of the input mode b̂(t), and we find for the PSD of the
new input mode ĉ(t):

Sĉĉ(ω) = ηdSb̂b̂(ω) + (1− ηd)Svac
b̂b̂

(ω) = ηdSb̂b̂(ω). (E.19)

In Eqs. (5.10) we explicitly found Svac
b̂b̂

(ω) = 0 for vacuum fluctuations.
The effect of inefficiency on the spectra obtained by homodyne (heterodyne)
detection is that the imprecision noise Shom

imp (Shet
imp) is increased by 1/ηd and

(less importantly) the calibration factor chom (chet) is decreased by
√
ηd. We

find [Compare to Eq. (5.25) and Eq. (E.17)]

Shom,ηd
imp = (32πβ2k2ηd)

−1,

Shet,ηd
imp = (8πβ2k2ηd)

−1.
(E.20)
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