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Abstract: Coloboma and microphthalmia (C/M) are related congenital eye malformations, which
can cause significant visual impairment. Molecular diagnosis is challenging as the genes associated
to date with C/M account for only a small percentage of cases. Overall, the genetic cause remains
unknown in up to 80% of patients. High throughput DNA sequencing technologies, including
whole-exome sequencing (WES), are therefore a useful and efficient tool for genetic screening and
identification of new mutations and novel genes in C/M. In this study, we analyzed the DNA of 19
patients with C/M from 15 unrelated families using singleton WES and data analysis for 307 genes of
interest. We identified seven novel and one recurrent potentially disease-causing variants in CRIM1,
CHD7, FAT1, PTCH1, PUF60, BRPF1, and TGFB2 in 47% of our families, three of which occurred de
novo. The detection rate in patients with ocular and extraocular manifestations (67%) was higher
than in patients with an isolated ocular phenotype (46%). Our study highlights the significant genetic
heterogeneity in C/M cohorts and emphasizes the diagnostic power of WES for the screening of
patients and families with C/M.

Keywords: whole-exome sequencing; microphthalmia; coloboma; genetic screening; MAC; ocular
development; anterior segment dysgenesis

1. Introduction

Ocular coloboma and microphthalmia (C/M) are related congenital eye malforma-
tions, which form part of a continuum together with the most severe phenotype of anoph-
thalmia [1]. Ocular coloboma refers to a segmental defect affecting all or parts of the iris,
lens, choroid, retina, and optic nerve [2]. This defect is typically caused by a partial or
complete failure of optic fissure closure during early eye development [2]. Two events
are crucial in optic fissure closure: (i) close apposition of the edges of the optic cup and
(ii) subsequent fusion of the apposed edges [3]. Disruption of one or both of these pro-
cesses may result in ocular coloboma [3]. Microphthalmia is characterized by a reduced
axial length of the eye [4,5]. It primarily results from reduced growth of the eye but can
also occur secondary to incomplete optic fissure closure [6,7]. However, the exact patho-
physiological mechanisms responsible for microphthalmia are still poorly understood [8].
Similarly, a small optic cup can also result in ocular coloboma, as close apposition of optic
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cup edges cannot occur [3]. It currently remains unknown whether the optic fissure defects
in colobomatous microphthalmia are the cause or consequence of ocular growth defects [8].

C/M can be associated with severely reduced visual development or deterioration of
vision through complications such as cataract or retinal detachment and accounts for ap-
proximately 15% of severe visual impairment and blindness worldwide [2,9]. Prevalence is
estimated to range from 2 to 17 per 100,000 births for microphthalmia [6,7,10–13] and from
2 to 14 per 100,000 births for ocular coloboma [6,10,13,14]. C/M are genetically heteroge-
neous malformations with the occurrence of reduced penetrance and variable expressivity
even within the same family and between the eyes of the same individual [1,3]. They can
manifest bilaterally or unilaterally and occur as an isolated finding, with additional ocular
and/or systemic anomalies, or as part of a recognizable syndrome [15,16].

Although environmental and genetic factors have been attributed to cause C/M, the ma-
jority of cases are caused by chromosomal anomalies or single gene defects [8]. To date,
at least 82 genes have been associated with microphthalmia, anophthalmia, and coloboma
(MAC), with each gene accounting for only a small percentage of cases [8,15,17]. Among
these are genes coding for transcription factors, gene expression regulators, and proteins
involved in different signaling pathways and retinoic acid metabolism [8,18]. Autosomal
dominant, autosomal recessive, and X-linked dominant or recessive inheritance patterns
have been associated with C/M [3,8]. Whilst a genetic cause can currently be identified
in up to 80% of patients with bilateral anophthalmia or severe microphthalmia, it re-
mains unknown in the majority of patients with other forms of MAC, particularly isolated
coloboma [1]. Thus, the genetic cause of C/M remains unknown in 20–80% of patients,
depending on severity, bilaterality, and presence of syndromic features [1,8].

The advent of high-throughput DNA sequencing technologies has led to the identi-
fication of many genes and DNA sequence variants implicated in human eye disorders
and contributed to the progress in understanding the processes driving the development
of the eye [2]. Next-generation sequencing (NGS) technologies are particularly efficient
tools for research and diagnostic testing of genetically heterogeneous diseases, as they
allow simultaneous screening of hundreds of genes [19]. In Switzerland, patients with
isolated C/M rarely undergo genetic analysis, as genetic testing is not routinely covered
by health insurance providers. However, disease management and genetic counseling
could be improved by knowledge of the underlying genetic cause. Additionally, genetic
analyses can be costly, and establishing a molecular diagnosis can be challenging due to
the phenotypic variability and genetic heterogeneity of C/M [3]. An efficient screening
strategy may alleviate this challenge. Since none of the numerous genes associated with
C/M account for a large percentage of cases, whole-exome sequencing (WES) represents
an ideal tool for genetic testing in C/M [19]. In this study, we describe the genetic analysis
of 19 patients from 15 unrelated families with coloboma and/or microphthalmia using
WES for all 15 index patients and data analysis for 307 genes of interest, including copy
number variation (CNV) analysis.

2. Materials and Methods
2.1. Patients

Patients with C/M were recruited from the Department of Ophthalmology at the
University Hospital Zurich. Inclusion criteria were congenital anomalies, including bilat-
eral coloboma, microphthalmia, or colobomatous microphthalmia, and/or familial and/or
syndromic unilateral coloboma and/or microphthalmia. All index patients received an
eye examination, including dilated fundus examination. The presence of additional ocular
features or extraocular manifestations was documented. Affected family members were
included in the study, and their data were obtained from clinical examinations, patient
records, and direct questioning. Unaffected family members underwent ophthalmologic
re-examination upon indications from segregation analysis. Blood samples were collected
from all index patients, their parents, and available affected and unaffected family members.
Ethical approval was obtained (Cantonal Ethics Committee of Zurich, Ref-No. 2019-00108),
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and written informed consent was provided by all participants or their legal guardians.
The study was conducted in accordance with the principles of the Declaration of Helsinki.

2.2. Genes of Interest

A comprehensive list of 307 genes of interest was compiled for WES data filtering
and analysis (Table S1). Disease-associated and candidate genes were chosen from the
Human Gene Mutation Database (HGMD) and literature searches. Genes associated with
syndromic MAC, nonsyndromic MAC, and MAC phenotypes in animal models were
included. The gene list was extended by candidate genes for MAC and candidate genes
known to play a role in signaling and developmental pathways important for eye formation
and function, compiled by Raca et al. [19].

2.3. Whole-Exome Sequencing and Data Analysis

DNA from blood samples was extracted using the Chemagic DNA Blood Kit
(Perkin Elmer, Waltham, MA, USA). Singleton WES was performed for 15 index patients,
as previously described [20]. Reads were aligned to the human reference genome (hg19),
and variant calling was performed with BaseSpace Onsite (Illumina, San Diego, CA, USA).
Alamut Batch version 1.11 (Sophia Genetics, Saint Sulpice, Switzerland) was used for
variant annotation. WES data were filtered with the compiled gene list (Table S1) in a
stepwise manner. Variants with heterozygous allele frequency >1% (genome aggregation
database (gnomAD) heterozygous allele frequency all populations) and homozygous al-
lele frequency >0.00001% (gnomAD homozygous allele frequency all populations) were
excluded (https://gnomad.broadinstitute.org/). The remaining variants were then fil-
tered based on variant type and position in the gene. Missense variants were considered
if predicted to affect protein function by at least three out of five in-silico prediction al-
gorithms (Align-GVGD [21], FATHMM-MKL [22], CADD [23], MutationTaster [24], and
SIFT [25]). Align-GVGD grades were interpreted according to Bergmann et al. [26] and
the remaining scores according to Dong et al. [27]. Synonymous and intronic variants
were considered if close to splice sites (±30 bp of the exon-intron boundary). Splice site
variants with predicted splice site alterations were prioritized. In silico splicing predictions
were examined using Alamut Visual version 2.10 (Sophia Genetics). Splice site variants
with no predicted splice site alteration were considered in the absence of other candi-
date variants. Previous reports of the variant with a comparable phenotype in HGMD
or literature served as an additional filter criterion. Candidate variants were classified
as potentially disease-causing based on variant classification by the American College of
Medical Genetics and Genomics (ACMG), reports of previous cases with a comparable
phenotype, animal models, and functional studies.

2.4. Segregation Analysis

All candidate variants were confirmed by Sanger sequencing, and de novo variants
were additionally confirmed by multiplex short tandem repeat (STR) analysis, which
compared 24 STR markers between the index and both parents. Segregation analysis
was performed for all available family members using Sanger sequencing. For PCR
amplifications, the HOT FIREPol Kit (Solis Biodyne, Tartu, Estonia) was used for a total
volume of 20 µL, containing 1×HOT FIREPol Buffer B2, 0.5 mM MgCl2, 200 µM dNTP Mix,
0.2 µM of each primer, 0.025 U/µL HOT FIREpol DNA polymerase, 10 ng of genomic DNA,
and 1× S-solution in case of nonspecific amplification. Primer sequences are available upon
request. A no template control (NTC) served as a negative control. PCR was performed on
a Veriti 96 Well Thermal Cycler (Applied Biosystems, Waltham, MA, USA) or 2720 Thermal
Cycler (Applied Biosystems) as follows: 95 ◦C for 15 min; 35 cycles at 95 ◦C for 30 s, 60 ◦C
for 45 s, and 72 ◦C for 1 min; 72 ◦C for 10 min. PCR products were examined by agarose
gel electrophoresis using 1% weight/volume (w/v) gels. Cycle sequencing was carried out
with the BigDye™ Terminator v.1.1/v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific,
Waltham, MA, USA) in a total volume of 10 µL, containing 0.4x BigDye™ Terminator
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v1.1/v3.1 Ready Reaction Mix, 0.8× BigDye™ v1.1/v.3.1 Sequencing Buffer, 0.8 µM of
single primer, and 0.6–1.0 µL of PCR product. PCR was performed on a Veriti 96-well
Thermal Cycler (Applied Biosystems) as follows: 96 ◦C for 1 min; 25 cycles at 96 ◦C for 20 s,
58 ◦C for 20 s, and 60 ◦C for 2 min; 60 ◦C for 2 min. Postreaction spin column purification
was carried out using Sephadex® G-50 BioReagent fine (Sigma-Aldrich, St. Louis, MO,
USA). Capillary electrophoresis was performed on a 3130xl Genetic Analyzer (Applied
Biosystems), and sequences were visualized using Chromas version 2.6.6 (Technelysium,
Brisbane, Australia).

2.5. CNV Analysis and Breakpoint Assessment

CNVs were identified based on exome coverage depth data for all 307 genes of
interest using Sequence Pilot version 5.0 (JSI Medical Systems GmbH, Ettenheim, Germany).
The CRIM1 deletion was confirmed in index patient 1[III:3] from family 1 by long-range
PCR and subsequent NGS sequencing of the deletion-spanning breakpoint fragment,
as previously described [28]. Briefly, a fragment of 22,240 bp, including exons 14 to 17,
the 3′ untranslated region (UTR) of CRIM1, as well as exon 9 and the 5′ UTR of FEZ2,
was amplified with TaKaRa LA Taq polymerase (Takara Bio, Kasatsu, Japan). Long-range
PCR was performed in a total volume of 30 µL, containing 1x Buffer Mg2+ free, 1x S-
Solution (Solis Biodyne), 400 µM dNTP Mix, 0.4 µM of each primer, 0.05 U/µL LA Taq
polymerase, and 50 ng of genomic DNA. PCR was carried out on a Veriti 96 Well Thermal
Cycler (Applied Biosystems) as follows: 94 ◦C for 2 min; 35 cycles at 98 ◦C for 10 s and 68 ◦C
for 12 min; 72 ◦C for 10 min. Primers were designed to flank the deleted region, with the
forward primer (5′-AAA TGG CAC AAC CCT GAT AGC CAC ACA T-3′) located in intron
13 of CRIM1 and the reverse primer (5′-CAC AGG GAG GGA AGC GGG GAA ATA AAA
A-3′) located in intron 8 of FEZ2. Amplicons were fragmented using the Covaris M220
Sonicator (Covaris, Woburn, MA, USA) for a target size of 350 bp. Library preparation was
carried out with the TruSeq DNA Nano Kit (Illumina) according to the manufacturer’s
protocol. The library was quantified with the Qubit dsDNA High Sensitivity Kit (Thermo
Fisher Scientific) and validated using the Agilent High Sensitivity DNA Kit (Agilent, Santa
Clara, CA, USA) with the 2100 Bioanalyzer (Agilent), according to the manufacturer’s
instructions. Final libraries were diluted to a loading concentration of 12 pM. Paired-end
sequencing (2 × 151 cycles) was performed on the MiSeq system (Illumina). Data were
aligned to the human reference genome (hg19) with the Burrows-Wheeler Aligner (BWA-
MEM), and variant calling was performed using the Genome Analysis Toolkit (GATK).
Sequences were visualized using Alamut Visual version 2.10 (Sophia Genetics). Breakpoints
were identified using the NGS data and confirmed by Sanger sequencing of the junction
fragments. Primer sequences are available upon request. Multiplex PCR, using primers
from long-range PCR and a second forward primer (5′-GTT TCC GTT TTT GGC TTT GGC
TGC TAC A-3′) located in intron 15 of CRIM1, was performed for segregation analysis in
available family members. PCR products were analyzed by agarose gel electrophoresis
and run on a 2100 Bioanalyzer (Agilent) using the Agilent DNA 12000 Assay (Agilent),
according to the manufacturer’s instructions.

The FAT1 deletion in family 3 was confirmed by SNP array analysis of the trio (index
patient and parents) using the HumanKaryomap-12 BeadChip version 1.0 (Illumina) with
the REPLI-g Single Cell Kit (Qiagen, Hilden, Germany). Data were aligned to the human
reference genome (hg19) and evaluated using the BlueFuse Multi software version 4.5
(Illumina). Breakpoints were mapped by analyzing WES and CHIP data.

2.6. Functional Analyses by RT-PCR of Potential Splice Site Variants in CHD7, ACTG1,
and EFTUD2

The effect of potential splice site variants in CHD7, ACTG1, and EFTUD2 on splicing
was functionally analyzed by isolating patient RNA from blood and subsequent reverse
transcription PCR (RT-PCR). Whole blood was collected in PAXgene Blood RNA Tubes
(PreAnalytiX, Hombrechtikon, Switzerland), and total RNA was extracted from index
patients, carriers, and unaffected controls using the PAXgene Blood RNA Kit (PreAnalytiX).
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RNA extraction was performed according to the manufacturer’s instructions with the
exception of DNaseI treatment, second elution (buffer BR5), and heat-denaturation of RNA.
Extracted RNA was then treated with DNase I Amplification Grade (Invitrogen by Thermo
Fisher Scientific). Subsequently, 300 or 600 ng of total RNA was reverse-transcribed into
cDNA using the SuperScript III First-Synthesis SuperMix Kit (Invitrogen) with oligo(dT)20
primers, according to the manufacturer’s instructions. Part of the CHD7 transcript con-
taining exons 2–5, the ACTG1 transcript containing exons 4–6, and the EFTUD2 transcript
containing exons 7–12, exons 8–11, and exons 2–27, respectively, were amplified from
cDNA. PCR was performed with the HOT FIREPol Kit (Solis Biodyne) using 1 µL of cDNA
on a 2720 Thermal Cycler (Applied Biosystems) as follows: 95◦C for 15 min; 35 cycles
at 95 ◦C for 1 min, 60 ◦C for 1 min, and 72 ◦C for 1.5 min; 72 ◦C for 10 min. Amplified
products were separated by agarose gel electrophoresis using a 1% (w/v) gel. Sequences of
cDNA fragments were confirmed by Sanger sequencing.

2.7. Functional Analysis by Minigene Assay of a Potential Splice Site Variant in EFTUD2

The effect of a potential splice site variant in EFTUD2 on splicing was further examined
in a cellular system. A minigene construct was generated according to Gamundi et al. [29]
and de Heer et al. [30]. In short: the rhodopsin gene sequence spanning exons 3 to 5
was cloned into pcDNA3.1 (Invitrogen) using EcoRI and XhoI restriction sites (for primer
sequences, see Gamundi et al. [29]). Rhodopsin exon 4 was excised from plasmid by PflMI
and EcoNI digestion and replaced by EFTUD2 exon 10 flanked by intronic sequences
(NM_001142605.1:c.765-267 to c.889+171). Plasmid constructs (reference and variant c.765-
15C>G) containing EFTUD2 exon 10 sequence were verified by Sanger sequencing and
transfected into HEK293T cells. Total RNA was then isolated and reverse transcribed into
cDNA for further analysis, as previously described [20].

3. Results

Our study enrolled 19 patients from 15 unrelated families affected with coloboma (12/19)
or colobomatous microphthalmia (7/19), as summarized in Tables 1 and 2. Six of these
patients presented with additional extraocular manifestations. Seven novel, and one recurrent,
potentially disease-causing variants were identified in CRIM1, CHD7, FAT1, PTCH1, PUF60,
BRPF1, and TGFB2 in 7 out of 15 index patients (47% of the families; Table 2, Figure 1). These
variants were identified in 4 out of 6 (67%) patients with ocular and extraocular manifestations
and in 6 out of 13 (46%) patients with an isolated ocular phenotype (Tables 1 and 2). All
variants were classified as potentially disease-causing based on our criteria for variant filtering
and interpretation. According to these filtering criteria, no conclusive disease-causing variants
were identified in eight index patients and families (53%).
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Table 1. Clinical details of index patients, affected family members, and asymptomatic carriers.

ID † Sex Age (yrs) at
Examination

Origin ‡ VA
Coloboma Microphthalmia Additional Ocular Anomalies Extraocular Phenotype

OD OS

1[III:3] f 2 Portugal, Poland 0.5/0.25 NA I NA None None
1[II:3] m 45 Portugal 0.1/NLP IRCh IRCh NA Microcornea (OU) None
1[I:1] m 75 Portugal NA I NA NA Microcornea (OD) None

2[II:1] m 14 Netherlands 0.6/0.6 RCh RCh NA Megalocornea (OD) SNHL, DORV, VSD, PDA, DD,
dysmorphic features

3[II:1] f 17 Switzerland 0.2/0.6 IRCh NA NA Anterior polar cataract (OU) Syndactyly, hearing impairment

4[II:2] f 30 Italy NLP/0.8 RCh RCh NA Axenfeld-Rieger anomaly (OU) None
4[III:1] f 0.75 Italy 0.25/0.25 I IRCh NA None VSD, clinodactyly
4[II:3] f 24 Italy 1.0/1.0 NA NA NA Goniodysgenesis (OU) None

4[I:2] f 56 Italy 0.6./0.8 NA NA NA None Uterine fibroids, keratocystic
lesions

5[II:1] f 7 Switzerland, Germany NLP/0.5 IRCh RCh OD None DD, ASD, short stature

6[II:1] m 2 Portugal 0.16/0.1 IRCh IRCh OS None None

7[II:1] f 13 India 0.5/NLP RCh a NA OS None Aortic root enlargement

8[II:1] f 12 Spain 0.6/1.0 I I NA Axenfeld-Rieger spectrum (OU) Tooth displacement

9[II:2] f 33 Switzerland 0.1/0.1 RCh RCh OU None None
9[III:1] m 6 Switzerland LP/NLP RCh RCh OU None None

10[II:1] f 3 Switzerland, Germany 0.16/0.06 IRCh IRCh OS None None

11[II:2] f 4 Switzerland, Belgium 0.6/0.8 I I NA
Cataracta corticonuclearis (initial
partial inferonasal, at age 4 years

complete; OD)
None

12[II:2] f 2 Switzerland 0.05/0.08 IRCh IRCh NA None None

13[IV:4] f 9 Switzerland, Austria 0.05/NLP IRCh NA OS None Clinodactyly, mild pigeon toe,
mild protruding ears

14[II:1] m 19 Switzerland 0.4/0.05 RCh RCh NA None None

15[II:1] f 13 Italy 0.4/0.8 RCh RCh NA None None

Abbreviations: ASD, atrial septal defect; C, coloboma; Ch, choroid; DD, developmental delay; DORV, double outlet right ventricle; f, female; I, iris; ID, intellectual disability; LP, light perception; m, male; M, microphthalmia;
NA, not applicable; NLP, no light perception; OD, oculus dexter; OS, oculus sinister; OU, oculus uterque; PDA, patent ductus arteriosus; R, retina; SNHL, sensorineural hearing loss; VA, visual acuity; VSD, ventricular
septal defect; yrs, years. † First numeral represents the family number; roman numeral represents the generational affiliation of the patient. ‡ Geographic origin of ancestors (three generations).a Lateral coloboma.
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Table 2. Potentially disease-causing variants in index patients identified by whole-exome sequencing (WES).

ID † Gene Gene Function Reference
Sequence Sequence Variant (hg19) Predicted Protein

Change Region/Size gnomAD Zygosity ACMG CADD First
Report

1[III:3] CRIM1

Tether for growth
factors, complexes
with ß-catenin and

cadherins

hg19 g.36769283_36778290del a NA 9,008 bp NA het NA NA This study

2[II:1] CHD7 Chromatin
remodeling NM_017780.3 c.2095A>G b p.Ser699Gly e exon 3 0% het vus 15.4 [26,31–33]

3[II:1] FAT1
Cell polarity, cell

migration, cell–cell
adhesion

NM_005245.3 c.5970_5971delc p.Asn1991PhefsTer19 exon 10 0% hemi vus NA This study

FAT1, F11,
MTNR1A,

ZFP42
hg19 g.(187179210_187179486

_188926200_189012426)del a NA ∼1.8 Mb NA het NA NA This study

4[II:2] PTCH1 Hedgehog
receptor NM_000264.4 c.490G>A c p.Glu164Lys exon 3 0% het vus 18.1 This study

5[II:1] PUF60

Transcriptional
regulation,
pre-mRNA

splicing, apoptosis

NM_001136033.2 c.752dup b p.Gln252ProfsTer152 exon 9 0% het P NA This study

6[II:1] BRPF1 Chromatin
regulator NM_001003694.1 c.1756_1757insT b p.Glu586ValfsTer12 exon 5 0% het P NA This study

7[II:1] TGFB2 Growth factor NM_001135599.3 c.1043G>A d p.Arg348His exon 7 0.00082% het LP 35 This study

Abbreviations: ACMG, American College of Medical Genetics and Genomics; CADD, Combined Annotation Dependent Depletion; het, heterozygous; hemi, hemizygous; NA, not applicable; LP, likely
pathogenic; P, pathogenic; vus, variant of uncertain significance. † First numeral represents the family number, roman numeral represents the generational affiliation of the index patient. a Paternal segregation. b

De novo. c Maternal segregation. d Segregation not known. e Splicing affected by variant, as demonstrated by functional analysis.
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Figure 1. Pedigrees and segregation of potentially disease-causing variants identified in families
1–7. Squares indicate males; circles indicate females; filled symbols indicate affected individuals;
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unknown disease status; brackets around symbols with a dashed offspring line indicate individuals
adopted into the family; arrows indicate index patients. The putative disease-causing variants in
families 2, 5, and 6 occurred de novo.

3.1. Sequence Variants and Clinical Findings in Coloboma

Of the 12 affected patients diagnosed with coloboma, potentially disease-causing
variants were identified in 7 patients (58%) from 4 families. Family 1 consisted of index
patient 1[III:3] with iris coloboma in the left eye, her father (individual 1[II:3]) with iris
and chorioretinal coloboma and microcornea in both eyes, and her grandfather (individual
1[I:1]) with iris coloboma and microcornea in the right eye. Disease status of the index
patient’s uncle (individual 1[II:1]) and his daughter (individual 1[III:2]) was unknown as
they were not available for an eye examination. According to direct questioning of the uncle,
he had no ocular abnormalities, but his daughter had an abnormal pupil. Genetic analysis
identified a novel heterozygous deletion in Cysteine Rich Transmembrane BMP Regulator
1 (CRIM1) spanning 9008 bp, including exons 15–17 and the 3′ UTR of CRIM1 (Figure 2) in
index patient 1[III:3]. Breakpoints were located based on NGS data to positions 36,769,283
and 36,778,290 of chromosome 2 (hg19), flanked by a 2-bp microhomology region (CT)
(Figure 2B,C). Multiplex PCR showed segregation of the deletion with the disease, resulting
in a 9612-bp fragment for the reference allele in all family members and an additional
13,232-bp fragment for the deleted allele in all affected family members and the index
patient’s uncle (individual 1[II:1]) with unknown disease status (Figure 2D). The index
patient’s cousin (individual 1[III:2]) was not available for genetic testing.

Index patient 2[II:1] presented with a small chorioretinal coloboma, megalocornea
and posterior embryotoxon in the right eye, and optic disc coloboma in the left eye
(Figure 3A–C). Furthermore, bilateral profound sensorineural hearing loss (SNHL), in-
ner ear malformations with missing semicircular canals, enlarged aquaeductus vestibuli,
audiogenic speech developmental disorder, double outlet right ventricle (DORV), ven-
tricular septal defect (VSD), patent ductus arteriosus (PDA), pulmonary stenosis, global
developmental delay, webbed neck, and dysmorphic features with plagiocephaly were
documented. Genetic analysis identified a previously reported heterozygous missense vari-
ant (NM_017780.3:c.2095A>G, p.(Ser699Gly)) in Chromodomain Helicase DNA Binding
Protein 7 (CHD7). The variant affects a highly conserved amino acid residue and is located
2-bp from the splice donor site of exon 3. The variant occurred de novo (Figure S1) and
was predicted to impact protein function by three out of five in-silico prediction algorithms
(MutationTaster, FATHMM-MKL, CADD). No variants matching our filtering criteria
were detected in any known genes associated with Noonan syndrome, other RASopathies
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(PTPN11, SOS1, RAF1, RIT1, KRAS, NRAS, BRAF, SHOC2, CBL, MEK1, MEK2, HRAS,
MAP2K1, MAP2K2, NF1), or other genes associated with CHARGE syndrome (SEMA3E).
Thus, differential diagnoses of Noonan syndrome or phenotypically similar RASopathies
are unlikely. As variant c.2095A>G in CHD7 is located near the splice site of exon 3 and the
variant has previously not been functionally analyzed, we examined its potential effect on
splicing by analyzing cDNA fragments spanning exons 2–5 for index patient 2[II:1] and a
control. Agarose gel electrophoresis showed an expected 871-bp fragment (Fragment 1)
and four additional fragments indicating aberrant splicing for both index patient 2[II:1] and
the control (Figure 4A). The 871-bp fragment (Fragment 1) corresponded to the correctly
spliced transcript (Figure 4B). Sequencing of the 491-bp fragment (Fragment 2) revealed a
lack of 380-nt from the 3′ end of the 431-bp exon 3, likely resulting from usage of a cryptic
exonic splice donor site upstream of the canonical donor splice site of exon 3 (Figure 4B).
This splice site alteration leads to a frameshift and the introduction of a premature stop
codon (p.(Val573Ter)) in exon 3 (out of 38 exons) in the affected transcript. This aberrant
splicing also occurred in the control but was (significantly) increased in index patient
2[II:1]. The three additional fragments corresponded to nonspecific or alternatively spliced
transcripts (not sequenced).
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Figure 2. CRIM1 deletion in index patient 1[III:3] and affected family members. (A) Overview
of the genomic locus 2p22.3–p22.2 associated with MACOM syndrome, the previously published
22-kb CRIM1 deletion (magenta bar), the 9008-bp deletion identified in this study (red bar), and the
multiplex PCR (blue dashed lines) used for segregation analysis. The deletion in family 1 encompasses
exons 15–17 and the 3′ UTR of CRIM1. (B) Alignment results of the long-range PCR product for the
deleted allele of index patient 1[III:3] in the Integrative Genomics Viewer (IGV) interface. Alignment
shows the location of the breakpoints and the 2-bp microhomology (CT) at the junction. The green
and orange lines indicate part of the junction region originating from the proximal and distal sides
of the deletion, respectively. The blue line indicates the 2-bp microhomology present at both sides
of the deleted region. (C) Sanger sequencing electropherogram of the junction fragments for index
patient 1[III:3]. The green, blue, and orange lines correspond to the lines described in Figure 2B.
(D) Agilent DNA 12,000 Assay gel image of multiplex PCR for segregation analysis. Gel shows a
9612-bp fragment for the reference allele in all family members and an additional 13,232-bp fragment
for the deleted allele in all affected family members and one family member with unknown disease
status harboring the heterozygous CRIM1 deletion.
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with (G–H) iris hypoplasia, polycoria, persistent pupillary membrane, (I) chorioretinal coloboma 
in the right eye (left eye not shown), and (J–K) goniodysgenesis in both eyes. (L–N) Slit lamp pho-
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Figure 3. Ocular findings in affected individuals of families 2–4 and 7. (A–C) Slit lamp and fundus
photographs of index patient 2[II:1] showing (A) posterior embryotoxon and (B) small chorioretinal
coloboma in the right eye and (C) optic disc coloboma in the left eye. (D–F) Slit lamp photographs and
Optomap™ image of index patient 3[II:1] showing (D–E) anterior polar cataract in both eyes and (D,F)
iris and chorioretinal coloboma in the right eye. (G–K) Slit lamp photographs and Optomap™ image
of index patient 4[II:2] showing Axenfeld-Rieger anomaly in both eyes, with (G–H) iris hypoplasia,
polycoria, persistent pupillary membrane, (I) chorioretinal coloboma in the right eye (left eye not
shown), and (J–K) goniodysgenesis in both eyes. (L–N) Slit lamp photograph, Optomap™ image,
and spectral domain optical coherence tomography image of index patient 7[II:1] showing (L) severe
microphthalmia in the left eye and (M–N) juxtapapillary chorioretinal coloboma in the right eye.
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Figure 4. CHD7 c.2095A>G variant alters splicing in functional analysis. (A) Agarose gel of RT-PCR products for patient-
and control-derived cDNA and the NTC. RT-PCR showed correctly spliced transcript (Fragment 1), partial exon 3 skipping
(Fragment 2), and additional nonspecific or alternatively spliced DNA fragments (not sequenced) in index patient 2[II:1]
and the control. Partial exon 3 skipping (Fragment 2) was more pronounced in index patient 2[II:1] compared to the control.
Ladder, 1 Kb Plus DNA Ladder (Thermo Fisher Scientific); NTC, no template control. * nonspecific or alternatively spliced
DNA fragments. (B) Schematic overview and Sanger sequencing results of RT-PCR products. Sanger sequencing revealed
correctly spliced CHD7 transcript (Fragment 1) and a 380-nt deletion from the 3′ end of exon 3 (Fragment 2) due to the
CHD7 c.2095A>G variant. p3, partial exon 3.
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Genetic analysis showed that index patient 3[II:1] was compound heterozygous for a
novel frameshift variant (NM_005245.3:c.5970_5971del, p.(Asn1991PhefsTer19)) and a novel
deletion of FAT Atypical Cadherin 1 (FAT1). CNV analysis and SNP array analysis revealed
an approximately 1.8-Mb deletion in the 4q35.2 region, including FAT1 and flanking genes
F11, MTNR1A, and ZFP42 (Figure 5B). Proximal and distal breakpoints were narrowed
down to the positions g.(187,179,210–187,179,486 and 188,926,200–189,012,426; hg19) using
WES and SNP array analysis data. According to segregation analysis and SNP array
analysis, the frameshift variant was transmitted from the mother, whereas the deletion
was inherited paternally (Figure 5). No variants matching our filtering criteria or CNVs
were detected in PAX6. Index patient 3[II:1] was diagnosed with anterior polar cataract
and macular hypoplasia (grade 2) [34] in both eyes, iris and chorioretinal coloboma in the
right eye, left congenital ptosis, syndactyly of the 4th and 5th toe, and hearing impairment
(Figure 3D–F). Both parents showed no evidence of ocular or systemic abnormalities
or diseases.
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Figure 5. FAT1 frameshift variant and deletion in index patient 3[II:1] and both parents. (A) Sanger sequencing results of
index patient 3[II:1] and both parents for the FAT1 frameshift variant. Index patient 3[II:1] and the mother (individual 3[I:2])
are hemizygous and heterozygous, respectively, for the FAT1 frameshift variant (c.5970_5971del; p.(Asn1991PhefsTer19)).
(B) Single nucleotide polymorphism (SNP) microarray data (B-allele frequency and Log R ratio chart) of the 4q35.1–q35.2
region for SNP array analysis of index patient 3[II:1]. Index patient 3[II:1] and the father (individual 3[I:1]) are hemizygous
for SNPs in the deleted region (B allele frequency chart) and show reduced signal intensity (Log R ratio chart). The maximal
deleted region is 1.8 Mb (chr4:187,149,541–188,971,489), with the approximately deleted region indicated in yellow.

Family 4 consisted of index patient 4[II:2] with chorioretinal coloboma and Axenfeld-
Rieger anomaly in both eyes, complicated by glaucoma (Figure 3G–K), her daughter
(individual 4[III:1]) with iris coloboma in the right eye and iris/chorioretinal coloboma
in the left eye and extraocular features (large VSD, bilateral clinodactyly V), and the
index patient’s sister (individual 4[II:3]) with goniodysgenesis without glaucoma in both
eyes but no coloboma. The index patient’s mother (individual 4[I:2]) presented with no
ocular abnormalities but uterine fibroids and keratocystic lesions. Neurological diseases or
abnormal cognitive development were not known in any of the family members. Personal
history of the index patient and her mother pointed to potential additional dermatological
and systemic manifestations, including basal cell nevus syndrome (BCNS), but could
not be confirmed. Genetic analysis identified a novel heterozygous missense variant
(NM_000264.4:c.490G>A, p.(Glu164Lys)) in Patched 1 (PTCH1). The variant was present
in all affected individuals who presented with an abnormal iridocorneal angle (Figure S1)
and was inherited from the index patient’s mother (individual 4[I:2]), who does not show
goniodysgenesis or coloboma. This PTCH1 missense variant affects a moderately conserved
amino acid and was predicted to impact protein function by three out of five in-silico
prediction algorithms (MutationTaster, FATHMM-MKL, CADD). Further genetic testing
also identified a novel heterozygous de novo deletion in the 16p11.2 region in the index
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patient’s daughter (individual 4[III:1]). The deletion was approximately 585-kb in size,
with breakpoints located to positions g.(29,580,020 and 30,177,240; hg19).

3.2. Sequence Variants and Clinical Findings in Colobomatous Microphthalmia

Of the seven patients diagnosed with colobomatous microphthalmia, potentially
disease-causing variants were identified in three index patients (43%) in three different
genes (PUF60, BRPF1, and TGFB2). Index patient 5[II:1] presented with microphthalmia
and iris coloboma in the right eye, chorioretinal coloboma in both eyes, developmen-
tal delay, short stature, and an atrial septal defect type 2 (ASD II). Genetic analysis
revealed a novel heterozygous de novo frameshift variant (NM_001136033.2:c.752dup,
p.(Gln252ProfsTer152)) in Poly(U) Binding Splicing Factor 60 (PUF60; Figure S2). CNV
analysis of genes associated with microdeletion syndrome 8q24.3 (SCRIB, NRBP2, and
PUF60) revealed a normal copy number.

In Index patient 6[II:1], a novel heterozygous de novo frameshift variant (NM_001003694.
1:c.1756_1757insT, p.(Glu586ValfsTer12)) was identified in Bromodomain And PHF Finger
Containing 1 (BRPF1; Figure S2). Index patient 6[II:1] was diagnosed with iris and chori-
oretinal coloboma involving the optic disc in both eyes, associated with a small but clear
lens and microphthalmia in the left eye. Cognitive and motor development appeared to be
normal, considering the patient’s age and visual impairment.

Index patient 7[II:1] presented with juxtapapillary chorioretinal coloboma in the
right eye and left severe microphthalmia without visual function (Figure 3L–N). Genetic
screening identified a novel heterozygous missense variant (NM_001135599.3:c.1043G>A,
p.(Arg348His)) in Transforming Growth Factor β 2 (TGFB2; Figure S2). The variant affects a
highly conserved amino acid, and four in-silico prediction algorithms (SIFT, MutationTaster,
FATHMM-MKL, CADD) predicted an effect on protein function. Extended examination
of index patient 7[II:1] revealed aortic root enlargement. Parents were not available for
segregation analysis, as index patient 7[II:1] was adopted.

3.3. Additional Sequence Variants

Six additional variants that met our filtering criteria but showed insufficient evidence
to be classified as potentially disease-causing were identified in eight affected patients from
five families, as summarized in Table 3. The missense variant in CRIM1 was classified
as an incidental finding, as the CRIM1 deletion identified in this family was considered
to be causative. The missense variant in BRPF1 was excluded due to nonsegregation
with the disease. Variants in TBX5, FZD7, and PPP1R12A were also dismissed due to
nonsegregation with the disease and the presence of additional strong candidate variants,
which were considered to be causative in the respective families. Splice site variants in
ACTG1 and EFTUD2 were considered unlikely to be disease-causing as functional analysis
showed no evidence for altered splicing (details available upon request).
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Table 3. Additional variants identified by WES.

ID † Sex Gene Reference Sequence Sequence
Variant

Predicted
Protein Change Region gnomAD Zygosity ACMG CADD Segregation

1[III:3] f CRIM1 NM_016441.2 c.926C>T p.Pro309Leu exon 5 0% het LB 25 paternal
1[II:3] m paternal
1[I:1] m NA

1[III:1] f BRPF1 NM_001003694.1 c.1489G>A p.Ala497Thr exon 3 0% het vus 25 maternal

3[II:1] f TBX5 NM_000192.3 c.349G>T p.Ala117Ser exon 4 0% het vus 24.7 maternal
FZD7 NM_003507.1 c.1154C>T p.Ala385Val exon 1 0.0004% het vus 32 maternal

4[II:2] f PPP1R12A NM_001143885.1 c.2014C>G p.Pro672Ala exon 15 0% het vus 24 paternal
4[III:1] f maternal

7[II:1] f ACTG1 NM_001199954.1 c.803-18dup p.? intron 4 0% het vus NA NA

8[II:1] f EFTUD2 NM_001142605.1 c.765-15C>G p.? intron 10 0% het vus NA paternal

Abbreviations: ACMG, American College of Medical Genetics and Genomics; CADD, Combined Annotation Dependent Depletion; f, female; het, heterozygous; m, male; NA, not applicable; vus, variant of
uncertain significance. † First numeral represents the family number; roman numeral represents the generational affiliation of the patient.
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4. Discussion

In this study, we examined 19 patients from 15 unrelated families with C/M, using
WES in combination with data analysis for 307 genes of interest in order to identify disease-
associated sequence alterations, including CNVs. Our screening approach identified
potentially disease-causing variants in CRIM1, CHD7, FAT1, PTCH1, PUF60, BRPF1, and
TGFB2 in seven (47%) of the families. These potentially disease-causing variants occurred
in genes involved in different biological processes, including chromatin remodeling and
regulation (CHD7, BRPF1), cell proliferation (PTCH1), transcriptional regulation (PUF60),
as well as in genes directly involved in optic fissure morphogenesis (CRIM1, FAT1, TGFB2).

4.1. CRIM1

An approximately 22-kb deletion, spanning exons 14 through 17 of CRIM1, has been
previously reported in a large family with colobomatous macrophthalmia with micro-
cornea (MACOM) syndrome [35]. MACOM syndrome is characterized by uveal coloboma,
microcornea, increased axial length, severe myopia, and staphyloma [36]. Microcornea,
coloboma, and variable expressivity, as seen in family 1, are characteristic findings for
MACOM syndrome and consistent with the clinical features reported for individuals har-
boring the previously published CRIM1 deletion [35,36]. CRIM1 encodes a transmembrane
protein with an extracellular and intracellular function [35]. It has been shown that CRIM1
binds growth factors via its cysteine-rich von Willebrand factor C domains (extracellular
function) and forms complexes with ß-catenin and cadherins via its cytoplasmic domain
(intracellular function) [37]. The CRIM1 deletion in family 1 includes exons 15–17 and
the 3′ UTR. The effect of this deletion on the protein level is unclear. In mice, the loss
of Crim1 results in ocular malformations similar to the anomalies seen in patients with
MACOM syndrome, indicating that MACOM syndrome is caused by haploinsufficiency
of CRIM1 [35]. The CRIM1 deletion in family 1 likely results in haploinsufficiency, which
causes the observed phenotype. The intrafamilial phenotype variability seen in family
1 is not surprising, as variability in laterality and varying degrees of coloboma, micro-
cornea, myopia, and enlarged eye size have been observed in families with MACOM
syndrome [36,38].

4.2. CHD7

The protein encoded by CHD7 is involved in the fine-tuning of gene transcription
during early steps of development in various tissues via ATP-dependent remodeling of
chromatin [39]. Heterozygous variants in CHD7 are the major cause of CHARGE syndrome,
which is characterized by coloboma, heart defects, atresia of choanae, retardation of growth
and/or development, as well as genital and ear anomalies [26]. The clinical features
apparent in index patient 2[II:1] fulfill the diagnostic criteria for CHARGE syndrome by
Verloes et al. [40]. Phenotypically similar Noonan syndrome or RASopathies in general
were excluded based on the absence of potentially disease-causing variants in the respective
genes. The c.2095A>G missense variant identified in index patient 2[II:1] had previously
been identified in patients diagnosed with CHARGE syndrome or the clinically overlapping
Kallmann syndrome [26,31–33].

To our knowledge, this is the first study analyzing the effect of this variant on splicing.
Functional analysis by RT-PCR revealed normal and aberrant splicing for index patient
2[II:1] and the control. Results showed a more pronounced partial exon 3 splicing, resulting
in a lack of 380-nt from exon 3 in index patient 2[II:1] compared to the control. This suggests
that the c.2095A>G missense variant weakens the canonical donor splice site of exon 3 and
therefore increases the activity of a cryptic exonic donor site, while this cryptic exonic donor
site in exon 3 has minimal activity in the wild-type/reference allele. The resulting mRNA
is likely targeted for degradation via nonsense-mediated mRNA decay (NMD) due to a
premature stop codon (p.(Val573Ter)) in exon 3 (out of 38 exons) [41]. As haploinsufficiency
of CHD7 is considered to be the pathogenic mechanism underlying CHARGE syndrome,
we assume that a reduced amount of correctly spliced CHD7 transcript, resulting from the
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c.2095A>G variant, is disease-causing [39]. However, quantification of normally and alter-
natively spliced CHD7 transcript is needed to properly assess the effect of the c.2095A>G
missense variant on splicing.

4.3. FAT1

Mutations in FAT1 have been associated with glomerulotubular nephropathy, while ho-
mozygous FAT1 frameshift variants have recently been associated with a new multisystemic
disorder [42,43]. Variants in FAT1 have further been identified in various other disorders,
including multiple cancer types and patients with facioscapulohumeral dystrophy-like
phenotype [44,45]. Coloboma and syndactyly present in index patient 3[II:1] are consistent
with the clinical features seen in the new FAT1-associated multisystemic disorder, which is
characterized by colobomatous microphthalmia, facial dysmorphism, ptosis, syndactyly,
and occasional glomerulotubular nephropathy [43]. Renal assessment in index patient
3[II:1] was unremarkable. Cataract and hearing impairment have, so far, not been associ-
ated with this multisystemic disorder; however, it is unknown whether previously reported
cases were examined for potential hearing defects.

FAT1 encodes an atypical cadherin and is suggested to regulate cell polarity, cell–
cell adhesions, and epithelial sheet adhesion and fusion, a crucial morphogenic event
during embryonic development, including optic fissure fusion [43,46]. Studies suggest
that FAT1 facilitates optic fissure fusion through epithelial cell-mediated fusion [43,47]. In
support of this hypothesis, Fat1−/− knockout mice display coloboma, microphthalmia,
and anophthalmia with incomplete penetrance, whereas the eyes of Fat1−/+ mice appear
normal, indicating that heterozygous Fat1 depletion does not affect eye formation [43,48].
The causality of FAT1 loss of function mutations and coloboma was demonstrated in ze-
brafish by fat1a knockdown and homozygous fat1a frameshift mutants, both of which
resulted in coloboma [43]. Fat1 knockout in mice was also shown to result in morpho-
logical defects in the lens epithelium, including disrupted columnar structure of lens
epithelial cells, formation of cell aggregates in some regions with lost apical–basal polarity,
and fragmented apical cell junctions, further indicating the importance of FAT1 in eye
development [48].

To date, F11, MTNR1A, and ZFP42 have not been associated with hearing impairment
or inner ear anomalies. However, a previously reported case with terminal deletion of
chromosome 4q, corresponding to a heterozygous 6.9-Mb deletion in the 4q35.1–q35.2 re-
gion, including FAT1, presented with hearing impairment in addition to other features [49].
FAT1 is, among other genes, located in the autosomal dominant deafness locus DFNA24,
which has been mapped to an 8.1-Mb interval in the 4q31.1–q35.2 region [49]. Additionally,
conditional Fat1 mutant mice, with absent transmembrane domain, displayed shortening
of the endolymphatic duct and the endolymphatic sac, expected to influence audition [50].
Fat1 was further found to act synergistically with Fat4 in cochlea morphogenesis, where
defects in cochlear elongation and outer hair cell patterning in Fat4 knockout mice were
exacerbated upon heterozygous loss of Fat1, and cochlear dimensions were decreased
upon homozygous Fat1 loss [51]. However, further research is required to elucidate and
determine the potential role of FAT1 in hearing impairment. Absence of ocular and systemic
abnormalities or diseases in the unaffected carrier father (individual 3[I:1]) is consistent
with previous reports of incomplete penetrance for terminal 4q deletions [49]. The mater-
nally transmitted FAT1 frameshift variant (c.5970_5971del; p.(Asn1991PhefsTer19)) likely
triggers NMD of the resulting mRNA. PAX6, which is associated with aniridia and associ-
ated ocular manifestations, including foveal hypoplasia and cataract [52], was excluded as
the causative gene based on the absence of potentially disease-causing variants in this gene.
Overall, we assume that the compound heterozygous frameshift variant and deletion in
FAT1 lead to the loss of FAT1 protein, which results in developmental eye anomalies such as
coloboma and cataract, syndactyly, and hearing impairment, as seen in index patient 3[II:1].
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4.4. PTCH1

Heterozygous variants in PTCH1 are associated with BCNS (also known as Gorlin-
Goltz syndrome) and holoprosencephaly (HPE), where ocular developmental abnormali-
ties, including C/M, are classified as minor diagnostic criteria [15,53]. A frameshift variant
and multiple missense variants in PTCH1 have previously been reported in multiple cases
with isolated and syndromic ocular developmental anomalies, including C/M, Peters
anomaly, and Axenfeld-Rieger syndrome [54]. There were no indications for BCNS or HPE
in these previously published cases. However, it is unclear whether patients were specifi-
cally examined for potential features of BCNS and HPE [55]. In family 4, personal history
pointed to additional dermatological and other syndromic manifestations, including BCNS,
but we have been unable to confirm these features. Interestingly, reduced penetrance with
inheritance from asymptomatic parents, as seen for the PTCH1 variant in family 4, has also
been observed in three out of the six PTCH1 missense variants identified by Chassaing
et al. [54]. Ocular defects have been observed for various PTCH1 animal models, including
retinal abnormalities similar to those seen in patients with BCNS, as well as Ptch1 mutant
mice and microphthalmia upon ptch1 suppression in zebrafish [54,56].

The transmembrane protein encoded by PTCH1 is a key component of the Hedgehog
(Hh) signaling pathway, in which PTCH1 acts as a receptor for Hh ligands [54,57]. Hh sig-
naling is important for correct proliferation, differentiation, and patterning in various
tissues and organs during embryogenesis [57]. PTCH1 protein thereby functions as a
negative regulator by repressing downstream Hh signaling [57]. As Hh signaling plays
an important role in eye morphogenesis and retinal development, and mutations in the
hedgehog ligand SHH have been reported in patients with C/M, dysregulation of this
signaling pathway caused by mutations in PTCH1 may result in C/M and other ocular
defects [15,56]. Previous functional studies have shown that Hh pathway activation is
sensitive to PTCH1 gene dosage, as decreased protein levels lead to overactivity of SHH
signal transduction [54,56]. Although functional assays showed a deleterious effect on
PTCH1 protein activity for four of the missense variants identified by Chassaing et al. [54],
functional analysis is needed to confirm the deleteriousness and causality of the PTCH1
variant (c.490G>A; p.(Glu164Lys)), identified here in family 4.

Recurrent 16p11.2 deletions are associated with a spectrum of phenotypic abnormal-
ities, including congenital malformations such as cardiovascular and skeletal malforma-
tions [58,59]. VSD and clinodactyly of the fifth finger, as seen in individual 4[III:1], have
been previously reported for patients with 16p11.2 deletions [60,61]. Although C/M have
been reported for two cases with 16p11.2 deletions and many genes within the deleted
interval are expressed in the developing eye and/or retina, none of these have so far been
associated with MAC or found to be important during ocular development [62]. Thus,
whereas the extraocular features in individual 4[III:1] are likely attributed to the 16p11.2
deletion, it is unknown whether the bilateral coloboma also results from the 16p11.2 dele-
tion or the PTCH1 missense variant inherited from the coloboma-affected index patient
4[II:2] or both. As individual 4[III:1] was too young for assessment of cognitive abilities and
development, the presence of additional manifestations associated with recurrent 16p11.2
deletions cannot be excluded.

4.5. PUF60

PUF60 encodes a nucleic-acid-binding protein, involved in pre-mRNA splicing and
regulation of transcription through interaction with other proteins [63]. Clinical and
molecular data from individuals with PUF60 variants suggest an emerging and clinically
variable PUF60-associated syndrome, characterized by short stature, dysmorphic facial
features, and structural malformations of the heart, eye, and variable other organs [64].
Index patient 5[II:1] presented with both pathognomonic (developmental delay and short
stature) and variable (coloboma, microphthalmia, heart defect) manifestations seen in
the proposed PUF60 phenotype. Cranial MRI and renal assessment were unremarkable
in our patient. Differential diagnosis of 8q24.3 microdeletion syndrome was excluded
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based on normal copy numbers of SCRIB, NRBP2, and PUF60. The PUF60 frameshift
variant (c.752dup; p.(Gln252ProfsTer152)) likely results in NMD of the resulting mRNA.
Haploinsufficiency has been suggested to be the pathogenic mechanism underlying PUF60
variants, with loss-of-function variants resulting in altered dosage of PUF60 isoforms and
leading to altered splicing of target genes [65]. However, so far, PUF60 does not seem
to have a specific function during eye development [63]. Thus, we hypothesize that the
frameshift variant in index patient 5[II:1] results in haploinsufficiency of PUF60 and causes
syndromic C/M through altered splicing of target genes.

4.6. BRPF1

BRPF1 is a chromatin regulator, promoting histone acetylation by recognizing dif-
ferent epigenetic marks and activating histone acetyltransferases KAT6A, KAT6B, and
KAT7 [66,67]. Heterozygous variants in BRPF1 are associated with intellectual devel-
opmental disorder with dysmorphic facies and ptosis (IDDDFP), characterized by de-
layed psychomotor and language development, intellectual disability, and dysmorphic
features [67,68]. Although ocular abnormalities have been described for IDDDFP as addi-
tional features, the occurrence of coloboma has only recently been reported for a single case
with a nonsense BRPF1 mutation [66]. Here, we report a novel de novo BRPF1 frameshift
variant associated with coloboma and previously unreported microphthalmia. Cognitive
abilities and development of index patient 6[II:1] appeared normal. However, since the
patient was still very young and proper assessment of development was difficult due to
high impairment of vision, the presence of additional features associated with IDDDFP
cannot be excluded. Monitoring the patient for the occurrence of such additional features
is recommended to ensure the optimal development of the child.

The BRPF1 frameshift variant (c.1756_1757insT; p.(Glu586ValfsTer12)) may trigger
NMD, leading to the degradation of the resulting mRNA. Interestingly, however, mu-
tant transcript of previously reported BRPF1 frameshift and nonsense variants predicted
to trigger NMD escaped NMD partially or completely [67,68]. Rather, these mutations
have been found to affect interactions of BRPF1 with KAT6A and KAT6B, thus impairing
histone H3K23 acetylation [67,68]. Haploinsufficiency of BRPF1 has been indicated as
the pathogenic mechanism driving IDDDFP [68]. Complexes of BRPF1 with KAT6A and
KAT6B are involved in the development of various organs, including the forebrain, and,
accordingly, Brpf1 knockout in mice leads to embryonic lethality [67]. Forebrain-specific
deletion of Brpf1 in mice further results in up- and downregulation of transcription of
multiple genes, including transcription factors involved in developmental processes such
as Pax6 [69]. These findings indicate that BRPF1 functions as both an activator and silencer
of genes [67,69]. Coloboma and microphthalmia in index patient 6[II:1] could result from
PAX6 downregulation due to reduced levels of BRPF1 protein, as haploinsufficiency of
PAX6 is associated with C/M [15,66]. Our findings support a previous association of
coloboma with BRPF1 mutations and reiterate the proposition that C/M are part of the
phenotypic spectrum associated with IDDDFP.

4.7. TGFB2

Heterozygous mutations in TGFB2 are associated with syndromic and nonsyndromic
forms of aortic aneurysm, including Loeys-Dietz syndrome (LDS) and nonsyndromic aortic
disease (NSAD) [70,71]. TGFB2 variant (c.1042C>T; p.(Arg348Cys)), which affects the same
amino acid residue as the variant identified in index patient 7[II:1], has previously been
described in a family with NSAD [70]. Cardiologic examination for potential signs of
LDS, prompted by our genetic findings, revealed aortic root enlargement in index patient
7[II:1]. The presence of the likely pathogenic TGFB2 variant (c.1043G>A; p.(Arg348His)),
in combination with the aortic root enlargement found in the index patient, fulfilled the
criteria for the diagnosis of LDS proposed by MacCarrick et al. [72]. Thus, genetic testing
led to early detection of LDS in index patient 7[II:1]. As individuals with LDS require
close surveillance of the disease and timely management of existing manifestations, early
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detection and treatment are crucial to extending the lifespan of affected individuals [72].
Although ocular abnormalities have occasionally been reported for LDS, this is the first
report of coloboma in a patient with LDS [72]. However, Tgfb2 knockout mice were shown
to exhibit numerous developmental defects, including coloboma, while Tgfb2 inhibition
via BMP signaling was shown to prevent optic fissure closure [73,74]. Thus, it has been
proposed that TGFB signaling is necessary for the fusion of optic fissure margins via
local induction of BMP4 antagonists [73]. To our knowledge, this is the first report of
a potentially disease-causing TGFB2 variant in a patient with coloboma, as well as the
occurrence of coloboma in LDS. However, further functional analysis is required to confirm
the causality of the TGFB2 variant (c.1043G>A; p.(Arg348His)). Our results suggest that
TGFB2 mutations in humans may result in developmental eye anomalies such as coloboma,
as seen in mice. Our findings further indicate coloboma as a potential additional ocular
feature of LDS. As of now, however, further research and identification of additional
coloboma cases with pathogenic TGFB2 variants are needed to elucidate the role of TGFB2
in coloboma.

Despite the lack of a causal treatment for C/M, knowledge of the underlying genetic
cause in patients is highly important for patient-oriented diagnosis and management of
ocular and possibly associated extraocular abnormalities and diseases, confirmation of the
clinical diagnosis, exclusion of differential diagnoses, and to guide genetic counseling [8,75].
In syndromic cases, timely disease management and early intervention are critical to ensure
optimal development of the affected children [8]. Genetic testing may also provide insights
into the detailed mechanisms underlying normal eye development and elucidate the
cellular and molecular basis of C/M, which may prompt the development of potential
therapies and lead to the identification of new causal genes [76].

The overall detection rate in our cohort was 47% (7/15 index patients). This is higher
compared to the detection rates of previously published studies using direct sequencing or
WES for molecular screening of multiple genes in MAC cohorts, which ranged between
11–29% [17,77–81]. However, it should be noted that multiple factors, including cohort
size, patient inclusion criteria, previous exclusion of mutations in major MAC genes, use of
additional molecular or cytogenetic methods, severity and laterality of the ocular defect,
and presence of additional systemic malformations, may influence the resulting detection
rate [82]. In 8 out of the 15 index patients (53%), no conclusive disease-causing variants
were identified. Causal variants in these unsolved cases may be located in regions not
covered by WES (deep intronic, regulatory, and large structural variants), may have been
missed by our filtering strategy or falsely classified as incidental or benign, or may be
located in genes not screened in this study [83].

Considering the significant genetic heterogeneity of C/M, WES represents an efficient
approach for the screening of the large number of disease-associated and candidate genes,
as well as for the identification of new causal genes. Furthermore, WES data can be
reanalyzed for newly established C/M genes or candidate genes at a later time point
without additional sequencing costs. Therefore, we propose that WES, with data analysis
for disease-associated and candidate genes, is currently the most efficient and advantageous
screening approach for C/M. Our findings support this approach, as potentially disease-
causing variants identified in our study were predominantly found in genes implicated
in single or few C/M cases and different biological processes not currently associated
with C/M in humans. Direct sequencing and gene panels may still be more time- and
cost-efficient than WES for certain research objectives, specific patient cohorts, or cases
with clear indications for certain genes. Further, whole-genome sequencing (WGS) is
another powerful and promising screening strategy as it allows for the identification
of variants in coding and noncoding regions, and biases specific to other sequencing
techniques can be avoided [8]. However, data interpretation is challenging due to the
large number of variants in noncoding regions, and the costs of WGS are currently still
higher than gene panels and WES [84]. If possible, screening approaches should also
employ additional molecular or cytogenetic methods (e.g., quantitative WES data analysis
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or array comparative genomic hybridization (aCGH)) to detect large structural variants and
chromosomal abnormalities. Irrespective of the screening approach employed, accurate
and complete clinical information of patients and family members is essential for the
interpretation of molecular data [84]. In certain cases, proper phenotype description may
guide additional analyses, such as aCGH or RNA studies, as certain genes are associated
with specific phenotypes [8].

In conclusion, we report seven novel and one recurrent potentially disease-causing
variants in C/M-associated genes CRIM1, CHD7, FAT1, PUF60, BRPF1, and PTCH1, as well
as the candidate gene TGFB2. Our findings expand the phenotype associated with FAT1,
BRPF1, and TGFB2 and implicate TGFB2 as an additional candidate gene for coloboma. It
remains to be seen if the same or similar variants will be detected in additional patients
or families in the future by other groups and studies in order to reinforce the causality of
the variants reported here. However, this might be less likely as C/M are rare diseases.
Our study emphasizes the large genetic heterogeneity in C/M cohorts and highlights the
importance of screening genes with few reported cases. Establishing a molecular diagnosis
in patients with C/M remains challenging despite advances in screening technologies and
continuous identification of novel causative genes due to the genetic heterogeneity and
phenotypic variability associated with these ocular defects. However, WES represents
a powerful and efficient screening approach for genetic testing in patients with C/M
when combined with detailed clinical information and screening of a wide number of
disease-associated and candidate genes.
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