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Metal-Catalyzed Carbon-Carbon Bond Cleavage of Unstrained Alco-
hols

Marius D. R. Lutz and Bill Morandi*

ETH Zirich, Vladimir-Prelog-Weg 3, HCI, 8093 Ziirich, Switzerland

ABSTRACT: The functionalization of molecules by cleaving inert carbon-carbon single bonds is regarded as a great synthetic challenge due to
their inherent stability. In recent years, significant progress has been made in the activation of small rings relying on the release of strain energy.
By contrast, the number of catalytic methodologies for the activation of unstrained carbon-carbon single bonds is still limited. This review
focuses on the recent developments in transition metal-catalyzed cleavage of C-C bonds in unstrained alcohols via p-carbon elimination. Em-
phasis is placed on the mechanistic aspects of the discussed transformations and their applications to the deconstruction and reorganization of

molecules.
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1. INTRODUCTION

Carbon-carbon bonds are ubiquitous in organic molecules, including biomolecules, many polymers, and pharmaceuticals. Transition metal-
catalyzed cross-coupling strategies have enabled the selective formation of C—C bonds in an efficient manner, however the selective cleavage
of these inherently inert bonds is still a remaining challenge."?

The cleavage of C—C bonds is commonly encountered in the steam cracking process of crude oil at high temperatures and pressures in the
petroleum industry,’ and also many classical reactions (for instance, sigmatropic rearrangements, Beckmann rearrangement, Bayer-Villiger ox-
idation, retro-aldol, and others) allow for C—C bond cleavage. However, there is still a lack of mild catalytic methods to activate unbiased C—C
bonds in a general and efficient manner. With respect to the challenges regarding the valorization of renewable feedstocks such as lignocellu-

10-12

lose,** as well as the degradation or recycling of industrially relevant polymers,'*™? it is of great importance to introduce new methods to selec-

tively cleave C—C bonds. The selective activation of C—C bonds would further allow for streamlined syntheses without the need to rely on

prefunctionalization with reactive functional groups, and therefore such methods are desirable in modern synthetic chemistry."*"*

Over the recent decades, C—C bond cleavage has become an active field in research and several reviews about the activation of small rings and
unstrained systems highlight the recent achievements in this field."***** This review focuses on catalytic C—C bond cleavage reactions of un-
strained alcohols (Figure 1a). Beyond the scope of this review are reactions involving C—C oxidative additions (Figure 1b), which have been
reviewed elsewhere.”'#207124262% | jkewise, retro-allylation reactions (Figure 1c)* and cleavage of alcohols driven by the release of ring strain
(Figure 1d)** will not be covered herein. Moreover, radical-induced fragmentations and related proton-coupled electron transfer (PCET)
processes will also not be discussed, as they have been reviewed recently (Figure 1e).** Notably, other strategies in C-C bond activation are
discussed in other reviews in this thematic issue.

Covered in this review

a) p-carbon elimination
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X
M
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Figure 1. Strategies for inert C—C bond cleavages.

1.1. Challenges in C-C Bond Activation

C—C bonds are among the least reactive bonds in synthetic chemistry and remain untouched during most chemical transformations. Their low
reactivity can be explained by both thermodynamic and kinetic considerations.
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Since a structurally unbiased C—C o-bond is significantly lower in energy than most C—heteroatom bonds, its cleavage is disfavored from a
thermodynamic standpoint.”’” To allow the thermodynamically unfavorable cleavage, commonly employed strategies are to either raise the en-

ergy of the starting material by ring strain or to stabilize the product by chelation assistance from a non-participating directing group.’**’

In addition, compared to various C—heteroatom bonds, the C—C single bond is less polarized and neither atom possesses appropriate orbitals
that would allow for significant overlap with a transition metal. The relevant orbital interactions between unpolarized C-C single and double
bonds and C-H bonds, and a transition metal are compared in Figure 2.”%**” In the case of a C=C bond (Figure 2a), favorable interactions
between the n-orbitals of the olefin and the metal d-orbitals are possible, allowing for facile coordination and activation of the bond. In contrast,
a C—H bond is oriented perpendicular to the metal orbitals, albeit the spherical nature of the hydrogen orbitals allows for good overlap with the
metal orbitals (Figure 2b). The highly directional o-bonding orbital of a C-C bond does not allow for significant overlap with the d-orbitals of
transition metals unless they are heavily distorted by the latter (Figure 2c). In addition, substituents on both ends can sterically prevent the
approach of the metal. This renders the activation of C—C o-bonds difficult from a kinetic perspective as well.

a) C=C bond b) C-H bond
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Figure 2. Comparison of the favorable orbital interactions between (a) C=C, (b) C-H and (c) C-C bonds and transition metals. Symmetry-allowed
orbital interactions are indicated in blue and white.

Thus, while a C—H bond is thermodynamically more stable than a C—C bond (BDE(C—H) = 100-110 kcal/mol vs BDE(C—C) =~ 90-105
kcal/mol),* it can interact favorably with the d-orbitals of the metal center. This aspect further complicates the selective activation of a C—C
bond in the presence of proximal C—H bonds. Another issue is the selectivity among different C—C bonds within a molecule. As in the field of
C—H activation, the catalyst must differentiate between subtle nuances in steric or electronic properties to favor one C—C bond among various
others.*

The predominant pathway for the activation of C—C bonds in unstrained alcohols is -carbon elimination. Mechanistically, f-carbon elimina-
tion is similar to f-hydride elimination, albeit much less studied (Figure 3)."* Coordination of a transition metal via the oxygen atom enables
the interaction with an adjacent group in p-position, inducing the cleavage of the bond. In contrast to an oxidative addition, this mechanism is
redox-neutral as it formally corresponds to the reverse of a migratory insertion into a C=0 double bond. The result is a metal-bound hydro-
carbyl species as well as a ketone or aldehyde derivative. As mentioned before, this reaction is often endothermic, however, the release of a
second byproduct is entropically favorable and can provide a driving force for the otherwise energetically uphill process.

Because of the reasons discussed above, p-hydride elimination generally outcompetes p-carbon elimination, thus the selective activation of a
C-C bond within a substrate bearing p-hydrogen atoms (i.e., 1° and 2° alcohols) is still a challenge (Figure 3).

B-carbon elimination vs. p-hydride elimination
p-carbon c B-hydride
elimination C elimination

o . o
+M]—C <R ey SRR M +
C)LH o} C)k

m

(o}

Figure 3. Competition between activation of adjacent C—C and C—H bonds in p-position.

These challenges notwithstanding, tremendous advances in the field have been made in recent years, as the following sections show. Herein we
discuss the recent developments in metal-catalyzed C—C bond activation reactions, classified by the type of bond being cleaved and the transi-
tion metal employed.
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2. B-ALKYNYL ELIMINATION

C(sp)—C(sp*) bonds are among the easiest C—C bonds to activate by virtue of their steric accessibility and the relatively low basicity of the
resulting acetylide-fragment.

It should be noted that propargylic alcohols can undergo facile C—C bond cleavage (retro-Favorskii reaction) under basic conditions and ele-
vated temperatures without the need of a catalyst.** For this reason, it is crucial to design control experiments to demonstrate the involvement
of the catalyst. While not all the publications discussed herein have conducted such metal-free control experiments, we have erred on the side
of caution and included any ambiguous example.

2.1. B-Alkynyl Elimination with Palladium

The first example of palladium-catalyzed p-alkynyl elimination of propargylic alcohols was described by Chow and co-workers in 2001.* In the
Sonogashira cross-coupling of terminal alkynes with aryl halides, a common challenge is the suppression of oxidative homocoupling products.
By using tertiary propargylic alcohols 1 as alkyne surrogates, they achieved higher yields and reduced the amount of homocoupling compared
to the corresponding terminal alkynes (Scheme 1).

[PACly(PPh3),] (10 mol%)
Me, Me Cul (10 mol%)
=~ oH B TBAI (10 mol%)
X - _
| e toluene/aq. NaOH
= R 80°C,24h

Scheme 1°

R1
1 2
g 98 O )
@ s @ ”
83% (45%) 84% (53%) 51% (0%)
/©/
Ph

78% (6%) 57% (22%)

“Yields for reactions with terminal alkynes given in parenthesis

Uemura et al. disclosed an alkyne-alkene Heck-type coupling under an oxygen atmosphere that proceeded via chemoselective B-carbon elimi-
nation (Scheme 2).*” The propargylic C—C bond of 4 is selectively cleaved under the reaction conditions and the formed intermediate can react
with the terminal alkene § to afford the enyne product 6 in moderate yields. In the case of styrene, a mixture of regioisomers was obtained, while
with olefins bearing aliphatic rests isomerization of the double bond via p-hydride elimination occurred.

Scheme 2
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2.2. B-Alkynyl Elimination with Rhodium

In 2005, Miura and co-workers reported the homocoupling of tert-propargyl alcohols 7 to form 2-hydroxymethyl-(E)-enynes 8 with high stereo-
and regioselectivity (Scheme 3).” Bidentate phosphine ligands were optimal for this transformation with dppb being the best. Several aromatic
propargylic alcohols underwent the reaction under the release of benzophenone (R = Ph) or acetone (R = Me) in good yields and regiocontrol,
however, when the substrate contained an aliphatic substituent on the alkyne, the reaction did not proceed. The authors proposed a mechanism
that is initiated by coordination of substrate 7 to the rhodium catalyst with concomitant release of water to give 9. This intermediate then
undergoes p-carbon elimination to release ketone 10 and alkynyl-bound rhodium species 11 that regioselectively inserts in a syn fashion across
a second equivalent of the propargyl alcohol. The resulting vinyl complex 12 is then proposed to undergo geometrical isomerization to 14 to
account for the observed selectivity. The isomerization might proceed via a zwitterionic resonance structure 13a that allows for free rotation
and favors rotamer 13b exhibiting an additional interaction between the hydroxy group and the metal center.* Proton transfer from the starting
material furnishes the product and closes the catalytic cycle. Interestingly, the reaction was inhibited when stoichiometric amounts of 4-ethynyl-
toluene were added to the reaction, suggesting that no free alkyne is formed during the reaction.

Scheme 3
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9

Ar Ar
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Recently, Dou reported the related dimerization of aliphatic propargyl alcohols 185 that were previously unreactive.* In this case, 2-alkynylated
1,3-butadienes 16 were obtained instead of but-3-ynol products 8 (Scheme 4). A variety of mono- and disubstituted y-alkyl propargyl alcohols
were tolerated, including acyclic and cyclic alkyl substituents in the a-position.
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Scheme 4
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The reaction mechanism is proposed to begin with coordination of 15 to the metal center, followed by p-alkynyl elimination from alkoxide
complex 17 to afford alkynyl rhodium species 19 (Scheme §). Carborhodation with a second equivalent of the substrate affords the enyne
intermediate 20 in analogy to intermediate 12 discussed above. In contrast to the mechanism discussed in Scheme 3, the availability of f-hy-
drides favors p-hydride elimination to form an allene that is coordinated to a rhodium hydride species (21). Reinsertion into the allene yields
n-allyl species 22 that can further isomerize to 23. The authors propose a -oxygen elimination pathway from 23 releasing product 16 to account
for the loss of the [Rh]—OH fragment, which has been proposed before in such systems but has limited mechanistic support. An alternative
mechanism could involve the formation of isomer 24 that is stabilized by chelation to the alcohol and allows for §-oxygen elimination via a

cyclic transition state.™*
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Hayashi et al. achieved the asymmetric intramolecular rearrangement of alkynyl alkenyl alcohols 25 by means of p-alkynyl elimination (Scheme
6). In contrast to sp>-configured groups, the conjugative alkynylation of a,B-unsaturated ketones with terminal alkynes is limited to a few
examples as the alkyne substrate readily dimerizes under the reaction conditions.”** To circumvent this issue, the authors employed substrates
that already contain the alkyne moiety in the form of propargylic alcohol 25. The reaction proceeds via deprotonation and coordination of the
alcohol to the catalyst (27), followed by B-alkynyl elimination. The resulting organorhodium species 28 is still bound to the alkene and thereby
undergoes conjugate addition to form rhodium enolate 29 that is turned over to release product 26. Several p-ethynylketones could be accessed
in high ee’s using chiral ligands from racemic starting materials. Notably, the cleavage of the alkynyl group was also selective in substrates con-
taining adjacent alkenyl- and heteroaryl groups.

Scheme 6
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Shintani and Hayashi developed a rearrangement of bis(alkynyl) alcohols 30 to indanones 31 using the same relay strategy (Scheme 7).%° Sev-
eral silylated (bis)alkynyl alcohols underwent the reaction in good yields, including both benzylic (30) and allylic alcohols (32). When the
reaction was carried out in an intermolecular fashion with free alkyne 34 and ynone 35, the product was not obtained, due to proton exchange
of the enyne intermediate with free alkyne before the migration step (vide infra). The reaction presumably proceeds via f-alkynyl elimination
from the alkoxide complex 36, followed by regioselective insertion into the resulting ynone 37. Subsequently, 1,4-rhodium migration and mi-
gratory insertion into the alkene take place to furnish intermediate 40 and, after protonolysis, the product (31).

Scheme 7
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Hayashi further reported that rhodium could also catalyze the oxidative coupling of alkyne surrogates with olefins in extension to Uemura’s
work with palladium.” Specifically, substituted propargyl alcohols 41 were reacted with acrylates 42 to afford conjugated enyne esters 43
(Scheme 8).* Here, instead of oxygen, an excess of acrylate was used to turn over the [Rh]—H species formed. The proposed catalytic cycle is
initiated by B-alkynyl elimination from alkoxide-bound intermediate 44 and subsequent conjugate addition onto the acrylate ester to afford
rhodium enolate 46. In contrast to intermediate 29 in Scheme 6, p-hydride elimination takes place to release the enyne product 43 after the
addition step. The resulting rhodium hydride (47) then reacts with an additional equivalent of acrylate to regenerate the catalyst and release
49 as a byproduct.
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The same group later disclosed the asymmetric alkynylation of cyclic a,B-unsaturated carbonyl compounds 50 via C—C bond cleavage using
silylated tert-propargyl alcohols 51 (Scheme 9).% In addition to cyclic unsaturated ketones, lactams and lactones were also tolerated. It was
found that the bulky TIPS group on the acetylene and the bulky diene ligand Fc-bod were crucial to obtain good yields and stereoselectivity.
Other chiral diene ligands such as Ph-bod were less effective due to premature catalyst deactivation. The authors conducted mechanistic studies
to understand the cause of the catalyst deactivation and the difference between Fc-bod and other diene ligands. Alkynyl rhodium species 54 is
in equilibrium with its dimeric form §6, the latter being the resting state in the catalytic cycle. Independent synthesis of the proposed resting
state (56) and 57 allowed the tentative assignment of structure §7 as the deactivation product, which is formed more slowly in the case of Fc-
bod.
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Scheme 9
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Recently, Dou expanded the scope of the asymmetric intermolecular alkynylation to B,y-unsaturated a-ketoesters 58 (Scheme 10).% The chiral
diene ligand Fc-bod that was used in the previous reaction of cyclic a,B-unsaturated carbonyl compounds was not effective in this case. In
contrast, the bulky phosphine ligand DM-BINAP delivered the desired alkynylated products in good yields and ee’s. The authors showed that
terminal alkynes only gave traces of product, attributing this to the competing alkyne dimerization pathway. A variety of aryl- and heteroaryl
groups in the y-position of $8 were tolerated, but alkyl- and styryl-substituted substrates did not undergo the transformation.

Scheme 10
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R= 84%  84% ee OO
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Lautens recently disclosed an alkynylation/aldol cyclization sequence of keto-enones 61 affording cyclic a-propargyl-p-hydroxyketones 63 with
high enantio- and diastereoselectivity (Scheme 11).% A broad range of six-membered adducts were furnished, bearing aliphatic and aromatic
groups on both sides of the keto-enone. Several bulky alkynes, including aliphatic ones, were tolerated, but terminal alkynes lead to homodi-
merization instead. Notably, a tetrahydropyran ring with three adjacent chiral centers could be constructed with high enantioselectivity, albeit
with low yield. The authors propose a mechanism in which rhodium-acetylide 65 is formed after f-carbon elimination that subsequently inserts
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in a 1,4-fashion into the a,p-unsaturated ketone to afford species 66. The resulting oxa-n-allyl intermediate cyclizes via a six-membered transi-
tion state leading to the syn-configured product 63.

Scheme 11
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Tobisu and Chatani recently developed a rhodium-catalyzed cross-coupling reaction of aryl carbamates 67 with propargyl alcohols 68 that
proceeds with concomitant cleavage of a C—O and a C—C bond (Scheme 12).%° In this work, an electron-rich and sterically demanding NHC-
ligand proved to be ideal. Interestingly, the reaction outcome strongly depended on the nature of substituents on the propargyl alcohol sub-
strate; only TIPS-protected alkynes afforded high yields, while TMS- and phenyl-acetylenes were detrimental to the reaction. The isopropyl
groups in a-position to the alcohol were also critical for an efficient reaction, as the free acetylene and other aryl- and alkyl-substituted propargyl
alcohols led to lower yields. With the optimized conditions in hand, several aryl carbamates could be alkynylated in moderate to good yields,
albeit only a single propargyl alcohol was used in this study. The authors suggest that p-alkynyl elimination from the alkoxide-complex 70
precedes the oxidative addition of the aryl carbamate to give species 72. Reductive elimination from this intermediate leads to the product.
While plausible, there is little direct evidence for this mechanism.

11



This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Chemical Reviews, copyright © American Chemical Society after peer review and technical editing by
the publisher. To access the final edited and published work see

https://doi.org/10.1021/acs.chemrev.0c00154
Scheme 12
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2.3. B-Alkynyl Elimination with Copper

Wen and co-workers disclosed a cascade annulation of 1-(pyridin-2-yl)-1H-indoles (74) and propargylic alcohols 75 to form substituted pyr-
ido[2,1-a]-indoles (76) utilizing both rhodium and copper.®* In the process, several C—C(sp), C—H and C—N bonds are cleaved and formed
(Scheme 13). Both electron-rich and electron-poor arenes were tolerated on either reaction partners but steric bulk was detrimental to the
reaction. The authors found that superstoichiometric copper was essential for the success of the reaction, as it served the two-fold purpose of
activating the propargylic alcohol by forming a copper acetylide and reoxidizing the rhodium catalyst. Both metals were found to be essential
and cooperative, as without rhodium Glaser homocoupling product was exclusively formed, while leaving out copper led to no reaction. To
shed more light on the mechanism of this transformation, the authors isolated the bis-ligated rhodium complex 77 that was exclusively formed
in the presence of stoichiometric amounts of copper(Il). When 77 and the copper acetylide were reacted, no product was observed unless
additional copper was added.

From these experiments the authors propose a mechanism that is initiated by oxidation of the rhodium(I) catalyst followed by cyclometalation
with the substrate to give complex 77. In parallel, copper coordinates to the propargylic alcohol and induces B-carbon elimination to afford a
copper acetylide (78). Transmetalation to rhodium (79) followed by reductive elimination affords intermediate 81 that undergoes several
transformations to afford the annulated product (76). In parallel, rhodium complex 82 is oxidized by copper and undergoes cyclometalation

with 74, closing the catalytic cycle.
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Scheme 13
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In a subsequent study, the authors disclosed that introduction of a methyl group at the C6 position next to the pyridine nitrogen allowed access
to the C2-alkynylated product 85 under the same reaction conditions, preventing the cascade annulation observed previously (Scheme 14).°
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A series of 1-(6-methylpyridin-2-yl)-1H-indoles (83) were alkynylated in good yields following this protocol. Notably, carbazoles also under-
went the reaction with good yields.

Scheme 14
[SEEN
! Me_Me
(:\' /Z \ [RhCl(cod)], (1.5 mol%)
o OH Cu(OAc); - Hy0 (2.2 equiv
rt N PN = (OAc); - H20 ( q ; ;
Nl ‘ v toluene, air, 125 °C, 10 h ¢/
‘ 2 > \¥
S Me R
83 84 (3 equiv)

7N N\
-~/ "Me i ’;‘ N\j R
— Me \_/
R =Ph, 68% R = Me, 73% R =Ph, 61%
R = 4-Me-Ph, 71% R = OMe, 64% R = 4-CI-Ph, 82%
R = 4-CI-Ph, 75% R =Cl, 53% R = 4-Ph-Ph, 73%
R = 4-Ph-Ph, 81% R=F, 64% R = CO,Me, 39%
R =4-CO,Me, <10% R = CO,Me, <10% R = 4-OMe-Ph, 66%
R = 4-OMe-Ph, 85% R = 2-OMe-Ph, 0%
R = 2-OMe-Ph, 0% R =2-CO,Me-Ph, 55%
R = 3-thienyl, 15% R = 3-thienyl, 48%
R = "butyl, 55% R = "butyl, 62%

R = cyclopropyl, 15%

Inspired by this reaction, Zhou and co-workers developed an annulative coupling of N-aryl-2-aminopyridine 86 and propargyl alcohols 87 to
give indoles 88 using cooperative rhodium and copper catalysis (Scheme 15).®* Mechanistic experiments confirmed that both metals were
required for the transformation, with copper being responsible for the C-C bond cleavage. Kinetic isotope effect (KIE) experiments were con-
ducted with 86 and ds-86 in parallel (ku/kp = 1.0) and in intermolecular competition (ku/kp = 1.1). From these results, it was concluded that
C—H activation is not part of the rate-determining step. In the presence of DO, H/D exchange was observed, which could imply that C—H
activation is reversible. The reaction proceeds according to a similar mechanism as the one discussed above, starting with concerted metalation-
deprotonation (CMD)-type C—H activation of the substrate with the Rh(III) complex to give intermediate 90. After formation of copper-
acetylide 91 under release of acetone, transmetalation with the rhodium-complex leads to complex 92 that subsequently undergoes reductive
elimination. The intermediate 93 then cyclizes to afford the indole core (88).
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Scheme 15
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3. p-ARYL ELIMINATION

For reasons detailed in the introduction, B-carbon elimination and p-hydride elimination proceed via a similar reaction path. For the latter, an
agostic interaction between the migrating hydride and the metal center is implied to precede the cleavage.®*** Therefore, the same should be
conceivable for the elimination of a hydrocarbyl group. Indeed, in the case of p-aryl elimination, agostic interactions between the n-system of

the to-be-cleaved group and an unsaturated metal centers have been observed in X-ray crystal structures.?>%

3.1. B-Aryl Elimination with Palladium

In a seminal publication in 2001, the group of Miura reported the first cross-coupling reaction proceeding via C(sp*)—C(sp?) bond cleavage of
unstrained alcohols.” Under the action of a palladium catalyst, tertiary benzylic alcohols 94 undergo C—C bond cleavage to release a ketone

and act as coupling partners to afford biaryls with aryl bromides 95 (Scheme 16).

The reaction outcome is highly dependent on the steric environment of the alcohol substrate, with sequential C—H and C—C activations taking

place unless an ortho-methyl substituent was introduced to favor p-carbon elimination over competing C—H arylation processes.
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Scheme 16
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Changing the ligand to the bulky phosphine PCys allowed to cross-couple triarylmethanols 97 also with aryl chlorides 98 to give biaryls 99 in
good yields (Scheme 17).°® Importantly, both electron-rich and -poor substituents were tolerated on the aryl chloride and steric bulk in ortho-
position did not affect the yield. In the case of the aryldiphenylmethanols 97b-c bearing different substituents, the sterically more demanding
group was selectively cleaved.

Scheme 17
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To study the factors governing the selectivity of the B-carbon-elimination, intramolecular competition experiments with monosubstituted tri-
arylmethanols 101 (two phenyl groups and one substituted aryl group) were carried out (Table 1). In the case of an electron-neutral p-tolyl
group, a statistical mixture was observed (entry 2). However, when either electron-rich or electron-poor substituents in the para-position were
introduced, a small trend towards cleavage of the substituted aryl group was observed (entries 3-4). In addition, when steric bulk was introduced
in the ortho-position, the most sterically demanding group was cleaved selectively, regardless of the electronic nature of the substituent (entries

5-7).
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Table 1

Pd(OAGC), (5 mol%)

R PCy, (10 mol%)
©/C| CSZCO3 (2 equiv)
O o-xylene, 144 °C, 24 h

2 equiv
101 102
[0}
tF [ P
A
R
105
entry R Yield 103+104 (%)  Ratio 103:104
1¢ H 89
2 4-Me 92 1:2
3 4-OMe 88 1:1
4 4-CFs 8S 1.3:1
S 2-Me 94 10:1
6 2-OMe >99 >99:1
7 2-CF; 99 50:1

1 eq. PhCland Cs:CO;

Several other triarylalcohol scaffolds were then investigated (Scheme 18). The 9-phenylxanthen-9-ol scaffold (106) can serve as a selective
donor of the exocyclic aryl group. In contrast, in the case of 109, the internal C—C bond was cleaved due to relief of ring strain. With 2-het-
eroaryl-containing triarylalcohols 111, the heteroatom-containing ring was selectively cleaved.

Scheme 18
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X— oH — > X +
ph > Ph o-xylene, 144 °C,4h < | Ph™ “Ph

111a X=0 112a 87% 113
111b X =8 112b 89%

Beyond triarylmethanols, 2-aryl-2-propanols 114 could also be employed, however, an ortho-substituent had to be introduced to prevent com-
peting C—H arylation reactions (vide supra). Notably, when using (R)-BINAP as the ligand, an enantioenriched binaphthyl could be obtained,
highlighting the potential of using this reaction for enantioselective synthesis (Scheme 19). Importantly, no cleavage of the methyl groups was
observed, which is in line with the higher bond strength of the C(sp*)—C(sp®) bond.
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Scheme 19
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Taking advantage of the propensity of 2-([1,1"-biphenyl]-2-yl)propan-2-ol (117) to undergo multiple C—C bond and directed C—H bond
cleavages, triphenylenes 119 could be efficiently synthesized by reaction of 117 with 1,2-dibromoarenes (118) (Scheme 20).

Scheme 20

Pd(OAc), (5 mol%)
PPh3 (20 mol%) R
H OH m 052003 (3 equiv) ‘O
O Me o-xylene, 144 °C, 24-49 h O R

17 118 119
R=H 71%
R=Me 60%
R=F 61%
In separate work, Johnson and co-workers interrogated the reaction mechanism of the palladium-catalyzed p-aryl elimination of triaryl alcohols
and cross-coupling to aryl halides reported by Miura.”” Intramolecular competition experiments with a series of aryldiphenylmethanols 120
were carried out to gain an understanding of the factors governing p-aryl elimination selectivity (Table 2). The ortho-substituted arenes were
preferably cleaved, following the trend of the steric bulk imposed by the group (entries 1-3; Cl > OMe > Me). The selectivity was rationalized
studying the X-ray structure of an analogous rhodium alkoxide complex where the to-be-cleaved aryl group is shown to interact with the metal
center (see section 3.2).7° The steric clash between the ortho-substituted arene and the bulky phosphine ligands usually employed can be min-
imized in this conformation leading to preferential cleavage of this group. In contrast, electronically neutral substitution had little effect on the
ratio (entries 4-6). Further, the electronic properties of the aryl group played only a minor role, with both electron-rich (entries 7,10) and
electron-poor substituents favoring the elimination (entries 8-9,11-12).
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Table 2

Pd(OAc), (5 mol%)
PCys (25 mol%)

©/Br Cszco3 (1.3 equiv)
O o-xylene, 144 °C, 16 h R* R*

120 121
entry R Ratio entry R Ratio
122:123 122:123
1 2-Cl §7:1 7 4-NMe> 14.5:1
2 2-OMe 25:1 8 4-CF; 1.5:1
3 2-Me 14.5:1 9 4-Cl 1.3:1
4 3-Me 1:2.2 10 4-OMe 1.5:1
S 3-OMe 1:2.0 11 3,5-(CF3), 3.0:1
6 4-Me 1:1.7 12 3/4,5-(OMe); 1.5:1

With two competing aryl halides, the more electron-poor aryl halide reacted faster, which is in accordance with the observed selectivity for the
oxidative addition step. A rapid pre-equilibrium exists before the turnover-limiting step, which was found to be the B-aryl elimination. To probe,
whether B-aryl elimination and reductive elimination are irreversible, an exogenous ketone (125) was added to the reaction mixture of the
triaryl alcohol and aryl halide (Scheme 21). No scrambling products were observed, suggesting that C—C bond activation is irreversible or that
reductive elimination is too fast to allow for ligand exchange. Reductive elimination was shown to be irreversible by similar means by subjecting
the biaryl product to the reaction conditions.

Scheme 21

Pd(OAc); (5 mol%)
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wte e
A" >Ph  Ph” Ph
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From these findings, the authors propose the catalytic cycle depicted in Scheme 22. The in situ formed palladium(0) species 126 undergoes
oxidative addition of the aryl halide 121 and transmetalates with 120 to form alkoxide complex 128. Rate-determining p-phenyl elimination
releases benzophenone and the biaryl product is formed by irreversible reductive elimination from complex 129.
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Scheme 22
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The reaction described above was subjected to multivariate linear regression analysis by Sigman and co-workers to parametrize the factors that
contribute to the observed selectivity.”' While Hammett analysis is a powerful tool to elucidate reaction mechanisms using the electronic influ-
ence exerted by the substituted aryl rings, it cannot be used for ortho-substituents, as the steric influence cannot be uncoupled from the elec-
tronic factor.” The authors developed a regression model that predicts the observed selectivity using two parameters, the infrared stretching
frequency of the C—O—H bond (vc-o-x) and the parameter Bi, that describes the steric influence of the ortho-substituent: AAG* =k + avc.o-u
+ BBu.. These values could be obtained experimentally or computationally from Sterimol”® and matched the experimentally measured AAG*
values (Ar/Ph ratios).

Miura later reported the palladium-catalyzed dehydroarylation of triarylmethanols 130 and hydroarylation of alkynes 131 by exploiting B-car-
bon cleavage.” Interestingly, the bulky ligand P(1-Np); suppressed biaryl coupling with aryl bromides and promoted base-mediated dehy-
droarylation of 130 instead. After optimization of the reaction conditions, catalytic amounts of aryl bromide and base were sufficient to dehy-
droarylate a range of triaryl methanols. Moreover, when an alkyne was introduced, hydroarylation across the triple bond took place. Using the
same conditions, diphenylacetylene (Table 3, entries 1-4) and activated a,f-unsaturated ketones could be hydroarylated in good yield (entries
5-6). In contrast, aliphatic alkynes were not tolerated in the reaction. Use of xanthene-9-ol-derived donors allowed to transfer several arenes
with high selectivity and reduced catalyst loading (entries 4-6).
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Table 3

Pd(OAc); (5 mol%)
P(1-Np)3 (10 mol%)
PhBr (10 mol%)

Cs,CO5 (10 mol%)  Ar, H o

Ar><OH + Rl==—= R2 — > __ + )k
R R o-xylene R R2 R R
130 131 144°C, 4-24h 132 133
entry alcohol acceptor product yield?
1b Ph  Ph

©)<OH Ph—=—Ph H 73%

Ph Ph

oLy Q
O OH Ph—==—Ph Q _H 89%
Ph Ph
oLy Q
OH Ph—=—=—Ph Q H  89%

MeQ
4 MeO
i OH Ph—==—Ph Q_{' 88%
O O PH  Ph
(o}
M
5 eO, OMe
96%
Ph/\)LPh o)
O o O Ph Ph

o 72%

“ GC yield. * With 10 mol% of Pd(OAc). and 20 mol% of ligand and base.

The same group reported an efficient synthesis of arylated thiophenes and benzothiophenes via tandem C-C and C-H bond activation of
diphenyl 2- and 3-thiophene-methanols 134 and 136 (Scheme 23).7%7¢ By varying the amount of aryl bromide coupling partner, the authors
developed two synthetic protocols to obtain either unsymmetrically substituted thiophenes 138§ in a two-step procedure (Scheme 23a) or sym-
metrically bis-arylated (benzo)thiophenes 137 in one pot (Scheme 23b).
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Scheme 23
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Concomitantly to Miura’s work, Kotschy and coworker reported the ipso-arylation of benzo[b]thien-2-ylmethanols 138 with aryl bromides
(Scheme 24).” Adapting the previously developed conditions for ipso-arylation of 134 furnished the 2-(hetero)arylbenzo[b]thiophene prod-
ucts 140 in high yields.

Scheme 24

Pd(OAc), (2.5 mol%)
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Nishihara reported the annulation of (o-bromophenyl)propan-2-ols 141 with o-iodobiphenyls 142 and (Z)-p-halostyrenes 143 that allowed
access to substituted triphenylenes 144 and phenanthrenes 145 (Scheme 25).7%” Using this method, the authors were able to construct a wide
range of unsymmetrical polyarenes in moderate to excellent yields. The reaction tolerated a variety of functional groups but was sensitive to
steric bulk ortho to the activated C-H bond of 142.

Scheme 25

2
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The same group later showed that phenanthrenes 149 can be constructed in a modular fashion from (o-bromophenyl)propan-2-ols 146, aryl
bromides 147 and alkynes 148 in a three-component reaction (Scheme 26).% This reaction proceeded favorably because oxidative addition of

the aryl bromide was followed by fast alkyne insertion leading to the same intermediate as employed above.

Scheme 26
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Satyanarayana reported the annulative homocoupling of ortho-bromobenzyl alcohols 150 under palladium-catalysis to afford chromenes
151.5%2 Several electron-neutral and -rich chromenes could be prepared using this method (Scheme 27).
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The authors propose a mechanism that proceeds via a twofold oxidative addition of the substrate via PA(IV) intermediate 154, followed by
reductive biaryl coupling. Alternatively, transmetalation with a second Pd(II) complex could occur (155) to effect the biaryl coupling.®*** The
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resulting intermediate 156 is then set up for B-carbon elimination to release ketone 157 and afford 158. Finally, Buchwald-Hartwig coupling
furnishes the product and turns over the palladium catalyst.

Recently, Gu and co-workers disclosed an enantioselective biaryl atropoisomer synthesis that proceeds by selective p-aryl elimination of 9-aryl-
fluoren-9-ol derivatives 159 (Scheme 28).% The introduction of ortho-substituents adjacent to the biaryl linkage imposed additional torsional
strain in the substrate that allowed for milder reaction conditions enabling high enantioselectivity. The reaction between the tertiary alcohol
and aryl bromide 160 proceeded in excellent yield with Pd(acac), and BINAP, although without stereoinduction. Changing the ligand to chiral
phosphoramidite scaffolds increased the ee substantially, but the yield decreased at the same time. The optimum was found using a combination
of a strong base and a more active palladium(1I) precatalyst. Under the optimized conditions, a variety of chiral biaryls could be formed, toler-
ating both electron-rich and -poor substituents, heterocycles, halides, and a phosphine oxide. The imposed torsional strain in the molecule was
crucial, as replacement of the methyl groups with hydrogen or fluorine atoms at the backbone shuts down the reactivity.

The authors propose that in situ formed Pd(0) species 162 undergoes oxidative addition of the aryl bromide to form intermediate 163 (Scheme
28b). Transmetalation with the deprotonated substrate 164 formed under the reaction conditions gives rise to species 165. It was unclear
whether the B-carbon elimination step towards 166 was atroposelective or whether the cleavage was reversible to give a matched and a mis-
matched intermediate that would undergo reductive elimination at different rates. Finally, irreversible reductive elimination releases product
161.
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3.2. B-Aryl Elimination with Rhodium

The Hartwig group investigated the tendency of rhodium(I) alkoxide complexes towards B-aryl elimination in a series of stoichiometric stud-
ies’"%, While not catalytic in nature, the study was an insightful contribution to the field. A series of alkoxide complexes (167-176) were pre-
pared and isolated in the presence of an excess of PEt; to aid their isolation (Scheme 29). The X-ray structure of 167 gave insight into the
mechanism of B-phenyl elimination, where an agostic n’-interaction of the n-system of one of the phenyl groups and the rhodium center was
observed together with a lengthening of the C(sp*)—C(sp”) bond. This interaction is likely to be key to the bond cleavage and further explains

why alkyl groups are non-transferrable groups.

Scheme 29
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Heating complexes 167-172 in the presence of PEt; led to B-aryl elimination to afford the aryl-rhodium complexes and the corresponding
ketones. As observed in the case of palladium, the more electron-deficient group was cleaved exclusively in complexes 169 and 170. In contrast,
CFs-containing complex 173 and the vinyl complexes 174-175 did not undergo C—C cleavage, demonstrating the lower propensity of the C—
C(vinyl) bond to cleave. Propargyl complex 176 could not be isolated, as it decomposed to the alkynyl complex at low temperatures. Phenyl
elimination from complex 167 was irreversible in the presence of added phosphine and occurred at 50 °C within 1 hour, as followed by NMR
spectroscopy. Summarizing, the propensity for C—C cleavage from rhodium complexes follows the trend of hybridization (C(sp) > C(sp”) »
C(sp®)) and is facilitated by precoordination of the group to be cleaved.

The activation barrier for -carbon elimination from rhodium alkoxides was calculated by DFT by Lin and co-workers and compared with the
corresponding barriers for p-hydride eliminations.” According to their calculations, the elimination of a phenyl group requires a much larger
barrier (AG* = 23.4 kcal mol™) compared to hydride (AG* = 4.5 kcal mol™).

The group of Hayashi reported the first example of rhodium-catalyzed p-aryl elimination in the 1,4-arylation of a,f-unsaturated ketones 177
with tertiary alcohols 178 in 2007.* The scaffold of the donor alcohol was crucial to activate the C—C(aryl) bond. While acyclic alcohols, as
well as several cyclic donors used previously with palladium, remained unreactive, a 10-benzyl-9-aryl-dihydroacridin-9-ol scaffold (177) served
as a selective donor to give the desired products in excellent yield (Scheme 30). While no ligand was required for this transformation, a chiral
diene ligand allowed to access the arylated ketone product in high enantiomeric excess.

Scheme 30

HQO_ Ar [Rh(OH)(cod)]
lv toluene, 110 °C, 3 h R1M O O
177 178 179 180
R' = Me, OMe; R? = "Bu, Ph

Me Me
)1\9 P ! i I i
Ph MeO Ph Me)v"su

91% 94% 95%, 94% ee
2 Me 99% Me 99%
3-Me 99% OMe  99% b with
4-Me 94% Bn
3,4-(OCH,0) 98% Z@
4-Cl 91%2 Bn
4-CF, 96% (8,)-Bn-bod

25



This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Chemical Reviews, copyright © American Chemical Society after peer review and technical editing by
the publisher. To access the final edited and published work see

https://doi.org/10.1021/acs.chemrev.0c00154
210 h reaction time ?Reaction conditions: [RhCI(C:H.)1]> (2.5 mol%), (S,S)-Bn-bod (10 mol%) and Cs;CO; (10 mol%), 24 h.

Miura and Satoh reported a tandem-C—C and C—H cleaving coupling of triarylalcohols 181 with internal alkynes 182 to furnish naphthalenes
185 (Scheme 31).” Phenyl-substituted cyclopentadiene ligands 183-184 were essential for the success of the coupling, as Cp* (pentamethyl-
cyclopentadienyl) gave low yield. Notably, both Rh(I) and Rh(III) precursors enabled the reaction in the presence of a stoichiometric amount
of an oxidant. The authors propose that Rh(III) alkoxide complex 187 undergoes CMD at the ortho-position to give rhodacycle 188. The
alkyne 182 then inserts into the rhodium—carbon bond and a diaryl ketone is liberated from 189 via p-carbon elimination to afford species 190.
A second equivalent of alkyne inserts and reductive elimination from 191 or 192 affords the product and a Rh(I) species, which is reoxidized
by copper(1l).

Scheme 31
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Morimoto recently disclosed a carbonylative annulation of a,a-dimethyl-(2-bromoaryl)methanols 193 with internal alkynes 194 to construct
indenones 197 (Scheme 32).” Key to the development of this reaction was the choice of the carbonyl source. Previous studies by Larock using
a similar system with CO gas as carbonyl source led to the formation of lactones 195, as migratory insertion of the CO ligand into the carbon-
rhodium bond followed by trapping with the alcohol outcompeted insertion of the alkyne and B-carbon elimination processes.”" In contrast,
slow release of CO by decarbonylation of furfural (196) under the reaction conditions gave access to the desired indenone products in moderate
yields. Control experiments showed that B-aryl elimination took place exclusively in the presence of alkyne 194. When the reaction was con-
ducted without the alkyne, lactone 195 was formed instead. Further, when using CO gas instead of furfural, the reaction was inhibited. From
these observations, a mechanism for the transformation was proposed (Scheme 32). Alkoxide complex 198 is formed under the reaction con-
ditions which undergoes oxidative addition of the C-Br bond to give intermediate 199. At this point, migratory insertion of 194 results in
species 200. Then, B-aryl elimination takes place from this intermediate to afford rhodacycle 201 under the release of acetone. The authors
suggested that the CO moiety is delivered by transmetalation with another rhodium species that arises from decarbonylation of 196. Migratory
insertion of the carbonyl group followed by reductive elimination releases the product.
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Scheme 32
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In contrast to tertiary alcohols, adjacent hydrogens in secondary and primary alcohols render metal alkoxide complexes prone to undergo p-
hydride elimination, hindering selective C—C bond cleavage. However, the judicious choice of directing groups has allowed to suppress un-
wanted p-hydride elimination as the next examples show.

Shi reported a selective Rh(III) catalyzed alkenylation of secondary benzylic alcohols 203 using a directing group strategy, avoiding oxidation
to the ketone by B-hydride elimination (Scheme 33).”” The scope of the reaction was broad, both with regard to the aryl alcohols and the olefins.
Besides styrenes, aliphatic terminal olefins were tolerated. Further, secondary and tertiary alcohols containing a second alcohol group in meta-
position underwent the coupling selectively, highlighting the importance of the directing effect. In contrast to secondary and tertiary alcohols,
primary ones were not compatible. Notably, substrates with an ortho-C—H bond were alkenylated a second time via a CMD pathway upon

addition of a second equivalent of alkene and oxidant.
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The proposed mechanism begins with the coordination of the substrate to afford chelated complex 207 that undergoes p-carbon elimination
to form the thermodynamically favorable five-membered cyclometalated intermediate 208 (Scheme 34). Migratory insertion of the alkene and
B-hydride elimination from 210 afforded the product and Rh(I) species 212 that was reoxidized by silver(L).

Scheme 34
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The same group extended the reaction to aryl silanes 214 as coupling partners (Scheme 35a).”* The previous reaction conditions were not
suitable for this transformation and had to be adapted. Switching to a cationic rhodium species and employing AgF as additive were found to
be ideal, as the latter acted both as oxidant and activating agent for the silane. With the optimized conditions in hand, several (hetero)aryl silanes
could be efficiently coupled to secondary and tertiary alcohols. Notably, even a primary alcohol gave the desired product in 26% yield. A deu-
terium labeling experiment with ds-213 revealed significant isotope scrambling of the ortho-position, meaning that reversible protodemeta-
lation/C—H activation occurred under the reaction conditions (Scheme 35b). Moreover, a small amount of diarylated product 216 was found
that arose from C—H activation of the second ortho-position. A competition experiment between 217 and 218 showed that while C—C activa-
tion is the predominant pathway operating, both C—C and C—H activation take place under the reaction conditions (Scheme 35c¢).

Scheme 35
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Shi et al. also demonstrated that imines are competent coupling partners in the directed C—C bond cleavage of secondary benzylic and allylic
alcohols, thereby providing a direct transformation from an alcohol into an amine.”* A wide range of secondary and tertiary benzylic alcohols
221, as well as allylic alcohols 226, reacted with tosyl-protected benzaldimines 222 to form the corresponding amines (Scheme 36). Notably,
benzaldehydes 223 could also be used as coupling partners, allowing for functional group metathesis of the alcohol moiety. The reaction was
driven by the difference of electrophilicity and therefore only electron-deficient aldehydes were tolerated in this case. The authors propose a
mechanism that proceeds similarly to the previously discussed catalytic cycle, in which Rh(III) species 228 forms a five-membered intermediate
229 after C—C bond cleavage. From a series of kinetic and mechanistic experiments, it was shown that complex 229 undergoes reversible pro-
todemetalation. In other terms, both C—C and C—H activation are viable due to the directing group. Coordination of the imine (231) is fol-
lowed by rate-limiting insertion into the carbon-metal bond (232) to release the product.
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Based on previous studies, the reductive cleavage of benzylic alcohols 233 was achieved using hydrogen as the reductant (Scheme 37).>* In this
reaction, the rhodacycle intermediate 239 formed after cleavage of the aldehyde group was intercepted with hydrogen and reductive elimination
afforded the protonated substrate and a rhodium hydride (240). The latter species could then reduce the released aldehyde 238 to the corre-
sponding alcohol 235. Alternatively, the rhodacycle 239 could be protonated to give 236 and re-engage in a new C—C bond cleavage, while a
second catalytic cycle operates independently with the rhodium hydride. Both pyridyl and pyrazolyl directing groups were applicable and a
wide range of benzylic alcohols could be cleaved in good yields, including ester- and halide-containing arenes.
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The yields refer to products 234 and 23§, respectively.

Ackermann and co-workers disclosed a directed sp*alkenylation enabled by an electrochemical rhodium system.” Prior to this report, this
reaction required a stoichiometric silver oxidant to turn over (vide supra), which could be eliminated here by using electricity as an oxidant.”
2-Imidazolyl- and 2-pyridinyl-substituted aryl alcohols 242 could be coupled with alkenes 243 in good to excellent yields using this methodol-
ogy (Scheme 38). Several leaving groups were tolerated, including alkyl and aryl-substituted 2° and 3° alcohols as well as a 2° amine. Notably,
substrates without an alcohol moiety did not undergo the transformation, excluding the possibility of free radical-processes. The alkene scope
exhibited a wide functional group tolerance, including aryl halides, acrylate esters and phosphonate esters. Notably, directed C—H activation is

less efficient under the reaction conditions (16% versus 82%).
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The authors interrogated the mechanism of the transformation with a range of conventional and electrochemical methods. No deuterium in-

corporation into 242 or 244 was observed when using DO as co-solvent, indicating that C—C bond activation is followed by fast insertion of

the alkene. The presence of H, which formed by reductive coupling of the two protons at the cathode, was confirmed by headspace GC-analysis.

Further, the putative cyclometalated intermediate 246 was independently synthesized and found to be catalytically competent. Lastly, cyclic

voltammetry experiments concluded that oxidation of Rh(I) to Rh(III) is facile, while both substrates are electrochemically inert under the

reaction conditions. Based on these observations, the authors proposed a catalytic cycle that is reminiscent of related Rh(II1)-mediated mech-

anisms. After coordination of the Rh(III) complex to the substrate (245), directed B-aryl elimination occurs to liberate a ketone. The cyclomet-

alated complex 246 is then intercepted by the alkene 243 which undergoes p-hydride-elimination and reductive elimination of HOAc to form

the product and Rh(I) complex 249. The catalyst is then reoxidized to Rh{IlI) at the anode. At the cathode two protons are reduced to Ha.
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Scheme 39

HOAc

[ N— Rh'“ OAc

e
M p—carbon
elimination

in 0
electrochemical (R (CP)(OAC)L2 rate-limiting step Z N p* 14 N
reduction L h”' ez
H electrochemical =~ H
2 oxidation
“OA
© RA(CpIL]
249
R
HOAc *reducﬁve elimination 243
“OAc
* +
o o o
L—Rr‘l'”—OAc N,N\ /ICp

H P-hydride Rh
elimination \/\ R
N alkene
N [ N Rh"' i i

. insertion
N Ohc 247

SR L R /
H "OAc
244 248

The group of Yu recently disclosed a directed heteroarylation of indole-derived secondary alcohols 250 to yield heterobiaryls 252.”” Various
heterocycles, including benzoxazoles, oxazoles and benzothiazoles were efficiently coupled with electron-rich and -poor indole alcohols bearing
a pyrimidinyl directing group (Scheme 40). The authors further isolated the presumed rhodacyclic intermediate 253 that is formed after -
carbon elimination and demonstrated its catalytic competence.

Scheme 40
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3.3. p-Aryl Elimination with Cobalt

While there were several recent examples of catalytic C—C bond cleavage of alcohols, the large majority relied on precious transition metals,
such as palladium and rhodium. For reasons of sustainability, it is desirable to develop catalytic systems based on earth-abundant 3d-elements.”®
In 2013, Morandi and co-workers disclosed a cobalt-catalyzed functionalization of benzylic alcohols 254 via p-carbon elimination, demonstrat-
ing that more sustainable base metals can also catalyze the cleavage of C—C bonds (Scheme 41).” Similar to the rhodium-catalyzed reactions,
a cationic cobalt(III) species was key to enable the reactivity. The reaction could tolerate both electron-rich and -deficient substrates in addition
to steric bulk in the ortho-position. In addition to secondary alcohols, several tertiary alcohols were tolerated. The presumed metallacycle inter-
mediate formed in situ could be trapped with multiple electrophiles, allowing for further functionalization. Interestingly, the same cyanation
reaction proceeds with low yield when rhodium was employed as the catalyst, hinting at the higher nucleophilicity of the coordinated alkyl-
intermediate in the case of cobalt. Preliminary mechanistic experiments revealed that the B-carbon elimination step is irreversible.

Scheme 41
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3.4. B-Aryl Elimination with Manganese
Ackermann and co-workers demonstrated that directed C—C bond cleavage can be effected with a non-precious manganese catalyst, notably,
under aqueous conditions.'® Tertiary alcohols 260 bearing pyridyl and pyrazolyl directing groups were smoothly reacted with allylic lactones
261 to afford allylated products 262 (Scheme 42a). Meanwhile, reaction with terminal and internal alkynes 263 exclusively gave the (E)-con-
figured insertion products 264 (Scheme 42b). The authors further demonstrated the feasibility of the conjugate addition into a,B-unsaturated
ketones 265 (Scheme 42c).
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@ Both olefin isomers were obtained with an (E/Z) ratio of 3:1 to S:1. The major diastereomer is depicted.

To rule out the possibility of C—H activation, the reaction was carried out in D,O which did not result in H/D scrambling in the ortho-position.
Based on additional mechanistic experiments, the mechanism shown in Scheme 43 was proposed which proceeds similarly to the catalytic
cycles involving Rh(III) (vide supra). The mechanistic proposal was further supported by kinetic and computational studies which indicate
that B-carbon elimination from intermediate 267 is rate-limiting and the resulting metallacycle 268 can undergo insertion into alkynes and
alkenes. In the case of 261, C-O cleavage affords alkene complex 271 that releases CO: to afford the product after protonation.
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Scheme 43
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4. p-ALKYL ELIMINATION

The cleavage of unstrained C(sp*)-C(sp*)-bonds poses a great challenge due to the inherent high bond enthalpy. Several early transition metals
with a d° configuration that are active in olefin polymerization are able to catalyze B-alkyl eliminations.’® In contrast, few examples with late

transition metals exist, among them many are restricted to stoichiometric reactions or strained systems.?***!01%>

Nevertheless, there have been significant advances by utilizing chelation-assistance and directing groups to enable the cleavage of an alkyl group.
It should be noted, that some reactions described herein do not proceed via a classical p-carbon elimination mechanism, but are listed here for

comprehensiveness.
4.1. B-Alkyl Elimination with Palladium

The Miura group disclosed an intriguing transformation that converts a-hydroxyisobutyrophenone (273) and aryl bromides 274 into 1,1,2,2-
tetraphenylethanes 275 that involves successive C—C and C-H bond cleavages (Scheme 44).'"* While the mechanism is not completely under-
stood yet, the authors believe that a Pd(Il)-aryl species induces a 1,2-methyl shift in 277 to form a-hydroxy enolate 278 that is further a-arylated
twice to give 279.!%4% Subsequently, a retro-a-ketol-rearrangement takes place which results in a-hydroxyketone 280 that undergoes p-carbon
elimination to release diketone 282. The cleaved palladium biarylmethane moiety 281 assumedly dimerizes via reductive coupling to give the
product 275. The diketone 282 can further react with an excess of aryl bromide to form the observed isochromanone byproduct 276 by an

unknown mechanism.
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Scheme 44
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An example of chelation-assisted C(sp*)-C(sp?) cleavage was reported by Oshima and Yorimitsu in 2007.'"” 2-(2-Pyridyl)-ethanol derivatives
283 were successfully coupled to aryl halides bearing a variety of functional groups under the effect of palladium catalysis (Scheme 45). Trans-
locating or removing the pyridine directing group was detrimental to the reaction. The reaction tolerated both electron-rich and -poor arenes,
however, alkyl and benzyl halides did not lead to the desired product. A proposed catalytic cycle begins with the oxidative addition of 284, and
the resulting palladium(1I) species 286 subsequently coordinates the (2-pyridyl)-alcohol 283 in a bidentate fashion to set the stage for -carbon
elimination. The resulting intermediate 288 is in equilibrium with species 289. Reductive elimination from the stabilized intermediate furnishes
the product and closes the cycle.
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Scheme 45
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The scope of the reaction was further expanded to pyridine-N-oxides 290, which required the use of a bidentate ligand (Scheme 46a).'" Nota-
bly, less bulky dimethyl- and alkyl-aryl alcohols underwent the transformation, while diaryl alcohols did not yield the product, although the
corresponding ketone was observed. Interestingly, cleavage of the benzylic bond was preferred over the competing retro-allylation process

(Scheme 46b).%°

Scheme 46
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A classical approach to facilitate C—C bond cleavage is the retro-aldol reaction. Zhang and co-workers reported a palladium-mediated retro-
aldol-arylation reaction that converts -hydroxyketones 292 into mono-a-arylated ketones 294 with release of acetone as volatile by-product
(Scheme 47).!° The reaction proceeded with electron-poor and -neutral arenes and tolerated various functional groups. The proposed mech-
anism supported by DFT calculations begins with the oxidative addition of aryl halide 293, followed by ligand exchange with 294 and rate-
limiting retro-aldol reaction from species 297. The so-formed palladium-enolate 298 subsequently undergoes reductive elimination to form

the product and regenerate the catalyst.
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Scheme 47
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Chiba et al. disclosed a mechanistically intriguing ring-expansion of cyclic 2-azidoalcohol derivatives 299-300 which proceeds by chelation-
assisted C—C bond cleavage under mild conditions (Scheme 48)."° Both cis- and trans-configured substrates underwent the transformations,
although starting from the trans-configured isomer higher yields were obtained. A wide range of cyclic 2-azidoalcohols were converted into the
corresponding pyridines and fused heteroaromatic systems. While the six-membered analog remained unreactive, the corresponding cyclopen-
tane- and cyclobutane-derivatives were converted into pyridines or pyrroles in acceptable yields. Chelation of palladium by the alkoxide and
the azido group of 299-300 allows for p-carbon elimination from complex 302 which is followed by extrusion of dinitrogen. The resulting
alkylideneaminopalladium(1I) species 303 subsequently attacks the aldehyde group to form a cyclized intermediate 304. Consecutive dehy-

drative aromatization yields the aza-heterocyclic product 301.
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Scheme 48
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Recently, the Murakami group disclosed a cross-coupling between a-hydroxy esters 306 and aryl bromides 307 to afford methyl benzoates 308
under release of benzophenone (Scheme 49)."* While the cleaved group in this case is an ester, the similarities to p-alkyl elimination make it
worthwhile to discuss it in this section. The authors proposed a mechanism that starts with Pd(0) species 310 that oxidatively adds the aryl
bromide to give intermediate 311. The bromide is then exchanged with 306, and B-carbon elimination from the palladium alkoxide complex
312 occurs to release benzophenone (309) as leaving group. Finally, reductive elimination furnishes the product. The scope of aryl bromides
includes electron-rich and -poor arenes, with the latter delivering moderate yields.
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Scheme 49
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4.2. B-Alkyl Elimination with Rhodium

Oshima and Yorimitsu reported a retro-aldol reaction of p-hydroxycarbonyl compounds 314 followed by reaction with aldehydes 315 catalyzed
by rhodium (Scheme 50)."'? Bidentate coordination to the substrate 314 initiates the retro-aldol reaction which results in a rhodium enolate
which can be trapped with a suitable electrophile. Curiously, the diamine ligand TMEDA was best suited for this transformation. Several aryl
and linear alkyl aldehydes underwent the transformation in high yields, however, electron-rich aldehydes such as pivaldehyde were not toler-
ated. Notably, cinnamaldehyde was reacted regioselectively to give the corresponding 1,2-addition product.

Scheme 50
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4.3. B-Alkyl Elimination with Nickel

Cheng et al. reported an annulation cascade reaction of o-iodoaryl alkyl ketones and o-iodoaryl aldehydes with norbornenes that is proposed to

proceed via B-alkyl elimination from a Ni(II) alkoxide species.'"
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$. B-CARBON ELIMINATION FROM PRIMARY ALCOHOLS

As mentioned earlier, the cleavage of unactivated C—C bonds in the presence of f-hydrides is disfavored, rendering selective C—C bond cleavage
of 1° alcohols challenging. For that reason, examples that only formally correspond to a C-C bond cleavage of alcohols but are converted into
different intermediates are also listed for comprehensiveness.

Jang demonstrated in 2015 that primary propargyl alcohols can also formally undergo C—C cleavage after in situ oxidation to the aldehyde.'™*

In the presence of catalytic amounts of copper and under an oxygen atmosphere, substrate 317 is oxidized and subsequently trapped by an
amine or alcohol to afford a hemiaminal or hemiacetal (321) (Scheme 51). f-Carbon elimination releases formamide and a copper acetylide
(323). The latter was engaged with azide 318 to form triazoles 319. In the absence of azide, the Glaser coupling products were isolated instead.

Scheme 51
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Yin et al. reported the a-arylation of furans originating from primary furfuryl alcohols 324 with arylboronic acids 325 (Scheme 52).'** While
electron-rich substrates gave good yields, electron-withdrawing and sterically demanding substituents lowered the reaction yield significantly.
Importantly, in this reaction secondary, and especially, tertiary alcohols are not tolerated. While formally a C—C bond of a primary benzylic
alcohol is cleaved, mechanistically this reaction proceeds via electrophilic palladation of the electron-rich furan ring (327) and not via p-carbon
elimination. The so formed oxonium ion 328 then rearomatizes by expelling formaldehyde. The formed furyl palladium species 329 is then set
up to undergo reductive elimination to afford the product and a Pd(0) species that is reoxidized under the aerobic conditions.
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Scheme 52
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The same group expanded the scope of the reaction to monoprotected furfuryl diols 331 using slightly modified conditions (Scheme 53)."* To
confirm the mechanistic hypothesis that the mechanism proceeds via an oxonium ion and not via p-carbon elimination, the authors conducted
a Hammett study. The large negative p value of —0.56, together with the inverse reactivity trend of substitution of the alcohol supported the
mechanism proposed above (Scheme 52).

Scheme 53
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6. CONCLUSION AND OUTLOOK

In this review, we have summarized the developments in the activation of unstrained alcohols by p-carbon elimination. Significant advances in
developing catalytic systems that cleave unactivated C—C bonds in a variety of substrate classes have been made. Nevertheless, many challenges
remain. Reports of C(sp®)-C(sp®) scissions are still relatively rare and limited to selected scaffolds yet would offer great synthetic utility. In
addition, the activation of secondary and particularly, primary alcohols, remains challenging and requires the use of directing groups.

Outstanding questions to be answered include how to arrive at benign reaction conditions that would allow for broader substrate compatibility.
While the majority of reaction conditions did not call for strongly acidic or oxidizing reagents, the reaction temperature often surpassed 100 °C.
One possible direction could be emerging radical-driven processes that allow for C-C bond cleavages under mild conditions.***"*"-2* Moreover,
using first-row transition metals might allow the exploitation of different reaction pathways compared to precious Pd and Rh catalysts that were
predominantly used in the field. Three examples using Mn,'® Co,” and Ni'** were discussed herein.

With respect to the mechanistic understanding, further studies about the proposed intermediates and their reactivity will inform future catalyst
design for more efficient C-C bond activation. In addition, the discovery of new activation strategies will likely broaden the scope of substrate
classes amenable to selective C—C bond cleavages. An open question is whether other activation modes than B-carbon elimination can be con-
ceived to activate C-C bonds in unstrained alcohols.

While conceptually interesting, many reported reactions are not yet suited to replace classical transformations in terms of synthetic utility. For
example, several reports detailed cross-couplings that are complementary to traditional methods using readily available reagents, like aryl hal-
ides and terminal alkynes, under more benign conditions. To this end, we envision that newly developed reactivities can be leveraged to expedite
the construction of complex molecules in an efficient manner using strategically unusual disconnections, following the example of strained C-
C bond activations in total synthesis, e.g. in ring expansions.'**>"*! Aside from the construction of molecules, the possibility to deconstruct
complex molecules to arrive at valuable synthetic fragments also harbors immense potential.

We hope that this review will contribute to inspire new research about synthetic and mechanistic aspects of C-C bond activations. Taking into
account the availability of alcohol-containing feedstocks, they may serve as inexpensive and less toxic reagents to replace halide-containing
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molecules. Also in the context of renewable feedstocks, such as biomass (e.g. lignin, sugars), we see great potential for their use in a sustainable
chemical economy to replace fossil-derived molecules.
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BDE bond dissociation energy
BINAP 2,2"-bis(diphenylphosphino)-1,1"-binaphthyl
CCE constant current electrolysis
CMD concerted metalation-deprotonation
Cp’ pentamethylcyclopentadienyl
dppb 1,4-bis(diphenylphosphino)butane
dppp 1,3-bis(diphenylphosphino)propane
Fc ferrocenyl
KIE Kinetic isotope effect
Np naphthyl
PCET proton-coupled electron transfer

TBDMS tert-butyldimethylsilyl

TEMPO 2,2,6,6-tetramethylpiperidinyloxyl
TFA trifluoroacetic acid

TIPS triisopropylsilyl

TMEDA tetramethylethylenediamine

tosyl toluenesulfonyl
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