
ETH Library

Compositional Computational
Systems

Master Thesis

Author(s):
Petrov, Aleksandar

Publication date:
2020-10

Permanent link:
https://doi.org/10.3929/ethz-b-000463467

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000463467
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Institute for Dynamic Systems and Control
Swiss Federal Institute of Technology Zürich

Master’s Thesis

Compositional
Computational

Systems
Aleksandar Petrov

Supervision
Gioele Zardini

Dr. Andrea Censi
Prof. Dr. Emilio Frazzoli

October 2020
Zürich

Contents

Contents ii

1 Introduction 1

Part I Compositional problem-solving 9

2 Mathematical preliminaries 11
2.1 Posets . 11
2.2 Category theory . 13
2.3 Anonymous functions . 20
2.4 Type theory . 22

3 Normed types and procedures 27
3.1 Normed types . 27
3.2 Procedures . 34

4 Relationships between problems and solutions 43
4.1 Problems . 44
4.2 Solutions . 46
4.3 Lagado . 48
4.4 Lagado as a heteromorphic twisted category 57

5 Compositional systems and relations 61
5.1 Compositional systems . 61
5.2 Relationships between compositional systems 63
5.3 The kinded nature . 67
5.4 The categorical connection . 68
5.5 Categorical representations of some compositional systems . . . 71
5.6 Categorical representations of some kinded relations 73

ii

Contents iii

6 Compositional computational systems 81
6.1 Generalized problems and procedures 82
6.2 Laputa . 89
6.3 Lagado and Laputa . 91
6.4 Functorial problems and procedures 93
6.5 Probabilistically correct solutions 97

Part II Co-design and compositional computation 103

7 The mathematical theory of co-design 105
7.1 A bit more order theory . 106
7.2 Design problems . 108

8 Solving design problems 113
8.1 Representation of a solution . 113
8.2 Composition of solution maps . 120
8.3 Fixpoints and feedback . 122
8.4 Well-behaved design problems 128

9 Compositional properties of co-design 131
9.1 The categories of upper and lower sets 131
9.2 Co-design problems and Lagado 136
9.3 Functorial relationships . 138
9.4 Monoidal properties . 141
9.5 Locally lattical structure . 148
9.6 Trace and feedback . 150
9.7 Bonus: Interpretation with monads 156

10 Design problems and compositional computation 165
10.1 Design problems are problems 165
10.2 Design problems are a problem 168
10.3 Design problems are a problem with lots of structure 170
10.4 Answers of design problems can also have extra structure 178

11 Conclusion 181

Bibliography 185

Chapter 1

Introduction

If we are to summarize the topic of this thesis succinctly, perhaps the best
way would be to say that it deals with problems, their solutions, and the
relationships between the two. We are surrounded by countless problems
in our everyday lives, many of which we can’t escape from solving. Hence,
we all frequently find ourselves face to face with the task of solving problems.
However, given its importance, how many of us have stopped to think about or
study the process of problem-solving? This thesis is an exercise in investigating
exactly this question: what is problem-solving and how to do it in the best
possible way.

We are surrounded by thousands of problems and very few solutions. But
why is problem-solving so difficult? Well, for once, problems are often not
specified well-enough. Making a “fair” legal system or a “safe” autonomous
car are examples of problems that cannot be solved until one clarifies what
“fair” and “safe” even mean. But even if a problem is unambiguously defined,
and is solvable, it does not mean that we are done. Often we have to pick one
among a collection of different solutions, many of which are not dominated
by another. This is usually a big pain when planning a trip or a holiday.
There might be dozens of different ways to get to your destination, each with
different costs, taking different time, with different modes of transportation,
and with many different characteristics. Picking the “right” option can be
very stressful and often takes quite a toll on the holiday-planner. But there’s
some light in the tunnel. Even the hardest problems become much easier if
we find a way to reduce them to problems that we already know how to solve.
And we use this technique a lot! We can reduce the problem of filling in our
tax return to the problem of hiring an accountant, which can be much easier.

1

2 Chapter 1. Introduction

Or we can reduce the problem of evaluating a neural network to the problem
of matrix multiplication, which we know how to do very efficiently. Hence,
this philosophy of problem reduction indeed seems to be quite handy for any
problem-solver.

Often when one struggles with solving or understanding something, the
most important question to ask is if they are solving the right problem. Or it
could be that the problem is ambiguously defined or defined in inconsistent
ways. Sometimes, especially when multiple people are involved, this can also
be a result of some sort of miscommunication. It often happens that one party
has one thing in mind, but the other interprets it completely differently. While
neither side is really at fault here, there are strategies to help in this kind of
situation.

This is where formal systems come into play. Using formalisms allow
us to define and handle various objects and concepts unambiguously and
consistently. Hence, we can also communicate while being sure that both
parties interpret the problem in the same way: the only way. It is not surprising
that mathematicians are perhaps the most agreeable trope of the science and
engineering world: they tend to define their problems and objectives in formal
and unambiguous ways which ensures that everyone is on the same page. Of
course, formalism won’t protect us from defining the wrong problem, but that’s
a point for a whole different discussion.

We started by saying that we stumble upon many problems in our daily
lives. And we mentioned that problems can be badly defined, might have
many different possible solutions, and can be reducible to other problems. The
main philosophy behind this thesis is that these three characteristic properties
of problems can be used to formalize problem-solving. Or, we could also say
that formalizing problem-solving implies that the resulting problems would
be well-specified, supporting multiple solutions, and reducible to one another.
Whether it is these characteristic properties or the formalization that gives rise
to the other, and if any at all, is one of the questions that we will not answer.
But one can imagine that we might be also observing a self-referential strange
loop biting its own tail. However, regardless of which comes first, and if any,
it is this intimate relationship that we are ultimately curious about.

The current work, despite conceived with a very different mission, is, in
fact, a study on the meta-problem of problem-solving. “Meta” because in
some way we tried to study the common nature of all problems. But this is also
a beautifully self-referential problem because the problem of problem-solving
is itself a problem and hence should be subjected to the very conclusions it
tries to reach. While this perhaps sounds like some mumbo-jumbo right now,
we will show it formally later in the text.

Putting this philosophical pondering aside, the official objective of this work

Chapter 1. Introduction 3

is to formalize problem-solving so that we can reason about it in a systematic,
and automated way. We want to work in a formal setting because, as we
mentioned above, that is a way to make sure we agree what problem we are
interested in and what we mean by “solving” it. We are interested in systematic
reasoning because this would allow us to reason fast and efficiently. And as
a nice bonus of a process being systematic is that it might be well-suited for
automation with a computer or via some other mechanical means.

We tried to keep this work as general and widely applicable as possible.
However, the task of solving the problem of defining formalisms for defining
problems and for evaluating their solutions is in itself not well-defined. No
one provided us with a formal definition of a “problem” or a “solution” on
the outset. Hence, the definitions and the resulting theory that you will see in
this work are deeply ingrained with our assumptions of what problems and
solutions are and with our beliefs of what problem-solving should look like.
Hence, it is only fair that we make these biases explicitly known to the reader.

First, we are deeply convinced that problem-solving has an intrinsically
compositional nature. Problems rarely appear in a complete vacuum. A single
problem can often act as a component of more complex problems and can be
itself composed of other problems. For example, the problem of making a
salad has as subproblems washing the vegetables and cutting them. The
very same problem can also be a component of the problem of preparing a
three-course meal for a family. When we use the word “component”, we
can mean many different things. For example, we can use the answer to one
problem as the statement of the next one. The washed vegetables can act as
the starting point of their cutting. We can even use the answer of a problem as
its own statement, or part of it, creating a loop in the process. Or, we might be
interested in finding a steady solution to this loop. Or, we might be solving two
problems simultaneously. Or, we might be handling multiple problems and
their solutions and then comparing them in various ways. All these different
possible operations we will refer collectively to as “compositions”.

Everyone who was involved in this work is an engineer. And it is commonly
believed that engineers are supposed to be lazy. Though in practice they tend
to be unreasonably zealous at making the contraptions that allow them to
be lazy. This work is a very good example of such a device. Hence, due
to our engineering laziness, we conceived this thesis hoping that it will help
us outsource the actual problem solving, or even the solving of problem-
solving itself to a computer, a robot, or another computational device. Precisely
because we want to use computing devices we talk of procedures for solving
problems which are backed by concrete sequences of steps, algorithms, some
computer code, or even actual executables.

Finally, through the course of the study of the various ways one can define

4 Chapter 1. Introduction

problems and solutions, we reached the very liberal conclusion that there is
no single correct way to do it. One might want to include the computational
resources needed for solving a problem within the particular formalism. Or
might be interested in the rich ways in which problems interact. Or in a more
probabilistic setting. Therefore, instead of simply saying, “well, it depends”,
we chose to take a look at the common properties of any such formalism and
of how they relate to one another.

This also explains the title of this thesis: Compositional Computational
Systems. “Compositional” because problems compose to create other prob-
lems. “Computational” because we want a computer to do the job instead of
us. And “Systems”, in the plural, because one can construct a family of such
systems with some common properties and structure while keeping a very
rich variety of the concrete implementation and applications.

This thesis is divided into two parts. Part I introduces the theory of composi-
tional computational systems. Then we use Part II to discuss the mathematical
theory of co-design and the place it has in the compositional computational
systems framework. The particular choice of co-design is both because of our
personal interests and because it a structurally very rich theory and hence
serves as a good extended example. Nevertheless, Part II is not required to
understand the compositional computational systems aspect of this work.

We start in Chapter 2 by reviewing some of the most fundamental con-
cepts of the branches of mathematics that will be used throughout this work.
We review some basic notions from order theory such as posets and feasibil-
ity relations. Then, the focus moves to category theory and the definitions of
categories, functors, natural transformations, and their various variations. Fol-
lowing that, we introduce notation for defining anonymous functions which
will make some of the proofs much easier to read and understand. This is a
non-standard notation, so we recommend that even the knowledgeable reader
takes a quick look at it. Finally, we review some concepts from type the-
ory which will be useful for defining normed types, as well as problems and
procedures in Chapter 3 and Chapter 4.

Chapters 3 and 4 deal with a specific instance of a compositional com-
putational system that we call Lagado. We start with a concrete system as
it can be quite helpful for understanding the basic principles and philoso-
phy of representing problems, procedures, and solutions. Then, Chapters 5
and 6 generalize these ideas to an abstract setting where one can make various
choices for defining problems, procedures, and solutions, each one of which
giving rise to a different compositional computational system.

More precisely, in Chapter 3 we introduce the concept of normed types. A
normed type extends the notion of a type with a set of sizes and a function that
assigns a size to each term of the type. This will come especially handy when

Chapter 1. Introduction 5

we later introduce procedures which are computational processes consuming
some resources to perform the computation, where the amount of the required
resources depends on the size of the concrete normed term.

Then, in Chapter 4 we provide our first formal definition of a problem
and a solution. We will define problems as binary relations between two
normed types, one dubbed a statement type, and another called answer type.
Every instance of a problem identifies with a particular statement, while the
answer would be what we want to receive when the instance is solved. We
allow for this relationship to be a binary relation because then we can model
both problems with multiple correct answers per statement and problems
that might have no correct answers for some statements. The collection of
problems is then shown to give rise to a categorical structure in the form of the
Prob category. Once we have cleared up a definition for what problems are,
we move to solutions. A solution to a given problem will be simply defined
as a procedure between the same normed types as the ones of the problem,
with the procedure returning a correct answer for any possible statement of
the given problem. Finally, we show how both problems and solutions can
be represented in a category, which we call Lagado, and how Lagado can be
considered to have a structure similar to a twisted category. To the best of
our knowledge, everything that is introduced in Chapters 3 and 4, is a novel
contribution of this thesis.

The reader will likely notice that Chapters 3 and 4 are build up with the de-
sire to put everything on a category-theoretical foundation. This might seem
arbitrary but it is not an end in itself. The first half of Chapter 5 (Sections 5.1
to 5.4) is an apology of this choice. There, we start by defining a few basic
assumptions that intuitively carry the meaning of “compositionality” and we
show that these assumptions result in a semicategorical structure. While the
presentation of this argument is original, the basic ideas go back to the seminal
paper on category theory by Eilenberg and MacLane (1945). We do though
contribute a new way of relating the morphisms of two (semi)categories which
we call kinded functions. We then go on to show how these kinded functions
generalize many other constructions that bridge two containers of mathemati-
cal objects, i.e. categories, sets, groups. Examples of such kinded functions are
procedures (as defined in Chapter 4), binary relations (so problems), functions,
functors, bifunctors, monoidal functors, etc.

The fact that Chapter 5 shows that a semicategory meets our assumptions
for compositionality and that kinded functions are a good abstraction of var-
ious relations between such semicategories is the reason why we base our
definition of a compositional computational system, the topic of Chapter 6, on
them. In Chapter 6, we provide new and more general definitions for prob-
lems and solutions: kinded functions between two semicategories. As long as

6 Chapter 1. Introduction

the kinds of these kinded functions are rigs, one can construct a system (called
Laputa), with a structure very similar to the one of Lagado, and that contains
the new generalized definitions of problems and solutions. Depending on the
particular choice of objects, rigs for the kinds of the problems, and the solu-
tions, as well as the conditions which make a procedure a solution for a given
problem, we can define various such compositional computational systems,
each one with slightly different structure and properties. To illustrate this,
we provide examples for a system with functorial problems and procedures,
and one with probabilistic problems and procedures. Chapter 6 generalizes
the theory that we earlier developed in Chapters 3 and 4), and hence consists
of novel results. This would mark the end of Part I and would conclude the
development of the theory of compositional computational systems.

Then, in Part II we take the theory of co-design, first developed by Censi
(2016), and we show how it fits in the family of compositional computational
systems. We start this extended example in Chapter 7 by providing a few
more definitions of order theory and introducing various types of design
problems: the building blocks of co-design. Then, Chapter 8 focuses on the
computational aspect of co-design, i.e. how to compute the solutions of co-
design problems. The approach to solving these problems as well as the
procedures themselves are closely following the ones introduced by Censi
(2016). However, these solutions rely on a duality between upper sets of posets
and the antichains of their minimal elements. To the best of the authors’
knowledge, a characterization of the conditions under which such duality
indeed holds has not been performed yet, so we propose one in Chapter 8.
When combined with the necessary conditions for solving loop problems
via least fixpoints (again a method due Censi (2016)), we obtain a concise
definition of well-behaved design problems, which are the ones for which the
computational techniques of co-design are indeed guaranteed to work. This
too is a novel contribution.

Chapter 9 then focuses on categorical structures and connections in co-
design that have not been explored before. While we base the study of these
structures on the well-known properties of the category of design problems
which were first studied by Censi et al. (2020), our main contribution is ex-
tending them to the categories of answers of design problems and showing
that the functors which we use to relate the various problem formulations and
their answers preserve their rich structure. Concretely, we show that these re-
lationships are monoidal functors that preserve traces and the locally-posetal
structure of hom-sets. Unless whenever otherwise mentioned, this chapter
too contains original material.

Finally, Chapter 10 puts the two parts of the thesis together. It shows how
co-design fits in the bigger framework of compositional computational the-

Chapter 1. Introduction 7

ories. We first show that every design problem is a problem in at least one
compositional computational system. Then, we move up a level of abstraction
and we show that the whole collection of design problems (the category of
design problems) can itself be considered as problem statements in a differ-
ent compositional computational system. Then we show how the functors
developed in Chapter 9 act as problems and procedures in this new system.
As these functors preserve tensor products, traces, joins, meets, etc, we pro-
vide a yet another compositional computational system that possesses such
structure. Finally, the focus is back on the computational question and we
show how to add resource-awareness to the procedures in this new system,
similarly to how it was earlier done for Lagado.

The process of exploring and studying the concepts and ideas that even-
tually made the body of this thesis was extremely rewarding. It allowed us
to find some fundamental and profound properties and connections in the
meta-problem of problem-solving. We are confident that this experience not
only produced this work but will also inform our future problem-solving en-
deavours. We hope that the reader can also experience at least part of our
excitement and that they will find as much use of these results and ideas as
we did.

Part I

Compositional problem-solving

9

Chapter 2

Mathematical preliminaries

We start this thesis by reviewing some of the mathematical concepts that will
be frequently used throughout this document. Contrary to how one should
start any piece of writing, we will keep this chapter formal and rather dry.
The subjects covered are simply so rich in depth and scope that nothing we
can introduce here would give them justice. Nevertheless, we will provide
pointers to literature that discusses these topics in sufficient depth.

2.1 Posets
Posets, short for partially ordered sets, are one of the building blocks of order
theory and we will be frequently using them throughout this text. The in-
terested reader can find a more thorough treatment by Davey and Priestley
(2002), while Fong and Spivak (2019) give a broader study of the relations of
posets with some of the other concepts used here.

Definition 2.1 (Binary operation). A binary operation on a set N is a function

N × N → N.

Definition 2.2 (Poset). A poset (partially ordered set) is a tuple (P, ≤P) where
P is a set and ≤P is a binary relation on P which for all a , b , c ∈ P has the
following properties:

i. Reflexivity: a ≤P a;
ii. Transitivity: if a ≤P b and b ≤P c, then a ≤P c;

iii. Antisymmetry: if a ≤P b and b ≤P a, then a � b.

11

12 Chapter 2. Mathematical preliminaries

In words we will refer to a ≤ b as ‘a precedes b’ or ‘b reduces to a’. We might
sometimes omit the subscript of the relation when it is clear from the context
(as in the previous sentence). We will often denote by P both the poset and its
set of elements. It should be clear from the context which one we are referring
to.

Definition 2.3 (Bool poset). The poset Bool is defined as ({T, F} , ≤) with only
one non-reflexive relation: F ≤ T.

Definition 2.4 (Identity poset). We define a special poset I with a single ele-
ment ι and with a single relation ι ≤ ι.

Definition 2.5 (Cartesian product). For two sets A and B, their Cartesian
product, denoted A × B, is the set of all ordered pairs (a , b) where a ∈ A and
b ∈ B, that is

A × B B {(a , b) | a ∈ A ∧ b ∈ B} .

Definition 2.6 (Product poset). Given posets ⟨P, ≤P⟩ and
⟨
Q , ≤Q

⟩
we can

define the product poset ⟨P × Q , ≤⟩ on the Cartesian product P×Q by requiring⟨
p , q

⟩
≤

⟨
p′, q′

⟩
if and only if (iff) p ≤P p′ and q ≤Q q′.

Definition 2.7 (Opposite poset). Given a poset P � ⟨P, ≤⟩ we define the opposite
poset Pop �

⟨
P, ≤op

⟩
as the poset which has the same elements but with p ≤op q

iff q ≤ p.

Definition 2.8 (Monoidal poset). A monoidal structure on a poset ⟨P, ≤⟩ consists
of:

(i) An element I ∈ P, called monoidal unit, and
(ii) a function ⊗ : P ×P → P, called the monoidal product. Note that we write

⊗(p1, p2) � p1 ⊗ p2, p1, p2 ∈ P.

The constituents must satisfy the following properties:
(a) Monotonicity: For all p1, p2, q1, q2 ∈ P, if p1 ≤ q1 and p2 ≤ q2, then

p1 ⊗ p2 ≤ q1 ⊗ q2.
(b) Unitality: For all p ∈ P, I ⊗ p � p and p ⊗ I � p.
(c) Associativity: For all p , q , r ∈ P, (p ⊗ q) ⊗ r � p ⊗ (q ⊗ r).

A poset equipped with a monoidal structure ⟨P, ≤, I , ⊗⟩ is called a monoidal
poset.

Remark 2.9. If the monoidal poset further satisfies that for any p1, p2 ∈ P we
have p1 ⊗ p2 � p2 ⊗ p1, then we call it a symmetric monoidal poset.

Lemma 2.10. The product poset P × Q of two monoidal posets ⟨P, ≤P , IP , ⊗P⟩ and⟨
Q , ≤Q , IQ , ⊗Q

⟩
is also monoidal with:

2.2. Category theory 13

(i) Monoidal unit: IP × IQ ,
(ii) Monoidal product:

⊗P×Q : (P × Q) × (P × Q) → (P × Q),⟨⟨
p1, q1

⟩
,
⟨
p2, q2

⟩⟩
7→

⟨
p1 ⊗P p2, q1 ⊗Q q2

⟩
.

Proof. All required properties follow directly from the definitions of monoidal
poset (Definition 2.8) and product poset (Definition 2.6). □

Definition 2.11 (Monotone function). A monotone function between posets
⟨P, ≤P⟩ and

⟨
Q , ≤Q

⟩
is a function f : P → Q such that, for all elements x , y ∈ P,

if x ≤P y then f (x) ≤Q f (y).

Definition 2.12 (Upper set). Given a poset ⟨P, ≤P⟩, a subset S ⊆ P is called
upper set iff x ∈ S and x ≤P y implies that y ∈ S. The set of all upper sets of P
will be denoted by UP.

Definition 2.13 (Lower set). Given a poset (P, ≤P), a subset S ⊆ P is called
lower set iff x ∈ S and y ≤P x implies that y ∈ S. The set of all lower sets of P
will be denoted by LP.

Definition 2.14 (Feasibility relation). Let P � ⟨P, ≤P⟩ and Q �
⟨
Q , ≤Q

⟩
be

posets. A feasibility relation for P given Q is a monotone function

Φ : Pop × Q → Bool.

This is denoted by Φ : P ↛ Q. For p ∈ P and q ∈ Q, if Φ(p , q) � Twe say p can
be obtained given q.

Remark 2.15. A feasibility relation is a Bool-profunctor.
The feasibility relations admit a plethora of composition operations which

are studied in detail by Censi et al. (2020). We will review the most important
such operations in Chapter 7. Taking posets as objects and feasibility relations
as morphisms one obtains the compact closed category DP (Censi et al., 2020).

2.2 Category theory
Category theory is the workhorse of this thesis. Hence, almost anything we
do in the next chapters will be built up on top of its main concepts. This
section should be treated only as review of these concepts. Should one wish to
learn more about them, we recommend the Seven Sketches in Compositionality
book by Fong and Spivak (2019) as an introductory text, the classic Categories
for the Working Mathematician by Lane (1998) as a more general reference, and
ncatlab.org as an all-around resource.

https://ncatlab.org

14 Chapter 2. Mathematical preliminaries

Definition 2.16 (Category). To specify a category C:
i. one specifies a collection Ob(C), elements of which are called objects;

ii. for every two objects c , d ∈ Ob(C), one specifies a set HomC(c , d), the
elements of which are called morphisms from c to d; any morphism
k ∈ HomC(c , d) can also be denoted as k : c → d. The collection of all
morphisms in the category is denoted by HomC;

iii. for every object c ∈ Ob(C), one specifies a morphism idc called the
identity morphism on c;

iv. for every three objects c , d , e ∈ Ob(C) and two morphisms k ∈ HomC(c , d)
and l ∈ HomC(d , e), one specifies a morphism k l ∈ HomC(c , e), called
the composite of k and l.

The morphisms should satisfy the following two properties:
i. Unitality: for any morphism k : c → d, composing with the identities at

c or d doesn’t do anything:

idc k � k � k idd ;

ii. Associativity: for any three morphisms k : c0 → c1, l : c1 → c2, and
m : c2 → c3 we have

(k l) m � k (l m) � k l m.

Note that the existence of a morphisms only specifies that a relation between
two objects exist, but does not define what this relation is. For example, there
might be two different morphisms k , l : c → d with k , l.

Lemma 2.17. Every poset (and in fact, also every preorder) is a category.

Proof. The elements of the poset are the objects of the category and anytime
x ≤ y in the poset, we have a morphism from x to y in the category. Due to the
transitivity property of the posets, it follows that a poset is category with at
most one element in any of its hom-sets. It is trivial to check that the structure
of a poset meets all the requirements for a category. □

Example 2.18. As every poset is a category, that means that we can also have
a Bool category defined in the exact same way as in Definition 2.3.

Definition 2.19 (Product category). If C and D are two categories, then the
product category C × D is constructed as following:

i. the collection of objects Ob(C×D) is the Cartesian product of Ob(C) and
Ob(D), i.e. all pairs of objects from the two categories;

ii. for every two objects ⟨a , b⟩ , ⟨c , d⟩ ∈ Ob(C×D), the morphisms between
them HomC×D(⟨a , b⟩ , ⟨c , d⟩) are the Cartesian product of HomC(a , c)
and HomD(b , d), i.e. all pairs of morphisms (k , l), where k : a → c is a
morphism in C and l : b → d is a morphism in D;

2.2. Category theory 15

iii. identity morphisms are defined as above: id⟨a ,b⟩ � (ida , idb);
iv. for every three objects ⟨a , b⟩ , ⟨c , d⟩ ,

⟨
e , f

⟩
∈ Ob(C × D) and morphisms

⟨k , l⟩ ∈ HomC×D (⟨a , b⟩ , ⟨c , d⟩) and ⟨m , n⟩ ∈ HomC×D
(
⟨c , d⟩ ,

⟨
e , f

⟩)
,

the composite ⟨k , l⟩ ⟨m , n⟩ is
⟨
k m , l n

⟩
.

Lemma 2.20. A product category is a category.

Proof. If C and D are two categories, then Definition 2.19 is sufficient to define
the required objects, morphisms, identity morphisms, and composites. Hence,
the only thing left is to show that the so-constructed morphisms satisfy the
unitality and associativity properties.

For any morphism ⟨k , l⟩ : ⟨a , b⟩ → ⟨c , d⟩ we have

id⟨a ,b⟩ ⟨k , l⟩ �
⟨
ida k , idb l

⟩
� ⟨k , l⟩ .

The same holds for ⟨k , l⟩ id⟨c ,d⟩.
For any three morphisms

⟨k , l⟩ ∈ HomC×D (⟨a , b⟩ , ⟨c , d⟩) ,

⟨m , n⟩ ∈ HomC×D
(
⟨c , d⟩ ,

⟨
e , f

⟩)
,⟨

p , q
⟩
∈ HomC×D

(⟨
e , f

⟩
,
⟨
1 , h

⟩)
,

we have: (
(k , l) (m , n)

)
(p , q) � (k m , l n) (p , q)

� ((k m) p , (l n) q)
� (k (m p), l (n q))
� (k l) (m p , n q)
� (k l)

(
(m , n) (p , q)

)
,

due to the associativity of the morphisms in C and D.
Therefore, the morphisms of C × D satisfy the unitality and associativity

properties, and C × D is a category. □

Definition 2.21 (Subcategory). Given a category C, a subcategory D of C has:
i. objects being a subcollection of Ob(C);

ii. morphisms being a subcollection of the morphisms of C,
such that:

i. if the morphism k : c → d is in D, then c , d ∈ Ob(D);
ii. if k : c → d and l : d → e are in D, then their composite k l is also in D;

iii. if c ∈ Ob(D), then the identity morphism idC
c is also in D.

Definition 2.22 (Functor). Let C and D be categories. To specify a functor from
C to D, denoted F : C → D:

16 Chapter 2. Mathematical preliminaries

i. for every object c ∈ Ob(C), one specifies an object F(c) ∈ Ob(D);
ii. for every morphism k : c → d in C, one specifies a morphism in D:

F(k) : F(c) → F(d).

Furthermore, the following two properties need to be satisfied:
i. for every object c ∈ Ob(C), we have that F(idc) � idF(c);

ii. for every three objects c , d , e ∈ Ob(C) and for every two morphisms
k ∈ HomC(c , d) and l ∈ HomC(d , e), the equation

F(k l) � F(k) F(l)

holds in D.

Remark 2.23. One can think of a functor as a map between two categories which
respects their structures.

Definition 2.24 (Bifunctor). A bifunctor or functor of two variables is a functor
whose domain is the product of two categories. For the three categories C1,
C2, and D, a bifunctor B from C1 and C2 to D is a functor B : C1 × C2 → D.

Definition 2.25 (Covariant and contravariant functor). A functor F is called co-
variant if it preserves the directions of the morphisms, i.e. for every morphism
f : A → B, one has F(f) : F(A) → F(B). A functor is called contravariant if it re-
verses the directions of the morphisms, i.e. for every morphism f : A → B, one
has F(f) : F(B) → F(A). This can also be seen as a functor from the opposite
category Aop to B.

Definition 2.26 (Isomorphism). An isomorphism is a morphism k : c → d in
a category C such that there exists another morphism l : d → c satisfying
k l � idc and l k � idd . The two morphisms k and l are called inverses of
each other.

Definition 2.27 (Isomorphic objects). If two objects c , d ∈ Ob(C) have a pair of
isomorphisms between them, then the two objects are called isomorphic objects.

Remark 2.28. Given two isomorphic objects in a category, they always behave
in the same way when composed with other morphisms. The reason is that
if one of the objects has an outgoing morphism, then the other object can also
use it by pre-composing with the respective component of the isomorphism.
The same, of course, holds for the incoming morphisms as well. Hence such
objects are also referred to as the same up to an isomorphism.

Definition 2.29 (Symmetric monoidal category). A symmetric monoidal cat-
egory is a category C equipped with a symmetric monoidal structure. A
symmetric monoidal structure consists of:

2.2. Category theory 17

i. a bifunctor ⊗ : C × C → C, called monoidal product;
ii. an object I ∈ Ob(C), called monoidal unit,

which have to satisfy the following isomorphisms:
i. λc : I ⊗ c → c, and its inverse λ−1

c : c → I ⊗ c, for every c ∈ Ob(C);
ii. ρc : c ⊗ I → c, and its inverse ρ−1

c : c → c ⊗ I, for every c ∈ Ob(C);
iii. αc ,d ,e : (c⊗d)⊗e → c⊗(d⊗e), and its inverse α−1

c ,d ,e : c⊗(d⊗e) → (c⊗d)⊗e,
for every c , d , e ∈ Ob(C);

iv. σc ,d : c ⊗ d → d ⊗ c, for every c , d ∈ Ob(C), such that σc ,d σd ,c � idc⊗d .
If only condition iv. does not hold, then the resulting category is called a
monoidal category.

Remark 2.30. It is easy to see that the same way that a category generalizes
a poset, a symmetric monoidal category generalizes a symmetric monoidal
poset. In other words, any symmetric monoidal poset is a symmetric monoidal
category.

Definition 2.31 (Strong monoidal functor). Given two monoidal categories
⟨C, ⊗C, IC⟩ and ⟨D, ⊗D, ID⟩, a strong monoidal functor from C to D consists of

i. a functor F : C → D;
ii. a natural isomorphism µA,B for every pair A, B of elements in C, such

that:
µA,B : F(A) ⊗D F(B) → F(A ⊗C B);

iii. an isomorphism ϵ : ID → F(IC),
satisfying the following properties:

i. Associativity: for all A, B, C ∈ C the following diagram commutes:

(F(A) ⊗D F(B)) ⊗D F(C) F(A) ⊗D (F(B) ⊗D F(C))

F(A ⊗C B) ⊗D F(C) A ⊗D F(B ⊗C F(C))

F((A ⊗C B) ⊗C C) F(A ⊗C (B ⊗C C)),

αD
F(A)F(B),F(C)

µA,B ⊗D idD
F(C) idD

F(A) ⊗D µB,C

µ(A⊗CB),C µ(A⊗CB),C
F(αC

AB,C)

(2.1)

where αC and αD are associator morphisms in C and D, and idC and idD

are their identity morphisms;
ii. Unitality: for all A ∈ C the following diagrams commute:

ID ⊗D F(A) F(IC) ⊗D F(A)

F(A) F(IC ⊗C A)

ϵ ⊗D idD
F(A)

λD
F(A) µIC ,A

F(λC
A)

(2.2)

18 Chapter 2. Mathematical preliminaries

and

F(A) ⊗D ID F(A) ⊗D F(IC)

F(A) F(A ⊗C IC),

idD
F(A) ⊗D ϵ

ρD
F(A) µA,IC

F(ρC
A)

(2.3)

where λC, λD, ρC, and ρD are the left and right unitors of C and D.

Definition 2.32 (Compact closed category). Let C be a category, (C, I , ⊗) be a
symmetric monoidal structure on it, and c ∈ Ob(C) an object. A dual for c is an
object c∗ ∈ Ob(C) and the following morphisms:

i. unit for c: ηc : I → c∗ ⊗ c;
ii. counit for c: ϵc : c ⊗ c∗ → I,

satisfying the following two equations:
i. ρ−1

c (idc ⊗ηc) α−1
c ,c∗ ,c (ϵc ⊗ idc) λc � idc ;

ii. λ−1
c∗ (ηc ⊗ idc∗) αc ,c∗ ,c (idc∗ ⊗ϵc) ρc∗ � idc∗ .

Definition 2.33 (Small category). A category C is a small category if both Ob(C)
and HomC(A, B) are sets, for all A, B ∈ Ob(C).

Definition 2.34 (Semicategory). To specify a semicategory C∗ (also known as
semigroupoid or a precategory):

(i) one specifies a collection Ob(C∗), elements of which are called objects;
(ii) for every two objects c , d ∈ Ob(C∗), one specifies a set HomC∗(c , d),

the elements of which are called morphisms from c to d; a morphism
k ∈ HomC∗(c , d) can also be denoted as k : c → d;

(iii) for every three objects c , d , e ∈ Ob(C∗) and morphisms k ∈ HomC∗(c , d)
and l ∈ HomC∗(d , e), one specifies a morphism k l ∈ HomC∗(c , e), called
the composite of k and l.

The morphisms should have the property that for any three morphisms k :
c0 → c1, l : c1 → c2, and m : c2 → c3 it holds that:

(k l) m � k (l m) � k l m.

Remark 2.35. A semicategory is simply a category without requiring identity
morphisms and the identity property on the morphisms. It is clear that any
category is also a semicategory.

Definition 2.36 (Semifunctor). Let C∗ and D∗ be semicategories. To specify a
semifunctor from C∗ to D∗, denoted F : C∗ → D∗:

i. for every object c ∈ Ob(C∗), one specifies an object F(c) ∈ Ob(D∗);
ii. for every morphism k : c → d in C∗, one specifies a morphism in D∗:

F(k) : F(c) → F(d).

2.2. Category theory 19

Furthermore, for every three objects c , d , e ∈ Ob(C∗) and for every two mor-
phisms k ∈ HomC∗(c , d) and l ∈ HomC∗(d , e), the equation

F(k l) � F(k) F(l)

must hold in D∗.

Definition 2.37 (The Cat category). The Cat category is constructed as follow-
ing:

i. objects are all small categories (Definition 2.33);
ii. morphisms are all functors between small categories;

iii. identity morphisms are identity functors;
iv. morphism composition is functor composition.

Definition 2.38 (The SemiCat category). The SemiCat category is constructed
as following:

i. objects are all small semicategories (Definition 2.34);
ii. morphisms are all semifunctors (Definition 2.36);

iii. identity morphisms are identity semifunctors;
iv. morphism composition is semifunctor composition.

Definition 2.39 (The Set category). The Set category is constructed as follow-
ing:

i. objects are all sets;
ii. morphisms from a set A to a set B are all functions f : A → B;

iii. identity morphisms are identity functions;
iv. morphism composition is function composition.

Definition 2.40 (The Rel category). The Rel category is constructed as follow-
ing:

i. objects are all sets;
ii. morphisms from a set A to a set B are all binary relations R ⊆ A × B;

iii. identity morphisms are identity binary relations;
iv. morphism composition is the composition of binary relations.

Definition 2.41 (Twisted category). Given a category C, the twisted category on
C, denoted by Tw(C) and also called category of factorizations, has

i. Objects which are morphisms in C;
ii. Morphisms between two objects f : A → B and 1 : C → D which

are pairs of morphisms
⟨
p : C → A, q : B → D

⟩
, such that the following

diagram commutes:
A C

B D

f
p

1

q

20 Chapter 2. Mathematical preliminaries

in other words morphisms p and q such that 1 � p f q;
iii. Identity morphism for f : A → B is the pair

⟨
idC

A , id
C
B

⟩
of identity

morphisms in C;
iv. The composition of two morphisms

⟨h : E → C, i : D → F⟩

and ⟨
p : C → A, q : B → D

⟩
is

⟨h , i⟩
⟨
p , q

⟩
�

⟨
h C p , q C i

⟩
.

Definition 2.42 (Natural transformation). Given two categories C and D, and
functors F,G : C → D, a natural transformation α : F ⇒ G between them is an
assignment of a morphism αx : F(x) → G(x) (called component of α at x) in D
for every object x ∈ Ob(C) such that the following diagram commutes

F(x) F(y)

G(x) G(y)

F(f)

αx αy

G(f)

for any morphism f ∈ HomC(x , y), i.e. F(f) αy � αx G(f).

Definition 2.43 (Natural isomorphism). A natural isomorphism α : F ⇒ G
between two functors F,G : C → D is a natural transformation such that each
of its components αx : F(x) → G(x), for all x ∈ Ob(C), is an isomorphism in D.

2.3 Anonymous functions
In order to keep the presentation succinct we will make a frequent use of
anonymous functions. Here we introduce the notation that will be employed
when dealing with them.

When we wish to denote a function of one variable f : X → Y in anonymous
function notation we will write

f B
[
x 7→ f (x)

]
.

Note that the choice of the symbol x is completely arbitrary and can be changed:

f B
[
x 7→ f (x)

]
�

[
ξ 7→ f (ξ)

]
.

2.3. Anonymous functions 21

We will sometimes explicitly specify the domain and range of the anonymous
function by adding them on top of the map symbol:

f B
[
x

X→Y7−−−−→ f (x)
]
�

[
ξ

X→Y7−−−−→ f (ξ)
]
.

We denote the application of an anonymous function to an argument by adding
the argument in parenthesis after the function, i.e.

f (x′) �
[
ξ

X→Y7−−−−→ f (ξ)
]
(x′), x′ ∈ X.

Example 2.44 (Identity function). The identity function can be expressed
as the anonymous function [x 7→ x]. Furthermore, clearly we also have
[x 7→ x] (x′) � x′.

Analogously, we can have anonymous functions of multiple parameters,
e.g. [

x , y
R2→R7−−−−→ x y

]
.

Example 2.45 (Quadratic function). The quadratic function can be expressed
as the anonymous function[

x
R→R7−−−−→ ax2

+ bx + c
]
.

Note how a , b , c ∈ R are not defined. We say that x is bound in this anonymous
function, while a, b, and c are free variables.

Definition 2.46 (Composition of anonymous functions). Given two anony-
mous functions [

x
X→Y7−−−−→ f (x)

]
and [

y
Y→Z7−−−−→ 1(y)

]
,

such that the variable x is not a free variable in the second function, we can
compose them by applying one to the other:[

y
Y→Z7−−−−→ 1(y)

] ([
x

X→Y7−−−−→ f (x)
])

�

[
x

X→Z7−−−−→ 1(f (x))
]
.

Remark 2.47. In the case that x is a free variable in the second anonymous
function, we would have to first rewrite[

x
X→Y7−−−−→ f (x)

]

22 Chapter 2. Mathematical preliminaries

into [
x′ X→Y7−−−−→ f (x′)

]
with x′ not a free variable in the second function.

Example 2.48. To illustrate why the substitution above is important, take the
quadratic and identity functions as before with signatures as:[

x
R→R7−−−−→ ax2

+ bx + c
]

and [a 7→ a] .

If we do not perform substitution composing the two expressions will leave
us with: [

x 7→ ax2
+ bx + c

]
([a 7→ a]) �

[
a 7→ a3

+ ba + c
]
,

which is clearly not the same as the desired result:[
x 7→ ax2

+ bx + c
]
([a 7→ a]) �

[
x 7→ ax2

+ bx + c
]
([a′ 7→ a′])

�
[
a′ 7→ aa′2 + ba′ + c

]
�

[
x 7→ ax2

+ bx + c
]
.

We will also make a frequent use of the following two functions which
extract an element of a tuple:

Definition 2.49 (fst and snd). For any two sets X and Y, we define the follow-
ing two functions:

fst �

[
x , y

X×Y→X7−−−−−−→ x
]
,

snd �

[
x , y

X×Y→Y7−−−−−−→ y
]
.

Definition 2.50 (Product of functions). Given two functions f : X → Y and
1 : Z → W , the product function f × 1 is defined as:

f × 1 : X × Z → Y × W,

⟨x , z⟩ 7→
⟨

f (x), 1(z)
⟩
.

2.4 Type theory
In this section we will do a quick and dirty review of some of the basic
concepts of type theory that will be used for the rest of the thesis. The readers
interested in more detailed and rigorous treatment can refer to (Pierce, 2002;
The Univalent Foundations Program, 2013), and for a study of type theory’s
connections with category theory, (Crole, 1994). The review here follows the
book by Crole.

2.4. Type theory 23

Definition 2.51 (Type system). A type system is a formal system which consists
of:

i. a collection of types;
ii. a collection of function symbols, each associated with a natural number

called an arity;
iii. a sorting for each function symbol f which is a list of a + 1 types

([α1, . . . , αa , α]) and will be written

f : α1, . . . , αa → α,

where a is the arity of f .
If the arity of a function symbol k is 0, we will denote it by k : α, and will say
that k is a constant function symbol of type α.

Definition 2.52 (Terms of a type system). The terms of a type system is the
collection of:

i. variable terms: a countably infinite set of variables (x , y , . . .);
ii. constant terms: all constant function symbols of the type system (k , l , . . .);

iii. function terms: all expressions f (M1, . . . ,Ma), where f is any function
symbol with any arity a > 0 and each of M1, . . . ,Ma is a term of the type
system.

Remark 2.53. Note that it is the recursive formulation in the last point in the
above definition that provides the expressivity of a type system.

Definition 2.54 (Free variables of terms). Every term of a type system has a
set of free variables, which is defined inductively as:

i. FV(x) � {x}, where x is a variable term;
ii. FV(k) � �, where k is a constant term;

iii. FV(f (M1, . . . ,Ma)) �
∪a

i�1 FV(Mi), where f (M1, . . . ,Ma) is a function
term.

Remark 2.55. When working with types it is important to be careful not to
reuse the same symbol for different terms. That is why, sometimes, when
substituting terms, one needs to change the variable names, in order to keep the
semantics of the combined term as expected. This is also called α-conversion.
In this work, we will implicitly take care of such conversions, but we will
nevertheless provide formal explanation of the substitution process.

Definition 2.56 (Term substitution). A variable x in a term M can be substituted
with another term N , an operation denoted by M[N/x] inductively as follows:

i. if M is the same variable x, then

M[N/x] � x[N/x] � N ;

24 Chapter 2. Mathematical preliminaries

ii. if M is another variable y, then

M[N/x] � y[N/x] � y;

iii. if M is a constant term, then

M[N/x] � k[M/x] � k;

iv. if M is a function term f (M1, . . . ,Ma) of non-zero arity a, then

M[N/x] � f (M1, . . . ,Ma)[N/x] � f (M1[N/x], . . . ,Ma[N/x]).

Furthermore, if x � [x1, . . . , xn] is any list of n distinct variables, and if
N � [N1, . . . ,Nn] is a list of n terms, then the simultaneous substitution of the
variables x with the terms N, denoted M[N/x] or M[N1/x1, . . . ,Nn/xn], is
recursively defined as:

M[N1/x1, . . . ,Nn/xn] � M[z1/x1][N2/x2, . . . ,Nn/xn][N1/z1],

or more explicitly:

M[N1/x1, . . . ,Nn/xn] � M[z1/x1] . . . [zn/xn][Nn/zn] . . . [N1/z1].

In both places, the z1, . . . , zn are distinct variables, also distinct from x1, . . . , xn ,
such that

zi < FV(M) ∪
n∪

i�1
FV(Ni).

Remark 2.57. The above definition of simultaneous substitution is obtained via
successive applications of point 7.6 from (Curry, 1952). Crole (1994) has an
alternative but equivalent definition:

M[N1/x1,N2/x2] � M[N1[z/x2]/x1][N2/x2][x2/z].

Remark 2.58. The problem mentioned in Remark 2.55 can now be formally
posed. Take M, N , N′ to be any terms in a type system, and x, y, z be
distinct variables. Then the term M[N/x ,N′/y] is not in general syntactically
equivalent to M[N/x][N′/y]. This is presented as Exercise 3.2.6 in (Crole,
1994).

Definition 2.59 (Typing context). A typing context Γ is a sequence of terms and
their types, denoted by

Γ B [x1 : α1, . . . , xn : αn].

We say that the variable x1 appears in Γ with type α1. A typing context can also
be empty.

2.4. Type theory 25

Definition 2.60 (Context concatenation). Contexts can be combined by list
concatenation, denoted Γ, Γ′ or Γ, x : α, Γ′.

Example 2.61. An example of a typing context is

Γa �
[
x : T1, y : T2

]
.

A typing context can be extended via concatenation:

Γb B Γa , z : T3 �
[
x : T1, y : T2, z : T3

]
.

Definition 2.62 (Proved terms). Given a context Γ, we write Γ ⊢ M : α to denote
a proved term. Proved terms are generated inductively by the following rules:

i. Γ, x : α, Γ′ ⊢ x : α is a proved term, where Γ and Γ′ are typing contexts,
x is a variable, and α is a type;

ii. Γ ⊢ k : α, where Γ is a typing context and k is a constant term of a
constant function symbol of type α;

iii. if Γ ⊢ M1 : α1, . . . , and Γ ⊢ Ma : αa , and f is a function symbol with arity
a and sorting f : α1, . . . , αa → α, then:

Γ ⊢ f (M1, . . . ,Ma) : α.

Whenever Γ ⊢ M : α is a proved term, we will say that the term M has type α in
the context of Γ.

Remark 2.63. Due to the recursive definition of proved terms, given a proved
term Γ ⊢ M : α, we know that the context Γ implies that M can be only of
type α, and is also a well-formed term, which intuitively means that it is formed
with every single one of its constituent terms also being proved terms. This is
formally presented as Proposition 3.2.12 and Exercise 3.2.15.1 in (Crole, 1994).
Throughout the rest of this thesis we will only consider proved terms. So
whenever we refer to term, we mean a proved term.

Definition 2.64 (Unit type). The unit type I has the single term ι. Alternatively,
there is only one term with the unit type I and this term is denoted by ι.

Definition 2.65 (Product type). Given two types α1 and α2, we construct the
product type α1×α2. Furthermore, if in some contextΓwe have a termΓ ⊢ x1 : α1
and a term Γ ⊢ x2 : α2, the term ⟨x1, x2⟩ has a type α1 × α2 in the context of Γ,
i.e,

Γ ⊢ ⟨x1, x2⟩ : α1 × α2.

Definition 2.66 (Function type). Given two types α1 and α2, we construct the
function type α1 → α2 with domain α1 and codomain α2. Given some context
Γ, a term f of the type α1 → α2 (i.e. Γ ⊢ f : α1 → α2) and a term Γ ⊢ x : α1,
there is a term Γ ⊢ f (x) : α2 called value of f at a.

26 Chapter 2. Mathematical preliminaries

Remark 2.67. Function types are not the same thing as functions. Functions
f : A → α2 have type A → α2. Function types are also not function symbols or
function terms.

Definition 2.68 (Association bĳection). Given three types A, B, and C we
define the following two association functions:

αAB,C : (A × B) × C → A × (B × C),
⟨⟨a , b⟩ , c⟩ 7→ ⟨a , ⟨b , c⟩⟩ ;

αA,BC : A × (B × C) → (A × B) × C,
⟨a , ⟨b , c⟩⟩ 7→ ⟨⟨a , b⟩ , c⟩ .

These functions are each other’s inverse, hence they form a bĳection. The exact
same association bĳection can be defined for A, B, and C being sets. We abuse
the notation αAB,C and αA,BC by using them for both types and sets.

Chapter 3

Normed types and procedures

We start by introducing some of the building blocks of this work: normed types
and procedures. Normed types are simply types whose terms are endowed
with some notion of size. We are interested in the “size” variation between
different terms because later some of these terms will be used to represent
“easy” problems while others will be used to represent “difficult” problems.
This hierarchy of “difficultness” will be represented by an order on the size
of terms. Procedures, on the other hand, will be our representation of com-
putational processes. A procedure connects two normed types and quantifies
the resources necessary to convert a term of one of the types to a term of the
other type. It does this while taking into account the resources needed for this
operation, which in turn depend on the size of the terms.

3.1 Normed types
As mentioned above, normed types are nothing but types endowed with a
notion of size. We leave the way of measuring a given type open. After all,
types which represent different things have different notions of size. Some
types can even have multiple different sensible choices for assigning sizes, as
we will see in Example 3.6. We do, however, ask for the size to have a notion
of order, meaning that we can ascertain whether one term is smaller, larger,
equal, or incomparable to any other term. This means that we ask that the
sizes of a normed type form a poset.

Definition 3.1 (Normed type). A normed type is a triplet

A B ⟨A, |A|, s : A → |A|⟩ ,

27

28 Chapter 3. Normed types and procedures

where A is a type, |A| is a poset called sizes of A, and s is a map from the terms
of A to the sizes |A|. The elements of A will be also called terms of A.

Remark 3.2. Note that we somewhat abuse the label “normed” in the above
definition. The sizes that we endow A with by no means constitute a proper
norm. That is, they do not satisfy a triangle inequality and are not absolutely
scalable.

Example 3.3 (Lists). Given a type A, we define the type List[A], such that there
is a term:

⟨⟩ : List[A],
and a term ⟨a , l⟩:

[a : A, l : List[A]] ⊢ ⟨a , l⟩ : List[A].
A typical notion of size of a list is its length which has its values inN0. We can
then recursively define a function

sList : List → N0,

⟨⟩ 7→ 0,
⟨a , l⟩ 7→ 1 + sList(l).

Note that sList has the same definition regardless of the underlying type A.
Now, the triplet List[A] B ⟨List[A],N0, sList⟩ is a normed type.

Remark 3.4. In the above example, we have allowed ourselves to abuse the
functional notation a bit. Strictly speaking, a type is not a set. If A is a type
and B is a set, then

f : A → B

does not make much sense. Hence, a function from a type to a set is not
well-defined. Nevertheless, we will pretend that the collection of terms of a
given type forms a set and such functions would be associating every terms of
the type A with a single element from the set B.
Remark 3.5. Technically, List is a generic type and an example of parametric
polymorphism in type theory. The interested reader can find more details in
(Crole, 1994, Chapter 5) or in (Pierce, 2002, Part V). We will not consider this
in further detail and will take any List[A] to be an ordinary type, as introduced
in Definition 2.51.

Example 3.6 (Directed unweighted graphs). Throughout this work, we will be
making a frequent use of some running examples using graphs. These will
be done under the assumption that the reader is familiar with the basic terms
in graph theory. Otherwise, Graphs, Networks and Algorithms by Jungnickel
(2013) is a good reference.

3.1. Normed types 29

We denote by N the type of natural numbers and by B the boolean type
which has only two terms: T and F. Then, for any n : N, we define the type

®G[n] B Bn2
,

where the exponentiation of the type is simply consecutive application of the
type product operation ×. The key observation here is that when

(n : N) ⊢ 1 : ®G[n],

then 1 represents the adjacency matrix of a directed graph with n nodes.
We can define several different size functions on the terms with type ®G[n]:
i. the number of nodes:

snodes
®G

: ®G[n] → N,
1 7→ n;

ii. the number of edges:

sedges
®G

: ®G[n] → N0,

1 7→
n2∑
i�1

11i ,

where the indicator function 11i is 1 if the i-th component of 1 is T and
0 otherwise;

iii. the number of nodes and edges:

sn+e
®G

: ®G[n] → N ×N0,

1 7→
⟨

n ,
n2∑
i�1

11i

⟩
.

iv. the number of cycles:

scycles
®G

: ®G[n] → N0,

1 7→ cycles(1),

where cycles is a function that counts the number of cycles in the graph.
Hence, for any n : Nwe can define the following three distinct normed types,

all of which have the same underlying type but different ways to measure their
size:

®Gnodes[n] B
⟨
®G[n], N, snodes

®G

⟩
,

30 Chapter 3. Normed types and procedures

®Gedges[n] B
⟨
®G[n], N0, sedges

®G

⟩
,

®Gn+e[n] B
⟨
®G[n], N ×N0, sn+e

®G

⟩
,

®Gcycles[n] B
⟨
®G[n], N0, scycles

®G

⟩
.

Remark 3.7. Here, ®G[n] is parameterized by the terms of the type N, hence it
is a dependent type. However, just like with the generic types above, we will
ignore this detail in the rest of this work and will treat it as any other type.

Example 3.8 (Other types of graphs). Similarly to the previous example we
can also define the type of undirected graphs with n nodes as

Ḡ[n] B B
∑n

i�1 n ,

where the exponent comes from the fact that an undirected graph can be
represented as a triangular matrix.

Both directed and undirected weighted graph types can be constructed
by just changing the underlying type from B to R. Even more, we can dis-
tinguish between positively weighted graphs, arbitrarily weighted graphs,
acyclic graphs and graphs with only positive cycles:

i. ®G[n] B Bn2 : directed unweighted graphs;
ii. Ḡ[n] B B

∑n
i�1 n : undirected unweighted graphs;

iii. ®G≥0[n] B Rn2

≥0: directed, positively-weighted graphs;
iv. ®G⊘[n] B {1 ∈ Rn2 | cycles(1) � 0}: directed weighted acyclic graphs;
v. ®G⊕[n] B {1 ∈ Rn2 | 1 has no negative cycles}: directed graphs with no

negative cycles.
For each one of the above types, we can define a normed type, in the exact
same way as we did for ®G[n] in Example 3.6. One only needs to replace the
indicator function for sedges to 11i,0 for the weighted graphs.

Remark 3.9. In the above example, once again we abuse type theory. The set
comprehension notation clearly has no place in type theory. As we try to keep
the presentation light, we will allows ourselves to do that. Note, however, that
from a type theoretical perspective, ®G⊘[n] and ®G⊕[n] are subtypes of Rn2 .

Definition 3.10 (The NTypes category). We define a category NTypes:
i. The objects of NTypes are normed types (Definition 3.1).

ii. A morphism between two objects A B ⟨A, |A|, sA⟩ and B B ⟨B, |B |, sB⟩
is a tuple

⟨
f : A → B, h : |A| → |B |

⟩
, where:

a) f : A → B is a term of the function type A → B,
b) 1 : |A| → |B | is a monotone function (Definition 2.11).

iii. The identity morphism for A is idA B
⟨
idA , id|A|

⟩
.

3.1. Normed types 31

iv. The composition of morphisms is the composition of the constituent
functions.

Remark 3.11. The NTypes category is what brings life into the normed types.
A morphism in NTypes tell us how we can convert the term of one type to
the term of another type, while at the same time, also handling the (possible)
change in size.

Lemma 3.12 (NTypes is a monoidal category). The NTypes category is a monoidal
category when considering the following additional structure:

• Tensor product ⊗, such that given two objects

A B ⟨A, |A|, sA⟩

and
B B ⟨B, |B |, sB⟩

we have
A ⊗ B B ⟨A × B, |A| × |B |, sA × sB⟩ ,

with the first product being the product on types (Definition 2.65), the second
being Cartesian product (Definition 2.5), and the third being the product on
functions (Definition 2.50). The result of applying ⊗ to two morphisms

⟨
f , 1

⟩
from A to B and ⟨h , k⟩ from C to D is:⟨

f , 1
⟩
⊗ ⟨h , k⟩ B

⟨
f × h , 1 × k

⟩
.

• Unit object being I � ⟨I , |I |, sI⟩, where I is the unit type (Definition 2.64),
|I | � {1} and sI(ι) � 1.

• Left unitor being the pair of morphisms

λA : I ⊗ A → A, λA B ⟨snd, snd⟩ ;
λ−1

A : A → I ⊗ A, λ−1
A B ⟨[a 7→ ⟨ι, a⟩] , [a 7→ ⟨1, a⟩]⟩ .

• Right unitor being the pair of morphisms

ρA : A ⊗ I → A, ρA B ⟨fst, fst⟩ ;
ρ−1

A : A → A ⊗ I, ρ−1
A B ⟨[a 7→ ⟨a , ι⟩] , [a 7→ ⟨a , 1⟩]⟩ .

• Associator being the pair of morphisms

αAB,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), αAB,C B
⟨
αAB,C , α |A| |B |,|C |

⟩
;

αA,BC : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C, αA,BC B
⟨
αA,BC , α |A|,|B | |C |

⟩
,

where the α association bĳections were defined in Definition 2.68.

32 Chapter 3. Normed types and procedures

Proof. In order to show that NTypes is a monoidal category, we need to show
that the triangle and pentagon diagrams commute.

The triangle identity

(A ⊗ I) ⊗ B A ⊗ (I ⊗ B)

A ⊗ B

αAI,B

ρA⊗idB idA ⊗λB

(3.1)

is equivalent to the equation:

αAI,B (idA ⊗λB) � ρA ⊗ idB .

The left-hand side evaluates to

αAI,B (idA ⊗λB)
�

⟨
αAI ,B , α |A| |I |,|B |

⟩⟨
[⟨a , ⟨ι, b⟩⟩ 7→ ⟨idA(a), snd(ι, b)⟩] ,

[
⟨a , ⟨1, b⟩⟩ 7→

⟨
id|A|(a), snd(1, b)

⟩]⟩
�

⟨
αAI ,B , α |A| |I |,|B |

⟩
⟨[⟨a , ⟨ι, b⟩⟩ 7→ ⟨a , b⟩] , [⟨a , ⟨1, b⟩⟩ 7→ ⟨a , b⟩]⟩

�⟨[⟨a , ⟨ι, b⟩⟩ 7→ ⟨a , b⟩] ([⟨⟨a′, ι′⟩ , b′⟩ 7→ ⟨a′, ⟨ι′, b′⟩⟩]) ,
[⟨a , ⟨1, b⟩⟩ 7→ ⟨a , b⟩] ([⟨⟨a′, 1′⟩ , b′⟩ 7→ ⟨a′, ⟨1′, b′⟩⟩])⟩

� ⟨[⟨⟨a′, ι′⟩ , b′⟩ 7→ ⟨a′, b′⟩] , [⟨⟨a′, 1′⟩ , b′⟩ 7→ ⟨a′, b′⟩]⟩ .

The right-hand side evaluates to

ρA ⊗ idB � ⟨fst, fst⟩ ⊗
⟨
idB , id|B |

⟩
� ⟨[⟨a , ι⟩ 7→ a] , [⟨a , 1⟩ 7→ a]⟩ ⊗ ⟨[b 7→ b] , [b 7→ b]⟩
� ⟨[⟨⟨a , ι⟩ , b⟩ 7→ ⟨a , b⟩] , [⟨⟨a , 1⟩ , b⟩ 7→ ⟨a , b⟩]⟩ .

The two expressions are equivalent, hence the triangle identity holds.
The pentagon identity

(A ⊗ B) ⊗ (C ⊗ D)

((A ⊗ B) ⊗ C) ⊗ D A ⊗ (B ⊗ (C ⊗ D))

(A ⊗ (B ⊗ C)) ⊗ D A ⊗ ((B ⊗ C) ⊗ D)

α(AB),CDα(AB)C,D

αAB,C⊗idD

αA(BC),D

idA ⊗αBC,D

(3.2)

is equivalent to the equation

α(AB)C,D αAB,(CD) �
(
αAB,C ⊗ idD

)
αA(BC),D

(
idA ⊗αBC,D

)
.

3.1. Normed types 33

The left-hand side evaluates to

α(AB)C,D αAB,(CD)

�
⟨
α(AB)C,D , α(|A| |B |)|C |,|D |

⟩ ⟨
αAB,(CD), α |A| |B |,(|C | |D |)

⟩
� ⟨[⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨⟨a , b⟩ , ⟨c , d⟩⟩] , [⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨⟨a , b⟩ , ⟨c , d⟩⟩]⟩
⟨[⟨⟨a , b⟩ , ⟨c , d⟩⟩ 7→ ⟨a , ⟨b , ⟨c , d⟩⟩⟩] , [⟨⟨a , b⟩ , ⟨c , d⟩⟩ 7→ ⟨a , ⟨b , ⟨c , d⟩⟩⟩]⟩

�⟨[⟨⟨a , b⟩ , ⟨c , d⟩⟩ 7→ ⟨a , ⟨b , ⟨c , d⟩⟩⟩] ([⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨⟨a , b⟩ , ⟨c , d⟩⟩]) ,
[⟨⟨a , b⟩ , ⟨c , d⟩⟩ 7→ ⟨a , ⟨b , ⟨c , d⟩⟩⟩] ([⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨⟨a , b⟩ , ⟨c , d⟩⟩])⟩

� ⟨[⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨a , ⟨b , ⟨c , d⟩⟩⟩] , [⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨a , ⟨b , ⟨c , d⟩⟩⟩]⟩ .

And the right-hand side evaluates to(
αAB,C ⊗ idD

)
αA(BC),D

(
idA ⊗αBC,D

)
�⟨[⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨αAB,C ⟨⟨⟨a , b⟩ , c⟩⟩ , idD(d)⟩] ,[

⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→
⟨
α |A| |B |,|C | ⟨⟨⟨a , b⟩ , c⟩⟩ , id|D |(d)

⟩]
⟩

αA(BC),D
(
idA ⊗αBC,D

)
� ⟨[⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨⟨a , ⟨b , c⟩⟩ , d⟩] , [⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨⟨a , ⟨b , c⟩⟩ , d⟩]⟩
αA(BC),D

(
idA ⊗αBC,D

)
� ⟨[⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨a , ⟨⟨b , c⟩ , d⟩⟩] , [⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨a , ⟨⟨b , c⟩ , d⟩⟩]⟩(

idA ⊗αBC,D
)

� ⟨[⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨a , ⟨b , ⟨c , d⟩⟩⟩] , [⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ⟨a , ⟨b , ⟨c , d⟩⟩⟩]⟩ .

The two expressions are equivalent, hence the pentagon identity also holds
and NTypes is indeed a monoidal category. □

The NTypes category can be thought of “types with something extra”.
However, we can also drop the “extra” should we wish to do so. Let’s first
define Types, the category without the “extras”.

Definition 3.13 (The Types category). The Types category has types for objects
types and function types for hom-sets. In other words, a morphism from type
A to type B is a term of the function type A → B. Morphisms composition is
defined by function composition. Associativity and identity trivially follow.

Remark 3.14. The Types category is also monoidal due to us having well-
defined product on types (Definition 2.65) and product of functions (Defini-
tion 2.50).

We can formalize “dropping” the extra size information as a forgetful func-
tor:

34 Chapter 3. Normed types and procedures

Definition 3.15 (The functor). The forgetful functor : NTypes → Types
maps normed types to their types and morphisms to the respective terms of
the function types. In other words:

: NTypes → Types,
⟨A, |A|, sA⟩ 7→ A,⟨

f : A → B, 1 : |A| → |B |
⟩
7→ f ,

where the first mapping is for objects and the second one for morphisms.

3.2 Procedures
A procedure represents a computational process with a given input type and
output type. Procedures do not model such processes explicitly. Rather,
they just represent the input type, output type, and the resources needed for
computation, without specifying the exact algorithm or implementation. Nev-
ertheless, a procedure is expected to be backed by an actual implementation.
One exception to this are the identity procedures which simply return the
input, something so trivial that an algorithm or implementation is not even
necessary.

We can extend the morphisms in NTypes in order to also account for the
computation resources needed to execute the mapping represented by the first
element of the morphism. We will model the computational resources as the
elements of a monoidal poset R. The fact that R has monoidal structure allows
tracking the accumulation of resources as we compose procedures.

The resources needed to execute a procedure depend on the complexity of
the input. We connect the input size with the computational effort: input terms
with small sizes need less resource, input terms with bigger sizes need more
resources. Furthermore, we want procedures to also estimate the size of the
output. Then, we can know the computational effort of composed procedures
before we even start computing. This proves quite useful for selecting the most
efficient procedure for solving a given problem.

Definition 3.16 (The Proc(R) category). Given a monoidal poset ⟨R, ≤R , 0,+⟩
that we interpret as resources, we define a category Proc(R):

i. The objects of Proc(R) are normed types (Definition 3.1).
ii. A morphism (also called procedure) between two objects

A B ⟨A, |A|, sA : A → |A|⟩

and
B B ⟨B, |B |, sB : B → |B |⟩

3.2. Procedures 35

is a triplet ⟨
p : A → B, τp : |A| → |B |, ρp : |A| ↛ R

⟩
,

where:
• p : A → B is a term of the function type A → B called map of the

procedure,
• τp : |A| → |B | is a monotonic function called translation which maps

sizes in A to sizes in B;
• ρp : |A| ↛ R is a feasibility relation (Definition 2.14).

iii. The composition of a morphism

p B
⟨
p : A → B, τp : |A| → |B |, ρp : |A| ↛ R

⟩
from A B ⟨A, |A|, sA : A → |A|⟩ to B B ⟨B, |B |, sB : B → |B |⟩ with a
morphism

q B
⟨
q : B → C, τq : |B | → |C |, ρq : |B | ↛ R

⟩
from B to C B ⟨C, |C |, sC : C → |C |⟩ is given by

p q B ⟨p q , τp τq , ρp ⊞τp ρq⟩,

where ρp ⊞τp ρq is defined as:

ρp ⊞τp ρq : |A|op × R → Bool,
⟨a , r⟩ 7→

∨
r1 ,r2∈R

ρp(a , r1) ∧ ρq(τp(a), r2) ∧ (r1 + r2 ≤R r).

The binary operation ρp ⊞τp ρq is called series sum of ρp and ρq (with
translation τp) and its result is also a feasibility relation (Lemma 3.18).
Procedure composition is associative as function composition and series
sum are both associative. The second is due Lemma 3.19.

iv. The identity procedure for the normed type A is

idA B ⟨idA , id|A| , ρ
id
A ⟩,

where ρid
A is the identity feasibility relation

ρid
A : |A|op × R → Bool,

⟨a , r⟩ 7→ T.

Remark 3.17. Applying ⊞τ makes sense only when τ is a map between the
domains of the two operands and when the codomains of the operands are
the same monoidal poset, as is always the case in the above definition.

36 Chapter 3. Normed types and procedures

Lemma 3.18. For any two feasibility relations ρp : |A| ↛ R and ρq : |B | ↛ R, and
a translation τp : |A| → |B |, their series sum ρp ⊞τp ρq is a feasibility relation.

Proof. It is sufficient to show that whenever (ρp ⊞τp ρq)(a , r) � T, then for all
a′ ∈ A and r′ ∈ R such that a′ ≤A a and r ≤R r′ we also have

(ρp ⊞τp ρq)(a′, r′) � T.
If (ρp ⊞τp ρq)(a , r) � T, then there exist r1, r2 ∈ R such that

ρp(a , r1) ∧ ρq(τp(a), r2) ∧ (r1 + r2 ≤R r) � T.
This trivially also holds if we replace r with r′ ≥R r. Due to the monotonicity
of τp and the fact that ρp and ρq are also feasibility relations, it also holds if
we replace a with a′ ≤A a. □

Lemma 3.19. Series sum with translation is associative. In other words, given three
procedures

p �
⟨
p : A → B, τp : |A| → |B |, ρp : |A| ↛ R

⟩
from A to B,

q �
⟨
q : B → C, τq : |B | → |C |, ρq : |B | ↛ R

⟩
from B to C,

r �
⟨
r : C → D , τr : |C | → |D |, ρr : |C | ↛ R

⟩
from C to D,

then (ρp ⊞τp ρq) ⊞(τp τq) ρr � ρp ⊞τp (ρq ⊞τq ρr).

Proof. Writing out the left side we get:(
(ρp⊞τpρq)⊞(τp τq)ρr

)
(a ,r)

�

∨
r1 ,r2∈R

(ρp⊞τpρq)(a ,r1)∧ρr((τp τq)(a),r2)∧(r1+r2≤r)

�

∨
r1 ,r2∈R

©«
∨

r′1 ,r
′
2∈R

ρp(a ,r′1)∧ρq(τp(a),r′2)∧(r′1+r′2≤r1)ª®¬∧ρr((τp τq)(a),r2)∧(r1+r2≤r)

�

∨
r1 ,r2 ,r′1 ,r

′
2∈R

ρp(a ,r′1)∧ρq(τp(a),r′2)∧(r′1+r′2≤r1)∧ρr((τp τq)(a),r2)∧(r1+r2≤r)

�

∨
r2 ,r′1 ,r

′
2∈R

ρp(a ,r′1)∧ρq(τp(a),r′2)∧ρr((τp τq)(a),r2)∧(r′1+r′2+r2≤r).

The right hand-side evaluates to the same expression, hence the equality
holds. □

Lemma 3.20. Series sum with the identity feasibility relation and identity translation
keeps the other operand unchanged, i.e.

ρid
A ⊞id|A| ρp � ρp and ρp ⊞id|A| ρ

id
A � ρp .

where ρp is a feasibility relation ρp : |A| ↛ R.

3.2. Procedures 37

Proof. Writing out the left side of the first equation we get:(
ρid

A ⊞id|A| ρp

)
(a , r) �

∨
r1 ,r2∈R

ρid
A (a , r1) ∧ ρp(id|A|(a), r2) ∧ (r1 + r2 ≤R r)

�

∨
r1 ,r2∈R

ρid
A (a , r1) ∧ ρp(a , r2) ∧ (r1 + r2 ≤R r).

As by definition ρid
A (a , r1) is T for any r1, it is T for r1 � 0. However, then we

have (
ρid

A ⊞id|A| ρp

)
(a , r) �

∨
r2∈R

ρid
A (a , 0) ∧ ρp(a , r2) ∧ (0 + r2 ≤R r)

�

∨
r2∈R

ρp(a , r2) ∧ (r2 ≤R r)

� ρp(a , r),

where the last equality is due the monotonicity of ρp . Showing that the second
equality in the lemma holds can be done in the same way. □

Lemma 3.21. For any monoidal poset R, the Proc(R) category is a monoidal category
when considering the following additional structure:

i. Tensor product ⊗, such that given two objects A B ⟨A, |A|, sA⟩ and B B
⟨B, |B |, sB⟩ we have

A ⊗ B B ⟨A × B, |A| × |B |, sA × sB⟩ ,

the same as the tensor product on the objects of NTypes (Lemma 3.12). The
result of applying ⊗ on two morphisms

⟨
p , τp , ρp

⟩
from A to B and

⟨
q , τq , ρq

⟩
from C to D is:⟨

p , τp , ρp
⟩
⊗

⟨
q , τq , ρq

⟩
B

⟨
p × q , τp × τq , ρp ⊠ ρq

⟩
,

where the parallel sum operator ⊠ is defined as

ρp ⊠ ρq : (|A| × |C |)op × R → Bool
⟨(a , c), r⟩ 7→

∨
r1 ,r2∈R

ρp(a , r1) ∧ ρq(c , r2) ∧ (r1 + r2 ≤R r).

The product morphism is a valid morphism in Proc(R) due to ρp ⊠ ρq being a
valid feasibility relation (Lemma 3.23).

ii. Unit object being I � ⟨I , |I |, sI⟩, where I is the unit type (Definition 2.64),
|I | � {1} and sI(ι) � 1.

iii. Left unitor being the pair of morphisms

λA : I ⊗ A → A, λA B
⟨
snd, snd, ρid

I×A

⟩
;

λ−1
A : A → I ⊗ A, λ−1

A B
⟨
[a 7→ ⟨ι, a⟩] , [a 7→ ⟨1, a⟩] , ρid

A

⟩
.

38 Chapter 3. Normed types and procedures

iv. Right unitor being the pair of morphisms

ρA : A ⊗ I → A, ρA B
⟨
fst, fst ρid

A×I

⟩
;

ρ−1
A : A → A ⊗ I, ρ−1

A B
⟨
[a 7→ ⟨a , ι⟩] , [a 7→ ⟨a , 1⟩] , ρid

A

⟩
.

v. Associator being the pair of morphisms

αAB,C : (A⊗B)⊗C→A⊗(B⊗C), αAB,CB
⟨
αAB,C , α |A| |B |,|C | , ρ

id
(A×B)×C

⟩
;

αA,BC : A⊗(B⊗C)→(A⊗B)⊗C, αA,BCB
⟨
αA,BC , α |A|,|B | |C | , ρ

id
A×(B×C)

⟩
.

Remark 3.22. As before, applying ⊠ is defined only when the two operands are
feasibility relations with codomains being the same monoidal poset, which is
always the case in Proc(R).

Lemma 3.23. For any two feasibility relations ρp : |A| ↛ R and ρq : |B | ↛ R, their
parallel sum ρp ⊠ ρq : |A| × |B | ↛ R is a feasibility relation.

Proof. It is sufficient to show that whenever (ρp ⊠ ρq)(⟨a , b⟩ , r) � T, then for
all a′ ∈ A, b′ ∈ B and r′ ∈ R such that a′ ≤A a, b′ ≤B b and r ≤R r′ we also have
(ρp ⊠ ρq)(⟨a′, b′⟩ , r′) � T. If (ρp ⊠ ρq)(⟨a , b⟩ , r) � T, then there exist r1, r2 ∈ R
such that

ρp(a , r1) ∧ ρq(b , r2) ∧ (r1 + r2 ≤R r) � T.
This trivially also holds if we replace r with r′ ≥R r. Due to the fact that ρp
and ρq are also feasibility relations, it also holds if we replace a with a′ ≤A a
and b with b′ ≤B b. □

Lemma 3.24. Parallel sum is associative.

Proof of Lemma 3.21. Analogously to the proof of Lemma 3.12 we need to show
that the triangle and pentagon diagrams commute. Note that the first two
elements of the morphisms in Proc(R) are exactly the same as the elements
of the morphisms in NTypes. Also, the composition of morphisms is defined
element-wise. Hence, it suffices to show only that the last elements (the
boolean profunctors representing the feasibility relation) result in commuting
triangle and pentagon diagrams.

This is trivial to show because all of the terms that appear in these diagrams
are ρid which are T for any input pair and

(
ρid

A ⊠ ρ
id
B

)
((a , b), r) � T and any A,

B, a ∈ A, b ∈ B, r ∈ R. This can be directly concluded from Item i. and from
R being a monoidal poset. □

Remark 3.25. The composition of procedures in Proc(R) cannot be done in some
cases which at first one might expect to be possible. Consider two procedures

3.2. Procedures 39

p �
⟨
p : A → B, τp : |A| → |B |, ρp

⟩
and q �

⟨
q : B → C, τq : |B |′ → |C |, ρq

⟩
.

One can compose their maps p and q without a problem. However, we cannot
compose the translations because the codomain |B | of τp and the domain |B |′
of τq differ. On the other hand though, for any a ∈ A we know the value of
p(a) after computing the first function, we can use the sB′ size function of the
origin of q to compute the size of the instance in |B |′. That would be simply
sB′(p(a)). So why shouldn’t we be able to do the composition?

Recall that the purpose of the translation composition is to be able to obtain
an estimate of the resources needed for the composite computation before we
perform the computation. In the above example, even though we eventually
can obtain the size of the input for the second procedure, we can do that
only after we finish the computation of the first procedure. That is why the
composition of p and q is invalid.

As mentioned before, the objects of NTypes and Proc(R) are the same. Also,
if we take a morphism p �

⟨
p , τp , ρp

⟩
from A to B, ignoring the third element

ρp (the feasibility relation), we get a morphism in NTypes. Therefore, we
can define a forgetful functor : Proc(R) → NTypes that forgets how much
resources each procedure requires while keeping everything else. It collapses
all procedures that evaluate the same function with the same translation into
a single morphism in NTypes.

Definition 3.26 (The functor). The forgetful functor : Proc(R) → NTypes
maps every object A in Ob(Proc(R)) to A in Ob(NTypes) and every morphism
p �

⟨
p , τp , ρp

⟩
to the morphism

⟨
p , τp

⟩
. In other words:

: Proc(R) → NTypes,
⟨A, |A|, sA⟩ 7→ ⟨A, |A|, sA⟩ ,⟨

p : AtoB, τp : |A| → |B |, ρp : |A| ↛ R
⟩
7→

⟨
p : A → B, τp : |A| ↛ R

⟩
,

where the first mapping is for objects and the second one for morphisms.

Remark 3.27. One can compose the and functors to obtain a forgetful
functor that only preserves the types and function types:

: Proc(R) → Types.

Example 3.28 (Matrix multiplication). Let’s consider one of the most ubiq-
uitous problem in computer science: matrix multiplication. Take the two
monoidal posets T � ⟨R, ≤R, 0,+⟩, which we will refer to as time (e.g. in sec-
onds), and F � ⟨R, ≤R, 0,+⟩, or flops (floating operations per second). We
denote by R their product T × F, which by Lemma 2.10 is also a monoidal
product.

40 Chapter 3. Normed types and procedures

There is a natural trade-off that we would expect for procedures to have
when considering the resources R. If one increases the number of flops a com-
puter performs, the computation time would generally decrease. Conversely,
if we increase the computation time, one can do with a computer with lower
performance in terms of flops.

However, it is also possible that some algorithms dominate others over
some inputs for all values of T and F. This is the situation we’d like to study.

Let’s consider three matrix multiplication algorithms for matrices of size n:
(i) The naïve algorithm, which takes 2 n3 operations;

(ii) The algorithm by Strassen (1969, Fact 2), which can compute the product
with at most 4.7 n2.807355 operations;

(iii) The algorithm by Coppersmith and Winograd (1990), which takes about
C n2.375477 operations , where C is an extremely large constant.

Clearly, the Strassen algorithm dominates the naïve one for large n and for
small n the naïve approach has better performance. Without going into details,
although the Coppersmith-Winograd algorithm is asymptotically the best, C
is so large that it cannot be used for any practical problem (Robinson, 2005).
Hence the answer to the question which algorithm is “the best” is “it depends”.
In this case, it depends on the size of the input matrices.

The respective numbers of operations can be achieved via various time-
flops trade-offs. Hence we can define the following feasibility relations:

ρnaïve
MM : Nop × R → Bool,⟨

n , (t , f)
⟩
7→

{
T if 2 n3 ≤R t f ,
F otherwise;

ρStrassen
MM : Nop × R → Bool,⟨

n , (t , f)
⟩
7→

{
T if 4.7 n2.807355 ≤R t f ,
F otherwise;

ρCW
MM : Nop × R → Bool,⟨

n , (t , f)
⟩
7→

{
T if C n2.375477 ≤R t f ,
F otherwise.

These can be then three procedures in Proc(R), each being a morphism from
the normed type

⟨(SM × SM)′, N, SSM×SM : SM × SM → N⟩

to the normed type
⟨SM, N, SSM : SM → N⟩ ,

3.2. Procedures 41

where SM is the type of all square matrices, (SM × SM)′ are the pairs of
square matrices of equal size, and SSM maps a square matrix to its order. The
procedures are then:

pnaïve
MM �

⟨
[⟨A, B⟩ 7→ AB] , [⟨a , b⟩ 7→ a] , ρnaïve

MM
⟩
,

pStrassen
MM �

⟨
[⟨A, B⟩ 7→ AB] , [⟨a , b⟩ 7→ a] , ρStrassen

MM
⟩
,

pCW
MM �

⟨
[⟨A, B⟩ 7→ AB] , [⟨a , b⟩ 7→ a] , ρCW

MM
⟩
.

The three procedures are identical, except for the last elements. Therefore,
collapses them onto the same morphism in NTypes:(

pnaïve
MM

)
�

(
pStrassen

MM
)
�

(
pCW

MM
)
� ⟨[⟨A, B⟩ 7→ AB] , [⟨a , b⟩ 7→ a]⟩ .

Example 3.29 (Distance product). Given two n × n matrices A and B with
entries respectively ai j and bi j , their distance product C � A⋆ B is

ci j � min
{

aik + bk j | k � {1..n}
}
.

The distance product is usually applied to the adjacency matrix of a graph. If
A is the adjacency matrix of G � (V, E), then A ⋆ A � A⋆2 is a matrix whose
i j-th entry is the length of shortest path of exactly two legs from i to j. Hence, if
|V | � n, then A⋆ � min{A,A⋆2, . . . ,A⋆n}, where the minimization is applied
entry-wise, is the matrix containing the all-pairs shortest paths.

It has been shown by Romani (1980) that the complexity of the all-pairs-
shortest paths problem is the same as ordinary matrix multiplication (at least
for positive integer weights, and for simplicity we will assume that our adja-
cency matrices can be approximated by positive integer matrices). Without
getting into too much details, let’s assume that the number of operations
needed to obtain all shortest paths and their lengths are C(2n2 +M(n)), where
C is a constant and M(n) is the number of operations needed for ordinary ma-
trix multiplication of two matrices of size n (Watanabe, 1981). We will denote
the matrix of shortest paths corresponding to the lengths in A⋆ by Σ⋆(A).

Therefore, we can define feasibility relations similarly to Example 3.28
which results in the following three procedures for computing (A⋆,Σ⋆(A))
for a square matrix A:

pnaïve
⋆ �

⟨[
A 7→

⟨
A⋆,Σ⋆(A)

⟩]
, [a 7→ a] , ρnaïve

⋆

⟩
,

pStrassen
⋆ �

⟨[
A 7→

⟨
A⋆,Σ⋆(A)

⟩]
, [a 7→ a] , ρStrassen

⋆

⟩
,

pCW
⋆ �

⟨[
A 7→

⟨
A⋆,Σ⋆(A)

⟩]
, [a 7→ a] , ρCW

⋆

⟩
.

These procedures are morphisms from the normed type

⟨SM, N, SSM : SM → N⟩

42 Chapter 3. Normed types and procedures

to the normed type

⟨SM × PM, N, SSM×PM : SM × PM → N⟩ ,

where SM is the type of all square matrices, PM is the type of all square matrices
with entries paths, and SSM×PM : SM × PM → N maps a square matrix and a
path matrix to their order. Again, collapses these three procedures onto the
same morphism in NTypes:(

pnaïve
⋆

)
�

(
pStrassen
⋆

)
�

(
pCW
⋆

)
�

⟨[
A 7→

⟨
A⋆,Σ⋆(A)

⟩]
, [a 7→ a]

⟩
.

Chapter 4

Relationships between problems
and solutions

One of the main goals of this thesis is to formally study problems and solutions.
However, in order to do that we need to first explicitly define what we mean
by “problems“ and “solutions”. We start this chapter by looking at how the
notion of a problem can be formalized and we will show that problems can
be represented as the category Prob. In the following chapters we will also
see how this notion can be further generalized and abstracted in order to
encompass an even larger array of applications.

We then turn our attention to the notion of “solution”. The procedures
which were introduced in Section 3.2 will play a key role. Procedures will
be the substance that can solve a problem. However, our intuition calls that
not every procedure can solve a given problem. Hence, some procedures
would be solutions for the problem, and some not. We will look in the formal
conditions in Section 4.2.

Next, we introduce Lagado: our first example of a compositional compu-
tational system. It is a category which combines the notions of problems,
procedures, solutions, as well as the notion of problem reduction under one
roof.

Finally, we show that the ways that problems and procedures interact in
Lagado resemble the structure of a twisted category. However, there are
some key differences, so we define heteromorphic twisted arrow categories which
generalize twisted categories. Finally we show that Lagado is a prime example
of a heteromorphic twisted arrow category.

Throughout the chapter the running example of shortest path search on

43

44 Chapter 4. Relationships between problems and solutions

various types of graphs will be further developed and its connections to some
of the other problems that we introduced before will be illuminated.

4.1 Problems
Intuitively when we think of problems we think of something that is in need
for an answer but is currently lacking one. What we sometimes miss to realize
is that many problems can have statements which are parametrized. For
example, the class of problems of summing two real numbers is very similar,
regardless of the particular choice of the two numbers and the regardless of
the answers being different. It is this type of structure that we attempt to
capture in our formal definition of a problem.

Definition 4.1 (Problem). A problem with a statement type being a normed type
T � ⟨T, |T |, sT⟩ and an answer type being a normed type A � ⟨A, |A|, sA⟩ is a
relation between T and A, that is a function π : T ×A → Bool. We will denote
such a problem by π : T → A. The problem π can also be identified with the
set

Rπ B {⟨t , a⟩ | t ∈ T, a ∈ A, π(t , a) � T} ⊆ T × A,

which is the more customary way of denoting a binary relation.

Example 4.2 (Shortest path problems). Let’s see how some of the classical
flavours of the shortest path problem fit in this framework. First, recall from
Example 3.6 and Example 3.8 that we can represent various types of graphs
with matrices.

We can represent a path in a graph of type G[n] (any of the types in
Example 3.8 works) with a list of integers between 1 and n for each node in
the path. We’d also like to keep some information about the length of each
segment in the path. We can do that by combining every node in the path
with the weight of the edge departing from it (and taking a 0 weight for the
last node). In the case of an unweighted graph, we’d just assign 1 to all nodes
but the last one. Hence, a path type could look like this:

P[n] B List
[
Nn

1 × R
]
, ∀n ∈ N, Nu

l B {n ∈ N | l ≤ n ≤ u}.

And P[n] can be converted into the normed type P[n]by using the construction
in Example 3.3. We also define the function length(p) which computes the
length of a path recursively as:

length :
⟨
p : P[n]

⟩
→ R,

⟨⟩ 7→ 0,⟨
⟨n , l⟩ , p′⟩ 7→ l + length(p′).

4.1. Problems 45

Additionally, when we specify a shortest path problem we also need to
specify the origin and target nodes. This can again be done by the index of the
node in the adjacency matrix. Hence, we define the type OT[n] B Nn

1 × Nn
1 ,

and its normed version OT[n] B ⟨OT[n], |I |, sI⟩, where sI maps any element
of OT[n] to 1, the only element of |I |.

Now, we can define shortest path problem formulations for the various
graph types in Example 3.8. We will only consider the normed graph types
with size the number of nodes and edges. Therefore, we can define the
following problems:

• ®σ[n], the shortest path problem on a directed unweighted graph of size n, has
a statement being the type ®Gn+e[n] ⊗ OT[n], an answer being the type
P[n], and ®σ[n]((1 , (o , t)), p) � T iff p is a valid path in 1 and length(p) is
the minimal length of any path in 1 from o to t;

• σ̄[n], the shortest path problem on an undirected unweighted graph of size
n, has a statement type ®Gn+e[n] ⊗ OT[n], an answer type P[n], and
σ̄[n]((1 , (o , t)), p) � T iff p is a valid path in 1 and length(p) is the minimal
length of any path in 1 from o to t;

• ®σ≥0[n], the shortest path problem on a directed positively-weighted graph of
size n, has a statement type ®Gn+e

≥0 [n] ⊗ OT[n], an answer type P[n], and
®σ≥0[n]((1 , (o , t)), p) � T iff p is a valid path in 1 and length(p) is the
minimal length of any path in 1 from o to t;

• ®σ⊘[n], the shortest path problem on a directed weighted acyclic graph of size
n, has a statement type ®Gn+e

⊘ [n] ⊗ OT[n], an answer type P[n], and
®σ⊘[n]((1 , (o , t)), p) � T iff p is a valid path in 1 and length(p) is the
minimal length of any path in 1 from o to t;

• ®σ⊕[n], the shortest path problem on a directed weighted graph of size n with
no negative cycles, has a statement type ®Gn+e

⊕ [n] ⊗ OT[n], an answer type
P[n], and ®σ⊕[n]((1 , (o , t)), p) � T iff p is a valid path in 1 and length(p) is
the minimal length of any path in 1 from o to t.

These problems are also good examples of problems which can have mul-
tiple solutions. In a graph there might be more than one path that has the
minimum length. Also, if the graph contains two disconnected components,
then there might be also problems with no solutions. That is why the relations
Rσ, which these problems define are not necessarily functions. In this setting,
we are also implicitly assuming that we are satisfied with any of the shortest
paths, should there be more than one, and we do not prefer one over another.

Definition 4.3 (The Prob category). The problem category Prob has:
i. objects which are normed types;

ii. morphisms A → B which are problems with a statement type A and an
answer type B;

46 Chapter 4. Relationships between problems and solutions

iii. composition of two problems π1 : A → B and π2 : B → C defined as:(
π1 π2

)
(a , c) B ∨

b∈B π1(a , b) ∧ π2(b , c).

iv. identity morphism defined as:

idA : A × A → Bool

⟨a1, a2⟩ 7→
{
T if a1 � a2,

F otherwise.

Definition 4.4 (The functor). Assuming that the terms of the type of any
normed type in Prob form a set, we define the forgetful functor : Prob → Rel
to map every object A � ⟨A, |A|, sA⟩ in Ob(Prob) to the set A of its term in Rel
(Definition 2.40) and every morphism π : A × B → Bool to the relation Rπ.

4.2 Solutions
In the introduction of this chapter we hinted at solutions being some sort of
procedures. This is because we want computable means of obtaining answers
to particular statements of a problem.

However, not every procedure is a solution to a given problem. There
should be some consistency between the statement-answer map defined by
the problem and between the input-output map of the procedure. Here we
provide one formalization of this “consistency” that we find particularly in-
tuitive. However, this notion can be further abstracted and that would be a
major theme in some of the following chapters.

Definition 4.5 (Solution). We say that a procedure p �
⟨
p , τp , ρp

⟩
from the

normed type A to the normed type B solves a problem π : A → B iff

π(a , p(a)) � T, ∀a : A.

We also say that the procedure p is a solution of the problem π.

Example 4.6 (Shortest path solutions). Let’s consider two of the most popular
shortest path search algorithms: the one due to Dĳkstra (1959), and the one
proposed independently by Shimbel (1954), Bellman (1958), Ford (1956), and
Moore (1959), commonly called the Bellman-Ford algorithm. The Dĳkstra
algorithm, with small modifications, can be applied to the undirected (σ̄[n])
and the directed acyclic (®σ⊘[n]) problems. The Bellman-Ford algorithm, again
with a bit of customization, can be used to solve any of the problems in
Example 4.2. While the Bellman-Ford algorithm is more versatile, it also

4.2. Solutions 47

has worse computational complexity. The average complexity of the Dĳkstra
algorithm is

O

(
|E | + |V | log |E |

|V | log |V |
)

and of the Bellman-Ford algorithm is

O(|V | |E |),

where |V | and |E | are the number of vertices and edges respectively (Mehlhorn
and Sanders, 2008, Ch. 10.4), (Cormen et al., 2009, Ch. 24.1).

We can therefore define the set of procedures for every pair of shortest path
problem and algorithm that can solve it:

• ®sD[n] �
⟨
®f D[n] : ®Gn+e[n] ⊗ OT[n] → P[n], τs[n], ρD

⟩
, the solution of a

shortest path problem on a directed unweighted graph of size n with the
Dĳkstra algorithm;

• ®sBF[n] �
⟨
®f BF[n] : ®Gn+e[n] ⊗ OT[n] → P[n], τs[n], ρBF

⟩
, the solution of

a shortest path problem on a directed unweighted graph of size n with
the Bellman-Ford algorithm;

• s̄D[n] �
⟨

f̄ D[n] : Ḡn+e[n] ⊗ OT[n] → P[n], τs[n], ρD⟩
, the solution of a

shortest path problem on an undirected unweighted graph of size n with
the Dĳkstra algorithm;

• s̄BF[n] �
⟨

f̄ BF[n] : Ḡn+e[n] ⊗ OT[n] → P[n], τs[n] ρBF⟩, the solution of
a shortest path problem on an undirected unweighted graph of size n
with the Bellman-Ford algorithm;

• ®sD
≥0[n] �

⟨
®f D
≥0[n] : ®Gn+e

≥0 [n] ⊗ OT[n] → P[n], τs[n], ρD
⟩
, the solution of

a shortest path problem on a directed positively-weighted graph of size
n with the Dĳkstra algorithm;

• ®sBF
≥0[n] �

⟨
®f BF
≥0 [n] : ®Gn+e

≥0 [n] ⊗ OT[n] → P[n], τs[n], ρBF
⟩
, the solution of

a shortest path problem on a directed positively-weighted graph of size
n with the Bellman-Ford algorithm;

• ®sBF
⊘ [n] �

⟨
®f BF
⊘ [n] : ®Gn+e

⊘ [n] ⊗ OT[n] → P[n], τs[n], ρBF
⟩
, the solution of

a shortest path problem on a directed weighted acyclic graph of size n
with the Bellman-Ford algorithm;

• ®sBF
⊕ [n] �

⟨
®f BF
⊕ [n] : ®Gn+e

⊕ [n] ⊗ OT[n] → P[n], τs[n], ρBF
⟩
, the solution of

a shortest path problem on a directed weighted graph of size n with no
negative cycles with the Bellman-Ford algorithm.

We define the translation function used in all the shortest path procedures
as:

τs[n] B
[⟨
1 , ⟨o , t⟩

⟩
7→ n

]
.

48 Chapter 4. Relationships between problems and solutions

We made the choice that regardless of the particular problem statement, we
will always keep the size of the output as n, the number of nodes. This is
the longest possible shortest path in any graph. However, chances are that
given a fixed graph with n nodes the shortest path in it won’t be of length n.
The problem is that we cannot know that before we solve the problem, and we
choose to have the worst case scenario. Nevertheless, one can also fix 0 or any
other natural number they see fit.

Let’s also take a look at the resources needed. Our measure of resources
will again be time and flops, as in Example 3.28. In the current setting we
unfortunately do not know the precise amount of floating point operations
needed to obtain an answer, we only have the asymptotic complexity. Hence,
we will only use the asymptotic complexity, even though it might be vastly
inaccurate for small graphs:

ρD : (N ×N0) × |I | → T × F,⟨
⟨⟨n , e⟩ , ι⟩ ,

⟨
t , f

⟩⟩
7→ CD

(
e + n log e

n
log n

)
;

ρBF : (N ×N0) × |I | → T × F,⟨
⟨⟨n , e⟩ , ι⟩ ,

⟨
t , f

⟩⟩
7→ CBFnv ,

where CD and CBF are some (carefully chosen) constants.

4.3 Lagado

The Lagado category is one of the most important constructions in this thesis.
It intuitively wraps the notion of problems (as its objects) and the notion of
procedures (as components of its morphisms).

A morphism in Lagado from one problem to another represents the reduc-
tion of the first problem to the second. This is done by a pair of procedures.
The first performs some computation that transforms the original problem
statement into a statement for the second problem. The second procedure
performs computation that transforms the answer of the second problem back
to the answer type of the original problem. The only thing missing is the
means to solve the second problem. But we will see that solving a problem as
defined above actually corresponds to morphisms to an identity problem in
the setting of Lagado.

Furthermore, Lagado also maintains the notion of resources needed for
computation that it inherits from the Proc category (Definition 3.16).

4.3. Lagado 49

Definition 4.7 (The Lagado(R)1 category). Assuming we are given a monoidal
poset ⟨R, ≤R , 0,+⟩ that we interpret as resources, we define a category Lagado(R)
such that:

i. objects are problems, i.e. the elements of the hom-sets of Prob;
ii. morphisms from a problem π1 : P1 → S1 to a problem π2 : P2 → S2

are pairs of procedures ⟨p, s⟩, such that p ∈ HomProc(R)(P1,P2), s ∈
HomProc(R)(S2,S1), and for any h ∈ HomProc(R)(P2,S2)which is a solution
of π2 it holds that p h s ∈ HomProc(R)(P1,S1) is a solution of π1;

iii. the identity morphism for a problem π : P → S is the pair of procedures
idLagado(R)
π �

⟨
idProc

P , idProc
S

⟩
(the superscript indicates the category in

which this is an identity morphism);
iv. given three problems π1 : P1 → S1, π2 : P2 → S2, π3 : P3 → S3 and

two morphisms ⟨pa, sa⟩ from π1 to π2 and ⟨pb, sb⟩ from π2 to π3, the
composition of the morphisms is:

⟨pa, sa⟩ ⟨pb, sb⟩ B
⟨
pa pb, sb sa

⟩
.

Lemma 4.8. Lagado(R) is indeed a category.

Proof. We need to demonstrate that the identity and associativity properties
hold.

Identity is straight-forward to show. Take two objects π1 : P1 → S1 and
π2 : P2 → S2, together with a morphism between them ⟨p, s⟩, with

p �
⟨
p : P1 → P2, τp : |P1 | → |P2 |, ρp : |P1 | ↛ R

⟩
,

s �
⟨
s : S2 → S1, τs : |S2 | → |S1 |, ρs : |S2 | ↛ R

⟩
.

Then,

idLagado(R)
π1 ⟨p, s⟩

�
⟨
idProc

P1
, idProc

S1

⟩
⟨p, s⟩

�
⟨
idProc

P1
p, s idProc

S1

⟩
�

⟨⟨
idP1 , id|P1 | , ρ

id
P1

⟩ ⟨
p , τp , ρp

⟩
,

⟨
s , τs , ρs

⟩ ⟨
idS1 , id|S1 | , ρ

id
S1

⟩⟩
�

⟨⟨
p , τp , ρp

⟩
,

⟨
s , τs , ρs

⟩⟩
� ⟨p, s⟩ ,

1Named after Lagado, the capital of the island Balnibarbi in Gulliver’s Travels by Jonathan
Swift (1726). The Academy of Projectors in Lagado has built The Engine which resembles a
modern computer and is believed to be the earliest mention of such a device (Weiss, 1985).

50 Chapter 4. Relationships between problems and solutions

by using the properties of function composition with identity and Lemma 3.20.
And analogously:

⟨p, s⟩ idLagado(R)
π2

� ⟨p, s⟩
⟨
idProc

P2
, idProc

S2

⟩
�

⟨
p idProc

P2
, idProc

S2
s
⟩

�

⟨⟨
p , τp , ρp

⟩ ⟨
idP2 , id|P2 | , ρ

id
P2

⟩
,

⟨
idS2 , id|S2 | , ρ

id
S2

⟩ ⟨
s , τs , ρs

⟩⟩
�

⟨⟨
p , τp , ρp

⟩
,

⟨
s , τs , ρs

⟩⟩
� ⟨p, s⟩ .

Associativity follows directly from the fact that we compose the morphisms
element-wise, and due to function composition and series sum both being
associative as shown in Lemma 3.19. □

Remark 4.9. The definition of the Lagado(R) category shows us how we can
“convert” one problem into another, while accounting for the cost of the con-
version, i.e. the cost of executing the procedures that convert a statement for
one problem into one for another and the solution of the second problem
into a solution of the original problem. This definition is broad enough to
encompass various different settings. To provide some intuition, consider the
following few (non-exhaustive) cases:

• We can convert a problem instance into another representation almost
for free and the new representation allows us to perform the operation
much more efficiently. For example, imagine that you can rewrite your
problem from iterating over lists to matrix multiplications. In many
cases, hardware is optimized to calculate matrix multiplications much
more efficiently, hence that can result in less resources used. After the
computation is done you might want to again change the representation
of your data to the original structure, which would correspond to the
second procedure in the morphism pair.

• Maybe your problem can be solved by three sub-procedures. Imagine
we have the problem of calculating the Euclidean distance between two
vectors x , y ∈ Rn after they have been linearly transformed by the matrix
A ∈ Rm×n , i.e

Ax − Ay

2. Then we can have a pair of procedures
⟨p, s⟩ which is a morphism from our original problem to the problem of
computing the difference of two vectors. Here, p is the procedure that
takes two vectors and a matrix, applies the matrix to each vector and
returns the resultant pair of vectors. Then, s is the procedure that takes
a vector and computes its Euclidean norm. The gap between the two,
i.e. computing the difference between the vectors, is to be performed by
any solution of the problem of computing the difference of two vectors,

4.3. Lagado 51

which problem is the target of our morphism. This is a simple example
in which the procedures not only change the shape of the input and
the output but also perform partial computation towards solving the
problem.

• The first point above only changed the representation of the data, the
second also performed some computation. It is only natural to ask, is
it possible for a morphism to perform the full computation, i.e. to be a
solution for the problem. And naturally, the answer is yes and the next
lemma shows how this can be done.

Lemma 4.10. Given a problem π : P → S ∈ Ob(Lagado(R)), and a solution p of
it (as per Definition 4.5), then there are two morphisms in Lagado(R) from π to the
identity problems on P and S:

idProb
P : P → P

π : P → S

idProb
S : S → S

⟨idProc
P ,p⟩

⟨p,idProc
S ⟩

(4.1)

Remark 4.11. It is easy to see how the diagram in Equation (4.1) represents
the solution p of the problem π. One doesn’t really need a “solution” for
an identity problem: the problem statement instance is the solution instance.
Therefore, we can intuitively think of “solving a problem” and “reducing
a problem to an identity problem” as being the exact same thing. This is
formally formulated in Definition 4.12 and the connection between the solving
a problem and reducing it to identity is shown in Lemma 4.13.

Note also that every solution results in two morphisms. However, in prac-
tice it makes little difference which one we pick. As the resources required by
an identity procedure can be assumed negligible, in both cases the real cost
comes only from the resources required by p.

Definition 4.12 (Solution of a problem in Lagado(R)). Given any problem
π : P → S ∈ Ob(Lagado(R)), any morphism ⟨p, s⟩ from π to idProb

Q for any
Q ∈ NTypes is called a solution of π in Lagado(R).

Lemma 4.13. Given a problem π : P → S ∈ Ob(Lagado(R)) and a morphism ⟨p, s⟩
that is a solution of π in Lagado(R), it holds that p Proc s is a solution of π as per
Definition 4.5.

Proof. For the procedure a � p Proc s to be a solution of the problem π : P → S
we need that the origin and target normed types of a to be respectively P and

52 Chapter 4. Relationships between problems and solutions

S and that for any p : P we have π(p , a(p)) � T. From Definition 4.7 we know
that p : P → Q and s : Q → S. Then, the first condition holds because the
origin of a is the origin of p and its target is the target of s (due to the definition
of composition of procedures in Definition 3.16).

For the second condition, we know that p Proc q Proc s must be a solution
of π if q is a solution of idProb

Q . Given that the identity procedure idProc
Q is a

solution of idProb
Q and that p Proc idProc

Q � p, we have that a � p Proc s is a
solution of the problem π, hence π(p , a(p)) � T. □

People often find themselves in situations where they need to solve more
than one problem, hence it makes sense for the Lagado(R) category to allow
us to solve multiple problems at the same time. In fact, that is enabled by
defining a monoidal product on it:

Lemma 4.14 (Lagado(R) is a monoidal category). For any monoidal poset R, the
Lagado(R) category is a monoidal category when considering the following structure:

• Tensor product ∥ (read parallel), such that given two problems π1 : P1 → S1
and π2 : P2 → S2 we have

π1 ∥ π2 : P1 ⊗NTypes P2 → S1 ⊗NTypes S2,

that is the relation between P1 × P2 and S1 × S2:

π1 ∥ π2 : (P1 × P2) × (S1 × S2) → Bool,⟨⟨
p1, p2

⟩
, ⟨s1, s2⟩

⟩
7→ π1(p1, s1) ∧ π2(p2, s2).

Take two morphisms ⟨p′, s′⟩ and ⟨p′′, s′′⟩, such that

p′ ∈ HomProc(R)(P′
1,P

′
2),

s′ ∈ HomProc(R)(S′
2,S

′
1),

p′′ ∈ HomProc(R)(P′′
1 ,P

′′
2),

s′′ ∈ HomProc(R)(S′′
2 ,S

′′
1).

The result of applying ∥ to them is:

⟨p′, s′⟩ ∥ ⟨p′′, s′′⟩ B
⟨
p′ ⊗Proc(R) p′′, s′ ⊗Proc(R) s′′

⟩
.

• Unit problem is the identity problem on the identity normed type idProb
I , where

I is as used in Lemmas 3.12 and 3.21 and the identity problem is the identity
morphism in Prob (Definition 4.3).

• Given a problem π : P → S, its left unitor is the pair of morphisms:

λ
Lagado(R)
π : idProb

I ∥ π→ π, λ
Lagado(R)
π B

⟨
λProc(R)

P , λ−1 Proc(R)
S

⟩
;

λ
−1 Lagado(R)
π : π→ idProb

I ∥ π, λ−1 Lagado(R)
π B

⟨
ρ−1 Proc(R)

P , ρProc(R)
S

⟩
.

4.3. Lagado 53

• Right unitor is defined analogously.
• Given three problems π1 : P1 → S1, π2 : P2 → S2, π3 : P3 → S3, associator

being the pair of morphisms

α
Lagado(R)
π1π2 ,π3 : (π1∥π2)∥π3→π1∥(π2∥π3), αLagado(R)

π1π2 ,π3 B
⟨
αProc(R)

P1P2 ,P3
, αProc(R)

S1 ,S2S3

⟩
;

α
Lagado(R)
π1 ,π2π3 : π1∥(π2∥π3)→(π1∥π2)∥π3, α

Lagado(R)
π1 ,π2π3 B

⟨
αProc(R)

P1 ,P2P3
, αProc(R)

S1S2 ,S3

⟩
.

Example 4.15 (Shortest path problems in Lagado(R)). Some of the five shortest
path problems we defined in Example 4.2 can be easily represented as other
shortest path problems:

• every undirected graph can be converted into a directed graph by simply
adding two directed edges for every undirected edge, which is the first
procedure in the morphism:⟨

cσ̄[n]®σ[n], idProc(R)
P[n]

⟩
;

• an undirected graph can be represented as a directed graph with edge
weights 1 if there is an edge in the original graph and∞ otherwise, hence
we also have the following morphism:⟨

c®σ[n]®σ≥0[n]
, idProc(R)

P[n]

⟩
;

• if a graph has positive weights, it cannot have a negative cycle, hence we
also have a morphism ⟨

c®σ≥0[n]
®σ⊕[n]

, idProc(R)
P[n]

⟩
;

• and trivially, if a graph has no cycles, it has no negative cycles too, hence
there’s also the morphism ⟨

c®σ⊘[n]®σ⊕[n]
, idProc(R)

P[n]

⟩
.

Recall that in Example 3.29 we defined procedures for computing all short-
est paths in a graph defined by an adjacency matrix. Lagado(R) can be used
to show how a shortest path problem can be converted into a distance product
problem. To keep the example simple, we will again ignore the fine print
about infinite precision and the weights being positive integers.

First, we define the distance product problem δ to have statement type

⟨SM, N, SSM : SM → N⟩

54 Chapter 4. Relationships between problems and solutions

®σ≥0[n]®σ⊕[n]®σ⊘[n] ®σ[n] σ̄[n]

δ ∥ idProb
OT[n]

idProb
P[n]

idProb
SM⊗PM ∥ idProb

OT[n]

⟨
cσ̄[n]®σ[n] , idProc(R)

P[n]

⟩⟨
c®σ[n]®σ≥0[n]

, idProc(R)
P[n]

⟩⟨
c®σ≥0[n]
®σ⊕[n]

, idProc(R)
P[n]

⟩⟨
c®σ⊘[n]®σ⊕[n]

, idProc(R)
P[n]

⟩

⟨
a G®σ[n] ∥ id Proc(R)

OT[n]
, k G ⟩

⟨
a G
σ̄[n] ∥ id Proc(R)

OT[n] , k G ⟩

⟨ aG ® σ ≥
0[

n]
∥i

dPr
oc

(R
)

O
T[

n]
,

kG
⟩

⟨ aG ®σ ⊘
[n]
∥ id

Proc
(R)

OT[n
]
, k

G
⟩

⟨ aG ®σ ⊕
[n
]
∥ i

d
Pr

oc
(R
)

OT
[n
]
,

k
G

⟩
⟨ pSt

ra
ss

en
⋆

∥i
dPr

oc
(R

)
O

T[
n]
,

id
Pr

oc
SM

⊗P
M
∥i

dPr
oc
(R

)
O

T[
n]

⟩

⟨ pna
ïv

e
⋆

∥i
dPr

oc
(R

)
O

T[
n]
,

id
Pr

oc
SM

⊗P
M
∥i

dPr
oc

(R
)

O
T[

n]

⟩

⟨ pC
W
⋆

∥i
dPr

oc
(R

)
O

T[
n]
,

id
Pr

oc
SM

⊗P
M
∥i

dPr
oc
(R

)
O

T[
n]

⟩
⟨ ®sB

F [n
],

id
Pr

oc
(R
)

P[
n]

⟩

⟨ s̄B
F [n]
,

id
Proc

(R)

P[n
]

⟩

⟨®s BF≥
0 [n],

id
Proc(R)
P[n] ⟩

⟨ ®sD
[n
],

id
Pr

oc
(R
)

P[
n]

⟩
⟨ s̄D
[n]
,

id
Proc

(R
)

P[n
]

⟩

⟨ ® sD ≥0
[n
],

id
Pr

oc
(R

)
P[

n]

⟩⟨
®s BF⊘ [n], id Proc(R)

P[n] ⟩

⟨
®s BF⊕ [n],

id Proc(R)

P[n] ⟩

Figure 4.1: The subcategory of Lagado(R) that contains the problems and
procedures discussed in Example 4.15.

4.3. Lagado 55

SPP on
directed

positively-
weighted

graph

SPP on
directed
weighted
graph, no

neg. cycles

SPP on
directed
weighted

acyclic graph

SPP on
directed

unweighted
graph

SPP on
undirected
unweighted

graph

Distance product while keeping
the origin-target pair unchanged

Keep the path
unchanged

Keep the square matrix, the square path ma-
trix, and the origin-target pair unchanged

⟨
Extract the

adjacency matrix,

origin, and target , Extract the path

between the origin

and target
⟩⟨ Extr

act
the

adjac
ency

matr
ix,

orig
in, an

d tar
get
,

Extr
act

the path

betw
een

the orig
in

and tar
get

⟩

⟨
Duplicate

edges
, Keep

⟩⟨Weight 1
every-
where

, Keep

⟩⟨
Keep , Keep

⟩⟨
Keep , Keep

⟩

⟨ U
se

th
e

St
ra

ss
en

al
g.

fo
rt

he
di

st
an

ce
pr

od
uc

t
,

K
ee

p

⟩

⟨ U
se

th
e

na
ïv

e
al

g.
fo

rt
he

di
st

an
ce

pr
od

uc
t

,
K

ee
p

⟩

⟨
U

se
th

e
C

op
pe

rs
m

ith
-W

in
og

ra
d

al
g.

fo
rt

he
di

st
an

ce
pr

od
uc

t

,
K

ee
p

⟩
⟨ Be

llm
an

-F
or

d
alg

or
ith

m
,

Ke
ep

⟩

⟨ Bell
man

-Fo
rd

alg
ori

thm
,

Keep

⟩

⟨
Bellm

an-Ford
algorithm

,
K

eep ⟩

⟨ Dĳk
str

a
alg

or
ith

m
,

Ke
ep

⟩

⟨ Dĳk
str

a
alg

ori
thm
,

Keep
⟩

⟨
D

ĳkstra
algorithm

,
K

eep ⟩

⟨
Bellman-Ford

algorithm
, Keep

⟩

⟨
Bellm

an-Ford

algorithm
, Keep ⟩

Figure 4.2: The subcategory of Lagado(R) that contains the problems and
procedures discussed in Example 4.15 represented with intuitive descriptions.
The objects and morphisms correspond to the ones in Figure 4.1. “SPP” refers
to “shortest path problem” and “Keep” is used for identity procedures that
simply return their statement as an answer.

56 Chapter 4. Relationships between problems and solutions

and solution type

⟨SM × PM, N, SSM×PM : SM × PM → N⟩

and δ(A, (A⋆,Σ⋆)) � T iff A⋆i j is the length of the shortest path from i to j in the
matrix generated by the adjacency matrix A and Σ⋆i j is one of the paths from i
to j in that matrix with length A⋆i j . From Example 3.29 we know that there are
three procedures that can be used to solve δ: pnaïve

⋆ , pStrassen
⋆ , and pCW

⋆ .
Now, assume that there is a procedure that “extracts” the adjacency matrix

from the graph type at no cost and a translating function that maps to the
number of vertices of the graph. We will denote these procedures by aG and
will index them by their problem type. Similarly, we define the procedure
kG which, again at no cost, extracts a path, given an adjacency matrix (and
corresponding paths), together with an origin and target vertex. In other
words, if we have the matrix of all-pairs shortest paths Σ⋆, and a pair of
vertices

⟨
i , j

⟩
it returns the path Σi , j which is the shortest path from i to j.

All the resulting problems (objects in Lagado(R)) and procedure pairs (mor-
phisms in Lagado(R)) are illustrated in Figure 4.1 using the notation developed
so far. Figure 4.2 shows the exact same setting but with more intuitive labels.

The wide row has the five shortest path problems that we are considering
in this example. The procedures between them either keep the structure of the
graphs unchanged, or simply add two directed edges for each undirected edge
or weigh every edge with a constant weight 1.0. The answers don’t need to be
changed because all shortest path problems have the same answer type, hence
the second procedure in the morphisms between them is simply an identity
procedure.

All of these problems can be directly solved with the Bellman-Ford algo-
rithm and some can also be solved with Dĳkstra’s algorithm, which is illus-
trated with morphisms to idProb

P[n] . Again, once the problem is solved and a
path is obtained as an answer, no further processing is needed so the second
procedure in these morphisms is also just an identity.

As mentioned above, all five shortest path problems can be represented
as an all-pairs shortest path problem. That is because if one wants a single
shortest path it can be trivially obtained from the all-pairs answer. However,
when one moves from a single path to all-pairs they also lose the information
on the origin and target nodes because origin and target mean nothing in the
all-pairs problem because all nodes are both origins and targets. Therefore,
in order to maintain this knowledge, we add the identity problem idProb

OT[n] in
parallel to it. This identity problem simply holds the origin and target nodes.
Then, once we have an all-pairs solution, then kG uses the information stored
in this identity problem to know which entry of the answer path matrix it
should extract.

4.4. Lagado as a heteromorphic twisted category 57

Finally, the all-pairs shortest path δ can be solved using any of the three
procedures introduced in Example 3.29. These are represented by the topmost
three morphisms in the figures.

4.4 Lagado as a heteromorphic twisted category
The careful observer probably noticed that Lagado(R) looks very much like
a twisted category but where objects and morphisms come from different
categories. That is indeed the case and we aim to demonstrate it in this section
by introducing heteromorphic twisted categories which are a generalization of the
concept of a twisted category (Definition 2.41).

Definition 4.16 (Heteromorphic twisted category). Consider two categories C
and D which have the same objects, i.e. Ob(C) � Ob(D). Consider also that we
have a family of functions □ such that for every A, B, C,D ∈ Ob(C) we have
the function:

A
B□C

D : HomD(C,A) × HomC(A, B) × HomD(B,D) × HomC(C,D) → Bool,

satisfying the following two requirements:
(i) for all A, B ∈ Ob(C) and all f ∈ HomC(A, B) it holds that

A
B□A

B

(
idD

A , f , idD
B , f

)
� T,

where idD are the identity morphisms in D;
(ii) for all A, B, C,D , E, F ∈ Ob(C) it holds that

A
B□C

D(p , f , q , 1) ∧ C
D□E

F(r, 1 , s , h) � T �⇒ A
B□E

F(r D p , f , 1 D s , h) � T.

Then we define the HTw(C,D,□) category having:
i. objects which are morphisms in C;

ii. morphisms from the object 1 : C → D to the object f : A → B are pairs
of morphisms

⟨
p , q

⟩
, where p ∈ HomD(C,A) and q ∈ HomD(B,D), such

that
A
B□C

D(p , f , q , 1) � T;

iii. identity morphism for the object f : A → B is
⟨
idD

A , id
D
B

⟩
;

iv. morphism composition for any three objects f : A → B, 1 : C → D,
h : E → F, and two morphisms

⟨
p , q

⟩
: 1 → f , ⟨r, s⟩ : h → 1, their

composition is defined as:

⟨r, s⟩
⟨
p , q

⟩
�

⟨
r D p , q D s

⟩
.

58 Chapter 4. Relationships between problems and solutions

Remark 4.17. In the above definition we defined A
B□C

D to be a function with a
domain being the Cartesian product of hom-sets. Strictly speaking that is true
only if the hom-sets are actually sets (rather than classes), which means that
C and D would have to be small categories. However, we will ignore such
technicalities and will assume that the above definition is always valid.

Lemma 4.18. For any two categories C and D with Ob(C) � Ob(D), together with
a family of functions□ that satisfies the two requirements in Definition 4.16, it holds
that HTw(C,D,□) is indeed a category.

Proof. We need to show that the requirements for the □ family imply that
all identity morphisms and all compositions of morphisms exist, as well as
that the associativity and identity axioms hold. Condition (i) ensures that the
identity morphisms are included in HTw(C,D,□). Condition (ii) ensures that
all composition are also included in HTw(C,D,□).

Let’s demonstrate that the identity axiom holds. Take two objects 1 : C → D
and f : A → B, together with the morphism between them⟨

p : C → A, q : B → D
⟩
.

Then, then due to the identity axiom holding for morphisms in D we have:⟨
p , q

⟩
id f �

⟨
p , q

⟩ ⟨
idD

A , id
D
B

⟩
�

⟨
p D idD

A , idD
B D q

⟩
�

⟨
p , q

⟩
,

and

id1
⟨
p , q

⟩
�

⟨
idD

C , id
D
D

⟩ ⟨
p , q

⟩
�

⟨
idD

C D p , q D idD
D

⟩
�

⟨
p , q

⟩
.

Finally, let’s also show that the associativity axiom holds. Take three mor-
phisms

⟨
p , q

⟩
: 1 → f , ⟨r, s⟩ : h → 1, ⟨t , u⟩ : i → h. Then, due to the

associativity of the morphisms in D we have:(
⟨t , u⟩ ⟨r, s⟩

) ⟨
p , q

⟩
�

⟨
t r, s u

⟩ ⟨
p , q

⟩
�

⟨
(t r) p , q (s u)

⟩
�

⟨
t (r p), (q s) u

⟩
� ⟨t , u⟩

⟨
r p , q s

⟩
� ⟨t , u⟩

(
⟨r, s⟩

⟨
p , q

⟩)
.

□

Remark 4.19. The definition of the heteromorphic twisted category is almost
the same as the one for a twisted category. There are two main differences,
however. First, the direction of the arrows is flipped. In a twisted category
we have a morphism f → 1 if 1 factorizes through f , but in a heteromorphic

4.4. Lagado as a heteromorphic twisted category 59

twisted category a morphism f → 1 implies that f factorizes through 1. The
change is introduced for convenience down the road and the definition can
easily be flipped, should one wish to do so.

The other difference is the introduction of the□ functions. This is necessary
because once we get morphisms from two different categories, we can no
longer talk about building commutative squares with them, or even about
composing such morphisms. Hence, the purpose of the □ functions is to act
as a “glue” and to generalize the notion of commutativity to morphisms from
different (heteromorphic) categories.
Remark 4.20. The heteromorphic twisted category HTw generalizes the twisted
category Tw. In particular, if we take:

A
B□C

D : HomC(C,A) × HomC(A, B) × HomC(B,D) × HomC(C,D) → Bool,⟨
p , f , q , 1

⟩
7→

{
T if p C f C q � 1 ,

F otherwise,

then HTw(C,C,□) � (Tw(C))op.

Lemma 4.21. Take a family of functions□ such that for any A,B,C,D ∈ Ob(NTypes)
we have:
A
B□C

D : HomProc(R)(C,A) × HomProb(A,B) × HomProc(R)(B,D) × HomProb(C,D) → Bool,

⟨
p, f , q, 1

⟩
7→

T if ∀h ∈ HomProc(R)(A,B), s.t. f (a , h(a)) � T, ∀a ∈ A

it holds that
1

(
c ,

(
p h q

)
(c)

)
� T, ∀c ∈ C,

F otherwise.

Then, Lagado(R) � HTw(Prob, Proc(R),□).

Proof. Both the objects of Lagado(R) and HTw(Prob, Proc(R),□) are mor-
phisms in Prob, hence the two categories are the same object-wise. So it’s
only left to show that if a morphism is in Lagado(R) then it also must be in
HTw(Prob, Proc(R),□), and if a morphism is in HTw(Prob, Proc(R),□) then
it also is in Lagado(R).

A morphism in Lagado(R) from a problem π1 : P1 → S1 to a problem
π2 : P2 → S2 is a pair of procedures ⟨p, s⟩, such that p ∈ HomProc(R)(P1,P2),
s ∈ HomProc(R)(S2,S1), and for any h ∈ HomProc(R)(P2,S2) which is a solution
of π2 it holds that p h s ∈ HomProc(R)(P1,S1) is a solution of π1. For any h
which is a solution of π2 we have π2(p2, h(p2)) � T, ∀p2 ∈ P2. and of course
we also have that π1(p1, (p h q)(p1)) � T, ∀p1 ∈ P1. But then that also means
that

P2
S2
□P1

S1
(p, π2, s, π1) � T.

60 Chapter 4. Relationships between problems and solutions

And from Definition 4.16 we know that if the above is true then the pair ⟨p, q⟩
is a morphism from π1 to π2 in HTw(C,D,□).

Showing that the opposite also holds can be done in an analogous way. □

Chapter 5

Compositional systems and
relations

In the previous chapters we developed the theory of compositional problems
in a factual-definition way by simply saying “this is that and this and that hap-
pen to work out just fine”. For example, from the onset we started defining
everything in terms of various concepts of category theory but we never justi-
fied why this is a good modelling framework. The main goal of this chapter is
to serve as a defense for this choice.

We will do that by defining a number of assumptions which seem reason-
able when one aspires to work with compositional theories and will show that
these assumptions result in the structures used in the previous chapters. In
fact, we will show that they result in something more general: semicategories
and kinded functions. Then, finally, we will show how many other concepts
we used in the previous chapters are instances of semicategories and kinded
functions. We do all that in order to prepare for Chapter 6 where we will
use them to generalize the problems, procedures and solutions that we saw in
Chapter 4.

In order to keep an open mind, we will introduce things with new names
and will only use concepts previously introduced in this thesis only after they
have been shown to be equivalent to the concepts here.

5.1 Compositional systems
First, let’s address the “compositionality” question. We have never defined
what we mean by compositional so far. Intuitively, “compositional” means that

61

62 Chapter 5. Compositional systems and relations

as long as some things respect the same interfaces they are interchangeable. To
be more concrete, let’s call these things components. Then, our first assumption
would be:

Assumption 5.1. Anything that composes in a component is a component.
Anything that a component composes in is a component.

We will illustrate a component C1 composing in a component C2 like this:

⊚
C1 C2

We said we’d like to have components sharing the same interface to be
interchangeable. If one component composes in another, then there is an
interface between them. Hence, any other component sharing this interface
should be able to replace one of the original components. Then, it is also
natural to make the following assumption.

Assumption 5.2. If component C1 composes in component C2, then any com-
ponent CL which composes in C2 also composes in any component CR that C1
composes in.

Hence, visually:

⊚

⊚

⊚

C1 C2

CL C2

C1 CR

�⇒ ⊚
CL CR

We will also refer to the statement “C1 composes in C2” as the tandem of C1
and C2 and will denote it by T(C1, C2). Note that the composition as defined
above is not symmetric, i.e. C1 composing in C2 does not imply C2 composing
in C1. The precises meaning of component and composes in we leave free, we
only constrain them to relate as in the assumption.

It is also reasonable to consider that whether composing two components
affects their ability to compose to other components. For example consider
having two pipes, each with two holes, one on each end. These holes can have
different diameters but we require that one of the holes of the first pipe is the
same as one of the holes of the other pipe, so that we can connect them. Once
we connect them we again have a pipe with two holes which so happen to have
the diameters of the holes we did not connect and to which we can connect
other pipes. This example illustrates why we believe that it is reasonable to
make the next assumption.

5.2. Relationships between compositional systems 63

Assumption 5.3. If component C1 composes in component C2 and component
C2 composes in component C3, then the tandem of C1 and C2 composes in C3
and C1 composes in the tandem of C2 and C3.

From Assumption 5.1 and Assumption 5.3 we can conclude that the tandem
of two components is a component itself, hence:

⊚

⊚

C1 C2

C2 C3

�⇒
⊚

⊚

T(C1 ,C2) C3

C1 T(C2 ,C3)
(5.1)

Note that we speak of the tandem even though we never specifically con-
strained that there is only one. However, it is easy to see that as far as the
composability properties outlined above are concerned, any tandem would
behave identically in this system. Hence, should there be more than one, it
does not matter which one we pick.

We will call a collection of such components together with a collection of
pairs of components where one composes in the other a compositional system.
If we want to write this more precisely, take C to be a set of components,
T : C × C ↪→ C is a partial function, and P ⊆ S to be a set of pairs of
components, such that if ⟨C1, C2⟩ , ⟨C2, C3⟩ ∈ P, then T(C1, C2) and T(C2, C3)
are defined (i.e. P is the domain of definition of T) and ⟨T(C1, C2), C3⟩ ∈ P

and ⟨C1, T(C2, C3)⟩ ∈ P. Then ⟨C, T,P⟩ is a compositional system.

Remark 5.4. It is perfectly possible to construct compositional systems in which
no two components can be composed. The simplest example is a composi-
tional system with only one component which doesn’t compose in itself. Or a
compositional system with two components neither of which composes into
itself or the other. Or a compositional system with N such components. While
it is rather counter-intuitive that we use the adjective compositional for systems
in which no components can be composed, this will allows us to develop a
more general theory later on.

5.2 Relationships between compositional systems
Let’s take a step back. In this thesis, we are addressing the problem of com-
positional problems and solutions. So let’s say we have two compositional
systems called Problems and Solutions. If we call them with these names, it
would give them some semantic meaning and expectations. However, these
can be any arbitrary compositional systems. So, to keep our discussion as
general as possible, let’s rename them Alice and Bob.

64 Chapter 5. Compositional systems and relations

Now, we would like some way of studying the relations between the com-
ponents of Alice and the components of Bob. Of course, the first question we
should ask is what is a relation between components of two compositional systems.
The most basic kind of a relation is one that is constant: regardless of what it
is, it is the same for any pair of components of Alice and Bob. Clearly, this is
as good as nothing because if everything relates in the same way there’s not
much to study about this relationship. Perhaps, instead we can distinguish
two levels of relating which we can call Compatible and Incompatible. Now, we
can be speaking of a component A1 of Alice being compatible with a com-
ponent B1 of Bob. Of course, we can extend the two levels to any arbitrary
amount. We will call these kinds and will denote the kind of two components
A, B, respectively from Alice and Bob, by K(A, B). Let’s formulate this as a
new assumption:

Assumption 5.5. A kinded relation of kind set K between two compositional
systems Alice and Bob assigns every pair of components of Alice and Bob an
element of the kind set K.

This might be sufficient at first sight but recall that we can also compose
components of Alice and Bob which results in new components which in turn
should again be mapped to elements of K. If we do this arbitrarily we might
be left in an interesting situation. For example, imagine we map ⟨A1, B1⟩ to
◁, ⟨A2, B2⟩ to ▷, and that A1 composes in A2 and B1 composes in B2, while
their tandems happen to map to □ as in the equation bellow. Then, one is left
wondering whether◁,▷, and□ should be completely independent or whether
we should require some relationship between them as well.

Alice : A1 A2 ⊚
A1 A2 (T(A1,A2))

Bob : B1 B2 ⊚
B1 B2 (T(B1, B2))

K : ◁ ▷ □

(5.2)

For an even more convincing illustration for the need for structure in K con-
sider the following case where we assume that A1 composes into A2 which in
turn composes into A3, and similarly for the Bs:

Alice : A1 A2 A3 T(A1 ,A2) T(A2 ,A3)

Bob : B1 B2 B3 T(B1 ,B2) T(B2 ,B3)

K : ◁ △ ▷ ⊞ ⊟

Alice : T(T(A1 ,A2),A3) T(T(A1 ,A2),A3) T(A1 ,T(A2 ,A3)) T(A1 ,T(A2 ,A3))

Bob : T(T(B1 ,B2),B3) T(B1 ,T(B2 ,B3)) T(T(B1 ,B2),B3) T(B1 ,T(B2 ,B3))

K : ♣ ♢ ♠ ♡

(5.3)

5.2. Relationships between compositional systems 65

In the second row we are trying to assess the kind of compositions of the exact
same things (sameness will be formalized in Assumption 5.7).

Recall the pipe example. Whether we first connect pipes 1 and 2 and then
pipe 3 or we connect pipe 1 to the previously connected pipes 2 and 3 should
not change the kind of the relation between the final tandem and a component
in another compositional system. Hence, it is also reasonable to identify the
two compositions (i.e. to enforce associativity). We can, however, do this at
the level of the compositional system or at the level of the relation between
two compositional systems. In the compositional system that’d be done by
asking for T(A1, T(A2,A3)) to be the same component as T(T(A1,A2),A3). If
we are to require it at the level of the relation between Alice and Bob, we’d be
asking for the four pairs in the bottom row of Equation (5.3) to have the same
kind, i.e:

Alice : T(T(A1 ,A2),A3) T(T(A1 ,A2),A3) T(A1 ,T(A2 ,A3)) T(A1 ,T(A2 ,A3))

Bob : T(T(B1 ,B2),B3) T(B1 ,T(B2 ,B3)) T(T(B1 ,B2),B3) T(B1 ,T(B2 ,B3))

K : ♠ ♠ ♠ ♠
(5.4)

The first situation, of course, implies the second one. Furthermore, following
the example with the tubes, as well as other real-world systems, our intuition
hints at associativity being an intrinsic property of the compositional system
itself, rather than an effect that only arises whenever it is being related to
another system. Connecting pipes 1, 2 and 3 results in the same final pipe
regardless of whether it is being in relation to another system or simply by
itself. Hence, we add the following assumption:

Assumption 5.6. If component C1 composes in component C2 which composes
in component C3 then the tandem of the tandem of C1 and C2 with C3 is the
same component as the tandem of C1 with the tandem of C2 and C3. Or,

T(T(C1, C2), C3) � T(C1, T(C2, C3)).

The above assumption itself depends on the assumption that we have a
concept of “sameness” of components in a compositional system. To make
sure that this is indeed the case, let’s formalize it.

Assumption 5.7. Given any two components C1 and C2, they are either the
same or they are distinct. If C1 and C2 are the same then any component that
composes in C1 composes in C2 and vice versa. Furthermore, if C1 and C2 are
the same then C1 composes in any component that C2 composes in and vice
versa.

Thanks to Assumption 5.6 it means that we do not need to specify the
order of composition, hence all four of the tandems in Equation (5.4) can be

66 Chapter 5. Compositional systems and relations

represented as:

Alice : ⊚ ⊚
A1 A2 A3

Bob : ⊚ ⊚
B1 B2 B3

K : ♠
We still haven’t solved the original problem, though. Recall that we were

concerned that ◁, ▷ and □ in Equation (5.2) are not at all related. But once
again, why do we care about it? After all, we solved the associativity problem
already! Let’s see another example that should illustrate the nature of our
concern:

Alice : A1 A2 ⊚
A1 A2 A′

2 ⊚
A1 A′

2

Bob : B1 B2 ⊚
B1 B2 B′

2 ⊚
B1 B′

2

K : ◁ ▷ □ ▷ ■

(5.5)

Of course we assume that everything that’s composed above is actually com-
posable. Now we get that the pairs ⟨A2, B2⟩ and

⟨
A′

2, B
′
2
⟩

are of the same kind
but if the pair ⟨A1, B1⟩ is composed into each of them we obtain two different
kinds of tandems. That doesn’t feel very compositional.

So, essentially we want that T(A1,A2) and T(B1, B2) are mapped to the
same kind as T(A1,A′

2) and T(B1, B′
2), or that in Equation (5.5) we have □ and

■ being the same kind. In other words, if we replace a pair of components
with another pair which maps to the same kind, then the kind of the tandem
should not change. Let’s put it as an assumption:

Assumption 5.8. If
K(A1, B1) � ◁,
K(A2, B2) � ▷,
K(A′

1, B
′
1) � ◁,

K(A′
2, B

′
2) � ▷,

K(T(A1,A2), T(B1, B2)) � □,
then

K(T(A1,A′
2), T(B1, B′

2)) � □ ∧ K(T(A′
1,A2), T(B′

1, B2)) � □,
where A1,A′

1,A2,A′
2 are components in Alice and B1, B′

1, B2, B′
2 are compo-

nents in Bob.

Visually that looks like:

Alice: A1 A2 A′
1 A′

2 ⊚
A1 A2

Bob: B1 B2 B′
1 B′

2 ⊚
B1 B2

K: ◁ ▷ ◁ ▷ □

�⇒
⊚

A′
1 A2 ⊚

A1 A′
2

⊚
B′

1 B2 ⊚
B1 B′

2

□ □

�⇒
⊚

A′
1 A′

2

⊚
B′

1 B′
2

□

5.3. The kinded nature 67

The second implication follows from applying the assumption twice.

5.3 The kinded nature
Assumption 5.8 prevents the tandem of similarly kinded components to be
differently kinded, but it still leave space for some interesting effects. In this
section we will try to see what these effects are and what should the structure
of a kind be.

The main observation here is that Assumption 5.8 requires that both the
interfaces and the kinds of the components match. Hence, it does not pre-
vent that a pair of components kinded ◁ and ▷ composes to a kind □ for
some components and to a kind ■ for other components, as long as the con-
stituent components cannot be composed. While the explanation can be a bit
convoluted, an example can make the situation clear. The above statement
essentially means that we are completely fine with the following situation:

Alice : A1 A2 ⊚
A1 A2 Ax Ay

⊚
Ax Ay

Bob : B1 B2 ⊚
B1 B2 Bx By

⊚
Bx By

K : ◁ ▷ □ ◁ ▷ ■

(5.6)

where A1 cannot be composed in Ay , Ax cannot be composed in A2, B1 cannot
be composed in By , and Bx cannot be composed in B2. We could ask that such
situations do not occur, thus identifying the pair ⟨◁,▷⟩ with □. However, we
could also choose not to do it, because the above situation does not hurt us as
long as we don’t try to compose the pairs that we just said we cannot. And
Assumption 5.8 ensures that this is indeed the case.

Even if we compose the two distinct tandems from the above equation into
the same pair, we still can map the composition of the components with the
same kinds to different kinds. Here’s an example of this situation:

Alice : A1 A2 ⊚
A1 A2 Ax Ay

⊚
Ax Ay AR

Bob : B1 B2 ⊚
B1 B2 Bx By

⊚
Bx By BR

K : ◁ ▷ □ ◁ ▷ ■ ⋆

Alice : ⊚
Ay AR ⊚

A2 AR ⊚ ⊚
Ax Ay AR ⊚ ⊚

A1 A2 AR

Bob : ⊚
By BR ⊚

B2 BR ⊚ ⊚
Bx By BR ⊚ ⊚

B1 B2 BR

K : × × ∨ ∧

where we have the same non-composability conditions as above. First, note
that the first two tandems on the bottom row must map to the same kind.

68 Chapter 5. Compositional systems and relations

That is directly due Assumption 5.8 as K(Ay , By) � K(A2, B2) and both Ay and
A2 compose into AR, and as By and B2 compose into BR. However, this does
not prevent us from having the second two tandems on the second row being
different. Assumption 5.8 does not apply here because A1 cannot be composed
in Ay , Ax cannot be composed in A2, B1 cannot be composed in By , and Bx
cannot be composed in B2.

We have observed that pairs of components together with a specific kind
map induce some sort of structure on the kinds. For example, above, we saw
that “combining” ◁ and ▷ “can result” in □ (but can also result in something
else). In fact we saw all the following combination mappings:

(i) ⟨◁,▷⟩ 7→ □,
(ii) ⟨◁,▷⟩ 7→ ■,

(iii) ⟨■, ⋆⟩ 7→ ∨,
(iv) ⟨□, ⋆⟩ 7→ ∧,
(v) ⟨▷, ⋆⟩ 7→ ×,

(vi) ⟨◁,×⟩ 7→ ∨,
(vii) ⟨◁,×⟩ 7→ ∧.
Instead of simply thinking of K as a set with this structure being induced by a
specific pair of compositional systems and a particular map K, we can think of
what is the structure on K that makes it possible to be a kind. This structure
can be considered as a homogeneous relation of degree 3 over the set of kinds
K, i.e. R ⊆ K×K×K. Then the above list of combinations can be rewritten as:

(i) ⟨◁,▷,□⟩ ∈ R,
(ii) ⟨◁,▷,■⟩ ∈ R,

(iii) ⟨■, ⋆,∨⟩ ∈ R,
(iv) ⟨□, ⋆,∧⟩ ∈ R,
(v) ⟨▷, ⋆,×⟩ ∈ R,

(vi) ⟨◁,×,∨⟩ ∈ R,
(vii) ⟨◁,×,∧⟩ ∈ R.

Note that such a relation over the kinds is the most general construction
that can be used to describe a relationship between two compositional systems.
However, depending on the precise nature of this relationship, one might wish
to restrict it further. We will soon see that that is indeed the case when one
wishes to characterize the problem relationship between the compositional
systems of statements and answers and the solution relationship between
these two compositional systems.

5.4 The categorical connection
In the previous sections we developed several assumptions that resulted in
specific constraints for our compositional systems and the possible kinded

5.4. The categorical connection 69

relations between them. Here we will see the connections between these
constraints and well-known categorical concepts.

First, we claim that Assumption 5.1, Assumption 5.2, Assumption 5.3, and
Assumption 5.6 imply that a compositional system is a semicategory (Defini-
tion 2.34).

Lemma 5.9. A compositional system satisfying Assumption 5.1, Assumption 5.2,
Assumption 5.3, and Assumption 5.6 is a semicategory.

Proof. First, let’s see what is the connection between the components of the
compositional system and the structure of the semicategory. Then, we will
show that composition is well-defined and associative, as required in Defini-
tion 2.34.

Take M � ⟨C, T,P⟩ to be our compositional system. Recall that C is the set
of components, T : C × C ↪→ C is a partial function that identifies some pairs
of components with another component which we called their tandem, and
that P is the domain of definition of T which has the property that

⟨C1, C2⟩ ∈ P ∧ ⟨C2, C3⟩ ∈ P �⇒ ⟨T(C1, C2), C3⟩ ∈ P ∧ ⟨T(C1, C2), C3⟩ ∈ P.

Now, the components C are the morphisms in a semicategory M∗. We will
define the objects implicitly, based on the compositional structure of M. Our
construction is based on the following rules for the target of the morphism
corresponding to a component A ∈ C:

T.i If A composes into another component B, then the target of the morphism
corresponding to A is the origin of the morphism corresponding to B.

T.ii Otherwise, the target of the morphism corresponding to A is an object
that is the origin of no morphism.

And the following rules for the origin of the morphism corresponding to A:
O.i If another component B composes into A, then the origin of the mor-

phism corresponding to A is the target of the morphism corresponding
to B.

O.ii Otherwise, the origin of the morphism corresponding to A is an object
that is the target of no morphism.

Let’s show that this is a consistent definition, meaning that every morphism
in M∗ has exactly one origin and one target object. Take a component A ∈ C.
A must have at least one target because in both T.i and T.ii it is assigned a
target and a case not covered by these two cannot exist. The same holds for
the origin of A.

Now, let’s show by contradiction that A cannot have two or more targets. If
it has two targets, then there must be two distinct components B1, B2 ∈ C that
A composes into. Then, due to O.i we know that unless there is a component
A′ composing into B1 which doesn’t compose into B2, the origins of B1 and

70 Chapter 5. Compositional systems and relations

B2 would be the same. However, it is impossible to have a component A′

composing into B1 which doesn’t compose into B2 due to Assumption 5.2:

⊚

⊚

⊚

A B1

A′ B1

A B2

�⇒ ⊚A′ B2

Hence, the morphism corresponding to A has exactly one target. The argument
that it also has exactly one origin is symmetric.

Next, the tandem of components and the composition of morphisms in
a semicategory are exactly the same thing. Furthermore, Assumption 5.3
guarantees that the composition of morphisms in M∗ is transitive.

Finally, the associativity of M∗ directly follows from Assumption 5.6. □

Remark 5.10. In fact, our original setting of compositional systems that focused
on component compositionality rather than on objects is much more aligned
with the historical view on categories. In their seminal paper, Eilenberg and
MacLane, 1945 defined a category purely by the means of its morphisms,
while objects were delegated solely to be induced by the identity morphisms.

The natural question that follows is how do kinded relationships as in
Assumption 5.5 fit in the categorical perspective. We defined kinded relation-
ships to map pairs of components of two distinct composite systems Alice and
Bob to elements of a set K. We just showed that there are semicategories Alice∗

and Bob∗ whose morphisms are the component of Alice and Bob. Hence, pairs
of components of Alice and Bob are pairs of morphisms of Alice∗ and Bob∗.
Therefore, a kinded relation can be represented as a function from the product
of the sets of morphisms (assuming that the two categories are small) to the
set of kinds. We call such functions kinded functions.

Definition 5.11 (Kinded function). Given two semicategories C∗ and D∗, and
a set K, a kinded function between C∗ and D∗ of kind K, denoted

C∗ K−→ D∗

is a function ∪
A,B∈Ob(C∗)

HomC∗(A, B) ×
∪

A,B∈Ob(D∗)
HomD∗(A, B) → K,

where the unions are over all the objects in the respective semicategories.

5.5. Categorical representations of some compositional systems 71

Remark 5.12. In Definition 5.11 we implicitly assume that taking the union over
these hom-sets is indeed possible. However, to be strict, that is only possible if
T, A, and C are small categories. We will nevertheless ignore such subtleties
and will allow ourselves to continue abusing the notation in this way.

Lemma 5.13. Given two compositional systems Alice and Bob and a kinded relation
of set K between them, one can construct a kinded function:

R : Alice∗
K−→ Bob∗,

or if expanded:

R :
∪

A,B∈Ob(Alice∗)
HomAlice∗(A, B) ×

∪
A,B∈Ob(Bob∗)

HomBob∗(A, B) → K,

such that if A and B are components of respectively Alice and Bob and α and β
are their respective morphisms in Alice∗ and Bob∗, then K(A, B) � R(α, β). Here
Alice∗ and Bob∗ are the semicategorical representations of Alice and Bob.

5.5 Categorical representations of some
compositional systems

In the previous sections we built up to the conclusion that compositional
systems can be represented as semicategories and that the relationships be-
tween them can be represented as kinded functions. We did that somewhat
handwavy by establishing several assumptions that seemed to sound right.
However, nothing gives us any guarantees that the above conclusion is at all
useful. In order to clear up any remaining doubt we will provide a number of
examples of collections of components with various degrees of “composition-
ality”, as well as relations between them, and will show that all of them can
be represented as semicategories and kinded functions.

The least compositional case is when nothing is composable (as discussed
in Remark 5.4). This degenerate setting would correspond to a good old-
fashioned set.

Lemma 5.14. Given a set S, the semicategory S∗ with Ob(S∗) � S and

HomS∗(S1, S2) �
{
� if S1 is distinct from S2,

{S1} if S1 is the same as S2,

for all S1, S2 ∈ Ob(S∗) is indeed a semicategory.

72 Chapter 5. Compositional systems and relations

Proof. First of all, we are working in a setting where the elements of S are
components of a compositional system, hence they satisfy Assumption 5.7
and the notions of sameness and distinctness are well-defined. Second, as there
are no morphisms between distinct objects in S∗, there are no compositions,
hence nothing to check for associativity. Therefore, it trivially holds that S∗ is
indeed a semicategory. □

Remark 5.15. We require that the components of the compositional system be-
come morphisms in the respective semicategory. That is why in the above
setting we have each component be not only an object in S∗ but also a mor-
phism.

Remark 5.16. A (semi)category where there are no morphisms between any
two distinct objects is usually called a discrete category.

Of course, we can treat the terms of a type in the exact same way. Hence,
they can also be represented as a discrete semicategory.

Lemma 5.17. Given a type T, the semicategory T∗ with Ob(T∗) being the terms of T
and

HomT∗(T1, T2) �
{
� if T1 is distinct from T2,

{T1} if T1 is the same as T2,

for all T1, T2 ∈ Ob(T∗) is indeed a semicategory.

As a normed type can be represented as a collection of terms of a type and
their respective sizes, it is a yet another example of a discrete semicategory.

Lemma 5.18. Given a normed type A B ⟨A, |A|, s : A → |A|⟩, the semicategory A∗

with Ob(A∗) being pairs ⟨a , s(a)⟩, with a a term of A and

HomA∗ (⟨a1, s(a1)⟩ , ⟨a2, s(a2)⟩) �
{
� if a1 is distinct from a2,

{⟨a1, s(a1)⟩} if a1 is the same as a2,

for all a1 : T, a2 : T is indeed a semicategory.

So far we considered only compositional systems with no compositionality.
However, if we move away from the discrete semicategories to a more general
one, in its morphisms we can find the very notion of compositionality we were
seeking earlier in the chapter. Of course, needless to say, any semicategory can
extremely trivially be represented as a semicategory. But, more interestingly,
any category can be represented as a semicategory as mentioned in Remark 2.35.
This is simply due to the definition of a semicategory being a relaxation of the
definition of a category.

5.6. Categorical representations of some kinded relations 73

Semicategories

Sets

TypesNormed types Categories

Symmetric
monoidal
categories

Compact
closed

categories

Figure 5.1: Hierarchy of compositional systems, i.e. the ΩS poset.

As any category is a semicategory, also categories with even more structure
such as (symmetric) monoidal categories (Definition 2.29) and compact closed
categories (Definition 2.32) also represent compositional systems.

In fact, the property of one of these compositional systems being repre-
sentable in another system can be thought of a posetΩS, where A ≤ΩS B if any
compositional system of the collection A can be represented as a compositional
system of the collection B. This is illustrated in Figure 5.1.

Remark 5.19. Upon seeing Figure 5.1 some readers might be eager to say that
Set (Definition 2.39) is a category, hence “Sets” should be under “Categories”.
However, in the context of compositional systems we are considering a “set” to
be a collection of components, which become the morphisms in the representa-
tive semicategory. If we instead consider the category Set, whose morphisms
are functions, then the morphisms in the representative semicategory would
also be functions. While both settings are certainly valid, they are very differ-
ent.

5.6 Categorical representations of some kinded
relations

In the previous section we demonstrated that a number of widely used com-
positional systems can be represented as semicategories, hence defending our
call for categorical representations for compositional systems from Section 5.4.
Here, we continue this argumentation by also illustrating how various types

74 Chapter 5. Compositional systems and relations

of relationships between such compositional systems can be represented as
kinded functions (Lemma 5.13).

Let’s first consider compositional systems that were originally sets. One
type of a relationship between sets is a function. Assume we have two sets, S
and P, and their semicategorical representations S∗ and P∗ due to Lemma 5.14.
Take any function f : S → P. Then the question is, what should the corre-
sponding kinded function R f be in order to respect Lemma 5.13.

But then, first, what should the kind K of this kinded relation be? Clearly,
as for any s ∈ S, and any p ∈ P, f (s) is either p or isn’t p, the kind set of this
relation should have two elements. Then, let’s pick K � {T, F}.

Now, according to Lemma 5.13 the signature of R f is:

R f :
∪

s ,s′∈Ob(S∗)
HomS∗(s , s′) ×

∪
p ,p′∈Ob(P∗)

HomP∗(p , p′) → {T, F}.

But from Lemma 5.14 we know that these homsets are non-empty only when
s � s′ or p � p′, hence we define R f as:

R f :
∪

s∈Ob(S∗)
HomS∗(s , s) ×

∪
p∈Ob(P∗)

HomP∗(p , p) → {T, F},

⟨
s , p

⟩
7→

{
T if f (s) � p ,
F otherwise.

Hence, we’ve proven the following lemma:

Lemma 5.20. For any two sets S and P, and any function f : S → P, there exists a
kinded function R f of kind {T, F} from S∗ to P∗ that satisfies Lemma 5.13.

Another type of a relation between sets is a binary relation. We already
encountered that in the definition of problems in Lagado (Definition 4.1). Take
again the two sets S and P and their semicategorical representations S∗ and P∗.
Now take any binary relation G ⊆ S × P. We can construct a kinded function
that represents it:

RG :
∪

s∈Ob(S∗)
HomS∗(s , s) ×

∪
p∈Ob(P∗)

HomP∗(p , p) → {T, F},

⟨
s , p

⟩
7→

{
T if

⟨
s , p

⟩
∈ G,

F otherwise.

Hence, we’ve also proven the following lemma:

Lemma 5.21. For any two sets S and P, and any binary relation G ⊆ S × P, there
exists a kinded function RG of kind {T, F} from S∗ to P∗ that satisfies Lemma 5.13.

5.6. Categorical representations of some kinded relations 75

Speaking of Lagado, we also made use of procedures there (Definition 3.16).
A procedure connected two normed types, which we already know to be
representable as semicategories (Lemma 5.18). A procedure from a normed
type

A B ⟨A, |A|, sA : A → |A|⟩
to a normed type

B B ⟨B, |B |, sB : B → |B |⟩
is a triplet

p B
⟨
p : A → B, τp : |A| → |B |, ρp : |A| ↛ R

⟩
,

where p : A → B is a term of the function type A → B, τp : |A| → |B | is a
monotonic function, and ρp : |A| ↛ R is a feasibility relation (Definition 2.14),
with R a monoidal poset.

Let’s see how p can be represented as a kinded function Rp. First, the
morphisms of the categorical representations A∗ and B∗ of the two normed
types are pairs ⟨a , sA(a)⟩ and ⟨b , sB(b)⟩, as already established in Lemma 5.18.
Hence, given two such terms, we need to evaluate if the procedure p can
produce the second from the first one while obtaining its correct size. Further-
more, this has to be done while keeping track of the resources which enable
such conversion. If the conversion is possible, then the resources enabling it
form an upper set (Definition 2.12) in R, something which follows from the
monotonicity of ρp . Following this intuition, we can define Rp as:

Rp : HA × HB → {F} ∪ UR,

⟨⟨a , sA(a)⟩ , ⟨b , sB(b)⟩⟩ 7→

{r | ρp(sA(a), r) � T} if p(a) � b and

τp(sA(a)) � sB(b),
F otherwise,

with
HA �

∪
a : A

HomA∗(⟨a , sA(a)⟩ , ⟨a , sA(a)⟩),

HB �

∪
b : B

HomB∗(⟨b , sB(b)⟩ , ⟨b , sB(b)⟩).

Note that the kinds of Rp consist of F if the relation doesn’t hold, and of the
upper sets of resources (R) that enable it, in the cases when the relation holds.
This is the proof of the following lemma:

Lemma 5.22. For any two objects A,B ∈ Ob(Proc(R)) and any procedure

p ∈ HomProc(R)(A,B),

there exists a kinded function Rp of kind {F} ∪ UR from A∗ to B∗ that satisfies
Lemma 5.13.

76 Chapter 5. Compositional systems and relations

So far we looked only at relations between compositional theories that
are represented as discrete semicategories. Let’s see what happens when
we consider something with more structure, for example categories. The
fundamental relation between two categories is a functor.

We will take a look at functors in a bit, but let’s first see what happens
if our relation is described by a bifunctor to a third category. In a nutshell,
every bifunctor corresponds to a kinded function. Then we will show that
every functor can be represented as a bifunctor, so then also every functor
corresponds to a kinded function too.

Take the bifunctor
Π : T × A → C,

where T, A and C are all categories. The morphisms of the category C will
become the kinds of the kinded relation. Then we need to define a kinded
function with the following signature:

RΠ :
∪

t ,t′∈Ob(T)
HomT(t , t′) ×

∪
a ,a′∈Ob(A)

HomA(a , a′) →
∪

c ,c′∈Ob(C)
HomC(c , c′).

(5.7)
However, the fact that Π is a functor means that its effect on morphisms is
exactly a function with this signature. Hence, we need not explicitly define a
kinded function representation for such a bifunctor: the bifunctor itself can be
thought of as a kinded function!
Remark 5.23. In fact, a bifunctor is much stricter than the kinded function.
While the kinded function was defined to be as general as possible, the defi-
nition of a bifunctor requires that the endpoints of the morphisms are consis-
tently mapped to the endpoints of the maps of the morphisms, as well as that
the compositions are mapped to the compositions of the mapped components.

Lemma 5.24. Every bifunctor

Π : T × A → C

induces a kinded function RΠ from T to A with its kind being the collection of
morphisms of C.

Now, let’s see what happens with functors. We want to show that every
functor can be represented as a bifunctor.

Definition 5.25 (The And category). The And category consists of two objects
T and Fwith the following morphisms between them:

T F

f

f

t

f

f .

5.6. Categorical representations of some kinded relations 77

The identity morphism of T is t and of F is f. Furthermore, we identify the
following compositions:

(i) t t � t,
(ii) t f � f,

(iii) f t � f,
(iv) f f � f.

Remark 5.26. The name of the And category comes from the fact that only a pair
of t morphisms identifies with t and from the fact that the only t morphism
is the identity on T. The use of this structure will become clear shortly.

Lemma 5.27. Given two categories C and D and a functor F : C → D between them,
the map F̂ defined as

F̂ : C × D → And

⟨C,D⟩ 7→
{
T if F(C) � D ,
F otherwise,⟨

µ, η
⟩
7→

{
t if F(µ) � η,
f otherwise,

is a functor. In the above definition, C and D are objects and µ and η morphisms in
respectively C and D.

Proof. First we need to show that the above mapping respects the endpoints
of the morphisms. Consider any µ : C1 → C2 in C and η : D1 → D2 in D.
Note that regardless of where F̂ sends µ and η, there is always a f morphism
between F̂(C1,D1) and F̂(C2,D2). This is not the case with t, so we need to
show that whenever F(µ) � η, it follows that F(C1) � D1 and F(C2) � D2. This,
however, must hold as F itself is a functor, hence F̂ respects the morphisms’
endpoints.

Next, we also need to show that F̂ respects identities. From the functoriality
of F we know that if F(C) � D, then F

(
idC

C

)
� idD

D , hence F̂
(
idC

C , id
D
D

)
� t. If

F(C) � D, hence also F̂(C,D) � T. And as t is the identity of T, it respects the
identity requirement. In the other case, i.e. if F(C) , D, F

(
idC

C

)
, idD

D , hence

F̂
(
idC

C , id
D
D

)
� f. If F(C) , D, hence also F̂(C,D) � F and f is its identity. □

Remark 5.28. The main implication of the above lemma is that any functor F
between the categories C and D can be represented as a bifunctor F̂ between
their product category C × D and the category And. Hence, a bifunctor
C × D → And is a generalization of a functor C → D. If one is to make an
analogy to the world of functions, a function relates to a binary relation in the

78 Chapter 5. Compositional systems and relations

Kinded functions

Binary relations

Functions

Procedures Bifunctors

Functors

Monoidal functors

Figure 5.2: Hierarchy of compositional relations, i.e. the ΩR poset.

SC

S

TNT C

SMC

CCC

KF

BR

FN

P BFR

FR

MFR

Figure 5.3: Valid relationships between the hierarchies of compositional sys-
tems and compositional relations. The acronyms correspond to the collections
in Figures 5.1 and 5.2.

same way a functor relates to a bifunctor to And. In fact, any binary relation
can be represented as a bifunctor to And, as the next example shows.

We just showed (Lemma 5.27 and Remark 5.28) that every functor F : C → D
can be represented as a bifunctor F̂ : C × D → And. Before, we also showed
in Lemma 5.24 that any bifunctor can be represented as a kinded function.
Therefore, any functor can then too. The following lemma naturally follows:

Lemma 5.29. Every functor
F : C → D

induces a kinded function RF from C to D with its kind being the set {t, f}.

Remark 5.30. The kind of the kinded relation in Lemma 5.29 is simply the
collection of morphisms of the And category.

5.6. Categorical representations of some kinded relations 79

Remark 5.31. Actually, we can also show that bifunctors generalize binary
relations too! Take any binary relation R ⊆ C × D between two sets C and
D. We can define C and D to be the discrete categories whose objects are the
elements of respectively C and D. Then, the functor R̂ : C × D → And maps
the pair ⟨c , d⟩ to T if ⟨c , d⟩ ∈ R and to F otherwise. As there are only identity
morphisms in C and D they map to the corresponding identity morphisms in
And. Hence, the bifunctor to And can also be thought of as a generalization
of a binary relation.

Just in the same way that we showed that some compositional systems in-
clude others, it is also true that some relations between compositional systems
are generalized by others. Hence, we can create a hierarchy of compositional
relations. This again can be represented as a poset ΩR where A ≤ΩR B means
that any relation of the collection A can be represented as a relation of the
collection B. We illustrate this in Figure 5.2.
Remark 5.32. Not only do compositional systems and relations form two posets,
but one can also define a feasibility relation (Definition 2.14) between them.
In other words, we can define the monotone function

Ω : Ωop
S ×ΩR → Bool,

⟨S, R⟩ 7→

T if a relation from the collection R can be defined

for any two compositional systems from S,
F otherwise.

To see that this is indeed a feasibility relation, we have illustrated the valid
pairs in Figure 5.3.

Chapter 6

Compositional computational
systems

In the previous chapter we went on a quest for the minimal (and hence most
general) way to represent compositional systems and the relationships be-
tween them. The result was that compositional systems which fall in the
boundaries of the set of assumptions we developed can be modelled as semi-
categories and the relationships between them as kinded functions. Then,
when we looked for examples of such systems and relations, we saw that all of
the concepts that we used earlier in this thesis to construct Lagado showed up
as particular instances of semicategories and kinded functions. But if Lagado,
a concept that we will call a compositional computational system, is build up of
particular instances of compositional systems and relations, then is it possible
to generalize it by using semicategories and kinded functions as the building
elements? That leaves us with a question of creating the minimal (and hence
most general) system of problems and solutions, i.e. the “ultimate” general-
ization of Lagado. And this is what we devote this chapter to.

Most readers probably already see how the generalization of a composi-
tional computation system would look like. For the rest, let’s spoil it. We
already concluded that semicategories and kinded relations should be our
fundamental building blocks. Therefore, we will define our problems and
solutions as kinded relations between semicategories. Then, this induces cat-
egorical structures on problems and solutions, which allow us to define a
heteromorphic twisted category on them, just as we did with Prob, Proc(R)
and Lagado(R) (recall Lemma 4.21). The resulting category is our answer to
the question of generality above, and we will call it Laputa.

81

82 Chapter 6. Compositional computational systems

We will reuse the names of a lot of the previously defined concepts. In
the text, it would be clear from the context which one we are using. For the
mathematical concepts, in order to distinguish them, we will be putting a
small circle over the last letter of the generalization concept.

6.1 Generalized problems and procedures
As we mentioned above, we generalize the definition of a problem (Defini-
tion 4.1) to a new one:

Partial Definition 6.1 (Problem). A problem Π with a statement semicategory
T∗, answer category A∗, and kind the set N is a kinded function of kind N from
T∗ to A∗:

Π : T∗ N−→ A∗.

Partial Definition 6.2 (Procedure). A procedure∆with a statement semicategory
T∗, answer category A∗, and kind the set M is a kinded function of kind M from
T∗ to A∗:

∆ : T∗ M−→ A∗.

Remark 6.3. We label the above two definitions partial because there is structure
on N and M that we require but haven’t established yet. This stems from our
desire for problems and procedures that are composable. We will soon take a
look at this.

Remark 6.4. Apart from that, Definitions 6.1 and 6.2 are exactly the same. They
only differ in the name of the kind set but as this is arbitrary, it is not a real
difference. Hence, in this generalized setting problems and procedures are
modelled in the exact same way. Note however, that we give them different
semantic meaning. While we do consider a problem to be simply a map of
sorts between statements and answers, we do expect that a procedure has a
computational backing, i.e. some algorithm, code, or program that takes an
input a statement and produces an answer. Furthermore, we allow differ-
ent kind sets for the two settings. For the problems, the kind stresses their
(potentially) compositional structure. For the procedures, the kind can be con-
taining information of the quality of the approximation or the computational
resources needed.

We said above that Definitions 6.1 and 6.2 are partial definitions because we
need to be stricter in how we pick N and M. Let’s see exactly what we meant
there.

First, we want to be considering compositional problems. Hence let’s con-
sider three semicategories and two problems (kinded functions) between

6.1. Generalized problems and procedures 83

them.
T1

∗ T2
∗ T3

∗ΠA ΠB (6.1)

ΠA :
∪

A,B∈Ob(T1
∗)

HomT1
∗(A, B) ×

∪
A,B∈Ob(T2

∗)
HomT2

∗(A, B) → N

ΠB :
∪

A,B∈Ob(T2
∗)

HomT2
∗(A, B) ×

∪
A,B∈Ob(T3

∗)
HomT3

∗(A, B) → N

If we are to compose the two problems, we should end up with a problem

ΠAB : T1
∗ N−→ T3

∗.

This problem takes a morphism t1 from T1
∗ and a morphism t3 from T3

∗ and
returns an element of N that characterizes the problem. If we are building
this from ΠA and ΠB this constrains the domain of ΠA and the range of ΠB
but not their interaction at T3

∗. Hence, we need to “integrate out” the T2
∗.

Let’s first fix a single morphism t′2 from T2
∗. Then we can obtainΠA(t1, t′2) �

nA ∈ N andΠB(t′2, t3) � nB ∈ N . However, in order to obtain a single element
of N which characterizes the composition of ΠA and ΠB we need a way of
“combining” nA and nB. As this must hold for any nA , nB ∈ N it can be
thought of as a binary operation. We will call it multiplication and denote it by
×. Now, we can combine nA and nB as nA × nB ∈ N .

Imagine we have three problems instead:

T1
∗ T2

∗ T3
∗ T4

∗ΠA ΠB ΠC , (6.2)

and we have fixed morphisms t′2 from T2
∗ and t′3 from T3

∗. Then, for any t1
from T1

∗ and t4 from T4
∗ we can write the multiplication of the respective

kinds in two ways: (
Π(t1, t′2) ×Π(t′2, t′3)

)
×Π(t′3, t4),

Π(t1, t′2) ×
(
Π(t′2, t′3) ×Π(t′3, t4)

)
.

However, it doesn’t make sense that the order of multiplication of the kinds
would affect the resulting kind of the composition. Hence we would like to
have: (

Π(t1, t′2) ×Π(t′2, t′3)
)
×Π(t′3, t4) � Π(t1, t′2) ×

(
Π(t′2, t′3) ×Π(t′3, t4)

)
� Π(t1, t′2) ×Π(t′2, t′3) ×Π(t′3, t4).

Therefore, the multiplication operation × over N should be associative.

84 Chapter 6. Compositional computational systems

Now, let’s get back to composing the two problems in Equation (6.1). Recall
that so far we had the morphism at T2

∗ fixed as some particular value. To
obtain ΠAB we need to evaluate what happens with the value of

ΠA(t1, t′2) ×ΠB(t′2, t3)

over the whole range of morphisms t′2 in T2
∗. To this end, we can define a new

binary operation over N , called addition, which will be denoted by + (or
∑

).
Now, we can define the composition of problems (or any kinded functions)

as:
ΠAB(t1, t3) �

(
ΠA ΠB

)
(t1, t3) �

∑
t2∈H2

ΠA(t1, t2) ×ΠB(t2, t3),

where
H2 �

∪
A,B∈Ob(T2

∗)
HomT2

∗(A, B).

It of course makes sense for the addition on N to also be associative. Further-
more, we don’t want to have the value of Π(t1, t3) depending on the order of
going through the morphisms in H2. To ensure that we will also require that
the addition operation on N is commutative.

Now that we have defined how the composition should look like, let’s
take another look at the example where we compose three problems (Equa-
tion (6.2)). Then we would get:

ΠABC : H1 × H4 → N

⟨t1, t4⟩ 7→
∑

t2∈H2

(
ΠA(t1, t2) ×

∑
t3∈H3

ΠB(t2, t3) ×ΠC(t3, t4)
)
,

(6.3)

where H1,H2,H3 and H4 as defined analogously to above. However, we
would like the kind of the composition to not change if we instead consider
summation over the multiplication of three kinds (recall that the multiplication
was defined to be associative). I.e. we want that the term in Equation (6.3) to
be equal to: ∑

t2∈H2

∑
t3∈H3

ΠA(t1, t2) ×ΠB(t2, t3) ×ΠC(t3, t4).

This is equivalent to asking that the multiplication operator × distributes over
the addition operator +.

Recall that in Lagado we also had a notion of identity problem which
actually represented a solution. That was because both the statement and
answer types of such a problem are the same and the map between them is
the identity function. Hence the statement and the answer are always equal,
making it a problem that is very trivial to solve. We would like to extend

6.1. Generalized problems and procedures 85

this concept to the general setting we are constructing. So, we will also need
identity problems.

An identity problem should have the property that when composed with
another problem, it doesn’t change it. Let’s consider the following setting:

T1
∗ T2

∗ΠA
Πid

2 . (6.4)

We ask that:∑
t′2∈H2

ΠA(t1, t′2) ×Πid
2 (t′2, t2) � ΠA(t1, t2), ∀t1 ∈ H1, ∀t2 ∈ H2.

The left-hand side of the above equation can be rewritten as:

ΠA(t1, t2) ×Πid
2 (t2, t2) +

∑
t′2∈H2\{t2}

ΠA(t1, t′2) ×Πid
2 (t′2, t2).

The desired result would be achieved ifΠid
2 (t2, t2) evaluates to a multiplicative

identity on N and ∑
t′2∈H2\{t2}

ΠA(t1, t′2) ×Πid
2 (t′2, t2)

evaluates to an additive identity. The second essentially means that multipli-
cation by the additive identity should annihilate any value (i.e. should result
to the additive identity itself).

Let’s summarize all the properties that we established to be desirable in the
kind N :

i. N is equipped with a binary operation × : N × N → N .
ii. The binary operation × is associative.

iii. The binary operation × has an identity element.
iv. N is equipped with a binary operation + : N × N → N .
v. The binary operation + is associative.

vi. The binary operation + is commutative.
vii. The binary operation + has an identity element.

viii. The binary operation × distributes over the binary operation +.
It just so happens that this is the definition of a rig.

Definition 6.5 (Rig). A rig, also called semiring, is a set R equipped with two
binary operations (Definition 2.1), addition (+) and multiplication (×) such
that:

i. The addition operation:
• is associative, i.e.

(a + b) + c � a + (b + c), ∀a , b , c ∈ R;

86 Chapter 6. Compositional computational systems

• is commutative, i.e.

a + b � b + a , ∀a , b ∈ R;

• has an identity element denoted 0, i.e.

0 + a � a + 0 � a , ∀a ∈ R;

ii. The multiplication operation:
• is associative, i.e.

(a × b) × c � a × (b × c) ∀a , b , c ∈ R;

• has an identity element denoted 1, i.e.

1 × a � a × 1 � a , ∀a ∈ R;

iii. The multiplication operation distributes over the addition operation, i.e.
for all a , b , c ∈ R it holds that

a × (b + c) � (a × b) + (a × c)
(a + b) × c � (a × c) + (b × c);

iv. The addition identity 0 is the annihilating element of R with respect to
the multiplication operation:

0 × a � a × 0 � 0, ∀a ∈ R.

A rig can be denoted by the tuple ⟨R,+, 0,×, 1⟩.

Clearly, everything we asked for N leads to it being a rig. Moreover, as
we mentioned in Remark 6.4, apart from the symbol we use for the kind the
two partial definitions for problems and procedures (Definitions 6.1 and 6.2)
are exactly the same. Hence, if we wish to have identities and the same
compositional properties on the procedures, we also need the structure of a
rig on M.

With this we can now give the complete definitions of problems and pro-
cedures, as well as formal definitions of composition and identity.

Definition 6.6 (Problem). Given a rig

N B ⟨N,+N , 0N ,×N , 1N⟩ ,

a problem Π with a statement semicategory T∗, answer semicategory A∗, and
kind N is a kinded function of kind N from T∗ to A∗:

Π : T∗ N−→ A∗.

6.1. Generalized problems and procedures 87

Definition 6.7 (Procedure). Given a rig

M B ⟨M,+M , 0M ,×M , 1M⟩ ,

a procedure ∆ with a statement semicategory T∗, answer semicategory A∗, and
kind M is a kinded function of kind M from T∗ to A∗:

∆ : T∗ M−→ A∗.

Definition 6.8 (Problem composition). Given a rig

N B ⟨N,+N , 0N ,×N , 1N⟩ ,

and two problems:

ΠA : T1
∗ N−→ T2

∗ and ΠB : T2
∗ N−→ T3

∗,

we define the composition ΠA ΠB as:

ΠA ΠB : H1 × H3 → N.

⟨t1, t3⟩ 7→
∑

t2∈H2

ΠA(t1, t2) ×N ΠB(t2, t3),

with
∑

being the repeated application of +N , and H1, H2, H3 being the collec-
tions of morphisms of respectively T1

∗, T2
∗, T3

∗.

Definition 6.9 (Procedure composition). Analogous to Definition 6.8.

Definition 6.10 (Identity problem). Given a rig

N B ⟨N,+N , 0N ,×N , 1N⟩ ,

and a semicategory T∗, we define the identity problemΠid
T∗ : T∗ N−→ T∗ on T∗ as

Πid
T∗ : H × H → N,

⟨t , t′⟩ 7→
{

1N if t � t′,
0N otherwise,

with H being the collection of morphisms of T∗.

Definition 6.11 (Identity procedure). Analogous to Definition 6.10.

Of course, we need to show that the identity problem indeed acts as an
identity:

88 Chapter 6. Compositional computational systems

Lemma 6.12. Given a rig

N B ⟨N,+N , 0N ,×N , 1N⟩ ,

and a problem:

Π : T1
∗ N−→ T2

∗,

it holds that
Π Πid

T2
∗ � Π and Πid

T1
∗ Π � Π.

Proof. The left-hand side of the first equation is:(
Π Πid

T2
∗

)
(t1, t2)

�

∑
t′2∈H2

Π(t1, t′2) ×N Π
id
T2

∗(t′2, t2)

�

(
Π(t1, t2) ×N Π

id
T2

∗(t2, t2)
)
+N

∑
t′2∈H2\{t2}

Π(t1, t′2) ×N Π
id
T2

∗(t′2, t2)

� (Π(t1, t2) ×N 1N) +N

∑
t′2∈H2\{t2}

Π(t1, t′2) ×N 0N

�Π(t1, t2) +N

∑
t′2∈H2\{t2}

0N

�Π(t1, t2) +N 0N

�Π(t1, t2),

which is the right-hand side. Hence, the first equation holds. Above we
used the properties of the additive and multiplicative identities of a rig, as
well as the fact that the additive identity 0N is the annihilating element of N
with respect to ×N (Definition 6.5). The second equation can be shown in an
analogous way. □

And the case for the identity procedure is exactly the same.

Lemma 6.13. Given a rig

M B ⟨M,+M , 0M ,×M , 1M⟩ ,

and a procedure:

∆ : T1
∗ M−→ T2

∗,

it holds that
∆ ∆id

T2
∗ � ∆ and ∆id

T1
∗ ∆ � ∆.

6.2. Laputa 89

6.2 Laputa
We just showed that problems and procedures are kinded functions between
semicategories with kinds having the structure of rigs. Furthermore, we
showed how this structure implies that we can compose these kinded functions
and that they also have identities. We have seen a mathematical structure
before that consists of objects, things between them, means of composing
these things, and identities: a category. Indeed, collections of problems and
procedures can be thought of as two categories.

Definition 6.14 (The Prob̊(O∗,N) category). Given a rig

N � ⟨N,+N , 0N ,×N , 1N⟩ ,

and a subcategory O∗ (Definition 2.21) of SemiCat (Definition 2.38), the
Prob̊(O∗,N) category has:

i. objects which are the objects of O∗;
ii. morphisms A∗ → B∗ which are problems with statement semicategory

A∗, answer semicategory B∗, and kind N ;
iii. composition of two morphisms defined by problem composition (Defi-

nition 6.6);
iv. identity morphisms being the identity problems (Definition 6.10).

Definition 6.15 (The Proc̊(O∗,M) category). Given a rig

M � ⟨M,+M , 0M ,×M , 1M⟩ ,

and a subcategory O∗ of SemiCat, the Proc̊(O∗,M) category has:
i. objects which are the objects of O∗;

ii. morphisms A∗ → B∗ which are procedures with statement semicategory
A∗, answer category B∗, and kind M;

iii. composition of two morphisms defined by procedure composition (Def-
inition 6.9);

iv. identity morphisms being the identity procedures (Definition 6.11).

In the Lagado setting we also had a notion of solution (Definition 4.5). We
labeled a given procedure as a solution of a problem if it always produced
a correct answer. In the generalized setting we’re considering here we are
moving away from “correctness” and instead allow to label problems and
procedures with kinds. Hence, we also need to generalize the notion of a
solution. In fact, we will abstract the decision of whether a certain procedure
is a solution to a problem in a higher-order function

ΨT∗ ,A∗ :
(
T∗ N−→ A∗

)
×

(
T∗ M−→ A∗

)
→ Bool.

We will callΨ a solution judgement map.

90 Chapter 6. Compositional computational systems

Definition 6.16 (Solution). Given two rigs N and M, and functionΨ indexed
by two semicategories:

ΨT∗ ,A∗ :
(
T∗ N−→ A∗

)
×

(
T∗ M−→ A∗

)
→ Bool,

a solution of a problem Π : T∗ N−→ A∗ is a procedure ∆ : T∗ M−→ A∗, such that

ΨT∗ ,A∗ (Π,∆) � T.
Now that we have cleared up that problems and procedures form categories,

and that we have means of assessing when a procedure is a solution to a
problem, we are ready to define the category Laputa which represents our
general compositional computational system.

Definition 6.17 (The Laputa1 Category). Take a subcategory O∗ of SemiCat,
two rigs N and M, a solution judgement map Ψ, and the family of functions
□ such that for any four semicategories A∗,B∗,C∗,D∗ ∈ Ob(O∗) we have:

A∗
B∗□C∗

D∗ : C̊(C∗,A∗) × B̊(A∗,B∗) × C̊(B∗,D∗) × B̊(C∗,D∗) → Bool,

⟨
∆p ,Π f ,∆q ,Π1

⟩
7→

T if ∀∆h ∈ HomProc̊(M)(A∗,B∗),

s.t. ΨA∗ ,B∗
(
Π f ,∆h

)
� T

it holds thatΨC∗ ,D∗
(
Π1 ,∆p ∆h ∆q

)
� T,

F otherwise,

where C̊ � HomProc̊(M) and B̊ � HomProb̊(N). Then, the Laputa(O∗,N,M,Ψ)
category is the heteromorphic twisted category

HTw(Prob̊(O∗,N), Proc̊(O∗,M),□).
Heteromorphic twisted categories were introduced in Definition 4.16.

Remark 6.18. As for any selection of O∗, N , M, andΨ the resulting

L1 � Laputa(O∗,N,M,Ψ)
is a category, this Laputa category can be a problem statement or an answer
in another Laputa category that has as objects categories. In other words L1
can be a problem statement or an answer in any L2 � Laputa(Cat, ·, ·, ·) or any
L3 � Laputa(SemiCat, ·, ·, ·) category. It is even more curious that as L2 and L3
are themselves categories, they can also be problems statements and answers
in themselves. This self-referentiality allows some of the compositional com-
putational systems, such as any such L2 or L3 to have an “internal model” of
themselves and to reason about their own structure. Note that in such a case
a problem statement or an answer would correspond to a pair of procedures
of the same category.

1Named after Laputa, the island floating above the island of Balnibarbi in Gulliver’s Travels
by Jonathan Swift (1726). In the novel, Balnibarbi is subjugated to the king of Laputa.

6.3. Lagado and Laputa 91

6.3 Lagado and Laputa
We deliberately constructed Laputa(O∗,N,M,Ψ) to be the most general cat-
egory for handling generalizations of problems, procedures and solutions.
But then, if Laputa is so general, then our original problem-solution category
Lagado should be nothing but a specific instance of it. In this section we aim
to show that this is indeed the case. All we need to do is to show that given a
monoidal poset R, there is a choice of O∗Lagado, rigs NLagado and MLagado, and
a solution judgement mapΨLagado, for which Lagado(R) is equivalent to

Laputa(O∗Lagado,NLagado,MLagado,ΨLagado).

What should O∗Lagado be then? Well, while all normed types can be consid-
ered as semicategories (Lemma 5.18), not all semicategories are normed types.
Hence, we will take O∗Lagado to be the subcategory of semicategories which
represent normed types.

Now, what should the rig N be so that Prob̊(O∗Lagado,N) is Prob. A problem
is nothing but a binary relation (Definition 4.1) and we already showed that
binary relations are kinded functions with kind Bool � {T, F}. Now, we only
need to add the additive and multiplicative structure on Bool that results in
the composition and identities from Definition 4.3.

Recall that problem composition was defined in Definition 4.3 as:∨
b∈B

π1(a , b) ∧ π2(b , c).

And problem composition was defined in Definition 6.8 as:∑
t2∈H2

ΠA(t1, t2) ×N ΠB(t2, t3).

Hence, the addition operation should be ∨ and the multiplication operation
should be ∧. As an additive identity we need an element X ∈ {T, F} such that:

X ∨ T � T,
X ∨ F � F,

hence, X must be F. Similarly, as a multiplicative identity we need an element
X ∈ {T, F} such that:

X ∧ T � T,
X ∧ F � F,

hence, X must be T. And it is now also easy to check that the additive identity
is the annihilating element of the multiplication operation:

F ∧ T � F,

92 Chapter 6. Compositional computational systems

F ∧ F � F.

Therefore, we have NLagado B ⟨Bool,∨, F,∧, T⟩.
Now, let’s see what the rig M should be so that Proc̊(O∗Lagado,M) is Proc(R)

for some monoidal poset R � ⟨R, ≤R , 0R ,+R⟩. We already showed how pro-
cedures (Definition 3.16) can be represented as semicategories (Lemma 5.22).
Recall that the kind of the corresponding kinded function is {F} ∪ UR. Hence
we also pick {F} ∪ UR as our set underlying the MLagado rig.

Take three normed types A, B, C. Each one of these has a corresponding
category Å, B̊, C̊, with both objects and morphisms being pairs ⟨a , sa⟩, where
sa � sA(a) is the size of the term a. Take also two procedures between them:

∆1 : Å
MLagado

−−−−−→ B̊,

∆2 : B̊
MLagado

−−−−−→ C̊.

Then, their composite is:

∆1 ∆2 : HÅ × HC̊ → {F} ∪ UR,

⟨⟨a , sa⟩ , ⟨c , sc⟩⟩ 7→
∑
b : B

∆1 (⟨a , sa⟩ , ⟨b , sB(b)⟩) ×M ∆2 (⟨b , sB(b)⟩ , ⟨c , sC(c)⟩) .

We achieve this by defining ×M as:

×M : M × M → M,
⟨F, F⟩ 7→ F,
⟨R′, F⟩ 7→ F,
⟨F, R′⟩ 7→ F,

⟨R1, R2⟩ 7→ {r1 +R r2 | r1 ∈ R1, r2 ∈ R2},

for all R′, R1, R2 ∈ UR, and with multiplicative identity 1M � R. And by
defining +M as:

+M : M × M → M,
⟨F, F⟩ 7→ F,
⟨R′, F⟩ 7→ R′,

⟨F, R′⟩ 7→ R′,

⟨R1, R2⟩ 7→ {r1 +R r2 | r1 ∈ R1, r2 ∈ R2},

for all R′, R1, R2 ∈ UR, and with additive identity 0M � F. One can easily
verify that procedure composition and identity procedures following from
the above definitions are exactly the same as the ones in Definition 3.16. Also,

6.4. Functorial problems and procedures 93

the additive identity F is indeed the annihilating element with respect to the
multiplication operation. Therefore, we have

MLagado B ⟨{F} ∪ UR,+M , F,×M , R⟩ .

The only thing left is to provide an appropriate solution judgement map
ΨLagado. We already know that the resultant family of functions □Lagado

should be the same as the one in Lemma 4.21. Hence, we get that ΨLagado

should be:

Ψ
Lagado
T,A :

(
T

NLagado

−−−−−→ A
)
×

(
T

MLagado

−−−−−→ A
)
→ Bool,

⟨Π,∆⟩ 7→

T if ∆(t , a) , F �⇒ Π(t ,∆(t , a)) � T,

∀t : T, ∀a : A,
F otherwise.

Therefore,
Laputa

(
O∗Lagado,NLagado,MLagado,ΨLagado

)
is indeed the category Lagado(R) as defined before in Definition 4.7.

6.4 Functorial problems and procedures
The semicategories that form the objects of O∗Lagado are discrete semicate-
gories. That means that there’s not much interaction between their elements.
Let’s then see an example where the relation is functorial. That means that
we have compositional properties not only between problems and between
procedures but also within the statements and answers themselves.

To be more concrete, we will be asking that our statements and answers
form categories and that problems and procedures are functors between them.
We already saw in Lemma 5.27 that we can represent any functor Π : C → D
as a bifunctor C × D → And. As part of this realization we also concluded
that it can then be represented as a kinded function with kind being the set
{t, f} (Lemma 5.29).

Note that as C × D → And generalizes also binary relations, we get even
more structure. The functorΠmaps an object C from C to only one and exactly
one object in D. The same holds for morphisms too. However, C × D → And
can map C to any number of objects in D (or to no object too). We will use that
property to handle problems that can have varying number of solutions.
Remark 6.19. It is immediately obvious how also any problem π : T → A as per
Definition 4.1 can be represented in the alternative form T × A → And. The
category T will have an object ⟨t , sT(t)⟩, a pair of element and its size, for every

94 Chapter 6. Compositional computational systems

element t of the normed type T. The category A is similarly defined. Then
Π (⟨t , sT(t)⟩ , ⟨a , sA(a)⟩) � T iff π(t , a) � T. Hence, the definition of problems
in this section encompasses the original one that we saw in the context of Prob
and Lagado(R).

So how would this compositional computational system look like? First,
let’s call it LAnd. We want to deal with categories only, so then we are
interested only in the objects of Cat, the category of (small) categories (Defini-
tion 2.37). It is trivial to see that Cat is indeed a subcategory of SemiCat. As
we take both problems and procedures to be functors (or bifunctors to And),
we know that the sets underlying our two rigs N and M should both be {t, f}.
Note that despite the difference in capitalization, we give the same semantic
meaning to {t, f} and {T, F} � Bool. Hence, the rig NLagado also can apply
here. It also carries the meaning that we wish: to work as functor composition.
Therefore, we define both the problem and procedure rigs to be:

B B ⟨{t, f},∨, F,∧, T⟩ .

And we can define a simple solution judgement map for any two categories T
and A:

ΨLAnd
T,A :

(
T

B−→ A
)
×

(
T

B−→ A
)
→ Bool,

⟨Π,∆⟩ 7→
∧

T∈Ob(T)

∧
A∈Ob(A)

∆(T,A) �⇒ Π(T,A). (6.5)

This behaviorΨLAnd is to simply check whether every time that the procedure
says that a statement and an answer match, they also match according to the
map of the problem.

Now we can define the LAnd category as:

LAnd B Laputa
(
Cat, B, B,ΨAnd

)
.

Let’s see an example of a problem in this setting.

Example 6.20 (Linear systems). As an illustration of a problem with more
structure, let’s consider solving systems of linear equations, that is problems
of the type:

Ax � a ,

where A ∈ Rk×l , a ∈ Rk are given, and we solve for x ∈ Rl . More precisely,
we’ll consider a slight twist of this problem, namely, given a matrix A, find a
function that maps every a to an x such that Ax � a. Note that depending
on A, such a function might not exist (the inconsistent case), or might not be
unique (the indeterminate case).

6.4. Functorial problems and procedures 95

Our statement category will be the category of matrices M defined as fol-
lows. The objects of M are the (positive) natural numbers. A morphism from
an object k to an object l is then a matrix A ∈ Rk×l . The identity morphism for
the object k is the identity matrix Ik . Morphism composition in M is simply
matrix multiplication.

The answer category N also has as objects the (positive) natural numbers.
A morphism from an object k to an object l in N is a function f : Rk → Rl .
Composing two morphisms f : Rk → Rl from k to l and 1 : Rl → Rm from l
to m is the function composition f 1 from k to m. Identity morphism for the
object k is the identity function idRk .

Now we need to provide the problem functorΠL : M×N → And. ΠL maps
a pair of integers to T only if they are the same. Otherwise they are sent to F.
ΠL maps a pair of morphisms, one matrix and one function, to T only if the
function provides an answer to the problem for any input. Formally:

ΠL : M × N → And,

⟨m , n⟩ 7→
{
T if m � n ,
F otherwise,

⟨
A : k → l , f : m → n

⟩
7→

t if k � m , l � n ,

A f (z) � z , ∀z ∈ Rm ,

f otherwise.

In order for this to be a valid functor definition, it must respect morphism
endpoints, as well as the identity and composition requirements.

The endpoints are respected because a pair of a matrix and a function gets
mapped to t only if their dimensions match, which is also the requirement for
mapping their endpoints to T. Validating the identity requirement follows a
similar procedure as in the proof of Lemma 5.27. The composition requirement
states that for any A ∈ Rk×l and B ∈ Rl×m , and every f : k′ → l′ and 1 : l′ → m′

it must hold that:

ΠL (⟨
A, f

⟩
M×N

⟨
B, 1

⟩)
� ΠL(A, f) And Π

L(B, 1). (6.6)

The right-hand side is t only if f is a solution for A and 1 is a solution for B,
i.e. k � k′, l � l′,m � m′, and

A f (u) � u , ∀u ∈ Rk and B1(v) � v , ∀v ∈ Rl .

But that also implies that

AB1(f (u)) � A f (u) � u , ∀u ∈ Rk ,

96 Chapter 6. Compositional computational systems

hence f 1 is an answer for AB, and the left-hand side of Equation (6.6) must
also hold. One can also show that the reverse also holds, i.e. the composition
of answers implies that the two functions should be answers by themselves.

For a given problem statement (i.e. a matrix A ∈ Rk×l), there might be none,
one, or an infinite amount of answers. In other words:

• if A is an inconsistent matrix, there’s no morphism f in HomN(k , l) such
that ΠL(A, f) � t;

• if A is an indeterminate matrix, then there are an infinite amount of
morphisms f ∈ HomN(k , l) such that ΠL(A, f) � t;

• otherwise, there’s exactly one morphism f in HomN(k , l) such that
ΠL(A, f) � t.

Remark 6.21. Equation (6.6) shows why we are interested in functorial rela-
tionships between statement and answer categories. When we have such a
functorial relationship it naturally follows that the kind of a composition of
a statements and answers is the composition of the kinds of the individual
pairs.

Example 6.22 (Solving linear systems via Moore-Penrose pseudoinverses).
One common way to solve a system of linear equations Ax � a is via the
Moore-Penrose pseudoinverse A+. A very useful feature of this result is that
it is well-behaved also for indeterminate and the inconsistent cases. Given a
matrix A ∈ Rk×l and a vector a ∈ Rk , the Moore-Penrose pseudoinverse A+

provides all solutions via the equation

x � A+a + (I − A+A)w ,

where w can be any vector in Rl . If the system has a single answer, then
I − A+A evaluates to a zero matrix, hence x � A+a. If the system has multiple
answers, then they can all be obtained with a suitable choice for w. Finally, if
the system is inconsistent, then AA+a , a, so this can be used as a test.

Therefore, we can now define a procedure ∆MP in LAnd that solves theΠL

problem outlined above.

∆MP : M × N → And,

⟨m , n⟩ 7→
{
T if m � n ,
F otherwise,

⟨
A : k → l , f : m → n

⟩
7→

t if k � m , l � n, and

∀z ∈ Rm exists a w ∈ Rl s.t.
f (z) � A+z + (I − A+A)w ,

f otherwise.

6.5. Probabilistically correct solutions 97

We can directly see that ∆MP is indeed a solution of ΠL, i.e. we have

ΨLAnd
M,N (ΠL ,∆MP) � T.

That is because if we have f (z) � A+z + (I −A+A)w, for any z then f is indeed
the right answer as per the definition of ΠL.

Example 6.23 (Linear systems (extended)). Let’s revisit the problem definition
in Example 6.20. We mentioned that a linear system represented by a matrix
A can have no solutions, a single one, or an infinite amount of solutions. Note
that when the matrix has no solutions, then no matter what function we pair
it with, it will never map to the t morphism in And. Hence, if a matrix
together with some function map to t, the corresponding linear system would
have either one or an infinite amount of solutions. More concretely, if A is
invertible, it’d be of the first case, otherwise, it’d be of the second case. And
furthermore, note that the product of two matrices A and B is invertible only
if both of them are. This hints at a compositionality property.

Let’s modify And a bit:

T F

f

f

t1

t∞ f

f .

We call this category And# and we identify t1 t1 with t1 and all other
compositions between t1 and t∞ with t∞. Now, we can have a problem
ΠL# : M × N → And# that maps single-solution and multi-solution problems
to different morphisms in And# while respecting the compositionality of this
property.

Note that ΠL# is not a problem in LAnd, but rather can be one in a Laputa
category where the kinds for the problems are the morphisms of And#:

LAnd# B Laputa
(
Cat, B#, B,ΨAnd#

)
,

with B# andΨAnd# appropriately defined.

6.5 Probabilistically correct solutions
So far we have been working in a deterministic setting. However sometimes
we can solve a problem only probabilistically, i.e. we will get an “answer” but
whether this answer is correct or not is something that we cannot be 100%
sure.

98 Chapter 6. Compositional computational systems

One example of that are inference problems. When dealing with such
problems, one usually has a dataset sampled from a (partially) unknown
distribution and they need to infer the distribution from the data. Because
the sample is a random variable itself, the inference about the distribution is
also random. Hence, conclusions about it can be only made in a probabilistic
setting. We’ll illustrate this in Examples 6.24 and 6.25.

Another setting where we speak of having a solution only probabilistically
is the case of randomized algorithms. We will show how verifying that a
function solves a linear system (the problem in Example 6.20) can be solved
with a randomized algorithm.

The computational computational system that we will be using will be very
similar to the LAnd system in the previous section. Again, statements and
answers will form categories. However, now instead of having kind {t, f} we
will use probabilities instead.

So we define the category of probabilities Pr. It has a single object ◦, and
morphisms indexed by the reals in the range [0, 1]. The identity morphism on
this object is 0, and the composition of two morphisms r1, r2 is

r1 r2 B min(1, r1 + r2).

We still need to define a rig on the morphisms of this category. The objects
of this rig would be simply the reals in the range [0, 1]. When we compose
problems, we would like the resulting probability to be the probability that
both statement-answer mappings are correct, hence, assuming that they are
independent, that would result in the product of their respective probabilities.
And as we integrate over the various terms for the inner object, we would like
to pick the pair that results in the highest probability. Hence, we define our
probability rig as:

Pr B ⟨{x ∈ R | x ∈ [0, 1]},max, 0,×, 1⟩ .

One can easily check that with this definition composition, identities, and the
annihilation properties follow.

Finally, we also need a solution judgement map. Let’s choose the following
semantics for something being a “solution”: a procedure is a solution to a
problem if the probability that the procedure assigns to the correctness of a
pair of a statement and an answer is at least as high as the probability assigned
by the problem. Hence, we want to err on the safe side. Put more formally:

ΨLPr
T,A :

(
T

Pr−→ A
)
×

(
T

Pr−→ A
)
→ Bool,

⟨Π,∆⟩ 7→
∧

T∈Ob(T)

∧
A∈Ob(A)

∆(T,A) ≥ Π(T,A).

6.5. Probabilistically correct solutions 99

Therefore, the resulting compositional computation system can be defined
as:

LPr B Laputa
(
Cat, Pr, Pr,ΨLPr) .

In order to illustrate the utility of LPr, let’s take a look at a concrete example
of a problem in it.

Example 6.24 (Location model of the normal distribution). Consider the prob-
lem of estimating the mean of a normally distributed variable. Take X to
be normally distributed with an unknown mean µ and known variance σ2,
i.e. X ∼ N(µ, σ2). We also assume a Bayesian setting, hence we take as a
prior that µ is also normally distributed with known mean and variance, i.e.
µ ∼ N(µ0, σ2

0). The problem then is, given n identically and independently
distributed (iid) samples x1, . . . , xn taken from X, and an interval [l , u] in R,
find the probability that µ is in this interval, i.e. P(µ ∈ [l , u] | x1, . . . , xn).

Our statement category T is a discrete category, with objects finite sets
of real numbers. The only morphisms are the identity morphisms, hence
morphism composition is not possible. Hence, an element T ∈ Ob(T) is a
dataset with n � |T | samples.

The answer category A is a preorder (aBool-enriched category, or a category
with at most one morphism between objects) with objects the real numbers
and with morphism i : l → u , l , u ∈ Ob(A) designating the [l , u] interval in
R. Note that we require that the intervals are always valid, i.e. l ≤ u. The
identity morphism on object x is the interval [x , x]. Morphism composition
is simply interval concatenation, i.e. given any i : l → u, i′ : u → u′, we have
that i i′ : l → u′ is the interval [l , u′].

Now, the problem functorΠN : T × A → Pr maps (the identity morphisms
on) a dataset T sampled iid from X and an interval [l , u] to the probability
that the unknown µ is in the interval:

ΠN : T × A → Pr,
⟨T, x⟩ 7→ ◦,

⟨idT , [l , u]⟩ 7→ P
(
µ ∈ [l , u] | T

)
.

The compositionally of this system is due to the fact that the probability of µ
falling in an interval [l , u]which contains m equals the sum of the probabilities
that it falls in either [l ,m] or in [m , u].

We can also provide a procedure for solving the ΠN problem.

Example 6.25 (Solving the location model). It is a well-known fact that the
posterior distribution of µ given a dataset T � {x1, . . . , xn} is also normal and

100 Chapter 6. Compositional computational systems

is distributed as

µ | x1, . . . , xn ∼ N

(
σ2

0

σ2
0 +

σ2

n

1
n

n∑
i�1

xi +
σ2

nσ2
0 + σ

2
µ0︸ ︷︷ ︸

µ∗(T)

,
1

n
σ2 +

1
σ2

0︸ ︷︷ ︸
σ∗(T)

)
.

Therefore the probability that µ ∈ [l , u] is:

P
(
µ ∈ [l , u] | T

)
� Φ

(
u − µ∗(T)
σ∗(T)

)
−Φ

(
l − µ∗(T)
σ∗(T)

)
, (6.7)

whereΦ is the cumulative distribution function of the standard normal distri-
bution.

Hence, we have the procedure

∆N : T × A → Pr,
⟨T, x⟩ 7→ ◦,

⟨idT , [l , u]⟩ 7→ Φ
(

u − µ∗(T)
σ∗(T)

)
−Φ

(
l − µ∗(T)
σ∗(T)

)
.

We can immediately see from Equation (6.7) that ∆N always return the same
morphism in Pr as ΠN . Hence, we must have ΨLPr

T,A
(
ΠN ,∆N)

� T, meaning
that the procedure ∆N is indeed a solution for the problem ΠN .

Let’s also take a look at a probabilistic algorithm. Recall Example 6.22.
The definition of the procedure contains a statement like “for every z ∈ Rm ,
there exists a w ∈ Rl”. However, an algorithm that checks a statement for all
elements of an uncountably infinite set would never terminate. Hence, that is
not a very good procedure. We will now look into a randomized algorithm
that can check whether a function f provides solutions for the linear system
A with various degrees of certainty.

Example 6.26 (Randomized verification of linear system answers). If we don’t
have any additional information about the functions that constitute the mor-
phisms of N, e.g. that they are linear, then there can be no deterministic
procedure that can verify that a function always provides the correct answer
to a system A. To see why this is the case, assume that there’s a function f
that is indeed the correct answer, i.e. A f (z) � z , ∀z ∈ Rm , where A ∈ Rm×n .
Now pick any z′ ∈ Rm and a y ∈ Rn such that y , f (z′). Then the function

f ′(z) �
{

f (z) if z , z′,
y otherwise

6.5. Probabilistically correct solutions 101

provides the correct answer everywhere but on z′. A procedure can only find
this if it checks for all elements of Rm which can be an infinitely long process.

We can, however, sample many random vectors from Rm . If A f (z) � z
holds on all of them, then it is very likely that f is a correct answer. Exactly
how likely is a question that we can answer with the Hoeffding’s inequality
(Hoeffding, 1963). The Hoeffding’s inequality states that if X1, . . . ,Xn are iid
random variables with support on the interval [0, 1], then:

P

(
E[X] − 1

n
(X1 + . . . + Xn) ≥ t

)
≤ e−2nt2

, ∀t ≥ 0.

Take an iid sample V � {v1, . . . , vn} of vectors from Rm . We said that we
can be never completely right so let’s say that we are happy if the function f
fails to produce the right answer in at most η of the cases. For example, for 1
in 1000 failure rate, that’d be η � 0.001.

We can consider the indicator variable

b(z) B 1[A f (z),z]

to be a Bernoulli random variable. Let’s also assume that for all vi ∈ V it holds
that b(vi) � 0. After all, if that’s not the case we know that f is not a correct
answer. As all random variables b(vi) have support only on 0 and 1, we can
apply Hoeffding’s inequality:

P

(
EZ[A f (Z) , Z] − 1

n
(b(v1) + . . . + b(vn)) ≥ t

)
≤ e−2nt2

, ∀t ≥ 0,

where EZ[A f (Z) , Z] is the probability that f is not A’s answer for some z.
And as all b(vi) are 0, this becomes

P
(
EZ[A f (Z) , Z] ≥ t

)
≤ e−2nt2

, ∀t ≥ 0.

We said above that we are willing to tolerate at most η failures, so:

P
(
EZ[A f (Z) , Z] ≥ η

)
≤ e−2nη2

.

Hence, using the above result we can define the following procedure which
evaluates the probability that a function f is the correct answer to a linear
system problem with statement A:

∆S : M × (N ×N≥1) → Pr,
⟨m , ⟨n , s⟩⟩ 7→ ◦⟨
A,

⟨
f , s

⟩⟩
7→ min

{
1 − max {b(v1), . . . , b(vs)} , 1 − e−2sη2

}
,

102 Chapter 6. Compositional computational systems

where N≥1 is the discrete category whose elements are the positive natural
numbers, and the {v1, . . . , vs} is an iid sampled dataset of size s. It is assumed
that η is a constant that is determined beforehand.

For example, if we take η � 0.001 as above and we take s � 1, 000, 000
samples, all of which resulting in b(vi) � 0, then we have the probability of f
providing the correct answer in at least 99.9% of all possible cases to be

1 − exp(−2 × 1, 000, 000 × 0.0012) � 0.8647,

so about 86.5%. However, if even for a single vi we have b(vi) � 1, then ∆S

would map to 0%.

Part II

Co-design and compositional
computation

103

Chapter 7

The mathematical theory of
co-design

This part of the thesis will be mainly devoted to the theory of co-design and
how it fits in the compositional computational systems developed in Part I.
The theory of co-design is particularly rich in compositional structure which
makes it a very good choice for illustrating the main concepts developed in
this work. Furthermore, co-design is of significant utility for designing and
optimizing real-world systems, hence showing connections with it further
illustrates the theory of compositional computational problem-solving.

We start this extended example by first introducing the mathematical theory
of co-design. This chapter will review just the fundamental definitions and
results and might be rather dry to the reader who encounters co-design for the
first time. For those interested to learn more, we strongly recommend (Censi
et al., 2020). Historically, co-design, as we use it here, was first proposed by
Censi (2016) as means for designing complex physical systems with multiple
design objectives. It can also be extended to work with uncertainties (Censi,
2017). Nevertheless, its applications are much broader than this and it sits
on an especially rich compositional and category-theoretical foundation. In
this and the following chapters we will explore that and provide some new
useful results as well as connections with some compositional computational
systems.

105

106 Chapter 7. The mathematical theory of co-design

7.1 A bit more order theory
We first introduced some notions of order theory in Section 2.1 because they
were necessary for the development of the compositional computational the-
ories in the first part of this thesis. Co-design is solidly grounded in order
theory. Therefore, we need to also arm ourselves with the notions of upper
and lower closures, joins, meets, lattices, as well as with some properties of
posets.

Definition 7.1 (Upper closure). The operator ↑ maps subsets S of a poset
⟨P, ≤P⟩ to the smallest upper sets that contain them:

↑ : PP → UP,
S 7→ {y ∈ P : ∃x ∈ S : x ≤P y}.

Lemma 7.2. Given a poset ⟨P, ≤P⟩, UP is a poset with order given by

A ≤UP B B A ⊇ B.

There is a top element in UP and it is the empty set. There is also a bottom element:
P itself.

We can similarly define the dual concept of lower closure:

Definition 7.3 (Lower closure). The operator↓maps subsets S of a poset (P, ≤P)
to the smallest lower sets that contain them:

↓ : PP → LP,
S 7→ {y ∈ P : ∃x ∈ S : y ≤P x}.

Lemma 7.4. Given a poset ⟨P, ≤P⟩, LP is a poset with order given by

A ≤LP B B A ⊆ B.

There is a top element in LP and it is P itself. There is also a bottom element: the
empty set �.

Definition 7.5 (Join). Given a poset P � (P, ≤P) and a subset of its elements
S ⊆ P, then the join

⊔
S of this subset is an element x ∈ P such that s ≤P x,

for all s ∈ S, and for any x′ ∈ P, such that s ≤P x′, ∀s ∈ S, we have x ≤ x′. In
other words,

⊔
S is the least element that reduce to all elements of S. If S has

only two elements, i.e. S � {a , b}, we will also denote their join by a ⊔ b. The
join of a subset S does not always exist.

7.1. A bit more order theory 107

Example 7.6. Take the real numbers and their typical order ≤. Then the join
of any two a , b ∈ R is

a ⊔ b � max{a , b}.
The join of the subset S1 � {x ∈ R : 0 ≤ x ≤ 1} is

⊔
S1 � 1. The join of the

subset S2 � {x ∈ R : 0 < x < 1} is also
⊔

S2 � 1, even though 1 < S2.

Example 7.7. Take the set

P � {(△, x) : x ∈ R, x < 0} ∪ {(◁, x) : x ∈ R, x ≥ 0} ∪ {(▷, x) : x ∈ R, x ≥ 0},

together with the relation ≤P such that:
i. (△, a) ≤P (△, b) ⇐⇒ a ≤ b,

ii. (◁, a) ≤P (◁, b) ⇐⇒ a ≤ b,
iii. (▷, a) ≤P (▷, b) ⇐⇒ a ≤ b,
iv. (△, a) ≤P (◁, 0), ∀a ∈ R, a < 0 ,
v. (△, a) ≤P (▷, 0), ∀a ∈ R, a < 0.

Then
⊔{(△, x) ∈ R : x < 0} does not exist because, both (◁, 0) and (▷, 0) are

upper bounds for the subset but neither reduces to the other. If we also had
(◁, 0) ≤P (▷, 0) and (▷, 0) ≤P (◁, 0), then both of them would be joins for this
subset, and would be equal due to the antisymmetry property of posets.

Definition 7.8 (Meet). Given a poset P � (P, ≤P) and a subset of its elements
S ⊆ P, then the meet

d
S of this subset is an element x ∈ P such that x ≤P s,

for all s ∈ S, and for any x ∈ P, such that x′ ≤P s , ∀s ∈ S, we have x′ ≤ x.

Remark 7.9. The meet is a dual of the join (i.e. it is the join in the opposite
poset), hence all the claims for the join hold equally for the meet.

Definition 7.10 (Lattice). A lattice is a poset ⟨P, ≤⟩ with some additional prop-
erties:

i. Given two points p , q ∈ P, it is always possible to define their join a ⊔ b;
ii. Given two points p , q ∈ P, it is always possible to define their meet a ⊓ b.

Definition 7.11 (Bounded lattices). If there is a least upper bound for the entire
lattice A, it is called the top (⊤). If the greatest lower bound exists it is called
the bottom (⊥). If both a top and a bottom exist, we call the lattice bounded, and
denote it by ⟨A, ≤,⊔,⊓,⊥,⊤⟩.

Lemma 7.12. Given a poset R, UR is a bounded lattice (Definition 7.10) with

⟨UR, ≤UR ,⊥UR ,⊤UR ,⊔UR ,⊓UR⟩ � ⟨UR, ⊇, R,�,∩,∪⟩ .

Proof. Can be found in (Censi et al., 2020). □

Lemma 7.13. Given a poset F, LF is a bounded lattice (Definition 7.10) with

⟨LF, ≤LF ,⊥LF ,⊤LF ,⊔LF ,⊓LF⟩ � ⟨LF, ⊆,�, F,∪,∩⟩ .

108 Chapter 7. The mathematical theory of co-design

Proof. Can be found in (Censi et al., 2020). □

Lemma 7.14. Given a poset ⟨P, ≤P⟩, we can identify every element p ∈ P by an upper
set in UP, by taking its upper closure. Furthermore, there exists a partial function
κP : UP ↪→ P such that

P′
� ↑{p} ⇐⇒ κP (P′) � p.

Proof. We give an explicit definition for κP :

κP : UP ↪→ P,

u 7→
{

p′ if exists p′ ∈ u such that p′ ≤P u′, ∀u′ ∈ u ,
undefined otherwise.

Note that if such p′ exists it must be unique due to the antisymmetry property
of posets. Furthermore, we can see from Definition 7.1 that for any p it holds
that κP

(
↑{p}

)
� p. Now we need to also show that ↑{p} is the only upper set

in UP which κP maps to p. Assume there is another upper set v ∈ UP such
that p ∈ v , p ≤P v′, ∀v′ ∈ v. As ↑{p} is the smallest such upper set, v must
contain at least one additional element x, for which it must hold that x ≤P p,
p ≤P x or they are not comparable. The first case is in contradiction with the
definition of κP , the second case implies that x ∈ ↑{p} and v cannot be distinct,
which is another contradiction, and the last again contradicts the definition of
κP . Hence, v must equal ↑{p}. □

Lemma 7.15. Given a family P′ � {Pi}i∈I of upper sets of the poset ⟨P, ≤P⟩ indexed
by a set I, their union

∪
i∈I Pi is also an upper set.

Lemma 7.16. Given a poset A, and any element a ∈ A, it holds that:

↑A{a} � ↓Aop{a}.

7.2 Design problems
From a mathematical point of view, a “design problem” is simply a different
name for a feasibility relation. We first saw the notion of feasibility relation
in Definition 2.14. Then, feasibility relations were used to keep track of the
resources required for computing procedures (Definition 3.16). However, de-
sign problems (as we will call them from now on) are much richer in structure
and are the building blocks of co-design.

From a semantic point of view, design problems illustrate trade-offs in
decision-making. If we have two posets F and R and a feasibility relation

7.2. Design problems 109

(or, interchangeably, a design problem) with functionality F and resource R is
written

d : F ↛ R.

We call the elements of F a functionality because they usually refer to some-
thing we want, e.g. money in the right currency, a new bike, universal health-
care, or a well-functioning legal system. Each element of F corresponds to a
different specific instance of this class of desired things, and the order on P
acts to designate which instances are more preferable. For example, getting
100 CHF is commonly believed to be better than getting 10 CHF and having
impartial judges but limited access to legal help, while not perfect, is perhaps
better than having biased judges and limited access to legal help. Both of these
things can be expressed as order relations on the functionality poset F.

But, as people say, “there is no free lunch”. Hence, the elements of the
poset on the other end of the design problem, the resource R, correspond to
the “price” of getting what we want. It can represent other currencies, or debt,
prices, tax burden, or political risk. And again we can have our preferences
ordered.

Recall that we ask for feasibility relations to be monotone. When we trans-
late this to the interpretation we use above this results in the following philos-
ophy:

If it is possible to get feasibility f by giving up resource r, then it is also
possible to get it by giving up “more” than r, e.g. r′ ≥R r. Similarly, if
it is possible to get feasibility f by giving up resource r, then it is also
possible to get “less” than f , e.g. f ′ ≤F f with the same resource r.

At first this might seem a little bit constraining and the curious reader might
be ready to argue that many things in the real world are not monotone. If
that’s the case, we’d like to urge them to look for an example that cannot be
represented as or converted to a monotone problem. It is surprisingly difficult.

The intuition and applications are much broader and Censi et al. (2020) do
a great job at explaining them so we recommend the reader to refer to their
paper. We will instead focus on the mathematical aspects of co-design.

Definition 7.17 (Composite design problem). Given three posets P, Q and R,
and two design problems (feasibility relations) Φ : P ↛ Q and Ψ : Q ↛ R,
one can define a (then-)composite design problem for P given R as

Φ Ψ : Pop × R → Bool,⟨
p , r

⟩
7→

∨
q∈Q

Φ(p , q) ∧Ψ(q , r),

where q ∈ Q refers to the set of objects of the poset Q.

110 Chapter 7. The mathematical theory of co-design

An intuition for the composite feasibility relation is that p can be obtained
given r if there is at least one q ∈ Q which can be obtained given r and which
in turn can be used to obtain p.

Lemma 7.18. The composite design problem is indeed a design problem (feasibility
relation), i.e. composition preserves monotonicity.

Proof. As Φ and Ψ are monotone maps to Bool we only need to show that ∨
and ∧ preserve monotonicity. We can directly see that from how they map the
product poset Bool × Bool to Bool:

□

Lemma 7.19. The composite design problem is associative, i.e. for any four posets
P,Q , R, S and three feasibility relations ΦPQ : P ↛ Q, ΦQR : Q ↛ R, and
ΦRS : R ↛ S we have:

(ΦPQ ΦQR) ΦRS � ΦPQ (ΦQR ΦRS).

Proof. Due to the properties of ∨ and ∧ we have:

(ΦPQ ΦQR) ΦRS �

∨
r∈R

©«
∨
q∈Q

ΦPQ(p , q) ∧ΦQR(q , r)ª®¬ ∧ΦRS(r, s)

�

∨
r∈R

∨
q∈Q

[
ΦPQ(p , q) ∧ΦQR(q , r) ∧ΦRS(r, s)

]
.

The same can be shown for ΦPQ (ΦQR ΦRS), hence the composition of
design problems is associative. □

Definition 7.20 (Identity design problem). For any poset P � (P, ≤P) one can
define the identity design problem Φid

P : P ↛ P as

Φid
P (p , p′) �

{
T if p ≤P p′,

F otherwise.

Lemma 7.21. The identity design problem is indeed a design problem.

Proof. In order to show that the identity design problem is a design problem
we need to show that it is a monotone map to Bool. In particular, that if for
some p , p′, q , q′ ∈ P we have that⟨

p , p′⟩ ≤(Pop×P)
⟨
q , q′

⟩
,

7.2. Design problems 111

then Φid
P (p , p′) ≤Bool Φid

P (q , q′).
From Definition 2.6 and Definition 2.7 we know that:⟨

p , p′⟩ ≤(Pop×P)
⟨
q , q′

⟩
⇐⇒ p ≤Pop q ∧ p′ ≤P q′

⇐⇒ q ≤P p ∧ p′ ≤P q′.

If p ≤P p′ then by the transitivity property of posets q ≤P q′. But then also
Φid

P (p , p′) � T and Φid
P (q , q′) � T, so Φid

P (p , p′) ≤Bool Φid
P (q , q′). If p ≰P p′, then

Φid
P (p , p′) � F and for any value ofΦid

P (q , q′) we haveΦid
P (p , p′) ≤Bool Φid

P (q , q′).
□

Definition 7.22 (Product design problem). Given 4 posets P,Q , R, S and two
design problems Φ : P ↛ Q and Ψ : R ↛ S, we define the product design
problem for the product poset P × R given the product poset Q × S as

Φ ×Ψ : (P × R)op × (Q × S) → Bool,⟨⟨
p , r

⟩
,
⟨
q , s

⟩⟩
7→ Φ(p , q) ∧Ψ(r, s).

Lemma 7.23. The product design problem is indeed a design problem.

Proof. In order to show that the product design problem is a design problem
we need to show that it is a monotone map to Bool. Consider some p , p′ ∈ P,
q , q′ ∈ Q, r, r′ ∈ R, s , s′ ∈ S such that

(Φ ×Ψ)
(⟨

p , r
⟩
,
⟨
q , s

⟩)
� T,

as well as
⟨
p′, r′

⟩
≤P×R

⟨
p , r

⟩
, and

⟨
q , s

⟩
≤Q×S

⟨
q′, s′

⟩
. From the product

poset definition (Definition 2.6) we have:⟨
p′, r′

⟩
≤P×R

⟨
p , r

⟩
�⇒ p′ ≤P p ∧ r′ ≤R r,⟨

q , s
⟩
≤Q×S

⟨
q′, s′

⟩
�⇒ q ≤Q q′ ∧ s ≤R s′.

Also from the product design problem definition:

(Φ ×Ψ)
(⟨

p , r
⟩
,
⟨
q , s

⟩)
� T �⇒ Φ(p , q) � T ∧ Ψ(r, s) � T.

And due to the monotonicity of Φ andΨwe have:

Φ(p , q) � T
p′ ≤P p
q ≤Q q′

 �⇒ Φ(p′, q′) � T,

Ψ(r, s) � T
r′ ≤R r
s ≤S s′

 �⇒ Ψ(r′, s′) � T

Therefore, (Φ ×Ψ)
(⟨

p′, r′
⟩
,
⟨
q′, s′

⟩)
is also T. □

112 Chapter 7. The mathematical theory of co-design

Definition 7.24 (Sum design problem). Given 2 posets P,Q and two design
problems Φ : P ↛ Q andΨ : P ↛ Q, we define the sum design problem for the
two as:

Φ ∨Ψ : Pop × Q → Bool,⟨
p , q

⟩
7→ Φ(p , q) ∨Ψ(p , q).

Lemma 7.25. The sum design problem is indeed a design problem.

Proof. In order to show that the sum design problem is a design problem
we need to show that it is a monotone map to Bool. Consider some p , p′ ∈
P, q , q′ ∈ Q such that (Φ ∨Ψ) (p , q) � T, p′ ≤P p, and q ≤Q q′. Note from
Definition 7.24 that the sum relation is true if at least one of its two terms are
true. And due to the monotonicity of Φ and Ψ, if one of them is T for (p , q),
it must be T for (p′, q′). Hence if (Φ ∨Ψ) (p , q) � T, then it must hold that
(Φ ∨Ψ) (p′, q′) � T as well. □

Definition 7.26 (Intersection design problem). Given 2 posets P,Q and two
design problems Φ : P ↛ Q and Ψ : P ↛ Q, we define the intersection design
problem for the two as:

Φ ∧Ψ : Pop × Q → Bool,⟨
p , q

⟩
7→ Φ(p , q) ∧Ψ(p , q).

Lemma 7.27. The intersection design problem is indeed a design problem.

Proof. Analogous to the proof of Lemma 7.25 □

Chapter 8

Solving design problems

So far we have discussed design problems (feasibility relations) and the posets
on which they operate. We have seen various ways to combine them and
to build more complex problems from simple ones. However, we have not
mentioned how one can solve a design problem. This section will focus on
that. The parts of this section which describe the means for representing
the solutions of design problems and solving them follow the treatment from
Censi (2016). To the author’s best knowledge, the characterization of the
properties needed for a design problem to be solvable with these techniques
is a novel contribution of this work.

8.1 Representation of a solution
First, we need to address the question of what does it even mean to solve
a design problem. Intuitively, we mean finding the “smallest” resource that
makes a given functionality in which we are interested feasible. However, as
we deal with posets, there might also be multiple non-comparable resources
that make our target functionality feasible. Therefore, we will need some more
tools in order to make this definition specific.

Definition 8.1 (Chain). A chain in a poset P � (P, ≤P) is a subset C ⊆ P such
that for any a , b ∈ C we have either a ≤P b or b ≤P a.

Definition 8.2 (Antichain). An antichain in a poset P � (P, ≤P) is a subset A ⊆ P
such that for any a , b ∈ A it holds that if a ≤P b then a � b. The set of all
antichains in P will be denoted by AP.

113

114 Chapter 8. Solving design problems

A chain is a subset of the poset on which we have total order (also called
linear order). An antichain is the opposite: none of the elements of an antichain
are comparable.

Definition 8.3 (Minimum elements of a set). The minimum elements map of a
poset P � (P, ≤P) is the function

Min: PP → AP
S 7→ {x ∈ S | (y ∈ S) ∧ (y ≤P x) �⇒ (x � y)}.

Min maps every subset of P to the antichain that contains all elements in the
subset that do not reduce to any other element of the subset.

Note that for a set S endowed with a relation ≤S there’s a difference between
the minimum element min S, should such exist and the minimum elements
Min S. The first exists only if there is an element s ∈ S such that s ≤ p, ∀p ∈ S.
If, however, there is an element s′ ∈ S which is not comparable with s, then
there would be no minimum element in S. In this case we can still have (an
antichain of) minimum elements, which is a generalization of the minimum
element.

Lemma 8.4. AP is a poset with order given by

A ≤AP B B ↑A ⊇ ↑B.

Proof. This is a poset because A ⊆ B ∧ B ⊆ A �⇒ A � B. There is a top
element in AP and it is the empty set. There is a bottom element only if P
itself has a bottom element. If that is the case, then the bottom of AP is the
bottom of P. □

All the computational results in this section make use of an intuitive duality
between upper sets and the minimum elements. The idea is that each upper
set can be compactly represented with its set of minimum elements and that
(most) operations performed on upper sets can be performed more efficiently
on their corresponding antichains of minimum elements. However, there are
some subtleties when dealing with the minimum elements of a set that have
counter-intuitive results, as the following example illustrates.

Example 8.5. Consider the (total) order on the reals (R, ≤) and the subset
S � {x ∈ R | x > 3.0}. One might expect that Min S � {3.0} but 3.0 < S, hence
that cannot be true. In fact, as for every x ∈ S we have at least one y , x, such
that y ≤ x, it is true that for no x ∈ S it holds that

(y ∈ S) ∧ (y ≤ x) �⇒ (x � y).

Therefore, Min S � �. Furthermore ↑Min S � �.

8.1. Representation of a solution 115

For reasons that will become clear later in this section this setting is highly
undesirable. In fact, we would like to make use of the following relation for
every upper set U ∈ UP:

U � ↑Min U. (8.1)

So, the natural question to ask and study is what are the conditions for Equa-
tion (8.1) to hold. Theorem 8.7 addresses this question.
Remark 8.6. Using the minimum antichain as a representation for an upper set
is an idea going back to the original paper by Censi (2016) that introduced
the mathematical theory of co-design. However, Censi did not consider the
conditions under which Equation (8.1) holds true. To the best of the author’s
knowledge, no subsequent publications have addressed this question. Theo-
rem 8.7 proposes an answer to it and is one of the main results of this section.
When combined with the conditions necessary for solving loop problems with
the Kleene Fixpoint Theorem (Theorem 8.33), we end up at the definition of
well-behaved design problems (Definition 8.39). This definition clarifies a
fundamental but previously unaddressed theoretical aspect of the theory of
co-design: which design problems admit the solution techniques forming the
basis of computational co-design.

Theorem 8.7 (Equivalence between upper sets and their minimum elements).
Sufficient conditions for Equation (8.1) to hold for an upper set U ∈ UP are:

i. U is a finite set, or
ii. every chain in U has a lower bound, or
iii. for every element a of a chain in U which doesn’t have a lower bound it holds

that {x ∈ U | x ≤ a} ∩ Min U , �.
The third condition is also a necessary condition.

Before we prove it, we need the definition for a lower bound of a chain and
the axiom of choice.

Definition 8.8 (Lower bound of a chain). Given a poset P � (P, ≤P) and a
subset S ⊆ P, the lower bound of S (under the induced order from P) is an
element of P such that ∀s ∈ S, p ≤ s.

Example 8.9. Take again the (total) order on the reals (R, ≤) and the subset

S � {x ∈ R | x > 3.0}.

First, note that S is a chain as it has a total order. Any y ≤ 3.0 is a lower bound
of the chain S, hence a chain can have more than one lower bound. Consider
now the subset

S′
� {x ∈ R | x < 3.0}.

This is also a chain but has no lower bound.

116 Chapter 8. Solving design problems

Definition 8.10 (Choice function). A choice function is a function f that is
defined on some collection X of nonempty sets and assigns to each set S in
that collection some element f (S) of S.

We need a choice function in order to be able to “take an element from
the set S”. One can construct such a function for a finite collection X by
simply stating which element should be picked out from every set. Things get
complicated when the collection X has an infinite amount of sets. Then, such
a construction cannot be created and there is no way to show that it even exists
under the usual axioms of set theory (e.g. Zermelo-Fraenkel axiomatization).
That is why we need the Axiom of choice:

Axiom 8.11 (Axiom of choice). Given a non-empty family X � {Xi}i∈I of non-
empty sets indexed by the elements of I, there exists a choice function for X,
that is a function

f : I →
∪
i∈I

Ai ,

such that for all i ∈ I, it holds that f (i) ∈ Ai .

Armed with the above definitions and the Axiom of choice, we can now
prove Theorem 8.7.

Proof of Theorem 8.7. Given a subset S ⊆ P and s ∈ S we can define the set of
all the elements of S strictly preceding s as:

Ss � {x ∈ S | x ≤P s ∧ x , s}.

We will call Ss the strictly preceding set of s in S. Hence, we can rewrite the
definition of Min as:

S 7→ {x ∈ S | Sx � �}.

Using this we can rewrite the expression in Equation (8.1) as:

U � ↑Min U
� {u ∈ P | ∃m ∈ Min U, s.t. m ≤P u}
� {u ∈ U | ∃m ∈ Min U, s.t. m ≤P u} (8.2)
� {u ∈ U | ∃m ∈ {x ∈ U | Ux � �}, s.t. m ≤P u}
� {u ∈ U | ∃m ∈ U, s.t. Um � � ∧ m ≤P u}. (8.3)

Equation (8.2) follows from the fact that for no p ∈ P/U it can hold that m ≤P u
for some m ∈ Min U ⊆ U. Therefore, proof of equality in Equation (8.3) boils
down to showing that for every u ∈ U there is an m for which the condition
on the right-hand-side holds.

8.1. Representation of a solution 117

We will start with showing that (ii) is a sufficient condition. For any chain
C ⊆ U we then have a lower bound L(C). Then it must hold that CL(C) � �,
otherwise L(C) wouldn’t be a lower bound.

To prove that (ii) holds we will show that for every u ∈ U we can build
a sequence by recursively picking elements from the strictly preceding set of
the last element of the sequence until we reach a u′ ∈ U, such that Uu′ � �.
Note that by the Axiom of choice we can have a choice function that selects an
element from every non-empty Uu :

I � {u ∈ U | Uu , �}

f : I → U, s.t. ∀i ∈ I , f (i) ∈ Uu .

For an u1 ∈ U, if Uu1 � �, then the right-hand-side of Equation (8.3) holds
trivially and u1 ∈ ↑Min U. Otherwise, if Uu1 , �, then we can use f to select
another element u2 � f (u1) ∈ Uu1 . Again, if Uu2 � �, then the right-hand-
side of Equation (8.3) holds for m � u2. If Uu2 , �, then we can continue
building the sequence. This sequence is strictly decreasing, as we always
pick the next element from the strictly decreasing set of the previous element.
Hence, it is a chain, and as every chain has a lower bound, the sequence must
terminate, and the final element would be one that satisfies the right-hand-
side of Equation (8.3) and u1 ∈ ↑Min U. This holds for any u1 ∈ U, so the
equality of the two sides of Equation (8.3) directly follows.

Now, let’s show that (i) implies (ii), hence it is also a sufficient condition.
We will do that by contradiction. Assume U is finite, but there is some chain
starting at a ∈ U which doesn’t have a lower bound. Hence, �b ∈ Ua , Ub � �,
i.e. ∀b ∈ Ua , Ub , �. Assume again that we have a choice function f
from every Ub , b ∈ Ua . These subsets are all non-empty, so its existence
is guaranteed (and as Ub ⊂ Ua ⊂ U and PU are all finite, we don’t even need
the Axiom of choice). So we can build a sequence (which is also a chain) as in
the previous paragraph. However, we will never reach the terminal condition,
so this sequence would be infinite. Furthermore, as it is a strictly decreasing
sequence, its elements must be all unique. Hence we are trying to select an
infinite amount of unique elements from a finite set, which is impossible.
Therefore, every chain in a finite set must have a lower bound.

Let’s prove the third necessary condition. Note that {x ∈ U | x ≤ a} ∩
Min U , � holds for every a ∈ U, such that all the chains that contain it have
a lower bound (following from (ii)). Hence, condition (iii) states that for all
elements a ∈ U, it holds that {x ∈ U | x ≤ a} ∩ Min U , �. But:

{x ∈ U | x ≤ a} ∩ Min U , � ≡ ∃m ∈ U, s.t. Um � �, m ≤ a , (8.4)

which is the right-hand-condition of Equation (8.3). Therefore, the condition
holds for all elements of U and the equality of the sets holds.

118 Chapter 8. Solving design problems

Finally, we have to confirm that (iii) is also a necessary condition. In
particular, we have to show that if there is an element a ∈ U, such that
{x ∈ U | x ≤ a} ∩Min U � �, then a < ↑Min U. From Equation (8.4) we know
that the condition in Equation (8.3) would not be satisfied for this a, hence
a < ↑Min U. This concludes the proof. □

Example 8.12. Let’s now see where Example 8.5 fails. We saw that

S � {x ∈ R | x > 3.0}

does not satisfy Equation (8.1). Now we can see why. The set is itself a
chain with no lower bound. Furthermore, as Min S � �, condition (iii) in
Theorem 8.7 is violated. Therefore, one should either restrict themselves to
upper sets of R defined by non-strict inequalities, i.e.

S′
� {x ∈ R | x ≥ 3.0},

or would need to extend R with special elements that serve as minimums:
R � R ∪ {Lx | x ∈ R} such that

Lx < y , ∀y ∈ {y′ ∈ R | x ≤ y′}, ∀x ∈ R.

Now we can better describe what we mean by solving a design problem.
Given a design problem D : F ↛ R, and a functionality f ∈ F which we wish
to obtain, we define the feasible set of resources for f as the set

Ff � {r ∈ R | D(f , r) � T}.

Lemma 8.13. For any f ∈ F the setFf is an upper set of F.

Proof. By the requirement that the design problem D is monotonic we know
that if for some r′ ∈ R we have that r′ ∈ Ff , then any r ∈ R, such that r′ ≤R r,
must also be inFf . □

Remark 8.14. For the rest of this document, we will always assume that the
feasible sets of resources satisfy condition (iii) of Theorem 8.7. This is a critical
requirement, as all the computational results would depend on the duality in
Equation (8.1).

The feasible set of resources for our desired functionality u is in a sense
what we are looking for. However, typically most of the elements of the set
would have very little practical value. In fact, it makes more sense to instead
only consider the minimum resources needed. Due to the monotonicity, we
know that any resource that reduces to a minimum resource must also be in
the feasibility set. Furthermore, thanks to Theorem 8.7 we know that we can
always recover the upper set from its minimum elements, as long as it satisfies
the necessary condition in the theorem. The minimum resources are in fact
the antichain MinFf .

8.1. Representation of a solution 119

Definition 8.15 (Solution map for a design problem). Given a design problem
D : F ↛ R, its solution map hD is defined as:

hD : F → AR
f 7→ Min{r ∈ R | D(f , r) � T}.

The map h maps each functionality f to the set of minimal resources that
can realize it. We will from now on assume that each design problem D
comes with its solution map hD . The rest of this section will study what
happens with the solution maps under the various composition operations
we defined before. In fact, we will show that the solution map for a problem
composed from subproblems with known solution maps, can be represented
(and calculated) as a function of the maps of the subproblems.

As the solution map is a representation of a feasibility relation, it is only
natural to expect that it also has some monotonicity properties. These are
formalized in the following lemma.

Lemma 8.16 (Monotonicity of the solution map). Given a design problem

D : F ↛ R,

and f ∈ F, then for any f ′ ∈ F, f ′ ≤F f , it holds that hD(f ′) ≤AR hD(f).

Proof. Directly from the definition of a solution map we have that:

hD(f) � Min{r ∈ R | D(f , r) � T},
hD(f ′) � Min{r ∈ R | D(f ′, r) � T}.

Due to the monotonicity of D we know that if D(f , r) � T for some r, then
D(f ′, r) � T. Hence,

{r ∈ R | D(f , r) � T} ⊆ {r ∈ R | D(f ′, r) � T}.

Note that the two sides of the above equations are feasible sets of resources
and therefore, due to Lemma 8.13 they are upper sets. Hence, assuming
Remark 8.14, Equation (8.1) holds for both of them:

↑Min{r ∈ R | D(f , r) � T} ⊆ ↑Min{r ∈ R | D(f ′, r) � T}.

It follows from the definition of the order on antichains (Lemma 8.4) that the
following must also hold true:

hD(f ′) ≤AR hD(f).

□

120 Chapter 8. Solving design problems

Remark 8.17. It is important to mention that co-design also has the concept of
dual problems. That is, finding the maximal antichain of functionalities that
can be achieved with a given resource. The whole treatment is symmetric and
one would need a dual solution map. We will show in Chapter 9 that any dual
problem can be represented as a problem in the original setting we presented
here. Therefore, we will not concern ourselves with the solution techniques
for dual problems.

8.2 Composition of solution maps
Now, we need to show what every single one of the feasibility relation compo-
sition operations that we defined in Section 7.2 does with the solution maps.
Again, these composition operations would be correct only if the duality be-
tween minimum elements and upper sets holds (Remark 8.14).

Lemma 8.18 (Solution map of the composite feasibility relation). Given two
feasibility relations Φ : P → Q andΨ : Q → R with solution maps hΦ : P → AQ
and hΨ : Q → AR respectively, the solution map hΦ hΨ for the composite feasibility
relation Φ Ψ is:

hΦ hΨ : P → AR

p 7→ Min
≤R

∪
s∈hΦ(p)

hΨ(s).

Lemma 8.19 (Solution map of the identity feasibility relation). Given an identity
feasibility relation Φid

P : P → P, its solution map is:

hΦid
P

: P → AP

p 7→ {p}.

Lemma 8.20 (Solution map of the product feasibility relation). Given two feasi-
bility relations Φ : P → Q and Ψ : R → S with solution maps hΦ : P → AQ and
hΨ : R → AS respectively, the solution map hΦ × hΨ for the composite feasibility
relation Φ ×Ψ is:

hΦ × hΨ : P × R → A(Q × S)
(p , r) 7→ hΦ(p) × hΨ(r).

Lemma 8.21 (Solution map of the sum feasibility relation). Given two feasibility
relations Φ : P → Q and Ψ : P → Q with solution maps hΦ : P → AQ and
hΨ : P → AQ respectively, the solution map hΦ ∨ hΨ for the composite feasibility
relation Φ ∨Ψ is:

hΦ ∨ hΨ : P → AQ

8.2. Composition of solution maps 121

p 7→ Min
≤Q

(
hΦ(p) ∪ hΨ(p)

)
.

Lemma 8.22 (Solution map of the intersection feasibility relation). Given two
feasibility relations Φ : P → Q andΨ : P → Q with solution maps hΦ : P → AQ
and hΨ : P → AQ respectively, the solution map hΦ∧hΨ for the composite feasibility
relation Φ ∧Ψ is:

hΦ ∧ hΨ : P → AQ
p 7→ Min

≤Q

((
↑ hΦ(p)

)
∩

(
↑ hΨ(p)

))
,

as long as

↑Min
≤Q

((
↑ hΦ(p)

)
∩

(
↑ hΨ(p)

))
�

(
↑ hΦ(p)

)
∩

(
↑ hΨ(p)

)
.

Lemma 8.23. Let P � (P, ≤P) be a poset in which all joins exist and {Ai} be a family
of non-empty elements of AP. Then it holds that

Min
≤P

(∩
i∈I

↑Ai

)
� Min

≤P

{⊔
i∈I

ai | ai ∈ Ai , ∀i ∈ I

}
.

Proof. First, let’s show that any x ∈ Min≤P (
∩

i∈I ↑Ai) is also in the right-hand
side of the equation. For this x it holds that x ∈ ↑Ai , ∀i ∈ I, and if there is an
x′ ∈ ↑A j , ∀ j ∈ I, then x′ � x. As x ∈ ↑Ai we also know that for all i there
exists a x∗

i ∈ Ai such that x∗
i ≤P x. Now take

X �

⊔
i∈I

x∗
i ∈

{⊔
i∈I

ai | ai ∈ Ai , ∀i ∈ I

}
.

Due to the properties of the join, we know that x∗
i ≤P X, ∀i ∈ I, hence

X ∈ Ai , ∀i ∈ I. But we said above that if such an x′ exists, then it should equal
x. Thus

x � X �

⊔
i∈I

x∗
i ∈

{⊔
i∈I

ai | ai ∈ Ai , ∀i ∈ I

}
.

Now we only need to show that it is a minimal element of this set. Assume by
contradiction that

x <Min
≤P

{⊔
i∈I

ai | ai ∈ Ai , ∀i ∈ I

}
.

Then there must be a collection {bi | bi ∈ Ai} such that
⊔

i∈I bi <P x. The join⊔
i∈I bi should be in

∩
i∈I ↑Ai , but then x cannot be in Min≤P (

∩
i∈I ↑Ai), which

is our contradiction. Therefore:

Min
≤P

(∩
i∈I

↑Ai

)
⊆ Min

≤P

{⊔
i∈I

ai | ai ∈ Ai , ∀i ∈ I

}
.

122 Chapter 8. Solving design problems

Now, let’s show that any x ∈ Min≤P {
⊔

i∈I ai | ai ∈ Ai , ∀i ∈ I} is also in
Min≤P (

∩
i∈I ↑Ai). We need to show two things: first, that x ∈ ∩

i∈I ↑Ai , and
second that there is no y <P x also in

∩
i∈I ↑Ai . We know that we can represent

x as
⊔

i∈I x∗
i , where x∗

i ∈ Ai . Then:

x∗
i ≤P x , ∀i ∈ I �⇒ x ∈ ↑Ai , ∀i ∈ I �⇒ x ∈

∩
i∈I

↑Ai .

Now, for the second requirement, assume, by contradiction, that a lesser
element y exists. Then y ∈ ↑Ai and exists a y∗

i ∈ Ai , s.t. y∗
i ≤P y, for all i ∈ I.

It follows that ⊔
i∈I

y∗
i ∈

{⊔
i∈I

ai | ai ∈ Ai , ∀i ∈ I

}
≤P y ≤P x.

But then, either
⊔

i∈I y∗
i � x or x < Min≤P {

⊔
i∈I ai | ai ∈ Ai , ∀i ∈ I}. This is a

contradiction. Therefore:

Min
≤P

(∩
i∈I

↑Ai

)
⊇ Min

≤P

{⊔
i∈I

ai | ai ∈ Ai , ∀i ∈ I

}
,

and the two sides of the equation in the theorem are indeed equal. □

Lemma 8.24 (Solution map of the intersection feasibility relation (alternative)).
Given two feasibility relations Φ : P → Q and Ψ : P → Q with solution maps
hΦ : P → AQ and hΨ : P → AQ respectively, the solution map hΦ ∧ hΨ for the
composite feasibility relation Φ ∧Ψ is:

hΦ ∧ hΨ : P → AQ
p 7→ Min

≤Q
{q1 ⊔ q2 | q1 ∈ hΦ(p), q2 ∈ hΨ(p)},

if the join q1 ⊔ q2 (Definition 7.5) exists for all q1, q2 ∈ Q and

↑Min
≤Q

((
↑ hΦ(p)

)
∩

(
↑ hΨ(p)

))
�

(
↑ hΦ(p)

)
∩

(
↑ hΨ(p)

)
.

Proof. Follows directly from Lemma 8.23.
□

8.3 Fixpoints and feedback
The one type of composition that we have not yet provided a solution map
for is the feedback loop. Feedback loops can be used when a design problem
has the same poset as a resource and as a functionality. Then we can feed

8.3. Fixpoints and feedback 123

the provided functionality as the resource, making it at least partially self-
sufficient. This is a very powerful tool so we refer to curious reader to (Censi,
2016; Censi et al., 2020) where feedback in design problems is discussed in a
great detail.

Given a design problem Φ : F × R ↛ R and its solution map hΦ, we define
the loop(Φ) problem which feeds the resource as part of the functionality as:

Φloop : Fop × R → Bool,⟨
f , r

⟩
7→

{
T if ∃r′ ≤R r, Φ((f , r′), r) � T,
F otherwise.

Computing the solution map hΦloop however, is more complicated as it must
be the solution of

hΦloop : F → R

f 7→

Using r, r′ ∈ R,
Min≤R r,
s.t. r ∈ hΦ(f , r′),

r ≤R r′.

We can fix the f in hΦ in order to obtain a new design problem that has as a
resource and as a functionality only R. We call this h f

Φ
:

h f
Φ

: R → AR,
r′ 7→ hΦ(f , r′).

Lemma 8.25. Let A be an antichain in the poset P. Then

a ∈ A ⇐⇒ {a} � A ∩ ↑ a.

Proof. First, let’s show the �⇒ direction. If a ∈ A, then we have

A ∩ ↑ a � A ∩ {p ∈ P | a ≤P p}.

But, as A is an antichain, the only element a′ ∈ A such that a ≤P a′ is a itself.
Therefore, the intersection can only contain a.

The ⇐� direction is immediately obvious: if a is in an intersection of A
with another set, then a ∈ A. □

By using h f
Φ

and Lemma 8.25, we know that for every feasible r, r′ ∈ R
according to Section 8.3 the following must hold:

{r} � h f
Φ
(r′) ∩ ↑ r. (8.5)

124 Chapter 8. Solving design problems

But we also know that r ≤R r′, and hence by Lemma 8.16 we have that
h f
Φ
(r) ≤AR h f

Φ
(r′). We can use this result, together with the following lemma

to get rid of r′.

Lemma 8.26. Let A, B ∈ AP and S ⊆ P, where P is the poset (P, ≤P). Then,
A ≤AP B implies A ∩ S ≤AP B ∩ S.

Proof. Take an element b ∈ ↑(B ∩ S), then b ∈ B ∧ b ∈ S. It is trivial to see that
S ⊆ ↑(A ∩ S). Hence, b ∈ ↑(A ∩ S). As this holds for any b ∈ ↑(B ∩ S), it holds
that ↑(A ∩ S) ⊇ ↑(B ∩ S). □

Now we can remove the r′ term from Equation (8.5):

h f
Φ
(r) ∩ ↑ r ≤AR h f

Φ
(r′) ∩ ↑ r � {r}. (8.6)

Any feasible r should satisfy this recursive condition. Here by feasible we mean
an r that satisfies the conditions in Section 8.3 and one that is not reducible
to any other r∗ that also satisfies the conditions. In other words, any r in the
solution antichain of Section 8.3 must satisfy Equation (8.6).

Instead of considering the elements of the antichain separately, we would
like to instead obtain a condition for the whole antichain. Call the antichain
of solutions R ∈ AR. Then we can tautologically rewrite it as:

R � Min
∪
r∈R

{r}. (8.7)

Lemma 8.27. Let A, B, C,D ∈ AP and A ≤AP C, B ≤AP D, where P is the poset
(P, ≤P). Then, A ∪ B ≤AP C ∪ D.

Proof. Note that A ≤AP C �⇒ ↑A ⊇ ↑C, and B ≤AP D �⇒ ↑B ⊇ ↑D. If
e ∈ ↑(C ∪ D), then there should exist an e′ ∈ C ∪ D, such that e ≤P e′. Then
there are three possible cases: e′ ∈ C ⊆ ↑A, e′ ∈ D ⊆ ↑B, or e′ is in both.
Hence we have that e ∈ ↑A and/or e ∈ ↑B. But ↑A ⊆ ↑(A ∪ B), because for
every a ∈ ↑A, an a′ ∈ A, such that a′ ≤P a should exist. But this a′ is also
in A ∪ B and hence the same a is also in ↑(A ∪ B). Similarly, ↑B ⊆ ↑(A ∪ B).
Therefore, e ∈ ↑(A ∪ B), and that holds for any e ∈ ↑(C ∪ D). □

Combining Equations (8.6) and (8.7) and using Lemma 8.27, we get:

Min
∪
r∈R

h f
Φ
(r) ∩ ↑ r ≤AR Min

∪
r∈R

{r} � R. (8.8)

One can verify that all chains of feasible resources R satisfy Equation (8.8)
and if an antichain R satisfies Equation (8.8), then it must be an antichain of
feasible resources. We can rewrite the constraint in Equation (8.8) as:

Φ f (R) ≤AR R, (8.9)

8.3. Fixpoints and feedback 125

where Φ f is defined as:

Φ f : AR → AR,

R 7→ Min
∪
r∈R

h f
Φ
(r) ∩ ↑ r ≤AR .

Therefore, the optimization problem in Section 8.3 can be rewritten as the
problem of finding the minimum antichain in AR that satisfies Equation (8.9).
This is the least fixpoint of Φ f . Fixpoint refers to the fact that Φ f (R) ≤AR R,
where we don’t require equality (this condition is also referred to as pre-
fixpoint). Least refers to the fact that we are interested in the antichain that
precedes all antichains that are fixed points. The final form of Section 8.3 is
thus:

hΦloop : f 7→ lfp(Φ f).
The least fixpoint of Φ f does not exist in general. However, it exists if AR

is a pointed directed-complete partial order and if Φ f is Scott-continuous. If that
is the case, then the Kleene Fixpoint Theorem states that Φ f has a least fixpoint
and provides a way for computing it.

Definition 8.28 (Directed subset). Given a poset P � (P, ≤P), a subset of its
elements S ⊆ P is called a directed subset if for any a , b ∈ S exists a c ∈ S such
that a ≤ c and b ≤ c.

Definition 8.29 (Directed-complete poset). A poset P � (P, ≤P) is a directed-
complete poset if each of its directed subsets has a join (Definition 7.5).

Definition 8.30 (Pointed directed-complete poset). A poset P � (P, ≤P) is a
pointed directed-complete poset if it is directed-complete and also has a bottom
element.

Definition 8.31 (Scott-continuous function). Given two posets P � (P, ≤P) and
Q � (Q , ≤Q), a function f : P → Q is called Scott-continuous if it preserves the
joins of all directed subsets. In other words, for any directed subset D ⊆ P,
the image f (D) is also directed and furthermore

f (⊔D) � ⊔{ f (d) | d ∈ D}.

Lemma 8.32. If a function f : P → Q is Scott-continuous, then it is also monotonic.

Proof. Take two elements from a , b ∈ P such that a ≤P b. Then, due to the
Scott-continuity of f we have that

f (⊔{a , b}) � f (b) � ⊔{ f (a), f (b)}.

But then, due to the definition of the join, it must hold that f (a) ≤P f (b), hence
f is monotonic. □

126 Chapter 8. Solving design problems

Theorem 8.33 (Kleene Fixpoint Theorem). Take any pointed directed-complete
partial order (poset) P � (P, ≤P) and a Scott-continuous endofunction f : P → P.
Then f has a least fixpoint which is the join of the ascending Kleene chain of f :

⊥ ≤P f (⊥) ≤P f 2(⊥) ≤P

Hence,
lfp(f) � ⊔{ f n(⊥) | n ∈ N}.

Proof. First, we have to show that indeed f n(⊥) ≤P f n+1(⊥), ∀n ∈ N0. As ⊥
precedes all elements of P, it holds that ⊥ � f 0(⊥) ≤ f 1(⊥). Now assume that
f n−1(⊥) ≤P f n(⊥) for some n. Due to Lemma 8.32 it holds that f (f n−1(⊥)) ≤P
f (f n(⊥)). Hence, by induction, f n(⊥) ≤P f n+1(⊥), ∀n ∈ N0.

Denote the chain { f n(⊥) | n ∈ N} by K. As every chain is a directed subset,
and as P is directed-complete, k � ⊔K exists. Note that for any non-empty
S ⊆ P, it holds that ⊔S � ⊔(S ∪ {⊥}). Hence, ⊔K � ⊔{ f (k′) | k′ ∈ K} � k. Due
to the Scott-continuity of f , we know that

f (k) � f (⊔K) � f (⊔{ f (k′) | k′ ∈ K}) � ⊔{ f (k′) | k′ ∈ K} � k.

Therefore, k is a fixpoint.
Now, we only need to show it is the least fixpoint. Assume that there is

another fixpoint k∗ ∈ P. Let’s show that k ≤P k∗. First of all, all elements
of K precede k∗. Trivially, f 0(⊥) � ⊥ ≤P k∗. If f n(⊥) ≤P k∗, due to the
monotonicity of f it holds that f n+1(⊥) ≤P f (k∗) ≤P k∗, where the last equality
is due to k∗ being a fixpoint. Then by induction, all elements of K precede
k∗. If all the elements of K precede k∗, then their join also precedes it, hence
k � ⊔K ≤P k∗. □

When we solve a loop problem, the poset on which we are computing the
least fixpoint is the partial order (poset) of antichains on the resources. Hence
we would have to show that for a given R, AR is a pointed directed-complete
partial order. Luckily, it so happens that any (useful) antichain poset is a
pointed directed-complete partial order.

Theorem 8.34. Take any poset P � (P, ≤P) for which the join ⊔Q exists for any
subset Q ⊆ P, and a subset of its antichains S ⊆ AP such that∩

T∈S′
↑T � ↑Min

(∩
T∈S′

↑T

)
, ∀S′ ∈ PS.

In other words, Equation (8.1) (i.e. the conditions in Theorem 8.7) hold for the union
of every subset of the upper sets of the antichains in S. Then, the poset S � (S, ≤AP)
is a pointed directed-complete partial order.

8.3. Fixpoints and feedback 127

Proof. First, S is a subset of AP, and the antichains order induces posetal
structure (Lemma 8.4, hence S is a poset. It is pointed, because the bottom
element of AP, which is P itself, is trivially in S. Take any subset of elements
of S. We will refer to the elements of this subset as Ai , indexed by the set I.
We argue that their join exists, and that it is

J � Min

(∩
i∈I

↑Ai

)
� Min

{⊔
i∈I

ai | ai ∈ Ai , ∀i ∈ I

}
. (8.10)

The above equality is due Lemma 8.23. The join exists because we require that
the joins exist for all elements of P and because Min is defined for all subsets
of P.

We need to show that J ∈ S. Take any potentially empty subset S′ of the
elements of S. Then combining J with the condition in the theorem we get:

↑ J ∩
(∩

T∈S′
↑T

)
�

(
↑Min

(∩
i∈I

↑Ai

))
∩

(∩
T∈S′

↑T

)
.

As {Ai} ⊆ S, the condition should also hold for it:

↑ J ∩
(∩

T∈S′
↑T

)
�

(∩
i∈I

↑Ai

)
∩

(∩
T∈S′

↑T

)
�

∩
T∈S′∪{Ai}

↑T

� ↑Min ©«
∩

T∈S′∪{Ai}
↑Tª®¬ .

As this holds for any J constructed from elements of S and for any subset S′

of S, J ∈ S.
Now, let’s also show that J is indeed the join of {Ai}. For it to be the join, in

needs to reduce to every Ai and to be the least element of S with this property.
From Equation (8.10) we know that for every x ∈ J there exist xi ∈ Ai such
that x �

⊔
i∈I xi . Then, xi ∈ ↑Ai , ∀i ∈ I. But as xi ≤P x it also holds that

x ∈ ↑Ai , ∀i ∈ I. Hence, ↑Ai ⊇ J, ∀i ∈ I, or alternatively, Ai ≤AP J, ∀i ∈ I.
To show that it is the least antichain with this property, assume by contradic-

tion that there is a J′ such that Ai ≤AP J′, ∀i ∈ I and J′ <AP J. Take any y ∈ ↑ J′,
and any y j ∈ A j such that y j ≤P y, and such y j exists for all j ∈ I as ↑ J′ ⊆ ↑A j .
Then we have

⊔
j∈I y j ≤P y, but also

⊔
j∈I y j ∈ {⊔i∈I ai | ai ∈ Ai , ∀i ∈ I}. For

any x ∈ Min {⊔i∈I ai | ai ∈ Ai , ∀i ∈ I} � J it then holds that x ≤P
⊔

j∈I y j ≤P y.
This holds for any x ∈ J and y ∈ J′, hence ↑ J ⊇ ↑ J′ and J ≤AP J′. □

128 Chapter 8. Solving design problems

The essence of Theorem 8.34 is that, as long as one restricts themselves to
the subset of antichains satisfying the condition of the theorem, one can safely
apply Theorem 8.33.

The condition of Theorem 8.34 seems quite restrictive at first. However, it is
also a necessity if one wants to have the duality between minimal elements and
intersections of upper sets to hold. For finite sets, for example, the condition
holds trivially.

Remark 8.35. In the proof of Theorem 8.34 we never restricted that {Ai} is
directed. One can see that it always is. Hence, the subset S is in fact a pointed
join-semilattice, or a partially ordered set that has a join for any nonempty set,
and also has a bottom element.

Remark 8.36. The identity feasibility relation is Scott-continuous. Furthermore,
if Φ andΨ are Scott-continuous, then so are Φ Ψ, Φ ×Ψ, Φ ∨Ψ, Φ ∧Ψ, and
Φloop, as long as these exist. This is discussed by Censi (2016), and the proofs
can be found in (Gierz et al., 2003).

8.4 Well-behaved design problems
In this chapter we looked at a number of different conditions that allow us
to perform composition operations on design problems. In practice, however,
we don’t want to keep track of the properties of each design problem and to
wonder whether if we compose it it will still be well-behaved. Therefore, let’s
combine all the conditions that allow us to have an isomorphism between min-
imal elements and upper sets, to take intersections of antichains representing
upper sets, and to be able to apply Kleene’s theorem. It is important to see
that these are not properties of the poset alone, but are more so of the feasible
sets of a given design problem that has it as a resource. Hence, we will call
any design problem that has these properties a well-behaved one.

Definition 8.37 (Well-behaved upper sets). Given a poset P � (P, ≤P) and its
set of upper sets UP, we call a subset of the upper sets U⋆P ⊆ UP the set of
well-behaved upper sets if for any subset P′ ⊆ U⋆P it holds that

∩
p∈P′

p � ↑Min ©«
∩
p∈P′

pª®¬ ,
which is equivalent to conditions in Theorem 8.7 for the intersection of the
upper sets, and if furthermore for any other subsetU′ with the same property,
it holds that U′ ⊆ U⋆P. In other words, U⋆P is the universal set with this
property.

8.4. Well-behaved design problems 129

Definition 8.38 (Primally well-behaved design problem). A design problem
D : F ↛ R, with a solution map

hD(f) � Min{r ∈ R | D(f , r) � T},
is primally well-behaved if:

i. for any subset R′ ⊆ R there is a join element ⊔R′ ∈ R;
ii. all feasible sets of resources are well-behaved upper sets, i.e.

{r ∈ R | D(f , r) � T} ∈ U⋆R, ∀ f ∈ F;

iii. the solution map hD is Scott-continuous.

We mentioned before that in co-design there are also dual problems. While
we haven’t provided formal definition of the dual problem and the means
to solve it, it suffices to mention that it behaves symmetrically to the primal
problem. It will be discussed in further detail in Chapter 9. In order for the
dual problem to also be well-defined we can extend the definition to:

Definition 8.39 (Well-behaved design problems). A design problem D : F ↛
R, with a primal solution map

hD(f) � Min{r ∈ R | D(f , r) � T}
and a dual solution map

h′
D(r) � Max{ f ∈ F | D(f , r) � T},

is well-behaved if:
i. for any subset R′ ⊆ R there is a join element ⊔R′ ∈ R;

ii. for any subset F′ ⊆ F there is a meet element ⊓F′ ∈ F;
iii. all feasible sets of resources for the primal problem are well-behaved

upper sets, i.e.

{r ∈ R | D(f , r) � T} ∈ U⋆R, ∀ f ∈ F;

iv. all feasible sets of functionalities for the dual problem are well-behaved
upper sets of the Fop poset (well-behaved lower sets of F), i.e.

{ f ∈ F | D(f , r) � T} ∈ U⋆Fop, ∀r ∈ R;

v. the primal solution map hD is Scott-continuous;
vi. the dual solution map h′

D is Scott-continuous in the inverse posets Fop

and Rop.

As long as a design problem is well-behaved, we can identify every upper set
with an antichain and Equation (8.1) holds. We can also take the intersection
of design problems (Lemmas 8.22 and 8.24). And we can also close feedback
loops (Theorem 8.33), because thanks to Theorem 8.34 we know that the
antichains for the resource upper sets for this feasibility relation form a pointed
directed-complete partial order.

Chapter 9

Compositional properties of
co-design

In Section 7.2 we showed that co-design problems can be composed in various
ways. Then, in Chapter 8 we saw how each composition of design problems
can be solved via composing their solution maps. In the current chapter, we
will show that this compositionality not only happens to be a very nice prop-
erty but also has a strong structural representation in the way of categorical
constructions.

We are going to see how co-design problems and their solutions form
categories and the relationships between them are not only functorial, but also
have much stronger properties. This will be the main argumentation behind
using co-design as an example of a collection of problems and solutions in
compositional computational systems that are rich in structure, something
that will be the main focus of the next chapter.

9.1 The categories of upper and lower sets
We will show how co-design problems form a category, a result originally
by Censi et al. (2020). The feasible sets for the primal design problems form
upper sets, which can also be thought of as objects in a category. Similarly,
the feasible sets for the dual design problems form lower sets with their own
category.

Definition 9.1 (The DP category). The category of design problems, DP, consists
of:

131

132 Chapter 9. Compositional properties of co-design

i. objects which are posets;
ii. morphisms between two objects A, B ∈ Ob(DP) are design problems

d : A↛ B (formally defined as feasibility relations, Definition 2.14);
iii. composition of two morphisms f : A ↛ B and 1 : B ↛ C, denoted by

(f 1) : A↛ C, given by Definition 7.17;
iv. identity morphism idA : A↛ A, given by Lemma 7.21.

Lemma 9.2. DP is indeed a category.

Proof. We already showed that the operator is associative (Lemma 7.19) and
that the composition of two design problems is a design problem (Lemma 7.18).
It is also easy to see from the definition (Definition 7.20) of the identity design
problem that is also unital. □

Definition 9.3 (The UPos category). The UPos category has:
i. objects which are posets;

ii. morphisms between two objects A, B ∈ Ob(UPos) are monotone maps
of the form f : A → UB (recall Definition 2.12);

iii. composition of two morphisms α : A → UB and β : B → UC defined as
the “fish” operator:

α ⋉ β : A → UC,

a 7→
∪

b∈α(a)
β(b);

iv. identity morphism for an object A: idA(a) B ↑{a} (Definition 7.1).

Lemma 9.4. UPos is indeed a category.

Proof. First, let’s show unitality. Given α : A → UB, we have:

(α ⋉ idB) (a) �
∪

b∈α(a)
idB(b)

�

∪
b∈α(a)

↑{b}

�

∪
b∈α(a)

{b′ ∈ B : b ≤B b′}.

We can rewrite α(a) as:

α(a) �
∪

b∈α(a)
{b}

�

∪
b∈α(a)

{b′ ∈ B : b ≤B b′},

9.1. The categories of upper and lower sets 133

where the second equality is due to α(a) being an upper set. Thus,

(α ⋉ idB) (a) � α(a).

Similarly,
(idA ⋉α) (a) �

∪
a′∈idA(a)

α(a′)

�

∪
a′∈↑{a}

α(a′)

� α(a),
with the last equality due to α being monotonic and due to the definition of
the order on upper sets (Lemma 7.2), resulting in α(a′) ⊆ α(a), ∀a′ ∈ ↑{a}.

We also need to show that the fish operator is associative. Take three
morphisms α : A → UB, β : B → UC, and γ : C → UD, then:(

(α ⋉ β) ⋉ γ
)
(a) �

∪
c∈(∪b∈α(a) β(b))

γ(c) �
∪

b∈α(a)

∪
c∈β(b)

γ(c),

and (
α ⋉ (β ⋉ γ)

)
(a) �

∪
b∈α(a)

∪
c∈β(b)

γ(c),

demonstrating associativity.
Finally, we need to make sure that the output of ⋉ is also an upper set,

which trivially follows from the definition of the operator. □

Definition 9.5 (The LPos category). The LPos category has:
i. objects which are posets;

ii. morphisms between two objects A, B ∈ Ob(LPos) are monotone maps of
the form f : A → LB;

iii. composition of two morphisms α : A → LB and β : B → LC is the fish
operator:

α ⋉ β : A → LC,

a 7→
∪

b∈α(a)
β(b);

iv. identity morphism for an object A: idA(a) � ↓{a} (Definition 7.3).

Lemma 9.6. LPos is indeed a category.

Proof. Analogous to the proof of Lemma 9.4. □

134 Chapter 9. Compositional properties of co-design

We will now show that the UPos and LPos categories are equivalent.

Definition 9.7 (Equivalence of categories). An equivalence between two cate-
gories C and D is:

i. a pair of functors F,G:

C D;
F

G

ii. natural isomorphisms (Definition 2.43)

F G � idC,

and
G F � idD .

Two categories are called equivalent if there exists an equivalence between
them.

This definition of equivalence of categories is due Lane (1998, Sec. IV.4).

Remark 9.8. Note that LPosop , UPos, because the morphisms are different,
just flipping the direction does not suffice. The next lemma, makes this remark
more precise.

Lemma 9.9 (UPos and LPos are equivalent). There is a pair of functors

↫ : UPos → LPos

and
↬ : LPos → UPos

such that ↫ ↬ � idUPos and ↬ ↫ � idLPos, where idUPos and idLPos are the
identity functors on UPos and LPos, respectively. In other words, ↫ and ↬ are
inverses of each other and UPos and LPos are equivalent categories (Definition 9.7).
We call ↫ lower flip and ↬ upper flip.

Proof. We prove the lemma by giving explicit definitions for the ↫ and ↬
functors. Both UPos and LPos have the same objects, which are posets. We
know that for every poset P, there’s the opposite poset Pop (Definition 2.7).
Therefore, we choose our two functors such that they map the poset P in the
origin category to the poset Pop in the target category.

Given a morphism α : A → UB in UPos, we have:

↫(α) : Aop → L(Bop),
a 7→ α(a).

9.1. The categories of upper and lower sets 135

Similarly, given a morphism β : A → LB in LPos, we have:

↬(β) : Aop → U(Bop),
a 7→ β(a).

Hence, the functors maintain the subset to which they map, but by flipping
the order they change the context of this subset from upper set to a lower set
and back.

For ↫ and ↬ to be functors, they need to preserve compositions and identi-
ties. Composition is preserved because the functors keep the sets unchanged:

↫(α ⋉ β) � α ⋉ β � ↫(α) ⋉ ↫(β), α ∈ HomUPos(A, B), β ∈ HomUPos(B, C),

↬(α ⋉ β) � α ⋉ β � ↬(α) ⋉ ↬(β), α ∈ HomLPos(A, B), β ∈ HomLPos(B, C).

Preservation of identities is also trivial:

↫(idA) � ↑A{a} � ↓Aop{a} � idAop , A ∈ Ob(UPos),

where idA is an identity morphism in UPos, idAop is an identity morphism in
LPos, and the second equality is due Lemma 7.16. Similarly:

↬(idA) � ↓A{a} � ↑Aop{a} � idAop , A ∈ Ob(LPos).

Finally, we need to show that composing the two functors results in the
identity functor. The composition of ↫ and ↬ is an identity on the objects
because for any poset A, it holds that (Aop)op � A. And again, as the functors
do not change the subset of elements of the poset but only flip its context, the
composition of the functors is also an identity on the morphisms. □

Remark 9.10. In the statement of Lemma 9.9 we set that ↫ ↬ � idUPos and
↬ ↫ � idLPos, hence that the composition of these functors results in the

identity functor. This is a stronger condition than the one in Definition 9.7
which asks only for natural isomorphisms. This stronger condition is often
referred to as an isomorphism of categories (Lane, 1998).

Remark 9.11. As ↫ and ↬ are a pair of functors which is an equivalence of
the categories UPos and LPos, it also holds that the ↫ and ↬ functors are full
and faithful (Lane, 1998, Section IV.4, Theorem 1). We can also see that directly
from the definitions of the two functors. Their effect on hom-sets is bĳective
because they do not alter the monotone maps, but simply flip the orders in
their domain and range, which is a trivially invertible operation.

Finally, let’s formalize the notion of duality of problems.

136 Chapter 9. Compositional properties of co-design

Definition 9.12 (Dual design problem). Given a design problem

d : Aop × B → Bool

in HomDP(A, B), we define the dual design problem d′ ∈ HomDP(Bop,Aop) as:

d′ : B × Aop → Bool,
⟨b , a⟩ 7→ d(b , a).

As mentioned before, the duality of design problems is a concept due Censi
(2016) and Censi et al. (2020).

Definition 9.13 (The � functor). The � functor is an involute contravariant
(Definition 2.25) endo-functor on DP that maps each poset P to its opposite
Pop and each design problem (morphism) to its dual.

Lemma 9.14. Take a design problem d : A↛ B. For all a ∈ A, it holds that the upper
set {b ∈ B | d(a , b) � T} in the poset (B, ≤B) and the lower set {b ∈ B | d′(b , a) � T}
in the poset (B, ≤op

B) have the same elements. Furthermore

�
(
� (d)

)
� d ,

hence taking duals is an involution.

Proof. Directly from the definition we see that d(a , b) � d′(b , a) for all a ∈ A
and b ∈ B, hence the two sets are the same. □

9.2 Co-design problems and Lagado
Recall from Section 7.2 and (Censi et al., 2020) that a design problem in DP
is a feasibility relation between two posets. We can have two different for-
mulations for this problem. The primal formulation fixes a functionality and
asks for the upper set of resources that can provide it. The dual formulation
(Definition 9.12) fixes a resource and asks for the lower set of functionalities
that can be obtained with it. And one can convert a primary problem to a dual
problem via the � functor (Definition 9.13).

We will now study how these two different formulations (which correspond
to different problems in the sense of Definitions 4.1 and 6.14) are included in the
Lagado category. This is meant to serve as a simple example to motivate why
we are interested in co-design. We will then study the deeper compositional
computational properties of co-design in greater detail in Chapter 10.

Consider the type
DP �

∪
A,B

HomDP(A, B),

9.2. Co-design problems and Lagado 137

which gives rise to the normed type DP. We can also define the type of upper
set functions

UPos �

∪
A,B

HomUPos(A, B),

each element of which is a function from a poset to the upper sets of a poset.
By endowing it with a size, we obtain the normed type of upper set functions
UPos. Similarly, we also have the normed type of lower set functions LPos.

Now, the primal problem is a morphism in Prob (and an object in Lagado):

πDP
f : DP × UPos → Bool,

⟨d , u⟩ 7→

T if u : F(d) → U(R(d)) and for all f ∈ F(d) it holds:

u(f) � {r | r ∈ R(d), d(f , r) � T},
F otherwise.

In the above definition, the problem statement d is a co-design problem, R(d)
is its resource space and F(d) is its functionality space. As the solution u is
a morphism from F(d) to R(d) in UPos, it is a function from the elements of
the functionality space of the design problem to the upper sets of its resource
space. The condition in the above definition ensures that the only pair of d
and u for which the problem relation holds is the pair where the function u is
the one that maps a functionality to the resource upper set that can provide it.

In an analogous way there’s an object in Lagado for the dual problem:

πDP
r : DP × LPos → Bool,

⟨d , l⟩ 7→

T if l : R(d) → L(F(d)) and for all r ∈ R(d) it holds:

l(r) � { f | f ∈ F(d), d(f , r) � T},
F otherwise.

This problem has a problem statement d, again a co-design problem, but the
solution l is now a function from the elements of the resource space of d to the
lower sets of feasibilities that d can provide with a given resource.

The πDP
r problem is the dual of πDP

f because of a fundamental relationship
between the two problems. One can always reduce one to the other. To see
this, let’s first see how we can flip the resource and feasibility spaces of a
design problem. Lemma 9.14 immediately shows us that if we have a problem
in πDP

f which has as a solution a function that returns an upper set of resources
for every feasibility f , then there is a problem in πDP

r which has as a solution
a function that returns a lower set of feasibilities for every resource f , such
that the sets returned by the two functions are the same. To make this more
precise, we provide the explicit definitions of these conversion procedures:

138 Chapter 9. Compositional properties of co-design

cDP
dual : DP → DP,

d 7→ �(d).

Note that after performing the conversion, the result is no longer of the
correct type. If originally we were looking for an upper set of R, now we get
a lower set of Rop as cDP

dual maps the design problem d : Fop × R → Bool to the
design problem d′ : R× Fop → Bool. We already saw the same problem in the
proof of Lemma 9.9, where the ↫ and ↬ functors maintain the subsets but
flip the order of the target. We will abuse the notation here, and will assume
that there are two procedures, also denoted by ↫ and ↬ which apply this
operation on our results in Lagado. Hence, we get the following problems
and pairs of procedures in Lagado:

πDP
f πDP

r .
⟨cDP

dual , ↬⟩
⟨cDP

dual , ↫⟩
(9.1)

9.3 Functorial relationships
As we mentioned, πDP

f and πDP
r are functions from the space of design prob-

lems to respectively the spaces of upper sets and lower sets of posets. As the
domain and ranges of these functions also happen to be the hom-sets of DP,
UPos, and LPos, these functions also have functorial properties. We refer to
the functorial avatars of πDP

f and πDP
r as ΠDP

f and ΠDP
r .

Definition 9.15 (The ΠDP
f functor.). The ΠDP

f is a covariant functor (Defini-
tion 2.25) from DP to UPos which maps:

i. a poset in DP to the same poset in UPos;
ii. a morphism d in HomDP(A, B) to the morphism u in HomUPos(A, B),

where u is the monotone function

u : A → UB,
a 7→ {b ∈ B | d(a , b) � T}.

Remark 9.16. Recall that for any design problem d : A ↛ B and any a ∈ A
it holds that {b ∈ B | d(a , b) � T} is an upper set (Lemma 8.13). One can
similarly show that for any b ∈ B it holds that {a ∈ A | d(a , b) � T} is a lower
set.

Lemma 9.17. ΠDP
f is indeed a functor.

9.3. Functorial relationships 139

Proof. Directly from Definition 9.15 we see that ΠDP
f respects the sources and

targets of the morphisms. To check that it also preserves identities we need
to recall what the identity design problem is. The identity design problem on
the poset A is:

idDP
A : Aop × A → Bool,

⟨a , a′⟩ 7→
{
T if a ≤A a′,
F otherwise,

as in Definition 7.20. The functor takes this to the u function in HomUPos(A,A):

u : A → UA,
a 7→ {a′ ∈ A | a ≤A a′},

which is exactly ↑A{a} as in the definition of the identity in Definition 9.3.
Finally, we need to show that ΠDP

f respects the composition of morphisms,
in other words that

ΠDP
f (d1 d2) � ΠDP

f (d1) ⋉ ΠDP
f (d2),

where d1 : A↛ B and d2 : B ↛ C are two design problems.
The left-hand side is a monotone function from A to C, hence a morphism

in UPos. Writing it out (referring to Definition 7.17) we get:

ΠDP
f

(
d1 DP d2

)
�

[
a 7→ ΠDP

f ([⟨a , b⟩ 7→ ∨
b∈B d1(a , b) ∧ d2(b , c)])

]
� [a 7→ {c ∈ C | ∨b∈B d1(a , b) ∧ d2(b , c) � T}] .

Writing out the right-hand side we obtain:

ΠDP
f (d1) ⋉ ΠDP

f (d2)
� [a 7→ {b ∈ B | d1(a , b) � T}] ⋉ [b 7→ {c ∈ C | d2(b , c) � T}]

�

a 7→
∪

b∈{b∈B |d1(a ,b)�T}
{c ∈ C | d2(b , c) � T}

� [a 7→ {c ∈ C | b ∈ B, d1(a , b) � T, d2(b , c) � T}]
� [a 7→ {c ∈ C | ∨b∈B d1(a , b) ∧ d2(b , c) � T}] ,

and hence the two sides are equal. Therefore, ΠDP
f is indeed a functor. □

In an analogous way we can also define the ΠDP
r functor:

Definition 9.18 (The ΠDP
r functor.). The ΠDP

r functor is a contravariant functor
(Definition 2.25) from DP to LPos which maps:

140 Chapter 9. Compositional properties of co-design

i. a poset in DP to the same poset in LPos;
ii. a morphism d in HomDP(A, B) to the morphism l in HomLPos(B,A),

where l is the monotone function

l : B → LA,
b 7→ {a ∈ A | d(a , b) � T}.

Lemma 9.19. ΠDP
r is a functor.

Proof. Analogous to the proof of Lemma 9.17. □

Now, we have the following functors between our three categories DP,
LPos, and UPos:

UPos

DP

LPos

↫�

Π
DP

f

ΠDPr

↬ (9.2)

Note that this diagram does not commute! However, this only raises the ques-
tion whether we can still identify some of the compositions. To address this,
we offer the following lemma.

Lemma 9.20. � ΠDP
f ↫ � ΠDP

r and � ΠDP
r ↬ � ΠDP

f .

Proof. Object-wise, the ΠDP
f and ΠDP

r map the posets in DP to the same preo-
reders in UPos and LPos respectively. �, ↫ and ↬, however, map each poset
in their orgin to its opposite poset in the target. In both of the equations in
the body of the lemma we have two functors of the second kind, which cancel
each other, hence the effects of left-hand and right-hand side of the equations
are the same on the object.

Let’s verify that this also holds for the morphisms. First, we will address
the � ΠDP

f ↫ � ΠDP
r equation. Take a design problem

d : A↛ B ∈ HomDP(A, B).

Taking its dual we obtain �(d) � d′ ∈ HomDP(Bop,Aop), with

d′ : B × Aop → Bool,
⟨b , a⟩ 7→ d(a , b). (9.3)

Applying the ΠDP
f functor we obtain ΠDP

f (d′) � u, with

u : Bop → U(Aop),

9.4. Monoidal properties 141

b 7→ {a ∈ A | d′(b , a) � T} � {a ∈ A | d(a , b) � T},

where the equality is due to the definition of a dual design problem (Defini-
tion 9.12). Finally, applying the last functor, we obtain ↫(u) � l, with

l : B → LA,
b 7→ {a ∈ A | d(a , b) � T}.

And directly from Definition 9.18 we see that, ΠDP
r (d) � l, and hence the first

equality holds.
Now let’s take a look at � ΠDP

r ↬ � ΠDP
f . We take the same design

problem d with the same dual �(d) � d′ (Equation (9.3)). Applying the ΠDP
r

functor we obtain ΠDP
r (d′) � l, with

l : Aop → L(Bop),
a 7→ {b ∈ B | d′(b , a) � T} � {b ∈ B | d(a , b) � T}.

Finally, applying the last functor, we obtain ↬(l) � u, with

u : A → UB,
a 7→ {b ∈ B | d(a , b) � T}.

And directly from Definition 9.15 we see that, ΠDP
f (d) � u, and hence the

second equality also holds. □

Remark 9.21. One can now see that Equation (9.1) and Equation (9.2) look
very similar. In both cases we have a way of translating the primal problem
into a dual problem and the solution of the dual problem into a solution for
the original primal problem. And of course, we can also do the opposite:
translating the dual problem into a primal problem and the solution of the
primal problem into a solution for the original dual problem.

Lemma 9.22. It holds that � ΠDP
f � ΠDP

r ↬ and � ΠDP
r � ΠDP

f ↫.

Proof. Follows directly from Lemma 9.20 and Lemma 9.9. □

9.4 Monoidal properties
The DP category is a symmetric monoidal category (Censi et al., 2020). The
monoidal product of the objects in DP (which are posets) is simply the product
poset (Definition 2.6). The monoidal product of two design problems (mor-
phisms in DP) is simply their then-composition (Definition 7.17). We will
now show that UPos and LPos are also symmetric monoidal. And not only
that, but also the functors that we defined in the previous section preserve the
tensor products of these categories.

142 Chapter 9. Compositional properties of co-design

Lemma 9.23. UPos is a monoidal category when considering the following additional
structure:

i. Tensor product ⊗, with the operation on objects being the poset product as
defined in Definition 2.6, and operation on two morphisms f : A → UB and
1 : C → UD

f ⊗ 1 : A × C → U(B × D),
⟨a , c⟩ 7→ f (a) × 1(c),

as the Cartesian product of upper sets is also an upper set.
ii. Unit object being the identity poset I (Definition 2.4).
iii. Left unitor being the pair of morphisms

λA : I ⊗ A → UA,
⟨ι, a⟩ 7→ ↑{a};

and
λ−1

A : A → U(I ⊗ A),
a 7→ {ι} × ↑{a}.

iv. Right unitor being the pair of morphisms

ρA : A ⊗ I → UA,
⟨a , ι⟩ 7→ ↑{a};

and
ρ−1

A : A → U(A ⊗ I),
a 7→ ↑{a} × {ι}.

v. Associator being the pair of morphisms

αAB,C : (A ⊗ B) ⊗ C → UA × (UB × UC),
⟨⟨a , b⟩ , c⟩ 7→ ↑{a} × (↑{b} × ↑{c}) ;

and
αA,BC : A ⊗ (B ⊗ C) → (UA × UB) × UC,

⟨a , ⟨b , c⟩⟩ 7→ (↑{a} × ↑{b}) × ↑{c}.

Proof. In order to show that UPos is a monoidal category, we need to show
that the triangle and pentagon diagrams commute. The triangle identity (see
Equation (3.1)) is equivalent to:

αAI ,B ⋉ (idA ⊗λB) � ρA ⊗ idB .

We have the left-hand side equal to:

αAI ,B ⋉ (idA ⊗λB)

9.4. Monoidal properties 143

� [⟨⟨a , ι⟩ , b⟩ 7→ (↑{a} × (↑{ι} × ↑{b}))] ⋉ ([a 7→ ↑{a}] ⊗ [(ι, b) 7→ ↑{b}])
� [⟨⟨a , ι⟩ , b⟩ 7→ (↑{a} × ({ι} × ↑{b}))] ⋉ [⟨a , ⟨ι, b⟩⟩ 7→ (↑{a} × ↑{b})]

�

⟨⟨a , ι⟩ , b⟩ 7→
∪

⟨a′,⟨ι,b′⟩⟩∈↑{a}×({ι}×↑{b})
(↑{a′} × ↑{b′})

� [⟨⟨a , ι⟩ , b⟩ 7→ (↑{a} × ↑{b})] .

And the right-hand side is equal to:

ρA ⊗ idB � [⟨a , ι⟩ 7→ ↑{a}] ⊗ [b 7→ ↑{b}]
� [⟨⟨a , ι⟩ , b⟩ 7→ (↑{a} × ↑{b})] .

Therefore, the triangle equality holds.
The pentagon inequality (see Equation (3.2)) is equivalent to:

α(AB)C,D ⋉ αAB,(CD) � (αAB,C ⊗ idD) ⋉ αA(BC),D ⋉ (idA ⊗αBC,D) .

The left hand-side evaluates to:

α(AB)C,D ⋉ αAB,(CD)
� [⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ((↑{a} × ↑{b}) × (↑{c} × ↑{d}))] ⋉
[⟨⟨a , b⟩ , ⟨c , d⟩⟩ 7→ (↑{a} × (↑{b} × (↑{c} × ↑{d})))]

�

⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→
∪

⟨⟨a′,b′⟩,⟨c′,d′⟩⟩∈
(↑{a}×↑{b})×(↑{c}×↑{d})

(↑{a′} × (↑{b′} × (↑{c′} × ↑{d′})))

� [⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ (↑{a} × (↑{b} × (↑{c} × ↑{d})))] .

The two monoidal products on the right-hand side evaluate to:

αAB,C ⊗ idD � [⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ ((↑{a} × (↑{b} × ↑{c})) × ↑{d})] ,
idA ⊗αBC,D � [⟨a , ⟨⟨b , c⟩ , d⟩⟩ 7→ (↑{a} × (↑{b} × (↑{c} × ↑{d})))] .

The first two terms of the right-hand side evaluate to:

(αAB,C ⊗ idD) ⋉ αA(BC),D

�

(((a , b), c), d) 7→
∪

((a′,(b′,c′)),d′)∈
(↑{a}×(↑{b}×↑{c}))×↑{d}

(↑{a′} × ((↑{b′} × ↑{c′}) × ↑{d′}))

� [(((a , b), c), d) 7→ (↑{a} × ((↑{b} × ↑{c}) × ↑{d}))] .

144 Chapter 9. Compositional properties of co-design

Hence, the right-hand side of the pentagon equality is:

(αAB,C ⊗ idD) ⋉ αA(BC),D ⋉ (idA ⊗αBC,D)
� [⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ (↑{a} × ((↑{b} × ↑{c}) × ↑{d}))]⋉
[⟨a , ⟨⟨b , c⟩ , d⟩⟩ 7→ (↑{a} × (↑{b} × (↑{c} × ↑{d})))]

� [⟨⟨⟨a , b⟩ , c⟩ , d⟩ 7→ (↑{a} × (↑{b} × (↑{c} × ↑{d})))] ,
hence, the pentagon equality also holds and UPos is a monoidal category. □

Lemma 9.24. UPos is a symmetric monoidal category when considering the braiding
isomorphism

σA,B : A ⊗ B → B ⊗ A,
⟨a , b⟩ 7→ ↑{b} × ↑{a},

defined for all A, B ∈ Ob(UPos), As σ is involute, it is also the map of the inverse
morphism.

Proof. To prove that UPos is a symmetric monoidal category we need to show
that the braiding σmakes the unit coherence, associativity coherence, and the
inverse law diagrams commute. The unit coherence diagram is:

A ⊗ I I ⊗ A

A

σA,I

ρA

λA

The coherence diagram commutes because σA,I just flips the operands in the
Cartesian product, while ρA and λ just extract the non-identity component
out if it. The associativity coherence diagram is:

(A ⊗ B) ⊗ C (B ⊗ A) ⊗ C

A ⊗ (B ⊗ C) B ⊗ (A ⊗ C)

(B ⊗ C) ⊗ A B ⊗ (C ⊗ A)

σA,B⊗idC

αAB,C αBA,C

σA,B⊗C idB ⊗σA,C

αBC,A

The associativity coherence diagram again commutes because σ just flips the
positions of the elements in the Cartesian product and α simply alters the
groupings.

Finally, the inverse law diagram is:

A ⊗ B A ⊗ B

B ⊗ A

σA,B

idA⊗B

σB,A

9.4. Monoidal properties 145

The inverse law diagram commutes because σ is involute and hence applying
it twice result in the identity morphism. □

Lemma 9.25. LPos is a symmetric monoidal category when considering the following
additional structure:

i. Tensor product ⊗, with operation on objects being the poset product as defined in
Definition 2.6, and operation on two morphisms f : A → LB and 1 : C → LD

f ⊗ 1 : A × C → L(B × D),
⟨a , c⟩ 7→ f (a) × 1(c),

as the Cartesian product of lower sets is also a lower set.
ii. Unit object being the identity poset I (Definition 2.4).
iii. Left unitor being the pair of morphisms

λA : I ⊗ A → LA,
⟨ι, a⟩ 7→ ↓{a};

and
λ−1

A : A → L(I ⊗ A),
⟨a⟩ 7→ {ι} × ↓{a}.

iv. Right unitor being the pair of morphisms

ρA : A ⊗ I → LA,
⟨a , ι⟩ 7→ ↓{a};

and
ρ−1

A : A → L(A ⊗ I),
⟨a⟩ 7→ ↓{a} × {ι}.

v. Associator being the pair of morphisms

αAB,C : (A ⊗ B) ⊗ C → LA × (LB × LC),
⟨⟨a , b⟩ , c⟩ 7→ ↓{a} × (↓{b} × ↓{c}) ;

and
αA,BC : A ⊗ (B ⊗ C) → (LA × LB) × LC,

⟨a , ⟨b , c⟩⟩ 7→ (↓{a} × ↓{b}) × ↓{c}.
vi. Braiding being the involute isomorphism

σA,B : A ⊗ B → B ⊗ A,
⟨a , b⟩ 7→ ↓{b} × ↓{a}.

Proof. Analogous to the proof of Lemmas 9.23 and 9.24. □

146 Chapter 9. Compositional properties of co-design

In this section we aim to show that the functors in Equation (9.2) respect
this monoidal structure.

Lemma 9.26. The � functor is a strong monoidal functor (Definition 2.31).

Proof. First, notice that � is an endofunctor with origin and target DP. Take
two arbitrary posets A, B. Then, we have

�(A) ⊗DP � (B) � Aop ⊗DP Bop

� Aop × Bop

� (A × B)op

� (A ⊗DP B)op

� � (A ⊗DP B) ,

where × is the poset product (Definition 2.6). The associativity diagram
holds because it is the same as the associativity diagram for DP, and as DP
is monoidal (Censi et al., 2020), Equation (2.1) must also hold. The same
argument holds for the left and right unitality diagrams (Equations (2.2)
and (2.3)). □

Lemma 9.27. The ↫ and ↬ functors are strong monoidal functors.

Proof. We will prove only that ↫ is strong monoidal, the case for ↬ is
analogous. First, let’s define the natural isomorphism µ for ↫. Given
some A, B ∈ Ob(UPos), from Definition 2.31 we know it should identify
↫(A) ⊗LPos ↫(B) with ↫(A ⊗UPos B), where ⊗LPos and ⊗UPos are the monoidal

products defined in Lemmas 9.23 and 9.25. This identification is simply equal-
ity as:

↫(A) ⊗LPos ↫(B) � Aop ⊗LPos Bop

� Aop × Bop

� (A × B)op

� (A ⊗UPos B)op

� ↫(A ⊗UPos B).

The isomorphism ϵmust map the identity poset I in UPos to the identity poset
I in LPos and back.

9.4. Monoidal properties 147

The associativity diagram (Equation (2.1)) for the ↫ functor is:

(
↫(A) ⊗LPos ↫(B)

)
⊗LPos ↫(C) ↫(A) ⊗LPos

(
↫(B) ⊗LPos ↫(C)

)
↫(A ⊗UPos B) ⊗LPos ↫(C) A ⊗LPos ↫(B ⊗UPos ↫(C))

↫((A ⊗UPos B) ⊗UPos C) ↫(A ⊗UPos (B ⊗UPos C)),

αLPos
↫(A) ↫(B), ↫(C)

µA,B ⊗LPos idLPos
↫(C) idLPos

↫(A) ⊗LPos µB,C

µ(A⊗UPosB),C µ(A⊗UPosB),C

↫(αUPos
AB,C)

The vertical arrows are isomorphisms due to µ being defined with an equality
above. The horizontal arrows simply change the groupings (see Lemmas 9.23
and 9.25). Therefore, the diagram commutes.

The unitality diagrams for the ↫ functor are:

I ⊗LPos ↫(A) ↫(I) ⊗LPos ↫(A)

↫(A) ↫(I ⊗UPos A)

ϵ ⊗LPos idLPos
↫(A)

λLPos
↫(A) µI ,A

↫(λUPos
A)

and

↫(A) ⊗LPos I ↫(A) ⊗LPos ↫(I)

↫(A) ↫(A ⊗UPos I),

idLPos
↫(A) ⊗LPos ϵ

ρLPos
↫(A) µA,I

↫(ρUPos
A)

which also obviously commute. □

Lemma 9.28. The ΠDP
f functor is a strong monoidal functor.

Proof. Let’s take a look at the natural isomorphism µ. From the definition of
ΠDP

f (Definition 9.15) we know that given two posets A, B:

ΠDP
f (A) ⊗UPos Π

DP
f (B) � A ⊗UPos B

� A × B
� A ⊗DP B

� ΠDP
f (A ⊗DP B).

Furthermore, ΠDP
f maps the identity poset to itself. Hence, showing associa-

tivity and unitality is equivalent to showing that these properties hold on a
category with poset objects, something we know holds, as DP is monoidal. □

148 Chapter 9. Compositional properties of co-design

Lemma 9.29. The ΠDP
r functor is a strong monoidal functor.

Proof. From Lemma 9.20 we know that ΠDP
r � � ΠDP

f ↫. We showed that
the three functors on the right side are strong monoidal and as the composition
of strong monoidal functors is also strong monoidal (morphism composition
in the MonCat category (Lane, 1998, Ch. VII)), ΠDP

r is too a strong monoidal
functor. □

9.5 Locally lattical structure
In this section we study some more properties of the structure of design
problems. The main observation is that the one can define an order on the
collection of design problems with functionality A and resource B. Intuitively,
one can imagine that there are feasibility relations which provide better trade-
offs than some other feasibility relations. More formally the hom-sets of DP
have lattice structure: one can take joins and meets of them, which are also
called respectively the intersection and sum design problems. This observation
was first made by Censi et al. (2020). We will extend the results there by
showing that this structure also exist in UPos and LPos and is respected by
the functors in Equation (9.2).

Lemma 9.30. Given any two posets A, B ∈ Ob(DP), HomDP(A, B) has a bounded
lattice structure (Definition 7.11) with:

i. Order: for any d1, d2 ∈ HomDP(A, B) we have

d1 ≤DP(A,B) d2

if and only if

d2(a , b) � T �⇒ d1(a , b) � T, ∀a ∈ A, ∀b ∈ B;

ii. Joins: intersection design problems (Definition 7.26);
iii. Meets sum design problems (Definition 7.24);
iv. Top: the design problem which is always unfeasible:

⊤DP(A,B) : Aop × B → Bool,
⟨a , b⟩ 7→ F;

v. Bottom: the design problem which is always feasible:

⊥DP(A,B) : Aop × B → Bool,
⟨a , b⟩ 7→ T.

Proof. See (Censi et al., 2020). □

9.5. Locally lattical structure 149

Lemma 9.31. Given any two posets A, B ∈ Ob(UPos), HomUPos(A, B) has a
bounded lattice structure with:

i. Order: for any two monotone maps u1, u2 : A → UB we have

u1 ≤UPos(A,B) u2

if and only if
u1(a) ⊇ u2(a), ∀a ∈ A;

ii. Joins: for any two monotone maps u1, u2 : A → UB, we have

(u1 ⊔ u2)(a) � u1(a) ∩ u2(a), ∀a ∈ A;

iii. Meets: for any two monotone maps u1, u2 : A → UB, we have

(u1 ⊓ u2)(a) � u1(a) ∪ u2(a), ∀a ∈ A;

iv. Top: the map ⊤UPos(A,B) : a 7→ �;
v. Bottom: the map ⊥UPos(A,B) : a 7→ B.

Lemma 9.32. Given any two posets A, B ∈ Ob(LPos), HomLPos(A, B) has a
bounded lattice structure with:

i. Order: for any two monotone maps l1, l2 : A → LB we have

l1 ≤LPos(A,B) l2

if and only if
l1(a) ⊇ l2(a), ∀a ∈ A;

ii. Joins: for any two monotone maps l1, l2 : A → LB, we have

(l1 ⊔ l2)(a) � l1(a) ∩ l2(a), ∀a ∈ A;

iii. Meets: for any two monotone maps l1, l2 : A → LB, we have

(l1 ⊓ l2)(a) � l1(a) ∪ l2(a), ∀a ∈ A;

iv. Top: the map ⊤LPos(A,B) : a 7→ �;
v. Bottom: the map ⊥LPos(A,B) : a 7→ B.

Lemma 9.33. The � functor preserves the bounded lattice structure of the hom sets of
DP. In other words, for any A, B ∈ Ob(DP) and any d1, d2 ∈ HomDP(A, B):

i. if d1 ≤DP(A,B) d2, then �(d1) ≤DP(Bop ,Aop) �(d2);
ii. �(d1 ∧ d2) � �(d1) ⊔ �(d2);
iii. �(d1 ∨ d2) � �(d1) ⊓ �(d2);
iv. �(⊤DP(A,B)) � ⊤DP(Bop ,Aop);
v. �(⊥DP(A,B)) � ⊥DP(Bop ,Aop).

150 Chapter 9. Compositional properties of co-design

Lemma 9.34. The ↫ functor preserves the bounded lattice structure of the hom sets
of UPos when it maps them to LPos. In other words, for any A, B ∈ Ob(UPos) and
any u1, u2 ∈ HomUPos(A, B):

i. if u1 ≤UPos(A,B) u2, then ↫(u1) ≤LPos(Aop ,Bop) ↫(u2);
ii. ↫(u1 ⊔ u2) � ↫(u1) ⊔ ↫(u2);
iii. ↫(u1 ⊓ u2) � ↫(u1) ⊓ ↫(u2);
iv. ↫(⊤UPos(A,B)) � ⊤LPos(Aop ,Bop);
v. ↫(⊥UPos(A,B)) � ⊥LPos(Aop ,Bop).

Lemma 9.35. The ↬ functor preserves the bounded lattice structure of the hom sets
of LPos when it maps them to UPos. In other words, for any A, B ∈ Ob(LPos) and
any u1, u2 ∈ HomLPos(A, B):

i. if u1 ≤UPos(A,B) u2, then ↬(u1) ≤LPos(Aop ,Bop) ↬(u2);
ii. ↬(u1 ⊔ u2) � ↬(u1) ⊔ ↬(u2);
iii. ↬(u1 ⊓ u2) � ↬(u1) ⊓ ↬(u2);
iv. ↬(⊤LPos(A,B)) � ⊤UPos(Aop ,Bop);
v. ↬(⊥LPos(A,B)) � ⊥UPos(Aop ,Bop).

Lemma 9.36. The ΠDP
f functor preserves the bounded lattice structure of the design

problems (hom sets) of DP when it maps them to UPos. In other words, for any
A, B ∈ Ob(DP) and any d1, d2 ∈ HomDP(A, B):

i. if d1 ≤DP(A,B) d2, then ΠDP
f (d1) ≤UPos(A,B) Π

DP
f (d2);

ii. ΠDP
f (d1 ∧ d2) � ΠDP

f (d1) ⊔ΠDP
f (d2);

iii. ΠDP
f (d1 ∨ d2) � ΠDP

f (d1) ⊓ΠDP
f (d2);

iv. ΠDP
f (⊥DP(A,B)) � ⊤UPos(A,B);

v. ΠDP
f (⊤DP(A,B)) � ⊥UPos(A,B).

Lemma 9.37. The ΠDP
r functor preserves the bounded lattice structure of the design

problems (hom sets) of DP when it maps them to LPos. In other words, for any
A, B ∈ Ob(DP) and any d1, d2 ∈ HomDP(A, B):

i. if d1 ≤DP(A,B) d2, then ΠDP
r (d1) ≤LPos(B,A) ΠDP

r (d2);
ii. ΠDP

r (d1 ∧ d2) � ΠDP
r (d1) ⊔ΠDP

r (d2);
iii. ΠDP

r (d1 ∨ d2) � ΠDP
r (d1) ⊓ΠDP

r (d2);
iv. ΠDP

r (⊤DP(A,B)) � ⊤LPos(B,A);
v. ΠDP

r (⊥DP(A,B)) � ⊥LPos(B,A).

9.6 Trace and feedback
The DP category is also a traced monoidal category (Definition 9.38) and the
proof of that can be found in (Censi et al., 2020). This means that there’s
the notion of “feedback” of design problems in DP. In particular, if we have

9.6. Trace and feedback 151

a design problem d ∈ HomDP(A × X, B × X), i.e. a design problem with
feasibilities in A × X and resources in B × X, we can use the component of
the feasibility in X as a resource, and thus closing the loop. This, of course,
requires that the provided component of the feasibility precedes the required
resource (Definition 9.39 introduces this formally). By “closing the loop”
we can obtain a new problem in HomDP(A, B) as the X component of the
feasibility and resource spaces are abstracted out.

Definition 9.38 (Traced monoidal category). Take the symmetric monoidal
category ⟨C, ⊗, I , σ⟩ with ⊗ being the monoidal product, I the unit object, σ
the braiding (or symmetry) isomorphism. Then, C is traced if for any three
objects A, B,X ∈ Ob(C) we have a function

TrX
A,B : HomC(A ⊗ X, B ⊗ X) → HomC(A, B),

satisfying the following axioms:
i. Vanishing:

TrI
A,B(f) � f ,

for all f ∈ HomC(A, B), and

TrX⊗Y
A,B (f) � TrX

A,B

(
TrY

A⊗X,B⊗X(f)
)
,

for all f ∈ HomC(A ⊗ X ⊗ Y, B ⊗ X ⊗ Y);
ii. Superposing

TrX
C⊗A,C⊗B(idC ⊗ f) � idC ⊗ TrX

A,B(f),
for all f ∈ HomC(A ⊗ X, B ⊗ X);

iii. Yanking:
TrX

X,X(σX,X) � idX .

Definition 9.39 (Trace of design problems). Given a design problem

d : A × X ↛ B × X,

its trace TrDP(d) : A↛ B is defined as:

TrDP(d) : Aop × B → Bool,
⟨a , b⟩ 7→

∨
x∈X

d((a , x), (b , x)).

Lemma 9.40. The ⟨DP, ⊗, I , σ⟩ category is a traced monoidal category with trace
defined as in Definition 9.39.

Proof. See (Censi et al., 2020). □

152 Chapter 9. Compositional properties of co-design

As we can take the trace of problems in DP it is only natural to ask what
happens with these traced problems when we “feed” them to the �, ↫, ↬,
ΠDP

f , and ΠDP
r functors. Hence, just as in the previous sections, we will show

that these functors preserve the trace.

Lemma 9.41. The UPos category is a traced monoidal category with trace defined for
any posets A, B,X ∈ Ob(UPos) as

TrX
A,B : (A ⊗UPos X → U(B ⊗UPos X)) → (A → UB) ,

u 7→ [a 7→ {b ∈ B | (∨x∈X ((b , x) ∈ u(a , x))) � T}] .

We will also denote the trace for morphisms in UPos by TrUPos.

Proof. First, note that UPos is a symmetric monoidal category due Lemma 9.24.
Now let’s verify that the output of TrX

A,B is indeed a monotone function map-
ping to upper sets in B. Monotonicity requires that for any

u : A ⊗UPos X → U(B ⊗UPos X),

and any a ≤A a′ ∈ A it holds that:

TrUPos(u)(a) ≤UB TrUPos(u)(a′) ⇐⇒ TrUPos(u)(a) ⊇ TrUPos(u)(a′).

Due to the monotonicity of u, for any b ∈ B and x ∈ X we know that

(b , x) ∈ u(a′, x) �⇒ (b , x) ∈ u(a , x).

Therefore, if b ∈ TrUPos(u)(a′), then b ∈ TrUPos(u)(a), which is exactly the same
as the right condition in Section 9.6, hence the output of TrX

A,B is indeed a
monotone function. Again, due to the monotonicity of u we have that for any
b ≤B b′ ∈ B, a ∈ A, and x ∈ X:

(b , x) ∈ u(a , x) �⇒ (b′, x) ∈ u(a , x).

Therefore, TrUPos(u)(a) is indeed an upper set for all a ∈ A.
Next, we need to prove the axioms of traced monoidal categories (Defi-

nition 9.38). Given an f : A → UB, the first vanishing axiom is equivalent
to

f �
[
a 7→

{
b ∈ B | (b , ι) ∈ (f ⊗ idI)(a , ι)

}]
,

which is trivially true.
Given an f : A ⊗ X ⊗ Y → B ⊗ X ⊗ Y, the left-hand side of the second

vanishing axiom is:

TrX⊗Y
A,B (f) �

[
(a) 7→

{
b ∈ B |

(∨
(x ,y)∈X⊗Y

(
(b , x , y) ∈ f (a , x , y)

))
� T

}]
.

9.6. Trace and feedback 153

We also have:

TrY
A⊗X,B⊗X(f)�

[
(a ,x)7→

{
(b ,x)∈B⊗X |

(∨
y∈Y

(
(b ,x ,y)∈ f (a ,x ,y)

))
�T

}]
.

Hence, the right-hand side of the second vanishing axiom is:

TrX
A,B(TrY

A⊗X,B⊗X(f))

�

[
a 7→

{
b∈B |

(∨
x∈X

(
(b ,x)∈TrY

A⊗X,B⊗X(f)(a ,x)
))
�T

}]
�

[
a 7→

{
b∈B |∨x∈X(b ,x)∈

{
(b′,x′)∈B⊗X |

(∨
y′∈Y

(
(b′,x′,y′)∈ f (a ,x′,y′)

))
�T

}}]
�

[
a 7→

{
b∈B |∨x∈X

(∨
y∈Y

(
(b ,x ,y)∈ f (a ,x ,y)

))
�T

}]
,

which is equivalent to the left-hand side, hence the second vanishing axiom
also holds.

Given an f : A ⊗ X → B ⊗ X, the right-hand side of the superposing axiom
equals:

TrX
C⊗A,C⊗B(id

UPos
C ⊗ f)

�

[
(c , a) 7→

{
(c , b) ∈ C ⊗ B |

(∨
x∈X

(
(c , b , x) ∈

(
idUPos

C ⊗ f
)
(c , a , x)

))
� T

}]
�

[
(c , a) 7→

{
(c , b) ∈ C ⊗ B |

(∨
x∈X

(
c ∈ idUPos

C (c) ∧ (b , x) ∈ f (a , x)
))

� T
}]

�
[
(c , a) 7→

{
(c , b) ∈ C ⊗ B |

(∨
x∈X

(
c ∈ ↑{c} ∧ (b , x) ∈ f (a , x)

))
� T

}]
�

[
(c , a) 7→

{
(c , b) ∈ ↑{c} ⊗ B |

(∨
x∈X

(
(b , x) ∈ f (a , x)

))
� T

}]
�

[
(c , a) 7→

(
↑{c} ×

{
b ∈ B |

(∨
x∈X

(
(b , x) ∈ f (a , x)

))
� T

})]
.

At the same time, the right hand-side of the superposing axiom is:

idUPos
C ⊗ TrX

A,B(f)
� [c 7→ ↑{c}] ⊗ [a 7→ {b ∈ B | (∨x∈X ((b , x) ∈ u(a , x))) � T}]
� [(c , a) 7→ (↑{c} × {b ∈ B | (∨x∈X ((b , x) ∈ u(a , x))) � T})] ,

and hence the superposing axiom also holds.
Finally, we can also show that the yanking axiom holds:

TrX
X,X(σX,X) � [x 7→ {x′ ∈ X | (∨x∗∈X ((x′, x∗) ∈ σX,X(x , x∗))) � T}]

� [x 7→ {x′ ∈ X | (∨x∗∈X ((x′, x∗) ∈ ↑{x∗} × ↑{x})) � T}]
� [x 7→ {x′ ∈ X | (∨x∗∈X (x′ ∈ ↑{x∗} ∧ x∗ ∈ ↑{x})) � T}]
� [x 7→ {x′ ∈ X | x′ ∈ ↑{x}}]
� [x 7→ ↑{x}]
� idUPos

X .

□

154 Chapter 9. Compositional properties of co-design

Lemma 9.42. The LPos category is a traced monoidal category with trace defined for
any posets A, B,X ∈ Ob(LPos) as

TrX
A,B : (A ⊗LPos X → L(B ⊗LPos X)) → (A → LB) ,

l 7→ [a 7→ {b ∈ B | (∨x∈X ((b , x) ∈ l(a , x))) � T}] .

We will also denote the trace for morphisms in LPos by TrLPos.

Proof. Analogous to the proof of Lemma 9.41. □

Lemma 9.43. The � functor preserves traces. In other words:

� (TrDP(d)) � TrDP
(
�(d)

)
,

for all d ∈ HomDP(A × X, B × X), and for all A, B,X ∈ Ob(DP).

Proof. Recall that the trace of d is:

TrDP(d) : Aop × B → Bool,
⟨a , b⟩ 7→

∨
x∈X

d((a , x), (b , x)).

Hence dual of the trace of d is:

�(TrDP(d)) : B × Aop → Bool,
⟨b , a⟩ 7→

∨
x∈X

d((a , x), (b , x)).

The dual of d is:

�(d) : (B × X) × (A × X)op → Bool,
⟨(b , x), (a , x)⟩ 7→ d((a , x), (b , x)).

And the trace of the dual of d is:

TrDP
(
�(d)

)
: B × Aop → Bool,

⟨b , a⟩ 7→
∨

x∈Xop

�(d)((b , x), (a , x)) �
∨

x∈Xop

((a , x), (b , x)),

and hence � (TrDP(d)) � TrDP
(
�(d)

)
. □

Lemma 9.44. The ↫ functor preserves traces. In other words:

↫(TrUPos(u)) � TrLPos(↫(u)),

for all u ∈ HomUPos(A ⊗UPos X, B ⊗UPos X), and for all A, B,X ∈ Ob(UPos).

9.6. Trace and feedback 155

Proof. Recall from Lemma 9.41 that

TrUPos(u) : A → UB,
a 7→ {b ∈ B | ∨x∈X(b , x) ∈ u(a , x) � T} .

Then, applying the ↫ functor to it we obtain:

↫(TrUPos(u)) : Aop → L(Bop),
a 7→ {b ∈ B | ∨x∈X(b , x) ∈ u(a , x) � T} .

On the other hand, first applying ↫ to u:

↫(u) : (A ⊗LPos X)op → L((B ⊗LPos X)op),
⟨a , x⟩ 7→ u(a , x).

Taking its trace we obtain:

TrLPos(↫(u)) : Aop → L(Bop),
a 7→ {b ∈ B | ∨x∈Xop(b , x) ∈ u(a , x) � T} ,

hence it holds that ↫(TrUPos(u)) � TrLPos(↫(u)). □

Lemma 9.45. The ↬ functor preserves traces. In other words:

↬(TrLPos(l)) � TrUPos(↬(l)),

for all l ∈ HomLPos(A ⊗LPos X, B ⊗LPos X), and all A, B,X ∈ Ob(LPos).

Proof. Analogous to the proof of Lemma 9.44. □

Lemma 9.46. The ΠDP
f functor preserves traces. In other words:

ΠDP
f (TrDP(d)) � TrUPos

(
ΠDP

f (d)
)
,

for all d ∈ HomDP(A × X, B × X), and all A, B,X ∈ Ob(DP).

Proof. Recall that the trace of d is:

TrDP(d) : Aop × B → Bool,
⟨a , b⟩ 7→

∨
x∈X

d((a , x), (b , x)).

Applying the ΠDP
f functor to it we obtain:

ΠDP
f (TrDP(d)) : A → UB,

a 7→ {b ∈ B | ∨x∈X d((a , x), (b , x)) � T} .

156 Chapter 9. Compositional properties of co-design

However, first applying ΠDP
f to d we obtain:

ΠDP
f (d) : A ⊗UPos X → B ⊗UPos X,

⟨a , x⟩ 7→ {⟨b , x⟩ ∈ B ⊗UPos X | d((a , x), (b , x)) � T} .

And then applying the trace to the result:

TrUPos(ΠDP
f (d)) : A → UB,

a 7→ {b ∈ B | ∨x∈X d((a , x), (b , x)) � T} ,

hence ΠDP
f (TrDP(d)) � TrUPos

(
ΠDP

f (d)
)
. □

Lemma 9.47. The ΠDP
r functor preserves traces. In other words:

ΠDP
r (TrDP(d)) � TrLPos

(
ΠDP

r (d)
)
,

for all d ∈ HomDP(A, B), and all A, B ∈ Ob(DP).

Proof.
ΠDP

r (TrDP(d)) � ↫
(
ΠDP

f

(
� (TrDP(d))

))
� ↫

(
ΠDP

f

(
TrDP

(
�(d)

)))
� ↫

(
TrUPos

(
ΠDP

f

(
�(d)

)))
� TrLPos

(
↫

(
ΠDP

f

(
�(d)

)))
� TrLPos

(
ΠDP

r
(
�
(
�(d)

)))
� TrLPos

(
ΠDP

r (d)
)
.

We use the results from Lemmas 9.20, 9.22, 9.43, 9.44, and 9.46 in the above
proof, as well as the fact that � is an involute functor. Alternatively, one can
use the same technique as we used for Lemma 9.46 to reach the same result
directly. □

9.7 Bonus: Interpretation with monads
In this section we will explore some monadic connections underlying the
structure of co-design. While the results we present here are not necessary for
following the next chapter, we believe they will be of interest to the readers
curious about co-design.

We start by recalling the definitions of monads and Kleisli categories (Lane,
1998, Ch. VI). Then we introduce the U functor and the U monad that it gives
rise to.

9.7. Bonus: Interpretation with monads 157

Definition 9.48 (Monad). Let C be a category. A monad on C consists of:
i. a functor T : C → C;

ii. a natural transformation η : idC ⇒ T called unit;
iii. a natural transformation µ : T T ⇒ T called composition or multiplica-

tion.
For every X ∈ Ob(C), the constituents must satisfy left and right unitality:

T(X) T(T(X))

T(X)

ηT(X)

idC
T(X)

µX

T(X) T(T(X))

T(X)

T(ηX)

idC
T(X)

µX

and associativity:

T(T(T(X))) T(T(X))

T(T(X)) T(X)

T(µX)

µT(X) µX

µX

Definition 9.49 (Kleisli morphism). Let
⟨
T, η, µ

⟩
be a monad on a category C.

A Kleisli morphism of T from X to Y is a morphism k : X → TY of C.

Definition 9.50 (Kleisli composition). Let
⟨
T, η, µ

⟩
be a monad on a category

C. Let k : X → TY and h : Y → TZ. We define the Kleisli composition of k and
h to be the morphism k h : X → TZ, given by

X TY TTZ TZ.k Th µ

Definition 9.51 (Kleisli category). Let
⟨
T, η, µ

⟩
be a monad on a category C.

The Kleisli category of T is the category CT with:
i. Ob(CT) � Ob(C), i.e; it has the same objects as C;

ii. HomCT (X,Y) � HomC (X, TY), i.e; the morphisms are the Kleisli mor-
phisms of T (Definition 9.49);

iii. identities are given by the units η : X → TX for each object X;
iv. the composition of morphisms is given by the Kleisli composition (Def-

inition 9.50).

Definition 9.52 (Category Pos). The category Pos is defined by:
i. Objects: The objects of this category are all posets.

ii. Morphisms: The morphisms between any pair of posets X,Y are the
monotone maps from X to Y.

iii. Identity morphism: The identity morphism for the poset X is the identity
function idX , which maps every element of X to itself.

158 Chapter 9. Compositional properties of co-design

iv. Composition operation: The composition operation is function composi-
tion.

Definition 9.53 (The U functor). The U functor (endofunctor) on Pos maps:
i. A poset P ∈ Ob(Pos) to its upper set UP, which is also an object in Pos

(Lemma 7.2),
ii. A morphism (monotone function) f : P → Q to the monotone function:

U(f) : UP → UQ ,

P′ 7→ ↑ ©«
∪
p∈P′

{ f (p)}ª®¬ .
We will use the following results throughout the rest of this section:

Lemma 9.54. Given two posets P,Q, a monotone functions f : P → Q, and a family
of singleton sets {Si}i∈I , Si � {si} with si ∈ P, the following holds true:

↑ ©«
∪

p∈↑∪
i∈I Si

{ f (p)}ª®¬ � ↑
(∪

i∈I

{
f (si)

})
.

Proof. First, let’s show that

↑
(∪

p∈↑∪
i∈I Si

{ f (p)}
)
⊆ ↑

(∪
i∈I

{
f (si)

})
.

Take a
q ∈ ↑

(∪
p∈↑

∪
i∈I Si

{ f (p)}
)
.

That means that there exists a

q′ ∈ ∪
p∈↑

∪
i∈I Si

{ f (p)}

such that q′ ≤Q q. Hence, there is a p′ ∈ ↑∪
i∈I Si such that q′ � f (p′). If p′ is

in this upper closure, then there must be an i′ ∈ I such that si′ ≤P p′, and due
to the monotonicity of f we get:

f (si′) ≤Q f (p′) � q′ ≤Q q.

As si′ is in the union in the right-hand set, and as any q∗ ∈ Q such that
f (si′) ≤Q q∗ is in its upper closure, a must also be in it.

Now, let’s show that

↑
(∪

p∈↑
∪

i∈I Si
{ f (p)}

)
⊇ ↑

(∪
i∈I

{
f (si)

})
.

9.7. Bonus: Interpretation with monads 159

Take a
q ∈ ↑

(∪
i∈I

{
f (si)

})
.

Then there’s a i′ ∈ I such that f (si′) ≤Q q. But then this f (si′) is also in the
union in the right-hand side, hence any q∗ ≥Q f (si′) must be in the upper
closure of that union. Hence, q is in the right-hand side set. As the two sets
on the side of the equation in the lemma are subsets of each other, they must
be equal. □

Lemma 9.55. Given two posets P,Q and a monotone functions f : P → Q, the
following holds true for all p ∈ P:

↑ ©«
∪

p′∈↑{p}
{ f (p′)}ª®¬ � ↑{ f (p)}.

Proof.
Short proof: Follows directly from Lemma 9.54 when we take a family of
singleton sets with only the set {p}.
Full proof: First, let’s show that

↑
(∪

p′∈↑{p}{ f (p′)}
)
⊆ ↑{ f (p)}.

Take a
q ∈ ↑

(∪
p′∈↑{p′}{ f (p)}

)
.

Then there must exist a p′ ∈ P such that p ≤P p′ and f (p′) ≤P q. But due to
the monotonicity of f , we know that f (p) ≤P f (p′) ≤P q and hence it must
hold that q ∈ ↑{ f (p)}.

Now, let’s show that

↑
(∪

p′∈↑{p}{ f (p′)}
)
⊇ ↑{ f (p)}.

Take a q in↑{ f (p)}. Then that means that f (p) ≤P q. But f (p) ∈ ∪
p′∈↑{p}{ f (p′)},

hence q must be in its upper closure. As the two sets on the side of the equation
in the lemma are subsets of each other, they must be equal. □

Lemma 9.56. Given a set A and a family {Ai}i∈I of subsets of A indexed by I, the
following holds true: ∪∪

i∈I

{Ai} �
∪
i∈I

Ai .

Note that {Ai} is a singleton set with an element a subset of A, hence a set of sets.

Lemma 9.57. The U functor is indeed a functor.

160 Chapter 9. Compositional properties of co-design

Proof. U respects the source and targets of arrows. Furthermore, it maps idP
to idUP . Finally, we need to show that U respects also morphism composition.

Take f : P → Q and 1 : Q → R. Then:

U(f 1) �
[
P′ 7→ ↑

(∪
p∈P′

{
1(f (p))

})]
.

At the same time:

U(f) U(1) �
[
P′ 7→ ↑

(∪
p∈P′{ f (p)}

)] [
Q′ 7→ ↑

(∪
q∈Q′{1(q)}

)]
�

[
P′ 7→ ↑

(∪
q∈

(
↑
∪

p∈P′{ f (p)}
){1(q)})]

�

[
P′ 7→ ↑

(∪
p∈P′

{
1(f (p))

})]
,

where the last equality is due Lemma 9.54. Hence U is indeed a functor. □

Definition 9.58 (The U monad). We define the U monad on Pos consisting of:
i. The functor U (Definition 9.53).

ii. The unit natural transformation ηU : idPos ⇒ U, which associates to
every P ∈ Ob(Pos) the following morphism in Pos:

ηU
P : P → UP,

p 7→ ↑{p}.

iii. The composition natural transformation µU : U U ⇒ U, which asso-
ciates to every P ∈ Ob(Pos) the following morphism in Pos:

µU
P : U(UP) → UP,

P′′ 7→
∪

P′∈P′′
P′.

We will refer both to the monad and its constitute functor as U. The difference
should be clear from the context.

Remark 9.59. Notice that the unit natural transformation of the U monad uses
the fact that every element of the poset can be uniquely identified with an up-
per set (Lemma 7.14). In a way, one can think of the upper sets as “generalized
objects” of the poset.

Lemma 9.60. The U monad is indeed a monad.

Proof. Proving that U is a monad is a multi-step exercise. In particular, we
need to show the following things:

i. That ηU is indeed a natural transformation;

9.7. Bonus: Interpretation with monads 161

ii. That µU is indeed a natural transformation;
iii. That the left unitality holds;
iv. That the right unitality holds;
v. That the associativity holds.
ηU is indeed a natural transformation. We need to show that for every

f ∈ HomPos(P,Q) it holds that

idPos(f) ηU
Q � ηU

P U(f).

The left-hand side equals:

idPos(f) ηU
Q � f

[
q 7→ ↑{q}

]
�

[
p 7→ ↑{ f (p)}

]
.

The right-hand side equals:

ηU
P U(f) �

[
p 7→ ↑{p}

] [
P′ 7→ ↑∪

p′∈P′
{

f (p′)
}]

�

[
p 7→ ↑

(∪
p′∈↑{p}

{
f (p′)

})]
�

[
p 7→ ↑{ f (p)}

]
,

where the last equality is due Lemma 9.55.
µU is indeed a natural transformation. We need to show that for every

f ∈ HomPos(P,Q) it holds that

U(U(f)) µU
Q � µU

P U(f).

The left-hand side equals:

U(U(f)) µU
Q � U

([
P′ 7→ ↑

(∪
p∈P′{ f (p)}

)])
µU

Q

�

[
P′′ 7→ ↑

(∪
P′∈P′′

{
↑
(∪

p∈P′{ f (p)}
)})]

µU
Q

�

P′′ 7→ ↑ ©«
∪

P′∈P′′

↑ ©«
∪
p∈P′

{ f (p)}ª®¬
ª®¬

[
Q′′ 7→

∪
Q′∈Q′′

Q′
]

�

P′′ 7→
∪

Q′∈↑(∪P′∈P′′{↑(∪p∈P′{ f (p)})})
Q′

�

[
P′′ 7→

∪
↑
(∪

P′∈P′′

{
↑
(∪

p∈P′{ f (p)}
)})]

�

[
P′′ 7→

∪ (∪
P′∈P′′

{
↑
(∪

p∈P′{ f (p)}
)})]

�

[
P′′ 7→

(∪
P′∈P′′ ↑

(∪
p∈P′{ f (p)}

))]
�

[
P′′ 7→ ↑

(∪
P′∈P′′

∪
p∈P′{ f (p)}

)]
,

162 Chapter 9. Compositional properties of co-design

where we use the facts that union of upper sets is an upper set (Lemma 7.15),
Lemma 9.56, and the fact that the union of upper set is the upper closure of
the union of sets. The right-hand side equals:

µU
P U(f) � [P′′ 7→ ∪

P′∈P′′ P′]
[
P′ 7→ ↑

(∪
p∈P′

{
f (p)

})]
�

P′′ 7→ ↑ ©«
∪

p∈∪P′∈P′′ P′

{
f (p)

}ª®¬

�

[
P′′ 7→ ↑

(∪
P′∈P′′

∪
p∈P′

{
f (p)

})]
.

Left unitality holds. We heed to show that for all P ∈ Ob(Pos) it holds that:

ηU
U(P) µ

U
P � idPos

U(P) .

We have:
ηU

U(P) µ
U
P : UU → UU,

P′ 7→
∪

P′′∈↑{P′}
P′′

� P′,

where the equality is due to the upper sets of an upper set P′ being subsets of
P′, hence their union is again P′. The is the same as the identity morphism on
U(P) � UP in Pos (Definition 9.52).

Right unitality holds. We need to show that for all P ∈ Ob(Pos) it holds
that:

U(ηU
P) µU

P � idUPos
U(P) .

We have:
U(ηU

P) µU
P : UP → UP,

U(ηU
P) µU

P �

[
P′ 7→ ∪

P′′∈U(λp ↑{p})(P′) P′′
]
.

�

[
P′ 7→ ∪

P′′∈↑(∪p∈P′{↑{p}}) P′′
]

�

[
P′ 7→

∪
↑
(∪

p∈P′{↑{p}}
)]

�

[
P′ 7→ ↑

∪∪
p∈P′{↑{p}}

]
�

[
P′ 7→ ↑∪

p∈P′ ↑{p}
]

� [P′ 7→ ↑P′]
� [P′ 7→ P′] ,

where we again use the facts that union of upper sets is an upper set as shown
in Lemma 7.15, Lemma 9.56, the fact that the union of upper set is the upper

9.7. Bonus: Interpretation with monads 163

closure of the union of sets, and that taking the upper closure of an upper set
is redundant.

Associativity holds. We need to show that for all P ∈ Ob(Pos) it holds that:

U(µU
P) µU

P � µU
U(P) µ

U
P .

The left-hand side of this equation is:

U(µU
P) µU

P � U ([P′′ 7→ ∪
P′∈P′′ P′]) [P′′ 7→ ∪

P′∈P′′ P′]
� [P′′′ 7→ ↑ (∪P′′∈P′′′ {∪P′∈P′′ P′})] [P′′ 7→ ∪

P′∈P′′ P′]

�

P′′′ 7→
∪

P∗∈↑(∪P′′∈P′′′{
∪

P′∈P′′ P′})
P∗

�

[
P′′′ 7→

∪
↑ (∪P′′∈P′′′ {∪P′∈P′′ P′})

]
�

[
P′′′ 7→ ↑

∪∪
P′′∈P′′′ {∪P′∈P′′ P′}

]
� [P′′′ 7→ ↑∪

P′′∈P′′′
∪

P′∈P′′ P′]
� [P′′′ 7→ ∪

P′′∈P′′′
∪

P′∈P′′ P′] ,

where we use Lemmas 7.15 and 9.56, the fact that the union of upper sets is the
upper closure of the union of sets, and the fact that taking the upper closure
of an upper set is redundant. The right-hand side of this equation is:

µU
U(P) µ

U
P � [P′′′ 7→ ∪

P′′∈P′′′ P′′] [P′′ 7→ ∪
P′∈P′′ P′]

�
[
P′′′ 7→ ∪

P′∈∪P′′∈P′′′ P′′ P′]
� [P′′′ 7→ ∪

P′′∈P′′′
∪

P′∈P′′ P′] .

□

Lemma 9.61. UPos is the Kleisli category of U.

Proof. Going through the points of Definition 9.51 we have:
i. Objects of both UPos and Pos are posets.

ii. HomUPos(P,Q) is a set of monotone functions from P to UQ. These are
also the morphisms of HomPos(P,UQ).

iii. Identities in UPos are:
idA : A → UA,

a 7→ ↑{a},

as in Definition 9.3. This is the same as the unit natural transformation
ηU (Definition 9.58).

164 Chapter 9. Compositional properties of co-design

iv. The composition of morphisms in UPos was defined as the fish operator
⋉ (Definition 9.3). We now have to show that the Kleisli composition
on the monad U is the exact same operation. Take two morphisms
f : P → UQ, 1 : Q → UR in UPos. Their Kleisli composition is:

P UQ UUR UR.
f U(1) µU

R

f U(1) µU
R �

[
p 7→ f (p)

] [
Q′ 7→ ↑

(∪
q∈Q′{1(q)}

)]
µU

R

�

[
p 7→ ↑

(∪
q∈ f (p){1(q)}

)]
[R′′ 7→ ∪

R′∈R′′ R′]

�

[
p 7→ ∪

R′∈↑(∪q∈ f (p){1(q)}) R′
]

�

[
p 7→

∪
↑
(∪

q∈ f (p){1(q)}
)]

�

[
p 7→ ↑

∪ (∪
q∈ f (p){1(q)}

)]
�

[
p 7→ ↑

∪∪
q∈ f (p){1(q)}

]
�

[
p 7→ ↑∪

q∈ f (p) 1(q)
]

�
[
p 7→ ∪

q∈ f (p) 1(q)
]
,

which is precisely the ⋉ operator. In the above we use the fact that the
union of upper sets is the upper closure of the union of sets, that taking
the upper closure of an upper set is redundant, as well as Lemma 9.56.

□

Chapter 10

Design problems and
compositional computation

Now we can finally see how the theory of co-design that we developed in the
previous chapters can fit in the theory of compositional computational systems
from Part I. The reader most certainly made the connection that perhaps a
design problem will be a problem in some compositional computational system.
And similarly, the methods for solving design problems which we discussed
in Chapter 8 would be procedures in the respective system.

10.1 Design problems are problems
Let’s start by taking another look at design problems. Recall that design
problems are feasibility relations between two posets and are represented as
the morphisms of the DP category. Solutions, on the other hand, are functions
from the elements of one poset to the antichains of another poset. Finally, recall
that the crux of the story in Chapter 8 was that not all design problems can
be solved using the solutions techniques that we provided. Hence, we need
to restrict ourselves only to well-behaved design problems Definition 8.39. To
do that, we define the DP⋆ category of well-behaved design problems:

Definition 10.1 (The DP⋆ category). The DP⋆ category is a subcategory (Def-
inition 2.21) of the DP category that has:

i. the same objects as DP, i.e. posets, and
ii. morphisms between any two posets P and Q being the subset

HomDP⋆(P,Q) ⊆ HomDP(P,Q)

165

166 Chapter 10. Design problems and compositional computation

of well-behaved design problems (Definition 8.39).

We will also define the category of functions with range antichains which
will represent solution maps of design problems (Definition 8.15):

Definition 10.2 (The APos category). The APos category has:
i. objects which are posets;

ii. morphisms between two objects A, B ∈ Ob(APos) which are solution
maps, i.e. functions of the form

f : A → AB;

iii. composition of two morphisms α : A → AB and β : B → AC defined
as in Lemma 8.18:

α β : A → AC,

a 7→ Min
≤C

∪
s∈α(a)

β(s);

iv. identity morphism for an object A is the solution map of the identity
feasibility relation (Lemma 8.19):

idA : A → AA
a 7→ {a}.

Therefore, we can now consider a compositional system, where the objects
of Prob̊ and Proc̊ are posets, with morphisms being respectively design prob-
lems (the morphisms of DP⋆) and solution maps (the morphisms of APos).
Note that this is a valid setting because posets are categories (Lemma 2.17),
hence every poset can be a statement or answer semicategory of a problem.
We have that the objects of Prob̊ and Proc̊ are the same as the objects of DP⋆
and APos. Furthermore, the morphisms of DP⋆ and APos are (some of the)
morphisms in Prob̊ and Proc̊.

The morphisms of Prob̊ and Proc̊ had to be kinded function with some
rigs N and M as their kind sets. We showed in Lemma 5.21 and Section 6.3,
any binary relation can be represented as a kinded function with a kind set
Bool. And a design problem was defined as a binary relation (Definition 2.14).
Hence we know that all design problems appear as morphisms in the category
Prob̊(Pos, B).

A solution map can also be represented as a binary relation. Hence, we also
get that all solution maps appear as morphisms in the category Proc̊(Pos, B).
Therefore, the solutions of design problems would end up in a category

Laputa (Pos, B, B, ·) ,

10.1. Design problems are problems 167

for some suitable choice of a solution judgement map.
But what should that solution judgement map be? Well, we need it to be

one that verifies that the antichain returned by the procedure represents the
upper set of resources of the design problem. And, of course, that should hold
for any choice of a functionality. Hence we can take a map:

ΨDP⋆
F,R :

(
F

B−→ R
)
×

(
F

B−→ R
)
→ Bool,

⟨Φ, hΦ⟩ 7→
∧
f ∈F

∧
r∈R

Φ(f , r) �⇒ ∃r′ ∈ R s.t. hΦ(f , r′) ∧ (r′ ≤R r).

In the above we use the fact that hΦ(f , r′) would be true only for a r′ that is
an element of the minimal antichain of the upper set of resources that can
provide f , but we want the implication to hold for all elements of the upper
set, not only of the antichain.

Now we can claim that design problems are problems, solution maps are
procedures, and solution maps that solve design problems are solutions in the
compositional computational system

Laputa
(
Pos, B, B,ΨDP⋆

)
.

Then if we have two problems d : F ↛ R and e : G ↛ S, they would look like
that in this compositional computational system:

d e

idProb̊(Pos,B)
UR idProb̊(Pos,B)

US .

⟨
hd ,id

Proc̊(Pos,B)
UR

⟩ ⟨
hd ,id

Proc̊(Pos,B)
US

⟩
(10.1)

Remark 10.3. You probably noticed that there is no morphism between the two
problems in Equation (10.1). That does not mean that non-trivial problem
reduction is impossible in this setting. For example you can consider reducing
the product problem of d with an identity problem to d itself, or reducing
three problems in series to the middle problem with the morphisms being the
solution maps of the other two. Even more interestingly, in co-design there is
also the concept of “higher-order” design problems (Censi et al., 2020). These
are design problems over design problems. Hence, by solving the outer one,
we end up at a new design problem, something that can be an arrow in this
compositional computational system.

168 Chapter 10. Design problems and compositional computation

10.2 Design problems are a problem

A rather curious feature of co-design is that it can be to be (a part of) a
compositional computational system at various levels of abstraction and rep-
resentation. In the previous section we said that posets are categories, hence
the objects of Pos form a subcategory of the semicategories and therefore can
act as statement and answer semicategories in the definitions of Prob̊ and
Proc̊. Then, we ended up in a situation where every object of

Laputa
(
Pos, B, B,ΨDP⋆

)
is a design problem and every morphism is a pair of solution maps.

However, as all (well-behaved) design problems form the DP⋆ category, we
can take this to be a statement semicategory, while the category APos can be an
answer category. Then we obtain a single problem, with statements being all
design problems and answers being all solution maps. So let’s see how exactly
this would work out and what would be the compositional computational
system that can host this problem.

Let’s use the theory that we developed in Chapter 9. Hence, we would
be working with categories such as UPos, LPos and DP⋆ (again, here we
restrict ourselves only to well-behaved problems), and with functors such as
ΠDP⋆

f ,ΠDP⋆
r , ↬, ↫, and �. This means that the compositional computational

system we will end up being in is one where problems and procedures are
functors between categories. We already saw such a system in Section 6.4. It
was called LAnd and was defined as:

LAnd B Laputa
(
Cat, B, B,ΨAnd

)
.

Problems and procedures are now just different functors, i.e. morphisms in
Cat. We have two problems: ΠDP⋆

f andΠDP⋆
r which, as part of the Prob̊(Cat, B)

category, look like:

UPos

DP⋆ LPos.

Π
DP⋆

f

ΠDP⋆
r

(10.2)

10.2. Design problems are a problem 169

And the functors which represent procedures in Proc̊(Cat, B) are:

APos UPos

DP⋆ LPos.

↑

↫S

�

↬ (10.3)

There are two new functors there.
First, there is S. It simply maps a (primal) design problem to its corre-

sponding solution map in APos. So formally, we can define it as:

S : DP⋆→ APos,
P 7→ P,

(d : F ↛ R) 7→
[

f
F→AR7−−−−−→ Min

≤R
{r ∈ R | d(f , r) � T}

]
.

Note that this is not a process that can in general be computed. However, it does
represent the action of the solutions maps as introduced in Chapter 8. If every
atomic design problem comes with its own solution map (which is indeed how
such problems are solved in practice (Censi, 2016)) then numerically evaluating
this map would amount to solving the design problem. Furthermore, for
design problems which are composed out of other design problems we just
need to apply the same composition operations to their solution maps, as
described in Chapter 8.

The ↑ functor acts exactly like the ↑ operator (Definition 7.1):

↑ : APos → UPos,
P 7→ P,

(h : F → AR) 7→
[

f
F→UR7−−−−−→ ↑ h(f)

]
.

Now that the problems and procedures have been described in Equa-
tions (10.2) and (10.3) we are left with the task of identifying some of the
procedures as solutions to some of the problems. The first important observa-
tion is that the problem functor ΠDP⋆

f and the procedure functor composition
S ↑ map objects and morphisms in the exact same way, hence they trivially
satisfy Equation (6.5). The other crucial realization is that every problem
ΠDP⋆

r can be represented as aΠDP⋆
f problem. We hinted at this in Lemma 9.20.

Hence we also have that the problem functorΠDP⋆
r and the procedure functor

composition
� S ↑ ↫

170 Chapter 10. Design problems and compositional computation

maps objects and morphisms in the exact same way, hence they trivially satisfy
Equation (6.5). Formally, we have:

ΨLAnd
DP⋆,UPos

(
ΠDP⋆

f , S ↑
)
� T,

ΨLAnd
DP⋆,LPos

(
ΠDP⋆

r , � S ↑ ↫
)
� T.

It is now even more clear that the dual problemΠDP⋆
r reduces to the primal

problemΠDP⋆
f in the LAnd category. Of course, the opposite reduction is also

possible despite it perhaps being of little practical utility. In other words, we
have the following structure in LAnd:

idProb̊(Cat,B)
APos ΠDP⋆

f ΠDP⋆
r .⟨S,↑⟩

⟨�, ↬⟩

⟨�, ↫⟩

(10.4)

Here we have the three problems: the primal co-design problems ΠDP⋆
f , the

dual co-design problems ΠDP⋆
r and the identity problem on the APos cate-

gory idProb̊(Cat,B)
APos . We also have the pairs of procedures that allow problem

reduction among these problems. And of course, as before, solving a problem
would mean reducing it to an identity problem, of which we have only one
in Equation (10.4). Checking that this structure satisfies the definition of the
Laputa category (Definition 6.17) is straight-forward so we will omit it.

Remark 10.4. Compare the structure of the two compositional computational
system that we saw in this chapter: Equation (10.1) and Equation (10.4). As
mentioned in the beginning of this section, in Equation (10.1) we see indi-
vidual design problems explicitly appearing at this level of abstraction. In
Equation (10.4), however, we all design problems are “hidden” under the
objects.

10.3 Design problems are a problem with lots of
structure

A large part of Chapter 9 dealt with the rich structure that co-design has. We
talked about monoidality, locally-lattical structures, and traces. However, we
have seen none of that here yet. This section remedies that by illustrating how
one can have compositional systems with a lot of structure and how co-design
is a potent example of a problem in such a system.

10.3. Design problems are a problem with lots of structure 171

Table 10.1: Guide to the proofs of the compositional properties of the categories
used in this section.

Monoidal category Locally lattical category Traced category
UPos Lemma 9.23 Lemma 9.31 Lemma 9.41
LPos Lemma 9.25 Lemma 9.32 Lemma 9.42
APos Lemma 10.5 Lemma 10.5 Lemma 10.5
DP⋆ (Censi et al., 2020) Lemma 9.30 and Lemma 9.40 and

(Censi et al., 2020) (Censi et al., 2020)

Table 10.2: Guide to the proofs of the compositional properties of the functors
used in this section.

Functor Strong monoidal
functor

Preserving
bounded
lattical structure

Preserving
traces

S Lemma 10.9 Lemma 10.10 Lemma 10.11
↑ Lemma 10.8 Lemma 10.8 Lemma 10.8
� Definition 9.12 Lemma 9.26 Lemma 9.33 Lemma 9.43
↫ Lemma 9.9 Lemma 9.27 Lemma 9.34 Lemma 9.44
↬ Lemma 9.9 Lemma 9.27 Lemma 9.35 Lemma 9.45

idAPos By definition Lemma 10.7 Lemma 10.7 Lemma 10.7
ΠDP⋆

r Lemma 9.19 Lemma 9.29 Lemma 9.37 Lemma 9.47
ΠDP⋆

f Lemma 9.17 Lemma 9.28 Lemma 9.36 Lemma 9.46

First, let’s ensure that all our categories and functors indeed have this
structure. As Table 10.1 summarizes, we already showed that the categories
DP⋆, UPos, and LPos are symmetric monoidal, traced, and have hom-sets
with bounded lattice structure (i.e. with posetal order, joins, meets, tops, and
bottoms). In Chapter 9 we also showed that the functors ΠDP⋆

f , ΠDP⋆
r , �, ↫,

↬ preserve the operations underlying these structures. The exact proofs are
listed in Table 10.2. That means that whether we first apply the operation and
then the functor or first the functor and then the operation should not matter
for the end result.

In the formulation in Equation (10.4) of the co-design problems and solu-
tions in a compositional computational setting there is one additional category,
APos, and three new functors: S, ↑, and the identity functor on APos. So let’s
show that they too possess the same properties as the constructions from
Chapter 9.

Let’s first take a look at APos. We will formalize everything we need about
its compositional structure in the following lemma:

172 Chapter 10. Design problems and compositional computation

Lemma 10.5. APos has the following properties:
A. It is a monoidal category when considering the following additional structure:

i. Tensor product ⊗, with the operation on objects being the poset product as
defined in Definition 2.6, and operation on two morphisms f : A → AB
and 1 : C → AD

f ⊗ 1 : A × C → A(B × D),
⟨a , c⟩ 7→ f (a) × 1(c),

which is the same formulation as the solution map of the product design
problem (Lemma 8.20).

ii. Unit object being the identity poset I (Definition 2.4).
iii. Left unitor being the pair of morphisms

λA : I ⊗ A → AA,
⟨ι, a⟩ 7→ {a},

and
λ−1

A : A → A(I ⊗ A),
⟨a⟩ 7→ {ι × a}.

iv. Right unitor being the pair of morphisms

ρA : A ⊗ I → AA,
⟨a , ι⟩ 7→ {a},

and
ρ−1

A : A → A(A ⊗ I),
⟨a⟩ 7→ {a × ι}.

v. Associator being the pair of morphisms

αAB,C : (A ⊗ B) ⊗ C → AA × (AB ×AC),
⟨(a , b), c⟩ 7→ {a} × {b × c},

and
αA,BC : A ⊗ (B ⊗ C) → (AA ×AB) ×AC,

⟨a , (b , c)⟩ 7→ {a × b} × {c}.
B. It has bounded lattice structure on its hom-sets HomAPos(A, B) for any two

posets A, B ∈ Ob(APos) with:
i. Order: for any two solution maps a1, a2 : A → AB, it holds that

a1 ≤APos(A,B) a2 iff

a1(a) ≤AB a2(a), ∀a ∈ A,

where the order is the order on antichains defined in Lemma 8.4;

10.3. Design problems are a problem with lots of structure 173

ii. Joins: for any two solution maps a1, a2 : A → AB, it holds that

(a1 ⊔ a2)(a) � Min
≤B

{x1 ⊔ x2 | x1 ∈ a1(a), x2 ∈ a2(a)} , ∀a ∈ A,

the same as the definition of the solution map of the intersection design
problems (Lemma 8.24);

iii. Meets: for any two solution maps a1, a2 : A → AB, it holds that

(a1 ⊓ a2)(a) � Min
≤B

(a1(a) ∪ a2(a)) , ∀a ∈ A,

the same as the definition of the solution map of the sum design problems
(Lemma 8.21);

iv. Top: the map ⊤APos(A,B) : a 7→ �;
v. Bottom: the map ⊥APos(A,B) : a 7→ ⊥B.

C. It is a traced monoidal category with trace defined for any posets A, B,X ∈
Ob(APos) as

TrX
A,B : (A × X → A(B × X)) → (A → AB) ,

f 7→
[
a 7→ Min

≤B

{
b ∈ B |

(∨
x∈X

(
(b , x) ∈ ↑ f (a , x)

))
� T

}]
.

We will also denote the trace for morphisms in APos by TrAPos.

Sketch of a proof. The structure of APos is very similar to the structure of UPos
and LPos so the reader can refer to the proof for these two categories. □

Remark 10.6. It is important to mention that we restrict our interest only to
well-behaved design problems and sets (Definition 8.39). For these, the joins
and meets are always required to exist, and bottoms of the posets B must also
exist because the well-definedness requires that all subsets of Bop have a join.
Hence, strictly speaking the above definition is valid only for a subset of all
possible subsets. Also note that our definition of trace uses the upper closure
operator ↑ which means that it is biased with semantic meaning appropriate
for primal design problems and not dual design problems.

Let’s now look at the identity functor on the APos category and its proper-
ties.

Lemma 10.7. The identity functor id : APos → APos is a strong monoidal functor
and preserves the orders, joins, meets, tops, and bottoms of the hom-sets of APos, as
well as traces in APos.

Sketch of a proof. The fact that the identity functors on monoidal categories are
monoidal functors can be seen immediately from the commutative diagrams
in Definition 2.31. The same holds for the preserving the lattical structure and

174 Chapter 10. Design problems and compositional computation

traces. Whether we first do nothing to some elements and then we perform
an operation on them, or we first do the operation and then do nothing, the
result is going to be exactly the same. □

Lemma 10.8. The upper closure functor ↑ : APos → UPos is a strong monoidal
functor and preserves the orders, joins, meets, tops, and bottoms of the hom-sets of
UPos, as well as traces in UPos.

Sketch of a proof. The upper closure functor behaves similarly to theΠDP⋆
f func-

tor. As the proof of the above properties follows closely the proof of these
properties for the ΠDP⋆

f functor, we will omit it from here. □

Now, let’s focus on the S functor. Ideally we’d like it to have the same
properties as the functors in Chapter 9: monoidality, as well as preserving the
lattical structure and traces of DP⋆. The following three lemmas show that S
indeed possesses these properties.

Lemma 10.9. The S functor is a strong monoidal functor (Definition 2.31).

Proof. We will only show that given a design problems d1 : F1 ↛ R1 and
d2 : F2 ↛ R2 it holds that:

S(d1) ⊗APos S(d2) � S(d1 ⊗DP⋆ d2). (10.5)

The associativity and unitality properties are straight-forward to show so will
omit their proofs.

First, we have that:

S(d1) �
[

f1
F1→AR17−−−−−−−→ Min

≤R1

{
r1 ∈ R1 | d1(f1, r1) � T

}]
,

and
S(d2) �

[
f2

F2→AR27−−−−−−−→ Min
≤R2

{
r2 ∈ R2 | d2(f2, r2) � T

}]
.

Then, following applying the tensor product in APos we obtain:

S(d1)⊗APosS(d2)�
[⟨

f1, f2
⟩
7→Min

≤R1

{
r1∈R1 |d1(f1,r1)

}
×Min

≤R2

{
r2∈R2 |d2(f2,r2)

}]
.

Now, let’s take a look at the right-hand side of Equation (10.5):

S(d1⊗DP⋆d2)�
[⟨

f1, f2
⟩
7→ Min

≤(R1×R2)

{
⟨r1,r2⟩ |(d1⊗d2)

(⟨
f1, f2

⟩
,⟨r1,r2⟩

)}]
�

[⟨
f1, f2

⟩
7→ Min

≤(R1×R2)

{
⟨r1,r2⟩ |d1(f1,r1)∧d2(f2,r2)

}]
�

[⟨
f1, f2

⟩
7→Min

≤R1

{
r1∈R1 |d1(f1,r1)

}
×Min

≤R2

{
r2∈R2 |d2(f2,r2)

}]
.

10.3. Design problems are a problem with lots of structure 175

Hence Equation (10.5) indeed holds true. □

Lemma 10.10. The S functor preserves the bounded lattice structure of the hom-sets
of DP⋆. In other words, for any A, B ∈ Ob(DP⋆) and any d1, d2 ∈ HomDP⋆(A, B):

i. if d1 ≤DP⋆(A,B) d2, then S(d1) ≤APos(A,B) S(d2);
ii. S(d1 ∧ d2) � S(d1) ⊔ S(d2);
iii. S(d1 ∨ d2) � S(d1) ⊓ S(d2);
iv. S(⊤DP⋆(A,B)) � ⊤APos(A,B);
v. S(⊥DP⋆(A,B)) � ⊥APos(A,B).

Proof. Order preserving follows directly from the way the order is defined on
the hom-sets of the two categories. On DP⋆ it is:

d1 ≤DP⋆(A,B) d2 ⇐⇒
(
d2(a , b) �⇒ d1(a , b), ∀a ∈ A, b ∈ B

)
.

And on APos:

S(d1) ≤APos(A,B) S(d2) ⇐⇒
(
↑S(d1)(a) ⊇ ↑S(d2)(a), ∀a ∈ A

)
.

The right-hand sides of both are equivalent because of the monotonicity of the
design problems. Now, let’s take a look at the joins:

S(d1∧d2)�S ([⟨a ,b⟩ 7→d1(a ,b)∧d2(a ,b)])

�

[
a 7→Min

≤B
{b∈B | d1(a ,b)∧d2(a ,b)}

]
�

[
a 7→Min

≤B
({b∈B | d1(a ,b)}∩{b∈B | d2(a ,b)})

]
�

[
a 7→Min

≤B

(
↑Min

≤B
{b∈B | d1(a ,b)}∩↑Min

≤B
{b∈B | d2(a ,b)}

)]
�

[
a 7→Min

≤B
{b1⊔b2 | b1∈{b∈B | d1(a ,b)} ,b2∈{b∈B | d2(a ,b)}}

]
�S(d1)⊔S(d2),

where we used the fact that d1 and d2 are well-behaved and Lemma 8.23. The

176 Chapter 10. Design problems and compositional computation

meets go similarly:

S(d1 ∨ d2) � S ([⟨a , b⟩ 7→ d1(a , b) ∨ d2(a , b)])

�

[
a 7→ Min

≤B
{b ∈ B | d1(a , b) ∨ d2(a , b)}

]
�

[
a 7→ Min

≤B
({b ∈ B | d1(a , b)} ∪ {b ∈ B | d2(a , b)})

]
�

[
a 7→ Min

≤B

(
Min
≤B

{b ∈ B | d1(a , b)} ∪ Min
≤B

{b ∈ B | d2(a , b)}
)]

�

[
a 7→ Min

≤B
(S(d1)(a) ∪ S(d2)(a))

]
� S(d1) ⊓ S(d2).

The top elements are mapped as:

S
(
⊤DP⋆(A,B)

)
� S

([
⟨a , b⟩ Aop×B→Bool7−−−−−−−−−−→ F

])
�

[
a

A→AB7−−−−−→ �
]

� ⊤APos(A,B).

And the bottom elements are mapped as:

S
(
⊥DP⋆(A,B)

)
� S

([
⟨a , b⟩ Aop×B→Bool7−−−−−−−−−−→ T

])
�

[
a

A→AB7−−−−−→ ⊥B

]
� ⊥APos(A,B).

Thus, S indeed preserves the bounded lattice structure of the hom-sets of
DP⋆. □

Lemma 10.11. The S functor preserves traces. In other words:

S (TrDP⋆(d)) � TrAPos (S(d)) ,

for all d ∈ HomDP⋆(A × X, B × X) and for all A, B,X ∈ Ob(DP⋆).

Proof. The left-hand side evaluates to:

S (TrDP⋆(d)) � S

([
⟨a , b⟩ 7→

∨
x∈X

d (⟨a , x⟩ , ⟨b , x⟩)
])

�

[
a 7→ Min

≤B

{
b ∈ B |

∨
x∈X

d (⟨a , x⟩ , ⟨b , x⟩)
}]
.

10.3. Design problems are a problem with lots of structure 177

The right-hand side evaluates to:

TrAPos(S(d))

�TrAPos

([
⟨a , b⟩ 7→ Min

≤(B×X)
{⟨b , x⟩ ∈ B × X | d (⟨a , x⟩ , ⟨b , x⟩) � T}

])
�

[
a 7→ Min

≤B

{
b ∈ B |

∨
x∈X

(
⟨b , x⟩ ∈ ↑ Min

≤(B×X)
{⟨b , x⟩ | d (⟨a , x⟩ , ⟨b , x⟩) � T}

)}]
�

[
a 7→ Min

≤B

{
b ∈ B | b ∈ ↑Min

≤B

{
b ∈ B |

∨
x∈X

d(⟨a , x⟩ , ⟨b , x⟩) � T
}}]

�

[
a 7→ Min

≤B

{
b ∈ B |

∨
x∈X

d (⟨a , x⟩ , ⟨b , x⟩)
}]
.

Hence, the S functor indeed preserves traces. □

We just concluded the crusade for compositional properties that started in
Chapter 9. The result is that all the functors that appear as problems and
procedures in Equation (10.4) preserve tensor products, orders, joins, meets,
tops, bottoms, and traces. This is summarized in Table 10.2.

The importance of this result can be summarized as:

The answer of a composition of design problems is the composition of the
answers of the problems.

Thus one can choose whether to first compute the composite of two problems
(and we put the trace here too, even though it’s unitary) or to first compute
the problems independently and then compose the answers. Which one is
preferable might depend on which one results in less required resources.

One can expect, though, that co-design is not the only problem-solving
framework that exhibits this property. Essentially any other system where
where problem statements and answers form monoidal locally lattical traced
categories and problems and procedures are strong monoidal functors that
preserve traces and the bounded lattical structure of hom-sets would exhibit
the exact same property. Therefore, it makes sense to consider a compositional
computational system that contains them.

We will refer to this system as LAnd† and will formally be defined as:

LAnd† B Laputa
(
Cat†, B, B,ΨAnd

)
, (10.6)

with the Cat† category being the subcategory of Cat (Definition 2.37) with
objects being monoidal locally lattical traced categories and morphisms be-
ing strong monoidal functors that preserve traces and the bounded lattical
structure of hom-sets.

178 Chapter 10. Design problems and compositional computation

Remark 10.12. The DP category and design problems have even more structure
than we discussed here. It is of especial interest that DP is a also compact
closed category (Censi et al., 2020). In essence, this means that co-design
problems can act as functionalities and resources of other design problems.
This self-referentiality points to the computational richness of co-design. By
using the exact same approach as above, we can further extend the example
in this section, and the LAnd† compositional computational system to work
with functors which preserve compact closed structure.

10.4 Answers of design problems can also have
extra structure

Solving design problems is a computational process. And as every other
computational process, it takes up some resources such as CPUs, energy and
time. Earlier in this thesis we defined the procedures in Lagado in a way that
accounts for the usage of these computational resources. Then, we showed that
Lagado is one instance of a compositional computational theory (Section 6.3).
Just now, we showed that the extra structure of the co-design problems can
be represented as the LAnd† category. This leaves us with an interesting
question: Can we have the best of both worlds? Compositional structures
and computational resource accountability? The answer thankfully is “yes, of
course!”.

Recall our definition of the LAnd† system. We will modify it a bit to get
to our desired new compositional computational system. The resources part
affects only the kind of the procedures, hence we can leave the subcategory
of SemiCat the same (Cat†) and the rig for the problems also the same (B).
We already saw how resources can be represented as a rig in the definition of
MLagado in Section 6.3. Given a monoidal poset of resources R, we defined it
as:

MLagado B ⟨{F} ∪ UR,+M , F,×M , R⟩ .

We can use the exact same structure here as well.
Finally, we also need to adjust the solution judgement map. We can define

it similarly toΨLagado:

Ψ
LagadoLAnd
T,A :

(
T

B−→ A
)
×

(
T

MLagado

−−−−−→ A
)
→ Bool,

⟨Π,∆⟩ 7→

T if ∆(t , a) , F �⇒ Π(t ,∆(t , a)) � t,

∀t ∈ Ob(T), ∀a ∈ Ob(A),
F otherwise.

10.4. Answers of design problems can also have extra structure 179

Thus, we now define the new compositional computational system that has
both the compositional properties of LAnd† and the resource-awareness of
Lagado:

LagadoLAnd† B Laputa
(
Cat†, B,MLagado,ΨLagadoLAnd

)
. (10.7)

If we didn’t care about the compositional structure, but still wanted the
resource awareness, we could use the Cat category as a basis:

LagadoLAnd B Laputa
(
Cat, B,MLagado,ΨLagadoLAnd

)
. (10.8)

Of course, the variety of structures and properties is by far not limited
by the above examples. One can also consider representing approximate
solutions, uncertainty in the problems (Censi, 2017), or any other structures
and properties they might be interested in.

Chapter 11

Conclusion

Throughout this thesis, we poked and prodded problem-solving from several
points of view and with various properties, applications, and examples in
mind. We showed that one can indeed formalize the problem of problem-
solving in rich and powerful structures. We even saw that in some cases the
resulting compositional computational systems contain themselves, hence can
be used to reason about their own problem-solving.

The current work can serve as a guide to the critical thinker on how to
formally reason about concepts such as “problems” and “solutions”. We hope
that we not only present a new perspective, but also a more efficient and
communicable way of thinking. Our ultimate desire while working on this
thesis was to help the reader reach a state where they can solve problems
that they couldn’t solve before or solve problems much faster and with fewer
resources and headaches than before.

However, apart from the philosophical aspect of problem-solving, there
are also very pragmatic real-world opportunities that stem from this work.
By formally defining problems and procedures as separate entities, related
solely by a solution judgment map, we effectively decouple the acts of stating
a problem and solving it. This can be put into practice by creating a software
system for computation where the user only needs to know which problem
they want to solve and how to describe its specific instance (the statement).
Solving this problem instance in the best way possible would be then left for
the system to do. This is similar to declarative programming where a program
describes what computation should be performed but not how. The backend
of such a system would only have to find all the paths from this problem to
identity problems in some compositional computational system, and to then

181

182 Chapter 11. Conclusion

select the one that results in the lowest resource consumption for that specific
problem instance. Some paths would be optimal for some instances (e.g.
small ones), others would be optimal for others (e.g. large ones). However, the
optimal path need not be only determined by the one that can most efficiently
solve the problem instance from scratch. We can also use cached results from
previous (and seemingly unrelated) problems. Sometimes solving a problem
via a less efficient path can be more efficient if it gets reduced to a problem
that has already been solved and whose answer is cached and can be readily
reused. One can, of course, imagine that optimizing who, where, and how
performs the actual computation in such a system can also be automatically
determined. This is too, after all, a problem to be solved.

Apart from building a software implementation of compositional compu-
tational systems, there are also a number of theoretical questions that are still
unaddressed. First, as of now, we do not have concrete algorithms that select
the best execution path for a given problem. Introducing the option to reuse
previously cached results in the path selection would also be a critical point
for utilizing the full potential of this framework. Developing such algorithms
would be necessary for the development of the software system described
above.

We also did not fully address the question about the nature of the composi-
tional computational systems which are rich in structure, such as LagadoLAnd.
One of the key observations there was that we can choose whether first to solve
two subproblems and then to compose the solutions or to first compose the
problems and then solve the result. One can imagine how this question can
be represented as two different paths in another compositional computational
system. Hence we can be talking about various ways of reducing problems
with such a rich structure. This is still an area that needs further research.

Another important observation that was merely restricted to a remark in
the current work is that the compositional computational systems can also
form an order (Remark 6.18). On one hand, this allows us to speak of some
systems being “more powerful” than other systems. Furthermore, if we also
have joins in this order, then we can also combine problems and procedures
from different systems as they would both be represented in their join. And if
there are joins, then that would raise the natural question of whether there’s
a terminal object, a terminal compositional computational system that can
represent any problem, procedure, and solution.

Our choice of basing Lagado on type theoretical concepts also leaves a few
open research directions. Perhaps, the most interesting being whether we can
not only require that procedures are backed by a computational process but
we actually formally provide it. And a great candidate for describing compu-
tational processes in this setting is Lambda calculus as it fits nicely with the

Chapter 11. Conclusion 183

types we already use in the Prob category. Lambda calculus also interacts well
with the (semi)categorical structure that we want our statements and answers
to have. The connections between Lambda calculus and category theory are
studied by Crole (1994). Investigating the intersection between Lambda calcu-
lus, category theory, and the theory of compositional computational systems
is hence of further interest.

However, if we consider procedures with Lambda terms as descriptors of
the computational process, then such a system would also bring along many
fundamental results about computability. For instance, such a system can be
truly restricted only to computable procedures thanks to the Church-Turing
thesis (Turing, 1937). Further studying the connections of the current theory
with these fundamental results from computability theory can then connect
the present work with the key findings of mathematical logic and the theory
of computation.

Finally, we need to disclose that the claim that some compositional com-
putational systems contain themselves and hence can be used to reason about
their own problem-solving can, in fact, suffer from some fundamental limi-
tations. Such self-referential statements and claims might remind the reader
about the proof of Gödel’s incompleteness results (Gödel, 1931). Hence, a
critical future task should be to study whether similar limitations apply here
and if they do, then how would they connect to this fundamental result from
the field of mathematical logic. We would like to thank Jacopo Tani for raising
our attention to this potential connection.

While the theory presented in this work can stand by itself and presents
virtue both in philosophical and pragmatic ways, there are still several key
theoretical questions that we believe deserve further investigation. These
questions can connect the ideas behind compositional computational systems
with some of the most fundamental results in mathematics. Studying such
connections holds the potential of not only validating the work we presented
here but also to bridge the intuitive notions of problem-solving that we based
this thesis on with the key results and questions of meta-mathematics.

Bibliography

Bellman, Richard (1958). “On a Routing Problem”. In: Quarterly of Applied
Mathematics 16.1, pp. 87–90.

Censi, Andrea (2016). “A Mathematical Theory of Co-Design”. In: arXiv: 1512.
08055 [cs.LO].

Censi, Andrea (2017). “Uncertainty in Monotone Codesign Problems”. In: IEEE
Robotics and Automation Letters 2.3, pp. 1556–1563.

Censi, Andrea, David I. Spivak, Joshua Tan, and Gioele Zardini (2020). “Math-
ematical Foundations of Engineering Co-Design”. In preparation.

Coppersmith, Don and Shmuel Winograd (1990). “Matrix Multiplication via
Arithmetic Progressions”. In: Journal of Symbolic Computation 9.3, pp. 251–
280.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
(2009). Introduction to Algorithms. 3rd ed. MIT Press.

Crole, Roy L. (1994). Categories for Types. 1st ed. Cambridge University Press.
Curry, Haskell B. (1952). “On the Definition of Substitution, Replacement and

Allied Notions in a Abstract Formal System”. In: Revue Philosophique de
Louvain 50.26, pp. 251–269.

Davey, Brian A and Hilary A Priestley (2002). Introduction to Lattices and Order.
Cambridge University Press.

Dĳkstra, Edsger W (1959). “A Note on Two Problems in Connexion with
Graphs”. In: Numerische mathematik 1.1, pp. 269–271.

Eilenberg, Samuel and Saunders MacLane (1945). “General Theory of Natural
Equivalences”. In: Transactions of the American Mathematical Society 58.2,
pp. 231–294.

Fong, Brendan and David I. Spivak (2019). An Invitation to Applied Category
Theory: Seven Sketches in Compositionality. Cambridge University Press.

Ford, Lester R. (1956). Network Flow Theory. RAND Corporation, Santa Monica.

185

http://arxiv.org/abs/1512.08055
http://arxiv.org/abs/1512.08055

186 Bibliography

Gierz, Gerhard, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D Lawson,
Michael Mislove, and Dana S Scott (2003). Continuous Lattices and Domains.
Cambridge University Press.

Gödel, Kurt (1931). “Über Formal Unentscheidbare Sätze der Principia Mathe-
matica und Verwandter Systeme I”. In: Monatshefte für mathematik und physik
38.1, pp. 173–198.

Hoeffding, Wassily (1963). “Probability Inequalities for Sums of Bounded
Random Variables”. In: Journal of the American Statistical Association 58.301,
pp. 13–30.

Jonathan Swift (1726). Gulliver’s Travels.
Jungnickel, Dieter (2013). Graphs, Networks and Algorithms. Algorithms and

Computation in Mathematics. Springer Berlin Heidelberg.
Lane, Saunders M. (1998). Categories for the Working Mathematician. Graduate

Texts in Mathematics. Springer New York.
Mehlhorn, Kurt and Peter Sanders (2008). Algorithms and Data Structures: The

Basic Toolbox. Springer Science & Business Media.
Moore, Edward F (1959). “The Shortest Path Through a Maze”. In: Proceedings

of the International Symposium on Switching Theory, pp. 285–292.
Pierce, Benjamin C. (2002). Types and Programming Languages. MIT Press.
Robinson, Sara (2005). “Toward an Optimal Algorithm for Matrix Multiplica-

tion”. In: SIAM News 38.9, p. 3.
Romani, Francesco (1980). “Shortest-path Problem is not Harder than Matrix

Multiplication”. In: Information Processing Letters 11.3, pp. 134–136.
Shimbel, Alfonso (1954). “Structure in Communication Nets”. In: Proceed-

ings of the Symposium on Information Networks. Polytechnic Institute of
Brooklyn, pp. 119–203.

Strassen, Volker (1969). “Gaussian Elimination is Not Optimal”. In: Numerische
Mathematik 13.4, pp. 354–356.

The Univalent Foundations Program (2013). Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study.

Turing, Alan M (1937). “Computability and λ-definability”. In: The Journal of
Symbolic Logic 2.4, pp. 153–163.

Watanabe, Osamu (1981). “A Fast Algorithm for Finding All Shortest Paths”.
In: Information Processing Letters 13.1, pp. 1–3.

Weiss, Eric A. (1985). “Jonathan Swift’s Computing Invention”. In: Annals of
the History of Computing 7.2, pp. 164–165.

