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Abstract

The "Era of Connection" is the current historical period where an
increasing number of people are connected with other people and with
many different everyday objects augmented by artificial intelligence.
Such objects are computing systems connected in the Internet-of-things
(IoT), and share common features as: they are typically battery-
powered; they receive data from sensors, elaborate them, and transmit
the output of the elaboration to the network wirelessly.

Elaborating information already allows reducing data to transmit
and thus traffic from the millions of edge-nodes to the central servers,
saving resources in the whole network infrastructure.

The advance on technology scaling is enabling miniaturization
of such edge-computing devices, which become more complex by
aggregating more sensors information and by elaborating them with
smarter algorithms. For these reasons, energy efficiency became the
most critical constraint, as it bonds performance, needed by smart
algorithms, and power, constrained by the batteries’ capacities and
life-time expectations.

Near-threshold Computing (NTC) conclusively demonstrated that
digital system-on-chips (SoCs) are more energy-efficient when supplied
"near" the transistor threshold-voltage, where the compound of leakage
and dynamic energy achieves the minimum point. Although effective
for what concerns power due to the quadratic dependency with the
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supply voltage, frequency is degraded. Thus, parallel computing is
used to recover performance by dividing the task among different
computing engines that run at a slower speed.

Edge-computing SoCs that are programmable are usually preferred
over fixed-function circuits as they have shorter time-to-market and
higher versatility, which makes the product life-time longer and adapt-
able to fast-changing pattern recognition algorithms. Open-source IPs
are also preferred due to lower costs, trust, and re-usability.

Software programmable devices are based on microcontroller units
(MCUs), which are typically composed of a central processing unit
(CPU), memories, and peripherals.

In this thesis, we propose Instruction-Set extensions to an open-
source CPU based on RISC-V to boost energy efficiency on data
processing algorithms, and on the other hand, we propose a new CPU to
boost energy efficiency on control processing tasks on always-on-domain
that are typically waiting for events.

When performance requirements are beyond the capabilities of
single-CPU systems, MCUs are extended with accelerators. As for
the SoCs, these accelerators can be fixed-function circuits or pro-
grammable.

In this work, we use a programmable multicore accelerator to
process physiological data efficiently; we extend a neural-network
accelerator to work with single-instruction-multiple-data operations by
leveraging packed vectors; and we implement an MCU extended with a
binary neural-network accelerator in 22nm technology node. The latter
can leverage ultra-low-voltage to push even further error-resilient appli-
cations. We show how we build accelerators to boost energy-efficiency
on power-constrained devices thanks to optimized software, computer
architecture design, and implementation on advanced technology nodes.

Embedded Field-Programmable Gate-Arrays (eFPGAs) are pro-
grammable logic that can be integrated into SoCs to augment their
functionalities. They are programmable with soft-hardware and reside
between software and fixed-function accelerators. They can implement
new custom peripherals or specific-function accelerators. Their recon-
figurability enables versatility and longer product life-time as software,
and at the same time, their parallel nature allows to implement
functions faster than software accelerators.
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Finally, in this work, we propose an MCU extended with an eFPGA
implemented in 22nm technology node. We show that in the power
budget typical of edge-computing devices, the system can achieve
higher performance and energy efficiency without giving up versatility
and the advantages of reconfigurability.





Riassunto

L’Era in cui l’uomo vive è oggi è caratterizzata da millioni di dispositivi
connessi in una rete (Internet-delle-Cose) che scambiano dati. Tali
dispositivi elettronici sono spesso alimentati a batteria, la cui durata è
limitata dalla continua trasmissione di tali dati a centri di elaborazione.

Anticipare parte dell’elaborazione sui dispositivi stessi permette
di comprimere i dati, riducendo la mole di pacchetti da trasmettere,
e quindi il consumo di energia. Questo paradigma è chiamato edge
computing, dove i dati vengono elaborati vicino ai sensori che li ha
prodotti.

Spostare parte dell’elaborazione sui dispositivi vicino ai sensori
richiede che questi eseguano algoritmi complessi, in un tempo rel-
ativamente breve, in un contesto dove la potenza è limitata dalla
batteria (pochi mWs).

I microcontrollori sono tra i dispositivi più utilizzati in questo
contesto in quanto programmabili via software, che rende più semplice
l’implementazione di tali algoritmi. Inoltre la loro versabilità permette
il loro riutilizzo, diminuendo così i costi di produzione.

La maggior parte dei microcontrollori disponibili sul mercato sono
basati su un singolo processore con un consumo limitato di potenza.
Il limite principale di questo tipo di dispositivi è la loro capacità di
calcolo, che non permette l’esecuzione di algoritmi più complessi che

xi



xii

elaborano segnali proveniente, ad esempio, da una camera o da un
insieme numeroso di segnali fisiologici.

Questo lavoro esplora alcune tecniche per estendere la capacità di
calcolo dei microcontrollori pur mantenendo un consumo di potenza
limitato.

Essendo il processore l’elemento principale dei microcontrollori,
questo lavoro presenta alcune estensioni ad un processore open-source
per renderlo piu efficiente energenticamente durante l’esecuzione di
algoritmi dominati da operazioni di processamento di dati. Molte
applicazioni dell’Internel-delle-Cose sono caratterizzate da una fase
attiva, tipicamente breve, e una fase inattiva dominante. I microcon-
trollori quindi sono dotati di stati-di-potenza dove consumano il minimo
durante la fase inattiva, e dove invece ottimizzano le performance in fase
attiva, ottenendo cosi un consumo di potenza medio ridotto. Durante la
fase inattiva, non è sempre possibile minimizzare il consumo di potenza
spegnendo completamente il microcontrollore. È dunque necessario
ridurre al minimo il consumo di potenza di perdita ottimizzando l’area
della parte sempre attiva. In questo lavoro sono presentati due nuovi
processori open-source ottimizzati per l’area e potenza di perdita al
costo di performance minori.

I risultati mostrano che il processore piu efficiente energicamente
è quello che ha l’architettura piu adeguata per le applicazioni per
cui è stato pensato. Quindi un processore molto piccolo e limitato
al massimo in performance per l’esecuzioni di compiti puramente di
controllo, un processore con un set di istruzioni esteso per l’esecuzione
di algoritmi di elaborazione di segnali, e in fine, un processore con
capacita di calcolo limitate per l’esecuzioni di algoritmi che hanno
sia una parte di controllo che di computazione. Vedremo anche che
in un contesto dove il processore è sempre alimentato dalla tensione,
il processore con la migliore efficienza energetica dipende anche dal
periodo con cui tale applicazione viene eseguita.

Per finire, questo lavoro presenta un sistema di virifica innovativo
che sfrutta un ottimizzatore per creare programmi in linguaggio
assembly che massimizzato la copertura del codice del dispositivo da
verificare. Tale sistema è stato in grado di trovare 10 non-funzionalità
nel processore testato.

Oltre al processore, per ottenere efficieze energetiche molto alte
è importante ottimizzare anche il sistema attraverso un’architettura
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efficiente, ma anche l’utilizzo di tecnologie avanzate per sfruttare un
ampio spettro di tensione di alimentazione e il body-biasing. Questo
lavoro propone un microcontrollore implementato nella tecnologia
Globalfoundries GF22FDX (GF22). Il microcontrollore proposto
sfrutta un ampio spettro di tensione e sfrutta la tensione di bulk
per aumnetare le perfromance a dispetto del consumpo di potenza.
L’efficienza energetica e le performance sono misurate sia a tensioni
nominali, sia a tensioni prossime a quella di soglia, dove i transistori
ottengono la loro efficienza massima. I risultati mostrano anche l’effetto
della tensione di substrato. Inoltre, il microcontrollore proposto
offre un’architettura di memoria eterogeneo, che puo’ essere sfruttato
per aumnetare performance ed efficienza energetica in cambio della
capacita’ massima di memoria grazie alla diminuizione di energia di
perdita. Questo lavoro mostra anche come un applicazione resiliente
agli errori possa sfruttare un aggressivo calo della tensione sulle
memorie statiche (al di sotto della soglia di funzionamento) per ottenere
consumini di potenza ridottissimi in contesti dove il microcontrollore
e’ sempre attivo.

Quando la potenza di un solo processore non basta, il microcon-
trollore puo essere esteso con degli accelrratori. Tali acceleratori sono
utilizzati per aumentare le performance durante un compito specifico,
per cui tali acceleratori sono altamente specializzati per raggiungere la
massima efficienza energetica e performance. In questo lavoro vengono
esaminati gli acceleratori integrati in dispositivi per l’Internet-delle-
Cose progettati con funzionalita’ fissa o come IP programmabili.

Un acceleratore specifico per le Convolutional Neural Network
(CNN) e’ stato esteso per supportare l’esecuzione di convoluzioni
in parallelo su dati raprresentati con dimensionalita’ ridotta. Tale
acceleratore e’ stato integrato in un microcontrollore con altri quattro
processori in tecnologia a 65 nm. I risultati mostrano che tale acceler-
atore e’ piu efficiente e piu performante anche di quattro processori
che eseguono lo stesso compito in parallelo. Quando la precisione
dei pesi della reta viene ridotta da 16 a 8 o 4 bit, l’acceleratore
raggiunge effiienze energetiche ancora piu alte senza compromettere
significamente l’accuratezza dell’applicazione.

Quando invece i task da accelerare possono cambiare velocemente,
un acceleratore programmabile e’ una soluzione migliore per ridurre i
tempi e costi di implementazione. Nel campo delle neuro-tecnologie ad
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esempio, i segnali proventienti dal cervello hanno frequenze e risoluzione
spaziale diversa, per cui gli algoritmi per estrarne le informazioni
differenscono di molto. Questo lavoro propone un microcontrollore
esteso con un acceleratore costituito da otto processori per comprimere
i dati proventienti da un sensore di potenziali d’azione provenitne
dai neuorini del cervello. Tale microcontrollore sfrutta i diversi stati
di potenza del microcontrollore, usando tutto la potenza durante la
compressione di tali dati, mentre per l’acquisizione e processamento di
eventi, il microcontrollore minimizza il consumpo di potenza durante
la loro attesa, per poi attivare un singolo processore per classificare
tali eventi. La soluzione proposta ha cosi un potenza proporzionale
ai dati acquisiti. Inoltre, per processare segnali da un elettroencefalo-
gramma, un microcontrolore con quattro processori e’ stato utilizzato
per estrarre informazioni nel dominio della frequenza ottenendo un
efficienza energetica migliore rispetto ai microcontrollori standard.

Per completare l’analisi delle possibili soluzioni per implementare
acceleratori in ambito dei dispositivi di processamento dei dati vicino
ai sensori, questo lavoro propone un microcontrollore esteso con
una FPGA integrata. L’utilizzo di una FPGA integrata e’ utile in
quanto combina il vantaggio della programmabilita’ con la naturale
efficienza dell’hardware. Applicazioni dove l’utilizzo di tali risorse e’
ottimale, sono ad esempio, periferiche personalizzate o acceleratori di
media complessita per reti binarie o algoritmi di sicurezza. Questo
lavoro propone un microcontrollore implementato in tecnologia GF22
composto da un processore e una FPGA connessa al sistema attraverso
diverse interfacce come per comunicare con le memorie e il sistema di
input/output per offire la massima flessibilita’ al programma-utente.
Inoltre, tale FPGA puo sfruttare la tensione di substrato per diminuire
la potenza quando non e’ utilizzata, mantenendo comunque attivo
il suo stato interno. Questo lavoro mostra il consumo di energia,
potenza e performance del microcontrollore in un ampio spettro
di tensione, dimostrandosi il migliore in performance ed efficienza
energetica rispetto ad altre soluzioni proposte in letteratura.
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Chapter 1

Introduction

In the Era of Connection, every object collects data and sends them
to the central servers where hidden information is extracted, creating
the Internet-of-things (IoT).

Such objects, or end-nodes of the IoT, are for example: measuring
instruments like weight-scales, thermometers, speed controllers; data
concerning online shopping items for food or any kind of good; cameras
for surveillance, face recognition or to capture important moments of
life; microphones to record the voice; watches to count the number of
steps or the heart-rate; mobile phone keyboards that collects written
words in a text; mobile phone applications that count the Calories
eaten by the users; health tracker for Electrocardiography (ECG),
Electromyography (EMG) or Electroencephalography (EEG); etc.

Information that can be extracted from these raw data is much.
From simple statistics like averages or distributions (e.g., the proba-
bility that a male person of 180 cm is 80 kg, or the probability that a
34 years old woman buys a new book if she just bought a new pair
of sunglasses), to automatic face tag in social networks like Facebook,
voice control of objects like Alexa or Google Home, the likelihood of

1



2 CHAPTER 1. INTRODUCTION

the word "is" when preceded by the word "what" in a text, or when
a ECG stream contains an arrhythmia.

Data-mining and artificial intelligence are tools to extract such
information from raw data. Usually, raw data are processed to
extract the features that are correlated to the information the most.
For example, bio-physical data such as ECG, EMG or EEG, carry
information in their frequency-domain representation. Whereas video
or images need more complex features extracted by Convolutional
Neural Networks (CNNs).

As these objects are usually battery-powered, it is essential to
preserve energy for extended battery life and limit their peak power
consumption below the maximum battery capacity (mW range). Size
is also important, as such objects are usually wearable. Finally,
performance is also crucial as data needs to be sent to the main
smart servers without losing them.

When many raw data are sent, most of the end-node power
consumption is spent on the transmission antenna, which is active
most of the time, limiting the battery life of such nodes [1].

One way to overcome this limit is introduced by the edge-computing
paradigm, where end-nodes evolve from simple data collectors into
smart devices able to extract features, thus sending to the IoT denser
information [2,3]. Sending denser information makes the time spent on
transmission shorter, thus the battery-life time longer. However, as the
end-nodes need computing capabilities, this paradigm holds if the extra
power consumed by the computing part of the object is smaller than
the antenna transmission power. Edge-computing is beneficial not only
for the energy efficiency of the end-node per se but also across the whole
IoT infrastructure, where switches, routers, and finally the servers,
need to process less, pre-selected data, saving power, and bandwidth.

Denser information can be extracted by applying simple cropping,
like, for example, reducing the size of images or applying more complex
transformation like extracting pre-selected features, all the way to
apply on-the-edge classification and send to the servers simple tags
to collect statistics.

However, edge-computing devices require the execution of arithmetic-
intensive algorithms typical of the data-mining and artificial intelligence
domain. Such computations have to be performed relatively fast to
meet performance and quality of service requirements (e.g., images/s to
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achieve high-quality real-time face recognition, prediction of a seizure
in 1 second in epileptic patients), and in a limited power budget
(1-100mW). Last but not least, a device with higher energy efficiency
(operations/mW) is desirable to increase the density of information
extracted or the accuracy and prolong the battery lifetime.

These devices tend to look more and more like complete systems-on-
node, including sensors, microprocessors, specialized Hardware (HW),
memories, and wireless transceivers capable of operating autonomously
for several years [4].

Depending on the constraints of the application such as flexi-
bility, performance, power, and cost, IoT computing platforms can
be implemented as hardwired, fixed-function Application-Specific
Integrated Circuits (ASICs), programmable HW (or soft-hardware)
on field-programmable gate arrays (FPGAs), or as Software (SW)
programmable on Micro Controller Units (MCUs).

1. hardwired fixed-function ASICs;
2. soft-hardware on FPGAs;
3. software programmable on MCUs.

Hardwired fixed-function ASICs are devices highly-optimized for
a specific application and usually achieve the best energy efficiency.
However, they lack versatility and require long time-to-market [5]. For
example, it may be difficult, if not impossible, to use a hardwired fixed-
function ASIC for face recognition done with CNN inferences to detect
sleep stages in EEG data streams. Hence, their usage is preferred in
highly standardized applications or specialized single-function products
with tight Power-Performance-Area (PPA) and energy constraints.

For example, as CNNs require Billions of operations to be computed
in short time, many fixed-function ASICs for CNNs at ultra-low power
budget have been proposed. Orlando [6] achieves up to 2.9Top/s/W;
Origami [7] 803Gop/s/W; whereas YodaNN [8], BRein [9], XNOR-
POP [10], Conv-RAM [11] and Khwa et al. [12] achieves energy
efficiency in the range of 10-50 TOP/s/W using in-memory computing.

Due to the wide applications of the edge-computing IoT domain,
programmable platforms are preferred for longer product lifetime
and time-to-market.
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FPGAs offer versatility after fabrication via hardware programma-
bility, and they allow exploiting spatial computations typical of ASICs
designs, as opposed to sequential execution. For these reasons, FPGAs
are used in a wide range of applications, from machine learning [13–15],
sorting [16], and cryptography accelerators for data centers [17], to
smart instruments [18], Analog-to-Digital converters (ADCs) [19],
to low-power systems for wearable applications [20], control-logic
systems [21], and for implementing smart-peripherals connected to
System-On-Chips (SOCs) [22, 23].

FPGAs range from high-end FPGAs used to accelerate high-
performance workloads to ultra-low-power, small, and low-cost tech-
nology implementations.

High-end FPGAs, such as the Xilinx Virtex Ultrascale devices [24]
and the Intel Cyclone 10 GX device [25], have millions of LUTs,
flip-flops, Digital Signal Processing (DSP)-blocks, and Static Random
Access Memory (SRAM) macros containing Mbytes of memory. To
extended their capabilities in the embedded application domain running
software, such FPGAs are often programmed with soft-CPUs [26]. The
users can implement a deeply pipelined core with multiple issues
to achieve high performance, or a tiny soft-core with a small area
footprint for control applications [27,28], and offload part of the control
functionalities executed in SW to the soft-CPU. For example, Choi et
al. [29] presented an FPGA-based 20 k-Word speech recognizer using a
Xilinx Virtex-4 FPGA where the computationally less demanding
tasks are executed in SW, whereas the rest of the algorithms is
accelerated in HW.

As soft-cores are limited in performance [30] and occupy resources,
FPGAs are often extended with hard-CPUs as application processors
(usually ARM-based embedded processors such as the Xilinx Zynq-7000
SoC [31] and Intel Arria V SoC [32], in the case of Microsemi PolarFire
[33] RISC-V processors). As a result, high-end FPGAs have typical
power consumption in the order of tens of Watts [34], and they are
usually used as high-performance accelerators on servers connected
via Ethernet or PCI interfaces [35].

In the low-power domain, FPGAs are typically realized with a less
aggressive process than high-end FPGAs. They are usually smaller,
cheaper, and as a result, have lower performance than the others.
Examples are the Microsemi IGLOO nano [36], which has up to 3 k
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logic elements1, or the Lattice Semiconductor iCE40 UltraLite [37],
which has more than 1K of LUTs+flip-flops. Both consume from a
few uW to hundreds of mW. These FPGAs are used to extend the
Input/Output (IO) subsystem of embedded controllers [38], even with
simple data pre-processing engines to lower the bandwidth coming
from sensors [20, 23]. FPGAs can also be extended with CPUs to
leverage HW/SW co-designed IoT nodes in the low-end space. An
industrial RISC-V based soft-core is provided by the Microsemi Mi-V
RV32, ready to be integrated into the SmartFusion2 SoC [39] or in
the IGLOO FPGA [40] in an area footprint of 10 k-26 k LEs. Other
RISC-V based solutions have emerged during the RISC-V SoftCPU
Contest in December 2018, with the VexRiscv soft-core as the winner.
Hard-CPUs are also used as in the Microsemi SmartFusion2 SoC
in 65nm [39], which proposes an MCU-class (ARM Cortex-M) core
running at 166MHz and an FPGA with DSP blocks and up to 150 k
logic elements, 656 kB2 of memory, and power consumption in the order
of hundreds of mWatts. Examples that use the Microsemi SmartFusion2
SoC can be found in Gomes at al. [41], which proposes a system where
most of the tasks are executed by the ARM core, whereas the FPGA
is used for accelerating critical network kernels. In Fournaris et al. [42],
the operating system, and user interfaces run in software, whereas the
FPGA is used to collect sensor data, extract features, and to calculate
the nearest neighbor on the extracted information. The system runs
at 160MHz consumes 4.96mW on the CPU part and 153.97mW on
the FPGA side. While their power consumption is within the range of
IoT applications, these FPGAs are limited in performance and thus
not suitable for computationally intensive applications.

Even if they are usually less energy-efficient than hardwired fixed-
function ASICs and FPGAs, MCUs are often chosen as the baseline
for IoT devices as they offer high versatility, requiring only software
revisions, enabling short time-to-market and IP cheaper re-usability
costs.

To close the gap with ASICs and FPGAs PPA and energy results,
different optimizations at IP, architecture, and implementation level

1 One logic element is composed of one 4-input LUT and one flip-flop
2 512Bytes of Non-Volatile Memory
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can be made on MCUs to leverage their advantages without giving
up performance.

In this Thesis, we show optimizations at IP level on Central Pro-
cessing Units (CPUs) and accelerators, as well as at architectural level
by efficiently integrating accelerator or building memory subsystems,
and at implementation level, by exploiting advanced technology to
optimize PPA and energy results.

The majority of IoT MCUs use a single-core. Depending on the
applications target domain, some MCUs host a simple, small, ultra-low-
power CPU for controlling and light-weight processing, or an enhanced
CPU for high computation demanding applications. Single-issue in-
order cores with a high Instruction Per Cycle (IPC) are typically
more energy-efficient as no operations have to be repeated due to
mispredictions and speculation [43].

Most Off-the-Shelf (OTS) MCUs use energy-efficient CPUs based
on ARM Cortex-M family of cores. For example, the Cortex-M0 [44],
which is meant for running applications that need minimal power
and area, or the Cortex-M4 [45], which provides Instruction Set
Architectures (ISAs) to target signal processing algorithms and many
more. The Cortex-M0 is a single-issue in-order core with three pipeline
stages and optional single-cycle 32 bit multiplier unit, whereas the
Cortex-M4 is a single-issue in-order core with three pipeline stages
and a branch speculation engine, single-cycle 32 bit Multiply And
Accumulate (MAC) unit, 8/16 bit Single Instruction Multiple Data
(SIMD) instructions and an optional floating-point unit. Examples of
such systems are the NXP i.MXRT1050 [46], the STMicroelectronics
STM32L476xx family [47], or the Silicon Labs EFM32 Giant Gecko
11 [48], all featuring a power budget within a few tens of mW. Synopsys
provides the DesignWare ARC configurable processors [49], based on
the ARCv2 ISA to target power- and area-constrained embedded
systems, as well as the ARC EM DSP for ultra-low-power embedded
applications requiring advanced signal processing capabilities. The
latter support an extended ARCv2DSP ISA and provide MAC, fixed-
point and SIMD instructions.

Solutions based on the open-source RISC-V ISA [50] are also
becoming popular. An open-source ISA is a desirable starting point for
an IoT core, as it can potentially decrease dependency from a single
IP provider and cut cost, while at the same time allowing freedom
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for application-specific instruction extensions. In this Thesis, all the
solutions proposed are based on open-source ISA CPUs, particularly
on RISC-V.

In the high-performance side of IoT applications, the CVA6 (for-
merly Ariane [51]) has recently joined OpenHW Group from ETH
Zurich, Boom [52] and the Rocket [53] come instead from UC Berkely.
High-performance cores are out of the scope of this Thesis and are
comparable to Application class cores from ARM, for example, those
able to run a complex application such as operating systems like
Linux. In the low-power edge devices domain we can find CPUs for
control purposes, like the PicoRV32, a small configurable RISC-V
core with high frequency but also low IPC [54], the Z-Scale, a small
32 bit three stages single-issue in-order core, [55], and the LowRISC
Ibex core (formerly Zero-riscy from ETH Zurich [56]). Whereas in
the computing domain we can find the OpenHW Group CV32E40P
(formerly Riscy [57]). Both Zero-riscy and Riscy are discussed in
Chapter 2 and are part of the contribution of this Thesis.

Single-core systems can be used for both control and signal pro-
cessing applications. For signal-processing systems we can find for
example: Benatti et al. [58], who proposes an EMG gesture recognition
system based on Cortex-M4 to extract salient features out of the EMG
signals and classify them with a Support-Vector-Machine (SVM);
Imtiaz et al. [59] proposes a system to detect epileptic seizures using
an ultra-low-power Texas Instrument MSP430 MCU [60] as the main
computation device; Barsakcioglu et. al. [61] instead used a Cortex-
M0+ to extract features from 32 brain Action Potential (AP) channels
and classify them. For control applications, where the CPU is used
to coordinate and control several peripherals or other computational
engines, we can find for example: Konijnenburg et al. [62], where a
multi-sensor acquisition system with a Cortex-M0 is used to interact
with a sensor readout chip and a system of hardware accelerators; Ickes
et al. [63], where a 16 bit core controls memory-mapped accelerators
for Finite-Impulse-Response (FIR) filters and fast Fourier transform
(FFT); Pullini et al. propose Mr.Wolf [64], where the Zero-riscy
core coordinates the peripherals in the always-on domain, and a
software-programmable accelerator made of 8 Riscy cores.

However, the application profile (data-intensive or control-oriented)
is not the only variable that matters when selecting a CPU.



8 CHAPTER 1. INTRODUCTION

Code-size, for example, is directly influenced by the ISA selected,
thus saving the area at CPU level may not transfer at system level
due to an increase of instruction memory requirements. An analysis
of RISC-V code-size on different applications of the IoT domain has
been presented in [65].

On duty-cycled systems, the event frequency that triggers the
computation is also an essential variable to select the most efficient
CPU. In particular, when events are rare in always-on domains where
power-gating techniques are not implemented or wake-up times are
too long, the leakage power plays the most significant contribution
to the final energy efficiency.

In Chapter 2, an analysis of three different cores is presented,
showing that smaller cores are better than DSP-enhanced core even
on data-intensive applications when such computation does not have
tight performance constraints and has rare trigger events.

CPUs used for data-intensive applications are usually more perfor-
mant and feature more complex ISA and datapath components.

As it is discussed in Chapter 2, DSP and SIMD ISA extensions
enable higher computational capabilities still maintaining the target
power consumption of the mW range. With respect to pure DSPs, ISA
extensions keep the CPU compatible with the standard ISA and the
programming model is kept unchanged, allowing for SW re-usability
and compatibility. In particular, SIMD extensions are interesting as
in the IoT domain most of the sensors (like cameras or ADCs) uses
16 bit or less, to represent the data, thus multiple of them can be
embedded to increase computational capabilities. For example, the
ARM Cortex-M4 [45] supports both DSP and SIMD functionalities
while remaining energy-efficient (32.8 µW/MHz in 90 nm low power
technology [45]).

In Chapter 2, DSP, SIMD, as well as bit manipulations ISA
extensions are implemented in the Riscy core, showing their advantages
on computational-intensive algorithms typical of the edge-computing
domain. However, such extensions increase the CPUs area and power.
Thus such processors should be used when computations are highly
demanded. Techniques to reduce the area and power consumption
of such CPUs exploit resource sharing whenever possible and to use
strategies as power-gating (used more often in high-performance CPUs),
clock-gating and operands isolation.
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The complexity and heterogeneity of digital devices used in em-
bedded systems are increasing every day, and delivering a bug-free
design is still a very complicated task. The interest for open-source
hardware in real products demands tools and advanced methodologies
for verification to provide high reliability to open and free IPs.

Some surveys state that validation, verification, and testing (VV&T)
require about 60% [66] of the total production costs. Companies
approaching open-source IPs usually verify their functionality internally
and can provide reports or fixes to the IP designers to improve the
quality of the free hardware. For instance, recently, the Riscy core
has been compared and chosen to be a valid candidate in an industry
project by Google [67]. For that reason, it has also been extensively
verified using STING [68], a versatile design verification platform.

In Chapter 2, we exploited an open-source evolutionary optimizer
called µGP [69] to create assembly programs that optimize the code
coverage of the Riscy core. The final programs are then evaluated both
on Device Under Verification (DUV) and on the reference model. We
used the Riscy Instruction-Set Simulator (ISS) as reference model. To
increase the code coverage, we split the assembly program generation
by specializing every evolution to a particular subset of the DUV. An
external module that randomly generates external events that cannot
be triggered in software, such as interrupts or memory stalls, has been
added to push the code coverage higher. Finally, the generation and
evaluation phases of the tandem verification framework have been
merged so that all the individuals of each generation of the evolution
are evaluated on both the DUV and the reference model. All of these
optimizations helped uncover crucial bugs in the Riscy multiplier
and the forwarding and stall logic related to the load-and-store unit.
The bugs have been reported and fixed, proving the usefulness of
open-source hardware in the industry context and the needs of advanced
verification strategies.

The architecture and the implementation of the MCUs are crucial
to reach a high level of energy efficiency. To be interfaced with different
external components, MCUs usually offer a large variety of peripherals
such as I2C, UART, SPI, and GPIOs. The architecture and runtime
software should allow for techniques to reduce the energy consumed at
a single IP level and system level [70]. The most common approach
to reduce the average power consumption, widely used in commercial
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MCUs, is duty cycling, where the system is kept in off/idle/sleep
mode whenever is waiting for an event to happen, and it switches to
on/run/active mode when such event triggers, to start the computation.
The idle states are characterized by a dominating leakage power
consumption, while the active part can be dominated either by the
dynamic or static power, depending on technology, running frequency,
and supply voltage. Power-gating techniques allow to shut down part
of the system that are not needed during idle states, while the retentive
parts of the system (like memories with instructions or sensitive data)
are supplied with minimum voltage, to reduce as much as possible the
leakage power. In the active mode, the system can exploit techniques
such as Dynamic-Voltage-Frequency Scaling (DVFS) and clock-gating
and operands isolation to reduce power consumption. For example,
in Pullini et al. [64], the Mr.Wolf system ranges from tens of µW
in the idle states to hundreds of mW in the active states. In Bol
et al. [71], where the system consumes hundreds of nW per kB in
idle mode, and 144mW in the active state at the minimum energy
point. However, duty-cycle requires triggers to reduce the number
of false-positive activations, which could be somewhat challenging to
achieve in a real scenario in applications such as pattern recognition.
For example, Liu et al. [72] proposes an ADC that generates even
only when detects spikes in brain APs, with a true-positive detection
rate of 93%. Thus, such sensors can be used to wake up systems that
process such spikes, as we show in Chapter 5.

In active mode, the system should run at its best energy-efficient
point, characterized by the minimum voltage supply that allows the
system to run at the target frequency. Scaling voltage together
with frequency allows improving the energy efficiency of computation
significantly, by exploiting the quadratic dependency of dynamic power
with supply voltage. In general, Near-Threshold Computing (NTC)
is the best energy-efficient point [73]. However, aggressive voltage
scaling has a significant impact on performance and SRAM reliability.
Accelerators are often used to recover performance degradation. Ex-
amples of MCUs that exploit NTC and DVFS can be found in [74,75].
Technology plays a significant role in the energy consumed by the
MCUs. Transistor selection can be used to trade power-performance
results at design-time by selecting low, regular, or high threshold
voltage transistor flavors. Fully Depleted Silicon-On-Insulator (FDSOI)
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technology offers promising power-performance trade-offs and the
possibility to adapt the energy consumption at runtime by leveraging
adaptive body-bias to lower the power consumption (reverse body-bias
- RBB) or increase performance (forward body-bias - FBB). Examples
of MCUs that exploit FDSOI and body-bias can be found in [71,76–78].

In Chapter 3, an MCU implemented in Globalfoundries GF22FDX
(GF22) technology is proposed. Such MCU efficiently embeds the
Riscy core presented in Chapter 2, it is optimized to reach high
energy efficiency coupling NTC and body-bias to select a wide power-
performance operating range. It features an autonomous IO subsystem
optimized to deal with the wide variety of sensors available in IoT
end-nodes, and a heterogeneous (Standard Cell based Memory (SCM)
and SRAM) architecture to better exploit the low-voltage capabilities
of GF22 technology and to trade leakage power and memory capacity
both in active and idle states. In addition, the MCU hosts a Binary
Neural-Network (BNN) accelerator to boost performance and energy
efficiency beyond the capabilities of a single CPU. BNNs are robust to
random bit-level noise, making aggressive voltage scaling attractive
as a power-saving technique for both logic and SRAMs. The system
is the most performant and energy-efficient among State-of-the-art
(SOA) related solutions.

Albeit CPUs performance coupled with power-saving and energy
efficiency strategies such as duty-cycling and DVFS allow for software
programmable end-nodes for the IoT, there are still applications that
need higher performance and energy efficiency than what a single
CPU can offer.

For example, deep CNNs are leading feature extraction and clas-
sification algorithms in fields such as computer vision (e.g. object
detection [79], scene parsing [80], and semantic segmentation tasks [81])
and audio signal analytics [82]. CNNs are characterized by many
billions of MAC operations, which is often too high for a single CPU.

For this reason, edge-computing devices can be augmented with
accelerators used to compute the high compute-intensive tasks. In
MCUs, they are used to alleviate the CPU from specific kernels,
and they can be used either in parallel (on different data), or in a
time-multiplexed fashion.

Accelerators can be coupled in IoTs devices as external or integrated
devices. The MCU sees external accelerators as peripherals, and
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communication and data exchange between the two engines is usually
not efficient as it requires slow and power-hungry communication. The
focus of this Thesis is instead on integrated tightly-coupled accelerators,
that share with the CPU the MCU on-chip memories to minimize the
time and energy spent in data exchange.

Similarly to edge-computing devices, accelerators can be imple-
mented as:

1. fixed-function circuits;
2. software programmable.
3. embedded FPGAs (eFPGAs);

Accelerators are usually bigger, faster, and more power-consuming,
but more energy-efficient than a single CPU. To mitigate their power
overhead, they are typically used in a duty cycling fashion, where
they become active on the specific part of the application (e.g., during
the computation of the kernel they need to accelerate), and kept in
sleep mode the rest of the time. When possible, NTC is used during
the active time of the accelerated kernel to reduce the power further
and increase energy-efficiency.

Fixed-functions circuits are kernel-specific functional blocks. They
can be programmed by memory-mapped operations or by specific
CPU instructions (co-processors). There exist several MCUs extended
with custom accelerators, for example: the BNN accelerator [83]
integrated in the MCU discussed in Chapter 3; the cryptography engine
integrated into [48]; or GAP8 from GreenWaves Technologies [84] that
embeds a CNNs accelerator, the chip proposed by Intel [85], where a
x86 processor cooperates with a dedicated functional units for CNN
and cryptography workloads, and many others like frequency-domain-
transforms [86], linear algebra [87], security engines [88]. In the
biomedical context for seizure detection, it has been shown that it
is possible to speed up FFT by a dedicated hardware block, which
is controlled by an MCU [89].

As CNN are de-facto standard feature extractor and classifier of
image and video processing pattern-recognition tasks, and as they
are characterized by tens of billions of operations of a net such as
ResNet-18 [90] or Inception-v3/v4 [91, 92] on devices with a power
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budget of a few mW, particular interest is spent on accelerators to
speed up CNN kernels.

To meet such constraints, researchers focused on reducing: the
number of elementary operations, with smaller networks [93] and
techniques to prune unnecessary parts of the network [94]; the cost
of an elementary compute operation, by lowering the complexity of
elementary operations [95,96]; and the cost of data movement, again by
reducing the size of CNNs and taking advantage of locality whenever
possible [97].

On solution to reduce the cost of elementary computations and
the cost of data movement is reducing the number of bits to represent
both the CNN weights and activations to 32, 16, 8, all the way to
1 bit in BNNs [98, 99].

The most computational dominating part of CNNs is the linear
transformation, i.e., the 2D-convolution, where million of weights
are multiplied by the input layers. In Chapter 4, customizations
to a fixed-function accelerator integrated in an MCUs have been
implemented to push energy efficiency during CNN applications further.
In particular, SIMD extensions are implemented in a CNN accelerator
to exploit the error-tolerant nature of CNNs, thus enabling such
engine to implements four parallel 16x4 bit, or two parallel 16x8 bit,
or one 16x16 bit convolution. The datapath of the CNN can thus
exploit operations on multiple weights in parallel, achieving 4x higher
performance when 4 bit weights are used instead of 16. This approach
also avoids the requirement of specific training for binary connected
networks, while accuracy, throughput, and energy efficiency can be
traded using different weight formats. Such accelerator has been
integrated into an MCU implemented in 65nm, next to four DSP-
enhanced cores. Results show that higher energy efficiency and
performance are achieved when compared to a cluster of four cores
at near-threshold.

Instead, software-programmable accelerators are not specialized
for a specific kernel, but rather optimized for a given domain. These
are processing engines that execute functions described in software
with a high-level language such as C or C++. Thus the functions they
accelerate are not known ahead at design time. These accelerators are
implemented as DSP units or more efficient CPUs in MultiProcessor
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SoCs (MPSoCs). For example, DSP units are special-purpose proces-
sors designed to accelerate general signal processing algorithms as: time
series processing (FFT, Discrete Wavelet Transform (DWT)); pattern
recognition algorithms (SVM, Logistic Regression, Neural-Networks);
or data-compression algorithms (compressed sensing, Huffman coding).
DSPs are processors with instruction-set, microarchitecture, and mem-
ory model highly specialized for signal processing. When integrated
into an MCU, users have to deal with the different toolchains used to
compile code that runs in the CPU and code that runs in the DSP.
Instead, when different CPUs co-exist, they can either run the same
ISA with a different microarchitecture, or implement different ISA
extensions of the main one. In the first case, for example, a CPU
can be optimized for performance and another for low-power. In the
context of high-performance IoT devices, this is, for example, the
case of the ARM big.LITTLE architecture [100], where a cluster of
high-performant cores is used when speed is required; otherwise, a
cluster of low-power cores are used.

In edge-computing devices for the IoT, the always-on parts are
characterized typically by control-flow execution and do not require to
run data-intensive algorithms, that can be offloaded to accelerators,
as their main purpose is to wait for events coming from the peripheral
subsystem or to schedule tasks. Architectural heterogeneity provides
a possible solution to harmonize these competing constraints as fast
execution achieved by more efficient accelerators, and low leakage cores
for always-on domains; the availability of different cores optimized for
diverse tasks, but able to run the same code is advantageous for IoT
devices. In the context of heterogeneous ISA for instance, the Texas
Instrument CC2650 [101] has one ARM Cortex-M3 to control the
system and execute applications and one dedicated ARM Cortex-M0
to control only the wireless transmission. NXP, TI, and other vendors
offer a core optimized for control task like the Cortex-M0+ and a
Cortex-M3 or -M4 for more computationally demanding tasks to
achieve the best energy efficiency in a broader set of tasks [101,102]

For more data-intensive algorithms, which require higher per-
formance or energy efficiency, multicore architectures can be used,
especially on kernels that are highly parallelizable like the data-mining
and pattern-recognition ones. Neves et al. proposed a multicore system
with SIMD capabilities for biomedical sensors [103]. Benatti et al. [104]



15

use a multicore cluster to extract complex features from EEG data
to detect seizures. The Greenwave’s GAP8 [84] uses a single Riscy
core to handle peripherals and the computation of light-processing
tasks, whereas a cluster of 8 Riscy cores is used to accelerate complex
computations. Differently from GAP8, in Pullini et al. [64], Mr.Wolf
leverages a heterogeneous architecture that uses one Zero-riscy to
control tasks in the always-on domain, and a cluster of 8 Riscy cores
as an accelerator. These systems can choose to divide the workload as
a subset of processors to meet the performance target at the lowest
energy budget [56].

These systems have both the flexibility of MCUs and competitive
performance and efficiency when dealing with computationally inten-
sive tasks. Software programmable systems are usually less performant
than their ASICs or FPGAs counterparts due to the sequential nature
of software-defined functions against the parallel nature of hardware
implementations. However, the wide variety of applications in the IoT
scenarios requires programmable systems for short time-to-market,
versatility costs, and product lifetime.

For example, in the context of neuronal technology, the breadth
of interfacing techniques and experimental methods is reflected in
the different electrode types and signals acquired from the nervous
system (e.g., intra-/extra-cranial, frequency bands, amplitude, etc.),
the number of signals recorded (spatial resolution) and their associated
processing requirements. Local Field Potential (LFP) and EEG signals
contain macro-scale activity over many neurons and are widely used in
applications such as seizure or drowsiness detection [104–106]. These
signals are typically sampled at ≤ 1 kHz, and information is extracted
by time-frequency analysis. Extracellular APs are used to study
individual neuronal (or circuit) activity, acquired with intra-cranial
probes at frequencies ≥ 10 kHz. Spike sorting [107] is the process that
follows the acquisition phase to differentiate between action potentials
from each of the neurons sensed by an electrode. This task requires
implantable neural acquisition devices that have to be ultra-low power
to avoid tissue damage (<80mW/cm2 [108]), and for extended battery
lifetime. Moreover, wireless transmission of brain activity to enable
free movements and a high number of channels is desirable to analyze
single-neuron activity across a wide region of the brain [109].
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The variety of signal processing kernels, as well as intra and inter
subjects variability [110, 111], push for highly versatile platforms.

In Chapter 5, we exploit a RISC-V platform derived from the
Mr.Wolf MCU presented in Pullini et al. [64] coupled with an event-
based 64-channel ADC for APs presented in [72]. The event-based
ADC allows the MCU to exploit its power-state in a duty-cycled
fashion. Also, the pre-computation of the ADC allows the system
to use a single-core only to sort the detected AP spikes. Whereas
when the system is used in stream mode, the higher number of data
to process is offloaded to a cluster of 8 cores. In addition, to show the
versatility of software-programmable accelerators, another task in the
context of EEG signal is accelerated in a cluster of 4 cores derived by
another ultra-low-power MCU [77]. The software-accelerated solution
allows for reaching higher energy efficiency compared to SOA systems
that try to solve the same problem.

Increased integration density of modern SOCs allowed a reasonably
sized FPGAs array to be integrated as part of an on-chip system.
eFPGAs are FPGA IP cores specifically meant to be integrated into
SOCs to extend them with programmable logic. Unlike the FPGAs,
eFPGAs are not meant to be used standalone but are designed to
enhance the capabilities of the SOCs. Vendors provide tools to allow
eFPGAs to be customized to the SOCs and properties like the number
of arrays, with a given number of LUTs, DSP blocks, flip-flops, IO
pins, etc. can be configured. They can be used to enable post-silicon
soft-hardware programmable functions in SOCs or MCUs to make
updates on accelerators or custom peripherals. Hardwired accelerators
or peripherals outperform their eFPGA-based implementations, but
lack flexibility and post-fabrication reconfigurability. The benefit of
integrating eFPGAs into SoCs is the possibility to increase performance
by specializing the SOCs for one particular domain that can change
over time, increasing the product lifetime and application span.

eFPGAs can be provided as soft-IP [112, 113], described in RTL
and synthesized with the rest of the system, or hard-IP [114–116] as
hard-macros with pre-determined physical layout, featuring a different
trade-off between performance and cost. Although soft eFPGA macros
are easily portable from different technology nodes as they are made by
standard cells, hard-macro eFPGAs, which are usually custom-designed
at layout level, feature significantly better PPA figures.
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For example, in Renzini et al. [112], a soft-IP is complementing a
MCU for power control applications is implemented using a 90 nm Bipo-
lar CMOS DMOS (BCD) technology. This eFPGA is relatively small
(only 96 4-input LUTs and 192 flip-flops) and connected exclusively
to the IO subsystem to implement low-latency and flexible control
tasks such as Pulse Width Modulation (PWM). Several companies
are providing hard-IP blocks, as Achronix [117], which provides 7nm
FinFET eFPGAs, Flex-Logix [118], which provides from 12nm to
180 nm eFPGAs macros, QuickLogic Corporation [119], which provides
from 22nm to 65 nm core IPs, and Menta [113], which provides IPs
from 10nm to 90 nm. Several heterogeneous reconfigurable SOCs
have been presented in the last years, ranging from high-performance
systems to low-power embedded systems. Whatmough et al. presented
a 25mm2 SOC implemented in 16 nm FinFET technology featuring two
ARM A53 cores, a quad-core datapath accelerator, 4MBytes on-chip
SRAM, and a 2x2 FlexLogic eFPGA macro featuring hardwired DSP
slices [114].

In the embedded domain, several solutions have been proposed in
different technology nodes. Borgatti et al. [115] implemented a 180 nm
2 0mm2 SOC, where eFPGA is integrated with the CPU pipeline to
implement a reconfigurable Application Specific Instruction Processor
(ASIP) SoC, with the eFPGA implementing custom instructions. Also,
the eFPGA is connected to the system bus and IO pads. The system
reports up to 10x performance gain using instruction extensions to
accelerate face-recognition algorithms and 2x for IO intensive tasks
when dealing with camera peripherals with pre-processing. Lodi et
al. [116] implemented a 42mm2 SOC in 130 nm, where the CPU
pipeline is directly connected with the eFPGA to implement custom
instructions, whereas a second eFPGA is connected to the system bus
and IO pads. The system reports up to 15x performance gain and 89%
energy saving by exploiting the eFPGAs to accelerate a set of data
processing algorithms. However, as a consequence of using a mature
technology node, the eFPGAs (~15 kGE) presented in the proposed
SoCs feature limited capabilities and performance.

To boost signal processing workloads, both hard and soft eFPGAs
can have DSP-blocks included in the IP itself, or they can have pins
dedicated to communicating with external blocks, featuring, once
again, a different trade-off between time to market for DSP-blocks
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customization at design time. The first ones can be used by eFPGA
synthesis tools to map user-designs in DSP-blocks implicitly, whereas
in the second case, the user explicitly designs logic in the eFPGA to
interact with the external blocks.

In Chapter 6, we propose a RISC-V SOC featuring an advanced
microcontroller (based on Riscy and on the MCU presented in Chapter
2) augmented by an eFPGA for IoT applications in GF22 process
technology. The MCU is based on the one presented in Chapter 3,
but it replaces the BNN accelerator with an eFPGA. We demonstrate
the flexibility of the SOC to tackle the challenges of many emerging
IoT applications, such as (i) interfacing sensors and accelerators with
non-standard interfaces, (ii) performing on-the-fly pre-processing tasks
on data streamed from peripherals, and (iii) accelerating near-sensor
analytics, encryption, and machine learning tasks. A unique feature
of the proposed SOC is the exploitation of body-biasing to reduce
leakage power of the eFPGA fabric, achieving SOA state bitstream-
retentive sleep power for the eFPGA fabric. Figure 1.1 shows how the
related work on IoT devices is split, and topics faced in the various
Chapters of this Thesis.

Figure 1.1: Map of the Thesis in the context of the IoT devices.
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1.1 Contribution and Publications
The contribution of this Thesis can be summarized as follow.

In Chapter 2, we extended a RISC-V CPU to be more performant
and energy-efficient, within a limited power and area overhead, when
executing data-analytics algorithms typical of the IoT domain. We
optimized two RISC-V CPUs to be smaller and less power consuming
that are ideal when used to execute control-flow tasks (e.g., peripheral
and power managers) typical of MCUs. We evaluated the CPUs under
different timing-constraints and operating voltage, showing the energy
efficiency of the three cores executing three different kernels. We show
that optimized area cores are preferred for always-on domains that are
seldomly in active states. Finally, we leveraged a tandem verification
framework that uses an evolutionary optimizer to create assembly
programs that aim to optimize the code coverage of the DUV, and a
reference model (the ISS) to evaluate the correctness of the DUV. In
this framework, the test creation and evaluation phases are merged
to increase the probability of finding bugs.

In Chapter 3, we implemented a RISC-V based MCU that hosts
a DSP-enhanced CPU, it exploits a heterogeneous memory subsys-
tem, and it embeds a hardwired BNN accelerator. Such MCU has
been implemented in GF22 FDSOI technology; it has three different
operational modes to trade memory capacity and energy efficiency
in active mode or to optimize power consumption in idle mode in a
duty-cycled scenario. Thanks to the FDSOI, the MCU can exploit a
full voltage operational range to enable DVFS and NTC. Also, FBB is
used for trading performance and power consumption. When error-
tolerant applications such as BNNs are executed on the accelerator,
aggressive voltage scaling can be leveraged to trade accuracy and power
consumption in tight constrained or always-on scenarios. We show that
thanks to the compound of CPU performance, MCU architecture, and
technology that can exploit efficiently DVFS and FBB, the proposed
chip outperform single-core MCU in terms of energy efficiency and
performance, withing a low-power budget.

In Chapter 4, we extended a hardwired CNN accelerator to work
on parallel data of packed weights of 4, 8, and 16 bit. As CNNs
are error-tolerant, negligible accuracy loss can be traded to increase
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performance and energy efficiency. We integrated it in a heterogeneous
multicore MCU together with another accelerator implemented in
UMCL 65nm technology. We evaluated the CNN accelerator energy
and performance against a DSP-enhanced CPU and a cluster of four
DSP-enhanced CPUs on a wide range of supply voltage. We show that
the hardwired accelerator’s best energy efficiency is achieved as the
specialized architecture is lightened of software overheads.

In Chapter 5, we exploit an MCU extended with a software accel-
erator to achieve high performance, energy efficiency, and versatility
in bio-applications that deal with i) high-frequency, high-dimension
brain APs to perform spike detection and compression, and ii) low-
frequency, low-dimension EEG signals to extract complex features
to perform drowsiness detection. In the first case application, we
leverage an ADC that can generate events and an MCU implemented
in TSMC 40nm that has different power states to enable efficient
duty cycling, and a cluster of eight DSP-enhanced CPUs to perform
efficient computations. We show that thanks to the software accelerator
and power states, MCU-based implementations of neuro-applications
are outperforming MCU based solutions, offering at the same time
high-versatility, in a low-power budget. Besides, we exploit a software
accelerator implemented in ST FDSOI 28nm technology made of four
DSP-enhanced CPUs to extract frequency components of EEG signals
at near-threshold to achieve the highest energy efficiency among SOA
related solutions.

Finally, in Chapter 6, to evaluate all the possible integrated accel-
erator solutions in the low-power domain of edge-computing devices,
we implemented an MCU augmented with an eFPGA implemented
in GF22 technology. Such MCU hosts a DSP-enhanced CPU and an
eFPGA fabric. The eFPGA can be connected to the rest of the system
with flexibly with different plugs as: by shared memory, IO Direct
Memory Access (DMA), or General-purpose Input/Output (GPIO).
The system exploits FBB to achieve higher performance on the MCU,
and RBB to achieve lower power consumption on the eFPGA. We
evaluated the system on a wide range of supply voltage to evaluate
DVFS and NTC. We show that it is possible to embed an eFPGA in a
MCU within a low-power budget for battery-powered edge-computing
devices. The MCU achieves SOA performance and energy-efficiency,
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and thanks to RBB, it is possible to minimize the power overhead of
the eFPGA macro, still maintaining its state.

(a) [56] P. D. Schiavone et al., "Slow and steady wins the race? A
comparison of ultra-low-power RISC-V cores for Internet-of-
Things applications." 2017 27th International Symposium on
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Transactions on Very Large Scale Integration (VLSI) Systems
25.10 (2017): 2700-2713.

(c) [120] P. D. Schiavone et al., "An Open-Source Verification
Framework for Open-Source Cores: A RISC-V Case Study,"
2018 IFIP/IEEE International Conference on Very Large
Scale Integration (VLSI-SoC), Verona, Italy, 2018, pp. 43-48,
doi: 10.1109/VLSI-SoC.2018.8644818.
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Figure 1.2 shows the energy optimizations faced in the and topics
faced in the various Chapters of this Thesis.

1.2 Parallel Ultra-low Power Platform
In this Section, the PULP architecture is described as it has been used
as a baseline to build the technical part of this Thesis.

The PULP architecture is an MCU that extensively exploits parallel
computing at near-threshold voltage to improve energy efficiency. The
energy efficiency is increased thanks to the quadratic dependency of
dynamic power with supply voltage, while performance degradation
due to low-voltage operation is compensated by using multiple processor
cores [127, 128].

A brief description of its architecture is following. Interested
readers are referred to [64, 97, 129, 130] for more details about the
PULP platform.

The last version of PULP is based on RISC-V, and it is composed
of a single-core MCU, acting like a fabric controller that handles
the IO subsystem, and executes controls tasks. Such single-core
MCU is referred to as PULPissimo. PULPissimo can be extended
with a software accelerator composed of a multi-core cluster with an
indipendent voltage and frequency domain. The PULP cluster supports
a configurable number of cores with a shared instruction cache and
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Figure 1.2: Energy efficiency optimizations faced in the Chapters of
this Thesis.

scratchpad data memory. Figure 1.3 shows a generic PULP MCU
with a cluster in a configuration with eight cores and 16 TCDM-banks.
Different implementations have been taped out since the PULP project
started. They differ in the number of cores, instruction cache, L1
tightly coupled memory composition, etc. A shared I$ is used to
reduce the cost per core, leveraging the single-program-multiple-data
nature of most parallel near-sensor processing application kernels. A
tightly coupled DMA engine manages transfers between IO and L2
memory and the shared TCDM. Data access pattern predictability of
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key application kernels, the relatively low clock frequency target, and
the tightly constrained area and power budget make a shared TCDM
preferable over a collection of coherent private caches [131].

The data memories can be configured to be split in area-efficient
SRAM, and energy-efficient SCM blocks. Since SCMs are built of
standard cells, it is possible to scale the supply voltage and operate
near the threshold voltage of transistors [132].

Both the PULP cluster and PULPissimo can be extended with
hardwired fixed-function accelerators or eFPGAs, as discussed in
this Thesis.

The single-core part of the PULP MCU hosts an autonomous
IO subsystem described in [133]. The core runs the runtime or a
light operating system as freeRTOS or zephyrOS, it hosts the debug
modules, and it manages the power and frequency of the whole MCU.
The core that runs on PULPissimo does not feature any instruction
cache, and it is directly connected to the L2 memory.

The L2 memory is composed of an interleaved part made of 4
banks and a non-interleaved part made of 2 banks. The interleaved
part is generally used by the autonomous IO subsystem to store
data acquired from sensors, that are then processed by the cluster
or dedicated accelerators.

The non-interleaved part (private) is used to store the code of
the runtime (or light operating system) and private core data (as
the stack, and runtime data structures). In this way, bank conflicts
are minimized as the stack-data, and instruction code of the core are
stored in the two private banks, whereas the shared data are in the
interleaved part of the system.

The PULP MCU has been successfully taped out with OpenRISC,
and RISC-V cores [64, 97, 129, 130], and in the version proposed
in [130] achieves a top energy efficiency at Near-Threshold (NT) of
193MOps/mW in 28 nm FDSOI technology, whereas, in the version
proposed in [64], it achieves a top performance of 7000MOps in 40 nm
technology.
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Figure 1.3: The PULP MCU with 8 cores, 16 shared TCDM-banks
and a shared I$.





Chapter 2

RISC-V CPUs

In this Chapter, the Parallel Ultra Low Power Platform (PULP)
Instruction Set Architecture (ISA) extensions and the pipeline archi-
tecture of two RISC-V cores (Riscy and Zero-riscy) are described.
The two RISC-V cores are optimized for different applications and
working domain.

The ISA extensions are specifically targeting data-intensive compu-
tations at near-threshold voltage operation in tightly-coupled memory
systems of multiple cores. Several ideas have been borrowed from the
Digital Signal Processing (DSP) domain to enhance the Riscy core,
but still maintaining complete compatibility with the streamlined
RISC-V ISA.

On one hand, Riscy is optimized for data-intensive applications,
benefiting of the aforementioned ISA extensions, working in a cluster of
multi-cores (4/8 cores), operating at near-threshold voltage as software-
accelerator, thus used in a duty-cycle fashion. On the other side,
Zero-riscy targets mixed arithmetic/control applications and control-
oriented tasks, working as a microcontroller in an always-on domain.

In addition, in this Chapter, the verification level of the DSP-
enhanced core is increased to provide a higher quality core.

27
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The main contributions of this Chapter can be summarized as
follows:

• An optimized execution stage supporting flexible fixed-point and
saturated arithmetic operations as well as Single Instruction
Multiple Data (SIMD) extensions, including dot-product and
shuffle instructions on a performant core, meant to run in a
parallel cluster.

• Two flavors of an area-optimized core to improve the energy
efficiency on always-on domains with limited computation re-
quirements. Micro-riscy is optimized to have a minimal area and
power. Zero-riscy is optimized to have a small area and power,
but higher computation performance than Micro-riscy. They
consist of one single RTL description with parameters to tune
the area resources. Furthermore, to target high energy efficiency
and ultra-low power in battery-powered Internet-of-things (IoT)
devices, the cores are evaluated in Near-Threshold (NT), where
the transistors achieve their maximum energy efficiency [73].

• Creating an automatic high-code coverage verification stimuli
for the Riscy core to widely explore the verification research
space by combining the generation of the test-programs with
their evaluations.

The three cores (two RTL descriptions with parameters) provide an
open-source family of heterogeneous cores ready to be used in different
contexts, all implementing the RISC-V ISA supporting compressed
instructions.

We show that with the help of the ISA extensions and micro-
architectural enhancements, signal processing kernels, such as filters,
convolutions, etc. can be completed faster and more energy-efficient
on Riscy.

We show that thanks to an area-aware design with small datapath,
an optimized core for control tasks consumes less energy when executing
Coremark. An even smaller core with extreme area optimizations is
the most energy-efficient in pure control-oriented code.

We provide in-depth-comparative analysis of the three cores in
terms of area, power, performance, and energy efficiency, with a wide
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range of synthesis constraints and workloads. We analyze their energy
consumption in an always-on context, where the cores are waiting
for an event to start the computation and finally go back to sleep.
We show that when the interval time between events is long enough,
the leakage power contribution becomes crucial. Hence small cores
overwhelm the fast cores in energy efficiency.

Finally, a simulation-based framework based on µGP1 is developed
to increase the verification level of the Riscy core (extended with a
Floating Point Unit (FPU)) with automatic test program generation,
reaching on average about 90% on a set of high-level code coverage
metrics while unveiling ten different bugs still present in the processor
description.

Given a large number of external users of such open-source cores,
and as companies require continuous support, the cores graduated from
an academic project to an industrial product. The small core, formally
called Zero-riscy, has been moved to a non-for-profit organization
called LowRISC 2 under the name of Ibex. The other core, formally
called Riscy, has been moved to another non-for-profit organization
called OpenHW Group3 under the name of CV32E40P. Both the cores
will be kept open-source and maintained by the two companies.

As the targeted domain of the proposed cores is close to the one
of the Cortex-M cores, Table 2.1 shows an area comparison between
the proposed RISC-V cores and their corresponding Cortex-M family
implementations. Furthermore, the verification level of the Riscy
extended with an FPU has been increased by generating pseudo-
random test programs that try to optimize the code coverage of its
HDL description. The simulation-based approach unveiled bugs present
in the RTL description by combining the generation and testing of
such programs.

1 µGP is open-source and freely downloadable at http://ugp3.sourceforge.net/
2 https://www.lowrisc.org/
3 https://www.openhwgroup.org/
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Table 2.1
Comparison between the proposed RISC-V cores and ARM

Cortex-M family implementations.
Core Area [KGE] Core Area [KGE]
Riscy 40.7 Cortex-M4/Cortex-M3 53.0/37.9

Zero-riscy/Micro-riscy 18.9/11.6 Cortex-M0/M0+ 13.3/12.5
Cortex-M0 area from synthesis in UMC 65nm with 32 cycles mult, 16 interrupts,
no wake-up, and debug controllers. Cortex-M0+, M3, and M4 area estimated from
publicly available information [134].

Figure 2.1: Simplified block diagram of the Riscy core architecture
showing its four pipeline stages and all functional blocks.

2.1 RISC-V Microarchitectures
In this Section, the RISC-V architectures proposed in this work are
described. We detail the extensions made to the RISC-V ISA and micro-
architectural optimizations for increasing the efficiency of the Riscy
core. The pipeline architecture, the ISA extensions, and the individual
components of the core are discussed in Subsection 2.1.1. The area-
optimized cores and their RISC-V ISA extensions implemented, as
well as their pipeline architecture, are described in Subsection 2.1.2
and Subsection 2.1.3.

2.1.1 Riscy
Riscy is an open-source 32 bit RISC-V core, in-order with four pipeline
stages [57].
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The number of pipeline stages of the core is one of the key design
decisions that determines the speed and the Instruction Per Cycle
(IPC). A higher number of pipeline stages allows for higher operating
frequencies but reduces the IPC due to a higher number of data
and control hazards, which can be alleviated with branch predictions,
prefetch-buffers, multiple-issues and out-of-order execution. However,
such optimizations increase the area and power consumption. Thus
such cores are usually used in high-performance systems rather than
IoT devices. Ultra-low-power systems host instead simpler microproces-
sor with 1 to 5 pipeline stages, in-order, single-issue. Such cores usually
achieve higher IPC than higher frequency, consume less power, and
are smaller than high-performance Central Processing Units (CPUs).

The Riscy core presented in this Chapter is composed of 4 pipeline
stages. Its architecture, shown in Figure 2.1 underlines the Instruction
Fetch (IF), Instruction Decode (ID), Execution (EX), and Write Back
(WB) stages, with a 3-read-2-write ports register-file.

Since the memory interface mainly determines the critical path,
it is possible to extend ISAs with single-cycle enhanced arithmetic
operations without incurring additional timing penalties.

All three cores implement the RVC RISC-V standard to support
compressed-instructions (16 bit wide instructions). Therefore, the IF
stage has been designed to handle compressed instruction decoding,
cross-word instructions, and misaligned memory accesses.

Following, General-Purpose ISA Extentions implemented in the
Riscy core are presented.

General-Purpose ISA Extentions

Load/Store extensions to the basic RISC-V architecture have been
designed to support register+register address generation and post-
increment operations; the latter used to update pointers automatically
without explicit add operations. The 2-write register-file ports are
used to implement automatic post-increment memory operations in
a single-cycle, reserving a write port for the EX stage that performs
the increment of the address, and the second port for the upcoming
memory data from the WB stage. In addition, the Riscy core supports
misaligned memory accesses, which frequently happen during vector
operations such as convolutions. The core emits two word-aligned
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memory operations and recombines the data internally, completely
transparent to software.

Table 2.2
Extended Load/Store Instructions.

Instruction format Description
p.l{b,h,w} rD, {rB,I}(rA) Load a value from address (rA+{rB,I})c

p.l{b,h,w} rD, {rB,I}(rA!) Load a value from address rA and
increment rA by {rB,I} c

p.s{b,h,w} rB, {rD,I}(rA) Store a value to address (rA+{rD,I}) c

p.s{b,h,w} rB, {rD,I}(rA!) Store a value to address rA and
increment rA by {rD,I} c

c b, h, w specific the data lenght of the operands: byte (8 bit), halfword (16 bit),
word (32 bit).

Zero-overhead loops are a common feature in many DSP processors.
They are used to overcome the overhead of instructions to handle
counters and branches to benefit IPC and code-size. The Riscy can
handle up to 2 nested loops. The ISA has been extended to set the
beginning, end, and the number of iterations of the loop. Once the
core reaches the end of the loop, no cycles are lost to jump back to the
first instruction of the loop, making iterative-software more efficient.

Table 2.3
Hardware Loop Instructions.

Instruction format Description
lp.starti L, I Set the HW loop start address
lp.endi L, I Set the HW loop end address
lp.count L, rA Set the HW loop number of iterations
lp.setup L, rA, I HW loop setup with registers
lp.setupi L, I1, I2 HW loop setup with immediate

Other instructions useful for general purpose applications imple-
mented in the Riscy core include: minimum and maximum between
two operands, sign-extensions, rotation, and absolute value.

In addition, the Riscy core implements bit manipulation instruc-
tions. Such instructions operate on sets of bits to extract (read set of
bits), insert (write to a register a set of bits), clear, set (clear/set a set
of bits), count (count number of bits that are 1), find-first ,find last
(find index of first/last bit that is 1 in a register), and count leading
(count leading bits in a register).
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Packed-SIMD support

As the Riscy has been optimized for software acceleration, the pro-
cessor’s datapath has been modified to work on four bytes and two
half-words in parallel. Such operations are also known as subword paral-
lelism [135], packed-SIMD (pSIMD), or micro-SIMD [136] instructions.

In the IoT domain, pSIMD operations can be used on data sampled
from sensors that are typically <32 bit data (e.g., 8 bit for low-power
cameras, or 12 bit on Analog-to-Digital converters (ADCs), etc.).

Benefits of pSIMD operations are: reducing the data bandwidth,
thanks to parallel load and store operations; and increasing perfor-
mance, thanks to parallel data processing. However, area and power
overhead have to be kept small to gain energy efficiency at application
level, i.e., the execution time improvement has to be higher than the
power increase due to the more complex core architecture.

pSIMD operations have been implemented in three addressing
variations. The first variation uses two registers, the second uses an
immediate value, and the third replicates the scalar value in a register
as the second operand for the vectorial operation.

Vectorial operations like additions, subtractions, and comparisons
have been implemented by splitting the datapath (adder and com-
parator) into four sub-operations. The Arithmetic and Logic Unit
(ALU) decides whether to propagate the carry signals based on the
vector mode. For example, the adder does not propagate the three
intermediate carry-out signals to produce the four parallel addition; it
does not propagate the second carry-out signal for the two half-word
additions; whereas for the full 32 bit result, the carry-out chain is
propagated throughout all the four adders. Others like shift-operations
or dot-product instructions use parallel datapath instead without
resource sharing of sub-modules.

The proposed multiplier can multiply two vectors and accumulate
the result in a 32 bit value in one cycle. A vector can contain two
16 bit elements or four 8 bit elements. To perform signed and unsigned
multiplications, the 8 bit/16 bit inputs are sign-extended. Therefore
each element is a 17 bit or 9 bit signed word. A common problem with
an N bit multiplier is that its output needs to be 2 · N bit wide to
cover the entire range. In some architectures, an additional register is
used to store part of the multiplication result. Such dot-product (dotp)
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operations can be implemented in hardware with four multipliers and
a compression tree and allow to perform up to four multiplications
and three additions in a single operation as follows:

d = a[0] · b[0] + a[1] · b[1] + a[2] · b[2] + a[3] · b[3],

where a[i], b[i] are the individual bytes of a register and d is the
32 bit accumulation result. The multiply-accumulate (MAC) equivalent
is the Sum-of-Dot-Product (sdotp) operation, which can be imple-
mented with an additional accumulation input at the compression
tree. With a vectorized ALU, and dotp-operations, it is possible to
significantly increase the computational throughput of a single core
when operating on reduced bit-width data.
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Figure 2.2: Simplified block diagram of the Multiplier in the RISC-V
core implementation reflecting the behavioural implementation.

The dot-product unit’s implementation has been designed such
that its longest path is shorter or equal to the critical path of the
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overall system, which in the PULP architecture is between the core and
the memory subsystem. The dot-product unit has been designed to
compute the result in a single-cycle. To achieve such a result without
decreasing the maximum frequency, sub-modules units are not shared,
resulting in a bigger area overhead. Additional pipeline registers would
have resulted in additional stalls when computing back-to-back dotp
operations. Figure 2.2 shows the 16 bit dotp-unit (region 3 ) and 8 bit
dotp-unit (region 4 ) which have been implemented by one partial
product compressor which sums up the accumulation register and all
partial products coming from the partial product generators. The
operations have been described as employing SystemVerilog operators
to keep the design flexibility in terms of multipliers datapath selection,
leaving the synthesizer the freedom to choose the best architecture
that best meets the timing and area constraints. For example, a
tight timing constrained design would exploit a carry-save format
multiplier, whereas a less critical design could choose smaller multiplier
architecture optimized for the area. The stand-alone multiplier has
been analyzed in detail to minimize the area-delay product. Area can
be saved when sharing compression-trees of the two dotp multipliers.

Additional packed-operand manipulation instructions are needed
to prepare vector operands [137]. For example a shuffle instruction
has been added to combine operands inside a vector based on a mask
operand. Other instructions as pack, insert, and extract are also useful
to manipulate vectors.

Figure 2.3: The Shuffle instruction allows to efficiently combine 8 bit,
or 16 bit elements of two vectors in a single one. For each byte the
mask encodes which byte (index) is used from which register (select).
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Table 2.4
Vectorial Instructions.

Instruction format Description
pv.inst.{b,h} rD, rA, rB General vectorial instruction between two

registers a

pv.inst.{b,h} rD, rA, I General vectorial instr. between a register
and an immediate a

a b, h, w specific the data lenght of the operands: byte (8 bit), halfword (16 bit),
word (32 bit).

Fixed-Point support

1

2

3 4 5

vectorial
adder

adder

vector shifter

vectorial
comparator logic unit

clip unit

bmask_a bmask_boperand_a operand_b operand_c

bit man unit

branch-decision
alu-resultalu-operator

shuffle unit

Figure 2.4: Simplified block diagram of the Riscy ALU.

In the IoT domain, many applications (speech processing,Convolutional
Neural Networks (CNNs), Electroencephalography (EEG) processing)
achieve enought performance with fixed-point accuracy [138]. Fixed-
point arithmetic uses the integer datapath, as additions followed by a
shift to adjust the fixed-point format (normalization), or comparisons
with boundaries to saturate the numbers (saturation).

Fixed-point numbers are often given in the Q-Format where a
Qn.m number consists of n integer bits and m fractional bits. Some
processors support a set of fixed-point numbers encoded in 8 bit, 16 bit
or 32 bit, and provide dedicated instructions to handle operations
with these numbers. For example, the ARM Cortex-M4 ISA provides
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instructions as QADD or QSUB to add two numbers and then saturate
the results to 8 bit, 16 bit or 32 bit.

Table 2.5
Addition of four Q1.11 fixed-point numbers with and w/o fixed-point

instructions.

Without Add Norm Round With Add Norm Round
add r3, r4, r5 add r3, r4, r5
add r3, r3, r6 add r3, r3, r6
add r3, r3, r7 p.addRN r3, r3, r7, 2
addi r3, r3, 2
srai r3, r3, 2

The proposed ISA extensions implemented in Riscy support fixed-
point arithmetic operations on any Q-format with the only limitation
that n + m < 32. Normalization after additions, subtractions, or
multiplications is implemented by shifting the result of such opera-
tions by a given amount that depends on the format. Rounding is
implemented by adding to the result of such operations a number of
the least precision before shifting. The two code examples in Table 2.5
show how the combined add-round-normalize (p.addRN ) instruction
can save both code-size (3 instead of 5 instructions) and execution
time (2 cycles less). In this example, four numbers represented by
Q1.11 are summed up. The result, if not normalized, will be a 14 bit
long Q3.11 number. To keep the result in 12 bits, rounding can be
achieved by adding 2 to the result and shift the number right by two
places. The result can then be interpreted as a 12 bit number in Q3.9
format. The final p.addRN instruction achieves this rounding in a
single step by first adding the two operands using the adder, then
adding 2(I−1) to the intermediate result, and finally shifting the result
by I bits utilizing the shifter of the ALU. An additional 32 bit adder
was added to the ALU to help with the rounding operation, as seen
in the highlighted region 1 of Figure 2.4.

Fixed-point support for multiplications has also been extended.
Differently from ALU functions, 32 bit multiplications have not been
extended with shifting operations as this would result in a higher
frequency penalty, not only for the shifter operation per se but also due
to a larger multiplication result (64 bit) that should have been produced.
We preferred instead to extend the ISA with fixed-point multiplication
operations only to 16 bit operands. These new instructions accept
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Table 2.6
Element-wise multiplication of n Q1.11 elements with round and

normalization.

Without Mul Norm Round With Mul Norm Round
addi r3, r0, n addi r3, r0, n
lp.setup r0, r3, endL lp.setup r0, r3, endL
p.lh r4, 0(r10!) p.lh r4, 0(r10!)
p.lh r5, 0(r11!) p.lh r5, 0(r11!)
mul r4, r4, r5 p.mulsRN r4, r4, r5, 12
addi r4, r4, 0x800 endL: sw 0(r12!), r4
srai r4, r4, 12
endL: sw 0(r12!), r4

two 16 bit values (signed or unsigned) as input operands and calculate
a 32 bit result. This result can also be accumulated (mac) with a
third 32 bit operand, shifted to normalize the result and rounded. The
two additional 32 bit values need to be added to the partial-products
compressor, which does not increase the number of the compressor-
tree levels and, therefore, does not add delay to the circuit [139].
The p.mac multiply-add instruction allows to perform 32 bit-operands
multiplications and adding the result to an extra 32 bit value. The
multiplier architecture is shown in Figure 2.2 where the fractional
multiplier is shown in region 1.

All these instructions are performed in one cycle, benefiting both
the code-size and the number of cycles.

The code example given in Table 2.6 demonstrates the use of fixed-
point multiplication support. In this example, two vectors of n Q1.11
elements are multiplied with each other (a typical operation in the
frequency domain to perform convolution). The multiplication results
in a Q2.22 number, and a subsequent rounding and normalization step
will be needed to express the result with 12 bits as a Q1.11 number. It
is important to note that, for such operations, performing the rounding
operation before normalization reduces the error.

Similarly to the dot-product, the fixed-point multiplier design has
been done in parallel, as adding single-cycle shift operation to the
32 bit multiplier increased the critical path. Thus, a parallel 16 bit
multiplier has been implemented to handle the operations above. The
simplified final multiplier architecture is shown in Figure 2.2 contains
four modules: A 32x32 bit multiplier, a fractional multiplier, and two
dot-product (dotp) multipliers.
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Table 2.7
Addition of n elements with saturation.

Without clip support With clip support
addi r15, r0, 0x800 addi r3, r0, n
addi r14, r0, 0x7FF lp.setup r0, r3, endL
addi r3, r0, n p.lh r4, 0(r10!)
lp.setup r0, r3, endL p.lh r5, 0(r11!)
p.lh r4, 0(r10!) add r4, r4, r5
p.lh r5, 0(r11!) p.clip r4, r4, 12
add r4, r4, r5 endL: sw 0(r12!), r4
blt r4, r15, lb
blt r14, r4, ub
j endL
lb: mv r4, r15
j endL
ub: mv r4, r14
endL: sw 0(r12!), r4

For fixed-point operations, a clip instruction has been implemented
to check if a number is between two values and saturates the result to
a minimum or maximum bound otherwise. No significant hardware
has been added to the ALU to implement the clip instruction. In fact,
the greater than comparison is done using the existing comparator,
and the less than comparison is done in parallel by the adder. The clip
instruction relies on the input data; therefore, handling overflows is
left to the programmer. Unlike the ARM Cortex-M4 implementation,
our implementation requires an additional clip instruction but has
the added benefit of supporting any Q-number format and allows
to round and normalize the value before saturating, which provides
higher precision.

Table 2.7 shows an example of compiler-generated code where two
arrays, each containing n Q1.11 signed elements, are added together,
then the result is normalized between −1 and 1 represented in the
same Q1.11 format. The example clearly illustrates the difference
between the RISC-V ISA with and without clip support. Table 2.8
shows the added instructions for fixed-point support. Note that the
code to the right is not only shorter; it also does not have control-flow
instructions, thereby achieving better IPC.
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Table 2.8
Fixed Point Instructions.

Instruction format Description
p.add[R]N rD, rA, rB, I Addition with round and normalization

by I bits a

p.sub[R]N rD, rA, rB, I Subtraction with round and normalization
by I bits a

p.mul[hh][R]N rD, rA, rB, I Multiplication with round and
normalization by I bits ab

p.mac[hh][R]N rD, rA, rB, I MAC with round and normalization
by I bits ab

p.clip rD, rA, I Clip the value between −2I−1 and
2I−1 − 1

a If R is not specified, there is no round operation before shifting.
b If hh is specified, the operation takes the higher 16 bit of the operands.

Complex numbers support

Complex numbers are numbers that can be expressed as (a, b) = a+ ib,
where a is called real-part, and b imaginary part. As signal theory
algorithms are often based on frequency-domain transformations built
on complex domains, having hardware support for complex arithmetic
increases performance when executing such algorithms. Leveraging
the existing hardware infrastructure for the pSIMD support, complex
instructions between 16 bit data can be added with negligible overhead.
A complex number d is represented as two 16 bit packed data in a
register using the higher part to represent the imaginary number d[1],
and the lower part for the real number d[0]. As the multiplication d
between two complex numbers a = (ra, ia) and b = (rb, ib) is defined as:

d = (ra · rb− ia · ib, ra · ib+ ia · rb),

two instructions that use the dotproduct have been added. The first
instruction calculates the real part of the complex multiplication as:

d[0] = a[0] · b[0]− a[1] · b[1].

The second instruction calculates the imaginary part as:

d[1] = a[0] · b[1] + a[1] · b[0].

In addition to complex multiplications, subtraction with rotation by
90 degrees and complex and conjugate instructions have been added.
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Furthermore, a bit-reverse instruction has been included to calculate
the index in the first or last stage of fast Fourier transform (FFT)
algorithm butterfly. This instruction takes as input the index X of
an FFT made on 2p points (up to 231) in radix 2r (r = 1, 2 or 3),
and it returns a bit reversed representation. For example, for an
FFT of 8 points (p = 3) and radix-2 (r = 1) implementation, the
index x = 6 = 110b is translated by the bit reverse instruction into
bitrev(x) = 3 = 011b. The area overhead of all these extensions is only
1% of the whole processor, consisting of 9 flip-flops and multiplexers.
Figure 2.5 shows a simple example where two arrays of bytes are added
in a third array. The example shows the baseline implementation
with pure RISC-V only instructions and the performance achieved
by the Riscy when running it. Then it shows the contribution of the
instruction extensions on performance and code-size.

Figure 2.5: Riscy ISA extensions for performance. This example sums
two arrays of bytes.

Power-saving Architecture

The proposed ISA-extensions are realized with separate execution
units in the EX-stage, which have contributed to an increase in area
(8.3 kGE ALU, 12.6 kGE multiplier). To keep the power consumption
at a minimum, switching activity at unused parts of the ALU must be
kept at a minimum. Therefore, all separate units: the ALU, the integer
and fractional multipliers, and the dot-product unit all have separate
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input operand registers that can be clock gated. The instruction
decoder controls the input operands and can be held at constant
values to eliminate the propagation of switching activity in idle units
further. The switching activity reduction is achieved by additional
flip-flops at the input of each unit (192 in total). These additional
flip-flops allow reducing the switching activity, which decreases the
power consumption of the core by 50%.

2.1.2 Zero-riscy
Zero-riscy is an area-optimized RISC-V core implementing the RVC32IM
instruction set architecture; Figure 2.6 shows a simplified version of
its micro-architecture. It has two pipeline stages that are the IF and
Instruction Decode and Execute (IDE) stage. Its RTL description is
heavily based on the Riscy core has it started as a fork of that project.
Similarly to Riscy, the IF stage interacts with the instruction memory
subsystem. It contains a prefetch-buffer that collects data from the
instruction memory, and it handles compressed instructions.

The prefetch-buffer generates the instruction address and the
program counter value (which can be different due to misalignment
given by compressed instructions), and it contains a FIFO to store
instructions also when the next stage is not ready to process them.
The IDE stage decodes the instructions, reads the operands from the
register file, prepares the operands for the ALU and the multiplier
unit, and executes the instructions. The register file is a 2-read-1-write
latch-based register file. The ALU contains the minimal hardware
resources to implement the RVC32IM ISA: one 32 bit adder, one 32 bit
shifter, and the logic unit. The 32 bit adder is used to compute
additions, subtractions, and comparisons. It is shared with the data
address generation unit, the branch engine, and the divider. Branch,
multiplication, division, load, and store instructions are computed
iteratively, stalling the next instruction until they have finished.

Figure 2.7 shows the simplified ALU architecture. The top mul-
tiplexer selects the addition operands, whereas the shifter and the
logic unit always compute their function on operands coming from the
decoder or register-file. Branch instructions, which need to compute
both the comparison and the branch target, use the adder in two
different cycles: the first cycle is used to compute if the branch is taken
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or not. In case the branch is taken, in the next cycle, the adder is used
to add to the program counter the offset to build the target address.
Load and store instructions are executed in two cycles: the first cycle
is used to calculate the address and the second cycle to receive the
data from memory. The multiplier unit contains one Multiply And
Accumulate (MAC) unit, which is able to sequentially multiply two
16 bit operands and accumulate the result in a 32 bit register. Divisions
are implemented with minimum resources with the unsigned serial
division algorithm using the adder in the ALU in all the steps. No
forward-path and data-dependency logic are present in the core, which
allows to save control-logic, multiplexers, and comparators. Zero-riscy
implements a minimum set of control-status registers defined by the
privileged RISC-V 1.9 spec, debug, and up to 32 interrupt requests.

Figure 2.6: Simplified block diagram of Zero-riscy. The critical path is
along the branch-address from the IF-IDE pipeline stage to the ALU,
all the way along to the branch-target in the prefetch-buffer and finally
to the instruction memory. It is about ∼280 FO4 NAND2 gate in
UMC 65nm.

2.1.3 Micro-riscy
Micro-riscy is further optimized for area with respect to Zero-riscy by
removing the RVM RISC-V extensions. Micro-riscy does not have any
Hardware (HW) support for multiplications and divisions. To further
reduce the area footprint, it implements the RVE RISC-V specification,
which allows to use only 16 general-purpose registers. This core is
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Figure 2.7: Simplified block diagram of the Zero-riscy ALU. The adder
is shared between additions/subtractions, branches, address generation
for load/store operations and divisions.

suitable for control-oriented code like Finite State Machines (FSMs),
runtime functions, schedulers, etc.

2.2 Toolchain Support
The PULP-compiler used in this Chapter has been derived from the
original GCC RISC-V version, which is itself derived from the MIPS
GCC version. GCC-5.2 release and the latest Binutils release have
been used. The Binutils have been modified to support the extended
ISA as well as a few new relocation schemes.

The PULP-compiler automatically generates Hardware loops, post-
increment load and store instructions, fixed-point supports instruc-
tions, bit manipulations, and packed-SIMD expect for specific shuffle
instructions and dot-products, for which specific built-in functions
need to be used.
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An example of using dotp instructions is given below:
// define vector data type and dotp instruction
typedef short PixV __attribute__ (( vector_size (4)));
# define SumDotp16 (a,b,c) __builtin_sdotsp2 (a,b,c);

PixV VectA , VectB ; // vectors of shorts
int S;
...
S = 0;
// each iteration is computing two mult and 2 accum
for (int k = 0; k < (SIZE > >1); k++) {

S = SumDotp16 ( VectA [k], VectB [k], S);
}
C[i*N+j] = S;
...

2.3 Experimental results
In this Section, the area, performance, power, and energy consumption
of the three cores at different operating points running different
workloads are analyzed. Each core has been synthesized, placed,
and routed targeting the UMC 65nm technology. How the energy
consumption changes to different workloads and operating frequencies
and voltages are also discussed in this Section.

2.3.1 Area
Figure 2.8 shows the area distribution of the three cores in terms
of kgates-equivalent. The Riscy area is 40.7 KGE4, whereas the
Zero-riscy and Micro-riscy areas are 18.9 and 11.6 KGE respectively
when all the cores are synthesized at relaxed timing-constraints. All
the ISA extensions increased the Riscy core area by 14% due to the dot
product unit, the extra register-file read and write port and all the other
instructions that made the decoder and execution units more complex.

The smaller and less complex prefetch-buffer saves 2.7 KGE overall
in both the area optimized cores. Thanks to the non-extended ISA

4 Equivalent minimum-size NAND2 gate area. In UMC 65nm, one gate
equivalent (GE) is 1.44 µm2. The complex instruction support are not included.
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Figure 2.8: Area distribution of the different cores. Values are taken
from the post-synthesis slow-netlist instances.

and less complex pipelines, the decoder, and controller are also much
smaller (∼7KGE). Also, the ALU has been optimized to use as few
resources as possible, preferring time-multiplexing for instructions
that need the same datapath concurrently. The Zero-riscy multiplier
has also been optimized to use multi-cycle implementations of the
product instructions, and it does not contain any dot-product unit nor
fixed-point support. Riscy has a costly 3-read-2-write ports latch-based
register-file (10 KGE), almost as much as the entire Micro-riscy core.
By substituting it with a 2-read-1-write register-file, Zero-riscy saves
3.4 KGE ; furthermore, Micro-riscy reduces its size to only 16 entries,
down to only 3.3 KGE of footprint.

Finally, the simpler special-purpose registers reduces the area of
the control-status register-file from 1.5 KGE to 1.2 KGE . The major
contribution to the Riscy area footprint is the multiplier and division
unit (27.7%), due to the complex dot-product unit and fixed-point
multipliers. In Zero-riscy, the core area is dominated by the register-file
(35%), as the multiplier unit implements only the RVM specifications
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in a multi-cycle fashion. Even if the number of entries has been
reduced to 16, in Micro-riscy, the top contribution to the total area
is again the register-file (28.7%).

2.3.2 Workloads
We chose three micro-benchmarks selected from a large set as repre-
sentative of three different classes of workloads.

The 2D-Convolution is a standard kernel in image and signal
processing applications. This kernel has been chosen to benchmark
signal processing capabilities of the three cores. We chose to implement
a 5x5 filter and consider a 32x32 input image. Both the filter and the
input and output images are 16 bit fixed-point. Furthermore, before
storing the result, the output is saturated between -1 and 1. In the
case of Riscy, the code has been optimized to use pSIMD, dot-product,
fixed-point, and vector manipulation instructions.

Figure 2.9 explains how a 5x5 2D-convolution can be computed with
vector instructions. It can be seen that for each convolution step, 25
data values have to be multiplied with 25 constants and accumulated.
If 8 b values are being used, registers can be used to hold vectors of four
elements each. Once this calculation is completed, for the next step of
the iteration, the five values of the first row will be discarded, and a
new row of five values will be read. If these vectors are not aligned
to word boundaries, an unaligned word must be loaded from memory,
which can be supported either in hardware or software. A software
implementation requires at least five instructions to load two words
and combine the pixels in a vector. In addition, it blocks registers
from being used for actual computations, which is why we support
unaligned memory accesses directly in the load-store-unit by issuing
two subsequent requests to the shared-memory. Hence, unaligned
words can be loaded in only two cycles. We also implement the shuffle
instruction that can combine sub-words from two registers in any
combination. Figure 2.9b) shows how move and shuffle instructions
are used to recombine the pixels in the right registers instead of loading
all elements from memory. This allows to reduce register file pressure
and the number of loads per iteration from 5 to 2.
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The second micro-benchmark is Coremark, a system-independent
benchmark from the Embedded Microprocessor Benchmark Consor-
tium used to test embedded system cores [140]. It contains both integer
arithmetic and control code operations. This kernel has been chosen
to show arithmetic-control mixed processing capabilities of the cores.

Finally, the Runtime workload implements a simple set of embedded-
system Runtime functions, as, e.g., a non-preemptive task-scheduler
and a driver to interact with peripherals. The functions are taken
from the PULP Runtime.

Figure 2.9: a) Example of a 5x5 convolution to compute output N and
N+1 in the image domain and b) how the register content is efficiently
updated using the shuffle instruction. One 5x5 convolution requires
exactly 4 move, one shuffle, and 2 loads to prepare the operands and 1
dotp-, and 6 sdotp-operations to compute one output pixel.
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2.3.3 Performance
Experiments have been conducted by integrating the three cores within
three separate instances of the open-source PULPino micro-controller
platform [141], an older and simpler version of PULPissimo. The
micro-controller has one core, one data and one instruction memory,
an event-unit for handling interrupts and standard peripherals as SPI,
UART, I2C, GPIO, and timers. PULPino is a simplified version of
PULPissimo, where there are only two private banks. In Figure 2.10,
we show an overview of the PULPino architecture.
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Figure 2.10: PULPino architecture overview. Software and RTL are
open-source and available at www.pulp-platform.org

The three PULPino instances have been fully synthesized, placed,
and routed at the 1.08V worst-case corner using Synopsys © Design
Compiler 2015.06 for the synthesis and Cadence © Innovus 15.20 for the
place and route phase. For each core, two different netlists have been
generated to show the timing constraints’ effects on power consumption,
as discussed in the next Section 2.3.4. The first netlist has been
constrained with a relaxed clock period of 10 ns, whereas the second
netlist with a tighter clock period of 3 ns. We refer to the “relaxed”
design as slow-netlist and to the “tighter” design as fast-netlist. In
typical conditions of the targeted technology at 1.2V, the slow-netlist
can reach 185MHz and the fast-netlist 560MHz, whereas at 0.8V, the
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slow-netlist can reach 55MHz and the fast-netlist 160MHz. Table 2.9
shows the micro-benchmark 5 execution cycles, the IPC and code-size.
Execution cycles and code-size have been normalized with respect to
Riscy. In this experiment all the cores run at the same frequency and
can reach almost the same maximum frequency. As expected, Riscy
is the fastest core in all the kernels thanks to its enhanced ISA and
more complex pipeline, whereas Micro-riscy is the slowest. When
running DSP applications, Riscy is 6.1x faster than Zero-riscy and
53.4x faster than Micro-riscy.

Such a difference in performance is mostly given by the ISA
extensions rather than the core architecture. In fact, when data-
analytic applications are compared running on the same core with
and without ISA extensions, the Riscy is on average 3.5x faster and
3.2x more energy efficient as presented in [57]. Whereas on Coremark,
it is 8.5% faster.

The code-size for the DSP kernel changes less than 10%, whereas
for Coremark, the code-size increases by 10% and 30% for Zero-riscy
and Micro-riscy respectively. As expected, in the control-code micro-
benchmark case, the code-size does not change significantly.

Zero-riscy is 8.8x faster than Micro-riscy. The two cores have
the same pipeline architecture, but Zero-riscy implements the HW
multiplication instruction, which is heavily used in the 2D-Convolution
kernel. Riscy provides the best performance also on arithmetic-control
mixed code (3.19 CoreMark/MHz), but the benefits with respect to
Zero-riscy (2.44 CoreMark/MHz) are much less significant than the
signal processing algorithms. Coremark does not contain much DSP
code. Therefore the difference in performance does not come from the
DSP extensions of Riscy, but mainly from its deeper pipeline that
enables single-cycle data memory access, single-cycle multiplication-
accumulation, and general-purpose instruction extensions as, e.g.,
bit-manipulation. Zero-riscy targets arithmetic-control mixed code: its
area is small, but it still has the hardware resources necessary to support
multiplications and divisions, which are required for signal processing
algorithms. Similarly to what happens in the DSP kernel, Micro-riscy
is the slowest core (0.91 CoreMark/MHz), primarily due to the lack

5 The three benchmark kernels have been compiled with GCC5.2 whose back-
end has been modified to instantiate the extended instructions for Riscy when
appropriate.
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of multiplication instructions, which are emulated in software. The
reduced number of registers is only associated with a 3% performance
drop. In the Runtime kernel, the three cores show negligible differences
in performance: the code implementing these routines do not benefit
from multiplications nor DSP extensions.

In terms of performance and targeted domain, the Zero- and Micro-
riscy are comparable with the ARM Cortex-M0/M0+ (2.33/2.46
Coremark/MHz), whereas Riscy is comparable with Cortex-M4 (3.40
Coremark/MHz [57]). Whereas in terms of code-size, the proposed
ISA extensions still have 7.3% inflation over the ARM-Thumb2 when
compared on standard benchmarks of the IoT, mainly due to push/pop
instructions, conditional branches, etc. [65].

The IPC of Riscy is the highest for all the micro-benchmarks. As
the PULPino data and instruction memories have one cycle access, the
IPC is 0.8 due to misaligned memory accesses (that require two cycles),
data-hazard after load operations, and branches/jumps. Furthermore,
in the control-oriented kernel, the control-status write operations
require the core to flush the pipeline. For Zero-riscy, the IPC in the
DSP micro-benchmark is only 0.5 as the most common instructions are
multi-cycle operations as load, store and multiplications. In addition,
the multi-cycle operations penalize to 0.7 the IPC also in the other
kernels. Finally, Micro-riscy has IPC 0.7 in all the kernels.

Table 2.9
Number of cycles, IPC and code-size for each kernel.

KERNEL Riscy Zero-riscy Micro-riscy
Cycles IPC Cod. Size Cycles IPC Cod. Size Cycles IPC Cod. Size

2D-Convolution 1.0 (43.1K) 0.82 1.0 (1080B) 6.1 0.52 1.0 53.4 0.66 1.0
Coremark 1.0 (313.5K) 0.79 1.0 (15.3KB) 1.3 0.67 1.1 3.5 0.67 1.3
Runtime 1.0 (37) 0.76 1.0 (232B) 1.0 0.68 1.1 1.0 (36) 0.67 1.1

2.3.4 Power estimation
The switching activity for each one of the versions of the platform
described in Section 2.3.3 has been extracted employing simulation on
post-layout netlists. The switching activity has been then analyzed
using Synopsys © PrimeTime 2012.12 at 1.2 and 0.8 V in typical
condition.Table 2.10 shows the dynamic power density and the leakage
power estimated.
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Figure 2.11: Power distribution of the different cores units measured
from post-layout simulations at 1.2V, 100MHz.

The fast-netlists have higher leakage power and dynamic power
density, since it has been synthesized, placed, and routed to target
higher frequencies. On average, the leakage power of the fast-netlists
is 14x the leakage power of the slow-netlists, while the dynamic power
density increases by 1.2x at 1.2V. At 0.8V, the leakage power of the
fast-netlists increases by 16x, whereas the dynamic power density
by 1.3x.

Table 2.11 shows the total power consumption of all the four
instances at the maximum frequency achievable at 1.2V and 0.8V and
the ratio between the power consumption at the two voltages. As is
visible in the plot, the power at 0.8V is up to 12.2x smaller than in
1.2V, whereas the speed decreases only up to ∼3.5.

Figure 2.11 shows how power is spent in the various components of
each core. The main contribution to the total power consumption is
provided by the prefetch-buffer, which interacts with the instruction
memory every cycle, produces the instruction fetch address, and the
program counter value and stores the instructions in a FIFO. In the
Riscy core, it also handles hardware-loop instruction requests. As the
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Table 2.10
Core power estimations.

Core PDynD- PLkg @1.2V PDynD - PLkg @0.8V
Netlist with relaxed timing constraints

Riscy 5.07 - 1.91 1.40 - 0.22
Zero-riscy 2.08 - 0.73 0.59 - 0.07

Micro-riscy 1.88 - 0.45 0.52 - 0.04
Netlist with tight timing constraints

Riscy 6.70 - 24.90 2.10 - 2.96
Zero-riscy 2.30 - 11.0 0.68 - 1.24

Micro-riscy 2.03 - 6.25 0.60 - 0.70
Dynamic power density is reported in µW/MHz and leakage power in µW.

Table 2.11
Core total power estimations at maximum speed.

Core Ptot @1.2V Ptot @0.8V Power Ratio
Netlist with relaxed timing constraints

@185 MHz @55 MHz
Riscy 940 77 12.2

Zero-riscy 386 33 11.7
Micro-riscy 348 29 12.0

Netlist with tight timing constraints
@560 MHz @160 MHz

Riscy 3777 339 11.1
Zero-riscy 1299 110 11.8

Micro-riscy 1143 97 11.8
Power is reported in µW.
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decoder and controller of the two smaller cores have been simplified,
their power consumption has also been reduced significantly.

2.3.5 Energy calculation
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Figure 2.12: Energy consumed by the three cores while running
different workloads. In blue, the leakage energy, in red, the dynamic.
In the left column, the slow-netlist results are shown (a and c), whereas
the fast-netlist is shown in the right column (b and d).

In this Section, the energy is calculated for each combination
of core and kernel at different operating frequencies and voltages.
In Figure 2.12, the normalized energy consumption for each core
synthesized at the two different clock targets at 1.2V is shown. Fig-
ure 2.12a and Figure 2.12c show the energy consumption of all the
slow-netlist instances at two different frequencies, whereas in the right
side, Figure 2.12b and Figure 2.12d show the energy consumption of all
the fast-netlist instances. The energy consumption of each kernel has
been normalized with respect to the worst-case using the slow-netlist
at 100 kHz. For example, the 2D-Convolution has been normalized
with respect to the energy consumed by Micro-riscy as it is the highest.
Figures 2.12a and 2.12b show the effect of the tighter timing-constraints
at a very slow frequency; this underlines the effect of leakage.
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Figure 2.13: Energy consumed by the threecores while running different
workloads at two different voltages. In blue the energy at 0.8V, in red
at 1.2V.

As reported in Table 2.10, the fast-netlist has 1.2x the dynamic
power density and 14x the leakage power of the slow-netlist. At the
same operating frequency, the execution time of the two netlists is
identical, whereas the total energy consumption of the fast-netlist
increases by ∼10.7x. 97% of this energy consumption is due to leakage
in the fast-netlist, whereas it is 76% in the slow-netlist. In Figure 2.12c
and Figure 2.12d, the slow and the fast netlists are compared at their
maximum frequency in typical conditions (185MHz and 560MHz
respectively). The energy consumption of the fast-netlist is only 1.2x
the energy of the slow-netlist due to the combination of the reduced
execution time (∼3x) and the higher power consumption (∼3.6x).
Leakage energy is negligible in both the netlists.

For DSP applications, the core equipped with DSP instruction
extensions consumes the minimum energy with respect to the other
two cores in all the operating conditions. The ratio between the
execution time of Riscy and Zero-riscy (6.1 at the same frequency)
is smaller than the ratio of powers. For example, in the fast-netlist
at 560MHz, the Riscy total power consumption is 2.9x the power of
Zero-riscy, whereas in the slow-netlist at 185MHz it is 2.4x. Zero-riscy
andMicro-riscy consume on average 2.4x and 15.9x the energy of Riscy,
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respectively. For arithmetic-control mixed applications as Coremark,
Zero-riscy is the one which consumes the least energy. The execution
time of Zero-riscy is 1.3x longer than Riscy but it consumes much
less power. On the other hand, it is faster than Micro-riscy (2.7x)
but it consumes more power. Riscy and Micro-riscy consume on
average 1.9x and 2x the energy of Zero-riscy respectively. Finally,
Micro-riscy is the core that consumes the least energy for control-code,
as any benefit in performance does not compensate for the extra
power of the other cores. Hence, Zero-riscy and Riscy consume on
average 1.4x and 3.5x the energy of Micro-riscy respectively. The
same experiment has been repeated at 0.8V using only the fast-netlist,
whose maximum frequency is 160MHz. At 0.8V, the cores consume,
on average 0.3x the energy consumed in the super-threshold region.
Figure 2.13 shows the energy consumption of the cores for each kernel
in the super-threshold region 1.2V, 560MHz and at near-threshold
0.8V 160MHz. For each kernel, the energy consumption has been
normalized by the most energy-efficient core for that application. It is
possible to notice that Riscy is still the most energy-efficient core for
DSP applications, Zero-riscy for arithmetic-control mixed applications
and finally Micro-riscy for control-oriented code at NT.

2.3.6 Always-On activity
To evaluate the effect of duty-cycled activities in always-on conditions,
the final experiment takes into account the time frame where the core is
active and when the core is in idle-mode waiting for an event. In many
cases, this happens in an always-on domain where the core cannot be
completely switched-off with power gating. Thus they always consume
leakage power. The longer the time between two events, the bigger
the leakage contribution to the total amount of energy consumed.

Figure 2.14 shows the energy consumption of the three slow-netlist
instances at 55MHz when executing the 2D-Convolution at 0.8V,
55MHz in the y-axis and the time between two events that trigger the
computation in x-axis. The three curves show the energy consumption
starting from the end of the execution of the benchmark. The energy
consumption is normalized with respect to the energy consumed by
Riscy. The inter-event time is normalized with respect to the execution
time of Riscy (43.1 Kcycles/55 MHz = 784 µs. As previously discussed,
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Figure 2.14: Always-On normalized energy consumption at 55MHz
0.8V: the core is active for a portion of time and sleeps for the rest of
the time

when only the active period is taken into account, Riscy is the fastest
and the most efficient core for signal-processing applications. However,
when the idle period starts being longer, the leakage contribution
overwhelms the active energy, thus smaller cores are less penalized.
In the second region (from 649ms to 31 s) Zero-riscy consumes less
energy than the others, hence it is the most energy-efficient core. Such
inter-event time is, for instance, in the EEG processing range, where the
processing tasks wait for 1 or 2 s before they can start processing the
acquired signals [59,104]. Micro-riscy becomes the most energy-efficient
core when idle periods become extremely long. This analysis shows
that leakage-optimized cores are well-suited for sporadic data-intensive
applications if the throughput requirement is sufficiently low.
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2.4 Riscy Verification Framework
In this Section, a new strategy to automatically generate a verification
test-set that optimize code coverage is described.

We developed a simulation-based framework that relies on an
evolutionary test program generator, the Device Under Verification
(DUV), a reference model to evaluate the correctness of the DUV, and
an independent evaluator that promotes programs that cover most
of the DUV HDL description.

The framework developed in our case study is depicted in Fig-
ure 2.15. The setup includes a generation step (stimuli generation)
combined with subsequent checking (response checking).

On the left part of the figure, the evolutionary optimizer (called
µGP) [69] creates the verification program. µGP receives the descrip-
tion of the processor assembly syntax through the so-called Instruction
Library, which describes which kind of instructions can be generated.
The Instruction Library differs from ISA to ISA, and this Chapter, the
developed library implements the RISC-V RV32IMFC extensions, plus
the PULP extensions discussed above in this Chapter. In addition,
µGP is configured to sets the number of test programs created in the
population during the evolution, the number of instructions included on
every test program, the maximum number of test programs to simulate,
etc. Then, the evolutionary process starts by creating a set of random
programs, so-called individuals, that are evaluated externally by a
fitness function. At every evolutionary step or generation, the best
individuals are improved using genetic operators such as crossover
and mutation, while the worst ones are discarded.

To support complex sequence of instructions, the Instruction
Library has been extended to describe finite loops, illegal instructions,
and special environmental parameters to throw exceptions. Also,
divisions by zero, infinite, and not-a-number operations are described
to cover special cases in the microprocessor.

In our experiments, the verification programs are evaluated, resort-
ing to a checking scheme reported in the right part of Figure 2.15.

In particular, the framework setup followed these steps:
1. The Instruction Library was created according to the target

ISA.



2.4. RISCY VERIFICATION FRAMEWORK 59

Figure 2.15: Verification framework

2. The main µGP settings were defined.
3. A script was produced to automate the flow. Its purpose was

to pick up the individuals produced by µGP generation by
generation and provide it to the simulator and the Instruction-
Set Simulator (ISS). Then, to create the fitness function,
the code coverage percentages were collected and fed to the
evolutionary algorithm again.

The fitness of every verification program is evaluated by measuring
its capacity to maximize the code coverage metrics on the processor
model [142] [143]. There are different code coverage metrics, the
one used in this Chapter are: Statement Coverage, Branch Coverage,
Condition Coverage, Expression Coverage, FSM State Coverage, and
FSM Transition Coverage.

The fitness function is computed as following: for each metric in
use, the arithmetic average, the variance and the sum is computed
accounting for all the core hierarchical modules single metrics. As
equation 2.1 highlights, this results in a vector of 18 elements, which
is used by µGP to drive the evolution, with the first element of the
fitness function vector being the one with the highest priority.

The order of elements has been decided empirically, with the first
6 elements being the average (a), the second 6 elements the variance
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(v) and last 6 elements the sum (s) of the Statement Coverage (1),
Branch Coverage (2), Condition Coverage (3), Expression Coverage
(4), FSM State Coverage (5), and FSM Transition Coverage (6).

fitness = {a1, a2, a3, a4, a5, a6, v1, v2, v3, v4, v5, v6,

s1, s2, s3, s4, s5, s6}.
(2.1)

Where for instance:

a1 = Sum of Statement Coverage of all units
Number of units

a2 = Sum of Branch Coverage of all units
Number of units

(2.2)

To stimulate conditions such as stalls on the core memory interfaces,
as well as interrupt requests, a perturbation module able to randomly
simulate such external requests has been embedded in our framework.
Such events cannot be triggered using only instructions; therefore,
external devices are involved in stimulating those conditions [144]. The
perturbation module contains memory-mapped registers to configure
a stall and interrupt mode (random number of stalls/interrupts or
fixed). The initialization of the perturbation module is set random
before executing the generated individual. However, one can consider
future works to program the perturbation registers as part of the
evolutionary process.

Together with the fitness value that is used to guide the evolutionary
process, any program is also used to compare the current processor
model outcome (Riscy+FPU in Figure 2.15) against a high-level and
reliable model (the ISS in Figure 2.15).

The ISS functional model is an accurate model of the Riscy ISA
described in C. For every instruction, the HDL simulator pushes the
instruction word to the ISS via a DPI-C wrapper. At the end of the
execution, it compares the result computed by the HDL description
with the one computed by the ISS.

In this way, it is possible to find differences in execution between
the compared models during the evolutionary generation phase rather
than only the optimized final individuals. Once a difference is found,
a report is created, allowing the verification engineer to evaluate the
bug of the DUV.
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Figure 2.16: Code Coverage Results

The previously described framework was implemented, and at the
end of the experiments, the verification test set obtains a high code
coverage results reported in Figure 2.16.

In the performed experiments, the code coverage metrics have
been extracted resorting to Modelsim® HDL Simulation and used
as variables of the fitness function to evaluate the program’s fitness.
However, any free logic simulator tool that supports code coverage
estimation could be used (e.g., Verilator).

The Instruction Library contains hundreds of rules to describe
the aforementioned ISA extensions and special cases, and it is split
into three sub-libraries to allow a better exploration of the processor
description and maximizing the final code coverage at the same time.
The first library generates test programs that only contain RV32IMC
instructions (no floats) and PULP extensions plus constraints to
generate special cases as illegal instructions and functions to enter
sleep mode.

To stress more complex units and corner cases, a second library
has been designed to focus on FPU instructions without polluting the
individuals with the generation of integer instructions. This approach
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Table 2.12
Code Coverage Results.

Library Code Coverage
RV32IMFC Random 52%

Single General-Purpose 64%
Proposed Optimized Splitted 85%

Proposed Optimized Splitted + Perturbation 90%
Code coverage results for different individuals.

allows to further stress the FPU with high-density float instruction
sequences. This library also contains special cases as RV32F illegal
instructions and corner cases (NaN, infinite, division by zero). Finally,
the third library has been used to generate two different experiments:
one to optimize the coverage of the float multiply-and-accumulate
unit and the float division-and-square root unit isolated from the rest
of the DUV; and one still targeting the FPU but with focus on its
conditional part. This is achieved by giving more relevance to the
Condition Coverage metrics in the aforementioned fitness function
instead of the Statement Coverage.

Splitting the evolutionary phases is useful to specialize the verifica-
tion functions to face those parts of the DUV code challenging to cover.
Indeed, a single general-purpose library to generate test programs based
on the RV32IMFC plus extensions (but without special conditions like
explicit NaN operands or illegal instructions) was able to cover only an
average of 64% of the HDL code. One of the main reasons was that the
generated program did not contain enough RV32F instructions keeping
the FPU coverage low. A pure random program generated by the first
generation of individuals from the same library had instead only 52%.

This modular experiment produced a final test program generation
that results in a final code coverage of 85%. Finally, by adding random
stalls on both data and instruction memory and random interrupt
requests, the final code coverage increased to more than 90%.

Table 2.12 summarizes the code coverage discussed above.
The remaining 10% was related, for example, to FSM transitions,

which never happened, the special case of NaN, infinite numbers, and
their combinations. It is important to note that the main drawback
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when dealing with evolutionary-based tools is the simulation time. In
fact, to generate one of the best individuals included in the final test
set, it takes about 8 hours of simulation.

The fitness function has been designed trying to boost all the
coverages metrics to grow uniformly, and if two individuals have the
same coverage results, the smaller code-size program is preferred.

The final test set uncovered ten design bugs during the verification
process. These errors belong to different types; for example, the
computation performed by the instruction p.clip and p.extract were
discovered to be incorrect in a particular case. For instance, due to
an intermediated overflow, the p.clip instruction failed to compute
the correct value with specific cases, whereas the logic shift instead of
the arithmetic one was mistakenly used for the p.extract instruction.
Another example involves bugs related to FPU square root operations
with rounding modes or with NaN operations in the RISC-V fclass
instruction.

The proposed method performs better than pure random and
manual approaches, as well as using a single test program that covers
the highest coverage as proposed in [145].

In fact, having the generation and verification phases split means
using only the best individual to test the core’s correctness, whereas
combining the two phases means testing all the programs generated
during the evolutionary steps. This allows to explore a more extensive
space of programs and increasing the probability of success.

For example, the bug related to p.clip instruction previously men-
tioned was not part of the highest coverage program found by the
optimizer. Still, it has been generated among the individuals of a prior
generation to be then discarded during the evolutionary process. By
combining generation and verification, every individual is not only
used to calculate the code coverage, but it has the possibility of being
executed and compared against the reference model (the ISS) to find
design bugs. This approach shows that it is essential to maximize
the code coverage and leverage less important individuals during the
generation phase.





Chapter 3

FDSOI MPU

In this Chapter, a single-core instance of the Parallel Ultra Low Power
Platform (PULP) architecture is implemented in Globalfoundries
GF22FDX (GF22) 10 Metal technology. The chip, called Quentin, it is
based on the PULPissimo platform. It hosts the Riscy core presented
in Chapter 2 extended with an Floating Point Unit (FPU), a Binary
Neural-Network (BNN) accelerator presented in [83], and a wide set
of peripherals. In this Chapter, we discuss the size, performance,
power, and energy results of the chip’s implementation. In particular,
performance, power, and energy are discussed in a wide range of supply
voltage, exploiting FBB to achieve higher performance. The system
has a heterogeneous memory subsystem to trade memory capacity with
performance and energy efficiency. Such a subsystem is also exploited
to trade accuracy and energy efficiency when running error-resilient
applications on the BNN accelerator.

65
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Figure 3.1: Quentin System-On-Chip (SOC) Architecture.

3.1 Quentin Architecture

3.1.1 Memory Subsystem
The SOC includes 520 kB of L2 memory and a Read-only-memory
(ROM) with the boot-code. The L2 memory layout of Quentin is
organized as four 114 kB word-level interleaved banks to minimize
conflicts during parallel accesses of different masters (e.g., core and
accelerator), plus two banks of 32 kB that can be used privately by
the core (e.g., program, stack, private data) without incurring in
banking conflicts with the other masters. The memories are slaves of
the system bus, which is based on a single-cycle latency logarithmic
interconnect [146] (Micro Controller Unit (MCU) interconnect bus in
Figure 3.1). In case of two or more masters request to access the same
slave, a round-robin arbiter selects the one that first communicates with
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the slave. Both memory regions are implemented as a heterogeneous
memory architecture composed of a mix of Static Random Access
Memory (SRAM) and Standard Cell based Memorys (SCMs) [147].

In particular, each of the interleaved banks has 2 kB of the 114
implemented as SCM, and one of the private banks has 8 kB of SCM as
shown in Figure 3.1, for a total of 504 kB of SRAM and 16 kB of SCM.

The SCM portion of the private bank is implemented as a 3-read 2-
write ports register file: 2 of the three read-ports and 1 of the two write-
ports are dedicated to the data and instructions interfaces of the Riscy
core and one read- and one write-port are used by the interconnect
arbiter for any other master node of the system. From a performance
viewpoint, this memory organization enables transparent sharing of
the L2 memory, increasing by 4x the system memory bandwidth with
respect to a traditional single-port memory architecture without the
use of high area overhead multiple ports memories.

The MCU interconnect also has one master and one slave port
towards a cluster with an application class processor based on the
CV64A core [51]. Such a cluster, called Kerbin, has an independent
voltage and frequency domain, and it is not part of this Thesis.

3.1.2 I/O subsystem
The SOC includes a full set of peripherals: Quad SPI supporting
up to two external devices, I2C, 2 I2S, a parallel camera interface,
UART, GPIOs, JTAG, and a DDR HyperRam interface to extend the
size of the on-chip memory. An I/O DMA (µDMA [133]) manages
data transfers through peripherals to minimize the workload of the
processor. To improve the efficiency of I/O communications, the
µDMA has a dedicated connection to all the peripherals through 2
dedicated 32 bit ports on the L2 memory interconnect, granting an
aggregated bandwidth sufficient to satisfy the requirements of all the
peripherals (up to 1.6Gbit/s) with a frequency of 57MHz. Debug
of the Quentin MCU is possible via read- and write- operations to
memory-mapped registers of the core using JTAG.
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Table 3.1
Quentin SOC features.

Technology CMOS GF22
Chip Area 2.3mm2

Memory Transistors 520 kB
Equivalent Gates (NAND2) 1.8 Mgates
Voltage Range 0.5V – 0.8V
Body Bias Range 0.00V – 1.4V
Frequency Range 32KHz – 670MHz
Frequency Range (with FBB) 32KHz – 938MHz
Power Range 300µW – 10.4mW
Power Range (with FBB) 300µW – 66.2mW

3.1.3 Clock subsystem
Quentin includes three Frequency-locked loops (FLLs) that take as
input an external 32 kHz reference clock and provide internal clocks
up to 2.1GHz. One FLL is used to provide the clock to Kerbin, one
for the peripheral subsystem, and the remaining modules as CPU,
memories, busses, etc.

3.1.4 Accelerator subsystem
The Quentin SOC hosts a BNN accelerator (called XNOR Neural
Engine (XNE)) presented in [83] to increase performance and energy
efficiency in tasks such as for example, image classifications. The XNE
has four master ports towards the L2 memory for an overall memory
bandwidth of 128 bits per cycle. All the configuration registers are
memory-mapped and accessible by the core. The XNE can execute
both convolutional and fully connected layers, autonomously from the
core, once all data reside in L2.

3.1.5 Chip Implementation and Results
Figure 3.2 shows the floorplan of the Quentin SOC, while Table 3.1
summarizes its main features. The SOC was implemented using a
flip-well (LVT) standard cell library. The design has been synthesized
with Synopsys Design Compiler 2016.12, while Place & Route has been
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Figure 3.2: Quentin SOC floorplan.

Table 3.2
Quentin Area breakdown in mm2

CPU subsystem 0.020
SRAM (504 kB) 0.817
SCM (16 kB) 0.292
ROM 0.009
I/O subsystem 0.056
XNE 0.014
Interconnect 0.009

performed with Cadence Innovus 16.10. The design has been closed
at 200MHz, worst-case conditions at 0.59V for setup constraints, and
best-case conditions at 0.88V for hold constraints between -40◦C and
125◦C have been used to guarantee performance across the process,
voltage, and temperature variations.

The floorplan area of the SOC is 2.31mm2 and its effective area is
1.22 mm2 (6154 kGE). Its main modules are highlighted in Figure 3.2.
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Figure 3.3: Quentin SOC area breakdown.

The two largest components of the SOC are the SRAM banks of the
L2 memory subsystem (i.e., 504 kB), and by the 16 kB of SCM banks.
Although the latch based implementation features approximately a 11x
area overhead compared to approaches based exclusively on SRAMs
(Table 3.2, Figure 3.3, 616 kB/mm2 versus 54 kB/mm2 ), it allows
significant energy savings [147], and it enables more flexible power
management strategies that can be played at the system level.

To exploit both the energy advantage of SCMs and area density
advantage of SRAMs and to enhance the power/performance/precision
tuning capabilities of Quentin, the chip was implemented as a multi
power-domain system.

The SRAM cuts have separate power connections from the rest
of the logic for both periphery and array, as shown in Figure 3.4.
However, the periphery supply voltage must be equal to the rest of
the logic supply voltage when operating, as no level-shifter has been
implemented in the proposed SOC.

It is thus possible to configure the memory array, periphery, and
logic circuit supply voltages using external power managers. The
SRAM cuts can be completely power-gated, limiting the system to
operate only with the 16 kB SCM, that can be scaled down as low
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as the logic. In addition, FBB can be applied up to 1.4V, to boost
performance at every supply-voltage operating point.

To measure the chip performance, power, and energy consumption,
an 8x8 32 bit matrix multiplication running on the Riscy core has
been compiled and execute on Quentin. The chip has been tested on
the Advantest SOC V93000 ASIC tester.

To characterize the system in different operational modes, three
different setup have been tested for every measurements:

1. SCM with SRAM gated.
2. SCM with SRAM on
3. SRAM

In the SCM- experiments, data and code have been allocated on
SCMs; otherwise, they are allocated on SRAMs.
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Figure 3.5: Maximum frequency against supply voltage when code
and data reside on SRAMs or SCMs and no body-bias applied.

In the first case, the power connections of SRAM are power-gated
(i.e., the supply voltage of periphery and array are at 0V). In the second
case, the SRAM are powered-on, but not used, for example, in case
the SRAMs hold data (retentive-state) or the time to power-on/off is
too long. In the SRAM setup, SRAMs power connections of array and
periphery are connected to the same voltage level as the rest of the logic.

Figure 3.5 shows the maximum operating frequency of Quentin
when running the matrix multiplication on SCMs or SRAMs. Note
that the maximum frequency of the SCM setup is the same whether
the SRAMs are switched on or off as no access to the SRAM cuts
during the test happens. The chip reports no error when computing
the matrix multiplication starting from 0.5V, running at 148/156MHz,
and achieves the peak frequency of 570/670MHz at 0.8V when running
on SRAMs and SCMs respectively with no body-bias.

Note that the matrix multiplication tests have not been performed
as many times as to incur in SRAM failures due to the low-voltage,
as explained in [123].

When applying FBB, the frequency can increase to more than 60%
(at 0.6V), and it achieves 938MHz at 0.8V when 1.4V are applied
to the body-gate. The lower the supply voltage, the higher the effect
of FBB. The effect of the magnified impact of body biasing at low
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Figure 3.6: Performance benefits from forward body-bias. FBB impacts
more low-voltage points.

voltage is a well-known effect seen in near-threshold Fully Depleted
Silicon-On-Insulator (FDSOI) chips [129].

Figure 3.6 shows how the maximum frequency changes for three
supply voltages when FBB is applied on the SCM setup. It is
interesting to note that the lower the supply voltage, the higher
the benefit of FBB.

The chip lowest power configuration uses only SCMs while SRAMs
are power-gated. In this setup, it consumes only 0.95mW at 0.5V and
no FBB, running at 156MHz, and it consumes up to 32.1mW at 0.8V
with 1.4V FBB running at 938MHz. When SRAMs are switched-on
but not used, the leakage power increases by ~2mW at 0.8V and no
FBB applied. Figure 3.7 shows how the leakage power increases at
three different voltage levels when FBB is applied from 0 to 1.4V, and
data and instructions are in the SRAMs. It is possible to note that the
leakage power increases faster at lower supply voltages. The voltage
range used to test this chip ranges from 0.5V to 0.8V for both SRAMs
and SCMs setup. However, SCMs and logic can be supplied at lower
voltage, as explained in Subsection 3.1.6. Regardless the voltage supply,
the system can exploit an idle mode consuming only leakage power
(that depends on the mode as mentioned earlier) by not performing
any I/O transaction, not using any accelerator, and executing the
“wait for interrupt” (WFI) RISC-V instruction to clock-gate the CPU.
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Figure 3.7: Power increase due to forward body-bias. The lower the
supply voltage the higher the penalty.

Finally, the energy efficiency of the system measured in µW/MHz is
shown in Figure 3.8. At every point, the three setups are measured at
their maximum efficiency. Given the higher frequency and lower power
consumption, the SCM setup with SRAMs gated is the most energy-
efficient at every point as expected. However, in this configuration, the
system has a limited memory capacity of 16 kB. In the configuration
where operations are executed only on the SCMs, but with the whole
memory available (SRAMs on), the system has higher energy efficiency
than operating on SRAMs for frequencies >400MHz. This can also
be observed in Figure 3.5, as the supply voltage needed to reach such
frequencies is higher on the SRAM setup, thus the power consumption
increases.

3.1.6 Error-resilient application use-case
In this Subsection, we show how the proposed heterogeneous memory-
subsystem implemented in Quentin can be exploited by an error-
resilient application employing aggressive voltage scaling.

When the SRAMs are supplied at a lower value than the minimum
working voltage, stored data can be corrupted with a remarkable
Bit-Error-Rate (BER) (i.e., BER>10−5 when voltage <0.5V in this
chip) as discussed in [123]. The lower the voltage, the higher the BER.
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Figure 3.8: Quentin power density. Using only SCMs is more energy
efficient than SRAMs due to better performance.

For our analysis, we use BNNs as they are partially error-resilient
to random high error rates, (∼5% of accuracy loss with respect to
the nominal accuracy under a BER of 10−4 [148]) as no bit in their
activations and weights is inherently more significant than any other.
Therefore, very aggressive voltage scaling can be applied to reduce
the SRAMs power consumption.

The Quentin SOC memory subsystem can thus be exploited to
put non-corruptible data (e.g., instructions executed by the core and
core private data) to error-free SCMs, that are supplied at the same
voltage level of the logic, whereas BNN weights, activations and partial
results of internal layers in SRAMs.

In this scenario, the BNN has three potential sources of errors
affecting the final BNN classification accuracy: i) weights reading ii)
input features reading iii) activations storage. Threshold values are
instead stored in the error-free SCMs. Partial-results are not affected
by errors, as they are held inside the local buffer of the accelerator,
implemented in SCMs.

Appreciable SRAM failures due to voltage scaling are visible already
starting from 0.575V. However, no accuracy loss is observable until
0.5V (as for the matrix multiplication case). Accuracy can be traded
for power when the voltage is further scaled down. Indeed, power
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Table 3.3
Performance comparison with state-of-the-art MCU.

SleepWalker REISC GAP8 Mr-Wolf This Work
[149] [150] SoC only [84] SoC only [64]

Technology CMOS CMOS CMOS CMOS CMOS
65nm LP 65nm LP 55nm LP 40nm LP 22nm FDSOI

CPU 16 bit 32 bit 32 bit 32 bit 32 bit
MSP430 RV32IMCXpulp RV32IMC RV32IMCXpulp

FPU NO NO NO NO YES
I$/D$/L2 64B 8 kB 4 kB n.a. n.a.

n.a. 8 kB n.a. n.a. n.a.
18 kB n.a. 512 kB 512 kB 520 kB

Voltage range 0.4V 0.54 - 1.2V 1.0 - 1.2V 0.8 - 1.10.4V 0.5 - 0.8V
(SRAMs) (1.0V) (0.4 - 1.2V)

Frequency range 25MHz 82.5MHz 32 kHz - 250MHz 32 kHz - 450MHz 32 kHz - 938MHz
Best Power Density 6.1µW/MHz1 10.2µW/MHz 180.2µW/MHz 33.3µW/MHz 8.7µW/MHz

(SRAM on) 1.0V, 150MHz 0.8V, 170MHz 0.52V, 187MHz
Best Power Density 5.3µW/MHz1 2 6µW/MHz

(SRAM off) 0.51V, 171MHz
Best Performance 25MOPS 82.5MOPS 650MOPS 234MOPS 2400MOPS

Best Energy Efficiency 164MOPS/MHz 1 98MOPS/MHz 14.4MOPS/MHz 35.1MOPS/MHz 300MOPS/MHz
(SRAM on) at 25MOPS at 0.54MOPS at 390MOPS at 88.4MOPS at 486MOPS

Best Energy Efficiency 188MOPS/MHz 1 2 433MOPS/MHz
(SRAM off) at 25MOPS at 445MOPS

1 Without accounting for DC/DC overhead
2 Assuming 100% hit rate on the I$ and PMEM switched-off

can be reduced to 674µW at 0.42V for an accuracy drop below 1%.
This result allows for always-on Internet-of-things (IoT) end-node
with an expected long lifetime (in the order of months or years)
and in applications where the peak power dissipation is a critical
concern (e.g., implantable devices). However, energy efficiency is worse
due to the leakage power dominating the overall power consumption
and performance degradation. In fact, the maximum frequency at
0.42V is only 18MHz.

Multicore PULP systems based on RISC-V have already been
implemented in [84] and [64]. A comparison against their fabric
controller and two additional efficient processors [149,150] is shown in
Table 3.3. Quentin shows the highest energy efficiency and performance
as a single-core MCU thanks to the compound of advanced architecture
design and technology. With respect to [64, 84] and [149], it does
not implement any on-chip power manager and does not have any
state retentive memory. Thus it has to rely on external memories.
With respect to [64], the fabric controller adopts a more performant
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core, whereas Quentin is implemented in more advanced technology
with respect to [84].





Chapter 4

Fixed-Function Accelerators

In this Chapter, we cover how computations on fixed-function acceler-
ators can boost the energy efficiency of Internet-of-things (IoT) end-
nodes during the execution of standard functions as 2D-convolutions,
widely used in Convolutional Neural Networks (CNNs). We extend
a CNN accelerator with SIMD operations to increase the energy
efficiency of applications where CNN weights can be represented
with less precision. We extend the original engine presented in
[151] that computes convolutions on 16 bit for both weights and
data, to performs two parallel convolutions on 8 bit weights, or four
parallel convolutions on 4 bit weights, whereas data are kept to 16 bit
format. Such accelerator has been tightly-coupled integrated into a
cluster of four DSP-enhanced cores. We show that the accelerator is
faster and more energy-efficient than four DSP-enhanced cores. The
presented accelerator has also been used as a baseline for the accelerator
integrated into the GreenWaves GAP8 [84] MCU.

79
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Figure 4.1: Fulmine HWCE architecture, with the controller shaded
in red, the wrapper in green, and the datapath in blue. The diagram
also shows details of the line buffer and sum-of-products sub-modules
microarchitecture.

4.1 Hardware Convolution Engine SIMD
Extensions

In this Section, we describe the SIMD extensions to the CNN ac-
celerator and how those extensions achieve higher energy efficiency
than a cluster of four DSP-enhanced RISC processors based on the
OpenRISC Instruction Set Architecture (ISA) [152].

The Hardware Convolution Engine (HWCE) is based on a precision-
scalable extension of the design proposed by Conti [151].

The main purpose of this engine is to provide a performance and
efficiency boost on CNN kernels. It equips power- and area-aware
design techniques such as clock-gating and datapath sharing in a
time-multiplexed fashion.

CNN layers are processed by computing the 2D-convolution, which
maps Nif input feature maps into Nof output feature maps utilizing
a set of filters W . Filters are usually as large as 3x3, 5x5, or 7x7.
The output feature maps are then processed by pointwise non-linear
activation functions, often a rectifier (ReLU), or a hyperbolic tangent,
or a Sigmoid function. The linear part of convolutional layers is usually
the most dominant operation in a CNN model, and it is represented by:

y(kof) = b(kof) +
Nif−1∑
kif=0

(
W(kof, kif) ∗ x(kif)

)
, (4.1)
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for the kof ∈ 0 · · ·Nof − 1 output layer.
The HWCE has been designed to implement efficiently the task

described in Equation 4.1 and to support 5x5 and 3x3 2D-convolutions,
whereas any other arbitrary filter size has to be handled with software
helper functions by combining 5x5 and 3x3 filters.

The internal datapath of the accelerator can perform one 16 bit, two
8 bit or four 4 bit parallel convolutions on different output kof feature
maps, while input feature maps are always represented in 16 bit.

In these scaled precision modes, a similar level of accuracy to
the 16 bit full precision CNNs can be maintained by proper training
[153, 154], with access to significantly improved performance, memory
footprint, and energy efficiency, as is shown in Section 4.3.

Figure 4.1 shows the HWCE architecture, which can be divided
into three main components: a datapath performing the main part
of the data plane computation in a purely streaming fashion, relying
on an AXIStream-like handshake for back-pressure; a wrapper that
connects and decouples the datapath streaming domain from the
memory-based cluster; and a controller that provides a control interface
for the accelerator.

In the full-precision 16 bit mode, the HWCE datapath performs a
dot-product between a pre-loaded filter W (stored in a weight buffer)
and a 5x5 xwin window extracted from a linear x input feature map
stream. The output of the dot-product is accumulated into an input
yin value; in other words, the accelerator needs no internal memory
to perform the feature map accumulation component of Equation 4.1
but uses the shared-memory of the cluster directly.

The weight buffer can also host packed-values of two 8 bit or four
4 bit weights, that correspond to two or four different filters W. The
datapath has been designed hierarchically to maximize resource sharing
between the three SIMD modes. Four sub-modules (shown in orange
in Figure 4.1) compute the sum-of-products of xwin with a 4 bit slice
of W each, using a set of signed multipliers and a first-stage reduction
tree. A second-stage reduction tree and a set of multiplexers are used
to combine these four partial sums-of-products to produce one, two,
or four concurrent yout outputs; fractional part normalization and
saturation are also performed at this stage. As multiple accumulations
of convolutions are performed concurrently, the yin and yout streamers
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Figure 4.2: Fulmine SoC architecture. The soc domain is shown in
shades of blue, the cluster domain in shades of green.

are replicated four times. All HWCE blocks are aggressively clock
gated so that each component consumes power only when in active use.

4.2 Fulmine chip
The HWCE accelerator has been integrated into a chip called Fulmine,
a four DSP-enhanced cores MCU based on the Parallel Ultra Low
Power Platform (PULP) architecture. The chip hosts two accelerators:
the HWCE and a cryptographic engine, which is not part of this
Chapter as it is not a contribution of this Thesis. The cores are
based on the OpenRISC ISA [155], and they have been extended
with similar instructions discussed in Chapter 2. Figure 4.2 shows
the Fulmine architecture.

The cluster domain is built around six processing elements (four
general-purpose OpenRISC processors and two flexible accelerators)
that share 64 kB of level 1 Tightly-Coupled Data Memory (TCDM),
organized in eight word-interleaved Static Random Access Memory
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(SRAM) banks. A low-latency logarithmic interconnect [146] con-
nects all processing elements to the TCDM memory, enabling fast
and efficient communication among the cluster players. The two
hardware accelerators, Hardware Cryptography Engine (HWCRYPT)
and Hardware Convolution Engine (HWCE), can directly access the
same TCDM used by the cores.

To avoid a dramatic increase in the area of the TCDM interconnect,
as well as to keep the maximum power envelope in check, the two ac-
celerators share the same set of four physical ports on the interconnect,
thus they are used in a time-interleaved fashion.

The cores are based on an in-order, single-issue, four-stage pipeline
similar to the Riscy core described in Chapter 2.

The cluster features a set of peripherals, including a Direct Memory
Access (DMA) engine, an event unit, and a timer.

A sophisticated power management architecture distributed be-
tween the soc and cluster domains can completely clock-gate all the
resources when idle. The power manager can also be programmed to
put the system in a low power retentive state by switching down the
FLLs and relying on the low-frequency reference clock (low freq and
idle mode). Finally, it can be used to program the external DC/DC
converter to fully power-gate the cluster domain.

The event unit is responsible for automatically managing the
transitions of the cores between the active and idle states. This happens
when the processors execute an explicit Wait For Event instruction, for
example, during a synchronization barrier or after a DMA transfer. The
event unit then stalls the processors, and once all pending transactions
(e.g., cache refills) are complete, they are clock-gated.

As the cluster and soc power domains are managed indepen-
dently, it is possible to put the cluster in idle mode transparently,
where it consumes less than 1mW, when waiting for an event such
as the end of an I/O transfer to L2 or an external interrupt that is
expected to arrive often.

The accelerator’s shared-memory nature enables efficient zero-copy
data exchange with the cores and the DMA engine, orchestrated by
the cluster event unit. This architecture enables complex computation
patterns with frequent transfers of data set tiles from/to memory.

A typical application running on the Fulmine SoC operates con-
ceptually in the following way. First, the input set (e.g., a camera
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frame) is loaded into the L2 memory from an external I/O interface
using the µDMA. The cluster can be left in sleep mode during this
phase and woken up only at its conclusion. The input set is then
divided into tiles of appropriate dimension so that they can fit in
the L1 shared TCDM; one tile is loaded into the cluster, where a set
of operations are applied to it either by the SW cores or the HW
accelerators. These operations can include 2D-convolutions (on the
HWCE), plus any SW-implementable kernel. The output tiles are then
stored back to L2 memory using DMA transfers, and computation
continues with the next tile. Operations such as DMA transfers can
typically be overlapped with computation by using double buffering
to reduce the overall execution time.

The cores are used both for actual computation on the data set
and for control; to avoid inefficient busy waiting, events are employed
by the HW accelerators to notify completed execution. Accelerator
events trigger an appropriate interrupt in the controller core while it
is either in sleep and clock-gated, or executing a filter of its own in
parallel to HW-accelerated computation.

For example, while the HWCE is executing the dot-product of on
the CNN layer Lk, the four cores can be used to execute the pooling
and non-linear activations functions of the previous layer Lk−1.

4.3 Experimental evaluation
In this Section, we analyze measured performance and efficiency of
our platform on the manufactured Fulmine prototype chips, fabri-
cated in UMC 65nm LL 1P8M technology in a 2.62mmx2.62mm
die (6.86mm2).

4.3.1 System-on-Chip Operating Modes
Fulmine can operate in many different conditions: in pure software,
with part of the accelerator functionality available, or with both
accelerators available. These modes are characterized by very different
average switching activities and active power consumption.

There are three operating modes available for Fulmine:
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Figure 4.3: Cluster maximum operating frequency and power in the
cry-CNN-sw, kec-CNN-sw, and sw operating modes. Each set of
power bars, from left to right, indicates activity in a different subset
of the cluster. kec-CNN-sw and sw bars show the additional power
overhead from running at the higher frequency allowed by these modes.

1. cry-CNN-sw, where both the accelerators in their full capa-
bilities and the cores can be used;

2. kec-CNN-sw, where both the accelerators and the cores can
be used, but the cryto engine is limited to keccak-f [400]
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primitives. This allows the system to run faster as only the
non-timing critical parts of the crypto engine can be used;

3. sw, where only the cores can be used to maximize frequency.

Figure 4.3 shows frequency scaling in the three operating modes
while varying the cluster operating voltage VDD. The three modes
were designed so that at VDD =1.2V, current consumption under
full load is close to 100mA (i.e. 120mW of power consumption), as
can be seen in Figure 4.3b.

4.3.2 HWCE Performance and Power Evaluation
The Fulmine SoC includes many distinct ways to perform the basic
operation of CNNs, i.e., 2D convolutions. In software, a naïve single-
core implementation of a 5x5 convolution filter has a throughput of
94 cycles per pixel. Parallel execution on four cores can provide almost
ideal speedup reaching 24 cycles/px. Thanks to the SIMD extensions
described in Chapter 2, an optimized multi-core version can be sped
up by almost 2x down to 13 cycles/px on average.

With respect to this baseline, the HWCE can provide a significant
additional speedup by employing its parallel datapath, the line buffer
(which saves input data fetch memory bandwidth), and weight precision
scaling. We measured average throughput by running a full-platform
benchmark, which therefore takes into account the overheads for real-
world usage: line buffer fill time, memory contention from cores, self-
contention by HWCE inputs/outputs trying to access the same TCDM
bank in a given cycle. Considering the full precision 16 bit mode for
the weights, we measured an average inverse throughput of 1.14 cycles
per output pixel for 5x5 convolutions and 1.07 cycles per output pixel
for 3x3 convolutions - the two sizes directly supported by the internal
datapath of the HWCE. This is equivalent to a 82x speed up to the
naïve single-core baseline, or 11x to a fully optimized 4-core version.

As described in Section 4.1, the HWCE datapath enables application-
driven scaling of arithmetic precision in exchange for higher throughput
and energy efficiency. In the 8 bit precision mode, average inverse
throughput is scaled to 0.61 cycles/px and 0.58 cycles/px for the 5x5
and 3x3 filters, respectively; in 4 bit mode, this is further improved to
0.45 cycles/px and 0.43 cycles/px, respectively. In the 4 bit precision
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mode, the HWCE is fully using its 4-port memory bandwidth towards
the TCDM in order to load 4 yin partial results and store back 4
yout ones. Further performance scaling would, therefore, require an
increase in memory bandwidth.

Figure 4.4 reports time and energy per pixel, running the same set
of filters in the kec-CNN-sw operating mode while scaling the VDD

operating voltage. At 0.8V, the energy to spend for an output pixel
can be as low as 50 pJ per pixel, equivalent to 465GMAC/s/W for
a 5x5 filter. At 0.8V, the four-core cluster can run up to 120MHz,
consuming 12mW. Thus, the energy to spend for an output pixel
can be as low as 1316 pJ per pixel, equivalent to 19GMAC/s/W, 26x
less efficient than the HWCE.
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Figure 4.4: Performance and efficiency of the HWCE accelerators in
terms of time/energy for elementary output.



Chapter 5

Software Accelerators

In this Chapter, we cover how computation on software-defined ac-
celerators can boost the energy efficiency of edge-computing devices
that deal with the wide-range of bio-applications. We propose a novel,
fully programmable platform, based on the Parallel Ultra Low Power
Platform (PULP) architecture (Micro Controller Unit (MCU) plus
a software-accelerator of four/eight DSP-enhanced cores) for neural
interfaces that can efficiently: i) perform on-node 64-channel spike
sorting on detected spikes thanks to their event-based nature; and ii)
compressing full bandwidth Action Potential (AP) streams as well as
extracting EEG features thanks to the powerful multicore architecture.

The system is composed of two state-of-the-art devices: an MCU
that acquires data and processes them with a software-programmable
accelerator made of multicores, and an AFE optimized for neural
signals.

As more complex artificial intelligence and data-analytic algorithms
enable the extraction of hidden information from neurons at higher
accuracy, the MCUs need to be high performant and energy-efficient
to allow on-the-edge computation. For this reason, Mr.Wolf [64] has
been selected as the MCU candidate for the proposed system as its
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Figure 5.1: Neuro-PULP architecture. The Analog front-end (AFE)
called NGNI senses 64 probes and sends to the Digital Signal Processing
(DSP) (PULP) the neural activity. Spikes’ clusters and time-stamps
or compressed data streams are sent wirelessly to a PC, that can send
a new processing chain or updates to the current SW.
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computational capabilities on bio-signals have already been shown
to be top performer [106, 156–159].

The AFE selected is the programmable event-based NGNI presented
in [72] as it is ultra-low-power, and it enables different levels of
programmability. We believe that having two different devices, rather
than a single mixed-signal device is more versatile as different AFEs can
then be plugged to the MCU when the number of channels or the signal
features is different. Also, different technology nodes can be chosen for
the two parts of the system to optimize the performance-cost trade-off.

The high energy efficient and proportional power consumption of
the proposed system allows both the execution of computationally
hungry algorithms (as 64-channels compression) leveraging the mul-
ticore cluster accelerator of Mr.Wolf [64], and the execution of light
algorithms on detected spikes in an ultra-low-power budget leveraging
the event-based nature of both the subsystems NGNI-Mr.Wolf.

In addition, we exploit the PULP cluster to boost the energy
efficiency of an EEG drowsiness device presented in [105]. Instead
of Mr.Wolf, this application has been implemented in the PULPv3
MCU [77]. However, the cluster of the two MCUs has a very similar
architecture as both based on the PULP architecture. The analysis of
EEG signals is one of the most common method to detect drowsiness.
It has been demonstrated that the variation of the brain rhythms on
the alpha waves band (7.5–13 Hz) indicates a drowsy state [160]. The
system uses an EEG signal to detect alpha wave activities by applying
the Short-Time fast Fourier transform (FFT) (STFT) over 512 samples
(1.024 s) with sliding windows of 32 samples (64 ms). Here, the power
spectrum is calculated on the frequencies of interest (7.5–13 Hz), and
the maximum value within this band is selected for each time step (64
ms). With respect to a low-power ARM Cortex-M4 microcontroller
implementation, the proposed optimization exploits the PULPv3 MCU
to extract the EEG features on four Central Processing Units (CPUs).

The major contributions of this Chapter are:

• the design of new neural computing platform based on the
integration of two devices to enable performant yet low-power
and highly-programmable brain interfaces;

• an optimized SW library to acquire data from the 64-channel AFE
leveraging the autonomous PULP I/O subsystem. Such library
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handles both high-bandwidth of data streams and event-based
information.

• implementation of two example-applications in C language for
neural signal processing: i) one application leverages streams of
high-bandwidth data and the PULP cluster to compress them
(streaming mode). This feature is useful to reduce the output
bandwidth of the acquired raw signals. i) an application that
leverages the event-based nature of brain action potentials. Such
application exploits the event-based hierarchical-chain of the
AFE, the I/O subsystem, and the processing part done on a
single core (event mode).

• implementation of the STFT transform on the PULP cluster
to boost the energy efficiency of an EEG drowsiness detection
device.

5.1 Neuro-PULP
In this Section, the architecture of the proposed system to process
high-frequency neural activity is described. The block diagram of
Neuro-PULP is shown in Figure 5.1, consisting of three main parts:
the (external) electrode array, the 64-channel neural-interface NGNI
and the Mr.Wolf PULP SoC. The NGNI is a programmable neural
recording system that can be configured to select the number of
channels and whether to send data streams or only the detected spikes.
Spikes are detected with the absolute value threshold crossing detection.
Mr.Wolf has been adopted as the MCU in the proposed system as it
offers proportional power consumption and high-performance thanks
to its power manager and software-accelerator. It consists of an
advanced microcontroller architecture called fabric-controller featuring
an autonomous I/O subsystem (called µDMA) that reaches a peak
aggregated bandwidth for transmission and reception of 14Gbit/s [133],
512 kByte of L2 memory, a cluster of 8 cores, and it implements six
power modes. The NGNI and Mr.Wolf are connected via SPI running
at 50MHz. The NGNI issues a request (req) signal every time a new
packet has to be sent. First, it sends the header packet containing
information about the upcoming samples (data valid, the channel



5.2. NEURO-PULP CASE STUDY APPLICATIONS 93

number, etc.). The next packet contains a 16-bits data or 16x16-bits
data in streaming or spike mode respectively. In event mode, the
optimized SW driver keeps PULP waiting most of the time in sleep
mode for the NGNI AFE to detect a spike. This means that when no
spikes are detected in any of the 64 channels, the system consumes
∼7mW, 6.49mW for the AFE and 0.55mW for Mr.Wolf.
The req signal, mapped on a general-purpose IO of Mr.Wolf, acts as
a wake-up event that starts the acquisition and processes the spike.
When the request signal is raised, the power-manager of Mr.Wolf
triggers the µDMA, which autonomously acquires the packets, and
then it awakes the core that processes the spike, and enqueues the next
commands to the µDMA. Note that this implementation consumes
power proportionally to the spike-activity as it is active only on-demand.
Figure 5.2(a) shows the data packet from the NGNI and the FSM
implemented in the fabric-controller as well as a temporal diagram of
the application operating in event mode. In streaming mode, PULP
continuously acquires signals from the NGNI sharing the protocol
mentioned above, and it processes them. This means that for every
enabled channel, the AFE sends a request containing the header and the
16bit sample. When 64 channels are sampled at 15 kHz, the frequent
interaction with the I/O subsystem requires a highly optimized code
run by the fabric-controller at high-frequency (300MHz). This requires
the core to take control every 2 SPI transactions (808 ns) as shown in
Figure 5.2.(b). Once there is sufficient data stored, the computation is
offloaded to the multicore cluster accelerator in a pipelined fashion. The
cluster processes the data stream collected, as shown in Figure 5.2(b).

5.2 Neuro-PULP Case Study Applications
The versatility of Neuro-PULP as its suitability for multi-modal
neural interface processing tasks is demonstrated by running two
example applications that represent the two different modes (streaming
and event): called Compress-Stream and Spike-Sorting. Both the
applications start by configuring the AFE to enable 64 channels, to load
the signal conditioning parameters (amplifier gain, sample frequency
of 15 kHz) and to select the operational mode. The computation starts
once enough samples have been acquired.
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Figure 5.2: (a) Spike sorting mode: FSM implemented in the MCU.
For every new request, a new spike is acquired and templates matching
is performed. (b) Streaming mode: 2 SPI packets are received until
128 samples per channel have been acquired. The cluster is turned-on
to compute the Discrete Wavelet Transform (DWT) and to compress
the data, meanwhile the rest of the system collects the new chunk.
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5.2.1 Compress-Stream application
The Compress-Stream application shows how the MCU can be used
to compress raw neural AP signals. This is useful for reducing the
data rate of transmitted signals if neuroscientists are interested in
the raw data stream. Another useful scenario is the one presented
in [161], where AP streams collected by the neural-interface are sent
to a PC to perform off-line training and to generate spikes’ templates.
Once PULP acquired 128 samples per channel, (in 8576µs), the DWT
is calculated to map the signals in a sparse domain and compressed
sensing is used to reduce the dimension of the acquired chunk. Both
the kernels are executed in the cluster running at 40MHz. Even if
this work focuses on authors’ previously studied processing chains,
future work can leverage the cluster capabilities to implement higher
performance spike sorting algorithms or even activity recognition from
spike trains as it can run up to 350MHz. Double buffering is used such
that the cluster operates on the kth stream, while the fabric-controller
acquires the k+1th stream as shown in Figure 5.2.(b). The estimated
power consumption of the whole system (NGNI, communication, and
PULP) is 44.14mW (690µW/channel), and the break down is shown
in Figure 5.3. It is interesting to note that such a complex application
has never been implemented in an MCU device tightly coupled to the
AFE, as it would have required too high performance or consumed
too much power. This result demonstrates not only the high power
efficiency of Neuro-PULP, but also that efficient MCU and AFE can
be used in the next generation of neural interfaces without giving up
the high flexibility offered by programmable devices.

Fixed number of channels case In streaming mode, the core has
to be awakened for every data coming from every enabled channel.
However, the channels in the NGNI are grouped in 16 blocks, so is
the transmission. The NGNI sends all the enabled “channel 1" from
all the blocks, then the second, etc. When 64 channels are active,
channels from the same block are sent every 16 transactions in a
time-multiplex fashion. For this reason, an optimized version of the
Compress-Stream has also been implemented. In this flavor, the PULP
µDMA is programmed to acquire 16 data independently without the
need for the core supervision between transfers. Thus the interaction
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between the core and the I/O subsystem is reduced to every 16750 ns,
which allows the frequency to be reduced to 80MHz and the power
to 30.58mW (478µW/channel).

5.2.2 Spike-Sorting application
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The second operating mode demonstrates the processing chain from
the NGNI on-site detected spikes to the PULP template matching
for real-time systems. At the beginning of the application, the NGNI
is programmed to work in AP snippets mode, and threshold values
for spike detection are loaded. For each acquired spike, the sum of
absolute differences against all the four templates per channel [161] is
executed on the fabric-controller running at 50MHz. In this case, the
multicore cluster is not used as the complexity of the algorithm, and
the input bandwidth is low enough to be handled by only one core.
However, thanks to the advanced power manager of Mr. Wolf, the
software accelerator is kept is sleep mode with negligible contributions
to the total power consumption.

At a nominal spike rate of 10 spikes/s [165], the event-based protocol
is particularly suited to save power as Mr. Wolf is most of the time
in sleep mode consuming only 0.55mW. Once a spike is detected, the
req signal connected to the Mr. Wolf GPIO triggers the acquisition
and sorting task, as shown in Figure 5.2(a). This mode is typically
attractive for ultra-low-power consumption as it is reduced by 2.24x
with only 383µW/channel during the active sorting phase, consuming
only 6.49mW from the ADC and 0.55mW from PULP when no
spikes are detected as shown in Figure 5.3. For further investigations,
two ideals systems operating in streaming mode are compared to
Neuro-PULP wrt the spikes rate, as shown in Figure 5.4. The two
PULP based systems assume double buffering and zero-overhead on
top of the template matching algorithm and operate at the minimum
voltage-frequency required. The first system Always On Streaming
mode assumes that every 66.7µs (15kHz sampling rate), one new sample
per channel is ready in the main memory to be processed. The second
system Always On Packed Streaming mode assumes that data are
ready every 16 samples. The minimum voltage-frequency is selected
to estimate the power consumption in both the ideal scenarios. For
the Always On Streaming mode, the multicore cluster is activated, as
doing a computation every 66.7µs would require too high performance
for only one core. As these two new ideal systems operate in streaming
mode, the power is not proportional to the spikes rate. It is quite
interesting to note that for a typical spike rate of 10 spikes/s per
channel (or 640spikes/s for all the channels), the event-based approach
is 4.15x more power-efficient than the Always On Streaming mode
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the event-based approach is easily outperforming the ideal streaming
mode.

system and 2.47x than the Always On Packet mode system, even
with zero-overheads.

5.3 Drowsiness Detection on the PULP
architecture

This Section describes the implementation of the 5-levels drowsiness
detection alarm system on a 4-cores PULP architecture [77]. Although
a typical MCU with single ARM Cortex-M4, as the STMicroelectronics
STM32F407 microcontroller used in [105], has enough resources to
execute the drowsiness detection at the required performance, using a
software accelerator made of 4 DSP-enhanced cores boosts the energy
efficiency of the whole system, so the battery lifetime is longer. As the
most compute demanding part of the drowsiness detection algorithm
based on alpha waves is the FFT, a great effort has been spent to
optimize this kernel on the PULP architecture, exploiting a fine-grained
data-parallel scheme supported by the programming model. The FFT
algorithm requires to compute a set of butterflies on the N input
samples (where N is the size of FFT, 512 for this application) for
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each stage of computation, and the number of stages is equal to the
2-base logarithm of the number of input samples (9 in this case). In
the baseline radix-2 algorithm, after each stage, data generated by
the butterflies of the previous stage has to be shuffled to compute
the butterflies on the following stage.

On the PULP architecture, the FFT is computed by splitting
the butterflies’ calculation homogeneously among the four cores and
synchronizing the cores using hardware barriers after each butterfly
stage to maintain the data consistency. Two different implementations
have been evaluated, described in the following.

As explained above, the baseline radix-2 FFT requires a synchro-
nization barrier after each stage of butterflies (i.e., nine barriers),
leading to a relevant synchronization overhead not amortized by the
small computational load required by each stage of butterflies. A
more optimized approach relies on the radix-8 algorithm. Exploiting
this implementation, each butterfly performs a single Discrete Fourier
Transform (DFT) among eight samples instead of 2, as in the radix-2
implementation. This reduces the number of butterflies to be computed
at each stage, but it increases the butterfly’s computational complexity.
The proposed implementation is composed of 3 stages, each with 64
butterflies (16 for each core). Therefore three barriers are triggered to
accomplish the full 512 samples FFT. Hence, this approach increases
the available parallelism and reduces the synchronization overhead with
respect to the radix-2 algorithm. The computation of the magnitude
of the FFT is parallelized by dividing the signal by 4. Thus each
core works independently without synchronizations. The FFT and
magnitude parallel implementations feature a speed-up greater than 3.9
with respect to the single-core version on PULP, showing a quasi-ideal
parallel speed-up in performance.

Regarding the computation part related to the IMU signal, the
RMS envelope is computed on the last 512 samples instead of 32
since it offers a more efficient use of cores. A parallel version was
implemented by splitting the signal again into four parts. Each core
computes the summation of the square of the signal assigned, and
finally, the cores are synchronized. In the last phase, a single core is
in charge to sum the four results and to compute the square root.



102 CHAPTER 5. SOFTWARE ACCELERATORS

5.4 Neuro-PULP results
Table 5.1 shows a set of programmable neural interfaces implementa-
tions. In [163] and [61], the MCUs are used to detect and calculate
spikes’ features. The simple MCUs have enough capabilities to handle
32 channels while running low complexity algorithms to extract features,
but power consumption has not been optimized, and the systems
are always-on operating in streaming mode. Besides, the simple
architecture of such MCUs can handle a relatively low input bandwidth
while processing, as explained in [133]. Therefore, they cannot be used
with scaled systems, and more complex on-chip processing as their
performance is limited. With respect to Neuro-PULP operating in
streaming mode, they can handle a lower number of channels and
less complex algorithms.

In [161] and [164], the acquisition and processing system are
implemented in FPGAs. Such solutions offer higher scalability with
better power consumption and processing capabilities. However,
FPGAs require HW re-design for every change in the system from the
protocol to interface with the AFE all the way to the algorithm to
process data. Furthermore, when compared with our solution, they
consume significantly higher power (x4) [161]. Finally, a higher number
of channels and performance capabilities are shown in [162]. Such
a system offers limited programmability as it requires low-level SW
programming and higher power consumption (3x) when compared
with the proposed work running in streaming mode. In addition, the
acquisition system is implemented outside the MCU, and it has to be
re-adapted for different neural-recording systems. Neuro-PULP relies
on SPI to communicate with the neural-interface as implemented in
commercial systems like [166]. It is scalable in performance from low
complexity algorithms executed in the single-core domain up to more
complex ones leveraging the multicore cluster accelerator, and it is
ultra-low-power and scalable, as shown in Figure 5.3.

The event-based approach means the system power consump-
tion is proportional to the level of spiking activity, consuming only
114µW/channel when 10 spikes/s per channel are detected and sorting
is executed to classify neural activities, allowing a battery lifetime
>100h. The power proportionality of Neuro-PULP is further shown
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Table 5.2
Number of cycles required to compute each function.

Kernel Func Single Core Pulp Pulp ARM/ ARM/ SCPulp/
ARM CMSIS 1 Core 4 Cores SCPulp 4CPulp 4CPulp

FFT RADIX8 42.90 64.03 16.69 0.67 2.57 3.84
Magnitude 17.87 15.17 3.83 1.18 4.66 3.96
RMS (32s) 0.26 0.30 0.16 0.86 1.67 1.94
RMS(512s) 2.52 2.95 0.83 0.86 3.05 3.56

in Figure 5.4, where two ideal streaming mode scenarios are compared
with the event-based power consumption of the proposed system.
Compared with the two ideal systems, the power consumption is
lower, even in excess 10,000 spikes/s in total, which suggests that
future high channel count systems should be event-based. In addition,
new implementations of neural interface algorithms can be easily
implemented in C code in Neuro-PULP thanks to the system’s high
versatility, opening the possibility for embedded C code spike sorting
libraries. Finally, as the PULP performance has not yet been fully
exploited, more computationally demanding algorithms than the one
presented can be implemented, e.g., compression algorithms or feature
extraction scenarios [107].

5.5 Drowsiness acceleration results
The PULP architecture has been taped-out in several technologies,
the one used for the implementation of this task is the PULPv3,
implemented in UTBB FD-SOI 28 nm technology. To estimate the
power consumption of the architecture, data have been extracted from
measurements on the PULPv3 silicon prototype and adapted to the
configurations actually employed in the exploration (i.e., a 4-core
architecture enhanced with floating-point units).

To evaluate the performance and energy consumption of the comput-
ing platforms adopted in the system (i.e., PULP and Cortex-M4-based
MCUs), only the compute-intensive kernels, responsible for more than
99% of the overall computational load of the algorithm have been
analyzed. Table 5.2 shows the number of cycles needed to perform the
FFT, Magnitude, and RMS functions in both platforms, as well as a



104 CHAPTER 5. SOFTWARE ACCELERATORS

comparison of the execution time of the different solutions. While the
code running on the Cortex-M4 architecture relies on heavily optimized
CMSIS libraries, the implementation on the PULP platform is based on
an ANSI C implementation of the algorithms with OpenMP extensions
for parallelization.

Nevertheless, although the ARM Cortex-M4 core performs slightly
better with respect to the single-core PULP architecture for some of the
kernels, a single-core PULP platform provides an almost 20% speed-up
with respect to the Cortex-M4 for the Magnitude function, while relying
on a fully flexible C implementation of the algorithm. The situation
dramatically changes when executing the algorithms exploiting parallel
processing over the four cores of the PULP platform. In this case, the
execution time with respect to the Cortex-M4 processor reduces by up
to 4.66x. It can be noted that for the kernels with high parallelism, like
FFT and Magnitude, that account for more than 95% of the overall
computational load during sequential execution, the speed-up is nearly
ideal. The only function that is not easily parallelizable is the RMS 32s,
due to a small dataset, and hence parallelism, but it has a negligible
impact on the application’s overall execution time.

An important factor to consider for the calculation of energy effi-
ciency is the minimum latency required to achieve real-time constraints.
Indeed, to avoid sample loss, all the signal processing must be finished
in time no longer than 2ms. This constraint was taken into account
to adjust the clock frequency of the PULP platform to compare the
execution with minimal energy consumption. Table 5.3 shows the
real-time frequency (RT Freq) of the analyzed computing platforms,
which includes one high-end MCU STM32F407x and one ultra-low-
power MCU Ambiq Apollo, both based on Cortex-M4 processor, and
PULP executing on a single core and four cores. This task cannot
be accomplished by a low-power MCU like Ambiq Apollo, due to its
limited maximum operating frequency (24 MHz) as explained in [105].
The real-time frequency allows to select the minimum supply voltage
needed to meet the performance constraints.

More interesting is the exploitation of parallel near-threshold
computing on the PULP platform, leading to a further improvement
of 3.4x in performance with respect to sequential processing, and
improvement of 12.1x and 63.3x in terms of energy consumption with
respect to commercial MCUs.
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From an application perspective, these results show that the
optimization of the parallel processing tailored for a highly efficient
HW/SW platform allows extending the whole system’s battery life
to 46 hours, leading to an improvement of 7 times with respect to a
solution based on a commercial MCU.

Table 5.3
Comparison between different platforms.

MCU A. Apollo STM32F407 1C PULP 4C PULP
No. of Cores 1 1 1 4

RT Freq [MHz] 31.681 31.68 45.59 11.76
Vdd (V) 1.80 2.50 0.48 0.45

Pw Dens [µW/MHz] 115 600 10.27 27.64
Power [mW] 3.64 18.99 0.42 0.30
Energy[µJ] 7.28 37.97 0.84 0.59

1 Ambiq Apollo does not achieve the required frequencies (i.e. max frequency is
24 MHz)





Chapter 6

Soft-Hardware Accelerators

In this Chapter, we present Arnold: a RISC-V based MCU extended
with an eFPGA, implemented in Globalfoundries GF22FDX (GF22)
technology. The contribution of the presented heterogeneous SoC
design and silicon demonstrator with respect to the other Micro
Controller Units (MCUs) augmented with an eFPGA are summarized
as follows.

1. Architectural Flexibility: to enable architectural flexibility
that fully exploits the configurable logic. The eFPGA is
connected with the rest of the system with different interface
options on the data-plane: i) a direct connection to the
I/O Direct Memory Access (DMA) engine on the SoC - to
process and filter data streams on their way from/to on-chip
shared-memory buffers in memory; ii) a high-bandwidth,
low-latency interface to the memory of the RISC-V core
- to interleave with zero-copy FPGA-accelerated parallel
processing and sequential processing by the core; iii) a direct
GPIO interface to implement master or slave peripheral ports
for non-standard off-chip digital sensors or actuators. On the
control plane we provide: i) an AMBA Advanced Peripheral
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Bus (APB) interface to allow the user to configure the mapped
soft-hardware; ii) sixteen interrupts to notify the CPU.

2. Power Management: thanks to RBB enabled by conventional-
well Fully Depleted Silicon-On-Insulator (FDSOI) technology
used for the physical implementation of the eFPGA fabric,
leakage power can be reduced by 18x to 20.5µW (featuring a
fully state retentive bitstream) when eFPGA functionality is
not required.

3. Leading Edge Performance and Energy Efficiency: the System-
On-Chip (SOC) achieves SoA performance and efficiency,
leveraging a voltage and frequency scalable architecture from
0.5V to 0.8V, with a peak energy efficiency of 46.83 µW/MHz
at 0.52V and a maximum frequency of 600MHz at 0.8V. The
proposed SoC achieves 3.4x better performance and 2.9x
better energy efficiency than State-of-the-art (SOA) MCUs
augmented with eFPGA built for the same power target
applications [112,115,116].

Figure 5.1 shows the simplified architecture diagram of the Arnold
SOC to underline the eFPGA connections with the rest of the system.

6.1 Arnold Architecture
The proposed system is built around the Riscy core presented in
Chapter 2 augmented with an FPU. Differently from the Quentin
MCU described in Chapter 3, we extended the CPU with a RISC-V
compliant Physical Memory Protection (PMP) unit that can control
read, write, and execute permissions on regions of the physical memory.
This allows for protecting sensitive parts of the system from corrupted
user applications. The implemented RISC-V PMP supports all address
matching schemes as: naturally aligned power of 2 regions NAPOT
(including 4 bytes alignment NA4 ); and the top boundary of an
arbitrary range TOR. The PMP occupies only 14% of the total CPU
area due to the extra registers and comparators needed to implement
the specifications and provides much-needed security features for user-
applications in the Internet-of-things (IoT) domain. In the proposed
SoC, the CPU is responsible for executing the runtime to manage the
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Figure 6.1: MCU-eFPGA SoC architecture. eFPGA connections
towards the MCU and to the external peripherals are highlighted.
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Figure 6.2: Detailed block diagram of the proposed design. The eFPGA
(bottom) connected with the MCU and its private MAC units in a
clock domain (CLOCK eFPGA). Peripherals (center – left) are directly
connected to the µDMA in the Peripheral subsystem and operate on
the CLOCK Peri clock domain. The rest of the system works in the
CLOCK MCU domain. The CPU runs the SW and orchestrates the
whole system.
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system and execute user applications to process data or to control
external peripherals and configure and control the eFPGA itself.

6.1.1 Memory Subsystem
The memory system, composed of 512 kB of Static Random Access
Memory (SRAM), is shared among the CPU (instruction and data),
the I/O DMA (µDMA) (RX and TX), the JTAG, and the eFPGA
masters. The shared-memory consists of four word-level interleaved
memory banks, each with 112 kB each, and two memory banks of 32 kB
featuring a non-interleaved address scheme. Every memory bank is a
composition of single-port 4096 by 32 bit words (16 kB) memory cuts
optimized for density and power. The size chosen for the memory cuts
allows to place them comfortably during the physical implementation
as described below, and concurrently to meet the frequency target.

The chosen interleaving scheme for the four 112 kB (448 kB) memory
portion approximates multi-port memory access, and it increases the
bandwidth up to 4x when multiple masters are loading or storing data
sequentially, which is the typical case for most Digital Signal Processing
(DSP) applications. When low-latency single-cycle accesses with no
contention are needed, the two private banks can be used to offer a
bandwidth of 19.2Gbps each. In the proposed MCU, they are used to
store private CPU data such as the stack and instruction binary. In
this way, the interleaved part can be used by the other masters with
no conflicts. This solution avoids the use of power and area hungry
multi-port memory cuts, still providing low-latency access to memory
and increasing total energy efficiency. A Read-only-memory (ROM)
has also been implemented to store the boot instructions responsible
for setting the system upon reset.

6.1.2 I/O subsystem
The I/O subsystem is composed of a broad set of peripherals that
include JTAG, HyperRam, UART, Camera Interface, quad-SPI, and
I2C, which communicate with the shared-memory system through an
autonomous µDMA based on [133]. The µDMA is a smart-engine that
allows peripherals to control transfers to/from memory without the
need for the CPU continuous control. The HyperRam peripheral is
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particularly interesting as it allows access of off-chip memory with
a bandwidth of 800Mbps, extending the MCU with larger memory
capacity, useful for holding several eFPGA bitstreams.

The µDMA has two ports towards the main memory, one to
transmit and one to receive data from peripherals. At 600MHz,
the µDMA has an aggregated bandwidth equal to 38.4Mbps. Except
for the JTAG, which is directly connected to a master port of the
system bus, the other peripherals are controlled by the µDMA core,
which handles memory requests in a time-multiplexed fashion. The
µDMA control registers are used to select the active peripheral, the
peripheral clock frequency, number of transfers, etc. Other peripherals,
such as SoC control registers, timers, GPIOs, and event units, are also
included in the proposed MCU and accessible through the APB bus.

6.1.3 Clock subsystem
Arnold includes three Frequency-locked loops (FLLs) that take as input
an external 32 kHz reference clock and provide internal clocks up to
2.1GHz. One FLL each is used to provide the clock to the eFPGA, the
peripheral subsystem, and the remaining modules as CPU, memories,
busses, etc. The eFPGA has access to six clock sources: four from
external GPIOs; one from the eFPGA FLL block; and one from an
integer frequency divider from the same FLL.

6.1.4 eFPGA subsystem
The eFPGA is tightly coupled to the system to minimize the overhead
of communications with the CPU. It has 3712 pins to be used to
connect the IP with the rest of the SOC. In this work, we designed
a novel, highly flexible 4-mode SOC interface to:
(a) an I/O interface with direct connections toward the pad frame

of the system, enabling the implementation of custom off-chip
interfaces;

(b) a memory interface suitable for shared-memory accelerators
implemented on the FPGA logic and tightly coupled with the
CPU;
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(c) an I/O DMA interface suitable for implementing I/O filtering
functions for data streamed into the system from the standard
I/O;

(d) an APB configuration and control interface suitable for con-
trolling the programmable logic.

The I/O interface is made of 41 sets of three signals (input, output,
direction) from the eFPGA to the GPIOs. This interface is used for
custom I/O protocols, which are challenging to implement efficiently
in SW due to latency constraints. Each I/O pad can be either used by
a peripheral (quad-SPI, Camera Interface, etc.), or by software (Core
GPIO), or by the eFPGA. Multiplexers controlled by SoC registers
drive the functionality mode of each pad.

The memory interface implements the protocol presented in [146].
The proposed SOC has four interfaces connected as master ports in
the bus, providing up to 128 bit memory operations (load or store) per
transaction. Access to the on-chip SRAM is provided through four
32 bit 4words dual-clock FIFOs to allow the MCU and the eFPGA
subsystem to operate at independent frequencies. This is a crucial
feature since the eFPGA usually runs at a lower frequency than the
rest of the SoC and its frequency depends on the user design. For
security reasons, the eFPGA memory interface has only access to
SRAM banks and not to APB peripherals and boot ROM.

The I/O DMA interface is composed of one receive (RX), and one
transmit (TX) bus featuring a ready/valid handshaking, plus one 32 bit
configuration bus as described in [133]. The configuration bus allows
controlling the peripherals mapped into the eFPGA with external
registers which can avoid the use of the APB interface described below,
and thus save resources. In addition, this interface can be used to
stream data through the µDMA without using eFPGA resources for
the address generation logic as it would with the memory interface.
In this case, the µDMA transfers data from the eFPGA to memory
(and vice versa) linearly. Communication between the µDMA and the
eFPGA happens using two 32 bit 4words dual-clock FIFOs.

Designs mapped into the eFPGA (as accelerators or peripherals)
can be controlled by registers through the APB configuration and
control interface. Such an interface is made of a 7 bit address, 32 bit
data read, and data write, write-enable, ready, peripheral select and
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enable signals (75 pins). One 32 bit 4words dual-clock FIFO is used
for communications between the MCU and the eFPGA.

In addition to the four interfaces mentioned above, the eFPGA
can generate sixteen events to interact asynchronously with the CPU,
avoiding inefficient polling operations and saving power. In fact, the
eFPGA event pins are connected to dual-clock event-propagators that
notify the events to the CPU as dedicated interrupts requests. The
interrupt service routines are user-defined, and they can be used
to handle the eFPGA requests, for example, starting a new I/O
transaction, or programming the new acquired data pointers to start
processing them in case of accelerator design.

To improve computational arithmetic density, two synthesizable
parallel-vectorial Multiply And Accumulate (MAC) accelerators are
connected to the eFPGA to compute four 8 bit, two 16 bit, or one 32 bit
MAC operations for each unit. The two MAC blocks are connected
via 310 pins each, which control the MAC blocks, whether data comes
from the eFPGA or the MAC buffers, the input and output data,
and the vector mode (8, 16, or 32).

The CPU programs the eFPGA through another APB interface.
Such a master interface is connected to the eFPGA Fabric Configu-
ration Block (FCB), which is responsible for controlling the eFPGA,
managing the power procedures, and report the actual status of the
eFPGA. The eFPGA binary is 225.5 kB, small enough to be contained
in the on-chip SRAM. To program the macro, the CPU reads the
binary from external memory and writes it to the on-chip memory,
then the CPU reads the binary array and writes its content to the
APB FCB via non-critical load and store instructions.

The eFPGA fabric is organized in four quadrants with dynamic
reconfiguration capabilities, each one composed of an array of 16x16
Super Logic Cells (SLCs). Each SLC has four logic cells that are
organized in two sub-logic clusters: two instances of logic cell A (LCA)
and two instances of logic cell B (LCB), as shown in Figure 6.2. Both
LCA and LCB also include one register and multiple multiplexers that
enable the logic cell to perform different functions (e.g., combinatorial,
sequential, or both). If a logic cluster or a highway network within
the SLC is not used, it is powered off to save static power. A shared
register clock, set, and reset signals for all four logic cells helps reduce
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routing congestion. If the logic cluster or highway network within the
SLC is not used, it is powered off to save static power.

6.2 eFPGA Software and Tools
To use the eFPGA in the Arnold SoC, the user writes HDL code
(VHDL, Verilog or SystemVerilog) and synthesizes it with Mentor
Graphics Corporation © Precision RTL Synthesis OEM Quicklogic
tool. The synthesized design is then placed and routed with the
QuickLogic Aurora Software Tool Suite (Aurora). The user must
map each of the soft-module interface pins to the corresponding pin
of the eFPGA hard-macro. For example, the user may define the
memory interface request signal as “MemREQ_output”, in the Aurora
tool, the user may specify that the signal is connected to the 3rd
memory interface of the eFPGA specifying that “MemREQ_output”
is connected to “tcdm_req_p3_o” pin. The eFPGA pin has been
assigned to its interface functionality at SoC design time to optimize
the place and route phase.

Once the constraints and the pin mapping have been defined,
Aurora performs logic optimization on the synthesized design, places,
and routes it. It also generates static timing analysis and the bitstream
containing the binary of the user-design. The binary is then loaded into
the main memory by the CPU. The CPU stores each binary word into
the bitstream registers. Once the eFPGA has been programmed, the
CPU can control the design with user-defined registers mapped into
the eFPGA APB interface described above to start the design, to check
the status, etc. application Programming Interfaces (APIs) have been
developed to provide C procedures for the user. In particular, functions
to RESET the eFPGA, to load the bitstream, and to wait for the end
of the eFPGA computation (wait_fpga_eoc) have been implemented
for fast integration into the user application. The wait_fpga_eoc
routine leverages the WFI instruction to clock-gate the CPU to save
dynamic power.
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6.3 Arnold Physical Design
The proposed SOC fabricated in GF22 10 Metal technology occupies
3x3 mm2. The synthesis tool used for this project is Synopsys ©

Design Compiler 2017.09, whereas the place and route tool used is
Cadence © Innovus 18.11. The design has been closed at 430MHz for
the MCU side, and for up to 100MHz for the eFPGA soft-designs.
Worst-case conditions at 0.72V for setup constraints, and best-case
conditions at 0.88V for hold constraints between -40◦C and 125◦C
have been used to guarantee performance across the process, voltage,
and temperature variations.

The die picture and floorplan of the chip are shown in Figure 6.3.
The eFPGA macro is 2x2 mm2, and it has been placed in the bottom
left of the design. The memory cuts have been placed to the right of
the eFPGA. The eFPGA memory interface pins have been assigned
to the right part of the eFPGA to minimize routing efforts and to
minimize the congestion issue as the path towards the memory is the
most critical. The core has also been automatically placed close to the
memory to minimize timing penalties. The eFPGA pins for the MAC
blocks accelerators have been placed to the top part, where the local
math accelerator SRAM buffers have been placed. On the left part of
the eFPGA, the pins towards the µDMA, the user APB interface, and
the 16 events pins have been assigned. GPIOs pins are spread along
the four sides of the eFPGA. The six clock pins of the eFPGA are
located three on the top and three on the bottom side. The three FLLs
have been placed on the top part of the chip, whereas the standard
cells have been automatically placed by the place and route tool.

The effective area occupied by the chip is 5.11mm2, of which the
eFPGA macro occupies 78% (4mm2) and the MCU 22% (1.11mm2).
The main memory occupies 14.46% of the system area, whereas the
I/O subsystem and the CPU take only 0.43% and 0.54%, respectively.
The eFPGA subsystem components occupy 1.26% of the MCU area.
The eFPGA subsystem is a set of modules that interact directly with
the eFPGA macro, dual-clock FIFOs, the FCB, the MAC accelerators
(including memory buffers), and clock multiplexing logic. Table 6.1
shows the area distribution of the chip.
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Figure 6.3: Die photo of the proposed design with the main components
and eFPGA pins highlighted.
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Table 6.1
Area distribution of the main components of

Arnold.

Module Area [µm2] Percentage
CPU 27’186 0.54%
Main Memory 734’232 14.46%
I/O DMA 21’755 0.43%
eFPGA subsystem 63’946 1.26%
PAD Frame 229’519 4.52%
eFPGA Macro 4’000’000 78.79%

The MCU and the eFPGA operate at the same supply voltage, but
the eFPGA can be switched off from external power managers. The
range of operation is between 0.5V to 0.8V. To reduce the leakage
power while preserving the eFPGA configuration during state-retentive
deep sleep states, RBB is applied from an external generator to
minimize on-chip implementations overheads. On the other hand,
FBB is applied to the CPU, memory, and the rest of the logic to
increase performance [121, 122].

6.3.1 Performance and Energy Efficiency
In this subsection, measured results at room temperature from the
implemented chip are reported and discussed. Performance and
power results have been measured using an Advantest SoC V93000
ASIC tester. Figure 6.4 (left) shows the maximum frequency (a),
power consumption (b), and power density (c) of the MCU during
the execution of a matrix multiplication at different supply volt-
ages. Measured results at ambient temperature show a maximum
frequency of 135MHz, and power consumption 11.88µW/MHz at
0.49V, up to a maximum of 600MHz at the nominal 0.8V while
consuming 26.18 µW/MHz. The maximum frequency at 0.49V is
comparable with commercial single-core MCUs performance while
achieving very low power consumption thanks to voltage scaling. When
high performance is needed, 600MOPS can be achieved at a maximum
power consumption of 16mW. The leakage power of the whole MCU
ranges from 0.53mW (33%) to 2.39mW (15%) at 0.49V and 0.8V
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Figure 6.4: Frequency (a), power consumption (b), and energy-
efficiency (c) with respect to the supply voltage of the MCU part
of the proposed design. In the center, frequency (d) and power of the
eFPGA macro with respect to the supply voltage (e) and power with
respect to the utilization rate (f). The effect of the FBB on power
(g) and frequency (h) on the MCU. The effect of RBB on the eFPGA
leakage power during state-retentive deep-sleep mode (i).

respectively. Figure 6.4(g) shows the effect of the FBB on the MCU
power consumption, and Figure 6.4(h) on the frequency. The MCU
can run up to 20% faster at 0.6V at the price of 43% higher power
consumption, whereas the effect of FBB is smaller when applied at
0.8V (only 5% faster) for a maximum frequency of 630MHz.

Figure 6.4 (center) shows the eFPGA measured results. Fig-
ure 6.4(d) shows the maximum frequency of two different designs:
FF2SOC is an eight-way parallel 32 bit accumulator that reads values
from the SoC memory and accumulates them in eight different registers.
The signature can be read with the APB interface; FF2FF is a
nine bit counter that divides the eFPGA clock by 512 and drives



120 CHAPTER 6. SOFT-HARDWARE ACCELERATORS

a GPIO with the divided clock. The designs are different as the
FF2SOC communicates with synchronous elements in the SoC (dual-
clock FIFOs). Thus its maximum frequency is bounded by the
internal delays of the eFPGA and the logic outside its boundary,
whereas FF2FF has been designed to measure only the flip-flop to
flip-flop delay, without taking into account the propagation and setup
timing of the eFPGA and the external logic at its boundary. The
output of the Q-pin of the MSB flip-flop of the nine bit counter is
directly connected to the GPIO, and the frequency is measured with
an oscilloscope. From measurements, we determined a maximum
frequency of 475MHz at 0.8V and 260MHz at 0.65V. FF2SOC
occupies 15% of the internal eFPGA resources and it can run from
26.38MHz, consuming 34.34 µW/MHz at 0.52V, to 126.88MHz at
0.8V consuming 47.98 µW/MHz (Figure 6.4(e)).

The eFPGA FF2SOC leakage power is 0.38mW at 0.5V, up to
2.18mW at 0.8V. The power has been measured separately from
the rest of the system as the power grid stripes of the eFPGA are
different from the MCU ones. The power overhead added by the
eFPGA is affordable in the IoT domain, making the integration of such
programmable arrays a viable option for the next generation of edge-
computing nodes. The eFPGA leakage power consumption is reduced
via state-retentive deep sleep states applying RBB, resulting in a
minimum leakage power of 20.5µW at 0.5V and 374.2µW at 0.8V and
1.8V reverse body-bias as shown in Figure 6.4(i), i.e., a 5.8x( at 0.8V)
to 18x (at 0.5V) reduction can be achieved thanks to RBB. This result
makes the eFPGA power consumption significantly reduced when not
used, minimizing the integration cost and overhead. Figure 6.4(f) shows
how the power consumption changes with respect to the utilization rate.
A design with a parametrizable number of adders has been implemented
in the eFPGA to measure the power consumption with respect to the
utilization rate. When running at 80MHz, 0.75V, results show an
energy-efficiency of 0.40µW/MHz/SLC, being leakage dominated when
<20% of resources are utilized. The best energy-efficient point of the
whole system is 46.83 µW/MHz (eFPGA consumes 28% of total power)
achieved in near-threshold at 0.52V, when the core and the eFPGA
are running at 183.6MHz and 26.38MHz respectively. This result
has been measured when the eight parallel 32 bit accumulators are
mapped on the eFPGA.
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6.4 Use Cases
To demonstrate the flexibility and efficiency of our heterogeneous
reconfigurable SoC, three different use cases have been implemented,
highlighting the versatility of embedded programmable logic.

Table 6.3
Resource utilization, power consumption and overall

energy savings for implementing different use-cases on the
eFPGA.

Use Case GPIO FF LUT Power Energy
[mW] Saving [x]

Custom I/O 36 205 289 6.0 2.5
BNN 0 854 1229 12.5 2.2
CRC 0 20 47 7.5 42.2

6.4.1 I/O subsystem accelerator
In the context of applications for bio-signal processing, it is common
to extract features in the frequency domain to classify activities sensed
from skeletal muscles or the brain [105]. Wavelet or Fourier transforms
used to convert the signal from the time to the frequency domain, then
features like the spectral power, are extracted and used by a pattern
recognition algorithm. For this reason, a peripheral that extracts
relevant information of the signal acquired from the sensors has been
developed and mapped to the eFPGA to alleviate the pre-processing
part of the CPU, which then classifies the activity starting from the
extracted features. The peripheral accelerator mapped on the eFPGA
consists of an SPI module extended with computational capabilities to
calculate the Haar Discrete Wavelet (HDWT), an attractive algorithm
to implement in an eFPGA as it does not require multipliers [168].

The accelerator is configured to acquire N samples of 16 bit of raw
data coming from ADCs, and to store the Approximated and Detailed
Wavelet Transform coefficients in the main memory. Also, coefficients
can be stored in an 8 bit format to compress information in the main
memory. The accelerator is programmed at the beginning with the
number of samples to acquire and the output vector pointers. The
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eFPGA autonomously loops over SPI transactions and stores to the
main memory, either the raw data or the Approximated and Detailed
coefficients of the HDWT. When all the N data have been stored into
the memory, an interrupt notifies the core at the end of the acquisition.

Moreover, a second function has been mapped to the custom SPI
peripheral, namely, to extract 4 bits local binary patterns from a stream
of data coming from sensors, as an algorithmic approach presented
in [169]. In this case, for each data acquired, the eFPGA reuses
the subtractor instantiated for the HDWT to compare the last two
samples. If the last sample is greater than the previous one, it stores
1 in a 4 bit shift register, otherwise 0. The accelerator stores into
memory a 16 bit value every four samples, each representing four single
sample overlapping windows. The core takes eight cycles for each
tuple approximate-detail coefficient to compute the HDWT, whereas
it takes 16 cycles for the local binary pattern. The eFPGA instead
computes the features during the acquisition of the signal from SPI
without adding latency overheads.

The design utilizes 20% of the available SLCs, and it uses a memory
interface port, the APB interface, four GPIOs (3 output pins and 1
input pin), and it generates one event.

6.4.2 Custom I/O interface
IoT devices are often connected to custom peripherals that need
more control pins that the usual peripherals as SPI, UART, I2C,
I2S, etc. In this case, off-chip FPGAs are selected to implement the
control part of the custom peripheral on one side and to communicate
with the MCU with a standard protocol (e.g., SPI) to the other
side. An example of a custom peripheral is a neuromorphic vision
sensor [170] or event-based audition sensors [171]. Another example
where FPGAs are used to control and transfer data are bridges for
off-chip accelerators, for example, [172], or [173]. In this context, to
illustrate the flexibility of the MCU +eFPGA combination, a controller
for the systolic Long short-term memory Recurrent Neural Network
(LSTM-RNN) accelerator presented in [172] has been implemented
in the eFPGA. The LSTM-RNN accelerator is made of four chips
implemented in UMCL 65nm technology, and it is used to classify
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phonemes in real-time. The eFPGA uses 36GPIOs to interact with
the accelerator using a custom interface.

In the first phase, the eFPGA sends the weights of the RNN-model
into the four chips. Then, for every sample acquired by the MCU I/O
subsystem, the CPU extracts the Mel-Frequency Cepstral Coefficients
(MFCCs). In parallel, the eFPGA autonomously fetches the coefficients
from the main memory of the MCU and sends them to the off-chip
accelerator. Once the inference on the accelerator has been computed,
the result is sent back to the eFPGA, which stores it to the main
memory of the MCU and finally notifies the core with an interrupt.
Figure 6.5 shows the data flow from the microphone to the accelerator
and back to the MCU. The utilization of the eFPGA is only 10%.
Managing 36GPIOs through MCU firmware (of which one is the clock
of the off-chip accelerator) would require the core to run at a higher
frequency than the eFPGA due to the sequential nature of software.
In this example, the external accelerator is running at 80MHz. This
means that in the best case, the CPU should be able to perform ~7
operations in 12.5 ns, which requires 560MHz, and 2.5x higher energy
consumption than the eFPGA based solution.

6.4.3 CPU subsystem accelerator
In the context of on-the-edge computation, accelerators are used
to increase performance and the energy efficiency of such devices
[174]. For pattern recognition tasks in the visual domain, deep
quantized neural networks are an attractive model due to its limited
memory and computational requirements [175]. In extreme cases,
single-bit representation for weights and data is chosen to minimize
the memory footprint and the computational resources, as it requires
simple operations as logic XOR rather than multiplications to compute
convolutions. Such neural networks are called Binary Neural Networks
(BNN) [99, 154]. The eFPGA has sufficient resources to allow these
accelerators to be implemented, freeing the core for other computing
tasks.

The BNN accelerator designed for this scope has four interfaces
towards the main memory to maximize the bandwidth, and it is a
simplified version of the accelerator presented in [83]. It assumes
that input layers and filters are organized as a 3D array (number of
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Figure 6.5: Example of an application where the proposed design
is driving custom protocol off-chip accelerators. Data coming from
microphones are first pre-processed by the MCU, then sent to the
off-chip accelerator via eFPGA for classification.
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filters x rows x columns) of integers, where each integer represents a 32
one-bit channels. The accelerator is implemented to operate on two 3x3
windows with eight filters f0, ..., f7 in parallel to simplify the controlling
part, but this is not a limiting factor for the use-case under study.
The accelerator is programmed via the APB interface by the core with
the output, input and filter layer pointers, the number of rows and
columns of the input layer, and the START command. The eFPGA
starts by fetching two 32 bit input elements, then four 32 bit elements
are fetched in parallel twice to acquire the eight filter elements.

The eFPGA performs the XOR function between the inputs and
the eight filters, accumulates all the single-bit partial results. The
sixteen 3x3 convolution results are then compared with a programmed
threshold to compute the activation functions. The accelerator au-
tonomously iterates over the input rows and columns; then, it sends
an interrupt to the core to signal the end of the computation. During
this period, the core can wait for the accelerator to finish in IDLE
mode to save power or deal with other tasks in parallel (for example
scheduling the next I/O tasks, elaborating previously filtered data,
etc.). The design occupies 42% of the SLCs available, and it uses four
memory interfaces, the APB port, and it generates one event. The
application consumes 12.5mW (eFPGA+MCU), and it runs in 371 µs
at 125MHz. Although the core implements custom instructions to
speed up such kernels (as the pop count instruction), and it can run
faster (600MHz against 125MHz), to implement the same function,
the CPU consumes 15mW, and it runs in 675µs, with an energy
efficiency 2.2x lower than the eFPGA.

As a second CPU accelerator, a cyclic redundancy check (CRC)
accelerator has been implemented in the eFPGA to ensure data
integrity and error correction [176]. Such an accelerator uses the
I/O DMA interface to leverage the linear address generator already
present in the µDMA and thus saving resources in the eFPGA. The
CPU programs the µDMA to fetch data from the L2 memory and
transmits them to the eFPGA accelerator, which calculates the CRC
value. The accelerator has a register to know the number of data to
process, whereas the read- and write-pointers are written in the µDMA
configuration registers. This low area accelerator consumes only 2% of
the SLCs available, and it only uses one interface towards the µDMA
with configuration, TX/RX ports. The application consumes only
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7.5mW (eFPGA+MCU), and it runs in 3.7 µs at 193MHz for 1024 byte
data. The CPU consumes 15mW, and it runs in 78 µs, with an energy
efficiency 42.2x less than the eFPGA. To compare the performance
of the proposed eFPGA-based system with respect to the Microsemi
PolarFire IoT gateway-class FPGA SoC [33], the power estimator
from Microsemi has been used. Results show a power consumption
of 111mW, 14.8x higher than our work. The estimation has been
performed setting the same frequency, number of LUTs and flip-flops.

Table 6.3 shows the number of GPIOs, the number of flip-flops
(FF), and LUTs required by each use case. Power figures (expressed in
mW) correspond to the system when the eFPGA runs, and the CPU
waits for the result, whereas the final column shows the energy gained
by running the accelerator on the eFPGA rather than software. In the
Custom I/O example, the SW could not handle the protocol at speed
required. For that example, eFPGA was the only viable solution.

Basic interfaces like I2C and UART have been implemented on the
eFPGA using the DMA interface with about 5% of eFPGA resources,
and a more complex parallel camera interface with full DMA support
implementation uses only 12% of available eFPGA resources.

Comparison with SoA
Table 6.2 shows a comparison with various chips reported in the
literature. The table includes heterogeneous reconfigurable systems
composed of MCU and eFPGA, an embedded domain FPGA SoC,
and an advanced low-power MCUs in 28 nm FDSOI. The standalone
MCU [71] has a 4x smaller power density (µW/MHz). However, our
MCU features 8x larger memory capacity and significantly larger
peak performance as well: 7.5x higher maximum frequency, 3.19 vs.
2.33Coremark/MHz, and almost 6x better performance in near-sensor
processing workloads when compared to the ARM Cortex-M0 processor
used in [71]. Hence, our energy efficiency on the targeted application
domain is 1.5x better.

The advanced MCU +eFPGA system presented in [114] is a
high-performance class system implemented in 25mm2, where a bigger
eFPGA (6x higher leakage power), two application class 64 bit cores,
a quad-core cluster accelerator, and 12x bigger memory are used
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(including caches). The eFPGA offers 80 MACs blocks, more LUTs,
and eFPGA flip-flops, and provides remarkable energy efficiency of
312GOPS/W. Thanks to the abundance of DSP blocks in the FPGA
fabric. However, this system is meant to be used in high-performance
applications consuming higher dynamic and leakage power not suitable
for IoT applications. On the other hand, although achieving a lower
peak efficiency, Arnold is in a power range suitable for IoT applications
(below hundreds of mW). Moreover, the reverse body biasing applied to
the FPGA fabric can reduce leakage power to a value as low as 20.5 µW,
more than two orders of magnitude better than [114]. The Microsemi
SmartFusion2 SoC [39] used in [42] is built in 65 nm. The whole system
can run up to 160MHz (> 3.75x slower than the proposed work), and
it achieves 21x higher power density. The works of Borgatti [115] and
Lodi [116] exploit embedded reconfigurable datapaths to accelerate
DSP patterns of signal processing applications, achieving remarkable
performance and operating frequency despite the old nodes used
for implementation. With respect to these works and the other
heterogeneous MCU +eFPGA systems of the same class [112,115,116],
the proposed SoC has more than 2.9x better efficiency, more than 3.4x
better performance, and more than 2.2x larger capacity. Moreover, this
is the first design offering flexible connections enabling reconfigurable
peripherals, I/O accelerators, shared-memory accelerators, and sup-
porting state-retentive deep sleep based on reverse body bias, paving
the way for flexible fully programmable IoT end-nodes.



Chapter 7

Summary and Conclusion

Edge-computing nodes of the Internet-of-things (IoT) are electronic
devices that acquire data from sensors, process them, and send the
result to the network. As they are typically battery-powered, they
are constrained by peak power consumption and battery lifetime. In
addition, quality-of-services, such as accuracy of the result, and the
application performance requirements, are further constraining these
devices to process billions of operations in a short time. To make
everything more challenging, programmable devices are desirable for a
shorter time-to-market and a longer product lifetime. Micro Controller
Units (MCUs) are particularly interesting as the applications are
described in software, and the usually large available set of peripherals
allows for many sensors to be connected to the MCU. Although highly
versatile, software-based solutions are usually less performant and
efficient than hardwired fixed function circuits. However, in this
Thesis, we exploited different optimizations to close the gap between
high-versatile and high-specialized IoT nodes.

We show implementations results and variables tuned to meet
Power-Performance-Area (PPA) and energy efficiency requirements
for a large set of IoT applications.

129
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As programmable devices are Central Processing Unit (CPU)-
centric, application domain-driven optimizations to make the core
faster, consume less power, and more energy-efficient, directly transfer
their gains at system level. In particular, open-source Instruction
Set Architecture (ISA) CPUs, such as RISC-V, are becoming popular
thanks to their free costs and the possibility of extending the ISA.
In this Thesis, different optimizations have been applied to RISC-V
based CPUs to increase the energy efficiency, and improve the PPA
metric, leveraging Digital Signal Processing (DSP) and pSIMD ISA
extensions and area optimizations. To lower the power consumption
and increase energy efficiency, different optimizations should also
be applied at MCU and implementation level. In particular, Fully
Depleted Silicon-On-Insulator (FDSOI) technology allows to achieve
low-power, high energy efficiency results at Near-Threshold Computing
(NTC), as well as to operate in a wide voltage range to exploit
Dynamic-Voltage-Frequency Scaling (DVFS). Also, body-biasing can
be leveraged to trade performance and power consumption. Different
power-states can also be exploited to minimize the power consumption
during idle modes and to trade memory capacity with energy efficiency
in duty-cycled applications. In this Thesis, we implemented MCUs
that exploit NTC, DVFS, FBB, and heterogeneous power-independent
memory architectures to enable beyond State-of-the-art (SOA) energy
efficiency and performant results in limited power budget. To further
increase the MCU performance, accelerators can be tightly integrated
to specialize the edge-node on a particular application or domain
of applications. Hardwired fixed-function accelerators are circuits
specialized for a particular application. Such accelerators can be tightly
integrated into the MCU by sharing the on-chip memory with the main
CPU. Clock-gating and/or power-gating techniques can be exploited
to minimize the accelerator overhead when not used. NTC and as well
as DVFS can be exploited to achieve higher energy efficiency during
active periods. In this Thesis, we extended a Convolutional Neural
Network (CNN) accelerator with SIMD operations to reach higher
energy-efficiency. We integrated it in a MultiProcessor SoC (MPSoC)
with four DSP-enhanced cores. We evaluated its energy efficiency and
performance against them, showing that a tightly-coupled accelerator
can be implemented in edge-devices in an ultra-low-power budget,
still outperforming multiple cores running the same application. On
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the other side, software accelerators are implemented as a more
performant CPU than the main one, or a cluster of multicores. Such
accelerators are optimized for a particular domain of applications. In
particular, data processing algorithms are usually highly parallelizable
by executing the same code on different CPUs on different data. Thus,
shared instruction caches are usually preferred. Data sharing is also
important to minimize costs. Thus, data caches are often missing in
such low-power clusters. These heterogeneous systems allow splitting
the application part on the cores that best meet performance and energy
consumption metrics. In this Thesis, we exploit an MCU coupled
with an event-driven high-dimensional Analog-to-Digital converter
(ADC) to process brain Action Potential (AP) signals. The MCU
exploits a single-core when pre-processed data from ADC triggers the
computation, whereas it exploits a cluster of eight cores when running
in streaming mode. The MCU power-states allow for efficient duty
cycling to save as much power as possible. In addition, a cluster of
four cores is exploited at NTC to efficiently process the extractions
of features in Electroencephalography (EEG) signals, showing that
the same architecture can be used efficiently in different applications.
We show that such accelerators can be used in applications domain
(such as the bio-physical one) where the broad of algorithms and the
different nature of data need high versatile systems, still in the limited
power domain of edge-devices. We show that our work outperforms
MCU-based SOA related solutions in performance, energy efficiency,
and maximum input signal bandwidth. Finally, eFPGAs sit between
hardwired and software accelerators. They provide high versatility
though soft-hardware design, but at the same time, they exploit the
parallel nature of hardware execution instead of the sequential software
one. eFPGAs enable post-silicon specializations of MCUs and longer
product lifetime. They can be used to implement custom peripherals
or accelerators. eFPGAs can be tightly coupled in MCUs though
different on-chip busses to enable architectural flexibility. In addition,
DVFS, clock-gating, and power-gating can be exploited to reduce
the eFPGA power overhead. Furthermore, RBB can be exploited
to reduce leakage power by keeping the state of the eFPGA. In
this Thesis, we implemented an MCU augmented with an eFPGA
in Globalfoundries GF22FDX (GF22) technology. The eFPGA is
tightly-coupled in the system by sharing the on-chip memory with the
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CPU. It is connected to the GPIOs as well as to the I/O subsystem
for accelerating streams of data. The MCU exploits NTC and FBB to
achieve higher performance on the MCU, and RBB to achieve lower
power consumption on the eFPGA. We show that it is possible to
embed an eFPGA in a MCU within a low-power budget typical of
edge-computing devices. The MCU achieves beyond SOA performance
and energy-efficiency of related solutions.

7.1 Overview and main results
Following the most relevant results and contributions of this Thesis
are reported.

7.1.1 RISC-V CPUs
In Chapter 2, ISA extensions and selection, and an analysis of three
different cores optimized for three different tasks have been carried
out to show: ISA extensions for edge-computing devices running data-
analytic applications and their implementation on a RISC-V core; area
optimizations for cores that run mostly light processing or control-code
in always-on domains; how the energy consumption changes among
the core micro-architectures, workloads, timing-constraints, operating
frequency, and voltage.

The core with DSP instructions (Riscy) is the most energy-efficient
in data-intensive kernels as it has a highly specialized datapath tailored
for computations of edge-computing applications. Such ISA extensions
increased the core area by 14% for 3.5x higher performance and 3.2x
better energy efficiency on DSP kernels. On DSP applications, Riscy
is 2.4× more energy-efficient than an area optimized core.

Zero-riscy is the most efficient in arithmetic-control mixed and
Micro-riscy in pure control code thanks to the minimal resources im-
plemented in for the targeted ISA, leveraging multi-cycles instructions
to exploit resource sharing in a time-multiplexed fashion. Even if
Zero-riscy is 30% slower than Riscy on arithmetic-control mixed, the
lower power consumption compensate the energy efficiency. Whereas,
when no data-processing is needed, the smallest core is the best energy
efficient core as power consumption is the lowest.
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We also showed that tighter timing constrained netlists can achieve
high frequency for a limited energy overhead (∼20%), but they are
energy-inefficient at low frequency, due to the huge contribution of
leakage to the total consumption (>10x). The same results can be
obtained at super-threshold and near-threshold operating points, where
the cores consume, on average, 3x less energy. We have shown that
for systems that operate in an always-on power domain and execute
a task as a consequence of a rare event, the leakage power is the
most significant contribution to the energy consumption, hence area
optimization is crucial. Thus an analysis a priori of the application
profiles running on the edge-computing device should be carried out
to select the best CPU micro-architecture and ISA together with the
frequency-voltage operating points.

Finally, we proposed an evolutionary-based methodology that was
able to generate assembly programs automatically, and we applied
it to enhance the verification level of the Riscy processor. The
proposed methodology combines the use of an evolutionary optimizer,
a hardware perturbation module, and a checking mechanism to create
verification sets of assembly programs rapidly. The experimental results
demonstrated the effectiveness of the method by uncovering ten bugs
in the RTL description of the Device Under Verification (DUV).

7.1.2 FDSOI MPU
In Chapter 3, we implemented a RISC-V based MCU that hosts a DSP-
enhanced CPU, it exploits a heterogeneous memory subsystem, and
it embeds a fixed-function Binary Neural-Network (BNN) accelerator.
Such MCU has been implemented in GF22 FDSOI technology. It
has three different operational modes to trade memory capacity and
energy efficiency in active mode or optimize power consumption in
idle mode in a duty-cycled scenario by exploiting a heterogeneous
memory subsystem made of 504 kB, and 16 kB of Standard Cell based
Memorys (SCMs).

Thanks to the FDSOI and FBB, the MCU can leverage a wide
voltage operating range to enable DVFS and NTC from 0.5V, where
it consumes only 0.95mW running at 156MHz, to 938MHz at 0.8V
with FBB applied at 1.4V.
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The MCU is the most performant among competitors as it achieves
up to 2400 million equivalent RV32IMC MOPS (3.7x better than SOA)
and achieves the best energy efficiency of 483MOPS/mW for tiny
applications that fit in the SCMs (2.3x better than SOA).

When error-tolerant applications such as BNNs are executed on
the accelerator, aggressive voltage scaling can be leveraged to trade
accuracy and power consumption in tight power-constrained or always-
on scenarios. In this condition, the system exploits the BNN accelerator
to achieve 13 binary ops per pJ while keeping a peak power envelope
of 674µW.

We showed that open-source microcontroller architectures imple-
mented in advanced technology nodes could achieve top performance
and energy efficiency to cope with IoT requirements thanks to the
compound of CPU performance, MCU architecture, and technology
that can exploit efficiently DVFS and FBB.

7.1.3 Fixed-Function Accelerators
In this Chapter, we presented pSIMD extensions to a fixed-function
accelerator that performs 2D-convolutions. The accelerator has been
extended to support four parallel 16x4 bit dot-products, two parallel
16x8 bit dot-products, and 16x16 bit multiply-and-accumulate oper-
ation. The accelerator’s datapath has been designed to optimize
area by sharing resources through sub-modules and saving power by
extensively applying clock-gating policies. The accelerator is tightly
coupled with CPUs for efficient synchronizations and data exchange
between processing elements via the shared L1 memory, and no copy
at all is required - only a simple pointer exchange. The accelerator has
been integrated into Fulmine. A 65 nm SoC targeting the emerging
class of smart, secure near-sensor data analytics for IoT end-nodes
presented in [124]. We showed the accelerator performance and
energy efficiency gains from 0.8 to 1.2V with respect to full-precision
support (i.e., 16 bit weights), and with respect to optimized four-core
software implementations. Results showed that the accelerator is 82x
faster than a single, DSP-enhanced core, and 11x faster than four
DSP-enhanced cores, thanks to specialized architecture. When using
the reduced 8/4 bit format, the HWCE is 1.8x/2.4x faster. The HWCE
can work at near-threshold (0.8V), achieving 465GMAC/s/W for
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a 5x5 2D-Convolution, 26x more energy-efficient than a cluster of
four DSP-enhanced cores.

7.1.4 Software Accelerators
In Chapter 5, we presented Neuro-PULP, a power efficient and spike
rate proportional, high performance, scalable and versatile event-based
system for next generation neural interfaces that deal with: i) high-
frequency, high-dimension brain APs to perform spike detection and
compression; and ii) low-frequency, low-dimension EEG signals to
extract complex features to perform drowsiness detection.

The system is composed of an MCU implemented in TSMC 40nm
based on [64], which leverages a software accelerator made of 8
DSP-enhanced cores, different power states to enable efficient duty
cycling, and it connected via SPI to an event-based 64-channel Analog
front-end (AFE) [72].

The system offers high flexibility from streaming to event mode. In
streaming mode, 64 channels are continuously acquired and compressed
by the software accelerator in 8576µs consuming only 690µW/channel
(or consuming only 478µW/channel in 16750 ns for the optimized
version). Whereas in event mode, events are triggered for every
detected spike by the ADC and sorted by the single-core in the MCU
in an average power budget of 114µW/channel, outperforming SoA
systems by 4x.

We show that thanks to the software accelerator and power states,
SOA MCU-based implementations of neuro-applications are possible.
We showed that the event-based approach leads to a 4x average power
reduction with respect to streaming-based approaches (as the one
in [161]) in a typical spike sorting application where 10 spikes/s/channel
are detected on average. In addition, the proposed system can execute
more complex algorithms when operating in streaming mode on a higher
number of channels with respect to MCU-based SOA implementations
[61] in a limited power budged of 690µW/channel, consuming 3x less
power than SOA DSP-based solutions [162], opening the possibility
to implement even more computational demanding algorithms [107]
leveraging the software-programmability and the high-performance
and energy efficiency of the Parallel Ultra Low Power Platform (PULP)
cluster.
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Finally, we described how a software accelerator implemented in
ST FDSOI 28nm technology working in near-threshold could boost
energy efficiency on applications that target lower bandwidth signals
like the EEG for drowsiness detection. The system implemented on
the PULPv3 MCU, which employs a software accelerator made of 4
DSP-enhanced cores, achieves 63.3 higher energy efficiency.

7.1.5 Soft-Hardware Accelerators
In Chapter 6, we presented a RISC-V based MCU extended with
an soft-hardware accelerator (eFPGA) for flexible power-constrained
energy-efficient IoT devices. The system has built-in GF22, it occupies
9mm2, and it leverages body bias to trade performance and power.
The eFPGA is a 32x32 array macro provided by QuickLogic connected
to the rest of the system through four parallel memory interfaces
(128 bit per transaction); a TX/RX Input/Output (IO) Direct Memory
Access (DMA) interface; sixteen events to interact with the CPU;
GPIOs; and APB. The system shows how the eFPGA can be used to
extend and accelerate the SoC peripheral subsystem, as well as a CPU
accelerator. The eFPGA has more than 6K LUTs and 4K flip-flops,
enough to implement standard and custom peripherals used in the IoT
domain and simple accelerators to enhance the energy efficiency of
the SoC. It achieves 46.83µW/MHz, top in class in the mW domain
of IoT devices. The CPU runs up to 600MHz (620 with FBB), more
than 7x faster than the best energy efficient MCU. Leakage power
of the whole system can be as low as 552µW when the MCU runs
at 0.5V, and the eFPGA is kept in state retentive deep-sleep via
RBB. We show that integrating an eFPGA in an MCU in GF22 gives
to IoT devices the high versatility needed for extended product life
and shorter time-to-market, still without waiving performance, power,
and energy efficiency. We evaluated the system on a wide range of
supply voltage to evaluate DVFS and NTC, showing that the MCU
achieves 3.4x better performance and 2.9x better energy efficiency
than other fabricated heterogeneous reconfigurable System-On-Chips
(SOCs) of the same class.
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7.2 Outlook
Following, a view regarding possible future works is provided.

Hardwired fixed-function accelerators are leading in performance
and energy efficiency. However, they lack versatility. A possible alter-
native is exploring highly specialized application-specific instruction-set
processors. One possible architecture may consist of a small instruction-
fetch unit that feeds big datapath circuits to accelerate some specific
kernels as 2D-convolutions or dot-products. Such instructions should
be application-specific and should fuse many operations in a single-word
to minimize software penalties. In the XNE accelerator presented in
Chapter 3, the Zero-riscy core has been used to replace the controller
of the accelerator to provide post-silicon fixes and programmability.
Results have still to be measured.

For what concerns the bio-applications domain, multiple SPI
modules can be used to increase the number of channels that the MCU
can deal with. Also, computation capabilities can be integrated into
the SPI modules on-the-fly to increase performance. A PULPissimo
chip with eight SPI modules has been taped-out in 65nm. Results
have still to be measured.

Finally, a complete PULP architecture with fixed-function, soft-
ware, and soft-hardware accelerator can be built to enable maximum
efficiency and maximum flexibility. Such SoC should be designed with
different power states and RBB to minimize leakage power overheads,
as well as exploiting DVFS and NTC when possible.





Appendix A

Notation and Acronyms

Acronyms

ADC Analog-to-Digital converter
AFE Analog front-end
ALU Arithmetic and Logic Unit
AP Action Potential
APB AMBA Advanced Peripheral Bus
API application Programming Interface
ASIC Application-Specific Integrated Circuit

BNN Binary Neural-Network

CMOS Complementary Metal-Oxide Semiconductor
CNN Convolutional Neural Network
CPU Central Processing Unit
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DMA Direct Memory Access
DSP Digital Signal Processing
DUV Device Under Verification
DVFS Dynamic-Voltage-Frequency Scaling
DWT Discrete Wavelet Transform

ECG Electrocardiography
EEG Electroencephalography
EMG Electromyography
EX Execution

FBB Forward Body-Biasing
RBB Reverse Body-Biasing
FCB Fabric Configuration Block
FDSOI Fully Depleted Silicon-On-Insulator
FFT fast Fourier transform
FIR Finite-Impulse-Response
FLL Frequency-locked loop
FPGA field-programmable gate array
FPU Floating Point Unit
FSM Finite State Machine

GF22 Globalfoundries GF22FDX
GPIO General-purpose Input/Output

HW Hardware

ID Instruction Decode
IDE Instruction Decode and Execute
IF Instruction Fetch
IO Input/Output
IoT Internet-of-things
IPC Instruction Per Cycle
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ISA Instruction Set Architecture
ISS Instruction-Set Simulator

LFP Local Field Potential

MAC Multiply And Accumulate
MCU Micro Controller Unit
MPSoC MultiProcessor SoC

NT Near-Threshold
NTC Near-Threshold Computing

OTS Off-the-Shelf

PMP Physical Memory Protection
PPA Power-Performance-Area
PULP Parallel Ultra Low Power Platform

ROM Read-only-memory

SCM Standard Cell based Memory
SIMD Single Instruction Multiple Data
SOA State-of-the-art
SOC System-On-Chip
SRAM Static Random Access Memory
SVM Support-Vector-Machine
SW Software

WB Write Back
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