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We study a syntax for specifying quantitative łassertionsžÐfunctions mapping program states to numbersÐfor
probabilistic program verification. We prove that our syntax is expressive in the following sense: Given any
probabilistic program C , if a function f is expressible in our syntax, then the function mapping each initial
state σ to the expected value of f evaluated in the final states reached after termination of C on σ (also called
the weakest preexpectation wpJCK (f )) is also expressible in our syntax.

As a consequence, we obtain a relatively complete verification system for reasoning about expected values
and probabilities in the sense of Cook: Apart from proving a single inequality between two functions given by
syntactic expressions in our language, given f , д, and C , we can check whether д ⪯ wpJCK (f ).
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1 INTRODUCTION

Probabilistic programs are ordinary programs whose execution may depend on the outcome of
random experiments, such as sampling from primitive probability distributions or branching on
the outcome of a coin flip. Consequently, running a probabilistic program (repeatedly) on a single
input generally gives not a single output but a probability distribution over outputs.

Introducing randomization into computations is an important tool for the design and analysis of
efficient algorithms [Motwani and Raghavan 1999]. However, increasing efficiency by randomization
often comes at the price of introducing a non-zero probability of producing incorrect outputs.
Furthermore, even though a program may be efficient in expectation, individual executions may
exhibit a longÐeven infiniteÐrun time [Bournez and Garnier 2005; Kaminski et al. 2018].
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39:2 Batz, Kaminski, Katoen, and Matheja

Reasoning about probabilistic phenomena is hard. For instance, deciding termination for proba-
bilistic programs is strictly harder than for ordinary programs [Kaminski and Katoen 2015; Kaminski
et al. 2019]. Nonetheless, probabilistic program verification is an active research area: After sem-
inal work on semantics by Kozen [1979, 1981], many different techniques have been developed,
see [Hart et al. 1982] for an early example. Modern approaches include martingale-based tech-
niques [Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2016a,b, 2017; Fu and Chatterjee
2019; Huang et al. 2018] and weakest-precondition-style calculi [Batz et al. 2019; Kaminski 2019;
Kaminski et al. 2018; McIver and Morgan 2005; Ngo et al. 2018]. The former can be phrased in
terms of the latter, and all aforementioned techniques can be understood as instances or extensions
of Kozen’s probabilistic propositional dynamic logic (PPDL) [Kozen 1983, 1985].

Probabilistic program verification, extensionally. There are two perspectives for reasoning about
programs: the extensional and the intensional. Whereas intensional approaches provide a syntax, i.e.,
a formal language, for assertions, extensional approaches admit arbitrary assertions and dispense
with considerations about syntax altogetherÐthey treat assertions as purely mathematical entities.

A standard technique for probabilistic program verification that takes the extensional approach
is the weakest preexpectation (wp) calculus of McIver and Morgan [2005]Ðitself an instance of
Kozen’s PPDL [Kozen 1983, 1985]. Given a probabilistic program C and some function f (called
the postexpectation), mapping (final) states to numbers, the weakest preexpectation wpJCK (f ) is a
mapping from (initial) states to numbers, such that

wpJCK (f ) (σ ) = Expected value of f , measured in final states reached
after termination of C on initial state σ .

For probabilistic programs with discrete probabilistic choices, the wp calculus can be defined for
arbitrary real-valued postexpectations f [Kaminski 2019; McIver and Morgan 2005].

Probabilistic program verification, intensionally. While the extensional approach often yields
elegant formalisms, it is unsuitable for developing practical verification tools, which ultimately rely
on some syntax for assertions. In particular, we cannotÐin generalÐrely on the property, implicitly
assumed in the extensional approach, that there is no distinction between assertions representing
the same mathematical entity: a tool may not realize that 4 · 0.5 and ∑∞

i=0
1/2i represent the same

mathematical entity (the number 2).
An example of intensional probabilistic program verification is the verifier of Ngo et al. [2018]

which specifies a simple syntax which is extensible by user-specified base and rewrite functions.

Main contribution. Given a calculus for program verification and an assertion language, two
fundamental questions immediately arise:

(1) Soundness: Are only true assertions derivable in the calculus?
(2) Completeness: Can every true assertion be derived and is it expressible in the assertion language?

While soundness is typically a must for any verification system, completeness isÐas noted by
Apt and Olderog [2019] in their recent survey of 50 years of Hoare logicÐa łsubtle matter and
requires careful analysisž. In fact, to the best of our knowledge, existing probabilistic program
verification techniques (including all of the above references amongst many other works) either
take the extensional approach or do not aim for completeness. In this paper, we take the intensional
path and make the following contribution to formal reasoning about probabilistic programs:

We provide a simple formal language of functions for probabilistic program verification such that:

If f is syntactically expressible, then wpJCK (f ) is syntactically expressible.
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Relatively Complete Verification of Probabilistic Programs 39:3

A language fromwhich we can draw functions f with the above property is called expressive. Having
an expressive language renders the wp calculus relatively complete [Cook 1978]: Given functions f
and д in our language and a probabilistic program C , suppose we want to verify д ⪯ wpJCK (f ),
where ⪯ denotes the point-wise order of functions mapping states to numbers. Due to expressive-
ness, we can effectively construct in our language a function h representing wpJCK (f ). Hence,
verification is complete modulo checking whether the inequality д ⪯ h between two functions
in our language holds. Indeed, Hoare logic is also only complete modulo deciding an implication
between two formulae in the language of first-order arithmetic [Apt and Olderog 2019].

Challenges and usefulness. Notice that providing some expressive language is rather easy: A single-
ton language that can only represent the null-function is trivially expressive since, for any program
C , the expected value of 0 is 0. That is, wpJCK (0) = 0. The challenge in a quest for an expressive
language for probabilistic program verification is hence to find a language that (i) is closed under
taking weakest preexpectations and (ii) can express interesting (quantitative) properties.
Indeed, our language can: For instance, it is capable of expressing termination probabilities

(via wpJCK (1)Ðthe expected value of the constant function 1). These can be irrational numbers
like the reciprocal of the golden ratio 1/φ [Olmedo et al. 2016]. In general, termination probabilities
carry a high internal degree of complexity [Kaminski et al. 2019]. Our language can also express
probabilities over program variables on termination of a program and that can be expressed in

terms of π ,
√
3 and so forth. These can e.g., be generated by Buffon machines, i.e., probabilistic

programs that only use Bernoulli experiments [Flajolet et al. 2011].
Termination probabilities already hint at one of the technical challenges we face: Even starting

from a constant function like 1, our language needs to express mappings from states to highly
complex real numbers. Another challenge we face is that when constructing wpJCK (f ), due to
probabilistic branching in combination with loops, considering single execution traces is not enough:
We have to collect all terminating traces and average over the values of f in terminal states. We
attack these challenges via Gödel numbers for rational sequences and encodings of Dedekind cuts.
Aside from termination probabilities, our language is capable of expressing a wide range of

practically relevant functions, like polynomials or Harmonic numbers. Polynomials are a common
subclass of ranking functions1 for automated probabilistic termination analysis; harmonic numbers
are ubiquitous in expected runtime analysis. We present more scenarios covered by our syntax and
avenues for future work in Sections 12 and 13.

Overall, we believe that an expressive syntax for probabilistic program verification is what really
expedites a search for tractable fragments of both programs and łassertionž language in the first
place. Studying such fragments may also yield additional insights: For example, Kozen [2000] and
Kozen and Tiuryn [2001] studied the propositional fragment of Hoare logic and showed that it is
subsumed by an extension of KATÐKleene algebra with tests.

Further related work. Relative completeness of Hoare logic was shown by Cook [1978]. Winskel
[1993] and Loeckx et al. [1984] proved expressiveness of first-order arithmetic for Dijkstra’s
weakest precondition calculus. For separation logic [Reynolds 2002]Ða very successful logic for
compositional reasoning about pointer programsÐexpressiveness was shown by Tatsuta et al. [2009,
2019], almost a decade later than the logic was originally developed and started to be used.
Perhaps most directly related to this paper is the work by den Hartog and de Vink [2002] on a

Hoare-like logic for verifying probabilistic programs. They prove relative completeness (also in the
sense of Cook [1978]) of their logic for loop-free probabilistic programs and restricted postconditions;

1In probabilistic program analysis terminology: ranking supermartingales.
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39:4 Batz, Kaminski, Katoen, and Matheja

they leave expressiveness for loops as an open problem: łIt is not clear whether the probabilistic
predicates are sufficiently expressive [. . . ] for a given while loop.ž

Organization of the paper. We give an introduction to syntax, extensional semantics, and verification
systems for probabilistic programs, in particular the weakest preexpectation calculus, in Section 2.
We formulate the expressiveness problem in Section 3. We define the syntax and semantics of our
expressive language of expectations in Section 4. We prove expressiveness of our language for loop-free
probabilistic programs in Section 5. We then move to proving expressiveness of our language
for loops. We outline the expressiveness proof for loops in Section 6 and do the full technical proof
throughout Sections 7 ś 10. In Section 11 and Section 12, we discuss extensions and a few scenarios
in which our language could be useful; we conclude and discuss open problems in Section 13.
Detailed proofs of all theorems are found in an extended version of this paper, which is available

online [Batz et al. 2020].

2 PROBABILISTIC PROGRAMS — THE EXTENSIONAL PERSPECTIVE

We briefly recap classical reasoning about probabilistic programs á la Kozen [1985], which is
agnostic of any particular syntax for expressions or formulaeÐit takes an extensional approach.

2.1 The Probabilistic Guarded Command Language

We consider the imperative probabilistic programming language pGCL featuring discrete proba-
bilistic choicesÐbranching on outcomes of coin flipsÐas well as standard control-flow instructions.

2.1.1 Syntax. Formally, a program C in pGCL adheres to the grammar

C −→ skip (effectless program)

| x := a (assignment)

| C ; C (sequential composition)

| {C } [p ] {C } (probabilistic choice)

| if (φ ) {C } else {C } (conditional choice)

| while (φ ) {C } , (while loop)

where x is taken from a countably infinite set of variables Vars, a is an arithmetic expression over
variables, p ∈ [0, 1] ∩ Q is a rational probability, and φ is a Boolean expression (also called guard)
over variables. For an overview of metavariables C , x , a, φ, . . . , used throughout this paper, see
Table 1 at the end of this section.

For the moment, we assume that both arithmetic and Boolean expressions are standard expres-
sions without bothering to provide them with a concrete syntax. However, we will require them to
adhere to a concrete syntax which we provide in Sections 4.1 and 4.2.

2.1.2 Program States. A program state σ maps each variable in Vars to its valueÐa positive rational
number in Q≥0.2 To ensure that the set of program states is countable,3 we restrict ourselves to
states in which at most finitely many variablesÐintuitively those that appear in a given programÐ
are assigned non-zero values; every state can thus be understood as a finite mapping that only
keeps track of assignments to non-zero values. Formally, the set Σ of program states is

Σ =
{

σ : Vars → Q≥0
�
� { x ∈ Vars | σ (x) , 0 } is finite

}

.

2To keep the presentation simple, we consider only unsigned variables; we discuss this design choice and an extension to

signed variables, which can also evaluate to negative rationals, in Section 11.
3Working with probabilistic programs over a countable set of states avoids technical issues related to measurability.
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We use metavariables σ , τ , . . . , for program states, see also Table 1. We denote by JeKσ the evaluation
of (arithmetic or Boolean) expression e in σ , i.e., the value obtained from evaluating e after replacing
every variable x in e by σ (x). We define the semantics of expressions more formally in Section 4.4.

2.1.3 Forward Semantics. One of the earliest ways to give semantics to a probabilistic program C

is by means of forward-moving measure transformers [Kozen 1979, 1981]. These transform an
initial state σ into a probability distribution µσ

C
over final states (i.e., a measure on Σ). We consider

Kozen’s semantics the reference forward semantics. More operational semantics are provided in
the form of probabilistic transition systems [Gretz et al. 2014; Kaminski 2019], where programs
describe potentially infinite Markov chains whose state spaces comprise of program states, or trace
semantics [Cousot and Monerau 2012; Di Pierro and Wiklicky 2016; Kaminski et al. 2019], where
the traces are sequences of program states and each trace is assigned a certain probability.
In any of these semantics, the probabilistic choice {C1 } [p ] {C2 } flips a coin with bias p

towards heads. If the coin yields heads,C1 is executed (with probability p); otherwise,C2. Moreover,
skip does nothing. x := a assigns the value of expression a (evaluated in the current program
state) to x . The sequential compositionC1 ;C2 first executesC1 and thenC2. The conditional choice
if (φ ) {C1 } else {C2 } executes C1 if the guard φ is satisfied; otherwise, it executes C2. Finally,
the loop while (φ ) {C } keeps executing the loop body C as long as φ evaluates to true.

2.2 Weakest Preexpectations

Dually to the forward semantics, probabilistic programs can also be provided with semantics in the
form of backward-moving random variable transformers, originally due to Kozen [1983, 1985]. This
paper is set within this dual view, which is a standard setting for probabilistic program verification.

2.2.1 Expectations. Floyd-Hoare logic [Floyd 1967; Hoare 1969] as well as the weakest precondition
calculus of Dijkstra [1976] employ first-order predicates for reasoning about program correctness.
For probabilistic programs, Kozen [1983, 1985] was the first to generalize from predicates to
measurable functions (or random variables). Later, McIver and Morgan [2005] coined the term
expectationÐnot to be confused with expected valueÐfor such functions. In reference to Dijkstra’s
weakest precondition calculus, their verification system is called the weakest preexpectation calculus.

Formally, the set E of semantic expectations is defined as

E =
{

X
�
� X : Σ → R∞≥0

}

,

i.e., functions X that associate a non-negative quantity (or infinity) to each program state. We use
metavariables X , Y , Z for semantic expectations.

Expectations form the assertion łlanguagež of the weakest preexpectation calculus. However, we
note thatÐso farÐexpectations are in no way defined syntactically: They are just the whole set of
functions from Σ to R∞≥0. It is hence borderline to speak of a language. The goal of this paper is to
provide a syntactically defined subclass of EÐi.e., an actual languageÐsuch that formal reasoning
about probabilistic programs can take place completely within this class.
We furthermore note that we work with more general expectations than McIver and Morgan

[2005], who only allow bounded expectations, i.e., expectationsX for which there is a boundα ∈ R≥0
such that ∀σ : X (σ ) ≤ α . In contrast to McIver and Morgan, our structure (E, ⪯) of unbounded
expectations forms a complete lattice with least element 0 and greatest element∞, where ⪯ lifts
the standard ordering ≤ on the (extended) reals to expectations by pointwise application. That is,

X ⪯ Y iff ∀σ ∈ Σ : X (σ ) ≤ Y (σ ) .
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σ

•

• • • . . .
X (τ1)

X (τ2) X (τ3)Exp
[ ]

C

wpJCK (X )
σ ′

•

• •
•

. . .
X (τ ′

1
) X (τ ′

2
)

X (τ ′
3
)

Exp
[ ]

C

wpJCK (X )

Fig. 1. The weakest preexpectation wpJCK (X )maps every initial state σ to the expected value of X , measured

with respect to the final distribution over states reached after termination of program C on input σ . wpJCK is
backward-moving in the sense that it transforms an X : Σ → R∞≥0, evaluated in final states after termination

of C , into wpJCK (X ) : Σ → R∞≥0, evaluated in initial states before execution of C .

Examples of (bounded) expectations include, for instance, Iverson [1962] brackets [φ], which
associate to a Boolean expression φ its indicator function:4

[φ] = λσ .

{

1, if JφKσ
= true

0, if JφKσ
= false .

Iverson brackets embed Boolean predicates into the set of expectations, rendering McIver and
Morgan’s calculus a conservative extension of Dijkstra’s calculus.
Examples of unbounded expectations are arithmetic expressions over variables, like

x + y = λσ . σ (x) + σ (y) ,
where we point-wise lifted common operators on the reals, such as +, to operators on expectations.
Strictly speaking, McIver and Morgan’s calculus cannot handle expectations like x + y off-the-shelf.
We denote by X [x/a] the łsubstitutionž of variable x by expression a in expectation X , i.e.,

X [x/a] = λσ . X
(

σ
[

x 7→ JaKσ ]
)

, where σ [x 7→ r ] = λy.

{

r , if y = x,

σ (y), else.

2.2.2 Backward Semantics: The Weakest Preexpectation Calculus. Suppose we are interested in the
expected value of the quantity (expectation) X after termination of C . In analogy to Dijkstra, X is
called the postexpectation and the sough-after expected value is called the weakest preexpectation
of C with respect to postexpectation X , denoted wpJCK (X ) [McIver and Morgan 2005]. As the
expected value of X generally depends on the initial state σ on which C is executed, the weakest
preexpectation wpJCK (X ) is itself also a map of type E, mapping an initial program state σ to the
expected value ofX (measured in the final states) after successful termination ofC on σ , see Figure 1.
The weakest preexpectation calculus is a backward semantics in the sense that it transforms a
postexpectation X ∈ E, evaluated in final states after termination of C , into a preexpectation
wpJCK (X ) ∈ E, evaluated in initial states before execution of C .

Between forward-moving measure transformers and backward-moving expectation transformers,
there exists the following duality established by Kozen:

Theorem 2.1 (Kozen Duality [1983; 1985]). If µσ
C
is the distribution over final states obtained by

running C on initial state σ , then for any postexpectation X ,
∑

τ ∈Σ
µσC (τ ) · X (τ ) = wpJCK (X ) (σ ) .

4We use λ-expressions to denote functions; function λx . f applied to a evaluates to f in which x is replaced by a.
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C wp JCK (X )

skip X

x := a X [x/a]

C1 ; C2 wpJC1K
(

wpJC2K (X )
)

{C1 } [p ] {C2 } p · wpJC1K (X ) + (1 − p) · wpJC2K (X )
if (φ ) {C1 } else {C2 } [φ] · wpJC1K (X ) + [¬φ] · wpJC2K (X )
while (φ ) {C ′ } lfp Y . [¬φ] · X + [φ] · wpJC ′K (Y )

Fig. 2. Rules defining the weakest preexpectation of program C with respect to postexpectation X .

In particular, if X = [φ], then wpJCK (X ) (σ ) is the probability that running C on σ terminates in a
final state satisfying φÐthus generalizing Dijkstra’s weakest preconditions.

As with standard weakest preconditions, weakest preexpectations are not determined monolithi-
cally for the whole program C as characterized above. Rather, they are determined compositionally
using a backward-moving expectation transformer

wp : pGCL → (E→ E)

which is defined recursively on the structure of C according to the rules in Figure 2. Most of
these rules are standard: wpJskipK is the identity as skip does not modify the program state.
For the assignment x := a, wpJx := aK (X ) substitutes in X the assignment’s left-hand side x by
its right-hand side a. For sequential composition, wpJC1 ; C2K (X ) first determines the weakest
preexpectation wpJC2K (X ) which is then fed into wpJC1K as a postexpectation. For both the
probabilistic choice {C1 } [p ] {C2 } and the conditional choice if (φ ) {C1 } else {C2 }, the
weakest preexpectation with respect to X yields a convex sum p ·wpJC1K (X )+ (1−p) ·wpJC2K (X ).
In the former case, the weights are given by the probability p. In the latter case, they are determined
by the guard φ, i.e., we have p = [φ] and 1 − [φ] = [¬φ].
The weakest preexpectation of a loop is given by the least fixed point of its unrollings, i.e.,

wpJwhile (φ ) {C ′ }K (X ) = lfp Y . ΦX (Y ) ,

where the characteristic function ΦX of while (φ ) {C ′ } with respect to X ∈ E is defined as

ΦX : E→ E, Y 7→ [¬φ] · X + [φ] · wpJC ′K (Y ) .

Since (E, ≤) is a complete lattice and ΦX is monotone, fixed points exist due to the Knaster-Tarski
fixed point theorem; we take the least fixed point because we reason about total correctness.

Throughout this paper, we exploit that ΦX is, in fact, Scott-continuous (cf. [Olmedo et al. 2016]).
Kleene’s theorem then allows us to approximate the least fixed point iteratively:

Lemma 2.2 (Kleene et al. [1952]). We have

wpJwhile (φ ) {C ′ }K (X ) = lfp Y . ΦX (Y ) = sup
n∈N

Φ
n
X (0) ,

where 0 = λσ . 0 is the constant-zero expectation and Φn
X
(Y ) denotes the n-fold application of ΦX to Y .
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39:8 Batz, Kaminski, Katoen, and Matheja

Table 1. Metavariables used throughout this paper.

Entities Metavariables Domain Defined

Natural numbers n, i, j, k N

Positive rationals r , s, t Q≥0

Positive extended reals α, β, γ R∞≥0
Rational probabilities p, q [0, 1] ∩ Q

Variables x, y, z, v, w, u,num Vars Section 2.1

Arithmetic expressions a, b AExpr Section 4.1

Boolean expressions φ, ψ , ξ Bool Section 4.2

Syntactic expectations f , д, h Exp Section 4.3

Semantic expectations X , Y , Z E Section 2.2.1

Programs C pGCL Section 2.1

Program states σ , τ Σ Section 2.1.2

3 TOWARDS AN EXPRESSIVE LANGUAGE FOR EXPECTATIONS

As long as we take the extensional approach to program verification, i.e., we admit all expectations
in E, reasoning about expected values of pGCL programs is complete: For every program C and
postexpectation X , it is, in principle, possible to find an expectation wpJCK (X ) ∈ E whichÐby the
above soundness propertyÐcoincides with the expected value of X after termination of C .

The main goal of this paper is to enable (relatively) complete verification of probabilistic programs
by taking an intensional approach. That is, we use the same verification technique described in
Section 2 (i.e., the weakest preexpectation calculus) but

fix a set Exp of syntactic expectations f .

We use metavariables f , д, h, . . . , for syntactic expectations, as opposed to X , Y , Z , . . . , for semantic
expectations in E, see also Table 1. While f itself is merely a syntactic entity to begin with, we
denote by Jf K the corresponding semantic expectation in E. Having a syntactic set of expectations
at hand immediately raises the question of expressiveness:

For f expressible in Exp, is the weakest preexpectation wpJCK (Jf K) again expressible in Exp?

Definition 3.1 (Expressiveness of Expectations). The set Exp of syntactic expectations is expressive
iff for all programs C and all f ∈ Exp there exists a syntactic expectation д ∈ Exp, such that

wpJCK (Jf K) = JдK . △

Notice that constructing some expressive set of syntactic expectations is straightforward. For
example, the set Exp = {0}, which consists of a single expectation 0Ðinterpreted as the constant
expectation J0K = λσ . 0Ðis expressive: wpJCK (J0K) = J0K holds for every C by strictness of wp.5

The main challenge is thus to find a syntactic set Exp that (i) can be proven expressive and
(ii) covers interesting propertiesÐat the very least, it should cover all Boolean expressions φ (to
reason about probabilities) and all arithmetic expressions a (to reason about expected values).

5wp being strict means that wpJCK (0) = 0 for every C , see [Kaminski 2019].
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Relatively Complete Verification of Probabilistic Programs 39:9

4 SYNTACTIC EXPECTATIONS

We now describe the syntax and semantics for a set Exp of syntactic expectations which we will
(in the subsequent sections) prove to be expressive and which can be used to express interesting
properties such as, amongst others, the expected value of a variable x , the probability to terminate,
the probability to terminate in a set described by a first-order arithmetic predicate φ, etc.

4.1 Syntax of Arithmetical Expressions

We first describe a syntax for arithmetic expressions, which form precisely the right-hand-sides of
assignments that we allow in pGCL programs. Naturally, the syntax of arithmetical expressions will
reoccur in our syntax of expectations. Formally, the set AExpr of arithmetic expressions is given by

a −→ r ∈ Q≥0 (non-negative rationals)

| x ∈ Vars (Q≥0-valued variables)

| a + a (addition)

| a · a , (multiplication)

| a Û− a , (subtraction truncated at 0 (łmonusž))

where Vars is a countable set of Q≥0-valued variables. We use metavariables r , s, t for non-negative
rationals, x, y, z, v, w, u for variables, and a, b, c for arithmetic expressions, see also Table 1.

4.2 Syntax of Boolean Expressions

We next describe a syntax for Boolean expressions over AExpr, which form precisely the guards that
we allow in pGCL programs (for conditional choices and while loops). Again, the syntax of Boolean
expressions will also naturally reoccur in our syntax of expectations. Formally, the set Bool of
Boolean expressions is given by

φ −→ a < a (strict inequality of arithmetic expressions)

| φ ∧ φ (conjunction)

| ¬φ . (negation)

We use metavariables φ, ψ , ξ for Boolean expressions, see also Table 1.
The following expressions are syntactic sugar with their standard interpretation and semantics:

false , true , φ ∨ψ , φ −→ ψ , a = b , and a ≤ b .

4.3 Syntax of Expectations

We now describe the syntax of a set of expressive expectations which can be used as both pre- and
postexpectations for the verification of probabilistic programs. Formally, the set Exp of syntactic
expectations is given by

f −→ a (arithmetic expressions)

| [φ] · f (guarding)

| f + f (addition)

| a · f (scaling by arithmetic expressions)

| Sx : f (supremum over x )

| Jx : f . (infimum over x )

As mentioned before, we use metavariables f , д, h for syntactic expectations, see also Table 1. Let
us go over the different possibilities of syntactic expectations according to the above grammar.
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39:10 Batz, Kaminski, Katoen, and Matheja

Table 2. The semantics of arithmetic expressions a and Boolean expressions φ.

a JaKσ
φ JφKσ

= true iff

r (∈ Q≥0) r a < b JaKσ
< JbKσ

x (∈ Vars) σ (x) ψ ∧ ξ Jψ Kσ
= true = Jξ Kσ

b + c JbKσ
+ JcKσ ¬ψ Jψ Kσ

= false

b · c JbKσ · JcKσ

b Û− c
{

JbKσ − JcKσ
, if JbKσ ≥ JcKσ

0 , else

Arithmetic expressions. These form the base case and it is immediate that they are needed for an
expressive language. Assume, for instance, that we want to know the łexpectedž (in fact: certain)
value of variable xÐitself an arithmetic expression by definitionÐafter executing x := a. Then this is
given by wpJx := aK (x) = aÐagain an arithmetic expression. As a could have been any arithmetic
expression, we at least need all arithmetic expressions in an expressive expectation language.

Guarding and addition. Both guardingÐmultiplication with a predicateÐand addition are used
for expressing weakest preexpectations of conditional choices and loops. As we have, for instance,

wpJif (φ ) {C1 } else {C2 }K (f ) = [φ] · wpJC1K (f ) + [¬φ] · wpJC1K (f ) ,
it is evident that guarding and addition is convenient, if not necessary, for being expressive.

Scaling by arithmetic expressions. One could ask why we restrict to multiplications of arithmetic
expressions and expectations and do not simply allow for multiplication of two arbitrary expec-
tations f · д. We will defer this discussion to Section 4.6. For now, it suffices to say that we can
express all multiplications we need without running into trouble with quantifiers which would
happen otherwise.

Suprema and infima. The supremum and infimum constructs Sx : f and Jx : f take over the role
of the ∃ and ∀ quantifiers of first-order logic. We use them to bind variables x . The Sand Jquan-
tifiers are necessary to make our expectation language expressive in the same was as, for instance,
at least the ∃ quantifier is necessary to make first-order logic expressive for weakest preconditions
of non-probabilistic programs.

As is standard, we additionally admit parentheses for clarifying the order of precedence in
syntactic expectations. To keep the amount of parentheses to a minimum, we assume that · has
precedence over + and that the quantifiers Sand Jhave the least precedence.

The set of free variables FV (f ) ⊆ Vars is the set of all variables that occur syntactically in f and
that are not in the scope of some Sor Jquantifier. We write f (x1, . . . , xn) to indicate that at most
the variables x1, . . . , xn occur freely in f . Given a syntactic expectation f , a variable x ∈ FV (f ),
and an arithmetic expression a, we denote by f [x/a] the syntactic replacement of every occurrence
of x in f by a. Given a syntactic expectation of the form f (. . . , xi , . . .), we often write f (. . . ,a, . . .)
instead of the more cumbersome f (. . . , xi , . . .) [xi/a].

4.4 Semantics of Expressions and Expectations

The semantics of arithmetic and Boolean expressions is standardÐsee Table 2. For a program state σ ,
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we define

σ [x 7→ r ] ≜ λy.

{

r , if y = x

σ (y), otherwise.

The semantics Jf Kσ of an expectation f under state σ is an extended positive real (i.e., a positive
real number or ∞) defined inductively as follows:

JaKσ
≜ JaKσ 6

J[φ] · f Kσ
≜

{

Jf Kσ
, if JφKσ

= true

0, else

Jf + дKσ
≜ Jf Kσ

+ JдKσ

Ja · f Kσ
≜ JaKσ · Jf Kσ

J Sx : f Kσ
≜ sup

{

Jf Kσ [x 7→r ]
�
�
� r ∈ Q≥0

}

J Jx : f Kσ
≜ inf

{

Jf Kσ [x 7→r ]
�
�
� r ∈ Q≥0

}

We assume that 0 · ∞ = 0. Most of the above are self-explanatory. The most involved definitions are
the ones for quantifiers. The interpretation of the Sx : f quantification, for example, interprets f
under all possible values of the bounded variable x and then returns the supremum of all these
values. Analogously, Jx : f returns the infimum. Notice thatÐeven though all variables evaluate to
rationalsÐboth the supremum and the infimum are taken over a set of reals. Hence, an expectation
f involving Sor Jpossibly evaluates to an irrational number. For example, the expectation

f = Sx : [x · x < 2] · x ,

evaluates to
√
2 < Q≥0 under every state σ .

The supremum of ∅ is 0. Dually, the infimum of ∅ is∞. The supremum of an unbounded set is∞.
We also note that our semantics can generate ∞ only by using a Squantifier.

As a shorthand for turning syntactic expectations into semantic ones, we define

Jf K ≜ λσ . Jf Kσ
.

4.5 Equivalence and Ordering of Expectations

For two expectations f and д, we write f = д only if they are syntactically equal. On the other
hand, we say that two expectations f and д are semantically equivalent, denoted f ≡ д, if their
semantics under every state is equal, i.e.,

f ≡ д iff Jf K = JдK .

Similarly to the partial order ⪯ on semantical expectations in E, we define a (semantical) partial
order ⪯ on syntactic expectations in Exp by

f ⪯ д iff Jf K ⪯ JдK .

6Here, on the left-hand-side J · Kσ denotes the semantics of expectations, whereas on the right-hand-side J · Kσ denotes

the semantics of arithmetic expressions.
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4.6 A Note on Forbidding f · д in our Syntax

Analogously to classical logic, a syntactic expectation f is in prenex normal form, if it is of the form

f = Q1x1 . . . Qkxk : д ,

where Qi ∈ { S, J} and whereд is quantifier-free. Being able to transform any syntactic expectation
into prenex normal form while preserving its semantics will be essential to our expressiveness proof.
In particular, we require that there is an algorithm that brings arbitrary syntactic expectations into
prenex normal form, without inspecting their semantics.

The problem with allowing f · д arises in the context of the 0 · ∞ = 0 phenomenon. Suppose for
the moment that we allow for f · д syntactically and define

Jf · дKσ
≜ Jf Kσ · JдKσ

semantically, where 0 · ∞ = ∞ · 0 = 0. Because of commutativity of multiplication, the above is an
absolutely natural definition. This also immediately gives us that Jf · дKσ

= Jд · f Kσ .
We now show that we encounter a problem when trying to transform expectations into prenex

normal form. For that, consider the two expectations

f = Jx :
1

x + 1
and д = Sy : y .

Notice that we slightly abuse notation since, strictly speaking, 1

x+1
is not allowed by our syntax.

We can however express it as Sz : [z · (x + 1) = 1] · z. Clearly, we have Jf Kσ
= 0 and JдKσ

= ∞
for all σ , i.e., both f and д are constant expectations.
Let us now consider the product of f and д. For all σ , its semantics is given by

Jf · дKσ
= Jf Kσ · JдKσ

= 0 · ∞ = 0 = ∞ · 0 = JдKσ · Jf Kσ
= Jд · f Kσ

.

Now consider the following:

Jf · дKσ
=

s(

Jx :
1

x + 1

)

·
(

Sy : y
)
{σ

=

s
Jx : Sy :

1

x + 1
· y

{σ

(by prenexing)

= inf

{

sup

{

1

r + 1
· s

�
�
�
�
s ∈ Q≥0

} �
�
�
�
r ∈ Q≥0

}

= inf { ∞ | r ∈ Q≥0 }
= ∞
, 0

= sup { 0 | s ∈ Q≥0 }

= sup

{

inf

{

1

r + 1
· s

�
�
�
�
r ∈ Q≥0

} �
�
�
�
s ∈ Q≥0

}

= sup

{

inf

{

s · 1

r + 1

�
�
�
�
r ∈ Q≥0

} �
�
�
�
s ∈ Q≥0

}

(by commutativity of · in R∞≥0)

=

s
Sy : Jx : y · 1

x + 1

{σ

=

s
(

Sy : y
)

·
(

Jx :
1

x + 1

){σ

(by un-prenexing)

= Jд · f Kσ
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We see that Sy : Jx :
1

x+1
· y is a sound prenex normal form of д · f whereas Jx : Sy : 1

x+1
· y

apparently is not a sound prenex normal form of f · д. A fact that seems even more off-putting is
thatÐeven though f ≡ 0Ðthe above argument would not have worked for f = 0.

To summarize, we deem the above considerations enough grounds to forbid f · д altogether, in
particular since the rescaling a · f suffices in order for our syntactic expectations to be expressive.
We also note that we will later provide a syntactic, but much more complicated, way to write down
arbitrary products between syntactic expectations, see Theorem 9.4.

5 EXPRESSIVENESS FOR LOOP-FREE PROGRAMS

Before we deal with loops, we now show that our set Exp of syntactic expectations is expressive for
all loop-free pGCL programs. Proving expressiveness for loops is way more involved and will be
addressed separately in the remaining sections.

Lemma 5.1. Exp is expressive (see Definition 3.1) for all loop-free pGCL programs C , i.e., for all
f ∈ Exp there exists a syntactic expectation д ∈ Exp, such that

wpJCK (Jf K) = JдK .

For proving this expressiveness lemma (and also for the case of loops), we need the following
technical lemma about substitution of variables by values in our semantics:

Lemma 5.2. For all σ , f , and a,

Jf [x/a]Kσ
= Jf Kσ [x 7→ JaKσ ] or equivalently Jf [x/a]K = Jf K [x/a]

Proof. By induction on the structure of f . □

Intuitively, Lemma 5.2 states that syntactically replacing variable x by an arithmetical expression a
in expectation f amounts to interpreting f in states where the variable x has been substituted by
the evaluation of a under that state.

Proof of Lemma 5.1. Let f ∈ Exp be arbitrary. The proof goes by induction on the structure
of loop-free programs C . It is somewhat standard, but we present it here because it demonstrates
nicely that our syntactic constructs are actually needed. We start with the atomic programs:

The effectless program skip. We have wpJskipK (Jf K) = Jf K and f ∈ Exp by assumption.

The assignment x := a. We have

wpJx := aK (Jf K) = Jf K [x/a]
= Jf [x/a]K (by Lemma 5.2)

and f [x/a] ∈ Exp since f [x/a] is obtained from f by a syntactic replacement.

Induction Hypothesis. For arbitrary but fixed loop-free programs C1 and C2, there exist syntactic
expectations д1,д2 ∈ Exp, such that

wpJC1K (Jf K) = Jд1K and wpJC2K (Jf K) = Jд2K .

We then proceed with the compound loop-free programs:
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The probabilistic choice {C1 } [p ] {C2 }. We have

wpJ{C1 } [p ] {C2 }K (Jf K)
= p · wpJC1K (Jf K) + (1 − p) · wpJC2K (Jf K) (by definition of wp)

= p · Jд1K + (1 − p) · Jд2K (by I.H. on C1 and C2)

= Jp · д1 + (1 − p) · д2K (pointwise addition and multiplication)

and p · д1 + (1 − p) · д2 ∈ Exp, see Section 4.3.

The conditional choice if (φ ) {C1 } else {C2 }. We have

wpJif (φ ) {C1 } else {C2 }K (Jf K)
= [φ] · wpJC1K (Jf K) + [¬φ] · wpJC2K (Jf K) (by definition of wp)

= [φ] · Jд1K + [¬φ] · Jд2K (by I.H. on C1 and C2)

= J[φ] · д1 + [¬φ] · д2K (pointwise addition and multiplication)

and [φ] · д1 + [¬φ] · д2 ∈ Exp, see Section 4.3.

Hence, Exp is expressive for loop-free programs. □

6 EXPRESSIVENESS FOR LOOPY PROGRAMS — OVERVIEW

Before we get to the proof itself, we outline the main challengesÐand the steps we took to address
themÐof proving expressiveness of our syntactic expectations Exp for pGCL programs including
loops; the technical details of the involved encodings and auxiliary results are considered throughout
Sections 7 ś 10. This section is intended to support navigation through the individual components
of the expressiveness proof; as such, we provide various references to follow-up sections.

6.1 Setup

As in the loop-free case considered in Section 5, we prove expressiveness of Exp for all pGCL
programs (including loopy ones) by induction on the program structure; all cases except loops are
completely analogous to the proof of Lemma 5.1. Our remaining proof obligation thus boils down
to proving that, for every loop C = while (φ ) {C ′ },

∀ f ∈ Exp ∃д ∈ Exp : wpJ while (φ ) {C ′ }K (Jf K) = JдK , (†)

where we already know by the I.H. that the same property holds for the loop body C ′, i.e.,

∀ f ′ ∈ Exp ∃д′ ∈ Exp : wpJC ′K (Jf ′K) = Jд′K . (1)

Remark (A Simplification for this Overview). Just for this overview section, we assume that the set
Vars of all variables is finite instead of countable. This is a convenient simplification to avoid a few
purely technical details such that we can focus on the actual ideas of the proof. We do not make this
assumption in follow-up sections. Rather, our construction will ensure that only the finite set of
łrelevantž variablesÐthose that appear in the program or the postcondition under considerationÐis
taken into account. △

6.2 Basic Idea: Exploiting the Kozen Duality

We first move to an alternative characterization of the weakest preexpectation of loops whose
components are simpler to capture with syntactic expectations. In particular, we will be able to
apply our induction hypothesis (1) to some of these components.
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Recall the Kozen duality between forward moving measure transformers and backward moving
expectation transformers (see Theorem 2.1 and Figure 1 in Section 2):

wpJCK (X ) = λσ0.
∑

τ ∈Σ
X (τ ) · µσ0

C
(τ ) ,

where µσ0

C
is the probability distribution over final states obtained by running C on initial state σ0.

Adapting the above equality to our concrete case in which C is a loop and X = Jf K, we obtain

wpJ while (φ ) {C ′ }K (Jf K) = λσ0.
∑

τ ∈Σ
J[¬φ] · f K (τ ) · µσ0

while(φ ){C ′ }(τ ) ,

where we strengthened the postexpectation f to [¬φ] · f to account for the fact that the loop guardφ
is violated in every final state, see [Kaminski 2019, Corollary 4.6, p. 85]. The main idea isÐinstead
of viewing the whole distribution µσ0

while(φ ){C ′ } in a single łbig stepžÐto take a more operational

łsmall-stepž view: we consider the intermediate states reached after each guarded loop iteration,
which corresponds to executing the program

Citer = if (φ ) {C ′ } else { skip } .

We then sum over all terminating execution pathsÐfinite sequences of states σ0, . . . σk−1 with initial
state σ0 and final state σk−1 = τÐinstead of a single final state τ . The probability of an execution
path is then given by the product of the probability µσi

Citer
(σi+1) of each intermediate step, i.e., the

probability of reaching the state σi+1 from the previous state σi :

wpJ while (φ ) {C ′ }K (Jf K) = λσ0. sup
k ∈N

∑

σ0, ...,σk−1∈Σ
J[¬φ] · f K (σk−1) ·

k−2∏

i=0

µ
σi
Citer

(σi+1) . (2)

Notice that the above sum (without the sup) considers all execution paths of a fixed length k ; we
take the supremum over all natural numbers k to account for all terminating execution paths.

Next, we aim to apply the induction hypothesis (1) to the probability µσi
Citer

(σi+1) of each step such

that we can write it as a syntactic expectation. To this end, we need to characterize µσi
Citer

(σi+1) in
terms of weakest preexpectations. We employ a syntactic expectation [σ ]Ðcalled the characteristic
assertion [Winskel 1993] of state σÐthat captures the values assigned to variables by state σ :7

[σ ] =
[
∧

x ∈Vars

x = σ (x)
]

.

By Kozen duality (Theorem 2.1), the probability of reaching state σi+1 from σi in one guarded loop
iteration Citer is then given by

µ
σi
Citer

(σi+1) = wpJCiterK (J[σi+1]K) (σi ) .

By the same reasoning as for conditional choices in Lemma 5.1 and the induction hypothesis (1),
there exists a syntactic expectation дσi+1

Citer
∈ Exp such that

µ
σi
Citer

(σi+1) = wpJCiterK (J[σi+1]K) (σi ) =
r
д
σi+1
Citer

z
(σi ) .

7Recall from our remark on simplification that Vars is considered finite for this section.
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Plugging the above equality into our łsmall-stepž characterization of loops (2) then yields the
following characterization of JдK in (†):

wpJ while (φ ) {C ′ }K (Jf K) = λσ0. sup
k ∈N

∑

σ0, ...,σk−1∈Σ

r
[¬φ] · f
︸  ︷︷  ︸

∈Exp

z
(σk−1) ·

k−2∏

i=0

r
д
σi+1
Citer

︸︷︷︸

∈Exp

z
(σi )

︸                ︷︷                ︸

non-constant product expressible in Exp?
︸                                             ︷︷                                             ︸

simple product expressible in Exp?
︸                                                              ︷︷                                                              ︸

non-constant sum over paths of length k expressible in Exp?
︸                                                                     ︷︷                                                                     ︸

Sk : ... ∈Exp

(3)

A formal proof of the above characterization is provided alongside Theorem 10.1.

6.3 Encoding Loops as Syntactic Expectations

Let us now revisit the individual components of the expectation (3) above and discuss how to
encode them as syntactic expectations in Exp, moving through the braces from bottom to top:

6.3.1 The Supremum supk ∈N. The supremum ensures that terminating execution paths of arbitrary
length are accounted for; it is supported in Exp by the Squantifier. If we already know a syntactic
expectation дsum(k) ∈ Exp for the entire sum that follows, we hence obtain an encoding of the
whole expectation, namely

Sk : дsum(k) ∈ Exp .

6.3.2 The Non-constant Sum
∑

σ0, ...,σk−1∈Σ. This sum cannot directly be written as a syntactic
expectation: First, it sums over execution paths whereas all variables and constants in syntactic
expectations are evaluated to rational numbers. Second, its number of summands depends on the
length k of execution paths whereas Exp only supports sums with a constant number of summands.
To deal with the first issue, there is a standard solution in expressiveness proofs (cf. [Loeckx

and Sieber 1987; Tatsuta et al. 2009, 2019; Winskel 1993]): We employ Gödelization to encode both
program states and finite sequences of program states as natural numbers in syntactic expectations.
The details are found in Section 7. In particular:

• We show that Exp subsumes first-order arithmetic over the natural numbers.
• We adapt the approach of Gödel [1931] to encode sequences of both natural numbers and
non-negative rationals as Gödel numbers in our language Exp.

• We define a predicate (in Exp) StateSequence (u,v) that is satisfied iff u is the Gödel number
of a sequence of states of length v − 1.

To deal with the second issue (the sum having a variable number of summands), we also rely on the
ability to encode sequences as Gödel numbers in ExpÐthe details are found in Section 9. Roughly
speaking, we encode the sum as follows:

• We define a syntactic expectation h(vsum) that serves as a map from vsum to individual
summands, i.e., h [vsum/i] yields the i-th summand.

• We construct a syntactic expectation Sum [vsum,h,v] for partial sums, summing up the first
v summands defined by the syntactic expectation hÐsee Theorem 9.2 for details.
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P PQ≥0

φ φ ∧ N (x1) ∧ . . . ∧ N (xn)
∃x : P ′ ∃x : P ′

Q≥0

∀x : P ′ ∀x : N (x) −→ P ′
Q≥0

Fig. 3. Rules defining the formula formula PQ≥0 ∈
AQ≥0 for a Boolean expression φ and FV (P) =
{x1, . . . , xn }.

P [P]

φ [φ]

∃v : P ′ Sv : [P ′]

∀v : P ′
Jv : [P ′]

Fig. 4. Rules for transforming a formula

P ∈ AQ≥0 into an expectation [P] ∈ Exp.

6.3.3 The Product J[¬φ] · f K · . . .. This product is not directly expressible in Exp as arbitrary
products between syntactic expectations are not allowed. They are, however, expressible in our
language. We define a product operation h1 ⊙ h2 and prove its correctness in Corollary 9.5.

6.3.4 The Non-constant Product
∏k−2

i=0

r
д
σi+1
Citer

z
(σi ). This product consists of k −1 factors; its encod-

ing requires a similar approach as for non-constant sums. That is, we define a syntactic expectation
Product

[

vprod,h,v
]

that multiplies the first v factors defined by the syntactic expectation h(vprod).
Details are provided in Theorem 9.4.

6.3.5 The Expectations J[¬φ] · f K and
r
д
σi+1
Citer

z
. Both are syntactic expectations by construction.

6.4 The Expressiveness Proof

It remains to glue together the constructions for the individual components of the expectation (3),
which characterizes the weakest preexpectation of loops. We present the full construction, a proof
of its correctness, and an example of the resulting syntactic expectation in Section 10.

7 GÖDELIZATION FOR SYNTACTIC EXPECTATIONS

We embed the (standard model of) first-order arithmetic over both the rational and the natural num-
bers in our language ExpÐthereby addressing the first issue raised in Section 6.3.1. Consequently,
Exp conservatively extends the standard assertion language of Floyd-Hoare logic (cf. [Cook 1978;
Loeckx et al. 1984; Winskel 1993]), enabling us to encode finite sequences of both rationals and
naturals in Exp by means of Gödelization [Gödel 1931].

Recall from Table 1 that we use, e.g., metavariables φ,ψ for Boolean expressions, σ for program
states, and so on and we will omit providing the types in order to unclutter the presentation.

7.1 Embedding First-Order Arithmetic in Exp

We denote by AQ≥0 the set of formulas P in first-order arithmetic over Q≥0, i.e., the extension of
Boolean expressions φ (see Section 4.2) by an existential quantifier ∃x : P and a universal quantifier

∀x : P with the usual semantics, e.g., J∀x : PKσ
= true iff for all r ∈ Q≥0, JPKσ [x 7→r ]

= true. The set
AN of formulas P in first-order arithmetic over N is defined analogously by restricting ourselves to
(1) states8 σ : Vars → N and (2) constants in N rather than Q≥0.

For simplicity,we assume without loss of generality that all formulas P are in prenex normalform, i.e.,
P is a Boolean expression comprising of a block of quantifiers followed by a quantifier-free formula.
Recall that program states originally evaluate variables to rationals. Since our expressiveness proof

8Program states serve here the role of interpretations in classical first-order logic.
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requires encoding sequences of naturals, it is crucial that we can assert that a variable evaluates to
a natural. To this end, we adapt a result by Robinson [1949]:

Lemma 7.1. N is definable in AQ≥0 , i.e. there exists a formula N (x) ∈ AQ≥0 , such that for all σ ,

JN (x)Kσ
= true iff σ (x) ∈ N .

We use the above assertion N to first embed AN in AQ≥0 . Thereafter, we embed AQ≥0 in Exp.
Embedding a formula P ∈ AN in AQ≥0 amounts to (1) asserting N (x) for every x ∈ FV (P) and (2)
guarding every quantified variable x in P with N (x), i.e., whenever we attempt to evaluate the
embedding-formula for non-naturals, we default to falseÐsee Figure 3 for a formal definition.

Theorem 7.2. Let PQ≥0 ∈ AN be the embedding of P ∈ AN as defined in Figure 3. Then, for all σ ,

JPQ≥0Kσ
=

{

JPKσ
, if σ (x) ∈ N for all x ∈ FV (P) ,

false, otherwise .

Embedding a formula P ∈ AQ≥0 into Exp amounts to (1) taking its Iverson bracket for every Boolean
expression and (2) substituting the quantifiers ∃/∀ by their quantitative analogs S/ J, see Figure 4.

Theorem 7.3. Let [P] ∈ Exp be the embedding of P ∈ AQ≥0 as defined in Figure 4. Then, for all σ ,

J[P]Kσ
=

{

1, if JPKσ
= true

0, if JPKσ
= false .

Given P(v1, . . . ,vn) ∈ AQ≥0 , we often write [P(v1, . . . ,vn)] instead of [P] (v1, . . . ,vn).

7.2 Encoding Sequences of Natural Numbers

The embedding of AN in our language Exp of syntactic expectations gives us access to a classical
result by Gödel [1931] for encoding finite sequences of naturals in a single natural.

Lemma 7.4 (Gödel [1931]). There is a formula Elem (v1,v2,v3) ∈ AN (with quantifiers) satisfying:
For every finite sequence of natural numbers n0, . . . ,nk−1, there is a (Gödel) number дnum ∈ N that
encodes the sequence, i.e., for all i ∈ {0, . . . ,k − 1} and allm ∈ N, it holds that

Elem (дnum, i,m) ≡ true iff m = ni .

By Theorem 7.3, we also have an expectation [Elem (v1,v2,v3)] expressing Elem in Exp.

Example 7.5 (Factorials via Gödel). The syntactic expectation below evaluates to the factorial x !:

Fac (x) = Sv : Snum : v ·
[

Elem (num, 0, 1) ∧ Elem (num, x,v)
∧ ∀u : ∀w :

(

u < x ∧ Elem (num,u,w) −→ Elem (num,u + 1,w · (u + 1))
) ]

.

For every state σ , the quantifier Snum selects a sequence n0,n1 . . . satisfying nσ (x ) = σ (x)!. The
quantifier Sv then binds v to the value nσ (x ) = σ (x)!. Finally, by multiplying the {0, 1}-valued
expectation specifying the sequence by v , we get that JFac (x)Kσ

= σ (x)!. △
To work with unique Gödel numbers, we employ minimalization: The formula Sequence (num,v)
below expresses that (a) num is a Gödel number of some sequence n0, . . . ,nv−1, . . . of length at
least v and (b) num is the smallest Gödel number encoding a sequence with prefix n0, . . . ,nv−1.

Sequence (num,v)
≜ (∀u : u < v −→ ∃w : Elem (num,u,w)) (a)

∧
(

∀num′ :
(

∀u : u < v −→ ∃w : Elem (num,u,w) ∧ Elem (num′
,u,w)

)

(b)

−→ num′ ≥ num
)
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For every k and every sequence n0, . . . ,nk−1 of length k , we then define the Gödel number encoding
the sequence n0, . . . ,nk−1 of length k as the unique natural number ⟨n0, . . . ,nk−1⟩ satisfying

Sequence (⟨n0, . . . ,nk−1⟩,k) ∧
k−1∧

i=0

Elem (⟨n0, . . . ,nk−1⟩, i,ni ) .

7.3 Encoding Sequences of Non-negative Rationals

Recall that program states in pGCLmap variables to values inQ≥0. To encode sequences of program
states, we thus first lift Gödel’s encoding Elem (num, i,n) to uniquely encode sequences over Q≥0.
The main idea is to represent such a sequence by pairing two sequences over N.

Lemma 7.6 (Pairing Functions [Cantor 1878]). There is a formula Pair(v1,v2,v3) ∈ AN satisfy-
ing: For every pair of natural numbers (n1,n2), there is exactly one natural number n such that

Pair(n,n1,n2) ≡ true .

Theorem 7.7. There is a formula RElem (v1,v2,v3) ∈ AQ≥0 satisfying: For every finite sequence
r0, . . . , rk−1 ⊂ Q≥0 there is a Gödel number дnum, such that for all i ∈ {0, . . . ,k − 1} and s ∈ Q≥0,

RElem (дnum, i, s) ≡ true iff s = ri .

Example 7.8 (Harmonic Numbers). For everyσ withσ (x) = k ∈ N, the expectationHarmonic (x) ∈
Exp below evaluates to the k-th harmonic number H(k) = ∑k

i=1
1

i
.

Harmonic (x) = Sv : Snum : v ·
[

RElem (num, 0, 0) ∧ RElem (num, x,v)
∧ ∀u : ∀w : (u < x ∧ RElem (num,u,w))

−→ ∃w ′ : w ′ · (u + 1) = 1 ∧ RElem (num,u + 1,w +w ′)
]

Notice that the above Iverson bracket evaluates to 1 on state σ iff σ (num) encodes a sequence
r0, r1, . . . , rσ (x ) such that σ (v) = rσ (x ) and

r0 = 0 , r1 =
1

1
+ r0, r2 =

1

2
+ r1 , . . . , rσ (x ) =

1

σ (x) + rσ (x )−1 .

By Theorem 7.2, we do not need to require that σ (u) ∈ N as RElem (num, i,w) is false if σ (u) < N.△

Analogously to the previous section, we define a predicate RSequence (num,v) that uses minimaliza-
tion to a unique Gödel number num for every sequence r0, . . . , rk−1 of length k ; the only difference
between RSequence (num,v) and Sequence (num,v) is that every occurrence of Elem (., ., .) is re-
placed by RElem (., ., .). Moreover, for every k and every sequence r0, . . . , rk−1, we define the Gödel
number encoding the sequence r0, . . . , rk−1 as the unique natural number ⟨r0, . . . , rk−1⟩ satisfying

RSequence (⟨r0, . . . , rk−1⟩,k) ∧
k−1∧

i=0

RElem (⟨r0, . . . , rk−1⟩, i, ri ) .

7.4 Encoding Sequences of Program States

To encode sequences of program states, we first fix a finite set x = {x0, . . . , xk−1} of relevant
variables. Intuitively, x consists of all variables that appear in a given program or a postexpectation.
We define an equivalence relation ∼x on states by

σ1 ∼x σ2 iff ∀x ∈ x: σ1(x) = σ2(x) .
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Every num satisfying Sequence (num,k) encodes exactly one state σ (modulo ∼x). The Gödel
number encoding σ (w.r.t. x), which we denote by ⟨σ ⟩x, is then the unique number satisfying

RSequence (⟨σ ⟩x,k) ∧
k−1∧

i=0

RElem (⟨σ ⟩x, i,σ (xi )) .

Notice that we implictly fixed an ordering of the variables in x to identify each value stored in σ
for a variable in x. The formula

EncodesStatex (num) ≜ RSequence (num,k) ∧
k−1∧

i=0

RElem (num, i, xi )

evaluates to true on state σ iff σ (num) is the Gödel number of a state σ ′ with σ ∼x σ
′. Now, let

σ0, . . . ,σn−1 be a sequence of states of length n. The Gödel number encoding σ0, . . . ,σn−1 (w.r.t. x),
which we denote by ⟨(σ0, . . . ,σn−1)⟩x, is then the unique number satisfying

Sequence (⟨(σ0, . . . ,σn−1)⟩x,n) ∧
n−1∧

i=0

Elem (⟨(σ0, . . . ,σn−1)⟩x, i, ⟨σi ⟩x) .

We are now in a position to encode sequences of states. The formula

StateSequence
x
(num,v)

= Sequence (num,v) ∧ (∃v ′ : Elem (num, 0,v ′) ∧ EncodesStatex (v ′))
∧ ∀u : ∀v ′ : ((u < v ∧ Elem (num,u,v ′)) −→ RSequence (v ′

,k))
evaluates to true on state σ iff (1) num is the Gödel number of some sequence σ0, . . . ,σσ (v−1) ∈ Σ

of states of length σ (v) and where (2) σ and σ0 coincide on all variables in x, i.e., σ ∼x σ0. Notice
that, for every sequence σ0, . . . ,σn−1 of states of length n, there is exactly one num satisfying
StateSequence

x
(num,n). If clear from the context, we often omit the subscript x and simply write

⟨σ ⟩ (resp. ⟨(σ0, . . . ,σn−1)⟩) instead of ⟨σ ⟩x (resp. ⟨(σ0, . . . ,σn−1)⟩x).

8 THE DEDEKIND NORMAL FORM

Before we encode sums and products of non-constant size in ExpÐas required to deal with the
challenges in Sections 6.3.2 to 6.3.4Ðwe introduce a normal form that gives a convenient handle to
encode real numbers as syntactic expectations.
As a first step, we transform syntactic expectations into prenex normal form, i.e., we rewrite

every f ∈ Exp into an equivalent syntactic expectation of the form Q1v1 . . . Qkvk : f
′, where

Qi ∈ { S, J} and f ′ is łquantifieržśfree, i.e., contains neither Snor J. The following lemma
justifies that any expectation can indeed be transformed into an equivalent one in prenex normal
form by iteratively pulling out quantifiers. In case the quantified logical variable already appears in
the expectation the quantifier is pulled over, we rename it by a fresh one first.

Lemma 8.1 (Prenex Transformation Rules). For all f , f1, f2 ∈ Exp, terms a, and Boolean
expressions φ, quantifiers Q∈ { S, J}, and fresh logical variables v ′, the following equivalences hold:

(1) ( Qv : f1) + f2 ≡ Qv ′ : f1 [v/v ′] + f2,
(2) f1 + ( Qv : f2) ≡ Qv ′ : f1 + f2 [v/v ′],
(3) a · Qv : f ≡ Qv ′ : a · f [v/v ′], and
(4) [φ] · Qv : f ≡ Qv ′ : [φ] · f [v/v ′].

The Dedekind normal form is motivated by the notion of Dedekind cuts [Bertrand 1849]. We denote
by Cut (α) the Dedekind cut of a real number, i.e., the set of all rationals strictly smaller than α . In
the realm of all reals, it is required that a Dedekind cut is neither the empty set nor the whole set
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of rationals Q. However, since we operate in the realm of non-negative reals with infinity R∞≥0, we
do allow for both empty cuts and Q≥0. More formally, we define:

Definition 8.2. Let α ∈ R∞≥0. The Dedekind cut Cut (α) ⊆ Q≥0 of α is defined as

Cut (α) ≜ { r ∈ Q≥0 | r < α } .

Furthermore, we define Cut (α) ≜ Cut (α) ∪ {0}. △

Dedekind cuts are relevant for our technical development as they allow to describe every real
number α as a supremum over a set of rational numbers. In particular, the Dedekind cut Cut (0)
of 0 is the empty set with supremum 0, and the Dedekind cut Cut (∞) of ∞ is the set Q≥0 with
supremum ∞. Formally:

Lemma 8.3. For every α ∈ R∞≥0, we have α = supCut (α).

Theorem 8.4. For every f ∈ Exp, there is a syntactic expectation in prenex normal form

Dedekind[vCut, f ] = Prefix (f ) : [φ] ,

where Prefix (f ) is a quantifier prefix, φ is an effectively constructible Boolean expression, and the free
variable vCut is fresh, such that: for all program states σ , we have

JDedekind[vCut, f ]Kσ
=

{

1, if σ (vCut) < Jf Kσ

0, otherwise .

We call Dedekind[vCut, f ] the Dedekind normal form of f .

The Dedekind normal form Dedekind[vCut, f ] defines the Dedekind cut of every Jf Kσ , i.e.,

for all σ : Cut
(

Jf Kσ )

=

{

r ∈ Q≥0
�
� r = σ (vCut), JDedekind[vCut, f ]Kσ

= 1
}

.

Hence, we can recover f from Dedekind[vCut, f ]:

Lemma 8.5. Let Dedekind[vCut, f ] be in Dedekind normal form. Then

f ≡ SvCut : Dedekind[vCut, f ] · vCut .

9 SUMS, PRODUCTS, AND INFINITE SERIES OF SYNTACTIC EXPECTATIONS

This section deals with the syntactic Sum and Product expectations as described in Section 6.3.2.
Since a syntactic expectation f evaluates to a non-negative extended real, we rely on a reduction
from sums over reals to suprema of sums over rationals:

Lemma 9.1. For all α0, . . . ,αn ∈ R∞≥0, we have
n∑

j=0

α j = sup

{
n∑

j=0

r j

�
�
�
�
�
∀i ∈ {0, . . . ,n} : ri ∈ Cut (αi )

}

.

Theorem 9.2. For every f ∈ Exp with free variable vsum, there is an effectively constructible
expectation Sum [vsum, f ,v] ∈ Exp such that for all states σ with σ (v) ∈ N, we have

JSum [vsum, f ,v]Kσ
=

σ (v)∑

j=0

Jf [vsum/j]Kσ and J Sv : Sum [vsum, f ,v]Kσ
=

∞∑

j=0

Jf [vsum/j]Kσ
.
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Proof. We sketch the construction of Sum [vsum, f ,v]. Lemma 9.1 and the Dedekind normal
form Dedekind[vCut, f ] of f (cf. Theorem 8.4) give us

σ (v)∑

j=0

Jf [vsum/j]Kσ

= sup

{
σ (v)∑

j=0

r j

�
�
�
�
�
∀j ∈ {0, . . . ,σ (v)} : r j ∈ Cut

(

Jf [vsum/j]Kσ )

}

= sup

{
σ (v)∑

j=0

r j

�
�
�
�
�
∀j ∈ {0, . . . ,σ (v)} : JDedekind[f , r j ]Kσ

= 1 or r j = 0

}

. (4)

Writing Dedekind[vCut, f ] = Prefix (f ) : [φ] (cf. Theorem 8.4), we then construct a syntactic
expectation д with free variables v and num by

Sv ′ : v ′ · Ju : Jz : SvCut : Prefix (f ) :
[RElem (num, 0, 1) ∧ RElem (num,v + 1,v)

∧
(

(u < v + 1 ∧ RElem (num,u, z) ∧ ([φ]
[

vprod
/

u
]

∨vCut = 0))
−→ RElem (num,u + 1, z +vCut)

)

] .

For every state σ where σ (num) is a Gödel number encoding some sequence

1, 1 · r1, 1 + r1 + r2, . . . , 1 + r1 + . . . + rσ (v)

with r j ∈ Cut
(

Jf [vsum/j]Kσ )

for all 0 ≤ j ≤ σ (v), expectation д evaluates to the last element
of the above sequence, i.e., an element of the set from Equation (4). Hence, by Lemma 9.1, the
supremum over these sequences, i.e, all Gödel numbers, gives us

Sum [vsum, f ,v] = Snum : д .

A detailed proof is found in [Batz et al. 2020]. □

For an arithmetic expression a, we write Sum [vsum, f ,a] instead of Sum [vsum, f ,v] [v/a].

Example 9.3. Sum provides us with a much more convenient way to construct Harmonic (x)
from Example 7.8. Let f = 1/vsum where 1/vsum is a shorthand for Sw : w · [w · vsum = 1]. Then, by
Theorem 9.2, we have for every σ ∈ Σ

JSum [vsum, f , x]Kσ
=

σ (x )∑

j=0

Jf [vsum/j]Kσ
=

σ (x )∑

j=1

1

j
= H(σ (x)) .

The construction of the syntactic Product expectation is completely analogous:

Theorem 9.4. For every f ∈ Exp with free variable vprod, there is an effectively constructible

expectation Product
[

vprod, f ,v
]

∈ Exp such that for every state σ with σ (v) ∈ N, we have

q
Product

[

vprod, f ,v
]yσ
=

σ (v)∏

j=0

q
f
[

vprod
/

j
]yσ
.

For an arithmetic expressiona, wewriteProduct
[

vprod, f ,a
]

instead ofProduct
[

vprod, f ,v
]

[v/a].
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An immediate, yet important, consequence of Theorem 9.4 is that, even though syntactically
forbidden, arbitrary products of syntactic expectations are expressible in Exp. Let f ,д ∈ Exp, and
let vprod be a fresh variable. We define the (unrestricted) product f ⊙ д of f and д by

f ⊙ д ≜ Product
[

vprod,
[

vprod = 0
]

· f +
[

vprod = 1
]

· д, 1
]

.

Corollary 9.5. Let f ,д ∈ Exp. For all states σ , we have

Jf ⊙ дKσ
= Jf Kσ · JдKσ

.

10 EXPRESSIVENESS OF OUR LANGUAGE

With the results from the preceding sections at hand, we give a constructive expressiveness proof
for our language Exp. Fix a set of variables x = {x0, . . . , xn−1}. We assume a fixed set Σx ⊆ Σ that
contains exactly one state from each equivalence class of ∼x (cf. Section 7.4). Given a state σ ∈ Σ,
we define the characteristic expectation [σ ]x of σ (w.r.t. x) as

[σ ]x ≜ [x0 = σ (x0) ∧ . . . ∧ xn−1 = σ (xn−1)] .

The expectation [σ ]x evaluates to 1 on state σ ′ if σ ∼x σ
′, and to 0 otherwise. Finally, we denote

by Vars(C) the set of all variables that appear in the pGCL program C .
Let us now formalize the characterization of wpJwhile (φ ) {C ′ }K (Jf K) from Section 6.2:

Theorem 10.1. Let C = while (φ ) {C ′ } be a loop and let f ∈ Exp. Furthermore, let x be a finite
set of variables with Vars(C) ∪ FV (f ) ⊆ x. We have

wpJwhile (φ ) {C ′ }K (Jf K)
= λσ . sup

k ∈N

∑

σ0, ...,σk−1∈Σx

[σ0]x (σ ) · ([¬φ] · Jf K)(σk−1)

·
k−2∏

i=0

wpJif (φ ) {C ′ } else { skip }K ([σi+1]x) (σi ) .

Proof. See [Batz et al. 2020]. □

We are finally in a position to prove expressiveness (cf. Definition 3.1).

Theorem 10.2. The language Exp of syntactic expectations is expressive.

Proof. By induction on the structure of C . All cases except loops are completely analogous
to the proof of Lemma 5.1. Let us thus consider the case C = while (φ ) {C1 }. We employ the
syntactic Sum- and Product expectations from Theorems 9.2 and 9.4 to construct the series from
Theorem 10.1 in Exp, thus expressing wpJwhile (φ ) {C1 }K

(

Jf K
)

.
The products ocurring in Theorem 10.1 are expressed by an effectively constructible syntactic

expectation Path [f ] (v1,v2) (where v1 and v2 are fresh variables) satisfying:

(1) If σ (v1) ∈ N with σ (v1) > 0 and σ (v2) = ⟨(σ0, . . . ,σσ (v1)−1)⟩x, then

JPath [f ] (v1,v2)Kσ

= ([¬φ] · Jf K)(σσ (v1)−1) ·
σ (v1)−2∏

i=0

wpJif (φ ) {C1 } else { skip }K ([σi+1]x) (σi ) (5)

(2) If σ (v1) < N or σ (v1) = 0, then JPath [f ] (v1,v2)Kσ
= 0.
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Then, for the syntactic expectation

h = J Slenдth : Snums : Sum
[

vsum,
[

StateSequence
x
(vsum, lenдth)

]

⊙ Path [f ] (lenдth,vsum) ,nums
]

K ,
we have wpJwhile (φ ) {C1 }K

(

Jf K
)

= JhK.
Here, the quantifier Slenдth in h corresponds to the supk from Theorem 10.1. The subsequent

Sum expectation expresses the sum from Theorem 10.1: Summing over sequences of states of length
lenдth is realized by summing over all Gödel numbers num satisfying StateSequence (num, lenдth).
See [Batz et al. 2020] for a detailed correctness proof. □

10.1 Example

We conclude this section by sketching the construction of a syntactic expectation for a concrete
loop. Consider the program C given by

while ( c = 1 ) {
{ c := 0 } [ 1/2 ] { c := 1 } ;
x := x + 1 }

where we denote the loop body byC ′. Morever, let f ≜ x ∈ Exp. Then the syntactic expectation h
expressing wpJwhile ( c = 1 ) {C ′ }K

(

JxK
)

as sketched in the proof of Theorem 10.2 is

h = J Slenдth : Snums : Sum
[

vsum,
[

StateSequence
x
(vsum, lenдth)

]

⊙ Path [f ] (lenдth,vsum) ,nums
]

K ,
where the syntactic expectation Path [f ] (lenдth,v2) is defined as follows:

[lenдth < 2] · ( Snum : [Elem (vsum, lenдth − 1,num)] ⊙ Substx [([¬(c = 1)] · x),num])
+ [lenдth ≥ 2] · ( Snum : [Elem (vsum, lenдth − 1,num)] ⊙ Substx [([¬(c = 1)] · x),num])

⊙ Product
(

Snum1 : Snum2 :
[

Elem
(

vsum,vprod,num1

)

∧ Elem
(

vsum,vprod + 1,num2

) ]

⊙ Substx [Substx′ [д,num2] ,num1] , lenдth − 2
)

and where

д = [c = 1] · 1
2
· ([0 = c ′ ∧ x + 1 = x ′] + [1 = c ′ ∧ x + 1 = x ′]) + [¬(c = 1)] · [c = c ′ ∧ x = x ′] .

We omit unfolding h further. Although our general construction yields rather complex syntactic
preexpectations, notice we can express wpJwhile ( c = 1 ) {C ′ }K

(

JxK
)

much more concisely as

x + [c = 1] · 2 ∈ Exp .

11 ON NEGATIVE NUMBERS

Throughout the paper, we have evaded supporting negative numbers in two aspects:

(1) In our verification systemÐthe weakest preexpectation calculusÐwe allow expectations, both
syntactic and semantic, to map program states to non-negative values in R∞≥0 only.

(2) In our programming language, we allow variables to assume non-negative values in Q≥0 only.

While the former restriction is fairly standard in the literature on probabilistic programs (cf. [McIver
and Morgan 2005]), considering only unsigned program variables is less common. An attentive
reader may thus ask whether our completeness results rely on the above restrictions. In this section,
we briefly comment on our reasons for considering only non-negative numbers. Moreover, we
discuss how one could incorporate support for negative numbers in both of the above aspects.
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11.1 Signed Expectations

There exist approaches that support signed expectations, which allow arbitrary reals in their
codomain. However, as working with signed expectations may lead to integrability issues, these
approaches require a significant technical overhead (cf. [Kaminski and Katoen 2017] for details).
Moreover, proof rules for loops become much more involved. Calculi like Kozen’s PPDL in principle
allow signed expectations off-the-shelf, but PPDL’s induction rule for loops is restricted to non-
negative expectations as well [Kozen 1983]. We thus opted for the more common approach of
considering only unsigned expectations. An alternative is to perform a Jordan decomposition on
the expectation (i.e., decomposing it into positive and negative parts) and then reason individually
about the positive and the negative part. As outlined below, such a decomposition can already be
performed on program level without changing the verification system.

11.2 Signed Program Variables

Omitting negative numbers does not affect our results because they can easily be encoded in
our (Turing complete) programming language: we can emulate signed variables, for instance, by
splitting each variable x into two variables |x | and xsgn , representing the absolute value of x and
its sign (xsgn = 1 if x negative, and xsgn = 0 otherwise), respectively. With this convention, the
program below emulates the subtraction assignment z := x − y using only addition and monus:

if
(

xsgn = ysgn
)

{ // calculuate magnitude of z

|z | :=
(

|x | Û− |y |
)

+

(

|y | Û− |x |
)

} else {
|z | := |x | + |y |

} ;
if ( |x | > |y | ) { // calculuate sign of z

zsgn := xsgn

} else {
if ( |x | = |y | ) {

zsgn := 0

} else {
zsgn := 1 Û− ysgn

}
}

Similar emulations can be performed for addition, multiplication, etc. For the purpose of proving
relative completeness, signed variables are thus syntactic sugar; we omit them for simplicity.
Our main reason for disallowing negative numbers as values of program variables is that we

want x to be a valid (unsigned) expectation. If x was signed, it would not be a valid expectation as
it does not map only to non-negative values. In order to fix this problem to some extent, one would
have to łmake x non-negativež, e.g., by instead using the expectation [x ≥ 0] · x (x truncated at
0) or the expectation |x | (absolute value of x ; not supported (but can be encoded) in our current
syntax). However, neither of the above expectations actually represents łthe value of xž.

12 DISCUSSION

We now discuss a few aspects in which our expressive language Exp of expectations could be useful.
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12.1 Relative Completeness of Probabilistic Program Verification

An immediate consequence of Theorem 10.2 is that, for all pGCL programs C and all syntactic
expectations f ,д ∈ Exp, verifying the bounds

JдK ⪯ wpJCK (Jf K) or wpJCK (Jf K) ⪯ JдK
reduces to checking a single inequality between two syntactic expectations in Exp, namely д and the
effectively constructible expectation forwpJCK (Jf K). In that sense, thewp calculus together with Exp

form a relatively complete (cf. [Cook 1978]) system for probabilistic program verification. Given an
oracle for discharging inequalities between syntactic expectations, every correct inequality of the
above form can be derived.

12.2 Termination Probabilities

For each probabilistic program C , the weakest preexpectation

wpJCK (1)
is a mapping from initial state σ to the probability thatC terminates on σ . Since 1 ∈ Exp, termination
probabilities of any pGCL program on any input are expressible in our syntax.
This demonstrates that our syntax is capable of capturing mappings from states to numbers

that are far from trivial as termination probabilities in general carry a high degree of internal
complexity [Kaminski and Katoen 2015; Kaminski et al. 2019]. More concretely, given C , σ , and α ,
deciding whether C terminates on σ at least with probability α is Σ0

1
ścomplete in the arithmetical

hierarchy. Deciding whether C terminates on σ at most with probability α is even Π
0

2
ścomplete,

thus strictly harder than, e.g., the universal termination problem for non-probabilistic programs.

12.3 Probability to Terminate in Some Postcondition

For a probabilistic program C and a first-order predicate [φ], the weakest preexpectation
wpJCK ([φ])

is a mapping from initial state σ to the probability that C terminates on σ in a state τ |= φ. Since
[φ] is expressible in Exp, we have that wpJCK ([φ]) is also expressible in Exp by expressivity of Exp.
We can thus embed and generalize Dijkstra’s weakest preconditions completely in our system.

12.4 Distribution over Final States

Let C be a probabilistic program in which only the variables x1, . . . , xk occur. Moreover, let µσ
C

be the final distribution obtained by executing C on input σ , cf. Section 2.1.3. Then, by the Kozen
duality (cf. Theorem 2.1), we can express the probability µσ

C
(τ ) of C terminating in final state τ on

initial state σ , where τ (xi ) = x ′i , by
µσC (τ ) = wpJCK

( [

x1 = x
′
1
∧ · · · ∧ xk = x ′k

] )

(σ ) .
Intuitively, we can write the initial values of x1, . . . , xk into σ (x1), . . . , σ (xk ) and the final values
into σ (x ′

1
), . . . , σ (x ′

k
).

Since
[

x1 = x
′
1
∧ · · · ∧ xk = x ′k

]

∈ Exp, we have that wpJCK
(
[

x1 = x
′
1
∧ · · · ∧ xk = x ′k

]
)

is ex-

pressible in Exp as well. Hence, we can express Kozen’s measure transformers in our syntax.

12.5 Ranking Functions / Supermartingales

There is a plethora of methods for proving termination of probabilistic programs based on ranking
supermartingales [Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2016b, 2017; Fioriti and
Hermanns 2015; Fu and Chatterjee 2019; Huang et al. 2018, 2019]. Ranking supermartingales are
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similar to ranking functions, but one requires that the value decreases in expectation. Weakest
preexpectations are the natural formalism to reason about this.
For algorithmic solutions, ranking supermartingales are often assumed to be, for instance,

linear [Chatterjee et al. 2018] or polynomial [Chatterjee et al. 2016a; Ngo et al. 2018; Schreuder and
Ong 2019]. This also applies to the allowed shape of templates for loop invariants in works [Feng
et al. 2017; Katoen et al. 2010] on the automated synthesis of probabilistic loop invariants. Functions
linear or polynomial in the program variables are obviously subsumed by our syntax. However, our
syntax now enables searching for wider tractable classes.

12.6 Harmonic Numbers

Harmonic numbers are ubiquitous in reasoning about expected values or expected runtimes of
randomized algorithms. They appear, for instance, as the expected runtime of Hoare’s randomized
quicksort or the coupon collector problem, or as ranking functions for proving almost-sure ter-
mination [Kaminski 2019; Kaminski et al. 2018; McIver et al. 2018; Olmedo et al. 2016]. Harmonic
numbers are syntactically expressible in our language as in Example 7.8, or more conveniently as

Hx =

r
Sum

[

vsum,
1

vsum
, x
]z
, where 1

vsum
= Sz : [z · vsum = 1] · z .

Wenote that, in termination proofs, the Harmonic numbers do not occur as termination probabilities,
but rather in ranking functions whose expected values after one loop iteration need to be determined.
Our syntax is capable of handling such ranking functions and we could safely addHx to our syntax.

13 CONCLUSION AND FUTURE WORK

We have presented a language of syntactic expectations that is expressive for weakest preexpectations
of probabilistic programs á la Kozen [1985] and McIver and Morgan [2005]. As a consequence, veri-
fication of bounds on expected values of functions (expressible in our language) after probabilistic
program execution is relatively complete in the sense of Cook [1978].

We have discussed various scenarios covered by our language, such as reasoning about termina-
tion probabilities, thus demonstrating the language’s usefulness.

Open Problems. We currently do not support probabilistic programs with (binary) non-deterministic
choices, as do McIver and Morgan [2005], and it is not obvious how to incorporate it, given our
current encoding. What seems even more out of reach is handling unbounded non-determinism,
which would be needed, for instance, to come up with an expressive expectation language for
quantitative separation logic (QSL)Ðan (extensional) verification system for compositional reasoning
about probabilistic pointer programs with access to a heap [Batz et al. 2019; Matheja 2020].

For non-probabilistic heap-manipulating programs, a topic considered by Tatsuta et al. [2019] are
inductive definitions of predicates in classical separation logic (SL) and proving that SL is expressive
in this context. QSL also features inductive definitions and it would be an interesting endeavor to
consider expressiveness in this setting.

Despite its similarity to thewp calculus, we did not consider the expected runtime calculus (ert) by
Kaminski et al. [2018]. We strongly conjecture that Exp is expressive for expected runtimes as well.
Finally, the conditional weakest preexpectation calculus (cwp) [Kaminski 2019; Olmedo et al.

2018] for probabilistic programs with conditioning needs weakest liberal preexpectations, which
generalize Dijkstra’s weakest liberal preconditions. It currently remains open, whether wlpJCK (f )
is expressible in Exp. There is the duality wlpJCK (f ) = 1 − wpJCK (1−f ), originally due to Kozen
[1983], but it is not immediate how to express 1−f in Exp, if f is not a plain arithmetic expression.
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