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Abstract

Standardized benchmarks have been crucial in pushing the performance of computer vision algorithms, especially since the
advent of deep learning. Although leaderboards should not be over-claimed, they often provide the most objective measure
of performance and are therefore important guides for research. We present MOT Challenge, a benchmark for single-camera
Multiple Object Tracking (MOT) launched in late 2014, to collect existing and new data and create a framework for the
standardized evaluation of multiple object tracking methods. The benchmark is focused on multiple people tracking, since
pedestrians are by far the most studied object in the tracking community, with applications ranging from robot navigation to
self-driving cars. This paper collects the first three releases of the benchmark: (i) MOT15, along with numerous state-of-the-
art results that were submitted in the last years, (ii) MOT16, which contains new challenging videos, and (iii) MOT17, that
extends MOT16 sequences with more precise labels and evaluates tracking performance on three different object detectors.
The second and third release not only offers a significant increase in the number of labeled boxes, but also provide labels for
multiple object classes beside pedestrians, as well as the level of visibility for every single object of interest. We finally provide
a categorization of state-of-the-art trackers and a broad error analysis. This will help newcomers understand the related work
and research trends in the MOT community, and hopefully shed some light into potential future research directions.

Keywords Multi-object-tracking - Evaluation - MOTChallenge - Computer vision - MOTA

1 Introduction

Communicated by Daniel Scharstein. Evaluating and comparing single-camera multi-target track-

ing methods is not trivial for numerous reasons (Milan
et al. 2013). Firstly, unlike for other tasks, such as image
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the literature. Finally, the lack of pre-defined test and training
data makes it difficult to compare different methods fairly.

Even though multi-target tracking is a crucial problem in
scene understanding, until recently it still lacked large-scale
benchmarks to provide a fair comparison between tracking
methods. Typically, methods are tuned for each sequence,
reaching over 90% accuracy in well-known sequences like
PETS (Ferryman and Ellis 2010). Nonetheless, the real chal-
lenge for a tracking system is to be able to perform well on
a variety of sequences with different level of crowdedness,
camera motion, illumination, etc., without overfitting the set
of parameters to a specific video sequence.

To address this issue, we released the MOTChallenge
benchmark in 2014, which consisted of three main com-
ponents: (1) a (re-)collection of publicly available and new
datasets, (2) a centralized evaluation method, and (3) an
infrastructure that allows for crowdsourcing of new data,
new evaluation methods and even new annotations. The first
release of the dataset named MOT 15 consists of 11 sequences
for training and 11 for testing, with a total of 11286 frames
or 996 seconds of video. 3D information was also provided
for 4 of those sequences. Pre-computed object detections,
annotations (only for the training sequences), and a common
evaluation method for all datasets were provided to all par-
ticipants, which allowed for all results to be compared fairly.

Since October 2014, over 1,000 methods have been pub-
licly tested on the MOTChallenge benchmark, and over 1833
users have registered, see Fig. 1. In particular, 760 meth-
ods have been tested on MOT15, 1,017 on MOT16 and 692
on MOT17; 132, 213 and 190 (respectively) were published
on the public leaderboard. This established MOTChallenge
as the first standardized large-scale tracking benchmark for
single-camera multiple people tracking.

Despite its success, the first tracking benchmark, MOT15,
was lacking in a few aspects:

— The annotation protocol was not consistent across all
sequences since some of the ground truth was collected
from various online sources;

— the distribution of crowd density was not balanced for
training and test sequences;

— some of the sequences were well-known (e.g., PETS09-
S2L.1) and methods were overfitted to them, which made
them not ideal for testing purposes;

— the provided public detections did not show good perfor-
mance on the benchmark, which made some participants
switch to other pedestrian detectors.

To resolve the aforementioned shortcomings, we intro-
duced the second benchmark, MOT16. It consists of a set of
14 sequences with crowded scenarios, recorded from differ-
ent viewpoints, with/without camera motion, and it covers
a diverse set of weather and illumination conditions. Most

@ Springer

importantly, the annotations for all sequences were car-
ried out by qualified researchers from scratch following a
strict protocol and finally double-checked to ensure a high
annotation accuracy. In addition to pedestrians, we also anno-
tated classes such as vehicles, sitting people, and occluding
objects. With this fine-grained level of annotation, it was
possible to accurately compute the degree of occlusion and
cropping of all bounding boxes, which was also provided
with the benchmark.

For the third release, MOT17, we (1) further improved the
annotation consistency over the sequences' and (2) proposed
anew evaluation protocol with public detections. In MOT17,
we provided 3 sets of public detections, obtained using three
different object detectors. Participants were required to eval-
uate their trackers using all three detections sets, and results
were then averaged to obtain the final score. The main idea
behind this new protocol was to establish the robustness of
the trackers when fed with detections of different quality.
Besides, we released a separate subset for evaluating object
detectors, MOT17Det.

In this work, we categorize and analyze 73 published
trackers that have been evaluated on MOT15, 74 trackers on
MOTI6, and 57 on MOT17.> Having results on such a large
number of sequences allows us to perform a thorough analy-
sis of trends in tracking, currently best-performing methods,
and special failure cases. We aim to shed some light on poten-
tial research directions for the near future in order to further
improve tracking performance.

In summary, this paper has two main goals:

— To present the MOTChallenge benchmark for a fair eval-
uation of multi-target tracking methods, along with its
first releases: MOT15, MOT16, and MOT17;

— to analyze the performance of 73 state-of-the-art trackers
on MOT15, 74 trackers on MOT16, and 57 on MOT17 to
analyze trends in MOT over the years. We analyze the
main weaknesses of current trackers and discuss promis-
ing research directions for the community to advance the
field of multi-target tracking.

The benchmark with all datasets, ground truth, detections,
submitted results, current ranking and submission guidelines
can be found at:

http://www.motchallenge.net/.

1 We thank the numerous contributors and users of MOTChallenge that
pointed us to issues with annotations.

2 In this paper, we only consider published trackers that were on the
leaderboard on April 17th, 2020, and used the provided set of public
detections. For this analysis, we focused on peer-reviewed methods, i.e.,
published at a conference or a journal, and excluded entries for which
we could not find corresponding publications due to lack of information
provided by the authors.
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2 Related work

Benchmarks and challenges In the recent past, the computer
vision community has developed centralized benchmarks for
numerous tasks including object detection (Everingham et al.
2015), pedestrian detection (Dollar et al. 2009), 3D recon-
struction (Seitz et al. 2006), optical flow (Baker et al. 2011,
Geiger et al. 2012), visual odometry (Geiger et al. 2012),
single-object short-term tracking (Kristan et al. 2014), and
stereo estimation (Geiger et al. 2012; Scharstein and Szeliski
2002). Despite potential pitfalls of such benchmarks (Tor-
ralba and Efros 2011), they have proven to be extremely
helpful to advance the state of the art in the respective area.

For single-camera multiple target tracking, in contrast,
there has been very limited work on standardizing quantita-
tive evaluation. One of the few exceptions is the well-known
PETS dataset (Ferryman and Ellis 2010) addressing primar-
ily surveillance applications. The 2009 version consists of 3
subsets S: S1 targeting person count and density estimation,
S2 targeting people tracking, and S3 targeting flow analysis
and event recognition. The simplest sequence for tracking
(S2L1) consists of a scene with few pedestrians, and for
that sequence, state-of-the-art methods perform extremely
well with accuracies of over 90% given a good set of initial
detections (Henriques et al. 2011; Milan et al. 2014; Zamir
et al. 2012). Therefore, methods started to focus on tracking
objects in the most challenging sequence, i.e., with the high-
est crowd density, but hardly ever on the complete dataset.
Even for this widely used benchmark, we observe that track-
ing results are commonly obtained inconsistently, involving
using different subsets of the available data, inconsistent
model training that is often prone to overfitting, varying eval-
uation scripts, and different detection inputs. Results are thus
not easily comparable. Hence, the questions that arise are:
(i) are these sequences already too easy for current track-
ing methods?, (ii) do methods simply overfit?, and (iii) are
existing methods poorly evaluated?

The PETS team organizes a workshop approximately once
ayear to which researchers can submit their results, and meth-
ods are evaluated under the same conditions. Although this is
indeed a fair comparison, the fact that submissions are eval-
uated only once a year means that the use of this benchmark
for high impact conferences like ICCV or CVPR remains
challenging. Furthermore, the sequences tend to be focused
only on surveillance scenarios and lately on specific tasks
such as vessel tracking. Surveillance videos have a low frame
rate, fixed camera viewpoint, and low pedestrian density. The
ambition of MOT Challenge is to tackle more general scenar-
ios including varying viewpoints, illumination conditions,
different frame rates, and levels of crowdedness.

A well-established and useful way of organizing datasets
is through standardized challenges. These are usually in the
form of web servers that host the data and through which

results are uploaded by the users. Results are then evaluated
in a centralized way by the server and afterward presented
online to the public, making a comparison with any other
method immediately possible.

There are several datasets organized in this fashion: the
Labeled Faces in the Wild (Huang et al. 2007) for uncon-
strained face recognition, the PASCAL VOC (Everingham
et al. 2015) for object detection and the ImageNet large scale
visual recognition challenge (Russakovsky et al. 2015).

The KITTI benchmark (Geiger et al. 2012) was intro-
duced for challenges in autonomous driving, which includes
stereo/flow, odometry, road and lane estimation, object detec-
tion, and orientation estimation, as well as tracking. Some of
the sequences include crowded pedestrian crossings, mak-
ing the dataset quite challenging, but the camera position is
located at a fixed height for all sequences.

Another work that is worth mentioning is Alahi et al.
(2014), in which the authors collected a large amount of data
containing 42 million pedestrian trajectories. Since annota-
tion of such a large collection of data is infeasible, they use
a denser set of cameras to create the “ground-truth” trajecto-
ries. Though we do not aim at collecting such a large amount
of data, the goal of our benchmark is somewhat similar: to
push research in tracking forward by generalizing the test
data to a larger set that is highly variable and hard to overfit.

DETRAC (Wen et al. 2020) is a benchmark for vehicle
tracking, following a similar submission system to the one we
proposed with MOTChallenge. This benchmark consists of
a total of 100 sequences, 60% of which are used for training.
Sequences are recorded from a high viewpoint (surveillance
scenarios) with the goal of vehicle tracking.

Evaluation A critical question with any dataset is how to
measure the performance of the algorithms. In the case of
multiple object tracking, the CLEAR-MOT metrics (Stiefel-
hagen et al. 2006) have emerged as the standard measures. By
measuring the intersection over union of bounding boxes and
matching those from ground-truth annotations and results,
measures of accuracy and precision can be computed. Pre-
cision measures how well the persons are localized, while
accuracy evaluates how many distinct errors such as missed
targets, ghost trajectories, or identity switches are made.
Alternatively, trajectory-based measures by Wu and Neva-
tia (2006) evaluate how many trajectories were mostly
tracked, mostly lost, and partially tracked, relative to the track
lengths. These are mainly used to assess track coverage. The
IDF1 metric (Ristani et al. 2016) was introduced for MOT
evaluation in a multi-camera setting. Since then it has been
adopted for evaluation in the standard single-camera setting
in our benchmark. Contrary to MOTA, the ground truth to
predictions mapping is established at the level of entire tracks
instead of on frame by frame level, and therefore, measures
long-term tracking quality. In Sect. 7 we report IDF1 perfor-
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MOTChallenge User Statistics
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Fig.1 Evolution of MOTChallenge submissions, number of users reg-
istered and trackers created

mance in conjunction with MOTA. A detailed discussion on
the measures can be found in Sect. 6.

A key parameter in both families of metrics is the inter-
section over union threshold which determines whether a
predicted bounding box was matched to an annotation. It
is fairly common to observe methods compared under dif-
ferent thresholds, varying from 25 to 50%. There are often
many other variables and implementation details that differ
between evaluation scripts, which may affect results signif-
icantly. Furthermore, the evaluation script is not the only
factor. Recently, a thorough study (Mathias et al. 2014) on
face detection benchmarks showed that annotation policies
vary greatly among datasets. For example, bounding boxes
can be defined tightly around the object, or more loosely to
account for pose variations. The size of the bounding box
can greatly affect results since the intersection over union
depends directly on it.

Standardized benchmarks are preferable for comparing
methods in a fair and principled way. Using the same ground-
truth data and evaluation methodology is the only way to
guarantee that the only part being evaluated is the tracking
method that delivers the results. This is the main goal of the
MOTChallenge benchmark.

3 History of MOTChallenge

The first benchmark was released in October 2014 and it con-
sists of 11 sequences for training and 11 for testing, where
the testing sequences have not been available publicly. We
also provided a set of detections and evaluation scripts. Since
its release, 692 tracking results were submitted to the bench-
mark, which has quickly become the standard for evaluating
multiple pedestrian tracking methods in high impact confer-
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ences such as ICCV, CVPR, and ECCV. Together with the
release of the new data, we organized the 1st Workshop on
Benchmarking Multi-Target Tracking (BMTT) in conjunc-
tion with the IEEE Winter Conference on Applications of
Computer Vision (WACV) in 2015 3

After the success of the first release of sequences, we
created a 2016 edition, with 14 longer and more crowded
sequences and a more accurate annotation policy which we
describe in this manuscript (Sect. C.1). For the release of
MOTI6, we organized the second workshop* in conjunction
with the European Conference in Computer Vision (ECCV)
in 2016.

For the third release of our dataset, MOT17, we improved
the annotation consistency over the MOT16 sequences and
provided three public sets of detections, on which trackers
need to be evaluated. For this release, we organized a Joint
Workshop on Tracking and Surveillance in conjunction with
the Performance Evaluation of Tracking and Surveillance
(PETS) (Ferryman and Ellis 2010; Ferryman and Shahrokni
2009) workshop and the Conference on Vision and Pattern
Recognition (CVPR) in 20175

In this paper, we focus on the MOT15, MOTI6, and
MOT17benchmarks because numerous methods have already
submitted their results to these challenges for several years
that allow us to analyze these methods and to draw conclu-
sions about research trends in multi-object tracking.

Nonetheless, work continues on the benchmark, with
frequent releases of new challenges and datasets. The lat-
est pedestrian tracking dataset was first presented at the
4th MOTChallenge workshop® (CVPR 2019), an ambitious
tracking challenge with eight new sequences (Dendorfer et al.
2019). With the feedback of the workshop the sequences
were revised and re-published as the MOT20 (Dendorfer et al.
2020) benchmark. This challenge focuses on very crowded
scenes, where the object density can reach up to 246 pedes-
trians per frame. The diverse sequences show indoor and
outdoor scenes, filmed either during day or night. With more
than 2M bounding boxes and 3833 tracks, MOT20 constitutes
anew level of complexity and challenges the performance of
tracking methods in very dense scenarios. At the time of this
article, only 11 submissions for MOT20 had been received,
hence a discussion of the results is not yet significant nor
informative, and is left for future work.

The future vision of MOTChallenge is to establish it
as a general platform for benchmarking multi-object track-
ing, expanding beyond pedestrian tracking. To this end, we
recently added a public benchmark for multi-camera 3D
zebrafish tracking (Pedersen et al. 2020), and a benchmark

3 https://motchallenge.net/workshops/bmtt2015/.
4 https://motchallenge.net/workshops/bmtt2016/.
3 https://motchallenge.net/workshops/bmtt-pets2017/.
6 https://motchallenge.net/workshops/bmtt2019/.
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Fig.2 a The performance of the provided detection bounding boxes evaluated on the training (blue) and the test (red) set. The circle indicates the
operating point (i.e., the input detection set) for the trackers. b—d Exemplar detection results

for the large-scale Tracking any Object (TAO) dataset (Dave
et al. 2020). This dataset consists of 2907 videos, covering
833 classes by 17,287 tracks.

In Fig. 1, we plot the evolution of the number of users,
submissions, and trackers created since MOTChallenge was
released to the public in 2014. Since our 2nd workshop was
announced at ECCV, we have experienced steady growth in
the number of users as well as submissions.

4 MOT15 Release

One of the key aspects of any benchmark is data collec-
tion. The goal of MOTChallenge is not only to compile yet
another dataset with completely new data but rather to: (1)
create a common framework to test tracking methods on, and
(2) gather existing and new challenging sequences with very
different characteristics (frame rate, pedestrian density, illu-
mination, or point of view) in order to challenge researchers
to develop more general tracking methods that can deal with
all types of sequences. In Table 5 of the Appendix we show
an overview of the sequences included in the benchmark.

4.1 Sequences

We have compiled a total of 22 sequences that combine dif-
ferent videos from several sources (Andriluka et al. 2010;
Benfold and Reid 2011; Ess et al. 2008; Ferryman and Ellis
2010; Geiger et al. 2012) and new data collected from us. We
use half of the data for training and a half for testing, and the
annotations of the testing sequences are not released to the
public to avoid (over)fitting of methods to specific sequences.
Note, the test data contains over 10 min of footage and 61,440
annotated bounding boxes, therefore, it is hard for researchers
to over-tune their algorithms on such a large amount of data.
This is one of the major strengths of the benchmark.

We collected 6 new challenging sequences, 4 filmed from
a static camera and 2 from a moving camera held at pedes-
trian’s height. Three sequences are particularly challenging: a
night sequence filmed from a moving camera and two outdoor

sequences with a high density of pedestrians. The moving
camera together with the low illumination creates a lot of
motion blur, making this sequence extremely challenging.
A smaller subset of the benchmark including only these six
new sequences were presented at the 1st Workshop on Bench-
marking Multi-Target Tracking,” where the top-performing
method reached MOTA (tracking accuracy) of only 12.7%.
This confirms the difficulty of the new sequences.®

4.2 Detections

To detect pedestrians in all images of the MOT15 edition,
we use the object detector of Dolldr et al. (2014), which
is based on aggregated channel features (ACF). We rely on
the default parameters and the pedestrian model trained on
the INRIA dataset (Dalal and Triggs 2005), rescaled with a
factor of 0.6 to enable the detection of smaller pedestrians.
The detector performance along with three sample frames is
depicted in Fig. 2, for both the training and the test set of
the benchmark. Recall does not reach 100% because of the
non-maximum suppression applied.

We cannot (nor necessarily want to) prevent anyone from
using a different set of detections. However, we require that
this is noted as part of the tracker’s description and is also
displayed in the rating table.

4.3 Weaknesses of MOT15

By the end of 2015, it was clear that a new release was due
for the MOTChallenge benchmark. The main weaknesses of
MOT15 were the following:

— Annotations we collected annotations online for the exist-
ing sequences, while we manually annotated the new
sequences. Some of the collected annotations were not

7 https://motchallenge.net/workshops/bmtt2015/.

8 The challenge results are available at http:/motchallenge.net/results/
WACV_2015_Challenge/.
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Fig.4 The performance of three popular pedestrian detectors evaluated on the training (blue) and the test (red) set. The circle indicates the operating
point (i.e. the input detection set) for the trackers of MOT16 and MOT17 (Color figure online)

accurate enough, especially in scenes with moving cam-
eras.

— Difficulty generally, we wanted to include some well-
known sequences, e.g., PETS2009, in the MOT15 bench-
mark. However, these sequences have turned out to be too
simple for state-of-the-art trackers why we concluded to
create a new and more challenging benchmark.

To overcome these weaknesses, we created MOT16, a col-
lection of all-new challenging sequences (including our new
sequences from MOT15) and creating annotations following
a more strict protocol (see Sect. C.1 of the Appendix).

5 MOT16 and MOT17 Releases

Our ambition for the release of MOT16 was to compile
a benchmark with new and more challenging sequences
compared to MOT1I5. Figure 3 presents an overview of the
benchmark training and test sequences (detailed information
about the sequences is presented in Table 9 in the Appendix).

MOTI7 consists of the same sequences as MOT16, but
contains two important changes: (i) the annotations are
further improved, i.e., increasing the accuracy of the bound-
ing boxes, adding missed pedestrians, annotating additional
occluders, following the comments received by many anony-
mous benchmark users, as well as the second round of sanity
checks, (ii) the evaluation system significantly differs from
MOT17, including the evaluation of tracking methods using

@ Springer

three different detectors in order to show the robustness to
varying levels of noisy detections.

5.1 MOT16 Sequences

We compiled a total of 14 sequences, of which we use half for
training and a half for testing. The annotations of the testing
sequences are not publicly available. The sequences can be
classified according to moving/static camera, viewpoint, and
illumination conditions (Fig. 11 in Appendix). The new data
contains almost 3 times more bounding boxes for training
and testing than MOT15. Most sequences are filmed in high
resolution, and the mean crowd density is 3 times higher
when compared to the first benchmark release. Hence, the
new sequences present a more challenging benchmark than
MOT15 for the tracking community.

5.2 Detections

We evaluate several state-of-the-art detectors on our bench-
mark, and summarize the main findings in Fig. 4. To evaluate
the performance of the detectors for the task of tracking, we
evaluate them using all bounding boxes considered for the
tracking evaluation, including partially visible or occluded
objects. Consequently, the recall and average precision (AP)
is lower than the results obtained by evaluating solely on
visible objects, as we do for the detection challenge.

MOT16 Detections We first train the deformable part-based
model (DPM) v5 (Felzenszwalb and Huttenlocher 2006)
and find that it outperforms other detectors such as Fast-
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RNN (Girshick 2015) and ACF (Dollar et al. 2014) for the
task of detecting persons on MOT16. Hence, for that bench-
mark, we provide DPM detections as public detections.
MOTI17 Detections For the new MOTI17 release, we use
Faster-RCNN (Ren et al. 2015) and a detector with scale-
dependent pooling (SDP) (Yang et al. 2016), both of which
outperform the previous DPM method. After a discussion
held in one of the MOTChallenge workshops, we agreed
to provide all three detections as public detections, effec-
tively changing the way MOTChallenge evaluates trackers.
The motivation is to challenge trackers further to be more
general and work with detections of varying quality. These
detectors have different characteristics, as can be seen in
in Fig. 4. Hence, a tracker that can work with all three inputs
is going to be inherently more robust. The evaluation for
MOT17 is, therefore, set to evaluate the output of trackers on
all three detection sets, averaging their performance for the
final ranking. A detailed breakdown of detection bounding
box statistics on individual sequences is provided in Table 10
in the Appendix.

6 Evaluation

MOTChallenge is also a platform for a fair comparison of
state-of-the-art tracking methods. By providing authors with
standardized ground-truth data, evaluation metrics, scripts,
as well as a set of precomputed detections, all methods
are compared under the same conditions, thereby isolating
the performance of the tracker from other factors. In the
past, a large number of metrics for quantitative evaluation
of multiple target tracking have been proposed (Bernardin
and Stiefelhagen 2008; Li et al. 2009; Schuhmacher et al.
2008; Smith et al. 2005; Stiefelhagen et al. 2006; Wu and
Nevatia 2006). Choosing “the right” one is largely applica-
tion dependent and the quest for a unique, general evaluation
measure is still ongoing. On the one hand, it is desirable to
summarize the performance into a single number to enable a
direct comparison between methods. On the other hand, one
might want to provide more informative performance esti-
mates by detailing the types of errors the algorithms make,
which precludes a clear ranking.

Following a recent trend (Bae and Yoon 2014; Milan et al.
2014; Wen et al. 2014), we employ three sets of tracking
performance measures that have been established in the lit-
erature: (i) the frame-to-frame based CLEAR-MOT metrics
proposed by Stiefelhagen et al. (2006), (ii) track quality
measures proposed by Wu and Nevatia (2006), and (iii)
trajectory-based IDF1 proposed by Ristani et al. (2016).

These evaluation measures give a complementary view on
tracking performance. The main representative of CLEAR-
MOT measures, Multi-Object Tracking Accuracy (MOTA),
is evaluated based on frame-to-frame matching between track

predictions and ground truth. It explicitly penalizes iden-
tity switches between consecutive frames, thus evaluating
tracking performance only locally. This measure tends to put
more emphasis on object detection performance compared to
temporal continuity. In contrast, track quality measures (Wu
and Nevatia 2006) and IDF1 Ristani et al. (2016), perform
prediction-to-ground-truth matching on a trajectory level
and over-emphasize the temporal continuity aspect of the
tracking performance. In this section, we first introduce the
matching between predicted track and ground-truth anno-
tation before we present the final measures. All evaluation
scripts used in our benchmark are publicly available.”

6.1 Multiple Object Tracking Accuracy

MOTA summarizes three sources of errors with a single per-
formance measure:

>, (FN; + FP, 4+ IDSW,)
>, GT, ’

MOTA =1 — ()

where ¢ is the frame index and GT is the number of ground-
truth objects. where FN are the false negatives, i.e., the
number of ground truth objects that were not detected by
the method. F P are the false positives, i.e., the number of
objects that were falsely detected by the method but do not
exist in the ground-truth. /DSW is the number of identity
switches, i.e., how many times a given trajectory changes
from one ground-truth object to another. The computation of
these values as well as other implementation details of the
evaluation tool are detailed in Appendix Sect. D. We report
the percentage MOTA (—o0, 100] in our benchmark. Note,
that MOTA can also be negative in cases where the number of
errors made by the tracker exceeds the number of all objects
in the scene.

Justification We note that MOTA has been criticized in the
literature for not having different sources of errors properly
balanced. However, to this day, MOTA is still considered to
be the most expressive measure for single-camera MOT eval-
uation. It was widely adopted for ranking methods in more
recent tracking benchmarks, such as PoseTrack (Andriluka
et al. 2018), KITTI tracking (Geiger et al. 2012), and the
newly released Lyft (Kesten et al. 2019), Waymo (Sun et al.
2020), and ArgoVerse (Chang et al. 2019) benchmarks. We
adopt MOTA for ranking, however, we recommend taking
alternative evaluation measures (Ristani et al. 2016; Wu and
Nevatia 2006) into the account when assessing the tracker’s
performance.

Robustness One incentive behind compiling this benchmark
was to reduce dataset bias by keeping the data as diverse as
possible. The main motivation is to challenge state-of-the-art

9 http://motchallenge.net/devkit.
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approaches and analyze their performance in unconstrained
environments and on unseen data. Our experience shows that
most methods can be heavily overfitted on one particular
dataset, and may not be general enough to handle an entirely
different setting without a major change in parameters or
even in the model.

6.2 Multiple Object Tracking Precision

The Multiple Object Tracking Precision is the average dis-
similarity between all true positives and their corresponding
ground-truth targets. For bounding box overlap, this is com-
puted as:

Zt,i dyi
Yee

where ¢; denotes the number of matches in frame ¢ and d; ;
is the bounding box overlap of target i with its assigned
ground-truth object in frame 1. MOTP thereby gives the aver-
age overlap of #; between all correctly matched hypotheses
and their respective objects and ranges between 7; := 50%
and 100%.

It is important to point out that MOTP is a measure of
localisation precision, not to be confused with the positive
predictive value or relevance in the context of precision /
recall curves used, e.g., in object detection.

In practice, it quantifies the localization precision of the
detector, and therefore, it provides little information about
the actual performance of the tracker.

MOTP = 2)

6.3 Identification Precision, Identification Recall,
and F1 Score

CLEAR-MOT evaluation measures provide event-based
tracking assessment. In contrast, the IDF1 measure (Ristani
et al. 2016) is an identity-based measure that emphasizes
the track identity preservation capability over the entire
sequence. In this case, the predictions-to-ground-truth map-
ping is established by solving a bipartite matching problem,
connecting pairs with the largest temporal overlap. After the
matching is established, we can compute the number of True
Positive IDs (IDTP), False Negative IDs (IDFN), and False
Positive IDs (IDFP), that generalise the concept of per-frame
TPs, FNs and FPs to tracks. Based on these quantities, we
can express the Identification Precision (IDP) as:

_ IDTP 3)
~ IDTP + IDFP’
and Identification Recall (IDR) as:
IDTP
= )
IDTP + IDFN

@ Springer

Note that IDP and IDR are the fraction of computed (ground-
truth) detections that are correctly identified. IDF1 is then
expressed as a ratio of correctly identified detections over
the average number of ground-truth and computed detections
and balances identification precision and recall through their
harmonic mean:

2. IDTP
IDFI = . (5)
2. IDTP + IDFP + IDFN

6.4 Track Quality Measures

The final measures that we report on our benchmark are
qualitative, and evaluate the percentage of the ground-truth
trajectory that is recovered by a tracking algorithm. Each
ground-truth trajectory can be consequently classified as
mostly tracked (MT), partially tracked (PT), and mostly lost
(ML). As defined in Wu and Nevatia (2006), a target is mostly
tracked if it is successfully tracked for at least 80% of its life
span, and considered lost in case it is covered for less than
20% of its total length. The remaining tracks are considered
to be partially tracked. A higher number of MT and a few
ML is desirable. Note, that it is irrelevant for this measure
whether the ID remains the same throughout the track. We
report MT and ML as a ratio of mostly tracked and mostly
lost targets to the total number of ground-truth trajectories.
In certain situations, one might be interested in obtaining
long, persistent tracks without trajectory gaps. To that end,
the number of track fragmentations (FM) counts how many
times a ground-truth trajectory is interrupted (untracked). A
fragmentation event happens each time a trajectory changes
its status from tracked to untracked and is resumed at a later
point. Similarly to the ID switch ratio (c.f. Sect. D.1), we also
provide the relative number of fragmentations as FM/Recall.

7 Analysis of State-of-the-Art Trackers

We now present an analysis of recent multi-object tracking
methods that submitted to the benchmark. This is divided
into two parts: (i) categorization of the methods, where our
goal is to help young scientists to navigate the recent MOT
literature, and (ii) error and runtime analysis, where we point
out methods that have shown good performance on a wide
range of scenes. We hope this can eventually lead to new
promising research directions.

We consider all valid submissions to all three benchmarks
that were published before April 17th, 2020, and used the
provided set of public detections. For this analysis, we focus
on methods that are peer-reviewed, i.e., published at a confer-
ence or a journal. We evaluate a total of 101 (public) trackers;
73 trackers were tested on MOT15, 74 on MOT16 and 57 on
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Fig. 5 Graphical overview of the top 15 trackers of all benchmarks. The entries are ordered from easiest sequence/best performing method, to
hardest sequence/poorest performance, respectively. The mean performance across all sequences/submissions is depicted with a thick black line

MOTI7. A small subset of the submissions'® were done by
the benchmark organizers and not by the original authors of
the respective method. Results for MOT15 are summarized in
Table 1, for MOT16 in Table 2 and for MOT17 in Table 3. The
performance of the top 15 ranked trackers is demonstrated in
Fig. 5.

10 The methods DP_NMS, TC_ODAL, TBD, SMOT, CEM, DCO_X,
and LP2D were taken as baselines for the benchmark.

7.1 Trends in Tracking

Global optimization The community has long used the
paradigm of tracking-by-detection for MOT, i.e., dividing
the task into two steps: (i) object detection and (ii) data asso-
ciation, or temporal linking between detections. The data
association problem could be viewed as finding a set of dis-
joint paths in a graph, where nodes in the graph represent
object detections, and links hypothesize feasible associa-
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tions. Detectors usually produce multiple spatially-adjacent
detection hypotheses, that are usually pruned using heuristic
non-maximum suppression (NMS).

Before 2015, the community mainly focused on finding
strong, preferably globally optimal methods to solve the data
association problem. The task of linking detections into a
consistent set of trajectories was often cast as, e.g., a graph-
ical model and solved with k-shortest paths in DP_NMS
(Pirsiavash et al. 2011), as a linear program solved with the
simplex algorithm in LP2D (Leal-Taixé et al. 2011), as a
Conditional Random Field in DCO_X (Milan et al. 2016),
SegTrack (Milan et al. 2015), LTTSC-CREF (Le et al. 2016),
and GMMCP (Dehghan et al. 2015), using joint probabilistic
data association filter (JPDA) (Rezatofighi et al. 2015) or as
a variational Bayesian model in OVBT (Ban et al. 2016).

A number of tracking approaches investigate the efficacy
of using a Probability Hypothesis Density (PHD) filter-based
tracking framework (Baisa 2019a; Baisa 2019b; Baisa and
Wallace 2019; Fu et al. 2018; Sanchez-Matilla et al. 2016;
Song and Jeon 2016; Song et al. 2019; Wojke and Paulus
2016). This family of methods estimate states of multiple
targets and data association simultaneously, reaching 30.72%
MOTA on MOT15 (GMPHD_OGM), 41% and 40.42% on
MOTI16 (PHD_GSDL and GMPHD_Reld, respectively) and
49.94% (GMPHD_OGM) on MOT17.

Newer methods (Tang et al. 2015) bypassed the need to
pre-process object detections with NMS. They proposed a
multi-cut optimization framework, which finds the connected
components in a graph that represent feasible solutions, clus-
tering all detections that correspond to the same target. This
family of methods (JMC (Tang et al. 2016), LMP (Tang et al.
2017), NLLMPA (Levinkov et al. 2017), JointMC (Keuper
etal. 2018), HCC (Ma et al. 2018b)) achieve 35.65% MOTA
on MOT15 (JointMC), 48.78% and 49.25% (LMP and HCC,
respectively) on MOT16 and 51.16% (JointMC) on MOT17.
Motion Models A lot of attention has also been given to
motion models, used as additional association affinity cues,
e.g., SMOT (Dicle et al. 2013), CEM (Milan et al. 2014),
TBD (Geiger et al. 2014), ELP (McLaughlin et al. 2015)
and MotiCon (Leal-Taixé et al. 2014). The pairwise costs
for matching two detections were based on either simple
distances or simple appearance models, such as color his-
tograms. These methods achieve around 38% MOTA on
MOTI6 (see Table 2) and 25% on MOT15 (see Table 1).
Hand-Crafted Affinity Measures After that, the atten-
tion shifted towards building robust pairwise similarity costs,
mostly based on strong appearance cues or a combination of
geometric and appearance cues. This shift is clearly reflected
in an improvement in tracker performance and the ability for
trackers to handle more complex scenarios. For example,
LINF1 (Fagot-Bouquet et al. 2016) uses sparse appearance
models, and oICF (Kieritz et al. 2016) use appearance models
based on integral channel features. Top-performing methods

@ Springer

of this class incorporate long-term interest point trajectories,
e.g., NOMT (Choi 2015), and, more recently, learned mod-
els for sparse feature matching JMC (Tang et al. 2016) and
JointMC (Keuper et al. 2018) to improve pairwise affinity
measures. As can be seen in Table 1, methods incorporating
sparse flow or trajectories yielded a performance boost — in
particular, NOMT is a top-performing method published in
2015, achieving MOTA of 33.67% on MOT15 and 46.42%
on MOT16. Interestingly, the first methods outperforming
NOMT on MOTI6 were published only in 2017 (AMIR
(Sadeghian et al. 2017) and NLLMP (Levinkov et al. 2017)).
Towards Learning In 2015, we observed a clear trend
towards utilizing learning to improve MOT.

LP_SSVM (Wang and Fowlkes 2016) demonstrates a sig-
nificant performance boost by learning the parameters of
linear cost association functions within a network flow track-
ing framework, especially when compared to methods using
a similar optimization framework but hand-crafted associa-
tion cues, e.g. Leal-Taixé et al. (2014). The parameters are
learned using structured SVM (Taskar et al. 2003). MDP
(Xiang et al. 2015) goes one step further and proposes to
learn track management policies (birth/death/association) by
modeling object tracks as Markov Decision Processes (Thrun
et al. 2005). Standard MOT evaluation measures (Stiefelha-
gen et al. 2006) are not differentiable. Therefore, this method
relies on reinforcement learning to learn these policies. As
can be seen in Table 1, this method outperforms the majority
of methods published in 2015 by a large margin and surpasses
30% MOTA on MOT15.

In parallel, methods start leveraging the representational
power of deep learning, initially by utilizing transfer learn-
ing. MHT_DAM (Kim et al. 2015) learns to adapt appearance
models online using multi-output regularized least squares.
Instead of weak appearance features, such as color his-
tograms, they extract base features for each object detection
using a pre-trained convolutional neural network. With the
combination of the powerful MHT tracking framework (Reid
1979) and online-adapted features used for data association,
this method surpasses MDP and attains over 32% MOTA
on MOT15 and 45% MOTA on MOT16. Alternatively, JMC
(Tang et al. 2016) and JointMC (Keuper et al. 2018) use a pre-
learned deep matching model to improve the pairwise affinity
measures. All aforementioned methods leverage pre-trained
models.

Learning Appearance Models The next clearly emerging
trend goes in the direction of learning appearance models
for data association in end-to-end fashion directly on the tar-
get (i.e., MOT15, MOT16, MOT17) datasets. SiameseCNN
(Leal-Taixe et al. 2016) trains a siamese convolutional neu-
ral network to learn spatio-temporal embeddings based on
object appearance and estimated optical flow using con-
trastive loss (Hadsell et al. 2006). The learned embeddings
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are then combined with contextual cues for robust data asso-
ciation. This method uses similar linear programming based
optimization framework (Zhang et al. 2008) compared to
LP_SSVM (Wang and Fowlkes 2016), however, it surpasses
it significantly performance-wise, reaching 29% MOTA
on MOTI5. This demonstrates the efficacy of fine-tuning
appearance models directly on the target dataset and utiliz-
ing convolutional neural networks. This approach is taken a
step further with QuadMOT (Son et al. 2017), which simi-
larly learns spatio-temporal embeddings of object detections.
However, they train their siamese network using quadruplet
loss (Chen et al. 2017b) and learn to place embedding vec-
tors of temporally-adjacent detections instances closer in the
embedding space. These methods reach 33.42% MOTA in
MOTI5 and 41.1% on MOT16.

The learning process, in this case, is supervised. Differ-
ent from that, HCC (Ma et al. 2018b) learns appearance
models in an unsupervised manner. To this end, they train
their method using object trajectories obtained from the test
set using offline correlation clustering-based tracking frame-
work (Levinkov et al. 2017). TO (Manen et al. 2016), on the
other hand, proposes to mine detection pairs over consecutive
frames using single object trackers to learn affinity measures
which are plugged into a network flow optimization tracking
framework. Such methods have the potential to keep improv-
ing affinity models on datasets for which ground-truth labels
are not available.

Online Appearance Model Adaptation The aforemen-
tioned methods only learn general appearance embedding
vectors for object detection and do not adapt the track-
ing target appearance models online. Further performance
is gained by methods that perform such adaptation online
(Chu et al. 2017; Kim et al. 2015, 2018; Zhu et al. 2018).
MHT_bLSTM (Kim et al. 2018) replaces the multi-output
regularized least-squares learning framework of MHT_DAM
(Kim et al. 2015) with a bi-linear LSTM and adapts both the
appearance model as well as the convolutional filters in an
online fashion. STAM (Chu et al. 2017) and DMAN (Zhu
et al. 2018) employ an ensemble of single-object trackers
(SOTs) that share a convolutional backbone and learn to
adapt the appearance model of the targets online during infer-
ence. They employ a spatio-temporal attention model that
explicitly aims to prevent drifts in appearance models due
to occlusions and interactions among the targets. Similarly,
KCF (Chu et al. 2019) employs an ensemble of SOTs and
updates the appearance model during tracking. To prevent
drifts, they learn a tracking update policy using reinforce-
ment learning. These methods achieve up to 38.9% MOTA
onMOT15,48.8% on MOT16 (KCF), and 50.71% on MOT17
(MHT_DAM). Surprisingly, MHT_DAM out-performs its

bilinear-LSTM variant (MHT_bLSTM achieves a MOTA of
47.52%) on MOT17.

Learning to Combine Association Cues A number of meth-
ods go beyond learning only the appearance model. Instead,
these approaches learn to encode and combine heterogeneous
association cues. SiameseCNN (Leal-Taixe et al. 2016) uses
gradient boosting to combine learned appearance embed-
dings with contextual features. AMIR (Sadeghian et al.
2017) leverages recurrent neural networks in order to encode
appearance, motion, pedestrian interactions and learns to
combine these sources of information. STRN (Xu et al. 2019)
proposes to leverage relational neural networks to learn to
combine association cues, such as appearance, motion, and
geometry. RAR (Fang et al. 2018) proposes recurrent auto-
regressive networks for learning a generative appearance and
motion model for data association. These methods achieve
37.57% MOTA on MOT15 and 47.17% on MOT16.

Fine-Grained Detection A number of methods employ
additional fine-grained detectors and incorporate their out-
puts into affinity measures, e.g., a head detector in the case
of FWT (Henschel et al. 2018), or a body joint detectors in
JBNOT (Henschel et al. 2019), which are shown to help sig-
nificantly with occlusions. The latter attains 52.63% MOTA
on MOT17, which places it as the second-highest scoring
method published in 2019.

Tracking-by-Regression Several methods leverage ensem-
bles of (trainable) single-object trackers (SOTs), used to
regress tracking targets from the detected objects, utilized
in combination with simple track management (birth/death)
strategies. We refer to this family of models as MOT-by-
SOT or tracking-by-regression. We note that this paradigm
for MOT departs from the traditional view of the multi-object
tracking problem in computer vision as a generalized assign-
ment problem (or multi-dimensional assignment problem),
i.e. the problem of grouping object detections into a discrete
set of tracks. Instead, methods based on target regression
bring the focus back to the target state estimation. We believe
the reasons for the success of these methods is two-fold: (i)
rapid progress in learning-based SOT (Held et al. 2016; Li
et al. 2018) that effectively leverages convolutional neural
networks, and (ii) these methods can effectively utilize image
evidence that is not covered by the given detection bounding
boxes. Perhaps surprisingly, the most successful tracking-by-
regression method, Tracktor (Bergmann et al. 2019), does
not perform online appearance model updates (c.f., STAM,
DMAN (Chuetal.2017; Zhu et al. 2018) and KCF (Chu et al.
2019)). Instead, it simply re-purposes the regression head of
the Faster R-CNN (Ren et al. 2015) detector, which is inter-
preted as the target regressor. This approach is most effective
when combined with a motion compensation module and a
learned re-identification module, attaining 46% MOTA on
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MOTIS5 and 56% on MOT16 and MOT17, outperforming
methods published in 2019 by a large margin.

Towards End-to-End Learning Even though tracking-by-
regression methods brought substantial improvements, they
are not able to cope with larger occlusions gaps. To com-
bine the power of graph-based optimization methods with
learning, MPNTrack (Brasé and Leal-Taixé 2020) proposes
amethod that leverages message-passing networks (Battaglia
et al. 2016) to directly learn to perform data association via
edge classification. By combining the regression capabilities
of Tracktor (Bergmann et al. 2019) with a learned discrete
neural solver, MPNTrack establishes a new state of the art,
effectively using the best of both worlds—target regression
and discrete data association. This method is the first one to
surpass MOTA above 50% on MOT15. On the MOTI16 and
MOT1I7 it attains a MOTA of 58.56% and 58.85%, respec-
tively. Nonetheless, this method is still not fully end-to-end
trained, as it requires a projection step from the solution given
by the graph neural network to the set of feasible solutions
according to the network flow formulation and constraints.
Alternatively, (Xiang et al. 2020) uses MHT framework
(Reid 1979) to link tracklets, while iteratively re-evaluating
appearance/motion models based on progressively merged

@ Springer

tracklets. This approach is one of the top on MOT17, achiev-
ing 54.87% MOTA.

In the spirit of combining optimization-based methods
with learning, Zhang et al. (2020) revisits CRF-based track-
ing models and learns unary and pairwise potential functions
in an end-to-end manner. On MOT16, this method attains
MOTA of 50.31%.

We do observe trends towards learning to perform end-
to-end MOT. To the best of our knowledge, the first method
attempting this is RNN_LSTM (Milan et al. 2017), which
jointly learns motion affinity costs and to perform bi-
partite detection association using recurrent neural networks
(RNNs). FAMNet (Chu and Ling 2019) uses a single network
to extract appearance features from images, learns associa-
tion affinities, and estimates multi-dimensional assignments
of detections into object tracks. The multi-dimensional
assignment is performed via a differentiable network layer
that computes rank-1 estimation of the assignment tensor,
which allows for back-propagation of the gradient. They
perform learning with respect to binary cross-entropy loss
between predicted assignments and ground-truth.

All aforementioned methods have one thing in common—
they optimize network parameters with respect to proxy
losses that do not directly reflect tracking quality, most com-
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monly measured by the CLEAR-MOT evaluation measures
(Stiefelhagen et al. 2006). To evaluate MOTA, the assign-
ment between track predictions and ground truth needs to
be established; this is usually performed using the Hun-
garian algorithm (Kuhn and Yaw 1955), which contains
non-differentiable operations. To address this discrepancy
DeepMOT (Xu et al. 2020) proposes the missing link—a
differentiable matching layer that allows expressing a soft,
differentiable variant of MOTA and MOTP.

Conclusion In summary, we observed that after an initial
focus on developing algorithms for discrete data association
(Dehghan et al. 2015; Le et al. 2016; Pirsiavash et al. 2011;
Zhang et al. 2008), the focus shifted towards hand-crafting
powerful affinity measures (Choi 2015; Kieritz et al. 2016;
Leal-Taixé et al. 2014), followed by large improvements
brought by learning powerful affinity models (Leal-Taixe
et al. 2016; Son et al. 2017; Wang and Fowlkes 2016; Xiang
et al. 2015).

In general, the major outstanding trends we observe in the
past years all leverage the representational power of deep
learning for learning association affinities, learning to adapt
appearance models online (Chu et al. 2019, 2017; Kim et al.
2018; Zhu et al. 2018) and learning to regress tracking targets
(Bergmann et al. 2019; Chu et al. 2019, 2017; Zhu et al.
2018). Figure 6 visualizes the promise of deep learning for
tracking by plotting the performance of submitted models
over time and by type.

The main common components of top-performing meth-
ods are: (i) learned single-target regressors (single-object
trackers), such as (Held et al. 2016; Li et al. 2018), and
(ii) re-identification modules (Bergmann et al. 2019). These
methods fall short in bridging large occlusion gaps. To this
end, we identified Graph Neural Network-based methods
(Bras6 and Leal-Taixé 2020) as a promising direction for
future research. We observed the emergence of methods
attempting to learn to track objects in end-to-end fashion
instead of training individual modules of tracking pipelines
(Chu and Ling 2019; Milan et al. 2017; Xu et al. 2020). We
believe this is one of the key aspects to be addressed to fur-
ther improve performance and expect to see more approaches
leveraging deep learning for that purpose.

7.2 Runtime Analysis

Different methods require a varying amount of computa-
tional resources to track multiple targets. Some methods may
require large amounts of memory while others need to be
executed on a GPU. For our purpose, we ask each bench-
mark participant to provide the number of seconds required
to produce the results on the entire dataset, regardless of the
computational resources used. It is important to note that

the resulting numbers are therefore only indicative of each
approach and are not immediately comparable to one another.

Figure 7 shows the relationship between each submis-
sion’s performance measured by MOTA and its efficiency in
terms of frames per second, averaged over the entire dataset.
There are two observations worth pointing out. First, the
majority of methods are still far below real-time performance,
which is assumed at 25 Hz. Second, the average process-
ing rate ~ 5 Hz does not differ much between the different
sequences, which suggests that the different object densities
(9 ped./fr. in MOT15 and 26 ped./fr. in MOT16/MOT17) do
not have alarge impact on the speed the models. One explana-
tion is that novel learning methods have an efficient forward
computation, which does not vary much depending on the
number of objects. This is in clear contrast to classic meth-
ods that relied on solving complex optimization problems at
inference, which increased computation significantly as the
pedestrian density increased. However, this conclusion has
to be taken with caution because the runtimes are reported
by the users on a trust base and cannot be verified by us.

7.3 Error Analysis

As we now, different applications have different require-
ments, e.g., for surveillance it is critical to have few false
negatives, while for behavior analysis, having a false pos-
itive can mean computing wrong motion statistics. In this
section, we take a closer look at the most common errors
made by the tracking approaches. This simple analysis can
guide researchers in choosing the best method for their task.
In Fig. 8, we show the number of false negatives (FN, blue)
and false positives (FP, red) created by the trackers on average
with respect to the number of FN/FP of the object detector,
used as an input. A ratio below 1 indicates that the track-
ers have improved in terms of FN/FP over the detector. We
show the performance of the top 15 trackers, averaged over
sequences. We order them according to MOTA from left to
right in decreasing order.

‘We observe all top-performing trackers reduce the amount
of FPs and FNs compared to the public detections. While the
trackers reduce FPs significantly, FNs are decreased only
slightly. Moreover, we can see a direct correlation between
the FN and tracker performance, especially for MOT16 and
MOT17 datasets, since the number of FNs is much larger than
the number of FPs. The question is then, why are methods
not focusing on reducing FNs? It turns out that “filling the
gaps‘ between detections, what is commonly thought track-
ers should do, is not an easy task.

Itis not until 2018 that we see methods drastically decreas-
ing the number of FNs, and as a consequence, MOTA
performance leaps forward. As shown in Fig. 6, this is due
to the appearance of learning-based tracking-by-regression
methods (Bergmann et al. 2019; Brasé and Leal-Taixé 2020;
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Chu et al. 2017; Zhu et al. 2018). Such methods decrease the
number of FNs the most by effectively using image evidence
not covered by detection bounding boxes and regressing tar-
gets to areas where they are visible but missed by detectors.
This brings us back to the common wisdom that trackers
should be good at “filling the gaps* between detections.

Overall, it is clear that MOT17 still presents a challenge
both in terms of detection as well as tracking. It will require
significant further future efforts to bring performance to the
next level. In particular, the next challenge that future meth-
ods will need to tackle is bridging large occlusion gaps, which
can not be naturally resolved by methods performing target
regression, as these only work as long as the target is (par-
tially) visible.

8 Conclusion and Future Work

We have introduced MOTChallenge, a standardized bench-
mark for a fair evaluation of single-camera multi-person
tracking methods. We presented its first two data releases
with about 35,000 frames of footage and almost 700,000
annotated pedestrians. Accurate annotations were carried out
following a strict protocol, and extra classes such as vehicles,
sitting people, reflections, or distractors were also annotated
in the second release to provide further information to the
community.

We have further analyzed the performance of 101 trackers;
73 MOT15, 74 MOT16, and 57 on MOT17 obtaining several
insights. In the past, at the center of vision-based MOT were
methods focusing on global optimization for data associa-
tion. Since then, we observed that large improvements were
made by hand-crafting strong affinity measures and leverag-
ing deep learning for learning appearance models, used for
better data association. More recent methods moved towards
directly regressing bounding boxes, and learning to adapt tar-
get appearance models online. As the most promising recent
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trends that hold a large potential for future research, we iden-
tified the methods that are going in the direction of learning
to track objects in an end-to-end fashion, combining opti-
mization with learning.

We believe our Multiple Object Tracking Benchmark and
the presented systematic analysis of existing tracking algo-
rithms will help identify the strengths and weaknesses of the
current state of the art and shed some light into promising
future research directions.
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Appendices
A Benchmark Submission

Our benchmark consists of the database and evaluation server
on one hand, and the website as the user interface on the
other. It is open to everyone who respects the submission
policies (see next section). Before participating, every user
is required to create an account, providing an institutional
and not a generic e-mail address.!!

After registering, the user can create a new tracker with a
unique name and enter all additional details. It is mandatory
to indicate:

— the full name and a brief description of the method

— a reference to the publication of the method, if already
existing,

— whether the method operates online or on a batch of
frames and whether the source code is publicly available,

— whether only the provided or also external training and
detection data were used.

After creating all details of a new tracker, it is possible to
assign open challenges to this tracker and submit results to the
different benchmarks. To participate in a challenge the user
has to provide the following information for each challenge
they want to submit to:

— name of the challenge in which the tracker will be par-
ticipating,

— a reference to the publication of the method, if already
existing,

— the total runtime in seconds for computing the results for
the test sequences and the hardware used, and

— whether only provided data was used for training, or also
data from other sources were involved.

The user can then submit the results to the challenge in the
format described in Sect. B.1. The tracking results are auto-
matically evaluated and appear on the user’s profile. The
results are not automatically displayed in the public ranking
table. The user can decide at any point in time to make the
results public. Results can be published anonymously, e.g.,
to enable a blind review process for a corresponding paper.
In this case, we ask to provide the venue and the paper ID or a
similar unique reference. We request that a proper reference
to the method’s description is added upon acceptance of the
paper. Anonymous entries are hidden from the benchmark
after six months of inactivity.

Il For accountability and to prevent abuse by using several email
accounts.

The trackers and challenge meta information such as
description, project page, runtime, or hardware can be edited
atany time. Visual results of all public submissions, as well as
annotations and detections, can be viewed and downloaded
on the individual result pages of the corresponding tracker.

A.1 Submission Policy

The main goal of this benchmark is to provide a platform
that allows for objective performance comparison of multiple
target tracking approaches on real-world data. Therefore, we
introduce a few simple guidelines that must be followed by
all participants.

Training Ground truth is only provided for the training
sequences. It is the participant’s own responsibility to find
the best setting using only the training data. The use of addi-
tional training data must be indicated during submission and
will be visible in the public ranking table. The use of ground
truth labels on the test data is strictly forbidden. This or any
other misuse of the benchmark will lead to the deletion of
the participant’s account and their results.

Detections We also provide a unique set of detections (see
Sect. 4.2) for each sequence. We expect all tracking-by-
detection algorithms to use the given detections. In case the
user wants to present results with another set of detections
or is not using detections at all, this should be clearly stated
during submission and will also be displayed in the results
table.

Submission Frequency Generally, we expect one single sub-
mission for a particular method per benchmark. If for any
reason the user needs to re-compute and re-submit the results
(e.g. due to a bug discovered in the implementation), they
may do so after a waiting period of 72 h after the last sub-
mission to submit to the same challenge with any of their
trackers. This policy should discourage the use of the bench-
mark server for training and parameter tuning on the test
data. The number of submissions is counted and displayed
for each method. We allow a maximum number of 4 submis-
sions per tracker and challenge. We allow a user to create
several tracker instances for different tracking models. How-
ever, auser can only create anew tracker every 30 days. Under
no circumstances must anyone create a second account and
attempt to re-submit in order to bypass the waiting period.
Such behavior will lead to the deletion of the accounts and
exclusion of the user from participating in the benchmark.

A.2 Challenges and Workshops
We have two modalities for submission: the general open-end

challenges and the special challenges. The main challenges,
2D MOT 2015, 3D MOT 2015, MOT16, and MOT17 are
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always open for submission and are nowadays the standard
evaluation platform for multi-target tracking methods sub-
mitting to computer vision conferences such as CVPR, ICCV
or ECCV.

Special challenges are similar in spirit to the widely known
PASCAL VOC series (Everingham et al. 2015), or the Ima-
geNet competitions (Russakovsky et al. 2015). Each special
challenge is linked to a workshop. The first edition of our
series was the WACV 2015 Challenge that consisted of
six outdoor sequences with both moving and static cam-
eras, followed by the 2nd edition held in conjunction with
ECCV 2016 on which we evaluated methods on the new
MOT16 sequences. The MOT17 sequences were presented
in the Joint Workshop on Tracking and Surveillance in con-
junction with the Performance Evaluation of Tracking and
Surveillance (PETS) (Ferryman and Ellis 2010; Ferryman
and Shahrokni 2009) benchmark at the Conference on Vision
and Pattern Recognition (CVPR) in 2017. The results and
winning methods were presented during the respective work-
shops. Submission to those challenges is open only for a short
period of time, i.e., there is a fixed submission deadline for
all participants. Each method must have an accompanying
paper presented at the workshop. The results of the methods
are kept hidden until the date of the workshop itself when the
winning method is revealed and a prize is awarded.

B MOT 15

We have compiled a total of 22 sequences, of which we
use half for training and half for testing. The annota-
tions of the testing sequences are not released in order to
avoid (over)fitting of the methods to the specific sequences.
Nonetheless, the test data contains over 10 minutes of footage
and 61,440 annotated bounding boxes, therefore, it is hard
for researchers to over-tune their algorithms on such a large
amount of data. This is one of the major strengths of the
benchmark. We classify the sequences according to:
We classify the sequences according to:

— Moving or static camera the camera can be held by a
person, placed on a stroller (Ess et al. 2008) or on a
car (Geiger et al. 2012), or can be positioned fixed in
the scene.

— Viewpoint the camera can overlook the scene from a high
position, a medium position (at pedestrian’s height), or
at a low position.
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Fig. 9 Comparison histogram between training and testing sequences
of static versus moving camera, camera viewpoint: low, medium or high,
conditions: normal, shadows, night or indoor

— Weather the illumination conditions in which the sequence
was taken. Sequences with strong shadows and saturated
parts of the image make tracking challenging, while night
sequences contain a lot of motion blur, which is often a
problem for detectors. Indoor sequences contain a lot of
reflections, while the sequences classified as normal do
not contain heavy illumination artifacts that potentially
affect tracking.

We divide the sequences into training and testing to have
a balanced distribution, as shown in Fig. 9.

B.1 Data Format

All images were converted to JPEG and named sequentially
to a 6-digit file name (e.g. 000001.jpg). Detection and anno-
tation files are simple comma-separated value (CSV) files.
Each line represents one object instance, and it contains 10
values as shown in Table 6.

The first number indicates in which frame the object
appears, while the second number identifies that object as
belonging to a trajectory by assigning a unique ID (set to —1
in a detection file, as no ID is assigned yet). Each object can
be assigned to only one trajectory. The next four numbers
indicate the position of the bounding box of the pedestrian in
2D image coordinates. The position is indicated by the top-
left corner as well as the width and height of the bounding
box. This is followed by a single number, which in the case
of detections denotes their confidence score. The last three
numbers indicate the 3D position in real-world coordinates
of the pedestrian. This position represents the feet of the per-
son. In the case of 2D tracking, these values will be ignored
and can be left at —1.
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An example of such a detection 2D file is:

1, -1, 7%4.2, 47.5, 71.2, 174.8, 67.5, -1, -1,

1, -1, 164.1, 19.6, 66Té, 163.2, 29.4, -1, -1,

875.4, 39.9, ZST; 145.0, 19.6, -1, -1,

2, -1, 781.7, 25.1, 69T;, 170.2, 58.1, -1, -1,
-1

For the ground truth and results files, the 7th value (con-
fidence score) acts as a flag whether the entry is to be
considered. A value of 0 means that this particular instance is
ignored in the evaluation, while a value of 1 is used to mark
it as active. An example of such an annotation 2D file is:

1, 1, 794.2, 47.5, 71.2, 174.8, 1, -1, -1, -1
1, 2, 164.1, 19.6, 66.5, 163.2, 1, -1, -1, -1
1, 3, 875.4, 39.9, 25.3, 35.0, 0, -1, -1, -1
2,1, 781.7, 25.1, 69.2, 170.2, 1, -1, -1, -1

In this case, there are 2 pedestrians in the first frame of the
sequence, with identity tags 1, 2. The third pedestrian is too
small and therefore not considered, which is indicated with
a flag value (7th value) of 0. In the second frame, we can see
that pedestrian 1 remains in the scene. Note, that since this is
a 2D annotation file, the 3D positions of the pedestrians are
ignored and therefore are set to -1. All values including the
bounding box are 1-based, i.e. the top left corner corresponds
to (1, 1).

To obtain a valid result for the entire benchmark, a sepa-
rate CSV file following the format described above must be
created for each sequence and called
“Sequence-Name. txt”. All files must be compressed
into a single zip file that can then be uploaded to be evalu-
ated.

C MOT16 and MOT17 Release

Table 9 presents an overview of the MOTI16 and MOT17
dataset.

C.1 Annotation Rules

We follow a set of rules to annotate every moving person or
vehicle within each sequence with a bounding box as accu-
rately as possible. In this section, we define a clear protocol
that was obeyed throughout the entire dataset annotations of
MOT16 and MOT17 to guarantee consistency.

C.1.1 Target Class
In this benchmark, we are interested in tracking moving

objects in videos. In particular, we are interested in evalu-
ating multiple people tracking algorithms. Therefore, people
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Fig. 10 Left: An overview of annotated classes. The classes in orange
will be the central ones to evaluate on. The red classes include ambigu-
ous cases such that neither recovering nor missing will be penalized
in the evaluation. The classes in green are annotated for training pur-
poses and for computing the occlusion level of all pedestrians. Right:
An exemplar of an annotated frame. Note how partially cropped objects
are also marked outside of the frame. Also note that the bounding box
encloses the entire person but not e.g. the white bag of Pedestrian 1
(bottom left)

will be the center of attention of our annotations. We divide
the pertinent classes into three categories:

(1) moving or standing pedestrians;
(ii) people that are not in an upright position or artificial
representations of humans; and
(ii1) vehicles and occluders.

In the first group, we annotate all moving or standing
(upright) pedestrians that appear in the field of view and
can be determined as such by the viewer. People on bikes
or skateboards will also be annotated in this category (and
are typically found by modern pedestrian detectors). Fur-
thermore, if a person briefly bends over or squats, e.g. to pick
something up or to talk to a child, they shall remain in the
standard pedestrian class. The algorithms that submit to our
benchmark are expected to track these targets.

In the second group, we include all people-like objects
whose exact classification is ambiguous and can vary depend-
ing on the viewer, the application at hand, or other factors. We
annotate all static people that are not in an upright position,
e.g. sitting, lying down. We also include in this category any
artificial representation of a human that might fire a detection
response, such as mannequins, pictures, or reflections. Peo-
ple behind glass should also be marked as distractors. The
idea is to use these annotations in the evaluation such that
an algorithm is neither penalized nor rewarded for tracking,
e.g., a sitting person or a reflection.

In the third group, we annotate all moving vehicles such as
cars, bicycles, motorbikes and non-motorized vehicles (e.g.
strollers), as well as other potential occluders. These annota-
tions will not play any role in the evaluation, but are provided
to the users both for training purposes and for computing the
level of occlusion of pedestrians. Static vehicles (parked cars,
bicycles) are not annotated as long as they do not occlude
any pedestrians. The rules are summarized in Table 7, and
in Fig. 10 we present a diagram of the classes of objects we
annotate, as well as a sample frame with annotations.



International Journal of Computer Vision (2021) 129:845-881

871

Table 6 Data format for the input and output files, both for detection and annotation files

Position Name Description

1 Frame number Indicate at which frame the object is
present

2 Identity number Each pedestrian trajectory is identified by
a unique ID (—1 for detections)

3 Bounding box left Coordinate of the top-left corner of the
pedestrian bounding box

4 Bounding box top Coordinate of the top-left corner of the
pedestrian bounding box

5 Bounding box width Width in pixels of the pedestrian
bounding box

6 Bounding box height Height in pixels of the pedestrian
bounding box

7 Confidence score Indicates how confident the detector is
that this instance is a pedestrian. For the
ground truth and results, it acts as a flag
whether the entry is to be considered.

8 X 3D x position of the pedestrian in
real-world coordinates (—1 if not
available)

9 y 3D y position of the pedestrian in
real-world coordinates (—1 if not
available)

10 z 3D z position of the pedestrian in

real-world coordinates (—1 if not
available)

Table 7 Annotation rules

What? Targets: all upright people including

+ walking, standing, running pedestrians

+ cyclists, skaters

Distractors: static people or representations

+ people not in upright position (sitting, lying down)
+ reflections, drawings or photographs of people

+ human-like objects like dolls, mannequins

Others: moving vehicles and other occluders

+ Cars, bikes, motorbikes

+ Pillars, trees, buildings

When? Start as early as possible
End as late as possible.

Keep ID as long as the person is inside the field of
view and its path can be determined
unambiguously

How? The bounding box should contain all pixels
belonging to that person and at the same time be as

tight as possible

Occlusions Always annotate during occlusions if the position

can be determined unambiguously

If the occlusion is very long and it is not possible to
determine the path of the object using simple
reasoning (e.g. constant velocity assumption), the
object will be assigned a new ID once it reappears

C.1.2 Bounding Box Alignment

The bounding box is aligned with the object’s extent as
accurately as possible. It should contain all object pixels
belonging to that instance and at the same time be as tight
as possible. This implies that a walking side-view pedestrian
will typically have a box whose width varies periodically
with the stride, while a front view or a standing person will
maintain a more constant aspect ratio over time. If the person
is partially occluded, the extent is estimated based on other
available information such as expected size, shadows, reflec-
tions, previous and future frames and other cues. If a person
is cropped by the image border, the box is estimated beyond
the original frame to represent the entire person and to esti-
mate the level of cropping. If an occluding object cannot be
accurately enclosed in one box (e.g. a tree with branches or
an escalator may require a large bounding box where most
of the area does not belong to the actual object), then several
boxes may be used to better approximate the extent of that
object.

Persons on vehicles are only annotated separately from
the vehicle when clearly visible. For example, children inside
strollers or people inside cars are not annotated, while motor-
cyclists or bikers are.

@ Springer
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C.1.3 Start and End of Trajectories

The box (track) appears as soon as the person’s location and
extent can be determined precisely. This is typically the case
when ~ 10% of the person becomes visible. Similarly, the
track ends when it is no longer possible to pinpoint the exact
location. In other words, the annotation starts as early and
ends as late as possible such that the accuracy is not forfeited.
The box coordinates may exceed the visible area. A person
leaving the field of view and re-appearing at a later point is
assigned a new ID.

C.1.4 Minimal Size

Although the evaluation will only take into account pedestri-
ans that have a minimum height in pixels, annotations contain
all objects of all sizes as long as they are distinguishable by
the annotator. In other words, all targets are annotated inde-
pendently of their sizes in the image.

C.1.5 Occlusions

There is no need to explicitly annotate the level of occlusion.
This value is be computed automatically using the anno-
tations. We leverage the assumption that for two or more
overlapping bounding boxes the object with the lowest y-
value of the bounding box is closest to the camera and
therefore occlude the other object behind it. Each target is
fully annotated through occlusions as long as its extent and
location can be determined accurately. If a target becomes
completely occluded in the middle of a sequence and does
not become visible later, the track is terminated (marked as
‘outside of view’). If a target reappears after a prolonged
period such that its location is ambiguous during the occlu-
sion, it is assigned a new ID.

C.1.6 Sanity Check

Upon annotating all sequences, a “sanity check” is carried
out to ensure that no relevant entities are missed. To that end,
we run a pedestrian detector on all videos and add all high-
confidence detections that correspond to either humans or
distractors to the annotation list.

C.2 Data Format

All images were converted to JPEG and named sequentially
to a 6-digit file name (e.g. 000001.jpg). Detection and anno-
tation files are simple comma-separated value (CSV) files.
Each line represents one object instance and contains 9 val-
ues as shown in Table 11.

The first number indicates in which frame the object
appears, while the second number identifies that object as
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Fig. 11 Comparison histogram between training and testing sequences
of MOT16/MOT17: camera: static vs. moving camera, viewpoint: low,
medium or high, conditions: normal, shadows, night or indoor

belonging to a trajectory by assigning a unique ID (set to —1
in a detection file, as no ID is assigned yet). Each object can
be assigned to only one trajectory. The next four numbers
indicate the position of the bounding box of the pedestrian
in 2D image coordinates. The position is indicated by the
top-left corner as well as the width and height of the bound-
ing box. This is followed by a single number, which in the
case of detections denotes their confidence score. The last
two numbers for detection files are ignored (set to -1).

An example of such a 2D detection file is:

, 71.2, 174.8, 67.5, -1, -1
66.5, 163.2, 29.4, -1, -1
25.3, 145.0, 19.6, -1, -1
, 69.2, 170.2, 58.1, -1, -1

1, -1, 794.2, 47.
1, -1, 164.1, 19.
1
2

, -1, 875.4, 39.
, -1, 781.7, 25.

= o o !

For the ground truth and result files, the 7th value (confidence
score) acts as a flag whether the entry is to be considered.
A value of 0 means that this particular instance is ignored
in the evaluation, while a value of 1 is used to mark it as
active. The 8th number indicates the type of object annotated,
following the convention of Table 12. The last number shows
the visibility ratio of each bounding box. This can be due to
occlusion by another static or moving object, or to image
border cropping.

An example of such an annotation 2D file is:

1, 1, 794.2, 47.5, 71.2, 174.8, 1, 1, O
1, 2, 164.1, 19.6, 66.5, 163.2, 1, 1, O.
2, 4, 781.7, 25.1, 69.2, 170.2, 0, 12, 1.

In this case, there are 2 pedestrians in the first frame of the
sequence, with identity tags 1, 2. In the second frame, we can
see a reflection (class 12), which is to be considered by the
evaluation script and will neither count as a false negative
nor as a true positive, independent of whether it is correctly
recovered or not. All values including the bounding box are
1-based, i.e. the top left corner corresponds to (1, 1).

To obtain a valid result for the entire benchmark, a sepa-
rate CSV file following the format described above must be
created for each sequence and called
“Sequence-Name. txt”. All files must be compressed
into a single ZIP file that can then be uploaded to be evalu-
ated.
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Table 10 Detection bounding box statistics
Seq MOT16 MOT17
DPM DPM FRCNN SDP
nDet. nDet./fr. nDet. nDet./fr. nDet. nDet./fr. nDet. nDet./fr.
MOT16/17-01 3775 8.39 3775 8.39 5514 12.25 5837 12.97
MOT16/17-02 7267 12.11 7267 12.11 8186 13.64 11,639 19.40
MOT16/17-03 85,854 57.24 85,854 57.24 65,739 43.83 80,241 53.49
MOT16/17-04 39,437 37.56 39,437 37.56 28,406 27.05 37,150 35.38
MOT16/17-05 4333 5.20 4333 5.20 3848 4.60 4767 5.70
MOT16/17-06 7851 6.58 7851 6.58 7809 6.54 8283 6.94
MOT16/17-07 11,309 22.62 11,309 22.62 9377 18.75 10,273 20.55
MOT16/17-08 10,042 16.07 10,042 16.07 6921 11.07 8118 12.99
MOT16/17-09 5976 11.38 5976 11.38 3049 5.81 3607 6.87
MOT16/17-10 8832 13.50 8832 13.50 9701 14.83 10,371 15.86
MOT16/17-11 8590 9.54 8590 9.54 6007 6.67 7509 8.34
MOT16/17-12 7764 8.74 7764 8.74 4726 5.32 5440 6.09
MOT16/17-13 5355 7.22 5355 7.22 8442 11.26 7744 10.41
MOT16/17-14 8781 11.71 8781 11.71 10,055 13.41 10,461 13.95
Total 215,166 19.19 215,166 19.19 177,780 15.84 211,440 18.84
-lr;:l:f ;r: d (l))ui;)auf(gfel :tgg:}: };zr Position Name Description
detectiqn (DET) and Frame number Indicate at which frame the object is present
annotation/ground truth (GT) . . . L . .
files 2 Identity number Each pedestrian trajectory is identified by a unique
ID (—1 for detections)
3 Bounding box left Coordinate of the top-left corner of the pedestrian
bounding box
4 Bounding box top Coordinate of the top-left corner of the pedestrian
bounding box
5 Bounding box width Width in pixels of the pedestrian bounding box

Bounding box height

Confidence score

Class
Visibility

Height in pixels of the pedestrian bounding box

DET: Indicates how confident the detector is that this
instance is a pedestrian.
GT: It acts as a flag whether the entry is to be
considered (1) or ignored (0).

GT: Indicates the type of object annotated

GT: Visibility ratio, a number between 0 and 1 that
says how much of that object is visible. Can be due
to occlusion and due to image border cropping

D Implementation Details of the Evaluation

In this section, we detail how to compute false positives, false
negatives, and identity switches, which are the basic units
for the evaluation metrics presented in the main paper. We
also explain how the evaluation deals with special non-target
cases: people behind a window or sitting people.

D.1 Tracker-to-Target Assignment

There are two common prerequisites for quantifying the
performance of a tracker. One is to determine for each
hypothesized output, whether it is a true positive (TP) that
describes an actual (annotated) target, or whether the output
is a false alarm (or false positive, FP). This decision is typ-
ically made by thresholding based on a defined distance (or
dissimilarity) measure d between the coordinates of the true
and predicted box placed around a target (see Sect. D.2). A
target that is missed by any hypothesis is a false negative

@ Springer
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Table 12 Label classes present
in the annotation files and ID
appearing in the 7th column of
the files as described in Table 11

Label

S

Pedestrian

Person on vehicle

Car

Bicycle

Motorbike

Non motorized vehicle
Static person

Distractor

O 0 9 A B W N~

Occluder
Occluder on the ground 10
Occluder full

Reflection

—_
N =

(FN). A good result is expected to have as few FPs and FNs
as possible. Next to the absolute numbers, we also show the
false positive ratio measured by the number of false alarms
per frame (FAF), sometimes also referred to as false positives
per image (FPPI) in the object detection literature.

The same target may be covered by multiple outputs. The
second prerequisite before computing the numbers is then
to establish the correspondence between all annotated and
hypothesized objects under the constraint that a true object
should be recovered at most once, and that one hypothesis
cannot account for more than one target.

For the following, we assume that each ground-truth tra-
jectory has one unique start and one unique endpoint, i.e.,
that it is not fragmented. Note that the current evaluation pro-
cedure does not explicitly handle target re-identification. In
other words, when a target leaves the field-of-view and then
reappears, it is treated as an unseen target with a new ID. As
proposed in Stiefelhagen et al. (2006), the optimal matching
is found using Munkres (a.k.a. Hungarian) algorithm. How-
ever, dealing with video data, this matching is not performed
independently for each frame, but rather considering a tempo-
ral correspondence. More precisely, if a ground-truth object
i is matched to hypothesis j at time r — 1 and the distance
(or dissimilarity) between i and j in frame ¢ is below 74, then
the correspondence between i and j is carried over to frame
t even if there exists another hypothesis that is closer to the
actual target. A mismatch error (or equivalently an identity
switch, IDSW) is counted if a ground-truth target i is matched
to track j and the last known assignment was k 7% j. Note
that this definition of ID switches is more similar to (Li et al.
2009) and stricter than the original one (Stiefelhagen et al.
2006). Also note that, while it is certainly desirable to keep
the number of ID switches low, their absolute number alone is
not always expressive to assess the overall performance, but
should rather be considered concerning the number of recov-
ered targets. The intuition is that a method that finds twice as
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many trajectories will almost certainly produce more identity
switches. For that reason, we also state the relative number
of ID switches, which is computed as IDSW / Recall.

These relationships are illustrated in Fig. 12. For simplic-
ity, we plot ground-truth trajectories with dashed curves, and
the tracker output with solid ones, where the color represents
a unique target ID. The grey areas indicate the matching
threshold (see Sect. D.3). Each true target that has been suc-
cessfully recovered in one particular frame is represented
with a filled black dot with a stroke color corresponding to
its matched hypothesis. False positives and false negatives are
plotted as empty circles. See figure caption for more details.

After determining true matches and establishing corre-
spondences it is now possible to compute the metrics. We
do so by concatenating all test sequences and evaluating the
entire benchmark. This is in general more meaningful than
averaging per-sequences figures because of the large varia-
tion on the number of targets per sequence.

D.2 Distance Measure

The relationship between ground-truth objects and a tracker
output is established using bounding boxes on the image
plane. Similar to object detection (Everingham et al. 2015),
the intersection over union (a.k.a. the Jaccard index) is usu-
ally employed as the similarity criterion, while the threshold
tq is set to 0.5 or 50%.

D.3 Target-Like Annotations

People are a common object class present in many scenes, but
should we track all people in our benchmark? For example,
should we track static people sitting on a bench? Or people
on bicycles? How about people behind a glass? We define
the target class of MOT16 and MOT17 as all upright people,
standing or walking, that are reachable along the viewing
ray without a physical obstacle. For instance, reflections or
people behind a transparent wall or window are excluded. We
also exclude from our target class people on bicycles (riders)
or other vehicles.

For all these cases where the class is very similar to our
target class (see Fig. 13), we adopt a similar strategy as
in (Mathias et al. 2014). That is, a method is neither penal-
ized nor rewarded for tracking or not tracking those similar
classes. Since a detector is likely to fire in those cases, we
do not want to penalize a tracker with a set of false positives
for properly following that set of detections, i.e., of a person
on a bicycle. Likewise, we do not want to penalize with false
negatives a tracker that is based on motion cues and therefore
does not track a sitting person.

To handle these special cases, we adapt the tracker-to-
target assignment algorithm to perform the following steps:
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Fig. 12 Four cases illustrating tracker-to-target assignments. a An ID
switch occurs when the mapping switches from the previously assigned
red track to the blue one. b A track fragmentation is counted in frame
3 because the target is tracked in frames 1-2, then interrupts, and then
reacquires its ‘tracked’ status at a later point. A new (blue) track hypoth-
esis also causes an ID switch at this point. ¢ Although the tracking results
are reasonably good an optimal single-frame assignment in frame 1 is
propagated through the sequence, causing 5 missed targets (FN) and 4

Fig. 13 The annotations include different classes of objects similar to
the target class, a pedestrian in our case. We consider these special
classes (distractor, reflection, static person and person on vehicle) to be
so similar to the target class that a tracker should neither be penalized
nor rewarded for tracking them in the sequence (Color figure online)

1. At each frame, all bounding boxes of the result file are
matched to the ground truth via the Hungarian algorithm.

2. All result boxes that overlap more than the matching
threshold (> 50%) with one of these classes (distractor,
static person, reflection, person on vehicle) excluded from
the evaluation.

3. During the final evaluation, only those boxes that are anno-
tated as pedestrians are used.
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