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Anisotropic elastic finite-difference modeling of sources and receivers on
Lebedev grids

Erik F. M. Koene1, Johan O. A. Robertsson1, and Fredrik Andersson1

ABSTRACT

The Lebedev grid finite-difference (FD) method allows
modeling of anisotropic elastic-wave propagation. On Lebe-
dev grids, erroneous point-source excitations can create spu-
rious (nonphysical) waves. The only known remedy for such
artifacts in the literature is the Lisitsa-Vishnevsky method.
This method uses a distributed array to create point sources
and point receivers on the FD grid. However, the Lisitsa-
Vishnevsky method does not fully eliminate spurious arti-
facts. A novel approach is found in the FD-consistent point
source, which suppresses spurious artifacts entirely. The
method requires no array recording to create point receivers.
The advantage of this method over the Lisitsa-Vishnevsky
method is determined with two anisotropic modeling
examples.

INTRODUCTION

Geophysical inversions in anisotropic and complex media require
accurate anisotropic modeling methods (Hobro, 2010; Qu et al.,
2020). Restricted to staggered-grid finite-difference (FD) methods,
we note that the standard Virieux (1986) grid allows an accurate
modeling of orthorhombic and higher symmetry media (Hestholm,
2019). However, for lower symmetry media, the Virieux grid ceases
to be suitable because strains or strain rates cannot be computed
at all required positions. Instead, so-called “fully staggered” or
“Lebedev” grids can be used, which are made up of multiple shifted
Virieux grids. Examples can be found in electromagnetic (Davydy-
cheva et al., 2003), seismic (Lisitsa and Vishnevsky, 2010; de la
Puente et al., 2014), and ultrasonic (Quintanilla and Leckey,
2018) wave modeling.

The numerical (nonphysical) dispersion in Lebedev grids is well
studied (Lisitsa and Vishnevsky, 2010; Bernth and Chapman, 2011).
However, modeling on Lebedev grids creates an additional nonphysi-
cal effect: A point source can excite the correct wavefield as well as
multiple spurious wavefields. To suppress such nonphysical wave-
fields, Lisitsa and Vishnevsky (2010, 2011) suggest to distribute
point sources over multiple nodes. Similarly, they suggest to create
a point receiver through averaging over multiple nodes. This crucially
differs from Virieux grid recordings, in which point receivers are con-
structed by recording individual nodes. As we will show, the method
of Lisitsa and Vishnevsky does not fully suppress the spurious waves.
In this paper, we will show an alternative approach to implement

sources and receivers on Lebedev grids using the FD-consistent
point source derived in Koene et al. (2020a). These point sources
are a function of the used FD coefficients, and they undo frequency-
dependent amplitude errors induced by the FD simulation. Here, we
use FD-consistent point sources for accurate modeling of aniso-
tropic elastic wave propagation on Lebedev grids, without requiring
postprocessing at the receiver nodes.

THEORY

Lebedev grid modeling in two dimensions

Consider the velocity-stress system that describes linear elastic
wave propagation over time t and space x ¼ ðx; zÞ,
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where ρ represents the density, vi represents components of the par-
ticle velocity vector, σij represents components of the stress tensor,
fi represents components of the external force source, and cij rep-
resents components of the stiffness matrix.
Now define a staggered-grid derivative operator Dx,

DxqðxÞ ¼
XL
l¼1

αl
q
�
xþ

�
l − 1

2

�
Δx

�
− q

�
x −

�
l − 1

2

�
Δx

�
Δx

;

(3)

with coefficients αl chosen subject to DxqðxÞ ≈ ∂qðxÞ∕∂x, with
spacing Δx. An operator Dz is defined analogously. The Lebedev
grid then lays out quantities in space following Figure 1. The super-
scripts denote whether quantities are located on reference (r) or
staggered (s) locations. For example, vsrz is the vertical particle
velocity component that is staggered in the x-direction but not in
the z-direction. Then, we replace all spatial derivative operators
in equations 1 and 2 with the staggered-grid derivative FD approxi-
mation of equation 3. For example, for stresses located at the refer-
ence locations, we then write

∂
∂t
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4σ

rr
xxðx;tÞ
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3
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3
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Dzvrsx ðx;tÞþDxvsrz ðx;tÞ

3
5:
(4)

We can use a leap-frog time-stepping scheme to step solutions for-
ward in time, and we remove associated errors with time-dispersion
transforms (Koene et al., 2018).

The Lisitsa-Vishnevsky source and receiver

Assume that we want to model a directional point-force source

�
fxðx; tÞ
fzðx; tÞ

�
¼

�
nx
nz

�
δðx − xsÞδðz − zsÞSðtÞ; (5)

where ni is a normal vector defining the direction of the source,
δðx − xsÞδðz − zsÞ uses Dirac delta distributions to place the source
at position ðx; zÞ ¼ ðxs; zsÞ, and SðtÞ is a source-time function.
Lisitsa and Vishnevsky (2011) show that the Lebedev grid can then
produce spurious waves if the source is implemented “wrongly.”
The solution they propose is to excite the source on the frsi and
fsri grids, with equal strength. The only question remaining, then,
is how to implement the spatial point source on both grids. Lisitsa
and Vishnevsky (2010, 2011) take a simple approach with respect to

this. Take, for example, a source location that is entirely coincident
with an fsri node. Lisitsa and Vishnevsky propose to excite the fsri
node fully with, say, a factor one. Additionally, one must excite the
source wavelet on the four surrounding frsi nodes with a factor of
1/4. Note that this point-source implementation is already described
without justification in Davydycheva et al. (2003). We thus refer to
this implementation as the Lisitsa-Vishnevsky source.
Lisitsa and Vishnevsky (2010) propose to record waves similarly.

Rather than using the field as present on a node, they suggest to use
the average on the node, and its four averaged surrounding values,
to obtain physically meaningful recordings from the FD simulation.
Lisitsa and Vishnevsky (2010, 2011) suggest this point-source

and point-receiver pair only for second-order accurate FD schemes,
but it is also used by de la Puente et al. (2014) in an eighth-order
accurate FD scheme.

Postulate: FD-consistent modeling of sources and
receivers

Following Lisitsa and Vishnevsky (2011), we propose to excite
waves on the frsi and fsri grids. However, we propose two differ-
ences. First, we propose to record values as present on the grid, with-
out applying any averaging with surrounding nodes. The idea is that,
once the source is excited onto the simulation, all the nodes should
contain physically meaningful simulation values, just like typical
simulations on Virieux grids. Second, we will use the FD-consistent
concept of point sources in FD grids from Koene et al. (2020a).
The idea underlying the FD-consistent point source is that the FD

system does not provide solutions to the wave equation. That this is
the case is simple to see: Equation 2 does not equal equation 4.
Although we carry out FD simulations to obtain solutions to the
wave equation, we must be careful not to conflate the two systems.
For example, the FD system creates numerical dispersion errors
when compared to the wave equation. This means that any concept
that applies to the wave equation (such as using a sinc function to
represent a band-limited point source; Hicks, 2002) is not always
immediately applicable to the FD system. Indeed, a sinc point
source can create errors in FD simulations in the form of ringing
or even the excitation of wrong wave modes. Examples of such er-
rors may be found in Koene et al. (2020a, 2020b).
The FD system is thus a filtered version of the wave equation.

By applying the inverse of this filter to the definition of a point
source, we create an FD-consistent point source. This source, when
combined with the FD simulation, creates the correct response for a
point source for the actual wave equation (except for any remaining
numerical dispersion errors). We omit the derivation of the filter and
its inverse (which may be found in Koene et al., 2020a), but we give
the closed-form solution here. Using a normalized sinc function

sincðxÞ ≡ sinðπxÞ
πx

; (6)

we define the FD-consistent point source for staggered-grid FD op-
erators (for Virieux and Lebedev grids):

δFDðxÞ ¼
XL
l¼1

αl
�
l − 1

2

�
Δx

�
sinc

�
x
Δx

−
�
l −

1

2

��

þ sinc

�
x
Δx

þ
�
l −

1

2

��	
; (7)

Figure 1. Visualization of nine cells of the 2D Lebedev grid. It is
assumed that i and j are integers. Here, for example, ði; jÞ would
take on the values ð1; 2; 3Þ.
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where αl are the same FD coefficients as used in equation 3. Note how
the FD-consistent point source is a function of the used FD modeling
coefficients. A 2D source is created by the product of two 1D sources,
that is, δFDðxÞδFDðzÞ. The extension to three dimensions follows
analogously.
We note four further possibilities that are shown in Koene et al.

(2020a) but that are not further discussed here. First, the given FD-con-
sistent point source is potentially nonzero at all nodes of the simulation.
This may be undesired in a strongly heterogeneous domain (in Mittet
[2002]; however, it is shown that good results with a distributed source
are obtained even in heterogeneous domains). Aworkaround is to use a
least-squares or a windowed approximation of the FD-consistent point
source, in which fewer nodes are used to mimic the full point-source
response. Good results may be obtained using an array with a length
equal to that of the FD stencil. Second, the FD-consistent point source
may be identically spositioned at locations not coinciding with the grid,
at no loss of accuracy. Third, it is also possible to create point-source
derivatives (e.g., dipoles) if desired. Finally, we refer to Hicks (2002) for
a way to position this distributed source array close to the domain boun-
daries, which is equally applicable to the FD-consistent point source.

EXAMPLE FOR A TILTED TRANSVERSE
ISOTROPIC MODEL

Assume a vertically transverse isotropic (VTI) model with den-
sity ρ ¼ 1000 kg∕m3 and stiffness matrix2

4 c11 c13 c15
c13 c33 c35
c15 c35 c55

3
5
VTI

¼
2
4 16.5 5.0 0

5.0 6.2 0

0 0 3.7

3
5 GPa: (8)

By rotating the symmetry axis 45° counterclockwise from the vertical, a
tilted transverse isotropic (TTI) model is found with elasticity constants

2
4 c11 c13 c15
c13 c33 c35
c15 c35 c55

3
5
TTI

¼
2
4 12.1 4.2 −2.6

4.2 12.1 −2.6
−2.6 −2.6 3.2

3
5 GPa: (9)

A directional point-force source is created in the direction per-
pendicular to the tilted symmetry axis, at ðx; zÞ ¼ ð4005; 4000Þ
m, which is coincident with an fsri node

�
fxðx; tÞ
fzðx; tÞ

�
¼

�
cos 45°

sin 45°

�
δðx − 4005Þδðz − 4000ÞSðtÞ;

(10)

where the source-time function SðtÞ is the integral of a 25 Hz Ricker
wavelet. We similarly rotate particle velocities in the direction
perpendicular to the symmetry axis,

Vðx; z; tÞ ¼ cosð45°Þvsrx ðx; z; tÞ þ sinð45°Þvsrz ðx; z; tÞ; (11)

which is the quantity that will be plotted in the snapshots. Because
the quantities vsrx and vsrz are available at coincident locations, no
errors are introduced by this rotation. The FD grid is discretized
with Δx ¼ Δz ¼ 10 m and Δt ¼ 1 ms.

TTI model with Taylor coefficients

In our first example, we use the standard Taylor FD coefficients
with a half-order L ¼ 12 in equation 3. We ran two simulations, one
with the Lisitsa-Vishnevsky source and one with the FD-consistent
source. Figure 2 shows the results and a close-up of the correspond-
ing source injection terms. The Lisitsa-Vishnevsky source (wherein
the source is excited on five nodes) can be clearly recognized. The
FD-consistent point source is spread over more nodes. Plotted on

a) b)

c) d)

Figure 2. Comparison of two source injection methods in a TTI medium, modeled with Taylor coefficients. (a and b) Snapshots of V, clipped
at 1% of the maximum amplitude. A source is denoted by a circle, and a receiver is denoted by a triangle. The magnified diagrams represent the
source injection on the Lebedev grid (red = positive, blue = negative). (c and d) The recorded traces corresponding to (a and b), respectively.
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top of the snapshots is the expected location of the qP and qS wave-
fronts. The Lisitsa-Vishnevsky source generates the desired wave,
but it also creates a spurious wavefield. The FD-consistent point
source creates no such spurious waves.
Furthermore, we compare the simulations to an analytical solu-

tion in Figure 2c and 2d. For this, we recorded V (without averag-
ing) at an offset of ðx; zÞ ¼ ð−500; 500Þ m from the source. The 2D
anisotropic analytical solution can be found in Carcione et al.
(1988). We observe that the recording due to the Lisitsa-Vishnevsky
source contains the spurious arrival and erroneous amplitudes. Note
that no form of spatial averaging at the receiver, as proposed by
Lisitsa and Vishnevsky (2010), could eliminate these spurious
waves. Conversely, the FD-consistent point source excellently
matches the analytical solution.

TTI model using high-order optimal FD

In a second example, we again carry out simulations with a
half-order L ¼ 12 FD operator, but with least-squares optimal
coefficients following Liu (2014). We allow a relative phase
velocity error of 0.9%, which means that the FD operator will
create noticeable wavefield distortions. We choose this coefficient
design such that the FD coefficients are significantly different
from the Taylor coefficients. The point of the example is not to
show which coefficients are superior for modeling. Instead, the
point is to show that the FD-consistent point source varies as a func-
tion of the FD coefficients. Other model parameters are kept
constant.
In the first simulation, we use a “hybrid” source, wherein we use

a single-node excitation on one fsri node (coincident with the
source) and an FD-consistent source on the frsi nodes. This source
formulation is a hypothetical high-order extension of the Lisitsa-
Vishnevsky source. We contrast this to using the FD-consistent
source on both grids. Figure 3 shows the results and a close-up
of the corresponding source injection terms. We see that the hybrid
source still excites spurious wave modes, whereas the full FD-con-
sistent point sources generate no such spurious fields. Clearly, by
using the FD-consistent point source on both grids, such artifacts
are avoided.

CONCLUSION

In the FD modeling of anisotropic elastic wave propagation on
Lebedev grids, spurious modes can be generated by an erroneous
implementation of point sources on the FD grid. Typically, such
artifacts are suppressed with the Lisitsa-Vishnevsky method, using
linear interpolation to implement point sources and point receivers
on Lebedev grids. In this paper, we instead propose to use the FD-
consistent point source to remove the spurious wave modes. When
using the FD-consistent point source, there is no need to average the
recordings — the values on the grid provide an excellent fit to an
analytical solution. The method comes at a cost of requiring a larger
array of nodes into which the source must be injected. Suggestions
are given to limit the size of this source array with, for example,
a least-squares approximation. We demonstrate that our method
works for high-order FD operators with arbitrary FD coefficients.
The extension to three dimensions is straightforward.
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