
ETH Library

Building a JSONiq Query
Optimizer using MLIR

Bachelor Thesis

Author(s):
Fiebig, Martin

Publication date:
2020

Permanent link:
https://doi.org/10.3929/ethz-b-000460014

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000460014
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Bachelor’s Thesis Nr. 338b

Systems Group, Department of Computer Science, ETH Zurich

Building a JSONiq Query Optimizer using MLIR

by

Martin Fiebig

Supervised by

Prof. Gustavo Alonso, Dr. Ghislain Fourny, Ingo Müller

October 2020 – December 2020

Abstract

Semi-structured data formats like JSON gained popularity through their ability
to represent arbitrarily complex data in a way that it can easily be read and
written by humans, and parsed and generated by machines. This simplicity is
especially useful for applications where it is not worth to spend time in schema
design and data migration. However, it comes at a price: Query execution is
much slower.
In this bachelor’s thesis we apply some optimizations on a MLIR dialect for
JSONiq. We also take a closer look at type inference for a selection of JSONiq
expressions.

1

Contents

1 Introduction 3

2 Background and Related Work 3
2.1 JSON . 4
2.2 JSONiq . 4
2.3 Rumble . 5
2.4 MLIR . 6

3 The JSONiq Dialect 7

4 Type Inference 10
4.1 Motivation . 10
4.2 Algorithm . 10
4.3 Implementation . 11
4.4 Inference Rules . 12

5 Optimizations 12
5.1 Short circuit evaluation . 12
5.2 Logical identity . 13
5.3 Testing . 13

6 Conclusion and Future Work 14

2

1 Introduction

Semi-structured data formats like JSON gained popularity through their ability
to represent arbitrarily complex data in a way that it can easily be read and
written by humans, and parsed and generated by machines. This simplicity is
especially useful for applications where it is not worth to spend time in schema
design and data migration. However, it comes at a price: Query execution is
much slower.
In this thesis, we apply some optimizations on JSONiq queries using the MLIR
compiler infrastructure. The query is translated into an extended version of a
previously defined MLIR dialect [11] and then, using operation transformations,
optimized and translated back to an equivalent JSONiq query. Figure 1 is an
illustration of the pipeline.

Figure 1: Illustration of the optimization pipeline. The part in blue is the scope
of this thesis.

First, we introduce some background and related work, including the MLIR
dialect and our modifications to it in chapter 3. Chapter 4 introduces the idea
and motivation of type inference. It also discusses, how this helps improving
query efficiency. Some optimizations together with their up- and downsides are
presented in chapter 5. Finally chapter 6 discusses further work, which we could
not look at due to time constraints.

2 Background and Related Work

JSONiq queries manipulate data in JSON format. They are executed with a
JSONiq engine such as Rumble. In the following, these concepts as well as the
basics of the MLIR compiler infrastructure are introduced.

3

2.1 JSON

JSON [2] (JacaScript Object Notation) provides a textual representation of data,
which can be easily understood by both, humans and machines. It uses conven-
tions familiar to many programmers of various programming languages, and is
therefore widely used for data-interchange.
The basic structures are unordered sets of name-value pairs, called objects, and
ordered collections of values, called arrays. This two concepts are present in
many programming languages as different concepts, like records, structs and
dictionaries, and vectors and list, respectively.
Values can be strings, numbers, booleans or nulls, and even objects or arrays,
which allows for nested structures.

Figure 2: Example of a JSON object

2.2 JSONiq

JSONiq [3] is a functional and declarative language for processing and query-
ing nested, heterogeneous, and semi-structured JSON data. The main building
blocks are expressions, which are defined recursively and can therefore be ex-
pressed by expression trees.
Formally, expressions are mappings from a JSONiq tuple to a sequence of
JSONiq items: expr ∈ E : T → S, where E is the set of expressions, T
the set of tuples and S is the set of sequences of items. The input tuple is
unmodified pushed down to the child expressions, which return their output as
a sequence of items. The expression itself computes its output sequence out of
the results of the child expressions. Figure 3 illustrates such an expression tree.

Figure 3: Illustration of a general expression tree

As the name suggest, a sequence is an ordered list of items. JSONiq items are
all JSON values and many other atomics such as dates, durations and binaries.

4

As a special case, a singleton sequence is defined to be the same as the only
item of the sequence.
JSONiq tuples are collections of key-value pairs, where each key represent a
variable and its value corresponds to the associated sequence of items. These
tuples can be grouped together to form a tuplestream, a vector of tuples. Figure
4 presents a tuplestream consisting of 3 tuples. The first tuple contains 5 keys,
where e.g. $y is associated with a sequence of 4 items.

Figure 4: Example of an JSONiq tuplestream

The most important expression in JSONiq is the FLWOR expression. It may
consist of multiple clauses in any order out of the seven available ones: For,
Let, Count, Group by, Order by, Where and Return. Every FLWOR
expression must begin with either a For clause or a Let clause, and end with
a Return clause. In contrast to expressions, clauses are mapping from tuple
streams to tuple streams: clause ∈ C : TS → TS, where C is the set of
clauses and TS is the set of tuple streams. An exception is the Return clause,
which maps a tuple stream to a sequence of items: return : TS → S. Since
every expression takes as input a tuple, the FLWOR expression computes the
tuplestream consisting only of its input tuple as input to the first clause. Figure
5 shows the expression tree for the FLWOR expression.

Figure 5: Illustration of the expression tree in case of the FLWOR expression.
TSin is the input tuple stream consisting of the input tuple Tin only.

2.3 Rumble

Rumble [7, 10] is a JSONiq engine built on top of Apache Spark [1, 12], a pop-
ular and fast cluster computing system. It processes large, heterogeneous and
nested collections of JSON objects by dynamically pushing down computations
to Spark, without exposing this to the user [5]. The query is translated into an
abstract syntax tree (AST) which, in turn, is transformed into a tree of runtime
iterators.

5

Rumble switches dynamically between three execution modes: For small
amount of data, and pre- and postprocessing spark jobs, the queries can be
executed locally. Simple queries can run entirely in this mode. If there is no
knowledge about the structure of the data, a RDD-based execution is chosen.
Resilient Distribued Datasets (RDD) is a structure used in Spark to process flat
collections of hetereogeneous data. In case, parts of the structure are statically
known, the engine switches to a DataFrame-based execution mode. DataFrames
is another structure in Spark. It is used for collections of homogeneous rows
whose type and field names are statically known.

2.4 MLIR

MLIR (Multi-Level Intermediate Representation) [4,9] is a flexible and extensi-
ble infrastructure for compiler construction. It is based on a graph like structure
where nodes represent operations and edges represent values passed between op-
erations.

Dialects
The mechanism by which the MLIR ecosystem can be extended, are dialects.
They are identified by a unique string and form groups for operations, attributes
and types which are semantically connected.

Operations
The main building blocks are operations. Operations take and return zero or
more operands and results, respectively. They are fully extensible and allow
to “represent many different concepts, from higher-level concepts like function
definitions, function calls, buffer allocations, view or slices of buffers, and pro-
cess creation, to lower-level concepts like target-independent arithmetic, target-
specific instructions, configuration registers, and logic gates.” [4] Each operation
may contain zero or more regions. The control flow between these regions is de-
fined by the operation itself. A region is an ordered list of blocks, where the
entry block must not be a succesor to any other block. Blocks are ordered lists of
operations representing sequential execution. They can take input arguments
and attributes, and need to be terminated by a terminator operation, a spe-
cial instance of an operation. Further special instances are module operations,
which consist of only one region and one block, and function operations, which
consists of only one region representing the function body.

Declarative Framework
MLIR also introduces a declarative framework. The Operation Definition Spec-
ification (ODS) allows to define operations and their verifiers and properties
declaratively. The TableGen-based [8] definitions are translated to C++ code
removing the burden of boiler plate code from the dialect designer.
Transformations of operations can often be expressed as simple transformations
on the directed acyclic graph (DAG) defined by the relation of SSA values.

6

These can be declaratively defined with the help of Declarative Rewrite Rules
(DRR).

3 The JSONiq Dialect

To optimize JSONiq queries, we need to express them in MLIR. There is already
a JSONiq dialect for MLIR designed for this purpose [11]. The internal AST
in Rumble is translated to a textual representaion, which can be parsed by the
MLIR infrastructure using the JSONiq dialect.

In this dialect, each JSONiq expression (except for the FLWOR expres-
sion) is represented by exactly one operation. Unary expressions are mapped
to operations taking one input operand and returning one result. Operations
with zero, two, three or more input operands are representations of nullary,
binary, ternary and n-ary expressions, respectively. JSONiq typing expressions
are unary expression with additional information about the type to consider.
They are represented the same way as unary expressions with an aditional input
attribute for the type information. Figure 6 pictures the RangeExpression
as a simple example. The first two lines are IntegerLiteralExpressions for
the literals 0 and 10. They are stored in the registers 1 and 2, respectively.
In the third line, we find the actual RangeExpression, which takes the two
literals stored in the registers 1 and 2 as input. Its output is stored in register
3. Together, the three lines represent the expression 0 to 10. A complete list
of the mapping from JSONiq expressions to MLIR operations is shown in Table
1.

Figure 6: A JSONiq range expression in the MLIR dialect

The PredicateExpression is the only case where the operation has a re-
gion attached to it. It represents the expression used to compute the boolean
value of the item. An example of the PredicateExpression is pictured in
Figure 7.

The different LiteralExpressions (for each JSONiq atomic one) are mapped
to the same operations, where the value of the literal is saved as a string at-
tribute. To avoid ambiguity between the non-string literals and their string
representation, we use MLIR’s ability to determine the type of the attribute at
parsing time. This way, we can differentiate between the LiteralExpressions
by looking at the attribute type. Table 2 shows some examples of Literal-

7

Literal Expressions
IntegerLiteralExpression jsoniq.lit {value : i64} : () → !jsoniq.sequence
StringLiteralExpression jsoniq.lit {value : String} : () → !jsoniq.sequence
DoubleLiteralExpression jsoniq.lit {value : f64} : () → !jsoniq.sequence
DecimalLiteralExpression jsoniq.lit {value : f64} : () → !jsoniq.sequence
NullLiteralExpression jsoniq.lit {value} : () → !jsoniq.sequence
BooleanLiteralExpression jsoniq.lit {value : i1} : () → !jsoniq.sequence

Unary Expressions
NotExpression jsoniq.not : (!jsoniq.sequence) → !jsoniq.sequence
NegExpression jsoniq.neg : (!jsoniq.sequence) → !jsoniq.sequence
ArrayConstructorExpression jsoniq.arrayconstructor : (!jsoniq.sequence) → !jsoniq.sequence
ArrayUnboxingExpression jsoniq.arrayunboxing : (!jsoniq.sequence) → !jsoniq.sequence

Binary Expressions
AdditiveExpression jsoniq.+ : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence

jsoniq.− : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence
RangeExpression jsoniq.to : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence
ComparisonExpression jsoniq. ∗ cmp∗ : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence
MultiplicativeExpression jsoniq. ∗ op∗ : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence
AndExpression jsoniq.and : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence
OrExpression jsoniq.or : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence
StringConcatExpression jsoniq.|| : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence
ArrayLookupExpression jsoniq.[[]] : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence
ObjectLookupExpression jsoniq.objectlookup : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence

Ternary Expressions
ConditionalExpression jsoniq.conditional : (!jsoniq.sequence, !jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence

N-ary Expressions

FunctionCallExpression jsoniq.func {funcname : string} : (!jsoniq.sequence)N → !jsoniq.sequence

Typing Expressions
TreatExpression jsoniq.treat {type : string} : (!jsoniq.sequence) → !jsoniq.sequence
CastExpression jsoniq.cast {type : string} : (!jsoniq.sequence) → !jsoniq.sequence
InstanceOfExpression jsoniq.instanceof {type : string} : (!jsoniq.sequence) → !jsoniq.sequence
CastableExpression jsoniq.castable {type : string} : (!jsoniq.sequence) → !jsoniq.sequence

Special Expressions
VariableReferenceExpression jsoniq.varref {var : string} : (!jsoniq.tuple) → !jsoniq.sequence
ObjectConstructorExpression jsoniq.constructobject : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence

jsoniq.mergeobjects : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence
jsoniq.emptyobject : () → !jsoniq.sequence

CommaExpression jsoniq.comma : (!jsoniq.sequence, !jsoniq.sequence) → !jsoniq.sequence
PredicateExpression jsoniq.[]({ˆbb0(%arg0 :!jsoniq.sequence) :

//body
}) {var : string} : (!jsoniq.sequence) → !jsoniq.seuqence

Table 1: Mapping from JSONiq expressions to MLIR operations

8

Figure 7: A JSONiq predicate expression in the JSONiq dialect

2020 jsoniq.lit {value = 2020 : i64} : () → !jsoniq.sequence jsoniq.lit {value = 2020 : i64} : () → !jsoniq.sequence
true jsoniq.lit {value = ”true”} : () → !jsoniq.sequence jsoniq.lit {value = true : i1} : () → !jsoniq.sequence
“true” jsoniq.lit {value = ”true”} : () → !jsoniq.sequence jsoniq.lit {value = ”true”} : () → !jsoniq.sequence
null jsoniq.lit {value = ”null”} : () → !jsoniq.sequence jsoniq.lit {value} : () → !jsoniq.sequence
“null” jsoniq.lit {value = ”null”} : () → !jsoniq.sequence jsoniq.lit {value = ”null”} : () → !jsoniq.sequence

Table 2: Literal expressions in JSONiq (on the left), with their representations
in the original dialect (in the middle) and the extended dialect (on the right)

Expressions in JSONiq, the original dialect, and our extended version of the
dialect.

All inputs and outputs of the mentioned operations above are of type JSONiq
sequence. To enable some optimizations, we extend the type system by adding
further information to the sequence type. The parameters minLength and
maxLength, inform us about how many items are in the sequence at least
and at most, respectively. A special value denotes the case where there are
not any statically known information about the minimal and maximal num-
ber of items. In the case of homogeneous sequences, an additional parame-
ter elementType gives us the type of every element of the item. Heteroge-
neous sequences are currently treated as homogeneous sequences with every
element of type item. We also add some atomic types like booleans, integers
and strings. This extension allows us to easily determine special sequences:
the empty sequence where minLength = maxLength = 0, the singleton se-
quence where minLength = maxLength = 0, the sequence of at most one item
(maxLength = 1), the sequence of at least one item (minLength = 1), and the
sequence of zero or one item (minLength = 0 and maxLength = 1).

The FLWOR expression is mapped to multiple operations, for each clause
one operation. Their one input and output is a tuplestream, except for the Re-
turn operation, which returns a sequence of items. Most of these operations have
a region attached to it, which represents the body of the clause. A sequential
grouping of these clause operations in a block represents a FLWOR expression.
The mappings can be found in Table 3 and an example of a FLWOR expression
is included in Figure 8.

A query itself is a function operation with one region and block. It takes

9

ForClause jsoniq.for({ b̂b0(%arg0 :!jsoniq.tuple) :
//body
}) {var : string} : (!jsoniq.tuplestream) → !jsoniq.tuplestream

LetClause jsoniq.let({ˆbb0(%arg0 :!jsoniq.tuple) :
//body
}) {var : string} : (!jsoniq.tuplestream) → !jsoniq.tuplestream

WhereClause jsoniq.where({ b̂b0(%arg0 :!jsoniq.tuple) :
//body
}) : (!jsoniq.tuplestream) → !jsoniq.tuplestream

CountClause jsoniq.count{var : string} : (!jsoniq.tuplestream) → !jsoniq.tuplestream

OrderByClause jsoniq.orderby({ b̂b0(%arg0 :!jsoniq.tuple) :
//body
}) {rule : string} : (!jsoniq.tuplestream) → !jsoniq.tuplestream

GroupByClause jsoniq.groupby({ b̂b0(%arg0 :!jsoniq.tuple) :
//body
}) {var : string} : (!jsoniq.tuplestream) → !jsoniq.tuplestream

ReturnClause jsoniq.return({ b̂b0(%arg0 :!jsoniq.tuple) :
//body
}) : (!jsoniq.tuplestream) → !jsoniq.sequence

Table 3: Mapping from JSONiq clauses to MLIR operations

no input and returns a sequence of items. The body contains the operations
corresponding to the expression tree. An illustration of an expression tree and
its representation in the JSONiq dialect is shown in figure 8.

4 Type Inference

4.1 Motivation

JSONiq is a strongly typed programming language, but allows to ommit type
annotations. In such a case, the most general type item* is assumed. For vari-
ables of this type, information like the number of items, the actual type of each
item and which properties we do not know need to be stored. In contrast the
type double is a 64-bit width word as defined by IEEE. Infering the type of
these expressions can lead to more efficient queries with less memory usage. It
allows to reduce type checks and points to dead code. An example is the cast

expression. If we have, for instance, the expression $x cast as boolean 1 and
can infere the type of x to be boolean, then this expression can be replaced
by $x. Another example is the expression $x + $y. It requires both, x and
y to be a numeric type (integer, decimal, double, etc.). Without any type
annotations, the type of the variables need to be checked at runtime. Knowing
statically, that both variable references are of the same numeric type, allows to
ommit these type checks.

1We assume that variables are defined either globally in the prolog or locally shortly before
the expression.

10

Figure 8: A JSONiq query (bottom left) in the JSONiq dialect (bottom right)
and it’s expression tree (top)

4.2 Algorithm

To infere the types of the results of the operations, we build a worklist consisting
of all operations which return a general type. We defined a general type to be
every type which is not the empty sequence or a singleton sequence with element
type other than item. In this worklist, we find an operation with no operands of
a general type. We remove this operation from the worklist and infer its type.
In case, we could not find an operation, we break out of the loop. Since we
remove an operation in every iteration, we will reach a state where the worklist
is either empty or contains only operations with at least one operand of a general
type. At this point we do not find another operation and break out of the loop.
Therefore the algorithm terminates. However, it does infer the type only for
operations where all input operands are already known to be of a specific type.
Consider the comparison expressions. Independently of the input arguments,
these expressions either throw an error due to incomparability of the operands,
or the result will be of type boolean. To account for operations like this, we
would need to iterate over all operations in the worklist and infer their result
types until we reach a fix point.

11

LiteralExpression The result type is determined from the attribute
type.

ComparisonExpression The result type is always boolean.
AndExpression

The result type is always boolean.OrExpression
NotExpression
MultiplikativeExpression The result type is the most general numeric

type of the operands.AdditiveExpression
ConditionalExpression If we can determine the type of the child expres-

sions, and if they are the same, then the result
type will also be the same.

CastableExpression
The result type is always boolean.

InstanceofExpression
CastExpression The result type is determined from the value of

the string attribute.TreatExpression

Table 4: Type Inference Rules for a selection of expressions

4.3 Implementation

We implemented type inference as a custom pass in MLIR. It is a class TypeIn-
ference inheriting from mlir::PassWrapper and overriding the method runOn-
Function. Our algorithm from section 4.1 is implemented there. We also define
a custom MLIR interface TypeInferenceInterface. In MLIR, Interfaces are used
to ensure the implementation of specific functions within operations. In our case
it is the method inferTypes() which is called within the type inference pass. Fi-
nally, the pass is registered in a pass manager which will apply it from now
on.

4.4 Inference Rules

The inference rule for the LiteralExpression is straightforward. Based on the
type of the attribute value we can determine the result type. In case of an integer
attribute, the result will be of type integer, in case of a boolean attribute, the
result will be of type boolean. For comparison and logical exressions, the result
type will always be boolean, or they return an error. Type inference is also
possible if we have a conditional expression (if e1 then e2 else). If we can
determine the types of both expressions, e1 and e2 to be the same, then the
return type of the conditional expression will also be the same. Table 4 lists a
few more rules.

5 Optimizations

We implemented three optimizations: Short circuit evaluation, Logical identity
and Double Not.

12

5.1 Short circuit evaluation

JSONiq does not define the order of evaluation for operands [3]. For instance the
expression true or (1 div 0) may throw an error or return true. It follows
that any execution engine can choose which operand it wants to evaluate first.
We make use of it and apply the short circuit evaluation from both sides of the
operation. This means that for every expression true or e where e is some
subexpression, we replace it by true. We do the same for e or true. For
every expression false and e and e and false, we replace it by false. This
transformation is correct due to the semantics of the logical operators and and
or. It defines that when ever we have true or something it is always true.
Since or is commutative, it also holds the other way around. The semantics of
the and operator is defined in a similar way.

5.2 Logical identity

The semantics of the operators and and or also define some kind of identiy. This
means that false or something and true or something can be replaced by
something as long as it is a boolean value. Applied to JSONiq, we conclude that
every expression true or e and false and e, where e is some subexpression,
can be replaced by e cast as boolean. We need to cast the subexpression e
to boolean, since the operands of the operations and and or need to be of type
boolean. Normally, this cast is implicitly done by the execution engine, but
since we optimize the operation away, we need to add an explicit cast. Again,
and and or are commutative, so the same holds for e or true and e and false.

Similar, we conclude the transformation rule for not (not e). We can
replace it by e cast as boolean.

5.3 Testing

Our optimizations should not change the output or semantics of the original
query. To ensure this, we used the runtime tests found in the gitlab repository
of Rumble [6]. First, we modified the test suite to produce the textual rep-
resentation of the query in the MLIR dialect and write it to a file. We than
run our optimizer over the generated files and backtransformed the result to
a JSONiq query. Finally, we run the test suite again, but this time with the
optimized queries as input. Since the test suite is also checking the correctness
of the parser in Rumble, not all original queries will be translated to MLIR. The
queries with expected parsing errors will and should be excluded for testing the
optimizations due to the fact that the optimization step will never be reached.
Nontheless, we found some problems in generating the MLIR IR. Corner cases,
where the ArrayConstructorExpression and the CommaExpression re-
ceive less than two operands are not handled in the right way.
Further problems occur when parsing the generated files and back transforming
the MLIR IR to a JSONiq query. The MLIR dialect misses definitions for con-
structs found in the generated textual representation, leading to parsing errors.

13

Rumble parsing errors (no MLIR generated) 18
MLIR generation errors 215
MLIR parsing errors 18
Change in metadata and errors in backtransformation 63
overall 314

Table 5: Absolute number of errors

An example of such a construct is the type tuplestream.
During backtransformation, we make use of our own output format. This leads
to problems with the metadata used to provide location information about the
expected error. There are also special characters in string values which are han-
dled differently in Rumble and MLIR (C++). The absolute number of errors
can be found in Table 5. Out of 709 test cases only 395 passed the tests.

6 Conclusion and Future Work

In this thesis, we discussed type inference and some optimizations for a selection
of simple JSONiq expressions. We did not consider all expressions and clauses.
For example, LetClause folding or merging multiple WhereClauses into one
is interesting to look into.
We also could not get a look at experimental evaluation with respect to the
efficiency of query execution. Here we need to consider that the optimizations
are done after the query is submitted, shortly before the execution. To the
user, the time spend to optimize is included in the run time of the whole query.
Currently, the run time consist of the time to translate the query into an abstract
syntax tree, the time to translate this AST into a tree of runtime iterators and
the time to execute the latter. Optimization takes place on the AST resulting in
an AST which can hopefully be translated into a tree of runtime iterators which
in turn can be executed more efficiently. This also means that the time used
for optimizations should not exceed the time gained due to faster execution.
With respect to this, some optimizations may be not suitable. For example
constant folding, i.e. replacing for instance 1 + 2 with 3, may in the end just
move the computation from the runtime iterators to the compiler without any
performance gain in overall query execution. This experiments and thoughts
are left for further work.
Another problem is the environment used. Rumble is written in Java and MLIR
is written in C++. To integrate the optimizer in Rumble, one needs to call C++
code from Java. This may lead to the loss of the platform independence provided
by Java. Looking further into this is also left for the future.

References

[1] Apache Spark Website. https://spark-apache.org/. Accessed: 2020-12-08.

14

https://spark-apache.org/

[2] JSON Website. https://www.json.org/json-en.html. Accessed: 2020-12-08.

[3] JSONiq Website. https://www.jsoniq.org/. Accessed: 2020-12-08.

[4] MLIR Website. https://mlir.llvm.org/. Accessed: 2020-12-08.

[5] Rumble, an engine to run JSONiq on top of Spark. https://blog.systems.
ethz.ch/blog/2019/rumble.html. Accessed: 2020-12-08.

[6] Rumble Git Repository. https://gitlab.inf.ethz.ch/gfourny/rumble/-/tree/
MLIR3. Accessed: 2020-12-08.

[7] Rumble Website. https://rumbledb.org/. Accessed: 2020-12-08.

[8] TableGen Overview. https://llvm.org/docs/TableGen. Accessed: 2020-12-
09.

[9] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko. Mlir: A compiler
infrastructure for the end of moore’s law, 2020.

[10] I. Müller, G. Fourny, S. Irimescu, C. B. Cikis, and G. Alonso. Rumble:
Data independence for large messy data sets, 2020.

[11] M. I. Reber. Optimizing JSONiq Execution in Rumble using MLIR, 2020.

[12] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
page 10, USA, 2010. USENIX Association.

15

https://www.json.org/json-en.html
https://www.jsoniq.org/
https://mlir.llvm.org/
https://blog.systems.ethz.ch/blog/2019/rumble.html
https://blog.systems.ethz.ch/blog/2019/rumble.html
https://gitlab.inf.ethz.ch/gfourny/rumble/-/tree/MLIR3
https://gitlab.inf.ethz.ch/gfourny/rumble/-/tree/MLIR3
https://rumbledb.org/
https://llvm.org/docs/TableGen

