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Abstract

Most macroeconomic indicators failed to capture the sharp economic fluctuations dur-
ing the Corona crisis in a timely manner. Instead, alternative high-frequency data have
been used, aiming to monitor the economic situation. However, these data are often
only loosely related to the business cycle and come with irregular patterns of missing
observations, ragged edges and short histories. This paper presents a novel mixed-
frequency dynamic factor model for measuring economic activity at high-frequency
intervals in rich data environments. Previous research has estimated the dynamic
factor conditional on actually observed data only. In contrast, we propose to estimate
the dynamic factor conditional on a balanced panel with observed and latent data
information, where the latent data are themselves estimated in a separate state-space
block. One benefit of this data augmentation strategy is that it allows to easily ac-
count for serial correlation in the factor measurement errors. We apply the model
to a set of daily, weekly, monthly and quarterly series and extract a dynamic factor,
which is identified as the weekly growth rate of GDP. It turns out that the model
is well suited to exploit the business cycle information contained in alternative high-
frequency data. GDP is tracked timely and accurately during the Corona crisis and
past economic crises.
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1 Introduction

The Corona crisis has shaken many economies worldwide to an unprecedented extent.
Economic activity fell dramatically within a few days and rebounded very quickly after
the first wave of lockdowns ended. Macroeconomic indicators, such as business tendency
surveys, consumer sentiment, retail sales or industrial production, could not keep track of
the sudden fluctuations. Most of these variables are released only once a month and with
a publication lag, making them not well suited to capture the dynamics in a timely man-
ner. Instead, business cycle observers started to use various high-frequency series such as
daily credit card transactions, energy consumption, traffic volumes, smartphone mobility
tracking and internet search hits, with the aim of monitoring economic activity closer to
real time. Henceforth, we refer to these series as alternative high-frequency data, a term
which is increasingly common since the outbreak of the crisis. However, the real-time
monitoring task is challenging due to the characteristics of the alternative high-frequency
data. Some of the series are only loosely related to economic activity as measured by sta-
tistical offices. Others cover only very specific aspects of economic activity. In addition,
the series often fluctuate strongly and are affected by factors unrelated to the business
cycle. Furthermore, most of them have only a short history and are subject to irregular
patterns of missing observations and publication lags.

Against this background, we propose a novel mixed-frequency dynamic factor model
(DFM) which is well suited to measure GDP growth at high-frequency intervals and close
to real time and to extract the business cycle information contained in alternative high-
frequency data, despite their aforementioned challenges. Our DFM accounts for stochastic
volatility and for serial correlation in the factor measurement errors. It comprises three in-
terdependent state-space blocks: latent high-frequency data, dynamic factor and stochastic
volatility. In the first block, all unobserved data points in the mixed-frequency data set are
estimated as latent states conditional on, among others, the actually observed data and
temporal aggregation constraints. In the second block, the dynamic factor is estimated
conditional on, amongst others, the observed as well as the estimated latent information.
The strategy of creating a balanced data set through estimation of unobserved informa-
tion as latent states is known as data augmentation in the statistics literature (Tanner and
Wong, 1987; Frühwirth-Schnatter, 1994). We take a fully Bayesian approach to estimate
the latent information, the dynamic factor, the stochastic volatility and all model param-
eters. The joint posterior is simulated using Gibbs sampling.

The literature on mixed-frequency DFMs has seen important advances during the past
years (e.g., Giannone et al., 2008; Aruoba et al., 2009; Camacho and Perez-Quiros, 2010;
Doz et al., 2011; Bańbura et al., 2011; Bańbura and Modugno, 2014). However, the han-
dling of data sets with several mixed frequencies, with a large set of daily and weekly series,
with arbitrary and irregular patterns of missing observations and with data histories of
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varying lengths remains a challenge. Here, our paper provides several novel contributions.
To begin with, previous models estimate the dynamic factor by modifying the Kalman
filter recursions such that they skip the updating step if observations are missing. In con-
trast, our model estimates the dynamic factor not just based on actually observed data
only, but also conditional on the latent information contained in the data set. For this,
we integrate a novel state-space block into the DFM, in which the sparse observed data
points in the mixed-frequency data set are augmented to a balanced panel with observed
and estimated latent information. An important advantage of creating the balanced panel
in the data augmentation block is that it allows for quasi-differencing of the dynamic fac-
tor measurement equation (Chib and Greenberg, 1994). Thereby, the model can easily
account for serial correlation in the factor measurement errors despite mixed frequencies,
missing observations, different release lags and data histories of various different lengths
in the original data. This feature is crucial since it allows the common factor to have
less explanatory power for the mixed-frequency series during extended periods of time
while explaining a lot during other periods (e.g., Stock and Watson, 2002). This, in turn,
can greatly improve the performance of DFMs, especially when alternative high-frequency
data with the aforementioned characteristics are used. Previous papers obtain the condi-
tional moments of the serially correlated measurement errrors from the Kalman smoother,
typically using an EM-algorithm, which increases the computational burden substantially
(e.g., Bańbura and Modugno, 2014). In contrast, we provide an efficient and generic
Bayesian sampling algorithm that scales well to larger data sets. In order to estimate
the latent high-frequency data, the dynamic factor and the stochastic volatility, we build
on the precision sampler framework developed by Chan and Jeliazkov (2009). Our novel
contribution here is to extend their procedure to the mixed-frequency case by integrating
the temporal aggregation scheme originally proposed by Mariano and Murasawa (2003).
This leads to substantial efficiency gains compared to forward filtering backward sampling
(Carter and Kohn, 1994; Kim and Nelson, 2017), in particular when dealing with the large
state-space setups required for mixed- and high-frequency data. Another advantage of our
approach is that the dynamic factor resulting from the model estimation has a clear and
intuitive interpretation. In particular, we propose straightforward identifying restrictions
such that the common factor extracted from a mixed-frequency data set can be interpreted
as the high-frequency period-on-period growth rate of GDP.

In an empirical application, we study how useful the DFM is for tracking Swiss GDP
with a large set of daily, weekly and monthly time series, including various alternative
high-frequency data. We derive a weekly economic activity indicator that is identified as
week-on-week GDP growth. A pseudo real-time analysis yields that the indicator is able
to capture business cycle turning points comparatively early. It tracks economic activity
well during times of sudden and strong economic fluctuations such as the Great Reces-
sion in 2008/09, the European sovereign debt crisis in 2011 and the Swiss franc shock in
2015. An in-depth investigation is provided for the Corona crisis, where the weekly GDP
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indicator performs especially well due to the information extracted from the alternative
high-frequency data.1 Further, we conduct a pseudo real-time out-of-sample nowcast ex-
ercise for quarterly GDP. The mixed-frequency DFM substantially outperforms simple
benchmark models. The alternative high-frequency data turn out to be especially useful
for nowcasting GDP during sharp economic downturns and recoveries as compared to us-
ing macroeconomic and financial series only. In contrast, the alternative high-frequency
data do not provide additional valuable information during normal times.

The remainder of the paper is structured as follows. Section 2 presents the mixed-frequency
DFM with stochastic volatility, where special emphasis is put on the discussion of the
data augmentation part. The section further describes the identifying assumptions and
discusses our estimation priors. In addition, a description of the sampling algorithm
is provided. Section 3 presents the results from the empirical application, including a
description of the employed data. Section 4 concludes.

2 Mixed-Frequency DFM with Data Augmentation

2.1 Data Augmentation

The model uses a collection of n time series with mixed frequencies, where the time index
of the highest frequency in the data set is denoted by t. In order to coerce all time series to
the highest frequency, low-frequency observations are registered in the last high-frequency
entry of the corresponding low-frequency period and all other entries are filled with zeros.
For instance, when mixing weekly, monthly and quarterly data, monthly (quarterly) data
are observed in the last week of each month (quarter) and are set to zero elsewhere. A
time series is also assigned a value of zero in a period if the observation is missing due
to publication delays or a limited history. The n-dimensional data vector yt is, therefore,
typically filled with a few observations and many zeros. Further, we define xt as an n-
dimensional vector filled with actual observations and with estimated latent observations
whenever a variable is not observed. The relation between the sparse vector yt and the
dense vector xt is described by the following identity:

yt = Stxt, (1)

where St is a diagonal selection matrix of order n × n, featuring ones on the diagonal if
the corresponding value in yt is observed and zeros otherwise. Henceforth, we refer to the
strategy of augmenting the sparse vector yt to the dense vector xt, which contains observed
and estimated data, as data augmentation. Consequently, Equation (1) is referred to as
1We would like to highlight other recent projects that employ alternative high-frequency data to track the
economy during the Corona crisis. Lewis et al. (2020) provide a weekly economic activity indicator for
the United States using both a principal components and a dynamic factor approach. Eraslan and Götz
(2020) do so for Germany taking a principal components approach. For Switzerland, Eckert and Mikosch
(2020) present daily activity indicators and Guggia et al. (2020) present a weekly economic activity index.
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the data augmentation equation. As will be seen in the next subsection, data augmentation
enables us to easily account for serial correlation in the measurement errors of a mixed-
frequency DFM.

2.2 Dynamic Factor

The measurement equation for the dynamic factor ft is given by

xt = L0λft + L1λft−1 + . . .+ Lsλft−s + et. (2)

where s indicates the number of factor lags, the n-dimensional vector λ contains the
time-invariant factor loadings and the diagonal distributed lag matrices L0, . . . ,Ls ensure
the appropriate temporal aggregation of the high-frequency factor to the lower frequency
variables in xt, as proposed by Mariano and Murasawa (2003) (see Appendix A.1 for
details). The measurement errors in Equation (2) follow the first-order autoregressive
process

et = ρet−1 + ut ut ∼ N (0,Σ) (3)

with the error covariance matrix Σ and the autoregressive coefficient matrix ρ being
diagonal. In order to estimate the dynamic factor in presence of serial correlation in
the measurement errors, we follow Chib and Greenberg (1994) and quasi-difference the
measurement equation. For this, we first define the quasi-differenced augmented data
vector as

x̃t = xt − ρxt−1. (4)

Inserting Equation (2) into Equation (4) yields the quasi-differenced measurement equation
for the dynamic factor :

x̃t =
(
L0λft + . . .+ Lsλft−s

)
− ρ

(
L0λft−1 + . . .+ Lsλft−s−1

)
+ ut, (5)

where ut has been defined in Equation (3) and is serially uncorrelated.2 Notably, the
elimination of serially correlated measurement errors via quasi-differencing is only possible
because the original measurement equation given in Equation (2) includes the dense data
vector xt. In contrast, elimination of serially correlated measurement errors by quasi-
differencing is not possible when the measurement equation includes the sparse data vector
yt. Thus, the data augmentation from yt to xt is a necessary step to account for serial
correlation in the measurement errors. The state equation for the dynamic factor is given
by the autoregressive process

ft = φ1ft−1 + . . .+ φpft−p + ehtηt, ηt ∼ N (0, 1) (6)
2It is straightforward to rearrange terms in Equation (5) to simplify the estimation of the factor.
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where the scalars φ1, . . . , φp represent the autoregressive coefficents and p indicates the
number of lags. The composite error term ehtηt consists of the time-varying stochastic
volatility factor eht and the standard normally distributed error ηt. Note that the state
equation is not affected by the transformation from the original to the quasi-differenced
measurement equation. Also, this transformation does not affect the measurement and
the state equation for the stochastic volatility discussed in the next section.

2.3 Stochastic Volatility

We let the variance of the error term in Equation (6) be time varying in order to better
capture volatility increases during crisis periods. Specifically, the logarithmized stochastic
volatility factor follows the random walk process

ht = ht−1 + vt, vt ∼ N (0, ω) (7)

which gives us the state equation of the stochastic volatility factor. Since solving Equa-
tion (6) for ht would result in nonlinearities, we follow Primiceri (2005) and transform
the equation to a linear system by squaring and taking logarithms. This results in the
following measurement equation for the stochastic volatility factor :

log
(
(ft − φ1ft−1 − . . .− φpft−p)2 + c

)
= 2ht + log

(
η2

t

)
, (8)

where the offset constant c = 0.001 is introduced to make the estimation more robust.
Since ηt follows a standard normal distribution, the error term log

(
η2

t

)
is distributed

according to a log chi-squared distribution with one degree of freedom, logχ2(1). In order
to transform the system further to a Gaussian state-space model, the χ2(1)-distribution
is approximated using a mixture of normals following Kim et al. (1998). Appendix A.2
provides further details.

2.4 Latent Data

The measurement equation for the latent dense data vector xt is given by

yt = Stxt + εt, εt ∼ N (0, εIn) , (9)

where ε = 10−9 is a very small number. This approximates the identity given in Equa-
tion (1) very closely. Imposing an exact identity is not feasible, as the covariance matrix
needs to be invertible in the precision sampling approach that we employ for estimation.
The state equation for xt is simply obtained by combining Equation (5) and Equation (4)
to

xt =
(
L0λft + . . .+ Lsλft−s

)
− ρ

(
L0λft−1 + . . .+ Lsλft−s−1

)
+ ρxt−1 + ut, (10)

where again ut ∼ N (0,Σ).
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2.5 Factor Identification and Interpretation

Since both the dynamic factor and the factor loadings are unknown, there exist infinite
possibilities to explain the data. This is commonly referred to as observational equiva-
lence. Therefore, in order to identify the factor, certain restrictions have to be placed on
the parameter space. Following Bai and Wang (2015), the factor loading on GDP, denoted
as λgdp, is restricted to unity using informative priors. This resolves the scale and sign
indeterminacy inherent in dynamic factor models. Rotational indeterminacy is not an
issue in the single factor case (see, e.g., Aßmann et al., 2016, and references therein) and
the dynamic factor is, therefore, uniquely identified.

One benefit of our approach is a clear and intuitive interpretation of the dynamic factor.
This is achieved by imposing informative priors such that the dynamic factor is equal to
the high-frequency growth rate of GDP and that the temporal aggregation of the dynamic
factor, given in Equation (2), approximates the quarterly growth rate of GDP. Specifi-
cally, we shrink the autoregressive coefficient ρgdp strongly towards zero. In addition, we
shrink the error term σgdp on GDP growth towards a small value. This value determines
how much the temporally aggregated high-frequency factor is allowed to deviate from the
observed GDP growth rates. It should be noted, that the shrinkage is neither necessary
to achieve identification nor is it in any way inherent to our model itself. Other choices
are possible depending on what the researcher wants to do with the model.

The priors on all remaining parameters are left completely uninformative. It leads to
a more robust convergence, especially around turning points, when imposing additional
stationarity constraints on the autoregressive coefficients of the dynamic factor. A detailed
account of the conditional distributions is given in Appendix A.5.

2.6 Estimation

The estimation task comprises the estimation of the dynamic factor ft, the stochastic
volatility factor ht, the latent dense data vector xt as well as the parameters λ, φ1, . . . , φp,
ρ, ω and Σ. The joint posterior distribution is simulated using Gibbs sampling. ft, ht, xt

and the aforementioned parameters are estimated in separate Gibbs sampling blocks, con-
ditional on the observed data yt, the selection matrix St and the distributed lag matrices
L0, . . . ,Ls. Sparse matrix preallocation and the use of sparse matrix algorithms make the
estimation computationally efficient. A set of starting values is randomly generated from
uniform distributions to ensure robust convergence of the sampler. We assess convergence
of the Gibbs sampling algorithm using trace plots and by checking differences in the recur-
sive means of selected parameters. Due to the parsimonious parameterization, a burn-in of
1,000 iterations is sufficient to achieve convergence. After convergence is achieved, another
1,000 draws are saved and evaluated.
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For the estimation of ft, ht, xt in the separate Gibbs sampling blocks, we build on the
procedure proposed by Chan and Jeliazkov (2009). We extend the algorithm to the case
of mixed-frequency data by integrating the temporal aggregation scheme of Mariano and
Murasawa (2003) into the procedure. The rest of this section explains the estimation of
ft, while Appendices A.3, A.4 and A.5 describe the estimation ht, xt and the remaining
parameters λ, φ1, . . . , φp, ω,ρ and Σ, respectively.

To estimate ft, the measurement equation for the factor shown in Equation (5) is stacked
over all time periods t = 1, . . . , T to get

x̃ = Gf + u, u ∼ N (0, IT ⊗Σ) (11)

where

x̃
n(T−1)×1

=


x̃2
...
x̃T

 , G
n(T−1)×(T +s)

=


−ρLsλ (Ls − ρLs−1)λ . . . (L1 − ρL0)λ L0λ

. . . . . .
−ρLsλ (Ls − ρLs−1)λ . . . (L1 − ρL0)λ L0λ

 .

Note that G integrates the temporal aggregation scheme of Mariano and Murasawa (2003)
into the procedure of Chan and Jeliazkov (2009). The state equation for the factor given
in Equation (6) is stacked correspondingly:

Hf = v, v ∼ N (0,V) (12)

where

H
(T +s)×(T +s)

=



1
−φ1 1
... . . . . . .
−φp . . . −φ1 1

. . . . . . . . . . . .
−φp . . . −φ1 1


, f

(T +s)×1
=



f1−s

f2−s

...
f1
...
fT


,

and V is a diagonal matrix containing the time-varying variances e2h1−s , . . . , e2hT . The
precision matrix F0 is then given by H′V−1H and the conditional posterior of the factors
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is normally distributed according to

f ∼ N (f1,F1) where f1 = F1
(
G′(IT ⊗Σ−1)x̃

)
F1 =

(
F0 + G′(IT ⊗Σ−1)G

)−1
.

This algorithm is computationally very efficient if block-banded matrix algorithms are
used. Instead of inverting F1, it is faster to compute the banded Cholesky factor of F1

and to solve for f1 by forward and backward substitution.

3 Tracking GDP with Alternative High-Frequency Data

We want to know whether the mixed-frequency DFM is helpful for tracking economic
activity. Our conjecture is that the model can be particularly useful during downturns
and upturns, especially if they are very sharp as during the Corona crisis. For an empirical
application, we assemble a set of mixed-frequency data on the Swiss economy and study
the behavior of a weekly GDP indicator resulting from our model. Thereafter, we present
a pseudo real time out-of-sample nowcast exercise for quarterly GDP growth.

3.1 Data

The employed data set includes 22 daily and one weekly series that can be classified as
alternative high-frequency data. These data comprise diverse series such as, e.g., energy
production and energy consumption volumes, the frequency of motor vehicles passing at
important monitoring stations, the number of flight arrivals and departures at the main na-
tional airport, debit and credit card transaction volumes in retail trade, the volume of cash
withdrawals at ATM machines, and google search hits for the economic situation and for
the purchase of consumption goods. A general challenge with alternative high-frequency
data is that their history is often quite short. In fact, some of our series start in 2018 only
or even later. Our model can easily deal with data sets where the series start at different
dates or at a late stage during the nowcasting analysis. The reason is that each series is
a latent process in vector xt of Equation (1), irrespectively of whether it is observed or not.

In addition to the alternative high-frequency series, the data set includes six daily and one
monthly financial series as well as 23 monthly macroeconomic series (labor market, price,
retail sale and business tendency survey variables). The set of financial and macroeco-
nomic variables is rather standard in the GDP nowcasting literature. We are interested
in knowing whether the alternative high-frequency data provide valuable information in
addition to the standard variables. Table 2 in Appendix A.6 provides an overview of all
series used in this paper, along with meta information such as frequency, starting date,
unit, transformation and source. Since our nowcasting exercise is conducted at a weekly
frequency, we aggregate all daily series in the data set to weekly frequency. A positive
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side effect of the temporal aggregation is that weekly seasonality patterns in the daily
series are circumvented. In order to ensure a regular frequency pattern of the time series,
the aggregation is done such that each of the 12 months in a year consists of exactly four
weekly observations, resulting in 48 weekly observations per year.

We carefully track the release dates of the weekly and monthly time series according to
their release schedules of the year 2020. For the below real time analysis, only those ob-
servations, which were actually available at a particular date, are employed as an input
for the model. Table 2 reports the release lags of all variables in the data set. The weekly
variables are released in the following week. The monthly variables are released in the first
week of the following month, except the retail sales variables which get published with a
delay of four weeks. Quarterly GDP is released with a lag of 9 weeks. The variable-specific
release lags result in “ragged edges” in the data (Wallis, 1986), which our model can easily
deal with.

Figure 11 in Appendix A.6 shows our target variable, the quarter-on-quarter growth rate
of Swiss real GDP, adjusted for financial inflows and outflows stemming from international
sport events. Since the year 2005, the Swiss economy has experienced four economic crises:
the Great Recession in 2008Q4–2009Q3, the European sovereign debt crisis in 2011Q3–
2013Q1, the Swiss franc shock in 2015Q1–2015Q2, and the Corona crisis in 2020Q1–
2020Q2.3 It is debatable when exactly these crises started and ended. We simply choose
the start and end periods of the crises such that they began with strong downturns of
quarterly GDP and ended with strong upturns.

3.2 Weekly GDP Indicator

The dynamic factor resulting from our mixed-frequency DFM is constructed such that it
approximately represents the annualized week-on-week growth rate of GDP (see Section
2.5). For this reason, we henceforth refer to the dynamic factor as weekly GDP indicator.
The upper panel of Figure 1 shows the weekly indicator and its 95%-confidence interval.
It is shown together with the actual quarter-on-quarter growth rate of GDP, indicated
by horizontal red bars.4 The weekly indicator and the quarter-on-quarter growth rate of
GDP match well for the entire history. The lower panel shows the stochastic volatility of
the errors in the state equation for the dynamic factor (see Equation (6)). Time-varying
errors allow the factor to account for the higher volatility of economic activity during crisis
periods. Indeed, we observe that the model makes use of this flexibility during periods
of sudden and strong economic fluctuations, where the volatility of the error term increases.

3Note to the editors and referees: 2020Q3 had not yet been published when the empirical part of the paper
was finalized. We are happy to include the continuation of the Corona crisis in a revised paper version.

4The unprecedented fluctuations during the Corona crisis eclipse the usual trajectory of weekly economic
activity. We cropped the vertical axis of the figure to allow for an inspection of the fluctuations during
other times. The Corona crisis will be discussed in greater detail later on.
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Figure 1: History of Weekly GDP Growth and Stochastic Volatility. The upper panel
shows the dynamic factor, representing the annualized week-on-week growth rate of Swiss real GDP,
together with a 95%-confidence interval in blue. The red bars depict the official annualized quarter-
on-quarter growth rate of real GDP. The lower panel shows the estimated stochastic volatility.
Periods classified as economic crisis are indicated by vertical grey bars. The vertical axis of the
upper panel is truncated to allow for an appropriate assessment of the entire history.

We conjecture that the previously presented alternative high-frequency data are especially
useful in times of sharp and strong downturns and rebounds. They should capture the
increased volatility faster and to a greater extent than traditional macroeconomic data.
To study this, we now put a special emphasis on the four economic crises in Switzerland
since the year 2005. We want to know whether the weekly GDP indicator is indeed able
to capture these sudden and strong economic fluctuations. Figure 2 presents the close-up
view of the weekly indicator together with 95%-confidence intervals (in blue) and with the
realized annualized quarter-on-quarter growth rate of GDP (in red). The crisis quarters
are indicated with vertical grey bars. During the Great Recession, the indicator shows
negative growth rates already at the beginning of August 2008, with a trough in mid-
November. From March 2009 onward, weekly growth turned positive again. The path of
the weekly growth rates reveals that both the downturn and the subsequent recovery were
very strong and abrupt, which cannot be captured by looking at quarterly or monthly fig-
ures only. During the European sovereign debt crisis, Switzerland experienced heightened
volatility over several quarters due to an appreciation of the Swiss franc, increased uncer-
tainty and very volatile transit trade. The weekly GDP indicator captures these ups and
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downs quite well (see middle panel of Figure 2). On January 15, 2015, the Swiss National
Bank unexpectedly removed the minimum exchange rate of 1.20 Swiss francs per euro.
This led to a rapid appreciation of the Swiss franc, which has become known as the “Swiss
franc shock”. GDP declined by 0.7 percent in 2015Q1 and grew strongly again by 2.7
percent in the subsequent quarter. The weekly GDP indicator reveals that the economic
downturn after the shock was relatively strong, but that a steep recovery started at the
end of February already (see right panel of Figure 2). This prevented a more negative
growth rate for 2015Q1. The indicator further reveals that economic activity was rather
flat on average over the second quarter and that the strong quarterly growth rate was
primarily due to a big statistical overhang stemming from the first quarter. Altogether,
the analysis shows that the weekly GDP indicator can help to better understand rapid
economic fluctuations after shocks.

Great Recession European Sovereign
Debt Crisis Swiss Franc Shock

Jun Oct Feb Jun Oct Feb Aug Dec Apr Aug Dec Apr Jun Oct Feb Jun Oct Feb
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Figure 2: Weekly GDP Growth During Crisis Periods. Notes: See Figure 1.

Next, we focus on the Corona crisis during which the Swiss economy, just as other
economies worldwide, experienced unprecedented fluctuations both in terms of sudden-
ness and strength. Figure 3 shows the weekly GDP indicator, again together with a
95%-confidence interval and with the actual quarter-on-quarter growth rate of GDP. The
vertical dotted lines indicate important policy decisions during the pandemic. The first
Corona virus infection was recorded on February 25, 2020. Restrictions for events and
gatherings of persons were increased stepwise during late February and early March. On
March 16 the government eventually introduced a nationwide lockdown as the virus had
spread throughout the country. The weekly GDP indicator reveals that economic activ-
ity had already decreased substantially before the lockdown. The reason for this is that
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the population reduced its mobility and consumption activity already from late February
onward as a reaction to the spread of the pandemic (e.g., Eckert and Mikosch, 2020).
Firms cut down production which was also reflected in, e.g., a record increase of claims for
short-term work. The lockdown pushed growth further into negative territory, reaching
its low at the end of March with weekly annualized growth rates of around -120 percent.
Infections numbers fell rapidly in April, public life restarted in turn and stores as well as
schools reopened on April 29. This led to a rapid rebound with weekly growth rates of
nearly the similar absolute magnitude as during the previous decline. Since May, weekly
GDP growth gradually returned to “normal” rates reaching around 2 percent in Septem-
ber. An important policy lesson is that economic activity dropped not only due to the
lockdown imposed by the government. Rather, growth fell into negative territory already
before the lockdown, as consumers and producers reduced their activities in face of the
pandemic. This relativizes criticisms that economic damages could have prevented if the
government would not have enforced a lockdown.
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Figure 3: Weekly GDP Growth During the Corona Crisis. Notes: See Figure 1.

We have seen that the weekly GDP indicator is able to capture fluctuations of economic
activity well ex-post. However, the real-time performance of the indicator might be dif-
ferent as it is subject to revisions caused by new information from later data publications.
Figure 4 shows the indicator for its first to 30th release during the period 2005–2019.5

Earlier releases (in yellow) tend to fluctuate more than later releases (in red and blue),
especially during times of crisis. Further, the yellow lines are often lagging the red and
5This analysis cannot be conducted in the same way for the Corona crisis as still not enough vintages
are available for the year 2020. We analyze the real-time performance of the indicator during this crisis
separately in the next paragraph.
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blue lines. Thus, earlier releases tend to capture macroeconomic fluctuations less quickly
than would be suggested by later releases. Earlier releases rely mainly on alternative and
financial high-frequency series, which are the most timely available series in the data set.
Monthly series, such as business tendency surveys and retail sales, as well as realizations
of quarterly GDP are included in later releases. They correct for potentially false or ex-
aggerated signals from the alternative and financial data. For most periods, only a few
revisions are necessary before the indicator closely approaches the stable state of later
releases.
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Figure 4: Revisions of the Weekly GDP Indicator. The figure compares the weekly GDP
indicator for different releases in real time. The color bar goes from the first release in yellow over
the 15th release in red to the 30th release in blue. The sample ranges from 2005 to 2019.

We now take a closer look on the real-time behavior of the weekly GDP indicator during
the Corona crisis. Figure 5 compares the indicator as given by the last available data
vintage with the real-time version of the indicator (i.e. always the first indicator release).6

Again, the real-time version of the indicator can only rely on alternative and financial
high-frequency data for its week-on-week assessment of GDP growth, as other variables
are published with a delay and/or only for entire months or quarters. The figure reveals
that the indicator has generally tracked the Corona crisis quite well in real time. Still,
6The last available data vintage for this analysis includes all data available until November 27, 2020. This
will be updated in a later paper version.
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the start of the strong downturn was captured in early March instead of in late February
as suggested by the indicator in its last available version based on data which have been
published at a later stage. Further, the real-time version of the indicator shows a slower
recovery in April and May as compared to the latest vintage version of the indicator. Also,
the size of both the trough in March and the rebound in May is initially underestimated.
Note, however, that the annualization of the weekly GDP growth rates leads to a strong
visual exaggeration of this underestimation.
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Real−Time Version of Weekly GDP Indicator

Weekly GDP Indicator Based on Latest Data Vintage

Figure 5: Real-Time Version of the Weekly GDP Indicator During the Corona Crisis.
The figure compares the weekly GDP indicator as recorded by its first release (“real-time release”)
with the indicator as given by the last available data vintage (currently November 27, 2020). Both
indicator versions are displayed with 95%-confidence intervals.

To further assess the importance of the alternative high-frequency data for capturing both
the turning points as well as the extent of the Corona crisis, we compare the real-time
version of the GDP indicator for three different data sets. The upper panel of Figure 6
shows the weekly GDP indicator including all data as previously (red line) in comparison
with the indicator including all data, but with the alternative high-frequency data aggre-
gated to monthly frequency (blue line).7 The indicator using the data in weekly frequency
registers the crisis much earlier. It also indicates a deeper crisis than the indicator with
7In order to ease comparison between the weekly updated indicator and the monthly updated indicator,
both indicators are displayed by stepwise lines.
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the monthly aggregated data. Further, it has smaller confidence intervals which implies
that the more timely availability of the alternative data reduces the nowcast uncertainty.
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Figure 6: Real-Time Version of the GDP indicator for Different Data Sets. The figure
shows the real-time version of the weekly GDP indicator based on three alternative data sets: the
full data set including the alternative high-frequency data, the full data set but with the alternative
high-frequency data aggregated to monthly frequency, and a data set where the alternative high-
frequency data are excluded altogether. All indicator versions are displayed with 95%-confidence
intervals.

The temporarily aggregated alternative data are available at the beginning of the follow-
ing month together with most of the macroeconomic data in our sample. Therefore, the
data are lagging the actual fluctuations of economic activity, but they might still contain
valuable additional information. To inquire this, the lower panel of Figure 6 compares the
indicator version including the temporarily aggregated alternative data (in blue) with a
GDP indicator version where no alternative high-frequency data are included at all (in
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green). While both indicator versions register the crisis at the end of March, the indicator
with the temporally aggregated alternative data reacts much stronger than the indicator
without the alternative data. Hence, the alternative high-frequency data contain useful
information beyond their timeliness. Also, the confidence interval around the indicator
with the temporally aggregated alternative data is smaller than the one around the in-
dicator without the alternative data. This implies that the presence of the alternative
data results in a decrease in nowcast uncertainty, even if they are available at a monthly
frequency only. Overall, the findings suggest that the alternative high-frequency data are
very helpful for capturing the economic fluctuations during the Corona crisis.

3.3 Nowcast Exercise

This section studies the usefulness of our mixed-frequency DFM by means of a pseudo
real-time out-of-sample nowcast exercise for the quarter-on-quarter growth rate of real
GDP. The nowcast evaluation runs from 2005Q1 to 2020Q2 and is split into crisis periods
and non-crisis periods, as discussed in Section 3.1.

The nowcast performance of the mixed-frequency DFM is evaluated for different horizons.
Specifically, we nowcast GDP growth of any quarter in the evaluation period from 12 weeks
before its release (= “12-week nowcast horizon”) up to and including the last week before
its release (= “1-week nowcast horizon”). This allows us to track closely how forecast
errors evolve as new data get released over time.

Figure 7 shows, for each of the 12 nowcast horizons, the root mean squared forecast
errors (RMSFEs) of the DFM, using the full data set listed in Table 2, against an au-
toregressive (AR) model of order one with intercept.8 The relative RMSFE for horizon
h in the lower panel of the figure is defined as ln(RMSFEh

DFM) − ln(RMSFEh
AR), where

RMSFEh
DFM (RMSFEh

AR) is the RMSFE resulting from the DFM (AR model) nowcasts for
h = 1, . . . , 12.9 Unsurprisingly, the RMSFEs of both the DFM and the AR model turn out
to be substantially higher for the crisis periods than for the non-crisis periods; the strong
cyclical downturns and rebounds included in the crisis periods are difficult to nowcast.
The important insight is that during crisis periods, the DFM outperforms the AR model
over all nowcast horizons in terms of RMSFE. The relative RMSFE improvement over the
AR model increases from around 20 percent for the 12-week horizon (relative RMSFE of
-0.2) to around 85 percent for the 1-week horizon (relative RMSFE of -0.85). We test
for equal predictive accuracy using the test proposed by Diebold and Mariano (1995) and
Giacomini and White (2006, ch. 3.4) in its one-sided version with a 10%-significance level.
8A simple autoregressive model has been a common benchmark in previous studies. Note that the RMSFE
of the AR model does not change over the nowcast horizons, since quarterly GDP is released every 12
weeks and, hence, the first lag of GDP is available for the 12-week nowcast horizon.

9We show the log-difference of the two RMSFEs instead of their ratio, as the former is invariant to which
of the two RMSFEs is used as the basis.
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Significantly greater predictive accuracy of the forecasts stemming from the DFM is in-
dicated by dots in the lower panels of the figure, whereas insignificance is indicated by
crosses. As can be seen from the lower left panel, during crisis periods the DFM sig-
nificantly outperforms the AR model in terms of predictive accuracy for most nowcast
horizons. In contrast, during non-crisis periods both models perform rather equally.
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Figure 7: DFM With Alternative High-Frequency Data Against AR Model. The figure
shows the RMSFEs from nowcasting quarter-on-quarter real GDP growth in a pseudo real-time
out-of-sample exercise. The nowcast horizon ranges from 12 weeks before GDP release up to and
including the last week before release. The evaluation spans 2005Q1–2020Q2. The crisis periods
include the Great Recession, the European sovereign debt crisis, the Swiss franc shock, and the
Corona crisis. The dots in the lower panels indicate differences in nowcast performance that are
statistically significant at a 10%-level, according to a one-sided Diebold and Mariano (1995) test.
Crosses indicate statistically insignificant differences.

A main methodological contribution of this paper is to provide a mixed-frequency DFM
which can easily account for serial correlation in the errors of the factor measurement
equation, despite several mixed frequencies, missing observations, ragged edges and data
histories of different lengths (see Section 2.2). It turns out that this feature is indeed
important for achieving a good nowcast performance in our application. This is discussed
in Appendix A.8.

The DFM presented in Figure 7 uses the full data set, which includes the alternative high-
frequency data as well as the standard financial and macroeconomic series. We want to
know whether the use of the alternative high-frequency data, in addition to the standard

17



variables, actually helps to improve the nowcast performance. For this purpose, Figure 8
depicts the RMSFEs of the DFM including the full data set against the RMSFEs of the
DFM, excluding the alternative high-frequency series. The DFM using the full data set
clearly outperforms the DFM without the alternative high-frequency data, although only
in crisis periods as can be seen from the lower left panel of the figure. Note that, for the
4- to 1-week nowcast horizons, the nowcast error difference between the two specifications
is close to the chosen significance threshold with p-values being between 11 and 12 percent.
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Figure 8: DFM With and Without Alternative High-Frequency Data. Notes: See Figure
7.

Further, we are interested in knowing whether the value of the alternative data for now-
casting GDP comes from its timeliness, or whether the data are even valuable if they are
sampled at a monthly frequency only. Figure 9 shows the RMSFEs of the DFM including
the full data set against the RMSFEs of the DFM including the full data, but with all
data aggregated to the monthly frequency. These temporarily aggregated observations are
available in the first week of the next month (together with, for instance, the monthly busi-
ness tendency surveys). The lower left panel reveals that the higher frequency increases
the nowcast performance for crisis periods. Note that, for the 5- to 1-week nowcast hori-
zons, the difference between the two specifications is again close to the chosen significance
threshold with p-values being between 11 and 13 percent.
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Figure 9: DFM With and Without Temporal Aggregation. Notes: See Figure 7.

In a further step, we compare the nowcast accuracy by joining the crisis and non-crisis
periods to one single evaluation phase from 2005Q1 to 2020Q2. As can be seen from the
blue line in the lower panel of Figure 10, the DFM including the full data set outperforms
the AR model in terms of RMSFE for all horizons. The difference in the nowcast per-
formance is statistically significant for the 9- to 7-week horizons and at least close to the
chosen significance level for the 6- to 1-week horizons (p-values at 11 percent). The DFM
excluding the alternative high-frequency data also outperforms the AR model (see pink
line in the lower panel), although to a much smaller extent as the full data DFM. The
same holds true for the DFM with the data aggregated to the monthly frequency (not
shown in the figure). It is noteworthy that the differences in nowcast performance during
the crisis periods almost entirely drive the RMSFE results for the joint evaluation phase,
although the crisis periods account only for 12 quarters of the total 79 quarters during
2005Q1 to 2020Q2.

In order to verify the robustness of the results, Appendix A.7 presents Figures 7 to 10
with mean absolute percentage errors (MAPEs) instead of RMSFEs. The MAPE results
turn out to be similar to the RMSFE results and all conclusions remain unchanged.
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Figure 10: Joint Evaluation for Crisis and Non-Crisis Periods. Notes: See Figure 7.

4 Conclusion

In this paper, we propose a novel dynamic factor model for high- and mixed-frequency
data with stochastic volatility and serial correlation in the measurement errors. The model
consists of three interdependent state-space blocks: data augmentation, dynamic factor
and stochastic volatility, where the former block is novel in the DFM literature. Previous
mixed-frequency DFMs have disregarded unobserved information in the mixed-frequency
data and have estimated a dynamic factor conditional on observed data only, typically
using a modified Kalman filter. In contrast, we propose to estimate all unobserved in-
formation conditional on observed data in the data augmentation block and to estimate
the dynamic factor conditional on the observed as well as the estimated latent data in
the dynamic factor block. Importantly, the augmentation from sparse observed data to a
balanced panel with observed and latent data information allows us to quasi-difference the
measurement equation of the dynamic factor. Thereby, our DFM can easily account for
serial correlation in the factor measurement errors despite mixed frequencies, publication
lags, data histories of different lengths and missing observations in the data. This allows
the common factor to have less explanatory power for the mixed-frequency series over
a longer period of time while having high explanatory power during other periods. In
contrast to previous literature, we take a fully Bayesian approach to estimate the model,
where the joint posterior distribution is simulated with Gibbs sampling. A further con-
tribution of the paper is that we extend the sampling procedure of Chan and Jeliazkov
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(2009) to the case of mixed-frequency data and use it for the estimation of the latent data,
the dynamic factor and the stochastic volatility. This extension is done by integrating the
temporal aggregation scheme originally proposed by Mariano and Murasawa (2003) into
the sampler.

As an empirical application, we construct a weekly GDP indicator using a broad set of
daily, weekly, monthly and quarterly series. The set includes a variety of so-called alter-
native high-frequency data, such as daily credit card transactions, smartphone mobility
tracking, and Google trends search queries. Our model is well suited to extract the busi-
ness cycle information in these data. We look especially at four periods of sudden and
strong economic fluctuations, namely the Great Recession, the European sovereign debt
crisis, the Swiss franc shock and the Corona crisis. It turns that the weekly indicator
tracks economic activity nicely during the aforementioned periods. The economy went
down and up again so quickly during these periods that looking at monthly or quarterly
figures only does not reveal the full dimension of the fluctuations. A special finding for
the Corona crisis is that GDP growth fell deeply into negative territory already before
the government imposed a lockdown, as consumers and producers reduced their activities
in light of the pandemic. This qualifies the relevance of the lockdown for the negative
economic consequences of the crisis. We take a further look at the Corona crisis and study
the real-time behavior of the weekly GDP indicator during this period. Although the
indicator is generally subject to revisions as more and more data become available over
time, it captures the sudden and steep economic downturn and the nearly equally steep
rebound during the the year 2020 quite timely and accurately in real time. We find that
this is mainly due to the inclusion of the alternative high-frequency data. Our analysis
further yields that even when using these data in monthly intervals only, their inclusion
would still have helped to register the downturn more timely than when just using stan-
dard data. However, the main benefit comes from using the data at a high frequency.

We complement the empirical application with a pseudo real-time out-of-sample now-
cast exercise for quarterly GDP from 2005Q1 to 2020Q2. It turns out that our mixed-
frequency DFM significantly outperforms an AR benchmark model during crisis periods.
The RMSFE decreases by between 20 and 85 percent for horizons from 12 weeks to one
week before GDP release. Even when including the alternative data in monthly intervals
only, they help to improve the forecast accuracy. In contrast, we find no significant im-
provements for non-crisis periods. We conclude that alternative high-frequency data can
be very helpful when the economy moves strongly and suddenly, but they just add noise
during stable times. On a last note, the differences in nowcast performance during the
crisis periods turn out to be so big that they dominate the results for a joint evaluation of
crisis and non-crisis periods. This is despite the fact that the crisis quarters only account
for 15 percent of all quarters in the evaluation phase. The ultimate lesson here is: when
constructing new nowcast models, it is of utmost importance to focus on a good perfor-
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mance for major economic downturns and upturns, while normal economic times can be
handled equally well with existing simple models.
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A Appendix

A.1 Temporal Aggregation

Temporal aggregation of the high frequency factor ft to any lower frequency factor ft is
straightforward for stock variables such as interest rates or business tendency surveys. In
these cases, temporal aggregation is simply given by an average:

ft =
k−1∑
i=0

λi ft−i, where λi = 1
k

and where k denotes how many times the high frequency occurs within the low frequency
(e.g., k = 3 for aggregation of monthly to quarterly data). The case of flow variables,
such as GDP or retail sales, is slightly more complicated. Since these variables typically
enter forecasting models in growth rates, any temporal aggregation involves nonlinearities.
An approximation based on geometric instead of arithmetic means has been proposed by
Mariano and Murasawa (2003) and has since been widely adopted (see, e.g., Bańbura
et al., 2011, and Marcellino et al., 2016):

ft =
s∑

i=0
λi ft−i, where λi = k−|1+i−k|

k

and where the number of distributed lags is given by s = 2(k − 1). The geometric mean
based aggregation implies a triangular weighting scheme that accounts for the statisti-
cal overhang occuring during the aggregation of growth rates. This is illustrated in the
following: Let X be a flow variable and let

logXQ1 = 1
3(logXJan + logXF eb + logXMar).

Growth in the second quarter is then given by

logXQ2 − logXQ1 =
1
3(log(XJun + logXMay + logXApr)− 1

3(logXMar + logXF eb + logXJan)

=1
3(logXJun − logXMar) + 1

3(logXMay − logXF eb) + 1
3(logXApr − logXJan).

Next, introduce additional terms into the equation:

logXQ2 − logXQ1 =
1
3(logXJun − logXMay + logXMay − logXApr + logXApril − logXMar)+
1
3(logXMay − logXApr + logXApr − logXMar + logXMar − logXF eb)+
1
3(logXApr − logXMar + logXMar − logXF eb + logXF eb − logXJan).
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Defining growth rates as xt = logXt − logXt−1, the previous equation simplifies to

xQ2 =1
3(xJun + xMay + xApril) + 1

3(xMay + xApril + xMarch)

+ 1
3(xApril + xMarch + xF eb)

=1
3xJun + 2

3xMay + 3
3xApril + 2

3xMarch + 1
3xF eb.

This triangular weighting structure enters the distributed lag matrices L0, . . . ,Ls in Equa-
tion (2). It furthermore highlights the fact that high-frequency growth rates affect low
frequency growth in the next period, a phenomenon that is commonly referred to as sta-
tistical overhang or carry-over effect.

A.2 Mixture Distribution

The error term in the measurement equation for the stochastic volatility factor follows a
logχ2(1)-distribution (see Equation (8)). In order for the state space model to be of linear
Gaussian form, we approximate the moments of the distribution by a mixture of normals
as described in Kim et al. (1998) (see also Primiceri, 2005). A mixture of seven normal
distributions is used, where distribution j = 1, . . . , 7 has mean µj and variance ξj and
is selected with probability qj . The parameters and the selection probabilites are chosen
exactly as in Kim et al. (1998) and are shown in Table 1.

Table 1. Parameters and Selection Probabilities of Mixing Distribution
j qj µj ξj

1 0.00730 -11.40039 5.79596
2 0.10556 -5.24321 2.61369
3 0.00002 -9.83726 5.17950
4 0.04395 1.50746 0.16735
5 0.34001 -0.65098 0.64009
6 0.24566 0.52478 0.34023
7 0.25750 -2.35859 1.26261

Note that µj + 1.2704 equals mi from Table 4 of Kim et al. (1998), with the constant term being
present in Equations (9) and (10).

A.3 Stochastic Volatility Estimation

For notational convenience, let wt = log
(
(ft − φ1ft−1 + . . .+ φpft−p)2 + c

)
.10 In order

to estimate the stochastic volatility factor ht, the measurement equation for ht given in
Equation (8) is stacked over all periods t = 1, . . . , T to get

w = Wh− µ+ ε, ε ∼ N (0,Ξ)
10Note that no values exist for w1−s, . . . , w1−s+p−1 since f1−s is the first estimated factor (see Equation
(12)). We simply assume that these wt-values are zero.
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where

w
(T +s)×1

=



w1−s

...
w1
...
wT


, W

(T +s)×(T +s)
=



2
2

. . .
2

2


, h

(T +s)×1
=



h1−s

...
h1
...
hT


Each element of vector µ is filled with a specific µj ∈ [µ1, . . . , µ7] from Table 1 with j

having been selected according to the probablities displayed in the table. Each element of
the diagonal matrix Ξ contains the corresponding ξj ∈ [ξ1, . . . , ξ7] from the table.

We have no prior knowledge about the initial state of the stochastic volatility. Thus, we
follow Chan and Jeliazkov (2009) in imposing a diffuse prior by stacking the stochastic
volatility state equation from Equation (7) such that

Nh = u, u ∼ N (0, ωIT +s)

where N is of reduced rank and is given by

N
(T +s−1)×(T +s)

=


−1 1

. . . . . .
−1 1

 .

The precision matrix Q0 is then given by N′(ωIT +s)−1N and the conditional posterior of
the stochastic volatility is normally distributed according to

h ∼ N (q1,Q1) where Q1 =
(
Q0 + W′Ξ−1W

)−1

q1 = Q1

(
W′Ξ−1(w + µ)

)
.

As is the case for the dynamic factor, this algorithm is computationally very efficient if
block-banded matrix algorithms are used and sparse matrices are preallocated.

A.4 Latent Data Estimation

In order to group the parameters in appropriate blocks, the measurement equation for xt

given in Equation (9) is stacked over all time periods t = 1, . . . , T . This gives

y = Sx + ε, ε ∼ N (0, IT ⊗ εIn)
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where y = [y′1, . . . ,y′T ]′, x = [x′1, . . . ,x′T ]′ and S = diag(S1, . . . ,ST ). The state equation
for xt shown in Equation (10) is stacked correspondingly:

Kx = Gf + u, u ∼ N (0, IT ⊗Σ) (13)

where G has been defined in Equation (11) and

K
nT×nT

=


In

−ρ In

. . . . . .
−ρ In

 .

The precision matrix P0 is then given by K′(IT ⊗Σ)−1K and the conditional posterior of
x follows a normal distribution according to

x ∼ N (p1,P1) where P1 =
(
P0 + S′(IT ⊗ εIn)−1)S

)−1

p1 = P1
(
K′−1 (IT−1 ⊗Σ)−1 Gf + S′(IT ⊗ εIn)−1)y

)
with K−1 being K without the first n rows. The conditional posterior of x is, therefore,
essentially a weighted average of y and of a projection using Gf. The variable-specific
weights derive from S and take values zero or one. Specifically, when a variable is observed
and, hence, the corresponding entry in yt is non-zero, its weight is one and the respective
entry in xt is (approximately) equal to this actual observation. In contrast, when a
variable is not observed and the corresponding entry in yt is zero, its weight is zero and
the corresponding entry in xt is equal to the projection estimate.

A.5 Estimation of Remaining Parameters

Factor Loadings. To estimate the factor loadings λ, we stack the quasi-differenced
measurement equation of Equation (5) over all time periods t = 1, . . . , T . This gives

x̃ = Zλ+ u, u ∼ N (0, IT ⊗Σ)

where

Z
n(T−1)×n

=
s∑

i=0


f2−iDi

...
fT−iDi

 , Di =


L0, if i = 0.

−ρLs, if i = s.

Li−1 − ρLi, otherwise.
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The conditional posterior distribution of the factor loadings is then given by

λ ∼ N (b1,B1) where B1 =
(
B−1

0 + Z′(IT−1 ⊗Σ−1)Z
)−1

b1 = B1
(
B−1

0 b0 + Z′(IT−1 ⊗Σ−1)x̃
)
.

The prior mean vector b0 is chosen to be a vector of ones. To identify the dynamic factor,
in line with Bai and Wang (2015), the prior variance of the factor loading on GDP, λgdp,
is set to 10−9. This shrinks λgdp strongly towards one and is sufficient to identify the
model. Furthermore, setting λgdp to one and ρgdp to zero ensures that the dynamic factor
is, in expectation, equal to the standardized weekly quarter-on-quarter (i.e. the 12-weeks-
on-12-weeks) growth rate of GDP, provided that it is temporally aggregated according to
Mariano and Murasawa (2003). Setting the remaining prior variances in B0 to very large
values leads to uninformative priors for the other factor loadings.

Error Covariance in Factor Measurement Equation. In order to estimate the co-
variance matrix Σ of the serially uncorrelated measurement errors in the quasi-differenced
measurement equation given in Equation (5), simply retrieve the stacked measurement
errors from x̃ − Zλ. We assume Σ to be diagonal, which reflects our belief that the
dynamic factor accounts for a majority of the cross-correlation in the data. As a conse-
quence, the error variances σ2

i can be drawn equation-by-equation from an inverse Gamma
distribution:

σ2
i ∼ IG (c1,i/2, d1,i/2) where c1,i = c0,i + T

d1,i = d0,i + uiu′i.

With the exception of the measurement error variance on GDP growth, the priors are
selected uninformative by setting c0,i = 3 and d0,i = 1. For σ2

gdp, we select an informative
prior with c0,gdp = 10−9 and d0,gdp = 0.05× 10−9. Since we identify the dynamic factor as
the high-frequency growth rate of GDP, this determines how closely the temporally aggre-
gated factor tracks the observed values. There are, of course, many prior choices feasible,
even completely uninformative ones. These particular parameters fix the measurement
error for GDP growth at a specific value, which allows us to determines exactly by how
much the dynamic factor is allowed to deviate from the actual observations.

Autoregressive Coefficients of Factor Measurement Errors. The autoregressive
coefficients in matrix ρ of Equation (3) are estimated from the serially correlated mea-
surement errors of Equation (2). These measurement errors are collected from xt−L0λft+
L1λft−1 + . . . + Lsλft−s for t = 1, . . . , T . We draw the diagonal elements of ρ equation-
by-equation, using the vector ei which contains the serially correlated errors from the ith
variable. The conditional posterior distribution of the diagonal elements ρi, . . . , ρn is then
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given by

ρi ∼ N (r1,i, R1,i) where R1,i =
(
R−1

0,i + σ−2
i e′i,−Tei,−T

)−1

r1,i = R1,i

(
R−1

0,i r0,i + σ−2
i e′i,−Tei,−1

)
.

We set the prior mean r0,i = 0 for all variables i. Since we want the dynamic factor to
track GDP growth closely and without any serial correlation in the errors, we set the prior
variance R0,gdp = 10−9. This shrinks ρgdp towards zero. For the remaining parameters,
we set R0,i = 1, which is rather uninformative.

Autoregressive Coefficients of Factor State Equation. The autoregressive coeffi-
cients φ1, . . . , φp are obtained following Chan et al. (2018). The state equation for the
factor given in Equation (6) is stacked over all periods t = p+ 1, . . . , T to get

m = Mφ+ v, v ∼ N (0,V)

where

m =


fp+1
...
fT

 , M =


fp . . . f1
... . . . ...

fT−1 . . . fT−p

 , φ =


φ1
...
φp


and where V is a diagonal matrix containing the time-varying variances of the state
equation e2hp+1 , . . . , e2hT . The conditional posterior is given by

φ ∼ N (a1,A1) where A1 =
(
A−1

0 + M′V−1M
)−1

a1 = A1
(
A−1

0 a0 + M′V−1m
)
.

The priors are chosen to be uninformative with mean zero and prior variance one. There
is no need for shrinkage since we use p = 1 in our empirical application. Increasing the
lag length might require additional shrinkage priors to control the parameter space. For
data sets with limited availablity of historical data or poor data quality it might be useful
to enforce stationarity of the process. This can be done by discarding draws where the
largest absolute eigenvalue of the companion matrix is larger than a certain threshold,
typically 1. We have found robust convergence by setting this threshold to 3/4 and, there-
fore, encouraging a certain degree of stationarity.

Error Variance in Stochastic Volatility State Equation. The variance ω of the
errors in the state equation of the stochastic volatility factor displayed in Equation (7) is
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drawn from an inverse gamma distribution according to

ω ∼ IG (k1/2, l1/2) where k1 = k0 + T + s

l1 = l0 + vv′.

v contains the residuals from the stochastic volatility state equation. We use uninformative
priors with k0 = 3 and l0 = 1.

A.6 Data Overview
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Figure 11: History of Swiss GDP Growth. The figure shows the annualized quarter-on-
quarter growth rate of Swiss real GDP, adjusted for financial inflows and outflows stemming from
international sport events, in percent from 2005Q1 to 2020Q2. The crisis periods are indicated by
vertical grey bars.
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A.7 Mean Absolute Percentage Errors
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Figure 12: DFM With Alternative High-Frequency Data Against AR Model. Notes:
See Figure 7, but MAPEs are displayed instead of RMSFEs.
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Figure 13: DFM With and Without Alternative High-Frequency Data. Notes: See
Figure 7, but MAPEs are displayed instead of RMSFEs.
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Figure 14: DFM With and Without Temporal Aggregation. Notes: See Figure 7, but
MAPEs are displayed instead of RMSFEs.
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Figure 15: Joint Evaluation of Crisis and Non-Crisis Periods. Notes: See Figure 7, but
MAPEs are displayed instead of RMSFEs.
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A.8 Accounting for Serially Correlated Measurement Errors

We want to evaluate the usefulness of accounting for serial correlation in the errors of
the dynamic factor measurement equation given in Equation (2). For this, we test the
significance of the autoregressive coefficients ρ1, . . . , ρn in Equation (3). We evaluate the
marginal posterior distribution of each ρi, estimated using the entire data set. It turns out
that we can reject, at a 95% significance level, the null hypothesis of ρi being equal to zero
for 61% of all included variables. In particular, time series with stable trajectories and
relatively small innovations, such as interest rates or purchasing manager indices, exhibit
highly significant coefficients with magnitudes close to one.

In addition, we estimate the model without accounting for serial correlation in the errors
of the dynamic factor measurement equation (i.e. ρ1, . . . , ρn set to zero) and evaluate the
out-of-sample performance. The DFM without accounting for serially correlated measure-
ment errors outperforms the AR benchmark in terms of RMSFE for crisis periods (see
Figure 16). This confirms the conclusion in Bańbura and Modugno (2014) that serially
correlated measurement errors do not substantially improve the results in terms of RMS-
FEs. However, the nowcast errors of the DFM turn out to be much more volatile when
serial correlation in the factor measurement errors is not accounted for. The differences in
the nowcasts errors between DFM and the AR benchmark are therefore not statistically
signficant at conventional levels.
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Figure 16: DFM Without Accounting for Serially Correlated Measurement Errors.
Notes: See Figure 7.
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Further, for non-crisis periods, the DFM performs worse than the AR model in terms of
RMSFE, albeit the difference being not statistically signficant. The decreased RMSFE
performance is a direct consequence of not allowing for autoregressive processes in the
alternative high-frequency data, since these these data then let the weekly GDP indicator
become very noisy.
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