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ABSTRACT
Internet of Things (IoT) systems can rely on energy harvesting
to extend battery lifetimes or even to render batteries obsolete.
Such systems employ an energy scheduler to optimize their be-
haviour and thus performance by adapting the node operation.
Predictive models of harvesting sources, which are inherently non-
deterministic and consequently challenging to predict, are often
necessary for the scheduler to optimize performance. Therefore the
accuracy of the predictive model inevitably impacts the scheduler
and system performance. This fact has been largely overlooked in
the vast amount of available results on energymanagement systems.
We define a novel robustness metric for energy-harvesting systems
that describes the effect prediction errors have on the system perfor-
mance. Furthermore, we show that if a scheduler is optimal when
predictions are accurate, it is not very robust. Thus there is a trade-
off between robustness and performance. We propose a prediction
scaling method to improve a system’s robustness and demonstrate
the results using energy harvesting data sets from both outdoor
and indoor scenarios. The method improves a non-robust system’s
performance by up to 75 times in a real-world setting.

CCS CONCEPTS
• Computer systems organization → Sensor networks; Sen-
sors and actuators; • Hardware → Sensor applications and
deployments.
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1 INTRODUCTION
Energy harvesting is seen as a viable option to make the growing
Internet of Things (IoT) more scalable by enabling long-term self-
sustainable, maintenance-free operation. Nodes of such systems
typically contain one or more harvesting sources, a rechargeable
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energy storage, an energy management system and the application.
The energy management system controls the energy flow between
the harvesting sources, the energy storage and application.

A first major challenge is the efficient use of available resources.
A large number of energy schedulers have been proposed to or-
chestrate the use of available energy. They control the application’s
operation by adapting its sensing, actuation, computation and com-
munication rate, data processing algorithms or by enabling an en-
ergy scarcity operation mode [1–7]. They often exploit predictions
of future harvested energy to optimize long-term system utility.

A second major challenge arises from the high temporal and
spatial variability that energy sources may experience. This com-
plicates system optimization, which depends on the interplay be-
tween the harvesting environment, energy storage capacity, state-
of-charge, and requested node operation. In addition, when the
system is deployed to multiple locations, it will invariably face
situations where previous design time assumptions do not hold.
In such cases, the predictive model fails to correctly estimate the
harvested energy, impacting the scheduler and the system behavior.
To mitigate these challenges, variability can be absorbed by overdi-
mensioning system resources but this violates the first challenge.

To illustrate the severe influence of prediction errors, we provide
a simple example. In [6, 8], a scheduler is proposed that maximizes
the minimal energy the application uses and optimizes long-term
system utility. The solar harvester is placed in an outdoor environ-
ment for two years. The exponentially weighted moving average
(EWMA) prediction [1] in Figure 1(a) closely follows the actual
harvested energy. In fact, its mean relative prediction error is only
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(a) The EWMA prediction closely matches the harvested energy. Its
mean relative prediction error is only 6%.
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(b) In the shaded areas, the weekly energy used by the system col-
lapses to 66% and 73% of the perfect prediction case.

Figure 1: Even small errors in energy prediction lead to sig-
nificant penalties on the weekly used energy.
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6 %. Figure 1(b) shows the energy the application uses determined
by the scheduler combined with the EWMA as well as a perfect
prediction. The shaded regions highlight when prediction errors
cause the minimum weekly used energy to significantly decrease.

Because the scheduler’s performance can be sensitive, it is nec-
essary to fine-tune the algorithm and parameters for selected en-
vironmental data sets [9]. Consequently, the resulting system con-
figurations are typically optimal only in a limited set of possible
environmental conditions. The example above highlights the need
to analyse the repercussions of prediction errors.

In this work, we introduce the notion of robustness to address
this gap. Robustness analyses the effect prediction errors have on
the scheduler performance. It provides knowledge about the system
behavior for a wider range of environmental conditions. As such,
robustness provides a novel and important point of view for evalu-
ating, designing and optimizing the system behavior. In addition,
we demonstrate that a scheduler that performs optimally when
predictions are accurate, does not have a high degree of robust-
ness. Hence we identify a robustness performance trade-off. Where
previously the design process relied on optimizing performance
by evaluating a few selected scenarios, this approach neglects ro-
bustness and the resulting trade-off. The new dimension in the
design space encourages a bi-objective optimization. We propose
a prediction scaling method to explore the trade-off and improve
the robustness of non-robust schedulers. The paper contains the
following new results:

• We define a robustness measure that quantifies the influence
prediction accuracy has on a system performance measure.

• We show that a scheduler that has optimal performance
when predictions are accurate, is not robust and thus demon-
strate a robustness performance trade-off.

• We propose a method that enables exploring this trade-off
between robustness and efficient use of resources.

• The above results are validated by extensive simulations
of several well known energy schedulers using indoor and
outdoor solar harvesting data sets.

2 RELATEDWORK
Predictive energy harvesting systems is a broad and rich field that
has been studied for many years. Many works focus on one of the
subsystems that constitute the energy management system.

Schedulers: Various algorithms have been proposed to optimize
system performance for specific optimization objectives. Possible
optimization objectives include deviations from energy neutral op-
eration e.g. [5, 10], quality of service [4, 11] and sampling rate [12].
Some schedulers provide an optimal solution for their objective
and system assumptions. In [8] the minimal utilized energy is maxi-
mized and optimality is achieved for perfect prediction. [4] proposes
a dynamic programming algorithm that iteratively determines the
optimal task schedule to optimize the summed quality the tasks pro-
vide. On the other hand, schedulers can also be based on heuristics
eg. [12], or data-driven [5]. These works on schedulers, however,
consider only specific environments to determine and evaluate per-
formance. Therefore it is not known how these algorithms perform
in new environments and with diverse prediction errors.

Predictors: Energy predictors for solar energy include Expo-

nentially Weighted Moving-Average (EWMA) [1], Improved Pro-
Energy [13], Q-learning based solar energy prediction (QL-SEP)
[2] or Artificial Neural Network [14]. While these algorithms can
exhibit high accuracy, their statistical analysis is typically only
valid for the evaluated data sets. As energy harvesting systems are
deployed in a wide variety of environments over long periods of
time, the prediction errors will experience greater variability.

Robustness: Our proposed robustness analysis is comparable to
other studies in the Wireless Sensor Networks (WSN) community.
Robustness of WSNs studies the effects unpredictable links or node
failures have on the network, e.g. [15–17]. In [15] the authors pro-
pose amethod to improve robustness and in [16] a trade-off between
robustness and network life-time is optimized. However, our focus
lies on when energy predictors fail to provide accurate predictions,
and the effect it has on the overall system behavior. We provide new
insights on the reliability and performance of predictive energy
harvesting systems.

Furthermore, we propose a novel prediction scaling method to
mitigate scenarios where prediction errors result in a catastrophic
collapse in system performance. Our work shows that certain sched-
ulers are inherently robust, but a scheduler that is optimal when
predictions are accurate exhibits a lower degree of robustness.

3 ROBUSTNESS ANALYSIS OF HARVESTING
SYSTEMS

A general harvesting system model is described and subsequently,
the concept of robustness for these systems is introduced.

3.1 System Model
A discrete-time model is used for the system’s evolution, where the
time horizon of interest [0,𝑇 ) is discretized into intervals 𝑡 ∈ [0,𝑇 ).
Figure 2 shows a block diagram describing the general system.
The harvester converts primary energy into electrical energy thus
producing 𝐸harv (𝑡) during [𝑡, 𝑡+1). The harvested energy is buffered
in an energy storage with finite capacity 𝐵. Its state-of-charge at
time 𝑡 is denoted by 𝑏 (𝑡). At every time interval 𝑡 the scheduler
determines, based on energy predictions 𝐸pred, the energy 𝐸sched
that the application (APP) should use in the future. The energy the
application uses is the allocated 𝐸𝑠𝑐ℎ𝑒𝑑 (𝑡) if sufficient energy is
available and otherwise all the available energy is used,

𝐸𝑢𝑠𝑒𝑑 (𝑡) = min(𝐸𝑠𝑐ℎ𝑒𝑑 (𝑡), 𝑏 (𝑡) + 𝐸ℎ𝑎𝑟𝑣 (𝑡))

Thus, the energy storage state-of-charge evolves according to

𝑏 (𝑡 + 1) = max{min{𝑏 (𝑡) + 𝐸ℎ𝑎𝑟𝑣 (𝑡) − 𝐸𝑢𝑠𝑒𝑑 (𝑡), 𝐵}, 0}

Energy
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Predictor Scheduler

Non-deterministic
Environment

App

Energy Management System
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Energy
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Figure 2: A harvesting system with an energy management
system to control the energy flow. Prediction Scaling to in-
crease robustness is discussed in Section 5.
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3.2 Defining the Robustness Metric
Robustness captures the effect prediction errors have on the sched-
uler and thus system performance. To define robustness, we for-
malize comparable prediction accuracy and performance metrics.

Predictor The energy predictor estimates the future harvested
energy. Because accurate predictions are challenging, the harvested
energy will differ from the prediction. This deviation is defined as

𝐸𝑝𝑟𝑒𝑑 (𝑡) = 𝐸ℎ𝑎𝑟𝑣 (𝑡) · (1 + 𝑒 (𝑡)) (1)

where 𝑒 (𝑡) is the relative error. This is not always the most ap-
propriate accuracy measure. For example, where 𝐸ℎ𝑎𝑟𝑣 (𝑡) = 0 but
𝐸𝑝𝑟𝑒𝑑 (𝑡) ≠ 0, the prediction error in (1) is not meaningful. In such
cases, other accuracy metrics such as the mean absolute deviation
percentage [18] are more expressive.

Scheduler and SystemPerformanceThe system performance
throughout the time horizon [0,𝑇 ) is usually summarized by a scalar
performance metric. Because schedulers determine the application
behavior, they have a great influence on the system performance.
Hence, a performance metric related to the scheduler optimization
objective lends itself well. Examples include system utility functions
that depend on the duty cycle, e.g. [1, 9], a total utility that is the
concave sum of all the used energy, 𝑈 =

∑
𝑡 ∈[0,𝑇 ) 𝜇 (𝐸𝑢𝑠𝑒𝑑 (𝑡)) for

a strictly concave function 𝜇 or the minimal used energy per time
interval 𝐸𝑚𝑖𝑛 = min𝑡 ∈[0,𝑇 ) 𝐸𝑢𝑠𝑒𝑑 (𝑡) [8]. While we focus on the
latter two sample utility functions, our analysis is also applicable
to other utility functions, such as events or deadlines the system
misses as well as the system’s energy efficiency.

Robustness The degree of robustness is a comparison of the
prediction error and system performance.

Error Model The error model consists of a systematic and ran-
dom error. A systematic error occurs if the prediction systemati-
cally over- or underpredicts whereas a random error represents
randomly fluctuating errors. For the robustness analysis, the er-
ror is assumed to follow a normal distribution, 𝑒 (𝑡) ∼ N (𝜇, 𝜎),
where 𝜇 represents the systematic and 𝜎 the random error. Thus
the prediction error for each time interval is a random sample
from the error distribution and the prediction is constructed to be
𝐸𝑝𝑟𝑒𝑑 (𝑡) = max(𝐸ℎ𝑎𝑟𝑣 (𝑡) · (1 + 𝑒 (𝑡)), 0). The analysis can be per-
formed for other error distributions, such as skewed or heavy-tailed
distributions. However, the extensive case study summarized in
Section 4.5 shows that the error distribution does not have a great
influence on the results and conclusions.

Performance The performance metric is determined for the pre-
diction generated from 𝑇 random samples from the error distribu-
tion. Each realization leads to a possibly different performance. The
performance metric is therefore also a random variable however
with an unknown distribution. If an analytical solution for the per-
formance distribution can be derived, the subsequent robustness
analysis is performed analytically. Otherwise a numerical approach
is necessary. 𝑁 Monte Carlo simulations are performed to generate
𝑁 independent samples of the performance metric distribution.
Subsequently, these are used for the robustness analysis.

Robustness The distributions of the prediction error and system
performance are compared based on percentiles, e.g. the median.
From the 𝑁 independent samples of the performance metric distri-
bution a confidence interval for the percentile is determined based
on non-parametric statistics using the method proposed in [19].

To enable a meaningful comparison, the relative changes in the
percentiles are compared. Thus the effect prediction errors from
one distribution have on the performance is described by

𝑟 =

�����Δ𝑄error
Δ𝑄perf

����� (2)

where Δ𝑄error =
𝑄error(0)−𝑄error

𝑄error(0)
is the relative change in the predic-

tion error percentile and Δ𝑄perf =
𝑄perf(0)−𝑄perf

𝑄perf(0)
the relative change

in the performance metric percentile. 𝑄X is the percentile of the
random variable X. And perf(0) denotes the performance metric
for a prediction error without systematic error error(0), and perf
is the performance metric of the analysed error distribution error.
The smaller the effect prediction errors have on the performance,
the larger 𝑟 is and vice versa. Thus, the larger the metric as defined
in (2) is, the more robust the system is against prediction errors
from the analysed error distribution. Building on (2), the degree of
robustness against a set of error distributions is defined as

𝑅 = min
PDFerror

�����Δ𝑄error
Δ𝑄perf

����� (3)

where Δ𝑄error and Δ𝑄perf are defined as for (2). In addition, PDFerror
denotes all the error distributions in the set that is being analysed.
Similar to 𝑟 , as 𝑅 increases the largest effect that prediction errors
from the considered set have on the performance decreases and
vice versa. In conclusion, the larger 𝑅 is the more robust the system
is against the analysed set of prediction errors.

4 CASE STUDY: ROBUSTNESS ANALYSIS
The case study investigates three schedulers to compare them with
respect to robustness and performance. Further the optimal sched-
uler is shown to have a low degree of robustness thus highlighting
a robustness performance trade-off.

4.1 Schedulers and Performance Metrics
We analyse three schedulers that adapt the application energy and
have comparable objectives. For the duty cycle adaption (DCA)
algorithm [1] the time interval is set to 1 hour and the minimal duty
cycle to 0.01. The long-term energy neutral operation (LT-ENO)
algorithm [9] has the same minimal duty cycle. Thirdly, the optimal
power management with guaranteed minimal energy utilization
(OPT) [8] directly determines the scheduled energy 𝐸𝑠𝑐ℎ𝑒𝑑 . The
scheduler can be implemented in a resource-efficient manner using
a look-up table [6, 8].

Table 1: Name, time-period, and location of the data sets.
𝑃𝑚𝑎𝑥 is the maximum possible system consumption, 𝐴𝑝𝑣 is
the panel size and Ω the environmental parameter.

Name Time Period Lat [◦] Long [◦] 𝑃𝑚𝑎𝑥 [W] 𝐴𝑝𝑣 [𝑐𝑚2] Ω
AK 1/61 – 12/72 61.21 -149.90 0.128 20 0.3448
CA 1/98 – 12/09 34.05 -117.95 0.353 10 0.3282
MD 1/61 – 12/72 39.29 -76.61 0.3915 15 0.3351
MI 1/98 – 12/09 42.05 -86.05 0.286 15 0.4729
ON 1/98 – 12/09 48.05 -87.65 0.248 20 0.4855
OR 1/61 – 12/72 45.52 -122.67 0.27 15 0.3955
TX2 1/61 – 12/72 28.05 -97.39 0.4135 10 0.3431
TX1 1/61 – 12/72 31.77 -106.48 0.3915 15 0.2242
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Figure 3: The three schedulers lead to different daily used
energy curves for the same harvesting trace.

The two performance metrics used are the minimal used energy
per day and the total utility, 𝑈 =

∑
𝑡 𝜇 (𝐸𝑢𝑠𝑒𝑑 (𝑡)) where 𝜇 (𝑥) =

√
𝑥

[8]. The first captures the minimal service that the system provides
and the latter the overall system utility.

4.2 Setup and Data
The robustness analysis is performed using outdoor energy traces
and synthetic predictions. The data set stems from the publicly
available National Solar Radiation Database [20] and is summa-
rized in Table 1. The energy storage capacity is 𝐵 = 143Wh and
has a discharging efficiency of 𝜂𝑜𝑢𝑡 = 0.7. This efficiency is incor-
porated by scaling the energy flowing out of the energy storage
with 𝜂𝑜𝑢𝑡 [21]. Other inefficiencies, for example leakage power,
and energy storage hysteresis are not regarded. We analyse the
robustness against a set of error distributions with systematic er-
ror 𝜇 ∈ [0, 0.2], and random error 𝜎 = 0.05. With errors drawn
from the error distribution, the prediction is constructed to be
𝐸𝑝𝑟𝑒𝑑 (𝑡) = max(𝐸ℎ𝑎𝑟𝑣 (𝑡) · (1+𝑒 (𝑡)), 0). We compare the prediction
error median, not its relative change because at zero systematic
error the median is zero, to the relative change in the performance
median. The latter is estimated by running a large number, 𝑁 = 100,
of Monte Carlo simulations and determining the 95 % confidence
interval of the median using the Thomson method [19]. Figure 3
depicts an example of how the three schedulers behave. The system
is simulated for a two year excerpt of the MD data and errors are
drawn from 𝑒 (𝑡) ∼ N (0.06, 0.05). The OPT algorithm determines a
relatively stable and high used energy, the LT-ENO’s used energy
is lower but remains constant. Lastly, the DCA algorithm generates
a used energy trace that has the most short term variability.

4.3 Robustness of the Minimal Used Energy
First, the robustness analysis is shown in detail for location MD
and subsequently, the results for all locations are summarized. The
confidence interval of the minimal used energy per day median for

Table 2: Robustness, 𝑅 and performance, minimal used en-
ergy per day (MinE), analysis for all locations.

Schedulers & Data set

Robustness, Performance AK CA MD MI ON OR TX1 TX2

OPT MinE [Wh] 1.50 3.54 3.65 2.88 2.61 2.47 3.98 3.43
R 0.56 0.37 0.44 0.35 0.40 0.52 0.43 0.36

LT-ENO MinE [Wh] 1.37 2.08 2.10 1.76 1.70 2.17 3.12 2.14
R 49.57 8.34 4.85 27.3 17.38 20.96 4.47 4.78

DCA MinE [Wh] 0.13 0.61 0.92 0.53 0.58 0.71 0.96 1.16
R 1.07 0.64 0.33 0.42 0.38 0.34 0.38 0.27

locationMD is depicted in Figure 4(a). The confidence interval spans
a very small range, thus only the lower bound is shown and used
for the analysis. The OPT algorithm has the highest performance,
for zero systematic error the minimal used energy per day median
is MinE = 3.65Wh. However, its performance decreases with in-
creasing prediction error median and (3) evaluates to 𝑅 = 0.44. The
performance of the LT-ENO algorithm is lower, MinE = 2.1Wh,
but it is hardly affected by prediction errors, the robustness metric
is 𝑅 = 4.85. The DCA algorithm has the lowest performance,
MinE = 0.92Wh, and is the least robust, 𝑅 = 0.33.

Table 2 shows the results of this analysis for all the locations in
Table 1. The OPT algorithm has the highest performance across all
locations whereas the LT-ENO scheduler has the highest degree of
robustness although at a lower performance level. Lastly, for this
performance metric the DCA algorithm is strongly dominated by
the other two schedulers.

Robustness Performance Trade-off The OPT scheduler is
provably optimal with respect to the minimal used energy when
predictions are accurate. It provides the highest performance as it
aggressively exploits the predicted energy. However, when the en-
vironment differs from the predictions, the performance is severely
impacted. Although the OPT scheduler is optimal for accurate pre-
dictions it does not portrait a high degree of robustness. Thus there
is a trade-off between performance and robustness.

4.4 Robustness of the Total Utility
Figure 4(b) depicts the lower bound of the total utility median for
location MD. Equivalent to the previous analysis, only the lower
bound is shown and used for the robustness analysis. The total
utility median achieved by the OPT and LT-ENO algorithm barely
changes with varying prediction errors, 𝑅 = 59.6 and 𝑅 = 19.35
respectively. This is a result of the square root function only mildly
penalizing high used energies. Conversely, the DCA algorithm
displays a significantly lower degree of robustness, 𝑅 = 0.33. Table
3 summarizes this analysis for all the locations in Table 1.
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(a) Prediction errors affect the minimal used energy per day.
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Figure 4: Robustness performance analysis for the minimal used energy per day and total utility. The value at zero median
error indicates the performance and the slope is related to the robustness.
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Table 3: Robustness, 𝑅 and performance, total utility
(TotalUtil), analysis for all locations.

Schedulers & Data set

Robustness, Performance AK CA MD MI ON OR TX1 TX2

OPT TotalUtil 3083 3448 3613 3463 3623 3357 3635 3239
R 47.1 53.3 59.6 51.4 52.8 53.6 65.0 58.4

LT-ENO TotalUtil 1802 2523 2571 2364 2287 2263 2832 2443
R 322.03 8.59 19.35 12.5 801.93 441.79 12.69 12.30

DCA TotalUtil 1862 3157 3267 2777 2755 2754 3334 2992
R 0.28 0.37 0.33 0.32 0.31 0.30 0.34 0.37

4.5 Various Prediction Error Distributions
We demonstrate that the error distribution does not significantly
impact the results and conclusions of the robustness analysis. The
analysis is performed for normal error distributions with different
magnitudes of the random error, for left- and right-skewed normal
distributions and for the heavy-tailed Cauchy distribution. Non-
symmetric error distributions represent the case when it is more
likely to largely overestimate as opposed to severely underestimate,
or vice versa. Prediction errors from heavy-tailed distributions are
more likely to be large. Table 4 summarizes the results for location
MD. This evaluation indicates that the robustness analysis does
not greatly depend on the prediction error distribution and thus
supports the use of normally distributed errors.

5 IMPROVING THE DEGREE OF ROBUSTNESS
Various methods can be employed to improve a system’s degree of
robustness. Possible methods include scaling the energy prediction
that the scheduler utilizes, scaling the scheduled energy or retaining
part of the energy storage for critical situations.

5.1 Prediction Scaling Method
The robustness can be improved by providing the scheduler with a
scaled energy prediction. Thus between the predictor and scheduler
the prediction is scaled by 𝑐 ∈ (0, 1], as depicted in Figure 2. Scaling
the prediction effectively changes the error the scheduler perceives.
The prediction error is 𝐸𝑝𝑟𝑒𝑑 (𝑡) = 𝐸ℎ𝑎𝑟𝑣 · (1 + 𝑒 (𝑡)) whereas the
error the scheduler perceives is 𝑒 ′(𝑡) = (𝑐 − 1) + 𝑐 · 𝑒 (𝑡). When 𝑐 is
chosen to be smaller than 1, the perceived error is scaled as well as
moved to systematically underestimate the harvested energy. This
typically increases the degree of robustness.

Table 4: Robustness 𝑅 and performance for each of the met-
rics, minimal used energy per day (MinE) and total utility
(TotalUtil).

Schedulers & Error Distributions

Performance Normal Normal Normal Left skewed Right skewed Cauchy
Robustness 𝜎 = 0.01 𝜎 = 0.05 𝜎 = 0.1 𝜎 = 0.05 𝜎 = 0.05 𝜎 = 0.05

OPT MinE [Wh] 3.83 3.65 3.43 3.73 3.53 3.63
R 0.42 0.44 0.44 0.46 0.46 0.47

TotalUtil 3614 3613 3612 3613 3613 3613
R 57.0 59.6 63.3 64.8 55.4 56.9

LT-ENO MinE [Wh] 2.3 2.10 1.67 2.08 2.08 2.28
R 9.54 4.85 0.83 4.66 2.50 5.78

TotalUtil 2580 2571 2538 2566 2567 2581
R 87.79 19.35 10.30 5.76 22.78 11.78

DCA MinE [Wh] 0.94 0.92 0.90 0.93 0.92 0.92
R 0.35 0.33 0.28 0.34 0.31 0.29

TotalUtil 3504 3267 3002 3347 3198 3444
R 0.24 0.33 0.46 0.34 0.31 0.29
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Figure 5: The performance and influence of prediction er-
rors decreases with decreasing prediction scaling factor.

5.2 Case Study: Prediction Scaling
In Section 4, we concluded that although the OPT scheduler is
optimal when predictions are accurate, it is not very robust. To
improve the OPT scheduler’s robustness, the prediction scaling
method from Section 5.1 is employed. Implementation of the scaling
method is resource efficient and only imposes a negligible overhead.
Figure 5 shows the lower bound of the minimal used energy per
day median for scaling factors 𝑐 ∈ [1, 0.95, 0.9].

Without scaling, 𝑐 = 1, the performance is MinE = 3.65Wh
and the robustness metric 𝑅 = 0.44. The robustness improves to
𝑅 = 0.69 for a scaling factor of 𝑐 = 0.95 and 𝑅 = 1.36 for 𝑐 = 0.9. It
thus improves the degree of robustness. However, the performance
changes to MinE = 3.67Wh and decreases to 3.52Wh for 𝑐 = 0.95
and 𝑐 = 0.9, respectively. The total utility is inadvertently also
affected by the prediction scaling: its robustness improves and its
performance decreases by less than 1 %. The above evaluation for
multiple locations is summarized in Table 5.

Robustness Performance Trade-off In Section 4 a robustness
performance trade-off was described. This trade-off can be explored
with prediction scaling. Prediction scaling can improve the degree
of robustness but the performance decreases when the environment
indeed closely follows the predictions, as seen in Table 5. Thus the
robustness performance trade-off can be tuned.

6 EXPERIMENTAL VALIDATION: INDOOR
HARVESTING SCENARIO

The conclusions from Section 4 and 5.2 are validated in a real-world
indoor harvesting scenario.

6.1 System and Data
Indoor harvesting data [22] spanning from August 2017 to June
2019 with a time interval of 1 hour for two employee offices is used.
The first office (LOC 0) has little natural sunlight and thus the
harvested energy is tied to office hours. The second office (LOC 1)

Table 5: Prediction scaling allows to explore the robustness
performance trade-off.

Data sets, Performance & Robustness

CA MD MI
Scaling MinE [Wh] TotalUtil MinE [Wh] TotalUtil MinE [Wh] TotalUtil
factors R R R R R R

c = 1 3.54 3448 3.65 3613 2.88 3463
0.37 53.3 0.44 59.6 0.35 51.4

c = 0.95 3.57 3447 3.67 3612 2.87 3462
0.66 105.5 0.69 127.0 0.70 104.0

c = 0.9 3.42 3445 3.52 3610 2.76 3459
1.19 71.1 1.36 68.3 1.37 67.2
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Figure 6: Sample hourly harvested energy of two offices.

is exposed to significant levels of sunlight. Samples of the harvested
energy can be seen in Figure 6.

The system consists of a solar panel with size 50mm · 33mm
and an energy storage with capacity 𝐵 = 3 J. The maximum power
consumption is 0.1mW and minimal duty cycle 0.01. The three
schedulers are combined with two energy predictors providing
different levels of accuracy. The first predictor (CONST) predicts
the harvested energy of each hour to be as much as was harvested
in the previous hour. The second predictor is the exponentially-
weighted moving average prediction model (EWMA) with 𝛼 = 0.5.
The prediction accuracy is quantified by the mean absolute devia-
tion percentage (MADP) as defined in [18]. The CONST predictor
provides a higher prediction accuracy, the MADP is 38 % for LOC
0 and 56 % for LOC 1, than the EWMA algorithm, for which the
MADP is 54 % and 73 % for LOC 0 and LOC 1, respectively.

6.2 Robustness of the Minimal Used Energy
Figure 7 depicts the minimal used energy per hour for each of the
three schedulers when combined with either the CONST, high ac-
curacy, predictor or the EWMA, low accuracy, predictor. The OPT
algorithm has the highest minimal used energy per hour when
the prediction accuracy is high because the scheduler is provable
optimal when predictions are accurate and high accuracy predic-
tions do not deviate too much from that scenario. However, its
performance drops by at least an order of magnitude when the
prediction accuracy is low. This is a result of the scheduler heavily
relying and fully exploiting all predictions. Conversely, the LT-ENO
scheduler has comparable performance for both predictors. This
scheduler relies on sums of predictions and thus is more robust
against prediction errors. Lastly, the performance of the DCA algo-
rithm is lower than that of the other two schedulers and decreases
with decreasing prediction accuracy. The robustness performance
trade-off for the optimal OPT scheduler is visible in both locations.
The OPT scheduler is so gravely impacted by the prediction errors,
that the LT-ENO scheduler outperforms the OPT scheduler for the
low accuracy predictors.

OPT LT-ENO DCA
 0.9 mJ

1.9 mJ

3.6 mJ

9.0 mJ

Min Used
 Energy

High Accuracy
Low Accuracy

(a) Robustness at LOC 0

OPT LT-ENO DCA
 0.05 mJ

3.7 mJ

12.4 mJ

Min Used
 Energy

High Accuracy
Low Accuracy

(b) Robustness at LOC 1

Figure 7: In an indoor harvesting scenario the performance
difference between high and low accuracy predictor aligns
with the robustness analysis from Section 4.

6.3 Prediction Scaling
To alleviate the drastic performance drop of the OPT scheduler,
we apply the prediction scaling method. The resulting minimal
used energy per hour scheduled by the OPT algorithm for a range
of prediction scaling factors is shown in Figure 8. By scaling the
prediction with 0.3 for LOC 0 and 0.2 for LOC 1, the minimal used
energy per hour determined by the OPT scheduler with the EWMA
predictor can be improved by 24× for LOC 0 and by 75× for LOC
1. However, prediction scaling reduces the performance for the
high accuracy case, where for LOC 0, the minimal used energy
decreases by 33 % and for LOC 1 by 12 %. Thus the trade-off for the
OPT algorithm is illustrated and tuned with prediction scaling.

7 CONCLUSION
Energy harvesting systems with minimum performance guarantees
are challenging to design due to the non-deterministic nature of
their energy source. Furthermore, the interdependence between
energy predictors, schedulers and system performance complicates
their optimization such that optimality is only achieved in a limited
range of scenarios. The presented robustness analysis identifies
these scenarios by studying the effects of prediction accuracy on
system performance. We studied different combinations of existing
energy predictors and schedulers that are either optimal or robust.
This demonstrates the low degree of robustness of an optimal sched-
uler and thus a robustness performance trade-off. Our results show
prediction scaling can improve worst-case system performance by
a factor of 75. Robustness can be used to evaluate systems and iden-
tify cases where additional measures such as the prediction scaling
method need to be taken to achieve the desired system behavior in
a wide range of environments. As future work, we will investigate
whether the scaling factor can be adjusted online.
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(a) Prediction scaling at LOC 0
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Min Used
 Energy Low Accuracy Prediction

High Accuracy Prediction

(b) Prediction scaling at LOC 1

Figure 8: Prediction Scaling increases the minimal used energy per hour by 24× and 75× for LOC 0 and LOC 1, respectively,
when a low accuracy predictor is used. The performance penalty when using the high accuracy predictor is only 33 % for LOC
0 and 12 % for LOC 1.
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