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Introduction 

The purpose of a sensitivity analysis is to provide information on the relative importance of 

input parameters as well as assumptions underlying the model structure (Saltelli, Aleksankina 

et al., 2019). It addresses the question of what a model does when input assumptions and 

parameters vary over a specific range (Saltelli, 2019; Saltelli, Aleksankina et al., 2019). This 

helps to identify those parameter and assumptions that are of high importance for the model 

and its uncertain outcomes. In addition, it helps to identify those parameters for which more 

information should be collected to reduce model uncertainty (Saltelli, Aleksankina et al., 

2019). Thus, the here presented sensitivity analysis identifies the most important parameters 

that should be tested extensively in real world applications of FARMIND and it helps to prior-

itize the search for data when applying FARMIND. 

We applied three consecutive analyses: Morris screening, standardized regression coefficients 

and Sobol’ method (Saltelli, Tarantola et al., 2004; Saltelli, Ratto et al., 2008). The Morris's 

elementary effects screening allows to identify the relative importance of the assessed input 

parameters (Campolongo, Cariboni et al., 2007). Screening provides a relative measure of the 

different input parameter but not a straightforward quantification of the effect strength. In 

contrast, the absolute value of a standardized regression coefficient analysis gives a measure 

of the effect strength and the sign defines the direction of the effect (Lee, Filatova et al., 2015). 

Finally, to investigate non-linear relationships between the input parameters and outputs, we 

apply Sobol’ method, a variance decomposition approach (Saltelli and Annoni, 2010). The un-

derlying idea is to vary the input parameters and then to identify the effect of the individual 

parameter on output variance. 
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Parameter range and assumptions 

The model output variable in our sensitivity is the share of agents choosing a specific strategy. 

These shares always sum up to one i.e., to the total number of agents. The sensitivity focuses 

on the eight most important parameters in FARMIND i.e., parameters with respect to cumu-

lative prospect theory and the CONSUMAT strategies i.e., reference income and tolerance val-

ues for activity dissimilarity and income growth differences. This provides a reasonable set of 

parameters also for global sensitivity analysis with high computational costs.  

For the other parameters i.e., preferences and social networks, we use different input settings 

to test their influence on the model outcome. With respect to social networks we compare a 

random with a small world network. For the preference settings, we compare simulations in 

which agents have a preference for their initial activity with a setting in which agents have 

random preferences. We do not provide a specific analysis with respect to cognitive charac-

teristics (memory length and learning rate) nor parameters determining the fuzzy choice set. 

These parameters affect the ranking of the different activities within a given choice set and 

thus are meaningful in calibrating the model to a specific research question. They are less 

important, however, to understand and assess model mechanisms. 

In the implementation of the sensitivity analysis, we followed the instructions by Thiele, Kurth 

and Grimm (2014) and adapted the provided R code for the Morris screening method as well 

as for the standardized regression coefficients test and the Sobol’ method. To test the impact 

of the different parameters on model outcomes, we use a random generation from a trun-

cated normal distribution to determine individual values in each model run. Thus each agent 

gets a different parameter value drawn from a normal distribution with minimal and maxi-

mum (Table 1). The idea of global sensitivity analysis is to test parameters over a wide range 

of values. At the same time, values should be well-founded on empirical values. The values 

used for the sensitivity analysis of FARMIND are either derived from underlying bio-economic 

model (reference income and tolerance parameters) or based on empirical studies for the pa-

rameters derived from cumulative prospect theory. With respect to the reference income, we 

assume that the value does not exceed the minimal and mean gross margin under the condi-

tion that all agents optimize within the price range used in the applications of the bio-eco-

nomic model (Böcker, Britz et al., 2018; Böcker, Britz et al., 2020). In our application, values 

above the mean gross margin would drive all the agents into optimization or opt-out behavior. 

The tolerance levels are also set with respect to the underlying bio-economic model. For the 

income tolerance parameter, we set the lower bound to 1% and the upper bound to 30%. The 

corresponding values for activity tolerance are set to 10% and 75%. Below and above these 

levels, agents will always be forced to information seeking or individual behavior, respectively. 

With respect to the cumulative prospect theory, we set the lower level parameters for the 

curvature of the value and weighting function as well as loss aversion according to the levels 

documented in Bougherara et al. (2017). It has to be noted, however, that empirical studies 

usually provide mean effects. Thus, we here increased the parameter range to capture the full 

range of possible parameter values. 
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Table 1: Parameter range for sensitivity analysis 

Parameters 
Values for truncated normal 
distribution 

Description 
References for sensitivity 
range 

 
Min. 
mean 

Max. 
mean 

Min. Max  
 

α+ α- ϕ- ϕ+ 0.5 1 0.5 1 

Range of cumulative 
prospect parameters in 
the value and weighting 
function. All values 
being 1 represent an ex-
pected utility maximiza-
tion. 

Bougherara et al. (2017): 
reported ranges between 
0.6 and 0.9 

λ 1.5 4 1 3 
Range of loss aversion 
coefficient in cumula-
tive prospect theory. 

Reported ranges between 
1 – 2.6 (Bougherara et al. 
2017; Tonsor 2018) 

𝑉𝑖
𝑟𝑒𝑓

 100 400 1 400 

Reference income in 
Euro that determines 
gains and losses in the 
value function. 

Derived from Böcker et al. 
(2018): Range of average 
gross margin in simulated 
price range (see also 
Tonsor 2018). 

𝑔𝑖
𝑡𝑜𝑙 0.01 0.3 0.01 1 

Tolerance level for % 
difference between 
agents’ income growth 
and those of all agents. 

Derived from Böcker et al. 
(2018): Mean income vari-
ation between agents 

𝑑𝑖
𝑡𝑜𝑙 0.1 0.75 0.01 1 

Tolerance level for how 
many agents in my net-
work perform the same 
activity (in %) without 
affecting strategic 
choice 

Derived from available 
weed control activities in 
Böcker et al. (2018): Val-
ues above 0.75 are only 
possible if all agents use 
the same weed control op-
tion 

 

The theoretical underpinning of our ABM allows to derive specific hypothesis for the input 

parameters in FARMIND (Table 2). The parameters can be grouped into four classes.  

1. An increase in the reference income (𝑉𝑖
𝑟𝑒𝑓

) as well as in α- and loss aversion λ increase 

the probability of the strategies optimization and opt-out.  

2. An increase of α+ increase the probabilities of repetition and imitation. 

3. An increase in the two parameters that determine the threshold level for whether an 

agent chooses an individual or a social information seeking behavior i.e., 𝑑𝑖
𝑡𝑜𝑙  and 𝑔𝑖

𝑡𝑜𝑙, 
increases the probabilities in seeking repetition and imitation strategies.  

4. The signs of the parameters affecting the decision weights in the gain and loss domain 
ϕ+ and ϕ- respectively are ambiguous. They depend on the income distribution and 
the realized maize prices in each simulation run. 
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Table B2: Hypothesis of how input parameters affect the strategic choice in FARMIND 

Parameter Effect of parameter increase 
Repetition 

(satisfied, indi-
vidual oriented) 

Optimization 
(unsatisfied, in-

dividual ori-
ented) 

Imitation (satis-
fied, peer ori-

ented) 

Opt-out (unsat-
isfied, social ori-

ented) 

ref_income 

𝑉𝑖
𝑟𝑒𝑓

 

Increase in reference income implies a decreasing 
probability of being satisfied. (-) (+) (-) (+) 

alpha_minus 

α- 
Increasing α- reduces the distortion of the realized in-
comes below the reference income in the value func-
tion. This decreases the probability of being satisfied. 

(-) (+) (-) (+) 

Lambda λ Increasing λ increases the weight of low incomes in the 
calculation of satisfaction 

(-) (+) (-) (+) 

tol_income 

𝑔𝑖
𝑡𝑜𝑙 

Increase the tolerance with respect to changes in in-
come growth decreases the probability of choosing a 
social oriented decision strategy. 

(+) (+) (-) (-) 

tol_act 

𝑑𝑖
𝑡𝑜𝑙 

Increase the tolerance of activity dissimilarity de-
creases the probability of choosing a social oriented de-
cision strategy. 

(+) (+) (-) (-) 

alpha_plus α+ Increasing α+ reduces the distortion of the realized in-
comes above the reference income in the value func-
tion. This increases the probability of being satisfied.  

(+) (-) (+) (-) 

phi_plus ϕ+ Increasing ϕ+ reduces the subjective probability distor-
tion of incomes above the reference income. The sign 
of this parameter can be positive or negative depend-
ing on the underlying (initial) income distribution.  

(+)/(-) (+)/(-) (+)/(-) (+)/(-) 

phi_minus ϕ- Increasing ϕ- reduces the subjective probability distor-
tion of incomes below the reference income The sign of 
this parameter can be positive or negative depending 
on the underlying (initial) income distribution. 

(+)/(-) (+)/(-) (+)/(-) (+)/(-) 
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Results 

Morris's elementary effects screening 

The Morris's elementary effects screening allows to identify the relative importance of the as-

sessed input parameters (Campolongo, Cariboni et al., 2007). Morris screening is based on a one-

factor-at-a-time design and estimates the effects of changes in input factor levels, which are 

called elementary effects (Thiele et al. 2014). The results show two measures for every input pa-

rameter: μ (mu) represents the mean of the elementary effects and gives an estimate of the over-

all influence of the corresponding input. In addition, σ (sigma), the standard deviation of the ele-

mentary effects, represents an estimate of non-linear and/or interaction effects of the corre-

sponding parameter compared to all the other parameters in the model (Morris, 1991). 

The Results from the Morris elementary screening shows that the impact of the different param-

eters on the probability of choosing one of the four strategies in FARMIND (Figure 1). High mean 

values of the elementary effect indicate that a parameter has an important overall influence on 

the choice of the corresponding strategy. High values of the standard deviation of the elementary 

effects imply that the strategic choice depends on the choice of the other input factors. The signs 

of the threshold parameters are as expected: The higher the reference income the higher the 

probability that optimization and the opt-out strategies are selected. In contrast, increasing the 

reference income reduces the probability that the repetition or the imitation strategy is chosen. 

Vice versa, higher tolerance levels for income or activity tolerance increase the probability for 

repetition and optimization. The probability of choosing an imitation or opt-out strategies de-

creases with higher tolerance levels. The cumulative prospect theory parameters affect the pro-

spect value calculated in FARMIND and thus influence the strategic choice only indirectly. Accord-

ingly, threshold values have a higher direct impact on the choice of strategy compared to the 

cumulative prospect parameters and their impact strongly depends on the levels of the other 

input parameters. The signs of α+ and α- i.e., the curvature of the value function, have the ex-

pected sign and have a higher impact compared to ϕ+ and ϕ- i.e., the parameters defining the 

weighting function.  

The effect of these weighting parameters is that higher values of ϕ+ increase the prospect value 

and thus the probability of choosing repetition or imitation. This means that on average, the un-

derestimation of more probable events exceeds the potential gains from extremely high incomes 

with low probabilities in our simulation setting. The opposite holds for ϕ-, which reduces prospect 

value and thus increases the probability of optimization or opt-out in our simulation. 
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Figure 1. Results from Morris-Sensitivity analysis for the four strategies. The x-axis represents the mean elementary effects and describes the im-
pact of increasing the parameter on the probability of the strategy choice. Positive (negative) values imply that the probability increases (de-
creases). The y-axis shows the indirect effect of the parameter change i.e., the standard deviation of the elementary effects for the corresponding 
strategy. Threshold values are depicted in squares; cumulative prospect theory parameters in triangles. 
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Standardized regression coefficient analysis 

The Morris screening provides a relative measure of the different input parameter but not a 

straightforward quantification of the effect strength. In contrast, the absolute value of a stand-

ardized regression coefficient analysis gives a measure of the effect strength and the sign defines 

the direction of the effect (Lee, Filatova et al., 2015). The standardized regression coefficient anal-

ysis includes two steps. Firstly, a linear regression model fitted to the simulation data generated 

from a Latin Hypercube Sample of the eight different parameters. Secondly, the regression coef-

ficients are standardized. Thereby, the coefficients are multiplied with the ratio between standard 

deviations of the input parameter and the output value (Saltelli, Tarantola et al., 2004). Thus, the 

regression analysis shows the effect of an input on the output variables both normalized with a 

mean of zero and standard deviation of one. This allows to interpret and communicate better the 

absolute relationship between the inputs and output of FARMIND. 

The results from the standardized regression coefficient approach based on Latin hypercube sam-

pling with 1000 samples shows the absolute effect of the single parameters and allows to rank 

the different parameters for different initializations of the model. The model coefficient of deter-

mination for these models lies between 70 and 90%. This implies that the impact of the different 

parameters on the choice of strategies i.e., the model output, is generally additive and that the 

standard regression coefficient analysis is an appropriate sensitivity test. 

The regression results confirm the findings from the Morris screening with respect to the sign of 

each parameter on the different strategies (Figure 2). In addition, the results imply that, on aver-

age, reference income is the most important parameter for the choice of repetition, optimization 

and opt-out. For imitation behavior, activity and income tolerance are more important. 

These parameters are also more important in the opt-out strategy compared to repetition and 

optimization. Income and activity tolerance have the smallest impact on optimizing behavior. Cu-

mulative prospect parameters are less important compared to the threshold values i.e., reference 

income, income and activity tolerance. Nevertheless, an increase by one standard unit of α+ and 

α- increases the standard deviation of the frequency of strategic choice between one and 15%. 

The impact of ϕ+ and ϕ- as well as λ is lower and accounts for an impact of between one and 7%.  

The minimal and maximal influence of the tolerance thresholds highly depend on the underlying 

social network and the preference settings in FARMIND. This is exemplified by disentangling the 

standard regression coefficients for the four initialization scenarios (Figure 3). The results reveal 

three mechanisms. Firstly, smaller networks increase the importance of activity tolerance since, 

all else equal, the probability to be dissimilar to other agents increases with fewer peers.  
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Figure 2. Standardized regression coefficients of FARMIND parameter on choice of the four strategies. Scenario 1: random network and preference 
for initial strategy. Scenario 2: random network and random preferences. Scenario 3: Small world network and preference for initial strategy. Sce-
nario 4: Small world network and homogenous preferences. Mark show mean SRC value. Sticks show maximum and minimal values of bootstrapped 
95% confidence intervals of corresponding sensitivity indices in four scenarios. R2 for all estimated models are above 0.7. 
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Figure 3. Impact of threshold parameters on choice of the four strategies in four different initializations of 
networks and preferences. Scenario 1: random network and preference for initial strategy (squares). Sce-
nario 2: random network and random preferences (triangle). Scenario 3: Small world network and prefer-
ence for initial strategy (rhomb). Scenario 4: Small world network and random preferences (circle). Mark 
show mean SRC value. Sticks show bootstrapped 95% confidence intervals of corresponding sensitivity 
indices. 
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This means that imitation becomes more frequent and the impact of the corresponding parame-

ter that differentiates individual from social behavior also increases. For individual strategies, the 

effect is that a higher tolerance levels also increases their probability while a higher tolerance 

level decreases the probability of social oriented information seeking strategies. In contrast, the 

importance of income tolerance decreases. This reflects that the income dissimilarity originates 

from income independently from peers and activities and thus becomes less important if activity 

dissimilarity increases. 

Secondly, if the probability that agents engage in information seeking behavior increases, refer-

ence income, i.e., the threshold parameter determining the choice between imitation vs. opt-out 

becomes also more important in the corresponding strategies. In contrast, reference income be-

comes less important in explaining the choice for repetition and optimization. This reflects the 

complementarity between the four strategies: if one strategy becomes more likely, this must 

come at the expense of another strategy since the share of all strategies sums up to the number 

of agents in our model output. Consequently, a mechanism that increases the importance of one 

input parameter in a positive way, the same input parameter must have a negative impact in one 

of the other strategies. 

Thirdly, the effect of preference settings on the importance of the different input parameters is 

generally smaller than the impact of the underlying social network. Preference settings, however, 

still have an important impact on imitation and repetition. With random preferences, the initial-

ized activity and the preferences might not be aligned anymore i.e., the agent is assumed to have 

performed a weed control activity that actually does not comply with his preferences. This re-

duces the number of activities in the choice set of imitating farmers since preferences, past expe-

rience and observed behavior of peers are equally weighted in our simulations. Less activities in 

the choice sets, in turn, increases the probability of being dissimilar. In other words, more peers 

or more activities increase the importance of activity tolerance. 

As in the case of fewer agents in a smaller network, this effect increases the share of imitating 

behavior and thus the importance of activity tolerance. A higher share of imitation has to come 

at the expense of the repetition strategy. Again, the direction of change in these two strategies 

mirrors the complementarity of strategies resulting from an increase in activity tolerance. In con-

trast to the case of fewer agents, however, the increase in importance of the tolerance level 

through different preference settings does not reduce the importance of the tolerance income 

but affects the influence of the reference income. Thus, the underlying settings of the social net-

work and the agents’ preferences for weed control activities do not only affect the importance of 

the different input parameters but also their interaction.  
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Sobol’method 

To investigate non-linear relationships between the input parameters and outputs, we apply 

Sobol’ method, a variance decomposition approach (Saltelli and Annoni, 2010). The underlying 

idea is to vary the input parameters and then to identify the effect of the individual parameter on 

output variance. In Sobol’method, the total variance is composed of the so called main and inter-

action effect, which is determined by evaluating the partial effects using Monte-Carlo methods 

(Thiele, Kurth et al., 2014). As in the case of the regression analysis, we use a Latin Hypercube 

Sampling to generate the range of input parameters in the sensitivity analysis. We applied the 

sobol2007 function to identify the expected non-linear effect of the CONSUMAT parameters. 

The elementary effects as well as the standard coefficient regression showed that the threshold 

levels are the most important model parameters. We applied Sobol’ method to analyze the inter-

actions between reference income and activity tolerance. The results show how much the differ-

ent parameters can explain the model output variation. Thereby, we compared effect under a 

random and a small world network (Figure 4). 

In a random network, the main effect of the reference income is higher for repetition and opti-

mization strategies. In contrast, the effect of the activity tolerance on the output variance is 

higher in the imitation and opt-out strategy. Thus more of the variation in the individual and social 

oriented strategies is explained by the reference income and the activity tolerance respectively. 

In addition, the interaction effect between reference income and activity tolerance, i.e., the gap 

between the main and the total effect in Figure 4, is also higher in the imitation and opt-out strat-

egy. As a consequence, the reference income is important for all the strategies while the tolerance 

levels are more important for the choice of the imitation and opt-out strategy. 

In a small world network in which more information seeking behavior occurs, the interaction be-

tween the two parameters change. The importance of the reference income for opt-out and imi-

tation increases since the variability of the model outcome is relatively more affected by the ref-

erence income if dissimilarity is more likely. For the same reason, the activity tolerance becomes 

less important in these two strategies. The opposite effect can be observed for repetition and 

optimization i.e., reference income become less, activity tolerance more important respectively. 

At the same time, interactions get more important in these two strategies.  

In summary, in a small world network, the main and the interaction effect of activity tolerance 

decreases in imitation and opt-out while both effects increase in repetition and optimization. In 

a random network, the main effect of reference income increases while the interaction effect 

decreases for the imitation and opt-out strategy.  
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Figure 4. Results from Sobol-Sensitivity analysis for the four strategies. The x-axis shows the reference in-
come and tolerance activity in a random and small world networks respectively. Dots represent the main 
effect of the parameter on the variability of the model outcome. Circles refer to the total effect, including 
interaction effects of the corresponding parameter on the strategy choice. Sticks show bootstrapped 95% 
confidence intervals of corresponding sensitivity indices.  
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Conclusion 

We performed a comprehensive sensitivity analysis of FARMIND applying three consecutive anal-

yses: Morris screening, standardized regression coefficients and Sobol’ method. The analysis 

shows that threshold values are key parameters in FARMIND. Thereby, the reference income is 

more important for individual focused behaviour, i.e., optimization and repetition. Tolerance lev-

els for activity dissimilarity or income gap are more relevant in social oriented strategies, i.e., 

imitation and opt-out. The parameters derived from the cumulative prospect theory explain up 

to 20% of model uncertainty, depending on the underlying initialization of preferences and social 

networks. We conclude that satisfaction levels can have a relevant impact on the model results 

even though they are only indirectly affected by the parameters of the curvature of the value 

function and the subjective probability rating parameters. 

The results of the sensitivity analysis are important for understanding FARMIND. However, future 

applications would need not only assess the structural and parameter uncertainty, but also the 

uncertainties arising from model calibration and future developments (e.g., Troost and Berger, 

2015). Future analyses should also explore the sensitivity to different formulations of sub-models 

(Schulze, Müller et al., 2017).  

The implications of the sensitivity analysis for an application of FARMIND to real behavioral data 

are twofold. First, the identification of threshold values in the specific decision context is of im-

portance for any FARMIND application. This has to be done via surveys or experiments (e.g., Ton-

sor, 2018). If such data is not available, a careful uncertainty analysis must be run over these 

parameters. Secondly, assumptions concerning social networks, farming preferences, and income 

distributions should be carefully assessed in the application of FARMIND. The model fundamen-

tally depends on linear and additive elements that are calculated based on normal distributions 

or average changes. If real world data and the specific decision-context would be influenced by 

an unequal distribution e.g., of agents’ income or social network, the uncertainty from these as-

sumptions should also be carefully assessed. 
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