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ODD + D protocol FARMIND 
Overview 
Purpose 

The purpose of the model is to simulate agricultural production decisions. The model should re-

flect the heterogeneity in farmers decision-making processes based on standard and behavioral 

economic concepts. The key functionality of the model is to consider farmers’ individual charac-

teristics such as attitudes and risk preferences and the farmers’ social network in the decision-

making process. The model allows to inject diverse behavior into existing bio-economic simula-

tion models and is intended to improve the understanding and explanation of farmer’s decision-

making trough hypothesis testing. Future applications of the model can be used to test and eval-

uate environmental impacts of farmers’ production decisions e.g. under climate or policy 

changes. 

State variables 

Each agent represent an individual farmer. A farmer has (1) its personal characteristics (i.e., pref-

erences, cognitive characteristics etc.) and (2) its social networks (i.e., family ties, producer or-

ganizations, knowledge networks etc.). The personal characteristics is defined by exogenous pa-

rameters for the underlying theoretical concepts i.e., cumulative prospect theory and adapted 

threshold values to identify CONSUMAT strategies (Table 2). 

Personal characteristics 

Cumulative prospect theory Loss aversion level λ 
Valuation of gains α+ 

Valuation of losses α- 

Probability weighting in gains ϕ+ 

Probability weighting in losses ϕ- 

Prospect value 𝑉𝑖 

Threshold values to determine 
strategic heuristics 

Reference income to determine perceived 
gains and losses and calculate satisfaction  

𝑉𝑖
𝑟𝑒𝑓

 

Tolerance level for income change to de-
termine information seeking behaviour 

𝑔𝑖
𝑡𝑜𝑙 

Tolerance level for activity dissimilarity to 
determine information seeking behaviour 

𝑑𝑖
𝑡𝑜𝑙 

Farming preferences Preference weight for agricultural activities βP 
 Weight of personal experience βL 

 Weight of social network βS 

 Fuzzy size (number of considered activities) SF 

Social networks 

 Number of peers a farmer is linked to 
(number of ties) 

n 

Weight of ties (strength of linkage to peers) βn 

Table 2: Characteristics of FARMIND agents for the calculation of strategic heuristics 



In addition, FARMIND includes the following basic variables: number of farms 𝑖, year (or model 

run) 𝑡, farming activity 𝐴𝑖, income of farm 𝑖 in year 𝑡 i.e., 𝑥𝑖𝑡. 

Each agent is linked to a bio-economic agricultural production model, which reflects the multi-

output decision context of the farmer e.g., a farm level optimization model, or any other code 

simulates a constraint decision-making process in agriculture. This sub-model defines the spatial 

extent as well as the spatial and temporal resolution of the model. 

Process overview and scheduling 

FARMIND is based on a three-step modelling approach including a decision strategy (repetition, 

optimization, imitation, opt-out), the definition of preferred farming activities and an actual pro-

duction decision i.e., the choice of an agricultural production activity (Figure 1). 

 

Figure 1: Flowchart of three step modelling approach in FARMIND 

• First step: Based on the production activities in the past, FARMIND calculates the income dis-

tribution over the farmers’ memory length and the income in the initialization year. On this 

basis, the satisfaction and insecurity levels of the agents are calculated to determine the stra-

tegic decision of each individual farmer (see individual decision making).  

• Second step: Production activities are ranked according to the personal characteristics of the 

farmer. The fuzzy logic identifies a sub-set of strictly preferred activities for the imitation strat-

egy. For the optimization strategy, the fuzzy size determines a maximum number of the ranked 

production activities. In the case of repetition, the choice sets is identical to the one in the 



previous year and for the opt-out strategy, farmers’ receive additional non-agricultural activi-

ties (if applicable in the sub-model) or abandon the corresponding agricultural production.  

• Third step: Based on the transferred choice sets, the sub-model then determines the produc-

tion choices. The results from the production decision (income and activities) are then again 

transferred to the FARMIND strategic decision to update experience and income distribution 

of the agent. 

Design concepts 
Theoretical and empirical background 
Despite their empirical importance, behavioral aspects are underrepresented in modelling farm-

ers’ decision-making in real-world setting. We here use a cumulative prospect theory and social 

network theory to build a generic agent-based model that allows to link farmer’s complex deci-

sion-making with the strength of existing agricultural production models. The CONSUMAT frame-

work links the different theoretical concepts into a structured sequence of modelling steps. In the 

current version, the model solely relies on theoretical assumptions and uses empirical findings 

from existing studies for parameterization. Future applications of the model have to rely on in-

terview and/or survey data from individual farmers including different types of risk elicitation 

methods, e.g., lotteries and games with farmers. 

Individual decision-making 

Following the CONSUMAT approach, agents make decisions on their behavioral strategies accord-

ing to their satisfaction and uncertainty levels. In FARMIND, an agent’s satisfaction level in a year 

is reflected by the prospect value of incomes in year t and all previous years within the memory 

length. Income above (below) the agents’ individual reference income are considered as gains 

(losses). For each income over the memory length, the prospect value is calculated using individ-

ual value and probability weighting functions. If the sum of these incomes is positive (negative), 

an agent is considered as satisfied (unsatisfied). Thus, the underlying risks and uncertainties in 

agricultural production are explicitly considered in the calculation of the agents’ satisfaction. To 

calculate whether a farmer will engage in social processing or not, we calculate two different 

indices. Firstly, we calculate the percentage income change for year t and each farmer compared 

to the average income change over the memory length. We then compare this change between 

the individual farmer and all the agents in the model. If the difference between the individual 

change and the average change of income exceeds an individual tolerance level, the correspond-

ing farmer engages in information seeking behavior. Thus, a wedge between the income growth 

of an agent and all the agents makes the farmer uncertain in the sense of the CONSUMAT. Sec-

ondly, we apply a dissimilarity index to represent the agents deviating behavior from other farm-

ers.  

  



  
Satisfaction  
Prospect value with reference income as threshold for the determi-
nation of gains and losses 

  > 0: satisfied < 0: dissatisfied 

Information 
seeking be-
haviour 
Values for de-
termining indi-
vidual or social 
processing 
(threshold for 
income trend 
and activity 
dissimilarity) 

< tolerance 
level: indivi-
dual ori-
ented 

Repetition 
The decision is represented by 
solving the sub-model without 
changes in available activities 
and technical coefficients of 

production. 

Optimization 
The sub-model has access to all 
activities restricted only by per-
sonal preferences based on the 

fuzzy preference map. 

> tolerance 
level: social 
oriented 

Imitation 
The sub-model is extended with 
those activities that are used in 
the social network, restricted by 
personal preferences based on 

the fuzzy preference map. 

Opt-out 
The sub-model includes the op-
portunity to cease an activity, 

select non-agricultural activities 
or abandon production. 

Table 2: Strategic decision and choice sets in FARMIND 

We count the average number of activities performed in the agent network over the memory 

length. We then divide the average number for each activity that is performed by the agent and 

the network by all the activities performed in the corresponding network. The higher the value, 

the more similar an agent is to his peers. This index is compared to a tolerance level, representing 

the individual aptitude to consider deviating behavior of other farmers. A low tolerance level im-

plies that the farmer is more likely to comply with social norms i.e., not being different from oth-

ers. The combination of satisfaction and information seeking behavior defines the strategic choice 

of the farmer: repetition, optimization, imitation or opt-out (Table 2). Thus, agents adapt their 

strategies to changes in the environment (e.g. prices and yields in the sub-model) and the behav-

ior of other farmers. 

The sub-sets represent a bundle of farm activities (or production methods) that are in accordance 

with the farmers’ personal and observed behavior. We apply the fuzzy out-ranking method to 

narrow down the options available in the sub-model. This method allows to distinguish prefer-

ences for production activities based on multiple criteria. In FARMIND, we apply three criteria to 

rank production activities: 

• Stated preferences for farming activities and/or production methods. Stated preferences can 

be used to characterize individual values or believes, which advantage or exclude certain type 

of production activities (e.g. dairy) or production methods (e.g. organic). The higher the pref-

erence, the more likely the corresponding activity appears on the top of the fuzzy ranking. 

• Revealed preferences of farmers’ observed behavior in the past. If a farmer continuously 

choose a certain activity, we can assume that this is in accordance with his own preference 

and thus is more likely to be at a higher position in the fuzzy ranking. In addition, repetition 

represents an individual learning process (or professionalization) if the farmer keeps doing the 

same thing which also increases the probability of that activity being in the choice set. 



• Farmers’ observation of the behavior of his peers. In the case in which an agent chooses to 

imitate, activities that can be observed in the agents’ network are ranked above other activi-

ties. In addition, the experience of the peers with the corresponding production activities is 

also considered as a factor that affects the relative ranking of production activities. If a certain 

activity is chosen within one network over time, the social “transaction costs” to implement 

this behavior reduces and thus increases the probability that additional activities appear in the 

farmers’ output space. 

We normalize the underlying values using the maximum value for each criteria and predefine a 

lower and an upper indifference threshold. If the difference of the normalized values between 

activity A1 (with a higher value) and A2 (with a lower value) is smaller than the lower threshold 

these activities are considered as being indifferent i.e., the agent has no preference for one of the 

two activities. If the difference is greater than the upper threshold, A1 is strictly preferred over A2. 

If the difference between the two activities falls within the interval of the lower and upper thresh-

old, A1 is weakly preferred over A2. In addition, we add exogenous weights to the three different 

criteria, which allows to characterize preferences for each agent individually. Based on the rank-

ing i.e., a list of production activities, we implemented two different algorithm to determine the 

final choice set for the four strategies. FARMIND can be applied using a non-dominance score that 

endogenously defines a small sub-set of activities that are always strictly preferred over the rest 

of the production activities. However, non-dominance score might reduce the flexibility of the 

model too much. Thus, FARMIND includes also an exogenous parameter that allows to define the 

size of the production activities that should be considered in the imitation and optimization strat-

egy respectively. The reduced choice set is then passed to the sub-model. 

Learning 

Agents have a memory of their production activities. The length of memory is determined exog-

enously and can be set individually for each agent. The more experience an agent has with respect 

to a production activity, the higher its weight in the fuzzy preference ranking. More experience 

also increases the weight of a specific production activity in the agents’ social network. Thus, 

agents learn that behavior from peers that are performed within their social network over a 

longer time horizon. Thereby, the weight of experience, the learning rate, is represented as a 

logarithmic function that converges to one over the period of the memory length. This mechanism 

of learning from peers increases the probability of adaption and diffusion of a production activity 

when more agents perform this activity over a longer time horizon. 

Sensing 

Agents can correctly observe the activities their peers perform and memorize the production ac-

tivities in the past. They can also observe its’ own and the average income of the whole popula-

tion. Agents memorize this information for periods of their memory length. Assumptions about 

prices, yields or other information with respect to the production decision are condensed in the 

realized income. In principle, agents do not have costs for gathering information. However, the 



learning rate slows the information exchange between agents in the social network and thus in-

formation from the peers is not directly and in every time step available for the individual agent. 

Individual prediction 
Agents change their decision strategy based on their individual prospect value. Using their real-

ized income in the past and the individual value and probability weighting functions, agents “pre-

dict” the value of their realized income according to the cumulative prospect theory.  

Interaction 

Agent observe the behavior of their peers in the case they choose to imitate. Other interactions 

e.g. on (land) markets or with environmental entities critically depend on the sub-model and thus 

are exogenous to FARMIND. 

Collectives 

The social network allows to predefine a static collective that is more likely to adapt production 

activities from each other. There is, however, no dynamic mechanism from which collectives 

emerge. 

Heterogeneity 

Agents can differ with respect to all parameters presented in Table 1. This heterogeneity leads to 

different decision strategies for the individual agent i.e., repetition, optimization, imitation, opt-

out. In addition, the underlying sub-model also allows to differentiate the agents e.g. according 

to their production resources (labor, capital, land) or with respect to their environmental produc-

tion conditions. 

Stochasticity 
There are no randomized variables or parameters in the calculation of satisfaction, information 

seeking behavior and the choice sets. A full calibration of all the parameters in FARMIND, how-

ever, may be unattainable in individual applications of the model. Thus, random initialization pro-

cesses may be indispensable for specific applications. We here used randomization for the gen-

eration of the social network, the distribution of preferences for production activities, agents’ 

reference income and tolerance levels as well as the parameters used to calculate the prospect 

value (see initialization). 

Observation 

The model output of FARMIND are choice sets of agricultural production activities that are passed 

to an optimization model. The realized income and the actual production activities chosen by the 

agent is then transferred back to FARMIND. The emergent phenomena in FARMIND are hetero-

geneous decision strategies that result in different production outcomes in the sub-model. 



Details 
Implementation 
FARMIND is written in Java. The model is available on Github: https://github.com/AECP-

ETHZ/FARMIND. Code for the initialization and sensitivity analysis are written in R. The applied 

sub-model in this contribution is written in GAMS and uses a CPLEX solver. The applied sub-model 

in this contribution is available from here: https://doi.org/10.3929/ethz-b-000184083 

Input data and initialization 

FARMIND uses five input data sets: i) a social network including ties and weight of ties between 

agents; ii) a matrix of each agents’ preferences for the production activities available in the sub-

model; iii) a table of the agents’ individual characteristics (cf. Table 1); iv) a list of production 

activities the agent performed in the past; and v) a list of initial incomes i.e., realized incomes 

from the performed activities over memory length. In the here presented results, the first three 

input files are generated by a random process and the impact of randomization is tested in the 

sensitivity analysis. For the initialization of activities and incomes in the sensitivity analysis, we 

distribute randomly the available activities to the model agents so that the share of the different 

weed control strategies complied with the most frequent scenario in Böcker et al. (2018). For the 

initialization of initial incomes in our application, we run the model over five years with repeating 

agent. For future applications, the initialization has to be adapted to the functionality of the sub-

model and thus should vary depending on model purpose and research question. 

Sub-model 

FARMIND needs a sub-model that provides the effective decision of a farmer in a (constraint) 

optimization process. In principle, any model that simulates the individual choice between differ-

ent agricultural activities based on an economic criterion e.g., yearly revenues, gross margins or 

incomes is suitable as sub-model. There exist a broad set of bio-economic and farm models that 

fulfill these criteria (for reviews see Janssen and van Ittersum, 2007; van Wijk, Rufino et al., 2012; 

Shrestha, Barnes et al., 2016; Reidsma, Janssen et al., 2018). Moreover, the implementation of 

our framework would also allow to integrate FARMIND, i.e., the CONSUMAT strategies in other 

ABM approaches using mathematical programming models as agents such as MP-MAS 

(Schreinemachers and Berger, 2011) or AgriPoliS (Happe, Kellermann et al., 2006).  

To demonstrate a "proof of concept" of our modelling framework, we used the bio-economic 

weed control model for silage maize production developed by Böcker et al. (2018) as sub-model 

in an global sensitivity analysis (see Appendix B). The model had been applied to assess the eco-

nomic impact of a Glyphosate ban on maize production (Böcker, Britz et al., 2018; Böcker, Britz et 

al., 2019). It is able to identify economically optimal herbicide strategies in silage maize under 

given pesticide and crop prices as well as specifications and regulations of pesticide use. The 

model is calibrated with detailed data on weed abundance, yield losses and herbicide efficacy of 

377 municipalities in the federal state of North-Rhine-Westphalia (Germany). The optimization 

model is based on two steps. Firstly, maize yield is estimated using a damage control approach. 

https://github.com/AECP-ETHZ/FARMIND
https://github.com/AECP-ETHZ/FARMIND
https://doi.org/10.3929/ethz-b-000184083


This approach determines the effect of herbicides (a damage control input) on weeds (damaging 

organism) and then calculates the yield reduction from surviving weeds. The model considers the 

32 most important weeds in the region over a period of 13 years and assesses the effect of 19 

pre- and 55 post-sowing strategies including all herbicides recommended by the Chamber of Ag-

riculture in North-Rhine-Westphalia. Estimated yield depends on weed pressure i.e., the time of 

maize emergence in relation to weed emergence, and the attainable yield based on soil and cli-

matic conditions. The model also estimates the yield response to mechanical weed control. The 

resulting yield function has an exponential form, implying decreasing marginal weed control when 

increasing herbicide input or mechanic control. Based on the yield estimation over time and 

space, net profits for each weed control strategy are calculated accounting for maize prices and 

input costs, which are also dependent on weed pressure. Secondly, the model chooses the opti-

mal pre- and post-sowing weed control strategies maximizing net profits. In Böcker et al. (2018) 

it is assumed that farmers know weed pressure and realized yield and the corresponding decision 

on the weed control option is deterministic under the restriction of a two-year cropping period 

which is a standard farming practice. In Böcker et al. (2019), this approach had been expanded to 

account for uncertainty in these parameters using a stochastic production function and risk pref-

erences of farmers. Results of the model show that a glyphosate ban would cause a shift towards 

more mechanical weed control measures, but economic impacts would be small (Böcker et al. 

2019). 

To link the weed control model to FARMIND, we used the deterministic version presented in 

Böcker et al. (2018). This original model was designed for a two-year cropping period. To simplify 

the exchange between FARMIND and the sub-model, we here consider only yearly decisions and 

equate municipalities with agents equipped with random preferences on weed control activities, 

random decision characteristics i.e., cumulative prospect as well as reference income and toler-

ance levels and random social networks. To account for uncertainty, we model the choice of weed 

control strategy in two steps varying maize prices. First, it calculates the expected gross margin 

for all the activities in the choice set using the average maize price over the memory length (t-1 – 

t-5). The agent then chooses the corresponding production activity. Secondly, the income of the 

resulting production activity is calculated with the updated price and yield information of year t. 

Exogenous parameter in the bio-economic weed control model that determined yields (attainable 

yields, time of weed emergence etc.) are kept constant in the sensitivity analysis. To assess the 

impact of the different decision strategies on weed control, we here summarize the weed control 

options into three categories: weed control with Glyphosate, weed control without Glyphosate 

but other herbicides and pure mechanic weed control. For the presentation of the effect of dif-

ferent behavior on productions activities, we run exemplary scenarios with changes in maize 

prices. The sub-model determines the weed control options in two steps. 
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