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Four experiments with identical variable amplitude block-loading 
conditions were performed. All experiments fail either on the anchor 
head or expansion cone neck as shown in Fig.1. In order to exploit 
effectively the variation of features in multiple scales, a deep network 
with dilated convolutions was used. In order to facilitate the flow of 
gradients from the layers closer to the output to the ones closer to the 
input, the output features of each convolutional layer are appended to 
the input features of all subsequent layers (after appropriate padding). 
This constitutes a so-called DenseNet [1] architecture.

The raw data of the experiments are expected to have biases that are 
not related to the predictive task, but occur only on a given experiment. 
In tandem with the predictive network, a domain classifier trained to 
detect which experiment each data-point belongs to by using the same 
features, which are the outputs of a feature extractor network. By 
training the feature extractor to ‘’fool’’ the domain classifier and at the 
same time extract useful features for the predictive network we achieve 
removing some bias from the extracted features. This constitutes a 
domain adversarial training procedure [2]. A schematic of the network 
is shown in Figure. 3. 
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3 Results

Fig. 1. Left: Schematic of the anchor used and stress concentration zones. Right: Example of inputs to the network. 
The potentially useful features may present in multiple scales. 3 Conclusion

Some encouraging results on machine learning for remaining fatigue life 
prediction were achieved. The employed techniques are expected to have wide 
applicability to other time-series classification problems where potential biases 
are expected due to small number of experiments. This is a over-arching 
problem related to the use of experimental data for predictive model 
construction using machine learning.
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1 Introduction

Fatigue experiments present with large scatter even for identical 
specimens tested under controlled laboratory conditions. It has long 
been known that variations in the mechanical behavior of fatigued metals 
occur, such as hardening or softening and variations on the shape of 
hysteresis curves. In order to incorporate measurements in the fatigue 
life prediction of concrete anchors, a fully data-driven model, using load-
displacement and acceleration data, was trained to predict directly the 
remaining cycles to failure for anchors embedded in cracked concrete 
loaded in variable amplitude fatigue.

2 DenseNets & Adversarial Regularization

Fig. 2. Left: DenseNet block. The outputs of the convolution filter of each layer, are appended as input to each 
subsequent layer. Interestingly, due to feature reuse, DenseNets have fewer parameters than typical convolutional 
neural networks. Right: Stacked Dilated convolutions. Dilated convolutions allow for fast growth of the receptive field of 
a convolutional network while at the same time perform better in representing multi-scale features.

Dilated 1D convolution 
Filter size: 3, dilation rate 3

Fig. 3. Schematic of the domain adversarial training procedure. The procedure can  be implemented in a single training 
loop, by reversing the back-propagated gradients from the domain classifier.
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In Figure 4 a comparison of the predictive performance for models 
trained with and without domain adversarial regularization is performed. 
Data from 3 experiments are used for training and a held-out experiment 
is used for evaluation.

Fig. 2. Left: DenseNet block. The outputs of the convolution filter of each layer, are appended as input to each 
subsequent layer. Interestingly, due to feature reuse, DenseNets have fewer parameters than typical convolutional 
neural networks. Right: Stacked Dilated convolutions. Dilated convolutions allow for fast growth of the receptive field of 
a convolutional network while at the same time perform better in representing multi-scale features.

Fig. 4. Left: Confusion matrix with domain adversarial regularization on held-out experiment. Right: Confusion matrix 
without domain adversarial regularization. 


