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Abstract 

The diversity and abundance of soil bacteria are highly dynamic and vary considerably across scales 

and biomes with significant effects on soil ecological functioning. Soil bacterial communities are 

composed of a few abundant species, with most of their richness associated to rare species with 

largely unknown ecological roles. The thesis incorporates key environmental ingredients that affect 

soil bacterial abundance and diversity into a mechanistic modeling framework that links soil, climate 

and carbon inputs. The fragmentation of the soil aqueous-phase is directly linked to bacterial diversity 

found under different soils and climates. Soil bacterial diversity peaks at intermediate water contents 

with numerous aqueous habitats that remain well supplied by plant derived carbon. We employ 

statistical modeling of recent global soil bacterial datasets to test the dependency of bacterial richness 

on key soil and climatic attributes. Results confirm the well-established association of bacterial 

richness with soil pH and reveal a hierarchy among covariates. Climatic soil water content has been 

proposed to create links between aqueous micro-habitats and climatic conditions. Surprisingly, rare 

bacterial species that are present at low relative abundances exhibit high sensitivity to environmental 

conditions. A novel classification of common and rare soil bacteria suggests consistent changes of 

rarity as found in observations and predicted by the mechanistic model. Results show an increase in 

rare bacterial species proportions in drier soils with lower carbon inputs. A shift in bacterial species 

composition results from suppressed activity of common species leading to more even distributions 

of species abundances in arid soils. The novel modeling framework predicts general tendencies of soil 

bacterial abundance and diversity by considering microscale processes based on only few 

environmental variables. The results here pave the way for systematic incorporation of microscale 

processes and their effects on bacterial life across scales; from soil grain surfaces to terrestrial biomes. 
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Zusammenfassung 

Die Diversität und Abundanz von Bodenbakterien sind sehr dynamisch und variieren beträchtlich über 

verschiedene Skalen und Biome hinweg mit signifikantem Einfluss auf die ökologische Funktion des 

Bodens. Bodenbakteriengemeinschaften setzen sich aus einigen wenigen, reichlich vorhandenen, 

Arten zusammen. Der grösste Teil ihrer Vielfalt besteht aus seltenen Arten mit weitgehend 

unbekannter ökologischer Rolle. In dieser Dissertation werden die wichtigsten Umweltfaktoren, 

welche die Diversität und Abundanz von Bodenbakterien beeinflussen, in ein mechanistisches 

Modellierungssystem integriert. Dazu werden Bodeneigenschaften, Klima und Kohlenstoffeinträge 

berücksichtigt. Die Fragmentierung der wässrigen Phase im Boden steht in direktem Zusammenhang 

mit der bakteriellen Artenvielfalt. Diese erreicht ihren Höhepunkt bei mittleren Bodenwassergehalten 

wo zahlreiche, isolierte, aquatische Habitate gut mit pflanzlichem Kohlenstoff versorgt bleiben. 

Statistische Modellierung von globalen Bodenbakteriendatensätzen testet die Abhängigkeit des 

Bakterienreichtums von wichtigen Boden- und Klimaattributen. Die Ergebnisse bestätigen die gut 

etablierte Assoziation der bakteriellen Artenvielfalt mit dem Boden pH-Wert und zeigen zudem eine 

Hierarchie zwischen den Umweltfaktoren auf. Der klimatische Bodenwassergehalt wurde 

vorgeschlagen um aquatische Mikrohabitate mit klimatischen Bedingungen zu verknüpfen. 

Überraschenderweise zeigen seltene Bakterienarten, die in geringen relativen Häufigkeiten 

vorkommen, eine hohe Empfindlichkeit gegenüber Umweltbedingungen. Eine neue Klassifizierung 

von häufigen und seltenen Bodenbakterien lässt auf konsistente Veränderungen der Seltenheit 

schließen, in Übereinstimmung mit empirischen Beobachtungen und wie sie durch das mechanistische 

Modell vorhergesagt wurden. Die Ergebnisse zeigen eine Zunahme des Anteils seltener Bakterienarten 

in trockeneren Böden mit geringerem Kohlenstoffeintrag. Eine Verschiebung in der Zusammensetzung 

der Bakterienarten ergibt sich aus der unterdrückten Aktivität der häufigen Arten, was zu einer 

gleichmäßigeren Verteilung der Artenhäufigkeit in trockenen Böden führt. Der neuartige 

Modellierungsansatz sagt allgemeine Tendenzen der Häufigkeit und Vielfalt von Bodenbakterien 

voraus, indem mikroskalige Prozesse auf der Grundlage nur weniger Umweltvariablen berücksichtigt 

werden. Die Ergebnisse ebnen den Weg für die systematische Einbeziehung mikroskaliger Prozesse 

und ihrer Auswirkungen auf das bakterielle Leben über verschiedene Skalen hinweg; von der 

Oberfläche von Bodenkörnern bis hin zu terrestrischen Biomen.  
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Motivation 

Soil bacteria constitute a large proportion of the global biomass and their abundance and diversity are 

associated with soil ecological functioning and ecosystem services. How soil bacterial habitats at the 

microscale are shaped by soil type, climate and land-use remains uncertain. Insights into the 

fundamental processes that render soils functional and enable terrestrial life are of vital importance 

for understanding and sustaining ecosystems. Soils are the interface to a large fraction of the earth’s 

biomass that, in turn, affect global water, carbon and energy fluxes. Interactions of biological agents 

within this complex, multi-phase environment affect the spatial variability of biomass across scales. 

Access to resources and dispersal distances are both related to average soil transport properties, 

which are controlled by climate and soil-type, shaping bacterial growth as well as the potential for 

interspecific interactions. A comprehensive study on bacterial life in soil requires microscale 

information for disentangling abundance and diversity. A single soil sample offers a vast living space 

for numerous bacterial communities with highly localized interactions within micro-habitats that 

preclude direct inference of soil microbiome functioning from macroecological patterns. The 

mismatch in spatial scales between climatic drivers and bacterial cells as living organisms on soil grain 

surfaces motivates the development of a novel modeling framework that preserves information of 

smaller scales and allows for prediction of soil bacterial abundance and diversity across terrestrial 

biomes.   
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Introduction 

Soil carbon decomposition is largely controlled by carbon molecular composition, microbial biomass 

and the physical environment1. Diverse soil microorganisms carry a seemingly unlimited number of 

functional genes2 that translate to yet uncertain soil metabolic potential3. Bacteria are a major 

component of belowground biomass4 and dominate soil functional capacity2 compared to other soil 

microorganisms. The soil microbial diversity has been directly linked to its functional capacity via 

measuring the sizes of the taxonomic and genetic pools5 in which many specific functions are being 

carried by soil bacteria2 often present at low abundances6. The abundance of soil microbial biomass 

carbon is related to mean annual precipitation and temperature7 under constrained microbial cellular 

stoichiometry8. Similarly, soil bacterial biomass follows the carbon input by primary productivity that 

varies with soil depth8,9. An upper bound on soil bacterial cell density (‘carrying capacity’) can be 

obtained from consideration of carbon input fluxes by primary productivity that are also related to 

the distribution of rainfall and soil hydration conditions9. The soil hydration state affects bacterial 

activity by controlling cell transport and diffusion of carbon sources10,11; resulting in heterogeneous 

distributions of cell densities12 at sub-millimeter scales.  

Bacterial cells live in soil pores and on soil grain surfaces. Despite often very large numbers (1010 cells 

per gram of soil), they are rarely directly observed at the scale of their habitat. Water held in soil pores 

and in thin water films adsorbed to soil grains (here the ‘soil aqueous-phase’) is frequently fragmented 

and constitutes the heterogeneous living-spaces of soil bacteria that harbor many species and 

communities within these ‘aqueous habitats’. The definition of ecological communities (a group of 

potentially interacting species) requires information on the nature of soil bacteria interaction 

potential, which depends on cell density and spatial configuration. Ecological interactions in 

competing bacterial communities alter bacterial diversity and are mediated by soil water content5,9. 

At the scale of bacterial habitats, the spatially heterogeneous soil-aqueous phase governs the 

distribution of local carrying capacity and causes non-linearities in observed carbon fluxes13. 

The macroscopically measured soil water content determines the sizes and numbers of spatially 

isolated aqueous micro-habitats that enable many co-existing bacterial communities or populations 

in a cubic centimeter of soil9. In addition, bacterial growth, motility and dispersal ranges are defined 

by the soil aqueous-phase connectivity that controls the interaction potential of bacterial species14. 

Constraints to dispersal dictate that in most soils (often unsaturated) we should expect clustered 

distributions of cells limited by growth that are concentrated around carbon sources (‘hot-spots’)15. 

The ubiquitous spatial isolation between such communities reduces opportunities for interactions 

among species and is mediated by the microscale distribution of aqueous habitats that itself is 

controlled by soil type and climatic rainfall patterns. This causes a discrepancy in spatial scales 
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between the soil bacterial habitats and measurements of bacterial abundance, diversity and 

ecosystem functioning. The mismatch in spatial scales precludes direct inference of interactions in the 

soil microbiome based only on macroscopic observation of diversity and abundance16. How climatic 

drivers and soil properties shape bacterial life in spatially distributed communities at small scales is 

the central question of interest. 

In this work we seek to quantify the effects of soil aqueous phase connectivity on bacterial diversity 

and abundance across biomes. Information on biome characteristics, such as rainfall patterns and 

vegetation should link to physical properties of bacterial aqueous habitats; from climatic scales to 

microhabitats. This is important for placing empirical observations of bacterial abundance and 

diversity in context of the heterogeneous soil environment where they affect soil ecosystem 

functioning. The main objective of this thesis lies on the development of a modeling framework that 

preserves the information on bacterial microscale distributions to quantitatively predict macroscopic 

observations of soil bacterial diversity and abundance. Soil bacterial habitats are expected to be larger 

and better connected in wet soils that are also well supplied with carbon by vegetation along the soil 

profile (Fig. 1). This enables high soil bacterial abundance and leads to increased opportunities for 

interactions that shape bacterial diversity and should vary across biomes. 

 

  

 

Fig. 1 Soil bacterial abundance and diversity are 

expected to vary across biomes. Rainfall patterns 

and carbon input by vegetation are characteristic 

to terrestrial biomes. Net primary productivity 

(NPP) that decays rapidly with soil depth 

maintains belowground bacterial abundance. 

Dry soils support small communities of bacteria 

that are spatially isolated. Increased aqueous 

phase connectivity leads to increased abundance 

that provides opportunities for interactions and 

is expected to affect bacterial diversity. 
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We capitalize on the generality and predominant role of the soil-aqueous phase in shaping bacterial 

habitats and on the availability of globally distributed data sets for spatial mapping and model 

evaluation. To determine a climatically representative soil water content (‘climatic water content’) we 

suggested a simple model based on the average frequency of rainfall and soil specific water storage 

that is subjected to evaporative losses9,17. This climatic water content changes gradually across biomes 

and serves as a proxy for the average soil aqueous phase connectedness. It also co-varies, to some 

extent, with primary productivity. The global distributions of the main variables and their relations are 

illustrated in Figure 2. 

With estimates of soil bacterial carrying capacity, the climatic water content was used to predict the 

global distribution of soil bacterial diversity9 (Chapter 1, published). A statistical analysis of soil 

bacterial biogeography supports a predominant role of climatic water contents and revealed a 

hierarchy of environmental covariates that can explain variations in bacterial richness17 (Chapter 2, 

published). Detailed modeling of soil bacterial species abundance distributions and a novel 

classification of common and rare bacteria, enabled the discovery of systematic shifts in bacterial 

rarity with climatic water contents (Chapter 3, submitted). Furthermore, we could model and observe 

spatially clustered bacterial cell distributions on soil surfaces and developed relations that link 

macroscopic quantities (carrying capacity, water content) to the distribution of bacterial community 

sizes and interaction potential (Chapter 4, submitted). Finally, a summary and short outlook are 

presented. 

 

 

 

Fig. 2 Key variables used for modeling soil bacterial abundance and diversity. Carbon input by net primary productivity and 

temperature adjusted cell maintenance are used to estimate upper bounds on bacterial cell density (‘carrying capacity’). 

Climatic forcing (number of consecutive dry days and potential evapotranspiration) together with soil porosity are used to 

estimate climatic water contents. Global data from several resources were compiled at 0.1° x 0.1° resolution (SoilGrids18, 

WorldClim19 and MSWEP20). 
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1 Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes 

Samuel Bickel and Dani Or 

Nature Communications 11, no. 1 (January 8, 2020): 1–9. https://doi.org/10.1038/s41467-019-13966-w. 

Abstract 

Soil bacterial diversity varies across biomes with potential impacts on soil ecological functioning. Here, 

we incorporate key factors that affect soil bacterial abundance and diversity across spatial scales into 

a mechanistic modeling framework considering soil type, carbon inputs and climate towards 

predicting soil bacterial diversity. The soil aqueous-phase content and connectivity exert strong 

influence on bacterial diversity for each soil type and rainfall pattern. Biome-specific carbon inputs 

deduced from net primary productivity provide constraints on soil bacterial abundance independent 

from diversity. The proposed heuristic model captures observed global trends of bacterial diversity in 

good agreement with predictions by an individual-based mechanistic model. Bacterial diversity is 

highest at intermediate water contents where the aqueous phase forms numerous disconnected 

habitats and soil carrying capacity determines level of occupancy. The framework delineates global 

soil bacterial diversity hotspots; located mainly in climatic transition zones that are sensitive to 

potential climate and land use changes.  

https://doi.org/10.1038/s41467-019-13966-w
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1.1 Introduction 

Soil hosts unparalleled bacterial diversity, ranking highest among all other compartments of the 

biosphere5,18,19. The number of bacterial phylotypes ranges between 102 to 106 per gram of soil5,18,20, 

with high values similar to the diversity in all of earths environments19. This immense richness is often 

attributed to soil’s intrinsically heterogeneous physical and chemical micro-environments21–25. The 

complex structure of soil pores offers numerous refugia for hosting diverse bacterial species25. This 

wide range of microhabitats is particularly important for maintaining the rare components of the soil 

microbiome. Low abundance bacterial species play important roles in key biogeochemical 

processes6,26 and serve as a ‘seed bank’ for species richness27. Microbial diversity is manifested both 

at the scale of soil grains24 and at very large scales across climatic regions and terrestrial biomes5,28,29. 

These observations often include variations in microbial biomass that responds to resource availability 

and affects bacterial diversity at all scales30–32. For example, well-established observations of microbial 

abundance variations with soil depth8 could confound inferences of bacterial richness by promoting 

the detection of low abundant species in resource rich environments.  

Quantifying the roles of soil factors, such as soil texture, porosity and hydration conditions in relation 

to climate and vegetation cover is an important step towards disentangling bacterial diversity and 

abundance as suggested by recent empirical evidence32. Soil chemical properties such as pH5,29,32,33 

and organic carbon content30–32 together with climatic attributes, such as aridity index30, 

precipitation5,32 and temperature28, have been identified as important explanatory variables. Yet, the 

rapid expansion of soil bacterial diversity datasets has not been met with similar development of 

predictive models for interpretation of the observed spatial patterns34. Improved predictability of soil 

bacterial diversity could be essential for understanding soil bacterial functioning; from contributions 

to soil respiration26,35 to the resistance of bacterial communities to invasion by pathogens36.  

Such endeavors invariably require development of mechanistic frameworks for systematic 

incorporation of the various factors that affect soil bacterial diversity. In this study, we capitalize on 

recent empirical5,24,28,30,32,37 and theoretical developments23,38,39 to generalize the role of soil aqueous 

microhabitat fragmentation and its nearly universal role in mediating bacterial diversity across soil 

types and climatic conditions. To characterize the average conditions in soils and facilitate long-term 

predictions, we define a soil climatic water content that combines rainfall patterns and volumetric soil 

water holding capacity into a well-defined attribute. This measure considers the average duration 

between soil wetting events important for diversity maintenance (see Methods). Under a wide range 

of climatic conditions, soils remain unsaturated with the bacterial aqueous habitats fragmented to 

varying degrees based on soil type and rainfall dynamics (amount and frequency). A critical hypothesis 

is that the microscale arrangement of water retained in soil pores defines the size distribution and 
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connectedness of aqueous bacterial habitats that, in turn, affect diffusion rates of substrates, the rates 

and spatial extents of cell motility39,40 and opportunities for cell-to-cell interactions41. The objective of 

this study was to formalize the influence of these abiotic factors in a heuristic framework that enables 

quantitative representation of soil bacterial abundance and diversity at scales ranging from grains to 

watersheds and beyond.  

The core of the model is the quantification of numbers and sizes of aqueous bacterial habitats 

considering climatic water contents and soil types. We use concepts of percolation theory to describe 

the size distribution of aqueous patches38 that could support bacterial cells. Soil organic carbon input 

flux, derived from the net primary productivity (NPP), and mean annual temperature (MAT) are used 

to estimate a soil carrying capacity that defines limits for the abundance of bacterial cells (Fig. 1.1). 

For simplicity, we first assume that each isolated aqueous patch is inhabited by a single bacterial 

phylotype (hereafter referred to as ‘species’). This heuristically enables estimation of bacterial 

diversity based on the species abundance distribution (SAD) deduced from the size and number 

distribution of microscale aqueous habitats. The framework expresses soil bacterial diversity at two 

interlinked spatial scales: at the single aqueous habitat scale and at the soil sample scale that can 

contain many isolated aqueous habitats.  

 

  

 

Fig. 1.1 Illustration of aqueous habitat 

fragmentation and carrying capacity in relation 

to climatic water contents. In regions where 

rainfall is frequent, the soil aqueous phase is 

largely connected and provides a common 

habitat for cells of different bacterial species. In 

soils of drier regions, the aqueous phase is 

increasingly fragmented and offers a large 

number of distinct habitats. When the soil 

becomes sufficiently dry almost all aqueous 

habitats are physically isolated and might 

contain only a few species. Additionally, the total 

number of cells that can be maintained 

(potential carrying capacity) is reduced and 

smaller patches become uninhabited. The 

specific carrying capacity in a biome is based on 

carbon input flux and temperature that establish 

an upper bound on bacterial cell density (rarely 

realized in any particular location due to other 

limiting factors). The numbers below each panel 

indicate the number of cells per number of 

habitats. Diversity is expected to drop in dry 

regions with low cell abundance and in wet 

regions with high habitat connectivity. 
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Modeled trends of soil bacterial carrying capacity and diversity are compared to empirical 

observations8,18,20 across terrestrial biomes and suggest a peak in bacterial diversity at intermediate 

climatic water contents. To evaluate predictions by this aqueous-phase fragmentation-based heuristic 

model (HM), we employ a detailed, spatially-explicit individual-based model (SIM) that mechanistically 

simulates bacterial communities growing on hydrated soil surfaces23,39. The SIM enables systematic 

variations of hydration conditions and tracks the growth and life history of multiple species interacting 

on soil grain surfaces (see Materials and Methods).  

The simple HM does not differentiate between the roles of legacy and environmental conditions in 

shaping soil bacterial diversity. As evidenced from the choice of climatic averaging and the implicit 

representation of species with no taxonomic attribution, the focus lies on the role of aqueous habitats 

and their average connectivity. Other factors at play such as soil chemistry and the presence of larger 

organisms are not modeled. We refer to ’microbes’ for aspects that apply to all microbial life in soil 

(bacteria, fungi, protists and viruses), and specifically to bacteria for modeling and quantification of 

diversity and abundance. Summarizing, we propose a hydration-centered modeling framework that 

considers the interplay of climatic water content; carbon input flux and temperature in shaping soil 

microhabitats and thus bacterial diversity. 

1.2 Results 

1.2.1 Estimation of soil bacterial carrying capacity 

We evaluated theoretical estimates of soil bacterial carrying capacity using previously published 

measurements of soil microbial carbon8. The heuristic model (HM) assumes that a certain proportion 

of the annual NPP-derived organic carbon input is allocated to bacteria (24% of NPP for bacterial 

respiration42,43). We found that varying the range of expected values (14-30% of NPP42) had little 

impact on estimates of carrying capacity. A constant value of this respiratory fraction was therefore 

considered based on mechanistic model simulations42. We employ a basic estimate of bacterial cell 

maintenance rate of 1.5 gC gCcell
-1 y-1 (≈10-4 gC gCcell

-1 h-1) and adjust it according to the local mean 

annual temperature (MAT)44 to account for different climatic regions. Combining local annual NPP and 

adjusted cell maintenance rate, we derive estimates of soil bacterial carrying capacity as upper bounds 

for soil bacterial cell density (Fig. 1.2 a). Despite the many simplifying assumptions, we obtain 

reasonable estimates of potential soil bacterial carrying capacity that are comparable with 

observations of realized bacterial cell density across a range of environmental conditions. Model 

estimates of soil carrying capacity for three values of MAT are depicted in Figure 1.2 a (representing 

the median of three groups: ≤ 0 °C, 0 - 15 °C, > 15 °C with -2, 9 and 19 °C, respectively). Observed cell 

densities tend to be higher for colder regions as considered by the HM. We note that soil bacterial cell 

density is expected to vary with soil depth due to the distribution of organic carbon flux from the soil 
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surface and distribution by plant roots8. Soil bacterial carrying capacity decreases steeply with depth 

and was represented parametrically by a lognormal distribution (μ = 0.18, σ = 1.00) (Fig. 1.2 b). The 

lognormal distribution provided a better global representation of the average topsoil carrying capacity 

(upper 10 cm, A1 Supplementary Figure 1) over the previously reported exponential model8. It is 

important to keep in mind that the estimated soil carrying capacity was defined independently from 

bacterial diversity and values were calculated globally based on NPP, MAT and soil depth. 

  

  

1.2.2 Modeling bacterial diversity considering climate and soil 

The simple heuristic model (HM) was developed in two conceptual steps. We first assumed only a 

single species per aqueous habitat. This approach, although useful as a heuristic, exhibited some 

limitations for large aqueous habitats under wet conditions (see comparison of species abundance 

distributions below).We thus adapted the model to allow multiple species in large habitats by 

assigning the number of species Nsp proportional to the length scale of a habitat of size s (Nsp ~ s1/d, d 

= 2 or 3 = dimensionality). Hence, the HM links species richness to the soil aqueous-phase 

fragmentation via percolation theory and accommodates the possibility of multiple species per 

habitat. For most unsaturated conditions the refined formulation does not alter the prediction since 

small habitats are likely to host only a single species. In the following we refer to the multispecies HM 

if not stated otherwise. We have used median values of global soil carrying capacity to describe trends 

Fig. 1.2 Soil bacterial abundance varies in 

relation to carbon input, temperature and soil 

depth. a, Bacterial cell density at soil carrying 

capacity as a function of net primary productivity 

(NPP) with model estimates sensitive to mean 

annual temperature (MAT) (solid lines). 

Estimates are compared with measured data of 

microbial biomass8 converted to bacterial cell 

density and are grouped by temperature (MAT ≤ 

0 °C, 0 °C > MAT ≤ 15 °C, MAT > 15 °C). Each 

group’s median is reported in the figure legend 

in blue, green and orange, respectively. The 

distributions of cell densities are indicated for 

each temperature group as the central 50 and 

95% range. b, Variations of bacterial cell density 

with soil depth. The log-normal fit provides 

bounds on cell density (carrying capacity) for 

intermediate MAT (solid line) and for the central 

95% of NPP (shaded area). Observed estimates 

of cell density are reported for their average 

sampling depth. Most samples were taken above 

10 cm as shown in the boxplot. Source data are 

provided as a Source Data file. 
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in soil bacterial diversity across soil types and climatic regions. Comparisons of model estimates with 

empirical observations of bacterial richness obtained from the studies of Thompson et al. (EMP)18 and 

Delgado-Baquerizo et al. (DEL)20 are depicted in Figure 1.3 along with the mechanistic predictions by 

the SIM. We have expressed mean soil hydration status via the climatic water content that is a proxy 

for average soil wetness and habitat connectivity. Soil and climatic variables were compiled from 

different sources (A1 Supplementary Table 1) with matched geographical coordinates and soil depths 

for the samples. We present soil bacterial richness (total number of types) and note that taxonomic 

assignment was absent for the phylotypes detected in EMP. Bacterial richness was binned by water 

contents because some hydration conditions were overrepresented (bin width: 0.05). Since richness 

in the EMP data was measured at different soil depths, they were also grouped to top and sub-soil 

(<25 cm and ≥25 cm). Exact number of samples per group are reported in A1 Supplementary Table 2. 

The EMP data displays a tendency of lower values of richness in the sub-soil (Fig. 1.3 a). In the DEL 

dataset, measurements were taken at the same soil depth, and soil pH is reported instead (Fig. 1.3 b). 

We observe a strong tendency of lower soil pH in climatically wetter soils. The results depict an 

average decrease in bacterial richness where the soil becomes saturated as also predicted by the HM 

for median soil carrying capacity (Fig. 1.3 a and b). The modeled sensitivity to soil carrying capacity is 

shown for a scenario of reduced cell densities (e.g. less carbon input to deeper soil layers; Fig. 1.3 a – 

dashed line). We emphasize that parameters were not fitted to observed diversity data, but rather are 

based on mean values for soil properties (porosity θs = 0.49 and 0.47; sample length L = 5 and 6 mm; 

textural length δ = 0.07 and 0.1 mm; for EMP and DEL, respectively). Additionally, we used a fixed 

value for the critical water content (θc ≈ 0.15) and a threshold for the number of cells Ncell needed to 

model occupancy of potential habitats (Ncell > 4000). Lastly, we compared the aqueous-phase 

fragmentation-based HM to numerical simulations of the SIM. We simulated the spatially-explicit 

growth and movement of individual cells in a diverse bacterial community on heterogeneous soil pore 

surfaces. Qualitatively, both HM and SIM predict similar trends of variations in bacterial richness with 

soil hydration conditions as estimated from the EMP and DEL datasets (Fig. 1.3 a and b). In addition to 

removing single cells (singletons) from the simulated communities, the modeled species counts were 

rarefied to 5000 and 1000 for comparison with EMP and DEL, respectively. To compare with the DEL 

dataset, simulated bacterial richness is reported only for the 512 most abundant species and describes 

the observed invariance of richness towards low climatic water contents (Fig. 1.3 b). The discrepancy 

in water contents where richness peaks (between HM and SIM) is attributed to the dimensionality of 

the models (three for HM, two for SIM) and is well captured by the percolation-based HM in two 

dimensions (A1 Supplementary Figure 2). 
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1.2.3 Species abundance distribution varies with hydration status 

We quantified variations in bacterial species abundance distribution (SAD) with soil attributes and 

climatic water contents in comparison with empirical estimates from the EMP and DEL datasets (A1 

Supplementary Figure 3). Here we used soil properties and carrying capacity specific for each 

geographical location and soil depth. The results show good alignment of the single species model 

predictions with observed relative SADs and resulted in Pearson correlation values of 0.84 (n = 230) 

and 0.76 (n = 218) for the EMP and DEL datasets, respectively (A1 Supplementary Figure 3 a and b). 

Nevertheless, the single species HM erroneously predicts a higher proportion of the most abundant 

species than observed. We attribute this systematic overestimation to the stringent assumption of 

one single species per aqueous (micro-) habitat. This discrepancy suggests that the single species per 

aqueous habitat assumption may not hold for very large aqueous habitats in wet soil that could host 

multiple species. To rectify this limitation, we considered a scenario where the number of species Nsp 

is assumed proportional to the size s of an aqueous habitat (Nsp~s1/3). This relaxed occupancy 

assumption improved Pearson correlations to values of 0.88 (n = 230) and 0.84 (n = 218) for the EMP 

and DEL datasets, respectively (A1 Supplementary Figure 3 c and d). Predictions by the HM for ranked 

SADs compare qualitatively with observations that were grouped by average hydration conditions (A1 

Fig. 1.3 Observed and predicted variations in soil 

bacterial diversity with climatic water content. 

a and b, Estimates of bacterial richness from two 

studies are binned by climatic water contents (bin 

width: 0.05) and the median and interquartile 

range are reported (circles and bars, respectively). 

The exact number of samples per group are listed 

in Supplementary Table 2. Individual data points 

are shown for bins containing less than ten 

samples (small circles). The solid black lines 

correspond to predictions by the fragmentation-

based heuristic model (HM) for median carrying 

capacity specific to each dataset. The square 

symbols, thin solid line and shading (mean, rolling 

mean ± SD, n = 12) depict simulated bacterial 

richness using the spatially-explicit individual-

based model (SIM) for different water contents. a, 

Bacterial richness from the Earth Microbiome 

Project (Thompson et al. - EMP)21 was reported for 

different soil depths and thus grouped accordingly 

(<25 and ≥25 cm, top- and subsoil, respectively). 

The dashed line represents a model scenario with 

reduced carrying capacity by considering only the 

subsoil. b, Soil bacterial richness from a recent 

study (Delgado-Baquerizo et al. - DEL)23. Colors 

indicate reported soil pH, which has been shown 

to be affected by climate52. For comparison with 

the DEL dataset, only the top 512 species were 

considered in the SIM. Source data are provided as 

a Source Data file. 
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Supplementary Figure 4). An increase in dominance of the most abundant bacterial species is visible 

in the ranked SADs of both datasets under sufficiently wet conditions (A1 Supplementary Figure 4 b 

and c). 

1.2.4 Global patterns of soil bacterial habitat diversity 

Motivated by the general agreement with observations of bacterial richness and the SADs produced 

by the HM, we used highly resolved global datasets for soil properties, NPP and precipitation as inputs 

to estimate global patterns of soil bacterial habitat richness (Fig. 1.4 a). Recall that a central element 

of the model is the link between the number of distinct aqueous habitats per soil volume and soil 

bacterial richness. Additionally, we considered the sizes of aqueous habitats to yield spatially resolved 

distributions of the Shannon index of bacterial diversity patterns (Fig. 1.4 b). We note that the 

modeled soil bacterial diversity follows constraints imposed by local soil carrying capacity where high 

bacterial cell numbers are associated with locally high NPP and low cell maintenance requirements. 

Both diversity indices exhibit spatial patterns with distinct regions of increased diversity associated 

with climatic transition zones (e.g., the Sahel). This pattern is more pronounced when considering the 

Shannon index and suggests that soil bacterial community evenness, indicative of how equally habitats 

are partitioned, is sensitive to soil wetness. Such an association is also observed empirically where 

evenness decreases with increasing climatic water contents (Pearson r = -0.17 and -0.43 for EMP and 

DEL, respectively; A1 Supplementary Figure 5a).  

 
 

Fig. 1.4 Modeled global biogeography of soil 

bacterial diversity. Global patterns are modeled 

based on aqueous microhabitats in the top 25 

cm considering climate, NPP and soil type. a, 

Global map of predicted soil bacterial richness. 

High values correspond to more heterogeneous 

soil environments, potentially harboring a larger 

number of habitats. b, Global distribution of 

Shannon index for estimated bacterial diversity. 

In addition to richness, the Shannon diversity 

index considers the relative abundance of 

unique habitats. Higher values of the Shannon 

index could translate to more even bacterial 

communities. 
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1.2.5 Disentangling soil bacterial abundance and diversity 

To address the challenge of disentangling bacterial abundance and diversity, we compared bacterial 

community evenness with climatic water content and carrying capacity (Fig. 1.5). Evenness decreases 

gradually with climatic water content and with increasing soil carrying capacity (Fig. 1.5, A1 

Supplementary Figure 1.5 b). The results are consistent with the tendency of wetter conditions being 

associated with an increase in cell densities and was confirmed (with no prior assumptions) using 

detailed mechanistic modeling (SIM) for small spatial and short temporal scales (A1 Supplementary 

Figure 6). In the aqueous-phase fragmentation-based HM, predicted bacterial cell densities are 

independent of climatic water contents. This could result in unrealistic values relative to empirical 

observations. We therefore used pairs of values for carrying capacity and climatic water contents to 

constrain the HM for evenness prediction (Fig. 1.5). Considering the relation between climatic water 

content and soil carrying capacity highlights the sensitivity of HM predictions to bacterial cell density 

as also observed in the mechanistic simulation results of the SIM. The dependency of cell density on 

climatic water content in the SIM results in a persistent decrease of evenness with increasing water 

content (A1 Supplementary Figure 7). When considering paired values of water content and cell 

densities obtained from the SIM, the simpler HM captures the simulated trends reasonably well (A1 

Supplementary Figure 7). Although beyond the scope of this study, we observed that pre-processing 

measurements of relative species abundance may affect diversity metrics such as richness and 

evenness, which alters the apparent tendencies (A1 Supplementary Figure 8). 

 

 

 

Fig. 1.5 Bacterial community evenness decreases 

with carrying capacity and climatic water contents. 

Evenness from two independent studies is shown 

together with estimated cell density (carrying 

capacity). Samples were aggregated by latitude, 

longitude and soil depth (EMP21, n = 484 and 

DEL23, n = 218). The median and interquartile 

ranges (colored symbols and bars) are displayed 

for groups of water contents (bin width: 0.05, 

number of samples see Supplementary Table 2). 

Individual data points are shown for bins 

containing less than ten samples (small circles) and 

samples with cell density lower than 1012 m-3 were 

removed. Evenness predicted by the heuristic 

model (HM) is calculated using paired values of 

climatic water content and carrying capacity 

(evaluated for every sample). Using the joint data 

of water content and cell density as model input, 

the HM reproduces the observed tendency of 

evenness. A locally weighted scatterplot smooth 

(LOWESS) of modeled evenness is shown for the 

HM predictions (solid line). Source data are 

provided as a Source Data file. 
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1.3 Discussion 

The heuristic nature of the aqueous-phase fragmentation-based model (HM) precludes comparison 

of bacterial richness and abundance on a per sample basis, as climatic assumptions and associated 

large-scale variables are not likely to apply at a particular sampling location and time. Nonetheless, 

the proposed HM captures the salient features of global trends in bacterial richness related to climate, 

biome and soil type. Our estimate of soil bacterial cell density represents an upper bound on soil 

bacterial abundance (carrying capacity) and shows general agreement with measurements of soil 

bacterial biomass carbon8. It tracks the temperature dependency of reaction rates44 and provides an 

independent measure of maximal cell density that is sensitive to climate and organic carbon input by 

vegetation. Bacterial diversity increases towards lower values of climatic water contents (i.e., with 

increased aridity30), as long as soil bacterial life is not limited by low organic carbon input. Assuming a 

constant soil bacterial carrying capacity, we can attribute much of the variations in bacterial richness 

to the microscale behavior of soil hydration conditions (Fig. 1.3). Surprisingly, the trends of bacterial 

richness for both surveys EMP18 and DEL20 were very similar despite their different objectives and 

processing protocols of the genetic information; namely the use of amplicon sequence variants in EMP 

and operational taxonomic units in DEL (Fig. 3 a and b). We note that the values of bacterial richness 

in the DEL dataset saturate towards lower values of climatic soil hydration (Fig. 1.3 b). This is likely due 

to the truncation of species richness used in that study which focuses on the most abundant soil 

bacteria20. These, highly abundant species, might be the last to disappear under reduced carrying 

capacity and therefore do not show a decline towards dry conditions. The data available at low climatic 

water contents are sparse and do not provide support for the predicted steep decline of bacterial 

diversity as soil becomes dry that was previously reported with increased aridity at large scales30. 

However, a significant decrease in bacterial richness was also observed in a recent statistical meta-

analysis for climatic scales17 and could be confirmed using the SIM (Fig. 1.3 b). Additionally, it has been 

reported that bacterial diversity declines sharply with moisture in dry soils of Antarctica37 and 

decreases with soil relative humidity along transects of the Atacama desert45. Microcosm experiments 

revealed an increase in richness with moisture that peaks at intermediate water contents that 

promote rare bacterial species46. Similarly, bacterial richness was highest at intermediate climatic 

water contents where isolated aqueous habitats are numerous and sufficiently well supplied by 

diffusion to realize the soil carrying capacity (Fig. 1.3). This observation is supported by the 

mechanistic simulation results of the SIM, which explicitly considers the dynamics and spatial 

structure of the bacterial community (Fig. 1.3). The generality of the aqueous-phase fragmentation-

based approach permits comparison of systems with different dimensionality and can account for the 
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shift of maximal richness towards higher water contents when comparing the HM with the two-

dimensional simulation of bacterial life on hydrated surfaces by the SIM (A1 Supplementary Figure 2).  

Increasing the organic carbon input and thus soil bacterial abundance seems to support higher 

diversity of soil microorganisms30. This is in line with the observation of decreasing bacterial richness 

with soil depth (Fig. 1.3 a) that is often attributed to diminishing carbon inputs with depth (Fig. 1.2 b). 

However, considering the various interacting factors at play, the general picture might be more 

complicated. An increase in soil carrying capacity may not necessarily translate to increased bacterial 

diversity as evidenced by declining community evenness (Fig. 1.5, A1 Supplementary Figure 5). This 

could be due to dominance of a few species that may cluster near nutrient hot-spots47, or loss of 

oligotrophic species that would be outcompeted in well-connected and dense communities25. We 

observe sensitivity of bacterial evenness to climatic water contents (Fig. 1.5), also in relation to soil 

carrying capacity (A1 Supplementary Figure 5). However, care should be taken regarding the 

interpretation of bacterial richness and evenness, since biases introduced by data processing and 

sampling could depend on the shape of the underlying SAD (A1 Supplementary Figure 8). Mechanistic 

models, such as HM and SIM, are valuable tools to investigate such dependencies as illustrated by 

considering only the most abundant species (Fig. 1.3 b) or increasing sampling effort and removing 

species present at low abundance (A1 Supplementary Figure 8 a and b, respectively). Nonetheless, an 

inherent tradeoff between availability of nutrients and protection by spatial isolation appears to play 

an important role in the establishment and maintenance of high soil bacterial diversity17,32,47. In other 

words, the relation between bacterial abundance and diversity is only positive when the aqueous 

phase is fragmented and spatial isolation suppresses the dominance of few species. As aqueous 

microhabitats become connected following soil rewetting by rainfall or irrigation, competition and 

other trophic interactions between bacterial cells are likely to reduce soil bacterial diversity (Fig. 1.3 a 

and b) by reducing the communities evenness (Fig. 1.5). Many other factors such as pH5,18,29,33, nutrient 

composition21, carbon sources distribution22,47, stoichiometric constraints8,29 and metabolic 

dependencies48 shape soil bacterial abundance and diversity and could contribute to the discrepancy 

between our HM and empirical observations. Our study suggests that some of those factors might be 

associated with climatic hydration conditions. Interestingly, we find that soil samples exhibiting high 

bacterial diversity at intermediate climatic water contents coincide with near neutral pH values. In 

contrast, samples at low and high climatic water contents show high (basic) and low (acidic) pH 

tendencies, respectively (Fig. 1.3 b). This is supported by studies that relate soil pH with differences in 

soil water balance at climatological timescales49. We consequently expect soil pH to result from 

differences between precipitation and evapotranspiration as described by climatic water contents (A1 



Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes 

24 

Supplementary Figure 9). Teasing apart such confounding associations requires detailed statistical 

analysis and experimental validation, which are best conducted in dedicated studies.  

Using a single parameter set, largely based on standard percolation theory combined with data on soil 

properties, our HM predicts SADs that closely resemble empirical observations (A1 Supplementary 

Figures 3 and 4). Nevertheless, the increased aqueous-phase connectedness in climatically wet soils 

may also promote interactions that are suppressed under spatial isolation of dry conditions37. 

Processes that support bacterial species coexistence across small distances are not captured by the 

present model and would result in persistent underestimation of bacterial diversity (unless provisions 

are introduced as done for very large aqueous habitats – see A1 Supplementary Figures 2 and 3). 

Another inherent limitation of the analyses presented here is the focus on soil bacteria ignoring the 

interplay with other soil microorganisms that comprise Earth’s microbiome34. For example, fungi could 

play an important role in modifying soil bacterial habitats5 and are currently only considered in the 

partitioning of microbial carbon.  

The framework presented in this study captures the salient spatial trends in soil bacterial diversity at 

climatic timescales and provides insights into effects of habitat fragmentation on the prevalence of 

bacterial interactions in natural soil. This is particularly important for the interpretation of species co-

occurrence and interspecific interactions48. Such interactions between different species become 

possible only for conditions supported by the soil aqueous-phase connectedness37. This promotes 

diversity by enabling macroscopic co-existence21,23,38 in soil bacterial communities competing for space 

and a common resource. 

A unique aspect of the HM is the ability to bridge scales from soil pores to biomes where information 

at both scales is preserved. Further investigations are required to test some of the model implications 

at different scales. For example, elucidating the dependency of cell microscale distribution on soil type 

and hydration conditions could provide insights into the processes shaping bacterial interactions in 

soil. Additionally, taking into account factors affecting the partitioning of carbon at the ecosystem 

scale could refine model estimates of bacterial abundance beyond potential carrying capacity. 

Nonetheless, modeling climate and soil specific bacterial diversity offers a useful reference for 

comparing effects of climatic shifts (e.g. in temperature, precipitation) or land use change (e.g. in 

intensity of agricultural management or restoration to natural ecosystems) on soil bacterial 

communities that could guide future exploration of the soil bacterial micro- and macro geography.   
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1.4 Materials and Methods 

In the following, we provide a detailed overview of the methods used in the study and list key 

assumptions. Although the heuristic model (HM) uses a yearly timescale for climatic averaging, the 

framework could be applied to finer and more resolved datasets. The global predictions of soil 

bacterial diversity were based on a 0.1°x0.1° grid to harmonize raster layers. For a description of data 

sources see A1 Supplementary Table 1. Variables added to the datasets of point measurements are 

taken at the native, highest spatial resolution of the respective property. Where necessary and not 

explicitly stated, missing values were imputed using the mean value of the corresponding variable. 

1.4.1 Soil bacterial carrying capacity derived from NPP 

The flux of carbon into the soil is taken from the MODIS NPP dataset50. We have used mean annual 

values (2000-2015). Missing values (e.g. desert) were imputed with values obtained from the Miami 

model51 using parameters fitted to the non-missing values of MODIS NPP. Only an average fraction (ϵ 

= 0.24) of the total NPP entering the soil column is available for bacterial respiration42,43. The vertical 

distribution of microbial carbon in the soil column follows the distribution of plant roots8. This allowed 

us to impose the depth z at which most of the carbon is released by integrating over the sampled 

interval dz and calculating the fraction of NPP available for bacteria at a particular depth (NPPb,𝑧 =

𝜖
NPP

𝑑soil
𝐹𝑧 = 𝜖

NPP

𝑑soil
∫ 𝑓(𝑧) 𝑑𝑧). The factor Fz denotes the fraction of carbon available at a particular 

depth and is described by 𝑓(𝑧) for the entire depth of the soil profile considered (dsoil = 1 m). Assuming 

no net growth of the bacterial community so that only energy requirements for maintenance 

metabolism are satisfied, permits computation of maximal bacterial cell density ρcell (m-3). This soil 

carrying capacity supported by the input flux of carbon is calculated using equation (1).  

𝜌cell(𝑧, 𝑇) =
NPPb,𝑧

𝑓𝑇𝑚𝑀c
          (1) 

Using a constant mass of carbon per cell Mc and by fitting maintenance rate m, we calculated the 

bacterial cell density ρcell. Temperature dependency was implemented as a factor fT based on the 

Schoolfield model44 using mean annual temperature (MAT) from the WorldClim dataset52. 

1.4.2 Soil bacterial abundance dataset 

Xu et al. (XU)8 compiled a dataset for the abundance of soil carbon associated with microbial biomass. 

This was used here as a reference for bacterial abundance for a range of geographical locations. We 

considered the relation between the soils carbon to nitrogen (C:N) ratio and the proportion of 

bacterial biomass to total microbial biomass53. Total microbial biomass carbon contains mainly fungal 

and bacterial carbon (Cmic ≈ CF + CB). A piece wise linear function was used to describe the ratio of 

fungal to bacterial carbon (RFB = CF / CB) with varying C:N ratio of the soil organic matter. This ratio was 

taken as a constant below C:N = 18.4 (RFB = 5, see42) and increases with a slope of 0.5 above said 
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value53. From RFB the relative proportion of bacterial biomass fB was calculated (fB = 1 / (RFB + 1)). A 

carbon content per cell54 of Mc = 8.6x10-14 g C was used in all conversions of soil bacterial biomass and 

for the estimation of soil carrying capacity. To determine the decay of carbon input in the soil profile 

(fz) we first averaged the bacterial biomass per soil depth. Averaging was necessary to avoid putting 

more weight on more frequently sampled depths. Values were integrated from the soil surface to the 

maximum depth of two meters. This cumulated bacterial biomass was normalized by its total sum to 

obtain the cumulative fraction of biomass with soil depth. For parameter estimation, we fit the 

cumulative lognormal distribution to the cumulative fraction of bacterial biomass yielding μ = 0.18 and 

σ = 1.00 for parametrization of Fz. We chose a lognormal distribution as it gave a better fit to the 

vertical distribution of measured bacterial biomass than the previously used exponential model (A1 

Supplementary Figure 1). The global maintenance rate was subsequently estimated by fitting equation 

(1) for the soil carrying capacity to measurements of soil bacterial biomass carbon8 using inputs of 

local NPPb,z and MAT. The optimization yielded a maintenance rate of m = 1.5 gC gCcell
-1 y-1. 

1.4.3 Soil bacterial diversity datasets 

Two datasets of bacterial species/phylotype abundances based on 16S rRNA sequencing were 

employed in this study. Data from the Earth Microbiome Project as published by Thompson et al. 

(EMP)18 and data collected by Delgado-Baquerizo et al. (DEL)20 were used to estimate bacterial 

diversity. Diversity was calculated on the data ‘as provided’ using the procedures outlined below. 

Except some samples in the EMP dataset had to be removed due to misclassification or unsuitable 

conditions. The following procedure was applied to filter the EMP data based on metadata: Samples 

labeled as ‘Soil(non-saline)’ where selected if the environmental material was either ‘soil’ or ‘bulk soil’. 

We then removed samples containing the features ‘oil contaminated soil’ or ‘extreme high 

temperature habitat’. Tables of sampled abundances of phylotypes were then used as published (90 

bp qc filtered and rarified to 5000 for EMP (n = 2871) and the top 511 phylotypes after taxonomic 

assignment for DEL (n = 237)). Variables relevant to soil and climate were added according to reported 

geographical coordinates and soil depth resulting in 484 and 218 sites for EMP and DEL, respectively. 

The mass of soil is taken from the extraction protocol used in the studies. For DEL 0.25 g of soil and 

for EMP an average of 0.175 g were chosen. 

1.4.4 Estimating soil specific ‘climatic’ water content 

A metric for the average hydration conditions relies on estimation of a representative value of water 

content based on rainfall patterns. We use a simplified approach where the periods in which soil drains 

or dries following a rain event are calculated. We apply a threshold to the precipitation time series to 

remove small wetting events that immediately evaporate and estimate the time in between rain 

events. The average duration between events is the characteristic dry down for given geographical 
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locations. During this time, water mass is lost at a constant rate determined by (mean daily) potential 

evapotranspiration (PET) resulting in an exponential reduction of average water content within the 

considered soil profile (dsoil = 1 m). We assume for simplicity that a daily temporal resolution is 

compatible with the cessation of internal drainage of most soils. Hence, climatic soil water content 

does not exceed field capacity (a stable water content after internal drainage becomes negligible). For 

simplicity, we define the volumetric field capacity FC (Vwater/Vsoil in m3 m-3) as half of the porosity s 

(Vvoid/Vsoil in m3 m-3). The latter is obtained using an empirical (pedo-transfer) function55 that relates 

commonly measured soil properties (sand-, silt-, clay- contents and bulk density56) to soil porosity. The 

MSWEP57 precipitation records of 37 years (1979–2016) are used to derive average rainfall quantities 

per wetting-drying cycle. The spatial resolution of the precipitation data is roughly 11 km at the 

equator and the temporal resolution is given at a sub-daily (3 hourly) timescale. The data is down 

sampled to daily resolution as the dynamics of soil wetting and drying relevant for the bacterial habitat 

are expected to be within this timescale. Further, the precipitation time series is subjected to a 

threshold taken from estimates of PET58 based on temperature and radiation52 to identify wetting 

events. The run lengths between wetting events are measured and averaged across wetting cycles. 

The key result of the analysis is the mean time interval between rainfall events τ (an ensemble 

average) for every location. This quantity combined with daily PET (m d-1) were used to deduce the 

climatic water contents τ (Vwater/Vsoil in m3 m-3) according to equation (2). 

𝜃𝜏 = 𝜃FCe−𝛼<𝜏> with 𝛼 =
PET 

𝑑soil 𝜃FC
        (2) 

The significance of τ is that it combines rainfall patterns, PET, and soil properties over climatic time 

scales and provides a measure of the average hydration conditions experienced by soil bacteria in a 

particular geographical location (A1 Supplementary Figure 9). 

1.4.5 Estimation of aqueous habitat size distribution 

We estimated the size distribution of distinct aqueous habitats based on soil properties and hydration 

conditions (e.g., climatic water content). Soil water content was treated as the aqueous-phase 

occupancy probability p (the probability of finding a water filled pore or roughness element) that, in 

turn, enabled the application of standard percolation theory to represent the characteristics of 

aqueous bacterial habitats (sizes and numbers). We considered the soil as a three-dimensional lattice 

(two-dimensional (2D) for comparison with the SIM) with a critical occupancy probability and universal 

exponents that determine the number of (aqueous) patches and their sizes59. The critical percolation 

threshold pc was multiplied by the soil void fraction (or saturated water content s) to account for soil 

porosity60. The critical water content is thus defined by equation (3) and could be expressed as critical 

saturation Sc (4) to remove the dependency on s. 

𝜃𝑐 = 𝜃s𝑝c            (3) 
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𝑆c =
𝜃c

𝜃s
= 𝑝c            (4) 

The size distribution of aqueous patches ns(p) was assumed to follow general proportionalities of 

percolation theory (5-7)59: 

𝑛𝑠(𝑝)~𝑠−𝜏𝑒
−

𝑠

𝑠𝜉           (5) 

𝑠𝜉~|𝑝𝑐 − 𝑝|−
1

𝜎           (6) 

𝑃∞~(𝑝 − 𝑝𝑐)𝛽           (7) 

With the patch size s (number of sites/pores) for s >> 1, Fisher exponent τ ≈ 2.18 (2D: τ = 187/91), 

cutoff exponent σ ≈ 0.45 (2D: σ = 36/91) and cutoff size sξ 
59. P∞ is the fraction of the domain occupied 

by a spanning (algebraically infinite) patch with exponent  ≈ 0.41 (2D:  = 5/36). The patch sizes follow 

a power law distribution at p = pc. Away from this critical point when the cutoff size sξ is exceeded, 

patches shrink with decreasing water content (p < pc) or merge and grow when approaching saturation 

(p > pc) as patches of size s > sξ become exponentially scarce. Although, the prediction is strictly valid 

only for p close to pc, we assume such relations to hold for the range of conditions considered. The 

occupancy probability p was thus substituted with climatic water content τ and pc with a critical water 

content c ≈ 0.15 that correspond to a simple cubic lattice with porosity s.≈ 0.5 (triangular lattice in 

2D; c ≈ 0.25).  

To account for different soil types, a characteristic length scale δ is estimated based on the geometric 

mean diameter of soil particles61. This length scale is used for normalization of the aqueous patch size 

distribution in the range of water contents and patch sizes relevant for bacterial life. The soil type 

length scale δ and the system size L were considered (soil domain or sample size); here we used the 

mass of soil sampled msoil and bulk-density ρsoil specific to soil type (8). The total number of candidate 

sites N0 in the sampled soil was then determined from simple geometry considering the dimensionality 

d = 2 or 3 (9). 

𝐿 = (
𝑚soil

𝜌soil
)

1

𝑑
           (8)  

𝑁0 =
𝐿𝑑

𝛿𝑑            (9) 

We approximated the behavior of the percolation transition using a bounded logistic curve that 

provides a smooth function 𝑃̂∞ 

𝑃̂∞ =
𝜃

1+e−𝑘(𝜃−𝜃c)          (10) 

where k describes the ’sharpness’ of the transition (k = 16 for all calculations). The total size of aqueous 

clusters or potential habitats Ns was normalized as follows: 

𝑁𝑠
0(𝜃, 𝑁0) =

𝜃−𝑃̂∞

∑ 𝑠 𝑛𝑠(𝜃)
𝑁0
1

           (11) 
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𝑁𝑠(𝜃, 𝑠) = 𝑁𝑠
0(𝜃, 𝑁0) 𝑠 𝑛𝑠(𝜃)         (12) 

Thus requiring, by pre-factor Ns
0, that the total volume of aqueous patches conserve the volume of 

soil water at a given state of hydration. For practical reasons, subsequent calculations of aqueous 

patches proceed by removing the largest patch after normalization (this large patch biases the 

counting of habitats in a sample). 

1.4.6 Calculation of bacterial species diversity 

The distribution of aqueous patches derived from percolation theory and their properties defined the 

degree of spatial isolation and restricted the number of potential habitats. Both aspects were 

expected to alter the bacterial diversity patterns observed in natural soils. The estimated aqueous 

patch sizes and their prevalence defined the distribution of bacterial habitats. Together with carrying 

capacity we can estimate the number of cells within a single (habitat) size class s (13).  

𝑁cell,𝑠 = 𝜌cell 𝑠 𝛿𝑑          (13) 

Aqueous patches with cell count below a prescribed threshold (or limit of detection, Ncell < 4000 for 

comparisons with empirical data) were removed from the total number of potential habitats Ns. 

Conceptually this can be interpreted as the discrete nature of bacterial cells that limits counts to 

integers greater than one. Empirically, there exists a lower limit of detection and a minimal number 

of cells from a single species (>>1) is needed to contribute to the measurement of bacterial richness. 

Initially, we assumed that only a single species occupies a patch by outcompeting possible co-

inhabitants. Herby, the modeled species abundance distribution (SAD) follows the distribution of 

aqueous habitats with abundances bounded by carrying capacity within a defined volume of soil. 

Subsequently we introduced the possibility of multiple species occupying large aqueous patches (in 

proportion to their size and dimension; Nsp ~ s1/d, d = 2 or 3) to correct for model bias of over predicting 

the dominant species. The exponent (1/d) suggests that the number of species per habitat grows with 

the average distance between any two points selected randomly within a single habitat of size s. The 

limit of detection was not used for the comparison of SADs as the total number of habitats was 

truncated to the number of observed species. 

Bacterial diversity was calculated in the general form62 for all SADs (modeled and data): 

  𝑞𝐷 = (∑ 𝑝𝑖
𝑞SR

𝑖=1  )
1/(1−𝑞)

          (14) 

With relative species abundance pi and species richness SR. For q = 0 the equation corresponds to the 

weighted harmonic mean and equals the actual number of types (SR). The equation is not defined for 

q = 1 where the limiting form is described by the well-known Shannon index H (15) and evenness E1,0 

is calculated as defined by equation (16)62. 

lim
𝑞→1

 𝑞𝐷 =  1𝐷 = exp(𝐻) = exp (− ∑ 𝑝𝑖ln (𝑝𝑖))SR
𝑖=1       (15) 
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𝐸1,0 =
 1𝐷

 0𝐷
           (16) 

1.4.7 Spatially-explicit individual-based model (SIM) 

An individual based approach was previously developed to model growth of diverse bacterial species 

on heterogeneous soil surfaces23,39 and was adopted for the current study. The spatial domain was 

represented by a hexagonal grid with periodic boundary conditions (length L = 1 mm; area of a grid 

cell Ahex = 100 μm2; and porosity s = 0.49). Grid cells consisted of water holding elements with volumes 

drawn from a random uniform distribution (unif) that have a maximal size equal to the spacing of the 

grid (dx = 1.1x10-5 m). Thereby the modeled domain represents a slab of the soil pore space with a 

defined volume (Vsoil = L2 dx). The bulk water content is prescribed to the domain as a control 

parameter and spatially distributed relative to the sizes of grid elements while conserving the total 

volume of water (Vwater = ∑ Vwater,x,y). Based on the local volume of water, an average water film 

thickness h was calculated (hwater,x,y = Vwater,x,y/Ahex). The heterogeneity of the water film thickness 

modified the mass transfer between grid cells by changing the cross-sectional area that contributed 

to the diffusive flux. Diffusion was solved using the implicit finite differences method with bacterial 

consumption represented as a sink term. Diffusivity is taken for a small molecule that is readily 

available for bacterial consumption (e.g. glucose) and does not vary spatially (D = 6.7x10-10 m2 s-1). The 

simulation period corresponded to eight days at a one-minute time step. Initial concentration of 

nutrients was constant in space and randomly replenished to initial concentration over time to mimic 

a fluctuating environment. The arrival of nutrient pulses was modeled as a Poisson process with an 

average rate of one arrival every four hours. The initial nutrient concentration was set to provide 

enough carbon to sustain a fixed cell density (1017 m-3, corresponding to high carrying capacity) and 

was distributed evenly among nutrient pulses. The mass of nutrients locally available for bacterial 

consumption depended on the volume of water in a grid cell. All simulated bacteria were represented 

as elongating cylindrical capsules that consume a common carbon source dissolved in the aqueous 

phase. The diversity and multiple species i were prescribed in the model by varying Monod parameters 

(growth rate μmax,i, half saturation constant Ki - additionally maintenance rate mi := 0.01 μmax,i). Species 

specific parameters were randomly selected from uniform distributions of the Monod parameters 

(μmax ~ unif(10-4 h-1, 1.14 h-1), K ~ unif(6.8 g m-3, 680 g m-3)). All other parameters were held constant 

(mass of the cell mcell = 9.5x10-13 g, mass at division mdiv = 2 x mcell, yield Y = 0.5, cell radius rcell = 0.5 

μm). A single cell of each species was inoculated randomly on the domain at the beginning of the 

simulation (species richness SR at t = 0, SRt0 = 4096). Individual cells grew and divided along their axis 

with a slight asymmetry in mass to avoid complete synchrony (fm ~ unif(0, 0.05), mcell,1 = fm mdiv and 

mcell,2 = (1-fm) mdiv). All bacterial cells were subject to active and passive motion and could move 

continuously in the domain. Growth induced shoving represents the passive motion and was 
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implemented by displacing cells relative to their nearest neighbors (only considering the capsule 

geometry as n-spheres; no forces, e.g. capillary, friction, elastic, electrostatic, etc.). Shoving was not 

resolved to full relaxation due to the size of the domain, number of cells and the scale of interest 

(compromise between reduced computational demand and precision of the resulting spatial 

distributions). However, we implemented a simple rule to prevent local crowding: if the projected 

area of bacterial cells in a grid cell exceeded the area of the grid cell (Ahex), bacterial cells were 

randomly picked and moved to form a second layer (piling cells at the z- direction) from which they 

could ‘drop’ down again once space became available. Bacterial swimming motility was permitted 

where the aqueous phase was connected and the water film thickness exceeded cell diameter40. Cells 

aligned their motility trajectories along gradients of the nutrient field, whereas their velocity was 

modified by the water film thickness40 and nutrient concentration63. Additionally, each velocity 

component (vx, vy) is independently multiplied with a random factor to allow for individual trajectories 

(fv ~ unif(0, 2)). Integrating along the projected trajectory of each cell enabled consideration of varying 

water film thickness and prevented cells with high instantaneous velocity from ‘jumping’ across grid 

cells. At the end of the simulation the total number of cells and the number of cells per species were 

measured. To enable comparison of richness estimates from varying sample sizes (e.g. with observed 

species richness or simulations with different cell densities) total cell numbers were rarified to 5000 

and 1000 counts, to compare with EMP and DEL, respectively. For comparison with the DEL dataset 

only the top 512 most abundant species were considered. Singletons, i.e. cells that were sampled only 

once when rarefying, were removed from the counts. The rarefication procedure was averaged across 

15 trials to increase robustness of the diversity estimates. Only community evenness was also 

estimated without rarefication and removal of singletons as it affected the apparent community 

structure (A1 Supplementary Figure 8). 
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Abstract 

Soil bacterial communities are central to ecosystem functioning and services, yet spatial variations in 

their composition and diversity across biomes and climatic regions remain largely unknown. We 

employ multivariate general additive modeling of recent global soil bacterial datasets to elucidate 

dependencies of bacterial richness on key soil and climatic attributes. Although results support the 

well-known association between bacterial richness and soil pH, a hierarchy of novel covariates offers 

surprising new insights. Defining climatic soil water content explains both, the extent and connectivity 

of aqueous micro-habitats for bacterial diversity and soil pH, thus providing a better causal attribution. 

Results show that globally rare and abundant soil bacterial phylotypes exhibit different levels of 

dependency on environmental attributes. Surprisingly, the strong sensitivity of rare bacteria to certain 

environmental conditions improves their predictability relative to more abundant phylotypes that are 

often indifferent to variations in environmental drivers.  

https://doi.org/10.1038/s41598-019-48571-w
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2.1 Introduction 

Delineating biogeographical patterns of soil bacterial richness could offer insights into potential links 

between natural bacterial community traits and belowground ecological functioning64. Various 

external drivers, land use and biome characteristics shape the soil bacterial community composition 

and structure. Spatial mapping of soil bacterial richness remains a challenge due to the high number 

of bacterial phylotypes and the sparse global coverage of available samples65–67 that originate from 

only few biomes. The vast number of possibilities for community assembly across environments with 

high intrinsic heterogeneity limit inference of globally representative biogeographical patterns from 

small-scale measurements66,68. The establishment of reliable global maps of bacterial biogeography 

hinge on inclusion of ample sampling locations and tackle the hurdles of uneven sample sizes and 

primer biases in meta-analyses69. To overcome these limitations towards development of unbiased 

estimates of global bacterial richness patterns, require comprehensive and well-harmonized data sets. 

Additionally, the primary drivers for soil bacterial richness are often obscured by large uncertainty in 

measurements and by sensitivity of species richness to methodology and sampling protocol65. 

Identifying drivers of bacterial richness is particularly error-prone due to the metrics sensitivity to the 

detection of rare and low abundant species; thereby challenges data analysis and interpretation. One 

of the most common predictor (covariate) of soil bacterial diversity is the soil pH29,33,70,71. For near 

neutral soil pH, bacterial diversity peaks and then drops for acidic and basic soils33. Some have argued 

that such a pattern reflects increased abundance of specialist species in such environments or, 

alternatively, that pH is merely a proxy for other environmental factors33. Along with soil pH, many 

other environmental characteristics, such as mean annual precipitation and mean annual temperature 

are expected to affect soil microbial life, yet their effects are difficult to assess independently as they 

are often interlinked and only partly exhibited at scales relevant to soil bacterial habitats10,14. Soil 

hydration status has emerged as a primary factor affecting soil bacterial habitats23,38, as supported by 

empirical observation5,47,72,73. The wetness of a soil affects the connectivity of the aqueous bacterial 

habitats11, thereby modifying interactions and the motility of bacterial cells that in turn affect 

community composition and diversity. Yet few attempts have been made to statistically test the 

dependency of bacterial diversity on climatic soil moisture conditions at the global scale.  

Three recently published datasets of soil bacterial community composition5,18,28 combined with a 

consistent set of covariates (A2 Supplementary Table S1) permit the (i) systematic consideration of 

composite soil and climate variables that could reflect salient conditions of soil bacterial habitats, and 

(ii) enable a process-based understanding of the hierarchy in environmental factors that control soil 

bacterial richness. In this study, we (iii) analyze biogeographic trends to statistically test the 

explanatory power of composite variables, specifically climatic water content, with respect to soil 
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bacterial richness and (iv) predict global biogeographic trends using general additive models (GAM) 

and tree-based methods. 

2.2 Results and Discussion 

Merging the geo-referenced 16S rRNA sequence data resulted in 844 valid soil samples, of which, 320 

representative sampling sites were obtained after sample aggregation (Fig. 2.1 a). Only bacterial 

diversity was analyzed, as the use of 16S rRNA sequences precludes the investigation of fungal 

diversity in the current study. Despite covering all 14 classified biomes of the world74, sampling was 

not even, and some biomes and continents were under- or overrepresented (e.g., deserts contribute 

to about 18.9% of the terrestrial surface, yet only 6.3% of samples originated from these 

environments). From a total of 256,620 amplicon sequence variants (ASV) detected, we removed 

Archaea and unassigned sequences (at kingdom level, 1.55%) leaving 98.45% of bacterial ASVs. For 

ease of communication, we refer to the designated bacterial ASVs as “species” throughout the text. 

The widest range of species richness was observed in deserts (Fig. 2.1 b) and could be attributed to 

the wide span of variations in environmental conditions in such biomes75. The relatively low richness 

in montane grassland and tundra could be indicative of a non-monotonic relation between moisture 

availability and soil bacterial richness. Boreal forests (n=11) exhibited lower richness compared to 

tropical (n=23) and temperate forests (n=122; p=0.0311 and p=0.0063, respectively, Wilcoxon rank 

sum test). This latitudinal shift in species richness5,28 suggests that temperature plays an important 

role in regulating bacterial richness. However, consideration of temperature alone provides no 

distinction between the richness observed in tropical and temperate forests (p=0.6575, Wilcoxon rank 

sum test), suggesting more complex interactions and mechanisms.  

 

 

 

  

Fig. 2.1 Distribution of sites and representative samples obtained from three recent studies (EMBL 5, EMP 21, ZHOU 31) 

used in this meta-analysis. a, Geographical locations of sites (n=320, by continent: AF=27, AS = 42, AU = 30, EU= 55, NA = 

104, SA = 62). Size of the points represents the number of samples that were aggregated within 0.1° x 0.1° cells. Colors 

orange, blue and green represent the three studies EMBL, EMP and ZHOU respectively. b, Bacterial richness grouped by 

biomes (F. forest, G. grassland). Site values are shown in grey, while the red points represent mean values. Boxes show 

the inter quartile range (median as solid line) with bars indicating central 95%-range of values.  
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2.2.1 Univariate analysis of bacterial richness 

We first evaluate trends of species richness considering climate and soil properties within univariate 

general additive modeling. Selected covariates were used that represent different aspects of the soil 

environment (A2 Supplementary Table S1). Climatic water content (CWC) represents the soil water 

storage capacity and climatic water balance based on the number of consecutive dry days (DRY) and 

potential evapotranspiration (PET) (A2 Supplementary Methods). It is a proxy for the soil’s wetness, 

its dynamics and aqueous phase connectivity. Both shape the number of distinct aqueous habitats and 

their connectedness in a soil. We found an optimal CWC in the range of 0.15 to 0.20 where bacterial 

richness peaks (Fig. 2.2 a). A generally linear drop in richness seen towards low water availability is 

potentially due to nutrient limitations by the physically constrained diffusion processes and reduced 

carbon input. Soil pH exhibited a trend similar to the CWC with a peak near neutral values (pH 7, Fig. 

2.2 b) as reported in previous studies18,33. We note, however, a strong linear association between pH 

and climatic water content (R2 = 61%, n = 320, Fig. 2.2 c).  

 

 
 

  

Fig. 2.2 Univariate general additive model (GAM) 

of soil bacterial richness. a, Relation between 

climatic water content and bacterial richness. 

Bacterial richness peaks in soils with 

intermediate climatic water contents (0.15–0.2) 

and drops in dry and wet soils (R2 = 27.7%, RMSE 

= 298.1, AIC = 4557.5, EDF = 4.7). b, Commonly 

observed trend of bacterial richness peaking at 

near neutral conditions (pH 7) and showing 

distinct drops in acidic and basic soils (R2 = 

23.8%, RMSE = 306.0, AIC = 4574.0, EDF = 5.1). c, 

A strong linear association (adjusted R2 = 60.8%, 

deviance explained 61.1%) is observed between 

climatic water contents and soil pH pointing to 

possible confounding effects of these covariates 

on bacterial richness. Shaded areas correspond 

to standard errors (n = 320). 
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Climatically humid regions tend to be acidic and dry regions basic. Such trends have been attributed 

to the difference between mean annual precipitation (MAP) and PET that determine the climatic soil 

water balance for the region49. A net accumulation of salt in soil (e.g. in arid regions) directly results 

from a negative water balance with more evaporation than precipitation. This increase of mineral 

concentrations enhances the soil pH buffering capacity and can result in high soil pH. With an increase 

in ionic strength we would also expect effects on bacterial physiology (e.g. increased osmotic 

pressures10,14) and possible, specialized adaptations to these environments. A recent study attempted 

to disentangle the effect of salts and soil pH on bacterial community composition and revealed a 

strong effect of salinity76. This may also suggest that previously reported dependencies of bacterial 

diversity on soil pH5,29,33 could have been mediated by climatic soil water conditions via the 

accumulation of salts. Although pH is related to the suitability of bacterial habitats by increasing the 

tolerance (and competitive ability) of pH-adapted species76, it might not be the underlying driver of 

bacterial diversity. This reasoning is based on the idea that competitive exclusion can only occur with 

some degree of habitat overlap and interactions between species. Under most conditions in natural 

soils the aqueous phase is largely fragmented and the (micro-) environments experienced by bacteria 

are not necessarily the same. This fragmentation permits coexistence and suppresses the elimination 

of inferior competitors and, hence, promotes bacterial diversity. The distinct optimality of bacterial 

richness related to soil wetness could be attributed to (i) resource limitation for extremely dry soils 

and (ii) the increased habitat connectivity that suppresses diversity by promoting competitive 

exclusion in wet soils. In this context, pH represents the chemical niche environment, a variable under 

control of primary (physical) factors, i.e. resulting from a soil's climatic water balance49. Temperature 

is another primary variable that might confound many processes. The mean annual temperature 

(MAT) is expected to alter species richness according to the metabolic theory of ecology28,77. This trend 

was manifested by a slight increase of richness with MAT peaking at 0–10 °C and 20–30 °C (A2 

Supplementary Fig. S1), in agreement with a previous study67. One explanation for the lack of clear 

patterns could be that temperature not only modifies growth rates of bacterial cells, but also affects 

habitat connectedness via effects on precipitation and water balance. This may counteract the 

enhancing effect of temperature on richness in wet and warm regions (e.g. the Tropics) where 

bacterial habitats are frequently connected. Furthermore, despite the strong variation of MAT near 

the soil surface, the effective range at the sampled depth of 10 cm might be narrower due to the 

damping effects of soil and leads to a limited range of conditions experienced in bacterial habitats. 

Additionally, bacteria could be able to tolerate a wide range of temperatures. Bacterial richness was 

found to be driven by temperature near geothermal springs only beyond 70 °C78; conditions that are 

not frequently found in soil. Nonetheless, changes in light intensity (solar radiation, RAD) are strongly 
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correlated with temperature and latitude. A direct effect of light on bacterial richness would be 

expected by enabling growth of photoautotrophs and possible adaptation to high doses of UV light 

(or the lack thereof). Both effects could be masked by the presence of vegetation (e.g. NPP) that would 

intercept the solar radiation. We thus do not expect strong changes in the distribution of bacterial 

richness caused by light in vegetated environments and in sub surface soils (due to the strong 

attenuation of light). Nevertheless, the indirect effects of solar radiation should be well described by 

the used covariates (e.g. MAT and CWC) as light and water availability both shape the vegetation of 

an ecosystem. We used net primary productivity (NPP) to represent vegetation patterns at the 

ecosystem level and to characterize carbon input into subsurface bacterial habitats. NPP did not 

display a notable effect on species richness (slightly increasing richness up to 500 g C m-2 yr-1, constant 

richness beyond, A2 Supplementary Fig. S1). Only in extreme environments, such as deserts and 

tundra, NPP seems to influence species richness.  

2.2.2 Multivariate general additive model (GAM) of bacterial richness 

The complexity of interactions among environmental factors, vegetation and soil microorganisms 

suggests that a single variable alone is not likely to explain the observed patterns of soil bacterial 

species richness. We therefore tested the robustness of the observed single-variable trends using a 

multivariate general additive model (GAM) with forward selection of covariates (Table 2.1, A2 

Supplementary Fig. S2). The ranking of the most influential covariates remained consistent with the 

results of univariate GAM, with CWC slightly outperforming pH. Interestingly MAT occupied the third 

rank, suggesting that we were able to successfully capture combined effects on soil bacterial species 

richness. The goodness-of-fit statistics of the multivariate GAM using only the six selected covariates 

(R2=35%, RMSE=283.7) were better than the statistics of any univariate GAM, suggesting that soil and 

climatic covariates provide additional information on species richness. Although we observed 

significant associations between bacterial diversity and environmental factors in uni- and multivariate 

modeling, these associations do not necessarily imply causation. To mitigate limitations of commonly 

used structural equation models (SEM) in discerning causal nonlinear effects, we have used a causal 

additive model (CAM)79 to explore potential causes of soil bacterial diversity. We used this novel 

approach to generate a graph of inferred structural dependencies between covariates and bacterial 

richness (A2 Supplementary Fig. S3). By removing links between variables that are not considered 

significant (p ≤ 0.0005), we can distinguish direct from indirect relations between covariates and 

bacterial richness; as variables that remain linked to richness directly and variables that are connected 

to richness via others. Compared to the results of the multivariate GAM, we obtained a similar set of 

covariates with direct effect on species richness, i.e. CWC and DRY. Surprisingly, pH and MAT were not 

selected as potential direct causes, implying that they may have weaker effects on species richness or 
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their associations with species richness were attributed to confounding effects. This approach enables 

further exploration of potential model structure. Nevertheless, care should be taken when 

interpreting inferred causal relationships as the method relies on the strong assumption of “no hidden 

variables” that are unknown in most natural environmental systems. Yet, it is noteworthy that no prior 

expectations or knowledge is imposed on the model structure, as is necessary with many SEM5. All 

direct and indirect links are deduced only from the observations with a given set of covariates. A 

drawback of this approach is that not all dependencies might be physically meaningful. 

Table 2.1: Ranking of covariates determined by forward selection for the multivariate general additive model (GAM).  

Step Selected ΔAIC a) p-valueb) 

1 Climatic water content -104.64 <0.0005 

2 Soil pH -19.43 <0.0005 

3 Mean annual temperature -16.82 <0.0005 

4 Silt fraction -7.18 0.0083 

5 Consecutive dry days -1.59 0.0385 

6 Cation exchange capacity -0.08 0.1497 

a) Change of Akaike information criterion (ΔAIC) when the variable was added to a model that already contained the covariates listed above 

the current step; b) Likelihood ratio test of nested models 

 

2.2.3 Varying proportions of low abundance species 

Thus far, we have focused on explaining bacterial species richness without considering environmental 

effects on species with different levels of abundance. We evaluated the performance of the univariate 

(CWC, pH) and multivariate GAM for metrics of diversity other than species richness and found a 

consistent increase in R2 with increasing weight of species with low abundances (A2 Supplementary 

Fig. S4). The observation indicates that species with low abundance show greater sensitivity to 

environmental conditions than the species dominating within samples. To further evaluate effects of 

environmental variables on rare and common fractions of the soil bacterial populations, we split the 

species in to two groups by using a threshold (0.005%) of global relative abundance. For each sample, 

we computed the log-ratio of the number of rare and common species. A value of zero indicates that 

a sample contains the same number of rare and abundant species, and larger values indicate that the 

rare species are more numerous. We explored the dependence of the log-ratio on environmental 

covariates by univariate GAM (A2 Supplementary Table S2). Interestingly we find similar, but 

complementary trends for CWC and pH (Fig. 2.3 a and b). Most notably, a distinct drop in the number 

of rare species appears under elevated climatic soil water contents. This trend compares well with 

univariate and multivariate model results for species richness. The modeled dependencies of rare and 

common species diversity on climatic water content (Fig. 2.3 c) demonstrate a higher susceptibility of 

rare species to increased aqueous phase connectivity associated with high water contents. While the 
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common species remain abundant, the number of rare members of the soil bacterial community 

shows a steep decline towards wetter soil conditions. This discrepancy is weaker for soil pH where 

diversity of both rare and common species decreases at similar rates when approaching acidic 

conditions (Fig. 2.3 d). The gradual increase in the proportion of globally rare species under drier 

conditions (low CWC) is likely due to the more fragmented aqueous phase that may shelter bacterial 

species in small but numerous isolated aqueous habitats23,38. Alternatively, one might argue that the 

emergence of rare species under basic (high pH) — and possibly also very dry— conditions is attributed 

to the presence of specialist phylotypes capable of coping with such an environment29,80. However, if 

neutral pH would be favored by most bacterial species (i.e. leading to more diversity) we would expect 

less balanced soil bacterial communities with more of the rare species present around pH 7. 

Interestingly, the log-ratio does not increase again towards acidic conditions. Hence, acidic 

environments reduce diversity of rare and common species to a similar extent, and rare (specialist) 

species that benefit from weaker competition with common species seem to be missing. Although, 

information on many additional factors that could affect the presence of rare and common species 

(e.g. nutrient status of the soil) could not be included in the analysis, general tendencies could be 

identified using the variables considered. We thus conclude that aqueous habitat connectivity largely 

dominates the soil bacterial richness picture and should be taken into account together with 

additional factors when data is available. 

 

  

Fig. 2.3: Dependence of the log-ratio of number of 

rare and common species per sample on the two 

main predictors of bacterial richness. a, climatic 

water content (adjusted R2 = 24.5%, deviance 

explained 25.5%, AIC = 70.5, EDF = 4.3) and b, soil 

pH (R2 = 23.0%, deviance explained 23.9%, AIC = 

77.0, EDF = 4.1). The log ratio is calculated by 

splitting species into two groups based on a 

threshold of global relative abundance (0.005%). 

A log ratio of zero indicates a balanced population, 

where the number of rare species per sample 

equals the number of common species. The 

modeled curves of both groups (rare and 

common) richness are shown for c, climatic water 

content and d, soil pH. Shaded areas correspond 

to standard errors (n = 320). 
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2.2.4 Global patterns of soil bacterial richness 

The GAM used in this study accounts only for independent and additive effects of covariates on species 

richness. This may not be a realistic depiction of processes in natural ecosystems with numerous 

connections and interdependencies. Tree-based statistical models seem better suited to account for 

(higher-order) interactions between variables. For prediction of global maps of species richness, we 

therefore combined independently trained random forest and gradient boosting trees by simple 

averaging. The procedure was reinitialized and repeated ten times to stabilize the results and increase 

reproducibility. The tree-based model (R2=40%, RMSE=261.5) performed better than the multivariate 

GAM (R2=35%, RMSE=283.0) indicating that interactions between covariates are important for 

predicting species richness. Despite the considerably better performance, a large portion of variance 

remained unexplained. This is not unexpected, given the different sampling strategies and 

methodology of the studies. Additionally, covariates derived from remote sensing products and digital 

soil maps smooth the actual spatial variation of the respective characteristics and do not (yet) capture 

the full heterogeneity of natural soils. Another limitation of this study is the lack of fungal data. The 

data used does not permit analysis of fungal richness, and we can only speculate about potential, 

general trends. However, one study used in our dataset (EMBL)5 investigated fungal diversity across 

biomes and report that fungal diversity does not peak in temperate regions (unlike bacterial diversity). 

The authors further suggest niche differentiation lead to contrasting responses of fungal diversity with 

precipitation and soil pH compared to bacterial diversity5. We thus would expect fungi to play a 

dominant role in vegetated soils with lower pH and high C:N ratios5,53. Such regions (biomes) are 

represented by high NPP and high climatic water contents. In these environments the aqueous phase 

connectedness could additionally enhance competition; potentially also between bacteria and fungi. 

The global map of predicted bacterial richness shows distinct regions of varying bacterial richness (Fig. 

2.4). Tropical regions (e.g. the Amazon and the Congo Basin rainforests) exhibit remarkably lower 

bacterial richness highlighting the adverse effects of high levels of soil wetness on bacterial diversity. 

Lowest richness values were also found in regions where resources are most limiting, such as in the 

Sahara or the Atacama deserts. “Hotspots” of species richness lie in temperate regions and climatic 

transition zones where resource availability is not limiting and the aqueous phase remains 

fragmented, such as in the northern regions of India or in the Sahel. Tree-based methods provide a 

complementary approach to GAM as they efficiently handle higher order interactions between 

covariates and provide an efficient interface for spatial mapping. The implicit representation of 

covariate dependencies and model averaging, however, do not offer as much insight into the model 

structure as is possible with GAMs. 
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2.3 Conclusions 

Incorporating the effects of soil and climate in the analysis of bacterial biogeography based on global 

datasets provides new insights into the key factors, namely climatic water content and pH that shape 

soil bacterial richness and community structure. The dominant role of climatic soil water content has 

not been fully recognized in previous studies. The inherent links between climatic soil water content 

and soil pH suggest that part of the soil bacterial diversity previously attributed to soil pH may reflect 

effects of climatic water content. We find that regions of intermediate climatic soil water content 

exhibit a peak in bacterial richness owing to the fragmentation of aqueous bacterial habitats that 

remain sufficiently supplied with resources, thus ensuring growth and protection from competitive 

exclusion. The results suggest that soil pH acts as a secondary driver of soil bacterial richness and 

represents a proxy of soil properties and climatic conditions. Placing local bacterial relative abundance 

in a global context provides fruitful insights into the biogeography of soil bacteria and the factors 

shaping spatial patterns of bacterial diversity. Especially the rare component of the soil bacterial 

community that contributes a large fraction of diversity is surprisingly predictable. This highlights the 

importance of environmental drivers, such as climatic water content, in shaping the genetic pool of 

potential functional capabilities by changing the size of the soil bacterial “seedbank”.  

Fig. 2.4: Global prediction of bacterial richness delineating spatial patterns of contrasting diversity (R2 = 40%, RMSE = 

261.5). Tropics (e.g. Amazon, Congo) and northern higher latitudes (e.g. Siberia) show low bacterial richness. This is 

potentially linked to increased prevalence of frequently wet soils fostering connectedness of bacterial habitats. Low 

bacterial richness in deserts (e.g. Sahara, Atacama) is likely due to resource limitation. The highest bacterial richness is 

found in temperate regions and climatic transition zones (e.g. Sahel). 
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2.4 Materials and Methods 

2.4.1 Data collection and processing 

All 16S rRNA sequences of soil samples were obtained from three different studies. We hereafter use 

the terms EMBL (European Molecular Biology Laboratory)5, EMP (Earth Microbiome Project)18, and 

ZHOU28 to refer to the sources of samples and metadata. Since sequences were different in terms of 

their representativity and amplification protocols, filters based on sample metadata, primer 

sequences as well as assigned taxonomy were applied to minimize methodological differences and 

maximize compatibility.  

2.4.2 Metadata-based filtering 

The metadata of soil samples (n=235, 7,974 and 126 for EMBL, EMP and ZHOU, respectively) were 

obtained from QIITA81 and the European Nucleotide Archive ENA82. Although most soil samples were 

initially collected with the aim to study soil microbial communities, some of them could not be 

considered natural. The following procedures were applied to each study: 

EMP: We selected representative samples carefully based on the metadata by removing potential 

artificial soils (e.g. sand filter in water purification system), managed soils (e.g. agricultural soil) and 

soils which cannot be considered as “natural” (e.g. soil samples taken from urban environments). 

Further, samples of Antarctic soils and from depth > 0.1 m were excluded due to limited information 

on local environments. The 16S rRNA sequences of all selected samples (n=587) were retrieved from 

ENA. 

EMBL & ZHOU: No metadata-based filtering was done since all samples could be considered 

representative according to the criteria applied to EMP. 16S rRNA sequences for EMBL and ZHOU were 

obtained from ENA using study accession ID PRJEB19856 and PRJNA308872, respectively. 

2.4.3 Primer-based filtering 

EMBL, EMP and ZHOU used the marker gene sequencing method for amplification83, yet their chosen 

primer sets and targeted regions of 16S rRNA differed substantially. To avoid primer biases, we only 

included samples which amplified the V4 region of 16S rRNA. Furthermore, two slightly different 

primer sets were used between studies, i.e. the original 515F-806R primer84 and its modification85. 

The original primer (forward: GTGCCAGCMGCCGCGGTAA, reverse: GGACTACHVGGGTWTCTAAT) is 

known to be biased towards certain archaeal and bacterial groups, such as Crenarchaeota, 

Thaumarchaeota and SAR1186,87. The modified one adds one degeneracy in both the forward 

(GTGYCAGCMGCCGCGGTAA) and reverse (GGACTACNVGGGTWTCTAAT) primer to reduce those 

biases. However, most samples in EMP and ZHOU were published before the modified primer set 

came in use, whereas all samples in EMBL were amplified using the modified one. To make a valid 
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comparison, we either filtered particular sequences which could only be captured by the modified 

primer set (if the primers were retained in the raw sequences), or dropped the entire sample (if no 

information was available about the primers). We additionally removed sequences in which adapters 

could be identified (adapter contamination). 

EMBL: All sequences in EMBL were raw and unjoined. We discarded pairs of sequences if 

GTGTCAGCMGCCGCGGTAA could be found in the forward reads or GGACTACGVGGGTWTCTAAT in the 

reverse reads (difference between the original and the modified primer). The forward and reverse 

reads were subsequently joined, trimmed and quality controlled (Phred threshold of three) using 

VSEARCH (QIIME2, 2018.8.0)88, cutadapt89 and split_libraries_fastq.py (QIIME1, 1.9.1)84, respectively. 

EMP and ZHOU: Unlike EMBL, sequences in EMP and ZHOU obtained from ENA were already 

preprocessed, i.e. de-multiplexed, and trimmed. Both of them were quality filtered with a Phred 

threshold of three using the script split_libraries_fastq.py (QIIME1, 1.9.1)84,90. 

2.4.4 Denoising 

The Deblur (1.1.0) algorithm91 was chosen to de-replicate sequences and remove potential sequencing 

errors. All sequences were trimmed to a length of 90 base pairs since most sequences in EMP had a 

length of 90 bases pairs, and the algorithm requires all sequences to have the same length. To 

strengthen the filtering rules, singletons per sample were removed before denoising by setting the 

min-size parameter to two. The algorithm corrected sequences based on a predefined error profile 

and returned amplicon sequence variants (ASV), which could be considered as putative error-free 

(representative) sequences for each sample. We adopted a method based on ASV instead of clustering 

sequences into operational taxonomic units (OTUs) because ASVs are (i) consistently labeled, thus 

facilitating meta-analysis of cross-study samples, and (ii) are not affected by the incompleteness of 

reference databases, hereby providing more accurate diversity estimates for bacterial communities 

92–94. A total of 256,620 unique ASV were identified with most of the sequences being relatively rare 

(14.94% observed only once and 70.79% less than ten times across all soil samples). 

2.4.5 Taxonomy assignment for filtering of archaea 

ASVs were assigned to taxonomic units using a multinomial Naive Bayes classifier (QIIME2, 2018.8.0), 

trained on the Greengenes 13_895, 99% OTUs (515F-806R region, 90 base pairs). Nevertheless, only 

1.08% of the sequences could be assigned to a unique species designation. Sequences which were 

classified as archaea were removed, as they only contributed to a small proportion and may behave 

differently from bacteria96. Sequences that could not be classified confidently (<70%) at the lowest 

taxonomic levels (Kingdom) were discarded. Global singletons (observed only once across all samples) 

were dropped to remove potential errors and increase reliability. 
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2.4.6 Rarefaction and estimation of diversity 

The optimal sequence rarefication depth (number of randomly drawn sequences without replacement 

from each sample) with respect to diversity was determined by a grid search over 2,500 to 15,000 (A2 

Supplementary Fig. S5). After determining the rarefication depth, the procedure was repeated 100 

times to increase reproducibility of ASVs abundance distributions. For each soil sample, diversity 

indices were calculated independently for each of the 100 rarefied ASVs tables and subsequently 

averaged5. The abundance of each ASVs was averaged over the 100 rarefied species abundance 

distributions, and thus may not be integer valued. We note that this procedure differs from common 

practices in ecological fields in which only one randomly generated rarefied ASVs (or OTUs) table is 

used for both diversity estimation and interpretation. From an ecological point of view, the 

randomness in the latter approach can be desired since in reality we would not have the ability to take 

multiple soil samples from the same site, amplify them independently and take the averaged diversity 

(corresponding to rarefying multiple times from an existing ASV or OTU table). However, from a 

statistical point of view, it lacks stability. In the foregoing analysis, we used the averaged (n=100) 7,500 

ASVs as representative phylotypes for calculations of bacterial diversity in its general form (A2 

Supplementary Methods). 

2.4.7 Covariates 

Soil properties were collected from 250 m SoilGrids56 according to samples’ geographical locations 

and soil depth. We did not use the on-site measured soil properties due to missing values and 

inconsistent methodologies of measurement across studies. Of additional concern was the 

comparison of variables measured at different scales. While it is common practice to compare 

remotely sensed covariates (e.g. temperature, primary productivity, precipitation) with sample scale 

measurements (e.g. pH, carbon-, nitrogen content) it is not desirable from a statistical point as the 

level of support varies. This can lead to misinterpretation of the relative variable importance with 

respect to their explanatory power and hereby would obscure our understanding of underlying 

processes. The mean annual net primary (NPP) productivity, obtained from MODIS 2000–201550 was 

used as a proxy for the net carbon influx and the distribution of land covers. Mean annual temperature 

(MAT) and solar radiation (RAD) were retrieved from WorldClim52. Mean annual precipitation (MAP) 

was estimated using MSWEP rainfall data97. Using mean monthly temperature and shortwave 

radiation as inputs, mean monthly potential evapotranspiration (PET) was calculated according to the 

empirical equation proposed by Jensen and Haise58. The empirical equation produced negative values 

at extremely low temperatures. These estimated negative PET are unrealistic and were replaced by 

zeros. The resulting mean monthly PET was averaged over one climatic year yielding the mean annual 

PET. The average number of consecutive dry days (DRY) was estimated from the MSWEP precipitation 
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time series. Briefly, daily precipitation was compared against the mean annual potential 

evapotranspiration (PET) to detect rainfall events that were expected to alter soil moisture conditions, 

i.e. exceeding the threshold set by PET. The values were reported as an absolute averaged spacing 

between rainfall events and could exceed one year. The available water capacity (AWC) in SoilGrids 

was derived based on a pedo-transfer function that depends on soil chemical conditions, e.g. soil pH 

(PH)56. Including soil chemistry in calculating AWC may potentially interfere with later interpretations. 

To avoid this, we alternatively estimated AWC by a function that only uses bulk density (BLD), organic 

carbon content (ORC), silt content (SLT) and clay content (CLY)55. Climatic water content (CWC) was 

introduced to describe the climatic state of soil wetness (A2 Supplementary Methods). It was 

calculated based on the assumption that the top one meter of soil can be fully replenished up to field 

capacity during rainfall events, and dry exponentially in consecutive days without rain (DRY). Summary 

of covariates is given in the A2 Supplementary Table S1. 

2.4.8 Correlation and clustering 

Spearman’s rank correlation ρs was used to measure the pairwise correlation between covariates (A2 

Supplementary Fig. S6). Covariates were then hierarchically clustered98 according to their dissimilarity 

(distance), defined as 1 − |𝜌𝑠|. The inter-cluster distance was determined by the averaged 

dissimilarity of objects in different clusters (average linkage). The cluster size was selected by applying 

a dissimilarity threshold of 0.15. Within each cluster, only one covariate with the simple physical 

interpretation was retained (A2 Supplementary Fig. S6). Further, since sand (SND), silt (SLT) and clay 

content (CLY) are compositional, SND was discarded.  

2.4.9 Generalized additive models 

Generalized additive models (GAM) (R package mgcv, 1.8-24) were used to model the associations in 

both univariate and multivariate analysis99. Thin plate regression spline was chosen as basis function 

and the smoothing parameters were estimated by restricted maximum likelihood (REML). The 

dimension of the basis used for each smoothing term was not restricted (default parameter k). 

Forward selection in multivariate modeling was performed based on Akaike information criterion (AIC) 

and likelihood ratio tests (conditional on the estimated smoothing parameters). The double penalty 

approach of GAM was used for regularization. Covariates were considered as negligible in terms of 

contributions to model fits if their estimated degree of freedom were shrunk approximately to zero 

(<10-3). The prediction performance was evaluated using leave-one-out cross-validated coefficient of 

determination (R2) and root mean squared error (RMSE). 
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2.4.10 Causal additive models 

Causal additive models (CAM) (R package CAM, 1.0) were used to infer the underlying data generating 

mechanism (causal structure) from observational data79. The model is a special case of the general 

structural equation model (SEM)100, namely in that the structural equations are additive in variables 

and errors. The model further assumes no hidden variables, i.e. all variables involved in the data 

generating mechanism are observed, and absence of directed cycles in the causal graph. Since the 

dimension of the dataset was low (15 covariates, except SND), we did not use preliminary 

neighborhood selection (screening of covariates primarily aimed for reduction of computational time). 

Furthermore, in order to avoid using data twice (for both variable selection and inference after 

selection)101,102, as well as the issue of “p-value lottery”103–105, the last step (pruning of the directed 

graph) of CAM was combined with the multi-splits method104. Briefly, the method randomly splits data 

into training and testing sets; the training set is used for estimating the graph structure while the 

testing set is used for computing p-values of each covariate (repeated 100 times to avoid noisy 

selection of covariates and to stabilize the results). 

2.4.11 Prediction of global maps using tree-based algorithms 

Random forests (RF) (RandomForestRegressor in scikit-learn, 0.19.1) and gradient boosting trees (GB) 

(GradientBoostingRegressor in scikit-learn, 0.19.1) were used for prediction106. Hyperparameters 

(n_estimators, max_features, max_depth and min_samples_leaf) in both algorithms were optimized 

using cross validation (CV) with respect to R2. Additionally, the learning rate in the boosting algorithm 

was set to a constant value of 0.05 since it can be compensated by the number of iterations. 

Independently trained random forest and gradient boosting trees were stacked by simple averaging. 

The generalization errors (R2 and RMSE) were estimated using nested (ten by ten folds) CV, i.e. the 

inner CV selected the best-fit models (optimizing hyperparameters with respect to R2) while the outer 

CV computed the test errors of the selected models. The entire procedure was repeated ten times 

using different random splits (or seeds) to increase stability. Using the estimated model, we predicted 

global bacterial richness at the full spatial coverage of covariates. 
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Abstract 

Soil bacterial communities are dominated by a few abundant species while their richness is attributed 

to rare species with largely unknown ecological roles. Novel classification of common and rare soil 

bacteria reveals consistent changes of rarity across terrestrial biomes. Variations in rarity are driven 

by environmental conditions; prominently soil wetness. Observations and mechanistic model results 

show an increase in rare bacterial species proportions for drier climatic conditions and lower soil 

carbon inputs. Soil bacterial species compositional shift results from suppression of common species 

activity in dry soils with implications for carbon and nutrient turnover. Insights into soil and climatic 

drivers of the rare soil microbiome help unravel contributions to ecosystem functioning that vary 

across biomes.  
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3.1 Introduction 

Bacterial communities are characterized by strongly skewed relative abundance distributions (RADs) 

with most phylotypes (or “species” for simplicity) present at low relative abundances107 (RAs) 

providing important ecosystem functions6. Despite the vast richness of prokaryotic taxa19, only a 

“chosen few” species are consistently prominent across soils from different environments20,108. The 

richness of soil bacterial communities is largely determined by rare species that constitute the long 

tail of the RAD, often associated with functional diversity2,26,109 and specific ecosystem functions110–114. 

The functional potential of the soil microbiome is directly linked with its genetic composition2 with 

strong “functional redundancy” such that the loss of few species would not alter ecosystem 

resilience115. Evidence suggests that rare bacterial species contribute to specific functional 

traits2,109,116,117 and exhibit greater sensitivity to environmental factors relative to common 

species17,118,119. Notwithstanding the large body of information on the links between bacterial diversity 

and ecosystem functioning26,110–113, only a few endeavored to distinguish between globally common 

and rare bacteria108,116. Rare bacterial species are often ignored6 focusing on common species only in 

studies on RA patterns20. Operationally, the classification of common and rare species is based on their 

prevalence (“ubiquity”) or their (relative) abundance. Prevalence measures the probability of 

detecting a species across soil samples, while RA measures the probability of encountering a species 

within a soil sample (~1 cm3). Both aspects are important for assessing how likely it is to find a bacterial 

species (or group of species) in soils across biomes and link species prevalence and abundance with 

ecosystem functioning64,108,120. The processes and environmental factors that affect rare bacterial 

species remain largely unknown118,121,122 or are overlooked65. The broad environmental range and 

fitness of common bacterial species64,118 enable them to succeed across environmental conditions119 

thus these are often poor indicators for changes in community composition across biomes65,123. In 

contrast, rare soil bacterial species vary with climate and soil properties17 and are found in only a few 

samples hence limiting data-driven inferences regarding details of their spatial distributions. Overall, 

the conditions under which rare species substantially contribute to ecosystem services remain 

understudied across the entire tree of life124. To better assess their role and properly attribute the 

contribution of the rare microbiome to ecological functioning we need a universal classification of 

common and rare bacterial species. 

Here we seek to quantify what determines the proportions of common and rare soil bacterial species 

across biomes by: (i) developing a universal metric for global classification of rare and common soil 

bacteria based on their RA and prevalence; (ii) identifying patterns of richness and abundance in 

relation to environmental conditions, and (iii) employing a mechanistic model to quantify how climatic 

factors shape proportions of rare soil bacteria. The study is motivated by statistical models that 
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demonstrated increased explanatory power of environmental variables for bacterial diversity when 

additional weight was given to locally low abundant species17. In this study, we distinguish soil 

bacterial species as common and rare based on pooled RAD from all sampled soils across the globe. 

The classification quantifies the proportions of rare and common bacterial species in individual soil 

samples to demonstrate how both groups are affected by key environmental variables that define 

various biomes (Fig. 3.1); primarily the climatic water content9 (CWC), the net primary productivity 

(NPP) and mean annual temperature (MAT). Evidence suggests that CWC plays a crucial ecological role 

in promoting bacterial diversity by the intrinsic fragmentation (or connectedness) of individual 

microscale soil aqueous habitats9,17. High values of CWC (wetter soils) support higher vegetation 

density and increase carbon inputs thereby enhancing soil carrying capacity and total bacterial 

biomass7–9. We use a spatially-explicit individual-based model (SIM) to simulate soil moisture 

dependent growth and motility of multispecies soil bacterial communities that rely on shared 

resources. Modeled species are represented by unique combinations of kinetic (Monod type) 

parameters that reflect their competitive ability under locally variable carbon source concentrations. 

Predictions of the SIM were evaluated for a range of soil moisture conditions that also affect diffusion 

from heterogeneous carbon sources via water films on hydrated soil surfaces. We hypothesize that 

drier soils with highly fragmented aqueous habitats and restricted diffusion of carbon suppress the 

activity of fast-growing common bacteria and lead to communities with more even RADs38. 

 

  

Fig. 3.1 Tracking globally common and rare 

soil bacteria across environmental conditions. 

We perform analysis of a global pool of 

bacterial relative abundance distributions 

(RADs) from soil samples across biomes with a 

wide range of climatic water contents. 

Bacterial species relative abundance (RA) 

from individual samples are used to obtain the 

global, average RAD and species ranking. Each 

species is classified as common or rare based 

on the global RAD. The proportions of 

common and rare bacteria are tracked across 

environmental factors. Particular focus lies on 

shifts in proportions with climatic water 

content that is a proxy for a soil’s aqueous 

phase connectedness. Dry soils are expected 

to host communities with higher evenness 

that include many rare species by physically 

limiting growth to isolated aqueous habitats 

with low carbon fluxes. In frequently wet soils 

a “chosen few” common species are expected 

to grow rapidly and dominate the soil 

bacterial community. 
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3.2 Results 

3.2.1 Relative abundance and prevalence of common and rare soil bacteria.  

We have used published17 genomic data (16S rRNA gene sequences) from soil samples5,18,28 (n = 844) 

of 318 sites across major biomes and identified global patterns of common and rare bacteria. Common 

bacterial “species” (defined by 90 bp rRNA amplicon sequence variants) were distinguished using a 

global (across samples) threshold of RA based on minimizing cross-entropy125, i.e. a threshold that 

minimizes the amount of information needed to reconstruct the RAD given the binary classification of 

common and rare species (Fig. 3.2 a). The resulting threshold to delineate RA of common species is 

remarkably consistent (0.019 ± 0.002%) and is comparable to previous, empirical or operationally 

defined thresholds based on RA17,108,126. Most bacterial species were classified as rare (99.6%) yet they 

make up only 42% of the global RA. The non-parametric threshold selection and resulting average 

proportion of rare species were robust even when using only ¼ of all samples available (A3 

Supplementary Table S1). Soil bacterial community richness and cumulative RA of rare and common 

species varied among biomes indicating sensitivity to environmental conditions (Fig. 3.2 b and c). The 

differences in rare and common RAs were most pronounced for large changes in CWC values as also 

predicted by an aqueous-phase fragmentation-based heuristic model9 evaluated for soils and climates 

of different biomes (Fig. 3.2 c). Generally, common species with high RA were more prevalent than 

rare species (Fig. 3.2 d). The average prevalence (median ± IQR) for common species (0.3 ± 0.2) was 

300 times larger than for rare species (0.001 ± 0.003). The ratio of rare species richness to common 

species richness decreased significantly with more frequent rainfall (exponential R2 = 0.19, Pearson r 

= -0.41, n = 318), indicating that community composition may vary with the climatic soil water content 

(Fig 3.2 e). 
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3.2.2 Rarity of soil bacterial species driven by climatic water contents.  

A few common species dominate bacterial communities in wet soils as also predicted by the 

mechanistic SIM that makes no assumptions regarding species composition or their relation to soil 

moisture conditions (Fig. 3.3 a). A gradual shift in RADs towards more even communities with larger 

proportions of rare species was observed in transition to dry soils (A3 SI Appendix, Fig. S1). We 

compare our computed CWC values based on rainfall frequency with yearly averaged soil moisture 

data obtained from climate model reanalysis (ERA5-land), the two estimates show good agreement 

for the overlapping range (A3 SI Appendix, Fig. S2). To detect changes in ranked community 

composition with CWC, each sample’s RAD was compared to the global RAD. Spearman rank 

correlation was lower and Bray-Curtis community dissimilarity was higher for samples originating from 

drier environments (A3 SI Appendix, Fig. S3). This indicates changes in the subset and ranking of 

species. Additionally, the amount of information contained in the RAD of individual samples relative 

to the global RAD (“discrimination information”) displayed a consistent decrease with increasing CWC 

as was previously postulated for reduced environmental heterogeneity127 (A3 SI Appendix, Fig. S3). 

However, rare species proportions could be biased by the physiological state of the bacteria65. To test 

how the changes in rare proportions may be affected by the presence of inactive (dormant) bacteria, 

we removed from the modeling results cells that did not divide. The removal of these inactive cells 

(dormant or at maintenance rate state) resulted in a sharp decrease in the proportion of rare species 

Fig. 3.2 Observed proportion and richness of 

common and rare bacteria across biomes. a, 

Global relative abundance distribution (RAD) of 

bacterial species (n = 844). The dashed line 

indicates the threshold based on minimum 

cross-entropy125 that distinguishes common and 

rare species using only the global RAD (shown in 

purple and red, respectively). b, and c, Bacterial 

richness and relative abundance (RA) for 

common and rare bacteria vary across biomes. 

Stacked bars indicate the median ± IQR. The 

number of samples for each biome are reported 

(G = grassland, F = forest). b, Richness of rare 

bacteria varies more strongly among biomes 

compared to common bacteria while c, their RA 

seldom exceeds the RA of common species. This 

general tendency is also predicted by a recent 

heuristic model9 (white circles). d, Prevalence, 

the fraction of samples in which a species occurs, 

is related to the global RAD. e, The ratio of rare 

to common species declines with increasing 

rainfall frequency for different sampling sites 

(exponential R2 = 0.19; Pearson r = -0.41, n = 

318). 
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in very dry soils (Fig. 3.3 a). Bacterial cell density increases significantly under wet climatic conditions 

that also promote vegetation and carbon inputs as seen in model simulations and empirical estimates 

of maximal cell density (Fig. 3.3 b). This carrying capacity was estimated from carbon input by NPP and 

mean maintenance requirements of soil bacteria (adjusted for MAT) with no explicit dependency on 

CWC9. Considered independently, these two factors (NPP or MAT) did not exhibit clear tendencies for 

changes in proportions of common and rare bacterial species (A3 SI Appendix, Fig. S4). We examined 

effects of temperature using the SIM with temperature dependent bacterial growth44,128. Biome-

specific CWC and MAT were used as boundary conditions for comparison with data and highlight the 

predominant influence of soil moisture on soil carrying capacity and the proportion of rare species (A3 

SI Appendix, Fig. S5). We note, that CWC is affected by MAT via potential evapotranspiration that 

increases with higher temperatures. CWC therefore also co-varies with soil pH9,17 due to the influence 

of climatic water balance on the value of soil pH49 that is often reported as a key driver of bacterial 

diversity18 and species abundance20 (A3 SI Appendix, Fig. S4). 

 

  

  

Fig. 3.3 Decline in observed soil bacterial rarity is 

mechanistically linked with hydration conditions 

and carrying capacity. a, The proportion of rare 

bacteria decreases with increasing climatic water 

contents (Spearman ρ =-0.36, n = 318; highest 

density of points shown in black). The decline in 

rare species proportion is predicted by a spatially-

explicit individual-based model (SIM, mean ± SD, 

n = 5) and compares favorably with empirical 

observations. Considering only active cells in the 

SIM causes a drop in rare proportion under dry 

conditions (open symbols). b, Estimated cell 

density (potential carrying capacity) increases 

exponentially with climatic water contents. Cell 

density is calculated based on mean annual 

temperature, carbon input flux (net primary 

productivity) and bacterial maintenance 

requirements using independent data8,9. The 

prediction by the SIM makes no assumptions on 

the relation of cell density with soil hydration 

conditions. 
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3.2.3 How is bacterial species dominance reduced in dry soil?  

A distinct shift in the soil bacterial RAD was observed for different (climatic) soil hydration conditions, 

with a smaller proportion of common species found in dry regions (Fig. 3.4 a). SIM results suggest that 

the common species become suppressed under dry conditions where their superior physiological 

traits cannot be expressed and thus their activity is equalized with less fit species38 (Fig. 3.4 b). In other 

words, the simulated bacterial community composition under dry conditions becomes more even in 

terms of RA38,129 and distribution of maximum growth rates. The total number of simulated individuals 

ranged from ~103 to 106 and closely followed the soil water content and average physiological 

parameters (maximal growth rate and carbon source affinity; A3 SI Appendix, Fig. S6). This implies that 

the soil bacterial community is capable of responding to changes in soil hydration conditions at 

timescales of days (as used in the SIM) from initial or background community composition associated 

with climatic time scales.  

 

 
 

  

Fig. 3.4 Soil bacterial community shifts with water 

content – drier conditions suppress common 

species. a, The relative abundance distributions 

(RADs) of soil bacteria for three groups of climatic 

water contents (CWC; bars indicate mean ± SD) 

are shown as cumulative relative abundance17. 

Values are sorted by global species rank with one 

indicating the globally most abundant. The RAD 

displays a systematic shift towards high ranks 

under dry conditions. The inset figure on the left 

shows the 100 most abundant species on a linear 

scale. b, The spatially-explicit individual-based 

model (SIM) confirms the observed tendency. The 

distribution of modelled species maximum growth 

rates (µmax) at the end of the simulation indicates 

that physiological differences are equalized under 

dry conditions while the increased relative 

abundance of common species under wet 

conditions corresponds to higher growth rates. 
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These findings are in qualitative agreement with previous observations of community activity under 

perturbation. We have used our classification scheme to track the proportions of rare species in a 

desert soil community75 responding to a rainfall event (Fig. 3.5). The daily observations are comparable 

with simulations by the SIM and reflect proportions of bacterial species activity75,130. Following a 

winter rainfall event in the Negev desert, the activity of rare bacterial species dropped during soil 

wetting and recovered to initial values following soil drying (Fig. 3.5 a). The community displayed 

consistent shifts where the common species dominated under wet conditions but were suppressed 

when the soil was dry (Fig. 3.5 b). We note, however, that the proportion of rare species in this dataset 

appeared extremely small. This could be partially explained by the taxonomic assignment used which 

did not allow to resolve species with very low RAs. These “unassigned” species were removed from 

the analysis and caused the RA to not sum up to unity. More importantly, the RNA-based 

measurements exclude dormant species that could constitute a large proportion of the bacterial 

community in dry soils (Fig. 3.3 a). 

 

  

  

Fig. 3.5 Activity of common and rare soil 

bacteria shaped by rainfall. a, Short term shifts 

in proportion of rare species following a winter 

rain event in the Negev desert (day 1 and 2; T0 

marks full desiccation in summer) with 

subsequent return to initial community 

composition as previously reported (STO75). 

Each point represents averaged measurements 

of bacterial RNA abundance (n = 3). b, Samples 

were further aggregated to three hydration 

conditions75 and are displayed as ranked, 

cumulative RA. Water contents (WC) at the time 

of sampling are shown in the inset figure. 



The chosen few – variations in common and rare soil bacteria across biomes 

55 

3.2.4 Spatial patterns of bacterial rarity and functional consequences.  

The proportion of soil samples of our dataset in which rare species jointly dominate community 

composition exhibit a steep transition with CWC (Fig 3.6 a). We attribute this transition to a critical 

(mean) water content (c) above which the aqueous phase is frequently connected (estimated60 as c 

 s pc, with soil porosity56 s and pc  0.31 for site percolation on a simple cubic lattice59). Considering 

the universal role of water contents in structuring the soil bacterial microbiome we can map global 

regions where rare bacteria are, on average, likely to dominate (Fig 3.6 b). The climatic transition 

region is given by the central 95% of global c values. Variations of ecosystem functions113 and the 

association of CWC and bacterial diversity9,17 coincide with this range. For example, the interplay in 

Glucose mineralization and -Glucosidase activity reported113 (A3 SI Appendix, Fig. S7). Data show that 

Glucose is readily mineralized under wet conditions whereas the activity of -Glucosidase, used to 

decompose more complex carbon sources, has been reduced. Such specialized functions have been 

attributed to rare species present at low abundances109,117. Similar patterns could also be observed in 

a recent microcosm study with artificial diversity gradient where several ecosystem functions were 

associated with soil microbial richness111 and (using our approach) with proportions of rare species 

(A3 SI Appendix, Fig. S8). Leaf litter decomposition was positively associated with the proportion of 

rare bacteria while other functions such as leaching of Nitrogen (N) or Phosphorus (P), and the uptake 

of N and P into Grasses, Legumes and Forbes displayed mixed yet systematic tendencies. These 

findings illustrate the multitude of potential associations of rare bacteria with specialized ecosystem 

functions and consider not only richness but the RA of rare members that may vary spatially. 

  

Fig. 3.6 Critical role of soil hydration and 

corresponding spatial patterns of rarity. a, The 

proportion of samples where the relative 

abundance (RA) of rare species (RAr) exceeds the 

relative abundance of common species (RAc) 

displayed a transition along a gradient of climatic 

water contents (CWC). Samples were binned by 

CWC (bin width: 0.05; mean ± SE). The dashed 

vertical line illustrates the median critical water 

content below which the aqueous phase is largely 

disconnected (shading represents the central 95% 

of global values). b, Regions based on CWC where 

rare bacteria are likely to dominate the 

community RA (red), where common and rare 

transition (purple) and where the common 

dominate (blue). 



The chosen few – variations in common and rare soil bacteria across biomes 

56 

3.3 Discussion 

The proposed non-parametric classification of rare and common soil bacterial species makes no 

assumptions regarding the shape of the RAD and permits relative comparison of data from different 

studies and model results. The classification is insensitive to “noise” among (rare) species with low 

abundance since it does not contain information that would affect the threshold selection125. This 

global classification consistently labels soil bacterial species across all soils and biomes. The large 

environmental range of common species with high RA is attributed to their intrinsic fitness64 that 

supports their global prevalence (Fig. 3.2 d). Nevertheless, changes in species RA ranks occur 

frequently across environments (A3 SI Appendix, Fig. S3). Such variations could be linked to functional 

diversity of soil bacteria and to specific functional roles109 and genetic potential64,120. Overall, we 

observe greater similarity in RADs with a decline in “discrimination information” towards wetter soils 

(A3 SI Appendix, Fig. S3). This suggests that bacterial community RADs resemble the global RAD in wet 

soils where communities follow more closely the global species ranking. Dry soils may harbor 

communities with even bacterial diversity in which species are sheltered in isolated aqueous micro-

habitats129 that impose “gene flow discontinuities”131. The sparse vegetation growing in arid soils 

further limit carbon inputs and soil carrying capacity thereby suppressing the fast growth of “chosen 

few” common bacterial species and leads to more even bacterial communities. A transition in 

processes governing community assembly has been postulated127 for decreased environmental 

“randomness” as expected in wet soils with enhanced aqueous phase connectedness. A well 

connected soil aqueous phase (on average) also implies higher fluxes of nutrients and bacterial 

mobility (i.e. a “selection-dominated” regime127). In contrast, aqueous habitat fragmentation in dry 

soils imposes “randomness” (i.e. “drift-dominated” communities127). Reduced nutrient fluxes in dry 

soils constrain the physiological advantage of common species in agreement with recent experimental 

evidence132 and as seen in the SIM results with more even distributions of abundances and maximal 

growth rates under dry conditions (Fig. 3.4 b). Growth limiting conditions in desert soils cause a large 

drop of rare species proportion when removing inactive cells from the simulation results (Fig. 3.3 a) 

consistent with observed low activity of rare species (Fig. 3.5). We should expect many bacterial cells 

in natural communities to be dormant and at low abundances65,130 with particular functional 

implications for dry soils114. Sensitivity of rare species to environmental conditions may be explained 

by a hydration-centered modeling framework without assigning specific functional traits. Rare 

bacteria constitute a deep reservoir of physiological traits and we can expect their functional 

contributions to vary with CWC. Broader ecosystem functions, such as soil heterotrophic respiration, 

are widespread among bacterial species2 and are likely to be associated with the activity of common 

species that make up most of the community biomass124. This is evidenced, for example, by rapid 
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saturation of CO2 production with increasing bacterial richness in microcosm experiments26,35. The 

degradation of complex carbon sources, on the other hand, requires activity of specific enzymes that 

are thought to be contributed by metabolically versatile but rare bacteria2,109,111,121,133 and could be 

associated with slower growth compared to mineralization of readily degradable sugars. Small 

differences in peak activity could amplify the RA of particular bacterial taxa to extents that make them 

common across samples. For example, few taxonomic groups (-Proteobacteria, Clostridia, Bacilli and 

Bacteroida) dominated bacterial activity in a desert community only while the soil was wet75. This 

short time span was enough to propel these taxa to prominence114, causing them to be labeled as 

“common” across samples. In other words, the “chosen few” common species are “kings” when it is 

wet but remain hidden among the rare otherwise. Since rainfall events in deserts are very infrequent 

and offer very short windows of opportunity, we do not expect many globally common species to be 

detected in this biome and observe that rare species are on average seven times more numerous in 

regions characterized by low rainfall frequencies relative to common species (Fig 3.2 e). This indicates 

robustness of our procedure in delineating common species and successfully captured dynamics of 

soil bacterial community activity that could be manifested under climatic time scales. Soil moisture 

predictably alters the shape of the RAD and points to the variable’s importance for disentangling 

effects of other environmental factors (e.g. carbon input, temperature) that are reconciled in the 

context of biome-specific hydration conditions and carrying capacity (A3 SI Appendix, Fig. S5). Carrying 

capacity increases for lower temperature by reducing maintenance and growth rates134 but shifts 

caused by temperature are much smaller compared to those caused by soil hydration conditions in 

agreement with observations on the global drivers of soil microbial carbon7. High temperatures are 

further associated with drier soils that push many cells into dormancy due to reduced carbon fluxes. 

We distinguish environments in which bacterial species abundance is shaped primarily by physical 

constraints (fragmented aqueous habitats under dry conditions) with limited biomass production from 

environments where physiological traits could shape community composition (enhanced nutrient 

fluxes under wet conditions)123,127. Regions dominated by rare bacterial species (Fig 3.6 b) could harbor 

large functional potential that is readily expressed114 under variations in climatic conditions and render 

the rare soil microbiome sensitive to environmental changes.   
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3.4 Materials and Methods 

3.4.1 Soil bacterial community data.  

A previously published dataset on soil bacterial community composition was used to delineate 

patterns of common and rare soil bacteria across biomes. The detailed methodology that was used to 

combine raw (16S rRNA V4) sequence data of soil samples from three studies5,18,28 was previously 

described17. Briefly, the 16S rRNA sequences were de-replicated and de-noised after trimming to 90 

bp length. Singletons were removed before de-noising for each individual sample (n = 844) resulting 

in a total of 256’620 unique amplicon sequence variants (ASV) of which 71% were observed less than 

ten times across samples. ASVs were assigned taxonomy using a multinomial Naive Bayes classifier 

trained on Greengenes 13_8, 99% OTUs (515F-806R region). Sequences that could not be classified 

confidently (<70%) as bacteria at the Kingdom level or sequences classified as archaea were discarded. 

Additionally, global singletons (observed only once across samples) have been removed. The resulting 

table of ASV abundance (referred to as “species” abundance) was then rarefied to a total count of 

7’500 per sample. Independent rarefication was averaged for 115 realizations (differing slightly from 

previous17 100). Prevalence of each species was estimated as the number of non-zero rarefied counts 

c divided by the number of samples n. The sample relative abundance (proportion) p was obtained by 

dividing counts of species i for every sample k by the total counts (N = 7’500) as 𝑝𝑖,𝑘 =
𝑐𝑖,𝑘

𝑁
 . Species 

counts that were absent (below the limit of detection) where imputed with zero values with only 

negligible effects on other species proportions. Subsequently we obtained the global relative 

abundance g for each species by averaging across samples according to 𝑔𝑖 =
∑ 𝑝𝑖,𝑘

𝑛
𝑘=1

𝑛
. We thus 

distinguish the local (e.g. sample) relative abundance distribution RAD from the global RAD that is 

subsequently used for classification of common and rare soil bacteria. 

3.4.2 Classification of common and rare bacteria.  

An algorithm for automatic threshold selection based on minimizing cross-entropy125 was used to 

designate common and rare bacteria using only the global RAD. The algorithm was originally 

developed for image segmentation and was previously implemented (function “threshold_li” in scikit-

image135). This approach makes no a priori assumption on the underlying distribution of values and 

provides the most unbiased estimate of the binary classification125. Here we use the obtained 

threshold value t to distinguish common and rare species based on each species global relative 

abundance gi. The species i with {𝑔𝑖|𝑔𝑖 ∈ [0,1], 𝑔𝑖 ≤ 𝑡} were considered “rare” and species with 

{𝑔𝑖|𝑔𝑖 ∈ [0,1], 𝑔𝑖 > 𝑡} are defined as “common”. The relative abundance (RA) of rare (RAr) and 

common (RAc) species in a single sample are thus given by: RAr,𝑘 =  ∑ 𝑝𝑖,𝑘𝑔𝑖≤𝑡  and RAc,𝑘 =  ∑ 𝑝𝑖,𝑘𝑔𝑖>𝑡  

for proportions of rare and common species, respectively. 
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3.4.3 Climatic data of sampling locations.  

Covariates for each topsoil (≤ 10cm) sample were added at their highest native resolution based on 

latitude and longitude using nearest neighbor interpolation as previously reported17. Net primary 

productivity (MODIS50, averaged for 2000-2015) and mean annual temperature (WorldClim52) were 

used to estimate maximal cell density (potential carrying capacity) by dividing location specific soil 

carbon input flux by a temperature dependent44, biomass carbon-specific maintenance rate (10-4 gC 

gC-1 h-1) as previously described9. We have used climatic water contents (CWC) as a proxy for climatic 

soil hydration conditions and soil aqueous phase connectivity9,17. Values were based on global gridded 

precipitation time series (MSWEP57, daily for 1979-2016 at 0.1° spatial resolution) that yield the 

average number of consecutive dry days (DRY) used for the calculation of CWC. Rainfall frequency was 

estimated by taking the inverse of DRY (frain = 1/DRY). The estimates of CWC were also compared to 

mean soil moisture obtained from recent climate reanalysis (ECMWF ERA5-land, 0-7 cm, monthly for 

1981-2019 at 0.1° spatial resolution, https://doi.org/10.24381/cds.68d2bb30). 

3.4.4 Spatially-explicit individual-based model (SIM).  

An individual-based model was used to simulate growth of diverse bacterial species on heterogeneous 

soil surfaces9,23,39. Briefly, continuous growth and movement of individual cells of different species in 

the pore space of a defined soil volume (specified by area and thickness of a soil slab; 1 mm2 and 11 

µm) was simulated for 8 days at 1-min time steps with nutrients arriving on average every 4 h 

(replenishing carbon sources that potentially enable a maximum carrying capacity of around 1017 cells 

per m3). A single cell of each species was initially placed randomly on the two-dimensional domain. At 

the end of the simulations, cells of each species were counted to obtain the RAD. We modified our 

previous implementation9 (https://doi.org/10.5281/zenodo.3558542) to allow multiple nutrients 

(“carbon sources”) to be consumed by different species. Each species i is represented by a set of 

Monod parameters (maximal growth rate µmax and half saturation constant K) for all three carbon 

sources j. Resulting in three sets of parameters per species (µmax,i, Ki)j. Considering four steps for the 

discretization of the parameter space this resulted in R = 3’360 species (possible permutations of 

parameter pairs). Cells could use carbon sources simultaneously with a partitioning of growth capacity 

loosely based on a previously developed model136 generalized for arbitrary number of nutrients. The 

sub-additive growth rate of a species depending on carbon source concentration Cj is given by Eq. 1: 

𝜇𝑖 =
∑ 𝜇𝑚𝑎𝑥,𝑖,𝑗𝜒𝑖,𝑗𝑗

(1+∑ 𝛼𝑖,𝑗𝜒𝑖,𝑗)𝑗
 with 𝜒𝑖,𝑗 =

𝐶𝑗

𝐾𝑖,𝑗+(1−𝛼𝑖,𝑗)𝐶𝑗
 and 𝛼𝑖,𝑗 =

𝜇𝑚𝑎𝑥,𝑖,𝑗

∑ 𝜇𝑚𝑎𝑥,𝑖,𝑗𝑗
     (1) 

The partitioning of cellular capacity (e.g. cell surface area for nutrient absorption) is described by 

normalizing Monod coefficients using Eq. 2: 

𝜅𝑖,𝑗 =
𝑀𝑖,𝑗

∑ 𝑀𝑖,𝑗𝑗
 with 𝑀𝑖,𝑗 =

𝐶𝑗

𝐾𝑖,𝑗+𝐶𝑗
         (2) 

https://doi.org/10.24381/cds.68d2bb30
https://doi.org/10.5281/zenodo.3558542
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This leads to the definition of species-specific cellular maintenance rates km,i that are a weighted 

fraction fm of maximal, nutrient-specific growth rates described by Eq. 3:  

𝑘𝑚,𝑖 = 𝑓𝑚 ∑ 𝜅𝑖,𝑗𝜇𝑚𝑎𝑥,𝑖,𝑗𝑗          (3) 

The change in cell mass mi of a species over time t is given by Eq. 4: 

Δ𝑚𝑖 = (𝜇𝑖 − 𝑘𝑚,𝑖)𝑚𝑖Δ𝑡         (4) 

Resource utilization ri,j is assigned a constant yield Y across species and nutrients (Eq. 5) that lead to 

changes in mass of nutrients mj by converting local concentrations using the volume of water Vw (both 

vary spatially) as formulated in Eq. 6. 

𝑟𝑖,𝑗 = −
𝜅𝑖,𝑗𝜇𝑖𝑚𝑖

𝑌
           (5) 

Δ𝑚𝑗 =
Δ𝐶𝑗

𝑉𝑤
= ∑ 𝑟𝑖,𝑗

𝑅
𝑖=1 Δ𝑡         (6) 

For simulations with temperature dependency two additional factors based on the Schoolfield44 model 

are used that reduce maximum growth and maintenance rates (fµ(T),.fk(T), respectively). The factor 

affecting maintenance rates is assumed constant above the optimum temperature (unlike fµ(T) that 

drops sharply above optimum temperature) but is otherwise identical. Parameters used for the 

temperature dependency are obtained from a recent study128. The Schoolfield44 model was fitted to 

published data128 of different species to obtain a single, average temperature response curve that was 

normalized to the maximal rate (rate at optimal temperature Topt). Parameters used were: energy of 

activation (Ea = 0.4 ± 0.1 eV), energy of inactivation (Eh = 2.0 ± 0.1 eV) and temperature of inactivation 

(Th = 31 ± 2 °C) that result in Topt = 27 °C, which marks the temperature of the SIM without explicit 

temperature dependency. In simulations of biomes with subzero MAT a temperature of 0 °C was used 

instead of biome average MAT. 
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Abstract 

In contrast to rapid advances in resolving the global biogeography of soil bacteria, surprisingly little is 

known about how bacterial communities are distributed within the soil body at scales relevant to their 

interactions. The patchiness of nutrient sources and aqueous-phase configurations promote spatial 

clustering of bacterial cells in a few favorable locations leaving large soil volumes sparsely populated. 

We propose a heuristic framework for deducing microscale soil bacterial community sizes and spatial 

distributions from macroscopic soil traits, wetness and average bacterial cell densities. Results from 

an individual-based mechanistic model at high spatial resolution demonstrate sensitivity of bacterial 

community sizes to soil aqueous-phase connectivity and carbon fluxes. The proposed heuristic model 

links climatic and soil variables that shape soil bacterial microgeography across biomes. We have made 

direct observations of community sizes on natural soil surfaces under controlled hydration conditions 

in support of modelled spatial distributions. The sizes of bacterial communities and their spatial 

configurations at scales of diffusion-mediated trophic and other cell-cell interactions are critical for 

interpreting precursors for soil bacterial diversity and emergence of microbially-mediated soil 

functions under different climatic conditions.  
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4.1 Introduction 

The distribution of organisms across spatial scales is of considerable ecological interest often studied 

with focus on large scale biogeographic patterns33,137 and linking these to climate, terrain, vegetation 

and other spatial attributes. Applied to soil microorganisms, similar approaches have revealed drivers 

of microbial abundance7,8 and diversity5,33. Soil bacterial abundance ranks high in the global biomass 

distribution4 and is largely driven by precipitation7, temperature and associated factors such as 

vegetation-derived primary productivity. Notwithstanding recent advances in identification of global 

microbial abundance patterns, the spatial distribution of bacterial cells and colonies at the 

submillimeter scale that matters most to interactions remains understudied12,138–140. In many 

applications, the analysis of soil bacterial communities is based on bulk soil samples of a few 

centimeters in scale that potentially mix otherwise spatially isolated and distinct populations16,48. 

Identifying the relative extent of spatial interactions at the scale of bacterial communities or cell 

clusters is important for interpreting measurements made at coarser scales, and for mechanistic 

understanding of soil microbiome functioning1,16,141. Given limitations to direct observation of 

microbial life in the opaque soil pores, mechanistic modeling at the resolution of individual cells and 

interacting colonies offers a means for bridging the present information gap and gaining new insights 

into yet-unobservable soil bacterial processes. 

Soils are characterized by complex pore spaces with large specific surface area available for bacterial 

colonization14. Common bacterial cell densities (107-1010 bacterial cells per gram of soil12) may occupy 

less than 1% of the volume142 of surface soil layers. The spatial distribution of bacterial cells is 

nonuniform12 with soil bacteria exhibiting highly localized activity13,143,144. Similar patterns of spatial 

aggregation of bacterial cells have been observed in marine sediments145 and were attributed to 

resource patchiness. Considering nutrient limitations in most soils146, and the highly dynamic and 

restrictive aqueous diffusion pathways, suggest that the surfaces and volumes of most unsaturated 

soils are likely to be inhabited by small and resource-limited clusters of bacterial cells12. The highest 

bacterial cell densities have been associated with plant residues and particulate organic matter (POM) 

or adjacent to living plant roots of the rhizosphere15. At favorable locations, soil bacteria may attain 

cell densities similar to those found in biofilms140,147 that form in water replete environments and host 

diverse consortia embedded in extracellular polymeric structures147. Evidence suggests, that a few 

dense bacterial colonies may contain a large proportion of soil bacterial biomass with the rest of the 

population distributed in numerous sparse settlements with only 10 to 100 cells each12. 

The harsh and heterogeneous soil environment promotes diverse bacterial ecology146 as highlighted 

by the large number of biogeochemical processes3 that occur within spatially distributed aqueous 

micro-habitats141,143. Certain processes and bacterial traits require close proximity among cells 
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(nanotube infrastructure148, electron transport149, gene transfer, cell-cell signaling150), whereas a host 

of general traits are likely to be constrained by resource availability and diffusion across distances that 

facilitate trophic interactions through the aqueous phase.  

The physical distances that separate soil bacterial communities and the connectivity of the soil 

aqueous phase give rise to characteristic diffusion distances that are critical for the strength of trophic 

and other interactions (i.e., horizontal gene transfer). The consideration of diffusion distances 

(𝐿𝐷(𝜃) = √𝐷𝑒(𝜃)𝑡) and diffusion times (𝑡𝐷(𝜃) = 𝐿2 𝐷𝑒(𝜃)⁄ ) for a given bacterial community 

separation length 𝐿 provide quantitative measures that link soil bacterial micro-geography with 

specific ecological interaction potential. For example, in a fertile soil with high bacterial cell density of 

1012 g-1
soil and specific surface area of 100 m2 g-1

soil (loamy soil) we would expect up to 104 cells per 

mm2 grain surface area. Considering the cells are distributed in colonies of 100 cells each, the average 

separation distance would be 100 μm. This physical distance may support trophic interactions among 

neighboring colonies under wet conditions where the characteristic diffusive length is of the order of 

800 μm per day (with water content 𝜃 = 0.3, porosity 𝜃𝑠 = 0.5, bulk diffusivity 𝐷0 = 10-10 m2 s-1 and 

effective diffusivity 𝐷𝑒(𝜃) ≈ 10-2𝐷0 using equation 8). In contrast, for drier soils or drier climate with 

lower cell density of 102 cells per mm2 (108 g-1
soil in sandy soils with 1 m2 g-1

soil), colonies would be 

separated by millimetric gaps for substrates to diffuse across with timescales of the order of years 

(with 𝜃 = 0.05, and effective diffusivity 𝐷𝑒(𝜃) ≈ 10-4𝐷0). 

The implications are that the distribution of POM in soil and the average aqueous-phase connectivity 

are key factors in ecological processes that involve exchanges across bacterial communities1,141. 

Additionally, certain soil biogeochemical fluxes become limited by the rates of gas transport, 

prominently oxygen. Such conditions may give rise to anoxic conditions in regions with high cell 

densities due to depletion of diffusion-limited oxygen151. The extent and number of such anoxic 

communities in a soil volume depends on the community sizes151 and limitations to gas transport in 

relatively wet soil152. 

The lack of systematic data on soil bacterial distribution and limitations to direct observations at the 

microscale have motivated interest in advancing biophysical modeling for estimating community size 

and spatial distributions and their implications for diffusion mediated interactions in unsaturated soil. 

The specific objectives of the study were: (i) to quantify the spatial variation of soil bacterial cell 

density based on biome-specific soil carrying capacity and associated climatic water contents; (ii) to 

link bacterial community size distributions to average cell densities; and (iii) to provide direct 

observations of variations in bacterial density on soil surfaces under controlled experimental 

conditions.  



How soil bacterial microgeography affects community interactions and soil functions 

64 

We propose a soil bacterial interactions heuristic model (BIHM) that could link biome specific, 

vegetation and moisture dependent, bacterial cell densities with putative community sizes and spatial 

distributions under certain assumptions. We consider two main processes: the dependence of cell 

density on diffusive transport and soil bacterial carrying capacity9, and spatial aggregation of bacterial 

cells due to growth153 under constrained dispersal ranges14 of unsaturated soils. The templates that 

governs soil bacterial communities and their interactions132 are assumed to vary with the abundance 

of POM and climate-controlled hydration conditions that define the diffusive distances is soils across 

biomes (Fig. 4.1 a). Variations in macroscopic cell density are associated with microscopic bacterial 

community sizes; i.e., how many cells are clustered within 5 μm distance to their nearest neighbors 

depends directly on cell density (Fig. 4.1 b). A mechanistic and spatially-explicit individual-based model 

(SIM) was used to predict growth and dispersal of bacterial cells on two-dimensional hydrated soil 

surfaces that may result in spatially aggregated communities9. Numerical experiments were 

performed using cell densities comparable to estimates from microscale observations12 and to global 

bacterial abundance data8. Simulations were used to obtain relations of bacterial community size 

distributions with water contents and cell densities for parametrization of the BIHM. In addition, we 

tested the feasibility for direct observation of bacterial spatial distribution on soil surfaces 

experimentally for varying nutrient and hydration conditions. 

  

  

Fig. 4.1. Soil bacterial habitats and community 

sizes vary across biomes. a, Particulate organic 

matter (POM) derived from fine roots provides 

the carbon input to soil bacteria. Soils from dry 

environments with sparse distribution of POM 

host only few bacterial cells in fragmented 

aqueous habitats. Diffusive resource fluxes 

increase with soil aqueous phase connectivity 

and carbon input by vegetation towards wet 

environments. b, Localized bacterial growth and 

constrained motility cause strongly aggregated 

spatial distributions of bacterial communities at 

the microscale. Community sizes are expected to 

increase with decreased spatial isolation in soils 

with wet climate. 
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4.2 Results 

4.2.1 Average cell density and community sizes linked to rainfall patterns and vegetation 

Soil bacterial carrying capacity (potential cell density for given carbon input) decays with soil depth139 

following plant roots or soil POM distributions8. We assume that 35% of a biome’s net primary 

productivity (NPP) is invested into new roots154 and enters the soil via fine root fragments with yearly 

turnover155. Studies have shown that nearly 24% of this belowground NPP feeds soil bacterial 

biomass42,43. The average time between rainfall events in a given biome affects the distance across 

which bacterial cells could be supplied by nutrient diffusion considering transport limitations in 

unsaturated soils (e.g. the Millington-Quirk152 effective diffusion model). Combining the information 

on total number of fine root fragments and diffusive distances, the number of cells maintained within 

diffusive spheres around discrete sources of POM (i.e., cell density, equation 12) was calculated for a 

range of hypothetical consecutive dry days (1-365 days). The results are depicted as a function of 

climatic water content for average soil and climatic conditions (Fig. 4.2 a). The model was evaluated 

for mean NPP and considers biomass to decay exponentially around every source of POM with a 

characteristic distance given by the diffusive length. Data on microbial biomass abundance8 (topsoil, 

n = 429) was converted to bacterial cell density9 and reported per bacteria accessible soil surface area 

(< 1% of soil surfaces142). Modeling results by the SIM support the increase in bacterial cell density 

with water contents and match the observed magnitudes (Fig. 4.2 a). 

  

 

Fig. 4.2. Cell density and climatic water content 

shape soil bacterial communities. a, The number of 

cells per accessible soil surface area increases with 

climatic water content. Symbols indicate data (4) 

(XU) of soil microbial biomass carbon in the topsoil 

(< 100 mm) converted to estimates of bacterial cell 

density (black line - exponential fit, n = 429). The 

bacterial interaction heuristic model (BIHM, red 

line) considers soil properties (porosity, soil depth, 

specific surface area), climate (rainfall patterns, 

potential evapotranspiration, mean annual 

temperature) and vegetation (net primary 

productivity) to estimate average cell density that 

compares favorably with a spatially-explicit 

individual-based model (SIM, median ± IQR, n=9). 

b, Predicted soil bacterial community size 

distribution using the analytical model 

parametrized on results of the SIM. Soils with low 

climatic water contents contain few small 

communities. Towards wetter soils observations of 

communities with more than 100 cells become 

increasingly likely. 
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4.2.2 Community size distribution based on spatial clustering of bacterial cells 

Simulation results by the mechanistic SIM that makes no assumptions regarding spatial cell 

distribution and preliminary observations in soil microcosms suggest that soil bacterial community 

sizes follow an exponentially truncated power law (Fig. 4.3). This distribution has been previously 

applied to describe animal group-sizes156 and aggregation patterns of bacterial cells153,157. Soil bacterial 

community size distributions can be characterized by two parameters (equation 14); an exponent 𝑏 

and community cutoff size 𝑛𝑐  that were estimated from simulation results and observations using 

maximum likelihood158. The parameters obtained from simulation results by the mechanistic SIM 

under a range of environmental conditions were used to link average soil bacterial cell density (a 

macroscopic quantity) with the distribution of bacterial community sizes (A4 Figure S1). The 

dependencies of 𝑛𝑐 and 𝑏 on cell density were used for general parametrization (equations 19 and 20, 

respectively) of the BIHM across biomes. Specifically, community size distributions were calculated for 

different climatic water contents and their corresponding bacterial cell densities (Fig. 4.2 b). 

Simulation results from the SIM were also compared with observations from our own microcosm 

experiments and with thin-section soil data from an independent study12. Overall, bacterial 

community size distributions were found to be highly skewed and display large variability for both 

empirical observations and simulation results (Fig 4.3 a and b). Results from our microcosm 

experiment with two nutrient conditions (sterilized tap water W and tryptic soy broth TSB) under two 

values of soil matric potential (-35 and -5 cm) show similar distributions across treatments with a slight 

increase in larger bacterial communities with addition of nutrients (Fig 4.3 a). Results from an 

independent study12 (RAY), contained only few cells that resulted in a steep drop in the proportion of 

observed large bacterial communities (Fig 4.3 a). Simulation results from the SIM indicate strong 

variations in community sizes for a range of water contents and associated cell densities (Fig 4.3 b). 

Interestingly, the data points collapse by rescaling with the obtained parameters (𝑏 and 𝑛𝑐) suggesting 

that the proposed community size distribution (equation 14) describes both experimental data and 

SIM simulations (Fig 4.3 c and d). The black line represents the distribution using an average exponent 

(𝑏 = 1.65) and describes the central tendencies in community size data reasonably well (Fig. 4.3 c). A 

treatment from our experiment (-5 cm water, day 2; open blue circles) shows a deviation due to 

relatively low cell densities. Similarly, results from the independent study were not included here 

because the exponents could not be estimated reliably with the small number of communities 

analyzed (parameter estimation is often uncertain156 for small 𝑛𝑐; A4 Figure S1 c). Nonetheless, the 

estimated parameters were considerably different from values expected from randomly distributed 

cells under varying cell densities (A4 Figure S1 a and c). Particularly, the larger 𝑛𝑐 suggests larger 

community sizes at lower cell densities compared to randomly generated distributions.  
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Simulation results from the SIM indicate that the exponent 𝑏 varies with soil water contents (Fig. 3 d), 

exhibiting lower values for water contents below ~0.2 (𝑏 = 1.10) compared with wetter conditions (𝑏 

= 1.57). Small changes in community size distributions were observed in our microcosm experiments 

for different treatments, however, the largest community size increased consistently with cell density 

for both experiments and SIM simulations (A4 Figure S2 a). The proportion of cells associated with the 

largest bacterial community (𝑃𝑙𝑎𝑟𝑔𝑒𝑠𝑡) increased with increasing nutrients and hydration conditions 

(A4 Figure S2 b). Similarly, the proportion of isolated, single cells (𝑃𝑠𝑖𝑛𝑔𝑙𝑒) decreased under wet 

conditions (A4 Figure S2 c). The unexpectedly high number of single cells observed in the wet 

treatment with no addition of nutrients could have been caused by the initial dilution of cells and 

increased dispersal opportunities in the soil (effectively reducing cell density and community 

detection). Examples of spatial cell distributions are shown for the microcosm experiment (Fig 4.3 e) 

and the SIM (Fig 4.3 f). In addition, images were taken at increased resolution to verify detection of 

cells in the microcosm experiment (A4 Figure S3). Overall, these findings suggest that it is feasible to 

Fig. 4.3. Observed and modeled community size distribution. a and b, Complementary cumulative probability 𝑃(𝑛) of 

observing a community with n cells that are aggregated within 5 μm. a, Community size distributions from two days of 

microcosm measurements (purple, red, blue and cyan) under varying hydration (- 35 cm and -5 cm matric potential) 

and nutrient conditions (tap water W and tryptic soy broth TSB). Soil thin-section data from an independent study (7) 

(RAY) is shown in green. b, Distributions obtained for a range of water contents from a spatially-explicit individual-based 

model (SIM). c and d, 𝑃(𝑛) is rescaled using obtained parameters (exponent 𝑏 and cutoff size 𝑛𝑐) and is shown with 

logarithmic bins for visual clarity. c, Microcosm data collapse after rescaling and are described using an average 

exponent (𝑏 ≈ 1.65). Round symbols and triangles indicate measurements of day 2 and day 4, respectively. d, 

Distributions obtained from the SIM with different exponents above and below water content of 0.2 (𝑏 = 1.57 and 1.10 

for wet and dry, respectively). e, Example of experimentally detected bacterial communities on soil surfaces. Only the 

regions in focus were analyzed (SYTO9 intensity in greyscale). Colors indicate community sizes (cell numbers, 𝑛). f, 

Spatial distribution of communities as obtained by the SIM. 
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observe and quantify variations in soil bacterial community size distributions related to 

macroscopically-measured soil bacterial cell density. Increased soil bacterial cell density is linked to 

macroscopic quantities (e.g. due to higher water contents or increased carbon input) and was directly 

associated with changes in bacterial community size distributions. Soils receiving high precipitation 

with high NPP are expected to host a large proportion of biomass in only few communities thus 

affecting the nature of microbial interactions and framing the diversity picture9. 

4.2.3 Physical distances between bacterial communities limit trophic interactions 

To quantify the conditions and strength of trophic interactions, we estimated average physical 

distances between bacterial communities attached to soil surfaces for different lower bounds on 

community sizes and climatic water contents (Fig. 4.4 a). Consistent with the assumption of spatially 

uniform POM distribution, the spatial distribution of bacterial communities in the bulk soil is also 

assumed uniform. This strong simplification facilitates the use of simple volume averaged macroscopic 

quantities such as effective nutrient diffusivities. Alternatively, biomass quantiles could be calculated 

as a function of distance to POM by setting appropriate bounds for integration of equation 11 to 

distinguish, for example, bulk soil communities from those inhabiting ‘hot-spots’15. Here, we assumed 

bacterial communities are distributed uniformly on accessible soil surface area using macroscopic 

bacterial cell density values that vary with climatic water content (and associated NPP). The average 

distance between communities containing at least two cells was about 100 μm and did not vary much 

with soil wetness. However, the distance between larger communities (> 100 cells) increases rapidly 

as the soil becomes drier (on average) leading to an effective spatial isolation. To quantify the extent 

of temporal separation between such communities, we estimated the time required for a small 

molecule to diffuse across the average community separation distance (Fig. 4 b). This timescale 

increases from hours to months towards drier soils and could affect the distribution of shared 

resources and opportunities for cell-cell interactions. In particular, trophic interactions that rely on 

the exchange of diffusible compounds (e.g. a ‘food chain’, 𝐴 → 𝐵 → 𝐶) are expected to be suppressed 

in dry soils. This behavior was visible in results of the SIM where the amount of end product 𝐶 strongly 

depended on the average water content (A4 Figure S4 a). Although enhanced trophic interactions and 

metabolite exchanges under wet conditions enabled higher bacterial richness, the Shannon index 

decreased towards higher water contents indicating reduced evenness with increased availability of 

resources132 (A4 Figure S4 b). The rise in bacterial richness was comparable to the total number of 

communities and the number of multispecies communities (A4 Figure S4 c). 
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4.2.4 Variations in community sizes shape the proportion of anoxic bacterial communities across 

biomes 

Simulation results by the SIM show how trophic interactions and bacterial diversity are strongly 

affected by hydration conditions14 that also shape the distribution of biomass associated with different 

bacterial community sizes. We first demonstrate how community sizes vary across biomes before we 

apply the BIHM to quantify spontaneous occurrence of anoxic communities141 to illustrate potential 

implications of community size variation on soil biogeochemical processes. We have used the BIHM 

to estimate the proportion of biomass associated with single cells and larger colonies (> 100 cells) for 

a range of climatic water contents with constant mean annual temperature (MAT) and constant mean 

NPP (Fig. 4.5 a). To illustrate how community size distribution varies with various environmental 

conditions, we evaluated the BIHM predictions for different temperatures (Fig. 4.5 b and c) and carbon 

inputs (Fig. 4.5 d and e). A decrease in MAT by 5 °C resulted in an increase in the proportion of large 

bacterial colonies at levels comparable to those for doubling NPP. This is consistent with enhanced 

soil carrying capacity9 that enables large bacterial colonies in cold regions with high carbon inputs. A 

potentially important environmental factor was the proportion of dense bacterial colonies that could 

deplete oxygen in their core (i.e. where demand by respiration exceeds diffusive supply). For 

simplicity, we assume spherical bacterial colonies and estimate minimum colony radius needed to 

induce an anoxic core151 assuming oxygen concentrations in the soil liquid phase reflect equilibrium 

with atmospheric levels (a conservative assumption for most soils). The BIHM could then estimate the 

Fig. 4.4 Spatial and temporal scales of soil 

bacterial community separation. a, Modeled 

average distance between communities as a 

function of climatic water content for two lower 

bounds on community sizes 𝑛. The average 

distances between communities with two or 

more cells and between communities with more 

than 100 cells are shown in red and blue, 

respectively. b, Time needed for a small 

molecule to diffuse across the average distance 

between communities. The average time 

between soil wetting events is shown as an 

upper bound (black dashed line). 
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proportion of biomass associated with such anoxic cell clusters globally (Fig. 4.5 g) using spatially 

distributed soil properties56,159, climate attributes52,57 and vegetation carbon input50 at 10 km 

resolution as previously described9. In addition, Copernicus global land cover data160 (2019, dominant 

type) was used to compare the amount of biomass associated with anoxic communities for different 

biomes and land use classes (Fig. 4.5 f). Permafrost soils161 were removed from the analysis because 

of limitations to diffusion that are currently not accounted for. The number of anoxic communities 

increased from 15 in bare soil to 5579 in closed forests, indicating communities with an anoxic core 

are expected to contain around 53000 cells on average. The predicted amount of bacterial biomass in 

anoxic communities was highest for closed forests followed by herbaceous wetlands and displayed 

high spatial variability for all classes. Reported values162,163 of anaerobic cell counts were generally 

lower for a range of soils (around 106 ranging from 104 to 107 per gram of soil). One study also reported 

counts of anaerobic cells associated with plant residues in a rice paddy field162 (between 108 and 1010 

per gram of soil) that could mark an upper bound for very wet, organic matter rich soils. 

 

 

Fig. 4.5. Soil bacterial community size variations shape prevalence of anoxic communities. a, Modelled cell densities as a 

function of climatic water content for mean annual temperature (MAT) and mean annual net primary productivity (NPP). 

The second axis shows the proportion of bacterial biomass present as single cells and colonies with more than 100 cells in 

red and blue, respectively. b-e, Model sensitivity of biomass proportions. b, Increasing MAT by 5 °C and c, decreasing MAT 

by 5 °C. d, Half of mean annual NPP and e, twice the mean annual NPP. e, The predicted percentage of bacterial biomass 

associated with anoxic communities based on climatic, soil and single cell properties. Permafrost soils with mostly frozen 

water are indicated in grey and were excluded from further analysis. g, Area-weighted average number of bacterial cells 

predicted to be associated with anoxic communities for different land cover types. Whiskers indicate maximum values. 

Numbers on bars indicate the average number of anoxic communities. Data from two studies is shown for comparison. 

The number of anaerobic bacteria in various soils are reported by Smith (48) (n = 21). Hiroschi et al. (47) report cell 

densities of anaerobic bacteria for soil (square symbols, n = 5) and plant residues (crosses, n = 12) of a rice paddy field. 
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4.3 Discussion 

Soil bacterial cell density varies across biomes governed by rainfall characteristics7, vegetation derived 

carbon inputs8 and temperature that define soil bacterial carrying capacity9. At the microscale, the 

connectivity of the heterogenous and dynamic aqueous phase often limits diffusive fluxes and cell 

dispersal ranges14, thereby affecting bacterial abundance and traits1,141. Irrespective of the specific 

mechanisms, bacterial biomass is not uniformly distributed in soil12,138. The assumption of spatially 

uniform bacterial abundances at the sample scale often used for inferences of interactions and co-

occurrence among taxa, requires careful consideration as it may bias16 the picture of soil bacterial life 

under common soil conditions. Particularly in soils of drier climates where a few large communities 

may be supported by sparsely distributed POM, the fragmented aqueous phase limits potential for 

interactions (Fig. 4.4). 

Evidence suggests that the size distribution of soil bacterial communities follow a power law153 with a 

cutoff related to carrying capacity or overall cell density153,156,157. This representation is supported by 

simulation results from the SIM and direct observations in microcosm experiments (Fig. 4.3). The 

power law that characterizes community size distributions is compatible with a variety of processes 

ranging from collective motion156,157 to growth models with preferential attachment (e.g. diffusion 

limited aggregation164) and is sensitive to spatial constraints156,164. Simulation results by the SIM show 

dependency of bacterial community size distributions on soil aqueous-phase connectivity. The 

dependency is manifested in predictions by the BIHM that is used to link average bacterial cell density 

to bacterial micro-geography on soil surfaces and enables generalization of soil bacterial community 

sizes across biomes (Fig. 4.5). Interactions with other soil microorganisms (viruses, protists, fungi) that 

may alter soil bacterial cell density are currently not considered in the BIHM. For example, competition 

with fungi for shared carbon sources could affect bacterial abundance and communities5, particularly 

in ecosystems where fungi are increasingly prevalent43 (e.g. forests). 

Notwithstanding the many experimental and observational limitations, this study confirms that 

systematic measurement of spatial distributions of bacterial colonies at cell-level resolution are 

important for interpreting bacterially-mediated soil functions and are feasible on natural soil surfaces. 

The few observations at these small (but important) scales must be expanded to observe bacterial 

spatial configurations for a range of soil types and controlled conditions. As postulated in many studies 

and partially confirmed with our own observations, the sizes and spatial distribution of soil bacterial 

communities highlight the highly localized nature of interactions relevant to soil ecological 

functioning1,139. For example, interactions based on cell-cell contact148–150 are likely limited by colony 

size147 and restrict the extent of signaling150 and metabolic activities149 in bacterial communities. Most 

of the bulk soil is inhabited by small bacterial clusters12 where the generally low metabolite exchanges 
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with neighboring communities and limited resources enhance overall diversity132 by promoting co-

existence of diverse bacterial species9 in small soil volumes. The proportion of bacterial biomass 

associated with communities larger than one hundred cells increases disproportionally with increasing 

soil carrying capacity and more frequent rainfall events. Simulation results by the SIM predict 

enhancement of trophic interactions in wet soils with increased diffusive fluxes at the microscale (A4 

Figure S4). Bacterial richness simultaneously increased with the total number of communities as a 

direct result of altered carbon fluxes that, in the long term, may shape the abundance of particular 

functional traits141. Interestingly, the proportion of small communities (< 100 cells) peaks at 

intermediate climatic water contents where soil bacterial diversity is highest9. The high number of 

small bacterial communities in many soils may also be reflected in sampled species abundance 

distributions and could be observed as increasing proportions of rare species in drier soils17. Even in 

marine sediments, we find that a large fraction of bacteria is attached to surfaces140,165 with cell density 

‘hot-spots’ that display distinct abundance distributions compared to those sampled from 

‘background’ communities145. 

The implications are not only general for soil bacterial activity but also for specific physical and 

diffusive distances for activation of metabolic exchanges3,48 and for the onset of anaerobic 

respiration141,151. Sufficiently large soil bacterial colonies may deplete oxygen in their cores (especially 

under restrictive gas diffusion in wet soils) and are frequent in soils with high carrying capacity such 

as the tropics and northern latitudes. These conditions delineate the expected extent of global 

terrestrial anoxic respiration that naturally emerges from these heuristic considerations (Fig. 4.5). 

Various refinements could be introduced to the simple calculations presented here including 

consideration of stoichiometric limitations (e.g. nitrogen) on carrying capacity and the use of 

distributed bacterial trait values (e.g. oxygen uptake rates) to estimate bacterially mediated processes. 

It is noteworthy that the bacterial cell and community densities presented here reflect average 

conditions in the soil body and require adaptations for certain extreme environments where carbon 

supply might differ and connectivity could be altered by extracellular polymeric substances, for 

example, in desert biocrusts144. Nonetheless, the large fluctuations in bacterial biomass across 

biomes4 and associated metabolic capacities as indicated by the BIHM could partially explain the high 

uncertainty in soil greenhouse gas (GHG) emissions of different biomes166, and affect the persistence 

of soil carbon1,167. A small increase in soil anoxic volume can greatly reduce carbon mineralization167 

and affect soil GHG emission at small scales144. The distribution of anoxic microsites is also related to 

land management141 that might further affect soil carbon dynamics1,13. The heuristic model (BIHM) for 

linking bulk soil bacterial cell density with specific community size and spatial distributions could be 

extended to consider interactions of soil bacterial communities with other organisms relevant for soil 



How soil bacterial microgeography affects community interactions and soil functions 

73 

ecosystem functioning. For example, by considering bacterial communities as spatially distributed 

‘foraging grounds’ for bacteriophages and soil fauna, respectively. 

A unifying perspective is presented for linking key factors controlling soil bacterial community size 

distributions with spatial148–150 and trophic132,144,149 interactions. The spatial distribution of soil 

bacterial communities at the microscale are constrained by overall cell density and affected by 

aqueous phase connectivity and carbon flux141. The limited number of large communities suggests 

that considerable exchange of diffusible compounds is restricted to a few densely populated ‘hot-

spots’ around sources of POM or in vicinity of plant roots. Such communities might even be large 

enough to spontaneously develop anoxic conditions that occur predominantly in resource-rich and 

frequently wet soils. In drier climate, ecosystem functioning can be largely attributed to isolated small 

settlements. Quantification of soil bacterial micro-geography provides tractable insight into the 

complexity141 of bacterial habitats and provides spatial context to inferences of soil microbiome 

functioning1,3,5.  
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4.4 Materials and Methods 

4.4.1 Average cell density based on diffusion and distance to POM 

The maximal number of cells maintained in a volume of soil (‘soil carrying capacity’) has been linked 

to carbon input by vegetation and cell specific maintenance rate that is modified by temperature9. It 

was estimated based on yearly averaged net primary productivity (𝑁𝑃𝑃) that enters a section of the 

soil profile as new roots154 (𝜉 = 0.35) and is available to soil bacteria42,43 (𝑁𝑃𝑃𝑏,𝑧, with 𝜖 = 0.24) to a 

maximum soil depth 𝑑𝑠𝑜𝑖𝑙  = 1 m. The vertical distribution of carbon 𝑓(𝑧) is described using a log 

normal distribution with μ = 0.18 and σ = 1.00 as previously reported9 (equation 1).  

𝑁𝑃𝑃𝑏,𝑧 = 𝜉𝜖
𝑁𝑃𝑃

𝑑𝑠𝑜𝑖𝑙
𝐹𝑧 = 𝜉𝜖

𝑁𝑃𝑃

𝑑𝑠𝑜𝑖𝑙
∫ 𝑓(𝑧) 𝑑𝑧        (1) 

Cell density at carrying capacity 𝜌𝐶𝐶 was estimated (equation 2) by assuming bacterial cells with mass 

𝑀𝑐 = 8.6x10-14 g C with maintenance rate 𝑚 = 1.5 gC gCcell
-1 y-1 and temperature sensitivity44 𝑓𝑇.  

𝜌𝐶𝐶(𝑧, 𝑇) =
𝑁𝑃𝑃𝑏,𝑧

𝑓𝑇𝑚𝑀𝑐
           (2) 

We assume that the main source of carbon for soil bacteria is POM derived from fine roots that have 

a turnover time of around one year155. The yearly total average volume of POM (𝑉𝑃𝑂𝑀) was estimated 

based on 𝑁𝑃𝑃𝑏,𝑧 and the density of fine roots155 𝜌𝐹𝑅 = 0.5 g cm-3. The yearly number of POM fragments 

𝑁𝑃𝑂𝑀 was estimated based on a fine root diameter155 𝑑𝐹𝑅 = 0.5 mm. Assuming uniformly distributed 

root fragments we calculate an average distance to POM 𝛿𝑃𝑂𝑀 (equations 3-5). 

𝑉𝑃𝑂𝑀 ≅
𝑁𝑃𝑃𝑏,𝑧

𝜌𝐹𝑅
           (3) 

𝑁𝑃𝑂𝑀 =
𝑉𝑃𝑂𝑀

𝑑𝐹𝑅
3            (4) 

𝛿𝑃𝑂𝑀 = (
𝑉𝑠𝑜𝑖𝑙

𝑁𝑃𝑂𝑀
)

1

3
          (5) 

The (climatic) soil water content 𝜃 is defined as previously reported9 (equation 6). The model assumes 

evaporation from a soil with saturated water content 𝜃𝑠 after drainage (at field capacity 𝜃𝐹𝐶) with a 

constant rate 𝛼 (estimated by potential evapotranspiration 𝑃𝐸𝑇) that is left for drying over some time 

𝑡. A climatic average timescale 𝜏 over which the soil dries can be estimated as the number of 

consecutive dry days (based on precipitation57 time series). The time between rainfall events during 

which the soil is wet was used to calculate the average number of wetting cycles per year 𝑁𝑐𝑦𝑐 

(equation 7). 

𝜃 = 𝜃𝐹𝐶𝑒−𝛼𝑡 with 𝛼 =
𝑃𝐸𝑇 

𝑑𝑠𝑜𝑖𝑙 𝜃𝐹𝐶
 and 𝜃𝐹𝐶 ≅

𝜃𝑠

2
       (6) 

𝑁𝑐𝑦𝑐 =
365

𝜏
           (7) 

The total distance a small molecule could travel during a year when released from a point source of 

POM is related to soil effective diffusivity (Millington Quirk152, equation 8). The area explored by a 
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particle with bulk diffusivity 𝐷0 is obtained by integration over a drying cycle 𝜏. The yearly diffusive 

distance is then obtained using the yearly number of wetting cycles 𝑁𝑐𝑦𝑐 (equations 9-10). 

𝐷𝑒 = 𝐷0
𝜃

10
3

𝜃𝑠
2            (8) 

𝐴𝐷𝜏 =  ∫ 𝐷𝑒(𝜃, 𝑡)
𝜏

0
𝑑𝑡 =   4𝜋

𝐷0𝜃𝐹𝐶

10
3

𝜃𝑠
2

3

10𝛼
(1 − 𝑒−

10

3
𝛼𝜏)      (9) 

𝛿𝐷 =  √𝑁𝑐𝑦𝑐𝐴𝐷𝜏          (10) 

The total number of cells that would be concentrated within the diffusive sphere around sources of 

POM was estimated considering 𝑁𝑃𝑂𝑀 and 𝛿𝐷. The population of maintaining bacterial cells around a 

point source (POM) was assumed to decay radially with exponential rate 𝛿𝐷
−1. Integration over radius 

𝑟 results in the expression for cell density 𝜌𝑐 per number of POM sources 𝑁𝑃𝑂𝑀 and carrying capacity 

𝜌𝐶𝐶 (equation 11 and 12). 

𝜌𝑐

𝜌𝐶𝐶
= 4𝜋𝑁𝑃𝑂𝑀 ∫ 𝑒

−
𝑟

𝛿𝐷𝑟2∞

0
𝑑𝑟         (11) 

𝜌𝑐 = 𝜌𝐶𝐶  8𝜋𝑁𝑃𝑂𝑀𝛿𝐷
3          (12) 

4.4.2 Conversion of cell densities using soil particle surface area 

Soil bacterial cell density is estimated using soil microbial biomass carbon8 and was converted to 

bacterial cell density as previously described9. Bacterial cells are mostly attached to particle surfaces 

even in wet environments such as sediments145,165. In soil we expect most of the biomass to be 

attached to soil grain surfaces140. The specific soil-particle surface area 𝑆𝑆𝐴 can be estimated using 

clay content 𝑓𝑐𝑙𝑎𝑦 and information on the dominant clay minerals. We consider proportions of 

Kaolinite, Illite and Smectite (𝐾, 𝐼, 𝑆,) obtained from global maps159 that dominate most of the soil clay 

fraction and are each associated with different surface areas; 𝑆𝐴 = 60, 200, 590 m2 g-1, respectively. 

Only a fraction of the soil pore space is considered accessible to bacterial cells and we use 0.4% of the 

particle surface area142 (𝜂 = 0.0038 ± 0.0005, n=6). The following equation 13 was used to estimate 

volumetric 𝑆𝑆𝐴 (𝑆𝑆𝐴𝑣) using soil bulk density56 𝜌𝑠𝑜𝑖𝑙  and includes a residual surface area of 1.1 m2 g-1 

of sand and silt particles: 

𝑆𝑆𝐴𝑣 = 𝜂𝜌𝑠𝑜𝑖𝑙(𝑓𝑐𝑙𝑎𝑦(𝑓𝐾𝑆𝐴𝐾 + 𝑓𝑆𝑆𝐴𝑆 + 𝑓𝐼𝑆𝐴𝐼 + (1 − 𝑓𝑑𝑜𝑚)𝑆𝐴̅̅̅̅ ) + 1.1) with 𝑓𝑑𝑜𝑚 = 𝑓𝐾 + 𝑓𝑆 + 𝑓𝐼(13) 

4.4.3 Soil microcosm experiment 

Natural soil (nutrient rich garden soil on ETH campus, 47° 22’ 43.8” N and 8° 32’ 53.6” E) was sampled 

between 5-10 cm depth in March 2018 and was subsequently sieved (< 2mm) after air drying for 3 h. 

The soil was incubated for four days at 28 °C on the porous surface model that allowed for controlled 

hydration and nutrient conditions. The experimental setup (porous surface model168) consisted of four 

ceramics with three holes (4 mm diameter and 3 mm depth) drilled in each that were filled with soil 
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(three replicate samples). Four treatments were applied by independently varying hydration 

conditions (-35 cm and -5 cm matric potential) and nutrient concentration (0% tryptic soy broth (TSB) 

and 100% TSB with autoclaved tap water). Soils were stained following the manufacturer’s guidelines 

using SYTO9 to label DNA (Thermofisher Scientific; 3 μl were applied to each sample with a SYTO9 

concentration of 10 μl incubated for 20 min). For image acquisition an epifluorescence microscope 

was used with a GFP filter cube (EVOS FL Auto, Life Technologies, Zug, Switzerland). From each 

ceramic, at least 9 images (3-4 for each hole, L ≈ 0.8 mm) were taken at 10x resolution (1 μm2). 

Constant light settings were used throughout the experiment (light intensity = 10; exposure = 330 ms; 

gain was set to 0 dB). Images were taken to maximize the area in focus. Staining and imaging were 

done under suction (-50 cm matric potential) to remove excess water from the soil surface. 

Measurements were obtained after two and four days. 

4.4.4 Image analysis for determination of cell locations 

All images were analyzed with custom python scripts based on the SciPy169 stack (including numpy, 

pandas and skimage135). Greyscale images were normalized to the range of pixel intensities (max-min). 

Images were denoised using (approximately) shift-invariant wavelet denoising (‘cycle-spinning’)170 as 

implemented in the skimage function ‘cycle_spin’ with max_shifts = 9 and wavelet denoising171 

implemented in ‘denoise_wavelet’ using the Haar wavelet.  

Images taken at 10x resolution where used to localize individual cells. First the area in focus was 

detected based on singular value decomposition172 with a window size of 17 and retaining 7 most 

significant singular values. The resulting blur map was converted to a binary mask using cross-entropy 

thresholding (‘threshold_li’ in skimage5) that corresponds to the region in focus (effectively removing 

regions that contain no information). Holes and small objects were removed from the mask if they 

were smaller than 25 pixels. Positions of cells (‘blobs’) were detected using the Laplacian of Gaussian 

method as implemented in skimage5. A range of standard deviations was considered to detect local 

intensity peaks (𝜎 = 0.4 to 7.8 in 40 steps). The smallest object could be represented by a standard 

deviation of 0.5 μm and the largest 10 μm. Coordinates of each cell were only used if they lie within 

the area in focus as determined by the blur mask. Total cell density was obtained by dividing the total 

number of cells by the area in focus. Cells were clustered as outlined below. 

4.4.5 Spatially-explicit individual-based model of bacterial growth on soil particle surfaces 

An individual-based model was used as previously implemented9 with only minor modifications. 

Briefly, cells of multiple species (differing by kinetic parameters) grow by consuming from three 

carbon sources and move continuously (active swimming and passive shoving) on a heterogeneous, 

hydrated soil surface. Here, the number of species was reduced by coarsening the discretization of 

the cell physiological parameter space; resulting in an initial cell number and richness of 504 species. 
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Three carbon sources (𝐴, 𝐵 and 𝐶 with associated yields 𝑌 = 0.25, 0.5 and 0.75) were considered to 

represent a trophic cascade (𝐴 → 𝐵 → 𝐶). Difference in yields mimic species traits as observed for 

differing carbon use efficiencies depending on substrate uptake173. The carbon source with the lowest 

yield was provided initially and carbon mass was conserved by assigning the ‘left over’ carbon to the 

subordinate carbon type (e. g. 𝐴 → 𝐵 with efficiency 1 − 𝑌𝐴). A single carbon source was localized in 

the center of the domain (that represents a 1 by 1 mm soil surface) with constant concentration 

boundary condition (𝐶𝐴 = 25 g m-3). The simulations were performed for a range of hydration 

conditions and a duration of 8 days at a 1 min time step. The total cell density, the coordinates of the 

cells were recorded and used for further analysis. 

4.4.6 Clustering of proximal cells for estimation of community size distributions 

Cells within a Euclidean distance of 5 μm were assigned to the same community. Agglomerative 

clustering (single linkage) was used where computationally feasible. For cell numbers exceeding 

30’000, HDBSCAN was used instead (with similar parameters: min_cluster_size = 3, min_samples = 3, 

cluster_selection_epsilon = 5 μm, cluster_selection_method = 'eom'). The usage of HDBSCAN resulted 

in a worse detection of the smallest communities and was only necessary for cell locations obtained 

from the SIM (as cell numbers from experiments were lower). The spatial aggregation model (equation 

13) was fitted to the distribution of community sizes using maximum likelihood to obtain estimates of 

𝑏 and 𝑛𝑐 (as implemented in ‘powerlaw’158 with parameters discrete = True, discrete_approximation 

= 'xmax' and xmin = 1). Replicates were pooled to a single community size distribution to increase the 

counts of large communities (that are unlikely to be observed within small areas). 

4.4.7 Spatial cell aggregation model – community size distribution 

Spatial aggregation patterns of micro- and macro-organisms are often described by scaling 

relations153,156,157. An exponentially truncated power law is used to model community sizes assuming 

that individuals have the tendency to aggregate within a finite space156. The probability of having a 

group of 𝑛 individuals is described as in equation 14 with exponent 𝑏 and cutoff size 𝑛𝑐. 𝐴 is a 

normalization constant given by constraint 15 with largest observed group size 𝑛𝑚𝑎𝑥. 

𝑃(𝑛) = 𝐴𝑛−𝑏𝑒
−

𝑛

𝑛𝑐          (14) 

1 = ∑ 𝑃(𝑛)
𝑛𝑚𝑎𝑥
1           (15) 

Similarly, the density fluctuations in growing bacterial colonies157 and the distribution of bacterial 

community sizes on leaf surfaces153 follow such cluster statistics where 𝑛𝑐 is related to the total 

number of cells in the system157. The size of the largest community is therefore bounded and depends 

on the total number of individuals, for example, prescribed by carrying capacity or bulk cell density 

𝜌𝑐. For infinite carrying capacity (𝑛𝑐 → ∞) the relation only depends on 𝑏 that is expected to change 

with spatial constraints156. In the case where 𝑏 = 1 the distribution converges to the log-series123. In 
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soils we expect both parameters to be interdependent and vary with aqueous phase connectivity. The 

relation of 𝑏 and 𝑛𝑐 with water contents and carrying capacity are not known a priori and were 

determined using numerical simulations. In addition to the size distribution we can calculate the 

number of colonies 𝑁(𝑛) and cells 𝑁𝑐(𝑛) for every size class 𝑛 using cell density 𝜌𝐶  and equations (16-

18). 

𝑝(𝑛) = 𝑛1−𝑏𝑒
−

𝑛

𝑛𝑐          (16) 

𝑁(𝑛) = 𝜌𝐶
𝑝(𝑛)

∑𝑝(𝑛)
          (17) 

𝑁𝑐(𝑛) = 𝑛𝑁(𝑛)          (18) 

The dependency of 𝑛𝑐 on cell density 𝜌𝑐 was well described using equation 19 (with fitting parameters 

𝑎, 𝑏) in agreement with empirical data (A4 Figure S1 a). The dependency of 𝑏 on water contents in the 

SIM indicate a transition (A4 Figure S1 b). Parameters 𝑛𝑐 and 𝑏 are not independent (A4 Figure S1 c) 

and equation 20 was used for 𝑏 (with fitting parameters 𝛼, 𝛽, 𝛾). 

𝑛𝑐(𝜌𝑐) = 𝑎𝜌𝑐
𝑏           (19) 

𝑏(𝜌𝑐) = {
1, 𝑏 < 1

𝛼 (
𝜌𝑐

𝑛𝑐
)

𝛽
+ 𝛾, 𝑏 ≥ 1

         (20) 
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Summary and Outlook 

We have introduced a general model framework to link climate and soil type with the abundance 

distribution of soil bacteria and their diversity that compared favorably with observations and 

numerical simulations. Our model provides a mechanistic basis for observed biogeographical patterns 

of soil bacterial communities compatible with the explanatory power of soil pH, which, in the long 

term, results from a soil’s climatic water balance. Soil bacterial diversity is highest in regions with 

intermediate climatic water contents where many isolated microhabitats are well supplied with 

carbon. Bacterial biomass increases with climatic water content across biomes, independent of 

bacterial diversity. Numerous isolated bacterial habitats shelter rare species from competition in 

relatively dry soils. Our model suggests that physiological differences among species can be equalized 

under the transport limiting conditions imposed by aqueous-phase connectivity and enable globally 

rare species to dominate arid regions at low absolute biomass. Non-linear shifts in bacterial species 

and biomass distributions are predicted to occur with changes in soil hydration and could have 

functional consequences for ecosystems that are sensitive to climate and land-use changes. The 

hydration centered model formulation allows to link the main components that control soil bacterial 

abundance and diversity to a few variables; offering a blueprint for adopting similar concepts to other 

organisms (e. g. earthworms; Appendix 5 submitted). Future work could extend beyond the 

monochromatic view of soil bacteria as individual agents and include a spectral perspective of spatial 

length scales that govern species across the tree of life. Nonetheless, our study provides a first step in 

the assignment of potential contributions to ecosystem functioning by spatially distributed soil 

bacterial communities with varying sizes and species compositions. 

Short term dynamics corresponded well to long term climatic averages, yet it remains uncertain 

whether dynamic effects could be quantified and after what time convergence to climatic averages 

would occur. Incorporation of more refined models of soil hydration states (e.g. surface evaporation 

capacitor174) and partitioning of carbon inputs (e.g. primary productivity) would enable a dynamic 

model application that could be tested in the laboratory and at the field scale by measuring bacterial 

biomass and species abundance distribution; for example under changing irrigation patterns and 

distribution of POM. 

Most importantly, the model implications for the spatial distribution of soil bacterial cells at small 

scales should be empirically verified. Genetic sequencing following image acquisition using modern 

microscopy techniques could be systematically applied to natural soils across environmental 

conditions to map the micro-geography of soil bacteria and gain direct access to observations of soil 

bacterial communities’ spatial distributions at the sub-millimeter scale. Relating the evenness of the 

community size distribution to the evenness of the species abundance distribution provides insights 
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into the state of the soil microbiome. Beyond distances between colonies that shape interactions 

among bacteria, the size distribution of bacterial communities has implications for other organisms. 

For example, foraging nematodes or bacterial viruses should also be strongly affected by the spatial 

distribution of soil bacteria at small scales. 

The general physical mechanism based on the distribution of resources in variably saturated 

environments (limiting growth and mobility) could be further applied to other micro- and macro-

organisms. Extension of the model to habitats of soil fungi and other soil fauna would (only) require 

definition of characteristic length scales (e.g. pore sizes) and connectivity associated with physiological 

limitations to resource acquisition and movement that are specific to those organisms.  
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A1 Supplementary Information for: Soil bacterial diversity mediated by microscale aqueous-phase 

processes across biomes 
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Supplementary Table 1 | Sources of global data and variables utilized in this study. For global maps, 

the data has been harmonized to a common grid of 0.1°x0.1° (≈ 11 km) determined by the MSWEP 

dataset. 

Name Resolution Record Variables References 

MSWEP v2.1 0.1°, 3-hourly 1979-

2016 

mean annual precipitation, mean consecutive 

dry days 

57 

WorldClim v2 5 arcmin, 

monthly 

climatic 

1970-

2000 

mean annual temperature, mean solar 

irradiance 

52 

SoilGrids 250m & 10km, 

7 soil layers 

NA soil texture (sand, silt, clay), bulk density, pH 56 

MODIS17 1km, annual 2000-

2015 

mean annual net primary production 50 
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Supplementary Table 2 | Number of samples for groups of climatic water contents (m3 m-3) in the 

diversity datasets. Datasets of bacterial diversity (Earth Microbiome Project - EMP18, Delgado-

Baquerizo et al. - DEL20) were grouped by climatic water contents (EMP additionally by soil depth; Top: 

<25cm, Sub: ≥25cm). The numbers of samples per group are reported.  

Study Climatic water 

content class 

Soil layer Number 

of 

samples 

DEL (0.0, 0.05] - 4 

DEL (0.05, 0.1] - 6 

DEL (0.1, 0.15] - 28 

DEL (0.15, 0.2] - 104 

DEL (0.2, 0.25] - 71 

DEL (0.25, 0.3] - 23 

DEL (0.3, 0.35] - 1 

    

EMP (0.0, 0.05] Top 3 

EMP (0.05, 0.1] Top 75 

EMP (0.1, 0.15] Top 93 

EMP (0.15, 0.2] Top 253 

EMP Sub 12 

EMP (0.2, 0.25] Top 1594 

EMP Sub 44 

EMP (0.25, 0.3] Top 562 

EMP Sub 93 

EMP (0.3, 0.35] Top 28 

EMP Sub 11 
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Supplementary Figure 1 | Decay of bacterial biomass carbon (CB) with soil depth. The cumulative 

fraction of CB taken from Xu et al. 8 is shown for a maximum depth of two meters (black symbols). The 

exponential model as reported by Xu et al. was fitted (blue line). A lognormal fit (orange line) shows 

an overall better alignment with the data, especially in the upper 10 cm. The root mean square errors 

(RMS) are reported in the legend.  
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Supplementary Figure 2 | Comparison of the heuristic model (HM) with the spatially-explicit 

individual-based model (SIM) on surfaces (two dimensional domains). Square symbols and bars (mean 

± SD, n = 12) depict richness predicted by the SIM rarified to 1000 counts. The aqueous-phase 

fragmentation-based HM (solid line) captures the trend in simulated richness with water content (m3 

m-3). The proportionality of the number of species per habitat Nsp to the domain’s dimensionality 

(surface or volume) and to the size s of the aqueous habitats (Nsp~s1/2) may explain the difference 

between SIM and the single species HM (dashed line).  
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Supplementary Figure 3 | Modeled and observed soil bacterial species abundance distributions (SAD). 

Comparison of relative abundances from empirical observations (x-axis) with estimates of the 

aqueous-phase fragmentation-based heuristic model (HM; y-axis). Scenarios with single and multiple 

species per aqueous habitat are compared to observations. A 1:1 line and Pearson correlations are 

shown for both soil bacterial diversity datasets. a, Relative SADs from the Earth Microbiome Project 

(EMP) and b, from a recent study by Delgado et al. (DEL) considering a single species per habitat. The 

consideration of multiple species per habitat with the number of species Nsp proportional to the 

dimensionality and size s of the habitat (Nsp~s1/3) improves the agreement with model predictions for 

both datasets; c, EMP and d, DEL, respectively.  



 

98 

 

Supplementary Figure 4 | Qualitative comparison of theoretical and empirical species abundance 

distributions (SADs) for three climatic water contents (m3 m-3). a, SADs generated for median carrying 

capacity using the aqueous-phase fragmentation-based heuristic model (HM). Empirically observed 

SADs are grouped into equally spaced intervals of climatic water content (midpoint in legends) for b, 

the Earth Microbiome Project (EMP)18 data and c, for a recent study by Delgado et al. (DEL)20. For each 

group the median (solid line) and the interquartile range (shading) as well as the number of samples 

are reported.  
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Supplementary Figure 5 | Empirically observed trends of soil bacterial evenness. a, Decrease of 

bacterial community evenness with climatic water content. Pearson correlation r for individual 

samples of both diversity datasets (EMP18 n = 2871, DEL20 n = 237) are indicated in the legend. The 

trend line shows a linear model (LM, see b) evaluated for median cell densities. b, The linear model 

was fitted to the empirical data for all sampled locations (n = 684) and the response surface of 

evenness is shown as a function of climatic water contents and cell densities (colored contours). 

Samples with cell densities lower than 1012 m-3 were removed prior to fitting the model as indicated 

in the figure. Negative slopes (, ) suggest that evenness is jointly reduced by increasing climatic 

water contents and cell density. Model residuals are not indicative of a persistent bias. Additionally, 

evenness is shown for bins of water contents (median ± IQR) to highlight the central tendency.  
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Supplementary Figure 6 | Relation of cell density with climatic water content (m3 m-3) based on net 

primary productivity (NPP). a, Modeled cell density as a function of NPP, mean annual temperature 

and soil depth using the heuristic model (HM; colored circles). The dashed regression line represents 

the mean tendency of the HM when integrated over the entire soil profile of 1 m and thus provides a 

theoretical upper bound. The dependency on climatic water contents was not explicitly modeled, it is 

rather indicative of the NPP’s relation with hydration regime. The open black symbols are results of 

the spatially-explicit individual based model (SIM; mean ± SD, n = 12) where enough carbon to support 

a cell density of 1017 m-3 was prescribed. The dependency on water contents results from spatial 

variations in nutrient fluxes with water contents. b, Observed values of cell densities8 are bounded by 

the theoretical upper limit.  
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Supplementary Figure 7 | Comparison of evenness estimated using the aqueous-phase 

fragmentation-based heuristic model (HM) and the spatially-explicit individual-based model (SIM) for 

different water contents and carrying capacity. The HM (solid line) is evaluated in two dimensions for 

every value pair of modeled cell density and water contents obtained from the SIM (square symbols 

and bars – mean ± SD, n = 12). Colors indicate modelled cell density from the SIM.  
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Supplementary Figure 8 | Pre-processing and sampling of simulated bacterial species abundance data 

may exert a strong effect on the deduced diversity metrics. a and b, Simulated soil bacterial diversity 

metrics using the spatially explicit individual-based model (SIM, mean ± SD, n = 12 different 

simulations). a, Rarefying to 5000 counts leads to higher magnitudes (compared to 1000 counts) of 

observed bacterial richness, yet the trends with water content remain consistent. b, Removing 

singletons (species sampled only once) exerts a strong influence on bacterial community evenness. 

This pre-processing step could distort the apparent relation of bacterial community evenness with 

climatic water content.  
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Supplementary Figure 9 | Global distribution of climatic soil water contents in relation with mean 

annual precipitation (MAP) and mean annual temperature (MAT). MAT spans climatic regions with 

different potential evapotranspiration (or aridity) and distinguishes locations (together with soil type) 

where climatic water contents may vary for the same MAP. For example, colder regions tend to 

require less MAP to attain relatively high climatic soil water contents.  
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A2 Supplementary Information for: A hierarchy of environmental covariates control the global 

biogeography of soil bacterial richness 
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SI Figures 

 

SI Fig. S1: Univariate GAM of selected variables. Colors indicate the sampled biomes. Bacterial richness 

as a function of climatic water content (CWC; R2 = 27.7%, RMSE = 298.1, AIC = 4557.5, EDF = 4.7), soil 

pH (PH; R2 = 23.8%, RMSE = 306.0, AIC = 4574.0, EDF = 5.1), mean annual temperature (MAT; R2 = 

5.9%, RMSE = 340.0, AIC = 4640.6, EDF = 4.9) and net primary productivity (NPP, R2 = 5.7%, RMSE = 

340.5, AIC = 4642.4, EDF = 3.7). Colors indicate the sampled biomes. Shaded areas correspond to 

standard errors (n = 320).  
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SI Fig. S2: Partial dependence plots of multivariate GAM for covariates temperature (MAT), frequency 

of dry days (DRY), soil pH (PH), cation exchange capacity (CEC), silt content (SLT), and climatic water 

content (CWC). Colors indicate the sampled biomes. Shaded areas correspond to standard errors (R2 

= 34.5%, RMSE = 283.6, AIC = 4517.8, n = 320).  
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SI Fig. S3: Graph of dependencies estimated by the causal additive model (CAM) algorithm. Covariates 

are grouped by climate, soil and ecosystem properties. Bacterial richness (0D) is the variable of interest 

and edges indicate inferred causal dependencies (p ≤ 0.0005). The direct edges to soil bacterial 

richness are shown in red while all indirect edges are shown in grey.  
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SI Fig. S4: Change of goodness-of-fit (R2) of univariate (climatic water content CWC, pH) and 

multivariate GAM for diversity indices qD that give dominant species more weight by increasing order 

q of the index.  



 

109 

 

SI Fig. S5: Species accumulation curves for varying rarefication (sampling) depths. (a) Different 

diversity metrics show varying response to sampling depth. More weights on abundant species (+2D) 

leads to saturation of the metric with smaller rarefication depth. (b) Choice of sampling depth (red 

point) as a trade-off between the numbers of dropped samples and maximized rarefication depth.  
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SI Fig. S6: Spearman correlation among covariates. (a) Matrix of pairwise correlation coefficients. (b) 

Hierarchical clustering of covariates based on their dissimilarity. From insufficiently dissimilar 

covariates (<0.15) only a single covariate (red) was chosen for modelling.  
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SI Tables 

SI Table S1: Summary of covariates and their input data. 

Covariate Unit Description Input 

MAT °C Temperature WorldClim v2 52 

RAD kJ m-2 d-1 Solar radiation WorldClim v2 52 

MAP mm yr-1 Precipitation MSWEP v2.2 97 

DRY d Number of consecutive dry days PET, MSWEP v2.2 97 

PET mm d-1 Potential evapotranspiration f(MAT, RAD) 58 

PH - Soil pH SoilGrids 56 

CEC cmolc kg-1 Cation exchange capacity SoilGrids 56 

BLD kg m-3 Bulk density SoilGrids 56 

ORC g kg-1 Organic carbon content SoilGrids 56 

CLY % Clay content SoilGrids 56 

SLT % Silt content SoilGrids 56 

SND % Sand content SoilGrids 56 

AWC - Available water-holding capacity f(BLD, ORC, SLT, CLY) 55 

CWC - Climatic water content f(PET, DRY, AWC) 

NPP g C m-2 yr-1 Mean net primary productivity (2000-2015) MODIS17 50 
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SI Table S2: Leave one out cross-validated test errors of the log ratio of bacterial richness with different 

(global) relative abundance cutoffs. 

 Log ratio := log(Nrare/Ncommon) 

Global relative 

abundance cutoff 

0.0005% 0.005% 0.05% 

MAT 15.8% 11.4% 12.2% 

RAD 18.6% 23.8% 22.9% 

MAP 12.5% 16.7% 12.2% 

DRY 11.3% 19.5% 19.2% 

PH 10.6% 21.2% 21.5% 

CEC 17.9% 16.4% 15.6% 

CLY -1.0% -0.3% -0.9% 

SLT 15.4% 20.3% 20.4% 

CWC 11.7% 22.3% 24.3% 

NPP 14.1% 14.6% 6.7% 
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SI Methods 

Calculation of climatic water content 

Climatic water content (CWC), was introduced to approximately describe the state of soil wetness 

specific to climate and soil storage capacity. It was calculated based on the assumption that the top 

one meter of soil (dsoil = 1 m) can be fully replenished up to field capacity (θFC defined as half 

porosity/AWC) during rainfall events, and drain exponentially in consecutive dry days (DRY). During 

this time, water mass is lost at a constant rate determined by (mean daily) potential 

evapotranspiration (PET) resulting in an exponential reduction of average water content. The MSWEP 

97 precipitation records of 37 years (1979–2016) are used at daily resolution to derive average rainfall 

quantities per wetting-drying cycle. The precipitation time series is subjected to a threshold taken 

from estimates of PET to identify wetting events. The metric used is the mean time interval between 

rainfall events (an ensemble average) τ. This quantity combined with daily PET (m d-1) lead to the 

following expression for climatic water content θτ: 

𝜃𝜏 = 𝜃𝐹𝐶𝑒−𝛼<𝜏> with 𝛼 =
𝑃𝐸𝑇 

𝑑𝑠𝑜𝑖𝑙 𝜃𝐹𝐶
 

Diversity indices 

Diversity of ecological communities can be quantified from different aspects, e.g. richness measures 

the number of unique types present in a community, while evenness compares the relative 

abundances that make up the local community175. Here, to measure how diverse a local community 

is, we opted for Hill’s diversity qD62, defined as: 

 𝑞𝐷 = (∑ 𝑝𝑖
𝑞

𝑁

𝑖=1

 )

1/(1−𝑞)

 

where pi refers to the relative abundance (with ∑𝑝𝑖 = 1) of the ith type and N is the total number of 

types in the population. The order q controls the weights given to species of different local abundance, 

i.e. fewer weights will be given to the rarities if q > 0, and vice versa. 0D (richness) simply counts unique 

types in a population and thus gives equal weight to all species regardless of local abundance. 1D and 

2D are closely related to the Shannon index176, as a limiting case for q=1 and the Simpson index177, 

respectively. Therefore, 1D is less sensitive to low abundant species in local communities compared to 

0D, while 2D is the least sensitive and can be considered as a measure of dominant species178,179. Their 

counterparts, i.e. -2D and -1D were also included to get a full picture of the local abundance distribution.  
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A3 Supplementary Information for: The chosen few – variations in common and rare soil bacteria 

across biomes 
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Fig. S1. Observed gradual shift in community composition with varying climatic water contents. The 

relative abundance distributions (RADs) of soil bacteria for groups of climatic water contents (bins of 

0.05) and are shown as cumulative relative abundance using previously published data17. Values are 

sorted by global species rank that ranges from most (rank one) to least abundant. The distribution 

displays a systematic shift towards increased proportion of rare species under dry conditions. The 

distribution is shifted towards more even soil bacterial communities where each species would 

contribute equally to community composition regardless of their global ranks (dashed line). The inset 

figure on the left shows the 100 most abundant species on a linear scale. Additionally, a scenario is 

shown where every species would contribute equally to the composition of the community regardless 

of rank (dashed line).  
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Fig. S2. Proportion of rare bacteria decrease with increasing water contents. Two long term estimates 

of soil water content show consistent trends of decreasing proportion of rare bacteria indicated by 

smoothened estimates (LOWESS) of the data. ERA5-land (https://doi.org/10.24381/cds.68d2bb30) 

derived estimates of mean water contents (0.1°x0.1°, monthly for 1981-2019) compare favorably with 

climatic water contents (CWC, based on rainfall frequency9,17).  
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Fig. S3. Shifts in community composition and species ranking with climatic water contents relative to 

the global average relative abundance distribution (RAD). a, Spearman rank correlation between each 

sample’s RAD and the global RAD. Colors indicate Bray-Curtis community dissimilarity. b, 

Discrimination information measured via Kullback-Leibler (KL) divergence between each samples RAD 

and the global RAD. Higher values indicate that more information is needed to describe the samples 

RAD relative to the global RAD. Colors indicate estimated cell density9 (carrying capacity) that was 

calculated using previously published data17. Few exceptions to the clear tendency include mostly 

samples from nutrient rich environments as indicated by their high potential carrying capacity.  
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Fig. S4. The proportion of rare bacteria varies with environmental conditions. a-d, Empirical trends in 

relative abundance (RA) of rare bacteria compared for selected variables (grey symbols and solid black 

line, individual samples (n=844, from studies EMBL5, EMP18 and ZHOU28) and locally weighted scatter 

plot smooth - LOWESS). Colored lines indicate LOWESS of bacterial richness for common and rare 

bacteria (purple and red, respectively). Rare and common species are indicated on separate y-axis. a, 

soil pH, b, climatic water contents, c, mean annual temperature and d, net primary productivity.   
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Fig. S5. Simulated bacterial community for different biomes. a-d, Median and central 50% and 95% of 

values are indicated for each biome. Predictions by a heuristic model9 (HM, open circles) are shown 

together with model results of the SIM, and SIM with temperature dependency (SIMMAT; open and 

closed squares, respectively). a, Proportion of rare species. b, Carrying capacity (estimated cell 

density). c, Mean annual temperature (MAT) and d, climatic water content (CWC) that provide average 

input values for the SIM.  
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Fig. S6. Simulated bacterial community for varying water contents. a, The number of individuals 

increases exponentially with water contents although some saturation can be observed for very wet 

conditions (mean ± SD, n = 5 except for water contents > 0.35 where n = 3). The number of potentially 

maintained individuals is not prescribed and emerges from increased fluxes at high water contents, 

carbon input (boundary conditions) and physiological properties of individual species. b, Ensemble 

averages of Monod parameters (µmax and Ks, maximal growth rate and half saturation constant, 

respectively) display consistent patterns with water contents.  
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Fig. S7. Ecosystem functions vary with climatic water contents (CWC). Ecosystem functions, 

exemplified by Glucose mineralization and -Glucosidase activity, can respond differently to CWC. The 

normalized response is adapted from a previous report (DEL113, 81 samples aggregated spatially within 

0.1° for 23 sites; mean ± SD) and solid lines are smoothened estimates (LOWESS).  
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Fig. S8. Ecosystem functions related to microbial diversity that are potentially associated with rare soil 

bacteria. a-d, Our framework for delineating common and rare bacteria was applied to a recent 

study111 that used microcosm experiments with an artificial diversity gradient. Reported species count 

data was rarefied to the minimum number of total counts across samples (1’438) and averaged across 

15 independent realizations. Rare soil bacteria contributed largely to bacterial richness that was 

associated with multiple ecosystem functions111. Lines represent smoothed estimates (LOWESS). a, 

Leaf litter decomposition increased with proportion of rare bacteria. b, Leaching of Nitrogen and 

Phosphorus showed opposing trends with increased proportions of rare bacteria. c, Incorporation of 

Nitrogen and d, Phosphorus into plant tissue possibly associated with the proportion of rare species 

differed among plant type. Grasses incorporated less Nitrogen and Phosphorus with increasing 

proportion of rare species while Legumes and Forbes displayed opposite tendencies.  
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Table S1. Resampling of the dataset to test robustness of threshold selection. A subset of samples 

was selected randomly to perform resampling with replacement (nboot = 1’000) from the previously 

published data17 on community composition. The threshold t of relative abundance that is used to 

distinguish rare and common species and the resulting relative abundance of rare bacteria RAr are 

shown for the resampled datasets. Mean and SD are reported. 

Samples tmean (%) tSD (%) RAr,mean (%) RAr,SD (%) 

52 0.021 0.003 39 11 

105 0.021 0.002 41 12 

211 0.021 0.002 42 12 

422 0.020 0.002 42 12 

844 0.019 0.002 42 12 
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A4 Supplementary Information for: How soil bacterial microgeography affects community interactions 

and soil functions 
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Figure S1. Modeled and observed community size distribution parameters. a-c, A power law with 

exponential cutoff is used to describe the soil bacterial community size distribution. Estimated 

parameters are shown for empirical data (microcosm, RAY) and the spatially-explicit individual-based 

model (SIM) with parametrization for typical cell densities (solid line). For comparison, parameters 

were also calculated for random cell distributions under varying density (grey symbols; mean ± SD, n 

= 24). a, Cutoff parameter 𝑛𝑐 is related to cell density 𝜌𝑐. b, Exponent 𝑏 is not independent from 𝑛𝑐 

and varies with water content 𝜃 mediated by 𝜌𝑐. c, Relation between 𝑛𝑐 and 𝑏 used for 

parametrization (see Methods).  
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Figure S2. Soil bacterial communities observed in the soil microcosm experiment. a, The size of the 

largest community increases consistently with cell density for microcosm data, results of the spatially-

explicit individual-based model (SIM) and data from an independent study12 (RAY). b, In the microcosm 

experiment the proportion of cells in the largest community (𝑃𝑙𝑎𝑟𝑔𝑒𝑠𝑡) increased with increasing 

nutrient and hydration conditions. c, the proportion of isolated, single cells (𝑃𝑠𝑖𝑛𝑔𝑙𝑒) varies across 

treatments.  
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Figure S3. Soil bacterial communities observed in the soil microcosm experiment. a, Communities 

detected after 2 days of growth stained with SYTO9 (grey scale) and imaged at one micrometer 

resolution (10x) as used for measurement of community sizes. Cells are grouped into the same 

community if they are located within five micrometers (shown as different colors for each group of 

cells). Only cells in the focal plane are labeled and used in the analysis. Detailed view on soil 

microcolonies (boxes A and B) at 0.5 micrometer resolution (20x); for clarity truncated below median 

and above 99 percent intensity. Varying soil surface topology and growth morphologies challenge cell 

density estimation. A, Small settlement of round cells on a soil grain. B, Filamentous growth is only 

partially detected as ‘chains’ of individual cells. Densely packed colonies of round cells with low 

fluorescence intensity as visible in the lower half could cause additional uncertainties.  



 

128 

 

Figure S4. Trophic interactions are enhanced in wet soils with implications for species diversity. a, 

Dynamics of median (n=9) carbon source concentrations as obtained from the spatially-explicit 

individual-based model (SIM). The SIM considers a degradation pathway from carbon source 𝐴 to 𝐶 

(consumption 𝐴 of releases 𝐵 to the aqueous phase, etc.). The concentration ratio of the end product 

𝐶 (cyan) to the source compound 𝐴 (magenta) indicates trophic interactions via diffusion in the 

aqueous phase (𝐶𝐶 𝐶𝐴⁄ , colored lines from orange to blue indicate different water contents in m3m-3). 

b, Average bacterial diversity changes with hydration condition. Richness (black) increases with 

increasing water content. Shannon diversity (red) decreases towards wet conditions indicating 

reduced evenness. c, The total number of communities (black) and the number of multispecies 

communities (grey) increase with water content.  
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A5 Global earthworm distribution and activity windows determined by soil hydromechanical 

constraints 
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Abstract 16 

Earthworms activity modifies soil structure and promotes ecological and hydrological soil 17 

functioning. Earthworms use their flexible hydro-skeleton to burrow and expand biopores, 18 

hence their activity is constrained by soil hydromechanical conditions that permit 19 

deformation at earthworm’s maximal hydro-skeletal pressure (≈ 200 kPa). A novel 20 

biophysical model links earthworms’ physiological limits with bioturbation permitting soil 21 

conditions across biomes and climate regions. We inject additional constraints such as 22 

freezing temperatures, soil pH, and high sand content that exclude earthworm activity to 23 

develop the first predictive global map of earthworm habitats in good agreement with 24 

observations. Earthworm activity is strongly constrained by variable seasonal patterns across 25 

latitudes. The mechanistic model delineates potential for earthworm migration and regions 26 

sensitive to climate and land use changes.  27 
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Main 28 

Subterranean activity by earthworms sustains soil structure and provides numerous ecosystem 29 

services1. Soil biopores formed by burrowing earthworms serve as preferential pathways for 30 

water flow and aeration2. They are hot spots of biological activity that can be reused by 31 

growing roots, improve groundwater recharge, soil water retention and support oxic 32 

conditions in soil profiles3,4. In locations with abundant plant-derived particulate organic 33 

carbon (POM), earthworms ingest POM-rich soil5 and often line their burrows with secreted 34 

castings. Soil ingestion by earthworms can augment microbial activity and stimulates the 35 

formation of soil aggregates6. Overall, earthworm activity is attributed to significant 36 

enhancement in specific crop yields up to 25% 7. Empirical evidence suggests that 37 

earthworms are efficient “ecosystem engineers”8 and play a prominent role in remediating 38 

adverse soil compaction9 that affects nearly 5% of the world’s arable land (about 68 Mha)10.  39 

Soil bioturbation by earthworms is driven by subterranean resource exploration at rates and 40 

frequencies that are linked to the availability of soil organic carbon from decomposing plant 41 

residue2 and their mechanical ability to move in the subsurface. The soil hydro-mechanical 42 

conditions11 link soil strength with soil water content and regulate earthworms ability to 43 

burrow through soil. The kinematics of earthworm burrowing rely on locally extending the 44 

frontal segments of their body to mechanically penetrate the soil, followed by subsequent 45 

expansion of these segments to anchor and recollect extended segments, thereby pushing 46 

themselves through the soil12 ,13. The local pressures required by the earthworm’s hydro-47 

skeleton for expanding a new burrow are the primary determinants of penetration-cavity 48 

expansion13, and vary widely with soil type and hydration conditions. Availability of spatially 49 

resolved soil properties and climatic records of soil hydration conditions offer opportunities 50 

for harnessing spatial and dynamic information to identify potential earthworm habitats at 51 

high resolution14. Ecological studies have provided insight into regional earthworm 52 
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distributions15,16 along with earthworm seasonal activity windows17,18. In addition to innate 53 

ecological patterns, physical constraints may affect earthworms behaviors that include 54 

sensitivity to temperature, soil compaction, and soil moisture19.  55 

Physical bounds on earthworm bioturbation have been quantified recently by considering the 56 

interplay of soil hydro-mechanical constraints and biomechanical limit pressures that could 57 

be exerted by the earthworms’ hydro-skeleton11. These insights allow delineation of regions 58 

that permit bioturbation activity and offer a biophysical and climatic context for global 59 

earthworm abundance and distribution14,15,20. Mechanistic models could predict consequences 60 

of agricultural intensification with potential for soil compaction while simultaneously 61 

considering climatic shifts that would affect future earthworm bioturbation activity windows 62 

(e.g. dormancy during dry seasons in Mediterranean climates) and associated ecosystem 63 

services. 64 

Here we show that climatic conditions and highly dynamic soil mechanical states are the 65 

primary constraints for global earthworm occurrence and activity. The seasonal and  dynamic 66 

nature of soil moisture conditions in many regions defines  temporal activity windows that 67 

support bioturbation and shape  biogeographic patterns11. The objectives of this study were: 68 

(i) to model soil hydro-mechanical conditions and derive temporal windows of potential 69 

earthworm burrowing activity, and (ii) to delineate regions where earthworm activity would 70 

be mechanically prohibited (iii) to compare predicted regions with earthworm presence data 71 

at the global scale. 72 

We present a mechanistic soil bioturbation model11 with associated soil mechanical 73 

properties and general biophysical traits of earthworms. Soil and climatic information is used 74 

to predict the global distribution of habitats and associated temporal windows of bioturbation 75 

activity. Although soil moisture and soil type dominate earthworm burrowing potential, other 76 

factors such as temperature21, soil pH22 and high sand contents23 were taken into account.   77 
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Earthworm bioturbation - cavity expansion model and soil mechanical properties 78 

Contrary to popular view, the primary mechanism for soil bioturbation by burrowing 79 

earthworms relies on their ability to penetrate and deform the wet soil matrix using their 80 

flexible hydro-skeleton rather than ingesting POM-rich soil13. A recent biophysical model 81 

quantifies earthworm soil penetration and cavity expansion pressures11. The model defines 82 

the mechanical stress required for radial cavity expansion in an elasto-viscoplastic soil11 that 83 

is linked with radial stresses 𝜎𝑟 induced by the earthworm hydro-skeleton at the cavity wall 84 

(Fig. 1). The minimal stress for cavity expansion in a soil is given as: 85 

 
𝜎𝑟(𝑅𝑝) = 𝑃𝐿 − 2𝑠𝑢𝑙𝑛 (

𝑅𝑝

𝑟𝑐
) = 𝑠𝑢 (1) 

where 𝑟𝑐 is the radius of the cavity, 𝑃𝐿 is the pressure at the cavity interface, 𝑅𝑝 is the radius 86 

of the elasto-viscoplastic interface (far field), and 𝑠𝑢 is the soil shear strength. Solving for the 87 

cavity expansion pressure yields the following limiting pressure for soil deformation: 88 

 
𝑃𝐿 = 𝑠𝑢 (1 + 2 ln (

𝑅𝑝

𝑟𝑐
)) =  𝑠𝑢 (1 + ln (

𝐺

𝑠𝑢
) ) (2) 

where 𝐺 is the shear modulus of rigidity. The ratio between the cavity zone and the 89 

viscoplastic zone converge to the ratio between the shear modulus and shear soil strength 90 

((
𝑅𝑝

𝑟𝑐
)

2

→ (
𝐺

𝑠𝑢
)) as the initial cavity radius approaches zero (e.g. when initiating creation of a 91 

new burrow). Soil mechanical properties and soil moisture affect the model parameter values 92 

and thus the conditions that permit bioturbation by earthworms. We adopt a macroscopic 93 

rheological description of soil deformation24,25 and use simplified power law relations for 94 

linking soil mechanical properties to soil texture and water content similar to the work of 95 

Gerard26 (Supplementary Information, Extended Data Fig. 1 and 2). The resulting expressions 96 

describe the minimum pressure an earthworm must exert to radially expand a cavity in soil 97 

(Fig. 1). Observations suggest that the earthworm hydro-skeleton27 can apply a maximum 98 

pressure of 𝑃𝑤 = 200 kPa 28,29. In other words, earthworm bioturbation becomes mechanically 99 
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impeded by soil mechanical conditions when 𝑃𝐿(𝜃, 𝑛) ≥ 𝑃𝑤, where 𝜃 is the soil water 100 

content, and 𝑛 is the summed fraction of silt and clay.  101 

Results 102 

Predicted earthworm hospitable regions 103 

We calculated mean annual cavity expansion limit pressures globally (0.1° x 0.1°, monthly 104 

for 1981-2019) using the ERA5-land soil moisture reanalysis and SoilGrids30 topsoil textural 105 

information (Fig. 2 a). Different averaging methods were compared (Extended Data Fig. 3) 106 

and the harmonic average annual pressures are reported (Fig. 2 a). Geographical regions 107 

indicated in green are, on average, below the earthworm’s biomechanical pressure limits. 108 

Independent data from a recent study20 indicated less than 10% of observed earthworm 109 

abundance above a limiting pressure of 200 kPa (Extended Data Fig. 4). Additional factors 110 

that might exclude earthworm activity were considered to further constrain the predictions of 111 

potential earthworm habitats (Fig. 2 b). Regions with low mean annual temperature (MAT), 112 

i.e. MAT < 0 °C, are marked in blue, red regions indicate where the soil pH is below 4.5, and 113 

yellow regions where the soil sand content exceeds 80%. For regions with pronounced 114 

seasonality, earthworms have developed ecological strategies to cope with periods during 115 

which soil mechanical conditions impede bioturbation (e.g. extended period of 116 

dormancy18,31). Considering the minimal time window for a reproductive cycle and survival 117 

of newly hatched earthworms (total 4-6 weeks)31, we required two consecutive months of 118 

favorable, soil mechanical conditions for permissible habitation. This would ensure at least 119 

one reproductive cycle per year31. Regions with shorter time windows are shown in cyan 120 

(Fig. 2 b). Distributions of additional factors were compared to sites with earthworm 121 

occurrence from a recent study14 (Extended Data Fig. 5). Comparing reported soil pH with 122 

values obtained from digital soil maps (SoilGrids30) revealed a narrowed range of values than 123 
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observed at the sample scale. Most occurrences of earthworms were reported for soil pH 124 

above 3.5 that mapped to SoilGrids30 pH values above 4.5 (used for spatial mapping). These 125 

locations also received more than the previously reported15 minimum mean annual 126 

precipitation (MAP) of 400 mm yr-1.  127 

Modeled and observed earthworm global distributions 128 

Detailed comparison of regions with ample observations were used for model evaluation. For 129 

example, earthworm spatial distributions for Australia and North America are depicted in Fig. 130 

3 a and b, respectively32. The large extent of arid regions in Australia limits earthworm 131 

activity to the coasts that receive sufficient rainfall to moisten the soil. This is in good 132 

agreement with model predictions as shown with the 400 mm yr-1 contour of MAP15 (Fig. 3 133 

a). For North America, the model predicts that earthworm activity is possible from the east 134 

coast to the Midwest followed by a sharp decrease in occurrence until the west coast (Fig. 3 135 

b). These trends are similar to previously estimated earthworm distributions16 with a sharp 136 

cutoff near arid regions. Around half of the terrestrial surface (>-60°N) permits earthworm 137 

activity but most observations of earthworm presence originate from Europe (Fig. 3 c). 138 

Reported earthworm presence agreed with model classification for 86% of the geographical 139 

occurrences (global within 0.1°x0.1°, n = 7346). Although there were 13% of false negatives, 140 

these were often associated with local geographical features (e.g. river banks, anomalous 141 

precipitation zones, etc.) as depicted in Fig 3. To test the robustness of classification and its 142 

sensitivity (hit-rate) we performed random re-sampling of occurrences with replacement 143 

(Extended Data Fig. 6).   144 
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Earthworm seasonal activity windows 145 

The global map of average conditions conducive to earthworm burrowing activity conceals 146 

the nuanced dynamics associated with seasonal activity windows that are driven primarily by 147 

precipitation. To provide a succinct picture of this ingredient, temporal activity windows 148 

(seasonality or wet periods) for earthworms are illustrated in Fig. 4. The temporal variability 149 

of limiting soil pressures is described spatially by the coefficient of variation and highlights 150 

regions in which the impact of seasonality on earthworm activity is most pronounced (Fig 4 151 

a). Fig. 4 b presents the median limiting pressure across latitudes for a climatic year to 152 

highlight the dynamic nature of soil conditions that constrain seasonal earthworm activity and 153 

delineates regions where soil conditions prohibit earthworm activity year-round (i.e., arid 154 

regions). The required minimal cavity expansion pressures are compared for two contrasting 155 

biomes where MAT, sand content, and pH, were not limiting. A grassland located at 9.55oN, 156 

14.65oE and a desert located at -22.95oN, 132.95oE are indicated in Fig. 4 a. Results suggest 157 

that soil moisture content mediated by precipitation facilitates mechanical activity for as 158 

much as 4.5 consecutive months in the grassland (Fig. 4 c) while the infrequent precipitation 159 

in the desert (Fig. 4 d) resulted in no appreciable temporal activity window for bioturbation or 160 

reproduction. Lastly, we compared species richness reported in Phillips et al.14 to the 161 

fragmentation of habitats across latitudes (Fig. 4 e). Latitudinal habitat fragmentation was 162 

measured by counting the number of land fragments that are broken up by inhospitable zones 163 

and water bodies within a 0.1° wide strip around the globe. Results suggest higher species 164 

richness with increased number of fragmented habitats at the spatial resolution of ~10 km.   165 
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Discussion 166 

A novel biomechanical model for earthworm bioturbation in combination with climatic and 167 

soil conditions enabled mapping of global habitat suitability (Fig. 2) and comparison with 168 

earthworm distributions (Fig. 3). Favorable soil moisture and mechanical conditions 169 

dominate the global distribution of earthworms. Additional constraints such as permafrost 170 

soil and subzero MAT21 preclude earthworm activity in large parts of the world. Despite 171 

evidence for soil acidity limitations (soil pH < 4.5)22, the global distribution of earthworm 172 

was not overly sensitive to low values of soil pH16. The primary mechanism14 that shapes 173 

earthworm occurrence appears to be driven by soil physical (hydro-mechanical) conditions; 174 

determined by soil moisture and earthworm physiological limitations in unfrozen soils.  175 

The distributions of environmental conditions associated with earthworm occurrence 176 

compare favorably with the range of values reported in a recent global study14 (Extended 177 

Data Fig. 5). The modeled soil limit-pressures appeared to also correspond strongly with 178 

observed earthworm abundance using independent data (Extended Data Fig. 4). However, 179 

modeled trends at ~10 km resolution preclude representation of many small-scale niches. For 180 

example, river corridors that cut across arid regions in the US Midwest reported presence of 181 

earthworms not represented by the model. Other examples were found along rivers in South-182 

East Australia and Eurasia. Similarly, inhospitable regions with low soil pH may not be 183 

properly captured by the smoothed estimates of digital soil maps30 as evident when 184 

comparing with values reported for soil samples (Extended Data Fig. 5 a and b). We note that 185 

many biological and chemical soil properties are also related to climatic hydration 186 

conditions31,34 and our results represent average climatic tendencies manifested across biomes 187 

and spatial scales (~10 km resolution). Such global estimates might average out locally 188 

limiting factors (soil moisture, soil compaction, temperature and soil pH), thus contributing to 189 

model predicted false negatives. Furthermore, our estimation for maximal earthworm hydro-190 
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skeletal pressures are based on earthworms residing in temperate regions28. Large earthworms 191 

found in the tropics or in Australia may exert greater pressures and could thus be less limited. 192 

However, this could be readily accounted for in future studies given more refined 193 

physiological information. Moreover, it remains challenging to address potential 194 

observational bias in the spatial patterns of reported earthworm occurrences. Most 195 

occurrences are reported for few countries in Europe (United Kingdom, Germany) resulting 196 

in strong spatial clustering of presence data that hampers the assessment of model sensitivity 197 

(hit-rate). By considering the observation density and performing weighted, random re-198 

sampling we observe a minor reduction in hit-rate (from 86% to 84%) and find that average 199 

estimates are robust against variations in sample size (Extended Data Fig. 6). While this may 200 

not fully resolve the issue of observational bias, we can analyze possible tendencies of 201 

reduced sensitivity. Overall, the lowest hit-rate is still well above 50%, which would be 202 

expected by a coin toss and, coincidentally, by the fraction of terrestrial area that is predicted 203 

to be hospitable to earthworms.  204 

In addition, the seasonality of limiting soil pressures defines temporal windows of earthworm 205 

activity and selects for particular ecological life strategies. Model predicted activity windows 206 

(Fig. 4) correspond closely to previously reported seasonal variations in earthworm 207 

communities17,18. This suggests that their ecological strategies (i.e. dormancy cycles, 208 

reproduction cycles, etc.) are mediated by soil hydro-mechanical factors. While the shortest 209 

possible temporal window that supports thriving earthworm communities is unknown, a 210 

sufficiently long window is required for earthworm annual reproduction18. Earthworms may 211 

live several years, but the fertilization and egg incubation take 3-4 weeks18,31. Additionally, 212 

young earthworms need a few weeks to build up biomass to survive dormancy18,31. We could 213 

assume 1-2 months of favorable conditions to be the minimum requirement for survival and 214 

reproduction31. Narrow windows would also limit earthworms’ accessibility to plant-derived 215 
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POM, which could further preclude their activity in deserts with low net primary productivity 216 

(Fig. 4 c and d). Strong seasonal variation poses further constraints on earthworm activities 217 

linked to the variability of limit pressure (Fig. 4 a). Although we present harmonic averaging 218 

that provides more inclusive bounds for earthworm habitats in regions with strong seasonal 219 

variation (e.g. Spain, Fig. 3; for comparison of averaging methods see Extended Data Fig. 3), 220 

the mechanistic model allows for quantification of the seasonal variability in earthworm 221 

habitats (Fig. 4 a). Despite few regions of high volatility, climatic predictions are robust for 222 

most regions. For example, permissive regions of earthworm activity in Asian islands such as 223 

the Philippines35 are predicted.  224 

Furthermore, our results quantify the dynamics of latitudinal patterns (Fig. 4 b). While there 225 

are particular regions that remain stable (i.e. favorable or uninhabitable), there are several 226 

latitudes that exhibit strong fluctuations. One of the more striking features is observed 227 

between 20oN and 30oN. These zones are characterized by particularly harsh conditions. 228 

Interestingly, the highest number of earthworm species was reported for this range14. 229 

Compatibility between the two results would suggest that species richness is high under 230 

environmentally harsh conditions (Fig. 4 e). However, taking the latitudinal median might 231 

miss small regions that permit earthworm burrowing activity. The limited spatial extent of 232 

such “patches” would not allow for widespread migration and favor endemic (isolated) 233 

populations; resulting in high species richness over climatic timescales. Nonetheless, this is 234 

not to suggest that the short-term, anthropogenic fragmentation of earthworm habitats would 235 

promote species diversity.  236 

The study provides a framework for prognosis of potential migration trends, climatic barriers, 237 

and the promotion of sustainable land use. Regions of North America with limited earthworm 238 

activity are predicted by our model in agreement with previously reported earthworm 239 

distributions (Fig. 3). Isolation of earthworm communities in North America could be 240 
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attributed to drier regions central-westward that act as geographic barriers. These regions 241 

obstruct earthworm migration and could explain why few native earthworm species returned 242 

to North America post glaciation14.  243 

The growing threat of soil compaction associated with increased land use intensification36 is 244 

motivating a large push towards no-tillage practices9,36. Regions that indicate soil 245 

bioturbation potential by earthworms may be used to further prompt more sustainable 246 

agricultural practices37, which would reduce the frequency and intensity of tillage machinery 247 

while maintaining soil structure suitable for crop growth36. The modeled regions of 248 

bioturbation potential are based on first principals that are independent of earthworm 249 

occurrence or abundance data and can serve as a reference for evaluating agricultural 250 

practices across biomes. 251 

The modelling framework (Fig. 3) could be readily incorporated in climate models with 252 

minor computational costs to represent dynamics of global earthworm habitats and activity 253 

windows38. Unlike a static picture of global distributions14,39, the model could be used to 254 

assess future trends in regions viable for agriculture and land use management (tillage vs. no-255 

tillage) with respect to earthworm contribution to soil structure. Predictions of earthworm 256 

activity and migration patterns could be linked to future expansion of wetter (or drier) 257 

regions. Although the focus has been on hospitable regions for earthworm activity, soil water 258 

contents associated with limiting earthworm pressures have been shown to affect plant root 259 

growth for many soil types. Bengough et al.40 reported that this lower bound in soil moisture 260 

provides favorable mechanical conditions and water availability for plant roots. This becomes 261 

evident when considering global gross primary production (GPP), which highlights very 262 

similar spatial patterns41 compared to predicted earthworm habitats. Furthermore, plant roots 263 

could benefit from a mutualistic interactions with earthworms5, thus finding benefits from 264 

regions where earthworms thrive and vice versa.  265 
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Although comparisons made in this study inspire confidence in our model, refinements would 266 

be needed to better predict bioturbation and foraging activity. We envision, development of 267 

population densities based on energetic considerations that include soil carbon input fluxes34 268 

(e.g. GPP). Reported earthworm populations range between 60 and 350 individuals per m2 of 269 

soil surface42 and it is likely that resource availability (i.e. soil organic carbon (SOC) or 270 

POM) could limit earthworm abundance in particular regions. Considering such factors in a 271 

mechanistic modeling framework would help disentangle the various effects of organic 272 

matter accumulation on soil mechanical properties (bulk density), soil water characteristics 273 

(water retention) and physiological (energetic) constraints. Such refinements would enable 274 

the model to generate estimates regarding earthworm abundance, which is beyond the scope 275 

of the current study. 276 

Insights into the fundamental principles that shape earthworm ecological trends as reported in 277 

previous studies15,16 14 place such empirical observations on a mechanistic basis. This 278 

deepens our understanding of the processes relevant to predators, soil flora and microbes that 279 

interact with earthworms, and the general ecosystem services that earthworms provide 5; all 280 

of which are built on the foundations of soil hydro-mechanical status.  281 
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Methods 282 

Earthworm limiting pressure and activity windows 283 

Using global soil moisture data combined with the critical soil hydro-mechanical states that 284 

limit earthworm burrowing, we determined climatic regions that could support potential 285 

earthworm bioturbation activity. Regions with high likelihood of permafrost are removed 286 

prior to calculations (with permafrost zonation index43 exceeding 0.1). For each geographic 287 

location we then evaluate the parametrized model using soil textural information from 288 

SoilGrids digital soil maps30 and monthly averaged soil moisture estimates from ERA5-land 289 

(https://doi.org/10.24381/cds.68d2bb30). All global raster data was harmonized to a common 290 

grid of 0.1° resolution (~11 km) using nearest neighbor interpolation of the upper most soil 291 

depth layer (0-5cm and 0-7 cm for SoilGrids and ERA-5 land, respectively). The limiting 292 

pressure (equation (2)) was calculated for the entire record of the ERA5-land dataset that 293 

ranges from 1981 to 2019 at a monthly resolution. Based on the limiting pressure time series, 294 

we estimate the number of consecutive months below 200 kPa and the ensemble average 295 

pressure for every grid cell. A comparison of averaging methods is reported in the 296 

Supplementary Information and we reported harmonic averages throughout the main text. 297 

Two specific regions were selected to illustrate temporal activity windows: a grassland 298 

located at 9.55oN, 14.65oE and a desert located at -22.95oN, 132.95oE. We aggregated the 299 

limiting pressure time series to climatic monthly values and compared with daily climatic 300 

precipitation estimates obtained from MSWEP33. Daily precipitation estimates were 301 

smoothened using a 30-day rolling average for comparison with monthly pressure values and 302 

to delineate time windows of earthworm burrowing activity.  303 

Additional factors that impede earthworm activity 304 

Climatic factors and soil properties were used to illustrate additional factors that could 305 

impede bioturbation activity by defining thresholds for earthworms’ tolerance. Regions 306 
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where the mean annual temperatures (MAT) were below zero were considered zones of 307 

impedance. Besides the soil mechanical impedance becoming augmented in a manner not 308 

currently considered in our model, these low temperatures will decelerate earthworms’ 309 

metabolic cycles to critical states21, which may ultimately lead to earthworms freezing. 310 

Besides soil temperature, low soil pH is often cited as being critical for earthworm habitat 311 

suitability14. We outline global regions where soil pH is below 4.522,31. Regions where sand 312 

content exceeded 80% were considered as regions of impedance. Although there are sandy 313 

soils where earthworms have been observed (e.g. sand dunes in the UK44), the abrasive nature 314 

of sand grains is typically obstructive45. We note that SOC and POM would also play a role 315 

in limiting earthworm abundance. However, as they are likely to co-occur in hydro-316 

mechanically hospitable conditions, we focus our study on physical and chemical factors 317 

impeding potential earthworm activity. 318 

Earthworm occurrence data  319 

We compared our theoretically determined regions with previously published empirical maps 320 

that outline earthworm distributions for Australia15 and North America16 and with presence-321 

only data of ten earthworm species (Almidae, Eudrilidae, Glossoscolecidae, Hormogastridae, 322 

Lumbricidae, Microchaetidae, Moniligastridae, Ocnerodrilidae, Octochaetidae, 323 

Sparganophilidae) as deposited in the Global Biodiversity Information Facility (GBIF) 324 

database (https://doi.org/10.15468/dl.xstqow, https://doi.org/10.15468/dl.wghggg, 325 

https://doi.org/10.15468/dl.3yj8pk, https://doi.org/10.15468/dl.lzuwlg, 326 

https://doi.org/10.15468/dl.vwqtsk, https://doi.org/10.15468/dl.brqmht, 327 

https://doi.org/10.15468/dl.ghccto, https://doi.org/10.15468/dl.dk97gk, 328 

https://doi.org/10.15468/dl.xjw6kc, https://doi.org/10.15468/dl.9a4ojx). The distribution of 329 

each species occurrence is shown in Extended Data Fig. 7. 330 

https://doi.org/10.15468/dl.xstqow
https://doi.org/10.15468/dl.wghggg
https://doi.org/10.15468/dl.3yj8pk
https://doi.org/10.15468/dl.lzuwlg
https://doi.org/10.15468/dl.vwqtsk
https://doi.org/10.15468/dl.brqmht
https://doi.org/10.15468/dl.ghccto
https://doi.org/10.15468/dl.dk97gk
https://doi.org/10.15468/dl.xjw6kc
https://doi.org/10.15468/dl.9a4ojx


16 
 

Data availability 331 

All data used in this study is available from public sources. Data underlying maps of potential 332 

earthworm habitats will be deposited in a public repository upon publication (meanwhile it is 333 

available from the corresponding author upon request). 334 

  335 



17 
 

References 336 

1 Young, I. M. et al. The interaction of soil biota and soil structure under global change. Global 337 
Change Biology 4, 703-712 (1998). 338 

2 Lavelle, P. et al. Earthworms as key actors in self-organized soil systems. Theoretical Ecology 339 
Series 4, 77-106 (2007). 340 

3 Blakemore, R. & Hochkirch, A. Soil: Restore earthworms to rebuild topsoil. Nature 545, 30-30 341 
(2017). 342 

4 Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & 343 
review. Soil Biology and Biochemistry 83, 184-199 (2015). 344 

5 Brown, G. G., Barois, I. & Lavelle, P. Regulation of soil organic matter dynamics and microbial 345 
activityin the drilosphere and the role of interactionswith other edaphic functional domains. 346 
European Journal of Soil Biology 36, 177-198 (2000). 347 

6 Denef, K. et al. Influence of dry–wet cycles on the interrelationship between aggregate, 348 
particulate organic matter, and microbial community dynamics. Soil Biology and 349 
Biochemistry 33, 1599-1611 (2001). 350 

7 Van Groenigen, J. W. et al. Earthworms increase plant production: a meta-analysis. Scientific 351 
reports 4 (2014). 352 

8 Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. 353 
European Journal of Soil Science 64, 161-182 (2013). 354 

9 Capowiez, Y. et al. Experimental evidence for the role of earthworms in compacted soil 355 
regeneration based on field observations and results from a semi-field experiment. Soil 356 
Biology and Biochemistry 41, 711-717 (2009). 357 

10 Wu, X. D., Guo, J. L., Han, M. & Chen, G. An overview of arable land use for the world 358 
economy: From source to sink via the global supply chain. Land use policy 76, 201-214 359 
(2018). 360 

11 Ruiz, S., Schymanski, S. & Or, D. Mechanics and Energetics of Soil Penetration by Earthworms 361 
and Plant Roots - Higher Burrowing Rates Cost More. Vadose Zone Journal 16, 362 
doi:10.2136/vzj2017.01.0021 (2017). 363 

12 Quillin, K. J. Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic 364 
crawling by the earthworm Lumbricus terrestris. Journal of Experimental Biology 202, 661-365 
674 (1999). 366 

13 Ruiz, S., Or, D. & Schymanski, S. Soil Penetration by Earthworms and Plant Roots—367 
Mechanical Energetics of Bioturbation of Compacted Soils. PLOS ONE 368 
10.1371/journal.pone.0128914 (2015). 369 

14 Phillips, H. R. et al. Global distribution of earthworm diversity. Science 366, 480-485 (2019). 370 
15 Abbott, I. Distribution of the native earthworm fauna of Australia-a continent-wide 371 

perspective. Soil Research 32, 117-126 (1994). 372 
16 Hendrix, P. F. & Bohlen, P. J. Exotic earthworm invasions in North America: ecological and 373 

policy implications: expanding global commerce may be increasing the likelihood of exotic 374 
earthworm invasions, which could have negative implications for soil processes, other 375 
animal and plant species, and importation of certain pathogens. Bioscience 52, 801-811 376 
(2002). 377 

17 Nakamura, Y. Studies on the Ecology of Terrestrial Oligochaeta: I. Sesonal Variation in the 378 
Population Density of Earthworms in Alluvial Soil Grassland in Sapporo, Hokkaido. Applied 379 
Entomology and Zoology 3, 89-95 (1968). 380 

18 Edwards, C. A. & Bohlen, P. J. Biology and ecology of earthworms. Vol. 3 (Springer Science & 381 
Business Media, 1996). 382 

19 Kretzschmar, A. Burrowing ability of the earthworm Aporrectodea longa limited by soil 383 
compaction and water potential. Biology and Fertility of Soils 11, 48-51 (1991). 384 



18 
 

20 Johnston, A. S. Land management modulates the environmental controls on global 385 
earthworm communities. Global Ecology and Biogeography 28, 1787-1795 (2019). 386 

21 Rao, K. P. Physiology of low temperature acclimation in tropical poikilotherms. I. Ionic 387 
changes in the blood of the freshwater mussel, Lamellidens marginalis, and the earthworm, 388 
Lampito mauritii. Proceedings of the Indian Academy of Sciences-Section B 57, 290-295 389 
(1963). 390 

22 Baker, G. H. & Whitby, W. A. Soil pH preferences and the influences of soil type and 391 
temperature on the survival and growth of Aporrectodea longa (Lumbricidae): The 7th 392 
international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia 47, 745-393 
753 (2003). 394 

23 El-Duweini, A. K. & Ghabbour, S. I. Population density and biomass of earthworms in 395 
different types of Egyptian soils. Journal of Applied Ecology, 271-287 (1965). 396 

24 Ghezzehei, T. A. & Or, D. Rheological properties of wet soils and clays under steady and 397 
oscillatory stresses. Soil Science Society of America Journal 65, 624-637 (2001). 398 

25 Ghezzehei, T. A. & Or, D. Dynamics of soil aggregate coalescence governed by capillary and 399 
rheological processes. Water Resources Research 36, 367-379 (2000). 400 

26 Gerard, C. The Influence of Soil Moisture, Soil Texture, Drying Conditions, and Exchangeable 401 
Cations on Soil Strength. Soil Science Society of America Journal 29, 641-645 (1965). 402 

27 Quillin, K. J. Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris. 403 
Journal of Experimental Biology 203, 2757-2770 (2000). 404 

28 Ruiz, S. A. & Or, D. Biomechanical limits to soil penetration by earthworms: direct 405 
measurements of hydroskeletal pressures and peristaltic motions. Journal of The Royal 406 
Society Interface 15, 20180127 (2018). 407 

29 McKenzie, B. M. & Dexter, A. R. Radial pressures generated by the earthworm Aporrectodea 408 
rosea. Biology and Fertility of Soils 5, 328-332 (1988). 409 

30 Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. 410 
PLoS one 12, e0169748 (2017). 411 

31 Burges, A. Soil biology.  (Elsevier, 2012). 412 
32 Ruiz, S. A. Mechanics and Energetics of Soil Bioturbation by Earthworms and Growing Plant 413 

Roots. doi:10.3929/ethz-b-000280625 (2018). 414 
33 Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative 415 

assessment. Bulletin of the American Meteorological Society 100, 473-500 (2019). 416 
34 Beer, C., Reichstein, M., Ciais, P., Farquhar, G. & Papale, D. Mean annual GPP of Europe 417 

derived from its water balance. Geophysical Research Letters 34 (2007). 418 
35 Heaney, L. R., Balete, D. S., Rickart, E. A. & Niedzielski, A. The mammals of Luzon Island: 419 

biogeography and natural history of a Philippine fauna.  (Johns Hopkins University Press, 420 
2016). 421 

36 Keller, T. et al. Long-Term Soil Structure Observatory for Monitoring Post-Compaction 422 
Evolution of Soil Structure. Vadose Zone Journal 16 (2017). 423 

37 Lacoste, M., Ruiz, S. & Or, D. Listening to earthworms burrowing and roots growing-acoustic 424 
signatures of soil biological activity. Scientific reports 8, 10236 (2018). 425 

38 Change, I. C. the Physical Science Basis: Working Group Ⅰ Contribution to the Fifth 426 
Assessment Report of the Intergovernment Panel on Climate Change. (2013). 427 

39 Van Den Hoogen, J. et al. Soil nematode abundance and functional group composition at a 428 
global scale. Nature 572, 194-198 (2019). 429 

40 Bengough, A. G. et al. Root responses to soil physical conditions; growth dynamics from field 430 
to cell. Journal of Experimental Botany 57, 437-447 (2005). 431 

41 Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation 432 
with climate. Science 329, 834-838 (2010). 433 

42 Paoletti, M. G. The role of earthworms for assessment of sustainability and as bioindicators. 434 
Agriculture, Ecosystems & Environment 74, 137-155 (1999). 435 



19 
 

43 Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost 436 
zonation. The Cryosphere 6, 221 (2012). 437 

44 Chamberlain, E. J. & Butt, K. R. Distribution of earthworms and influence of soil properties 438 
across a successional sand dune ecosystem in NW England. european journal of soil biology 439 
44, 554-558 (2008). 440 

45 Booth, L. H., Heppelthwaite, V. & McGlinchy, A. The effect of environmental parameters on 441 
growth, cholinesterase activity and glutathione S-transferase activity in the earthworm 442 
(Apporectodea caliginosa). Biomarkers 5, 46-55 (2000). 443 

46 Lu, N. & Kaya, M. Power law for elastic moduli of unsaturated soil. Journal of Geotechnical 444 
and Geoenvironmental Engineering 140, 46-56 (2014). 445 

47 Fan, L., Lehmann, P. & Or, D. Load redistribution rules for progressive failure in shallow 446 
landslides: Threshold mechanical models. Geophysical Research Letters 44, 228-235 (2017). 447 

48 Alramahi, B., Alshibli, K. A. & Fratta, D. Effect of fine particle migration on the small-strain 448 
stiffness of unsaturated soils. Journal of geotechnical and geoenvironmental engineering 449 
136, 620-628 (2010). 450 

 451 

Acknowledgements 452 

This research was carried out at ETH Zürich and the University of Southampton. Authors 453 

would like to acknowledge the help from Dr. Peter Lehmann for preliminary soil moisture 454 

maps, which were crucial to motivating this study. Authors acknowledge helpful discussions 455 

with Prof. Ning Lu regarding soil mechanical properties and thank Dr. Katherine Williams 456 

for proof reading the document. 457 

 458 

 459 

Competing interests 460 

Authors declare no competing interest. 461 

  462 



20 
 

Figures: 463 

 464 

Fig. 1: Earthworm bioturbation activity in structured soil. a Subterranean bioturbation 465 

relies on earthworms’ ability to mechanically penetrate and deform the soil using their 466 

flexible hydroskeleton, which is b modeled by means of penetration and cavity expansion 467 

transverse to the earthworm body where radial stresses 𝜎𝑟 exerted by the earthworm form the 468 

local cavity of size 𝑟𝑐. Yielding soil material is bounded by a remote elastic zone at a distance 469 

𝑅𝑃 from the center of the cavity is dependent on c soil hydro-mechanical conditions that 470 

enable their hydro-skeleton to form cavities. d Hydro-mechanical soil states can be mapped 471 

globally depending on soil texture, enabling inferences to earthworm distributions.  472 
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 473 

Fig. 2: Global map of earthworm hospitable zones. a, Green regions indicate that annual 474 

average pressures required for cavity expansion are below the earthworm’s hydrostatic 475 

pressure limit (200 kPa). Pressures are truncated to values below 400 kPa for visualization 476 

(dark grey) and permafrost regions were removed (white). b, Other factors that may impede 477 

earthworm activity. Blue regions indicate subzero mean annual temperature (MAT), red 478 

regions mark soil pH<4.5, green regions indicate coarse soil texture (sand content > 80%), 479 

and cyan regions indicate that there are fewer than two consecutive months during which the 480 

soil mechanical properties permit cavity expansion. Regions of different limiting factors may 481 

overlap and were ordered for visibility.  482 
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 483 

Fig. 3: Comparison of predicted hospitable zones and reported earthworm distribution. 484 

a, Potential earthworm habitats (green) including soil hydro-mechanical limitations for 485 

Australia. Locations with reported presence of earthworms from two datasets are displayed; 486 

GBIF (blue points) and Abbott15 (orange points). Regional limitation of earthworm activity is 487 

delineated by 400 mm yr-1 of mean annual precipitation33 (cyan contour) as previously 488 

reported15. b, Predicted earthworm habitats for North America. Observed occurrences 489 

(Global Biodiversity Information Facility, GBIF) are in good agreement with regional extents 490 

of earthworm communities (redrawn from Hendrix and Bohlen16, red). c, Regions in East 491 

Eurasia and Northern Africa that could support earthworm soil bioturbation. d, Global 492 

distribution of earthworm occurrence. 493 

  494 
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 495 
Fig. 4: Temporal windows of potential earthworm burrowing activity. a, Global map of 496 

temporal hydro-mechanical variations (coefficient of variation of limiting pressures). b, 497 

Median earthworm limit pressures across latitudes for a climatic year. c-d, Median climatic  498 

limiting pressures (bars ± IQR) required to burrow through soil are associated with mean 499 

daily precipitation33 (blue line and shading; 30 day running mean and SD) for c, a grassland 500 

(G: 9.55oN, 14.65oE ) and d, a desert (D: -22.95oN, 132.95oE) as indicated in a. e. Habitat 501 

fragmentation based on habitable regions is plotted in comparison with species richness14 502 

results for different latitudes. The maximum radial earthworm pressures Pw (dashed line) are 503 

shown. Soil limit pressures are reported for the topsoil (0-7 cm) and are assumed to represent 504 

the driest part of the soil profile.  505 

  506 
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Supplementary Information 507 

In this supplement, we provide additional information concerning the description of the biophysical, 508 

cavity-expansion model (SI.1), the functional dependency of hydro-mechanical properties with their 509 

parametrization (SI.2) and the assessment of averaging methodology for summarizing earthworm 510 

limiting pressures (SI.3). 511 

SI.1 – Cavity expansion mechanical model – an overview 512 

The mechanics of soil bioturbation by burrowing earthworms relies on their ability to deform the soil. 513 

The biophysical model considers soil penetration-cavity expansion sequences by the earthworm 514 

similar to cone penetration 11. The model provides the minimal mechanical stress required to radially 515 

expand a cavity in an elasto-viscoplastic soil 11. To quantify the magnitude of radial pressure required 516 

by an earthworm to expand in wet elasto-viscoplastic soils, we first consider the force balance at 517 

equilibrium: 518 

 ∂𝜎𝑟

∂𝑟
+

𝜎𝑟 − 𝜎𝜃

𝑟
= 0 (S1) 

where r [m] is the distance from the center of the cavity, 𝜎𝑟 [Pa] is the radial stress and 𝜎𝜃 [Pa] is the 519 

hoop (circumferential) stress. The deformation behavior is expressed by the Von-Mises criterion 520 

considering viscous deformation (i.e. Bingham model 24), relating the difference between the radial 521 

and hoop stresses to the summation of the undrained soil strength and the viscoplastic strain rate:  522 

 
𝜎𝑟 − 𝜎𝜃 = 2𝑠𝑢 +

4

3
𝜂𝜖𝑟̇ (S2) 

where 𝜂 [Pa s] is the soil plastic viscosity, 𝑠𝑢 [Pa] is the undrained soil strength, and 𝜖𝑟̇ [m m-1s-1] is 523 

the radial strain rate.. Substitution of Eq. (S2) into (S1) yields the following expression: 524 

 𝜕𝜎𝑟

𝜕𝑟
= −

2𝑠𝑢

𝑟
−

4

3
𝜂

𝜖𝑟̇

𝑟
 

(S3) 

 

By integration, we determine the radial stresses as a function of the radius (and the strain rate): 525 

 
𝜎𝑟(𝑡, 𝑟) = 𝑃𝐿 − 2𝑠𝑢𝑙𝑛(

𝑟

𝑟𝑐
) −

4

3
𝜂 ∫

 

 

𝜖𝑟̇

𝑟
𝑑𝑟 (S4) 

where 𝑟𝑐 [m] is the minimum cavity size and 𝑃𝐿 [Pa] is the time independent limit pressure to which 526 

the static cavity pressure converges. Under static conditions, the strain rate term in the integral 527 
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vanishes. We solve for the limit pressure by equating the change in the cavity zone to the change in 528 

the plastic region local to the cavity: 529 

 
(

𝑅𝑝

𝑟𝑐
)

2

→
𝐺

𝑠𝑢
 (S5) 

Where 𝐺 [Pa] is the soils shear modulus, and 𝑅𝑝 is the elasto-plastic interfacial radius. Under static 530 

conditions, the radial stress by the earthworm at the cavity wall is expressed as: 531 

 
𝜎𝑟(𝑅𝑝) = 𝑃𝐿 − 2𝑠𝑢𝑙𝑛 (

𝑅𝑝

𝑟𝑐
) = 𝑠𝑢 (S6) 

Leading to the minimum radial pressure required to expand a cavity in soil: 532 

 
𝑃𝐿 = 𝑠𝑢 (1 + 2 ln (

𝑅𝑝

𝑟𝑐
)) =  𝑠𝑢 (1 + ln (

𝐺

𝑠𝑢
) ) (S7) 

The resulting expression would be the minimum amount of pressure an earthworm would have to 533 

exert with its hydroskeleton in order to expand a cavity radially in soil. However, earthworms 534 

hydroskeleton is made up of soft flexible muscle fibers 27 that are mechanically limited to a maximum 535 

pressure of 𝑃𝑤 = 200 kPa 28,29. Thus, earthworms are mechanically impeded by soil conditions when 536 

𝑃𝐿 ≥ 𝑃𝑤. These constraining soil mechanical conditions are linked to soil’s hydration status and soil 537 

texture45.   538 
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SI.2 – Functional relationship between soil hydration status, textural class and 539 

mechanical properties  540 

Soil mechanical properties are linked to multiscale physical phenomena, which are sensitive to soil 541 

textural class and soil moisture content. At the submicron scale, soil clay particles are tightly bound 542 

by electrical forces, and their ability to yield depends on their alignment, liquid lubrication, and 543 

platelet spacing 24. The soil moisture plays a prominent role in binding together soil aggregates via 544 

capillarity under drier condition 24, 25 or reduce soil friction under wetter conditions. Ultimately, these 545 

forces acting on different scales jointly increase soils shear strength and shear modulus of rigidity 546 

under drier conditions 11,26. While these different processes warrant more rigorous analysis, these 547 

details extend beyond the scope of our current study.  548 

Instead, we adopt simplified power law relations for linking soil mechanical properties to soil texture 549 

and water content similar to the work of Gerard et al. 26. We collected experimentally determined 550 

values for soil shear strength and shear modulus of rigidity and interpolated their behavior for a range 551 

of soil textures and soil water contents. Data were collected and consolidated from Gerard et al. 552 

196526, Lu and Kaya 2013 46, Fan et al. 201747, Alramahi et al. 2010 48 , Ruiz 2017 11, and Ghezzehei 553 

and Or 200124. Soil shear strength and shear modulus of rigidity are related to soil water contents via a 554 

power law 26: 555 

 𝑠𝑢 = 𝑎𝑦(𝑓)𝜃𝑣

−𝑏𝑦(𝑓)
 (S8) 

 𝐺 = 𝑎𝐺(𝑓)𝜃𝑣
−𝑏𝐺(𝑓)

 (S9) 

where 𝜃𝑣 [% m3 m-3] is the soil water content, the pre-factors 𝑎𝑦,𝐺(𝑓) [Pa] and the exponent 𝑏𝑦,𝐺(𝑓) [-556 

] are functions of the soil fine fraction 𝑓 [% Silt+Clay]. Coefficients take the functional forms: 557 

 𝑎𝑦,𝐺(𝑓) = 𝛼𝑦,𝐺exp (𝛽𝑦,𝐺𝑓) (S10) 

 𝑏𝑦,𝐺(𝑓) = 𝜁𝑦,𝐺𝑓 + 𝜉𝑦,𝐺 (S11) 

where 𝛼, 𝛽, 𝜁, and 𝜉 are fitting coefficients that relate the mechanical properties to the soil texture. 558 

The relations of coefficient to soil fine fraction. Lastly, the focus lies on the hydro-mechanical 559 

properties of relatively fine textured soils, as coarse soils have been reported too abrasive and are 560 
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often too dry for earthworm activity due to their frictional nature and low water retention properties 561 

respectively45. 562 

Linking soil mechanical properties to soil texture and hydration state 563 

Coefficients and exponential pre-factors as related to soil fine texture content was plotted in Extended 564 

Data Fig. 1. A comprehensive span of soil shear strengths were taken from Gerard et al. 1965 26 and 565 

were parametrized using equations (S10) and (S11) (Extended Data Fig. 1 a and b). Equations (S10) 566 

and (S11) were also fit to soil shear modulus data (Extended Data Fig. 1 c and d). These soil 567 

mechanical relations allowed us to determine minimal cavity expansion pressures via equation (S7) as 568 

a function of soil moisture contents and fine texture percentages (Extended Data Fig. 2). The red 569 

contour path in Extended Data Fig. 2 highlights soil conditions that inhibit earthworm mechanical 570 

activity. This functional relation is used to relate earthworm limiting pressures to soil moisture and 571 

soil texture.   572 
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SI.3 Assessing averaging methodologies for limiting pressures 573 

Soil moisture status is highly dynamic and limiting pressures respond non-linearly, thus it is not clear 574 

as to what averaging methods provide the most representative estimates for promoting potential 575 

earthworm habitats. We compared the model results considering arithmetic averaging, harmonic 576 

averaging, and median values of the global limit pressures that would support earthworm activity 577 

(Extended Data Fig. 3). To systematically compare the effect of averaging method on predicted 578 

regions below the earthworm limiting pressure (𝑃𝑤  = 200 kPa) we overlay masks for each method 579 

(Extended Data Fig. 3 a-c) and count the number of times predictions agree (Extended Data Fig. 3 d). 580 

Most regions are considered permissible to earthworm bioturbation by all three averaging methods. 581 

The arithmetic average results in more restricted regions, while the harmonic mean classifies a larger 582 

proportion of the terrestrial surface as suitable habitats based on limit pressure. The difference 583 

between averaging methods are most pronounced in regions with larger monthly variability in soil 584 

moisture (e.g. Mediterranean, India, Sahel). 585 

  586 
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Extended Data 587 

 588 

Extended Data Fig. 1: Soil hydro-mechanical coefficients as a function of soil fine texture. Soil 589 

shear strength relationships (a, b) were derived from Gerard et al. 196526. Parameter relationship for 590 

shear modulus (c, d) to fine texture were derived from data points taken from literature11, 46-48.  591 
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 592 

Extended Data Fig. 2: Profiles of cavity expansion pressures required for given soil texture and 593 

soil water contents. The red curve indicates the earthworm limiting pressures that would hinder 594 

bioturbation activity under different texture classes and soil moistures.  595 
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 596 

Extended Data Fig. 3: Assessing different averaging techniques. a, Arithmetic mean for limit 597 

pressures, b, harmonic mean of limit pressures, and c, median values for limit pressures. d, provides 598 

an estimate for how many times the regions are considered potential earthworm habitats amongst the 599 

different techniques (black indicating agreement of all averaging methods considered). 600 

  601 

a 

b 

c 

d 
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 602 

Extended Data Fig. 4 : Normalized cumulative distribution of earthworm abundance with 603 

average soil limiting pressure magnitudes. Abundance data was taken from Johnston (2019)20 and 604 

mapped to limiting pressures using reported geographical coordinates. Over 90% of the earthworms 605 

were located in regions with pressures below 200 kPa, which is consistent with earthworm’s 606 

physiological hydro-skeletal pressure limit.  607 

  608 
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 609 

Extended Data Fig. 5: Distribution of additional factors associated with sites of earthworm 610 

occurrences. a-e, kernel density estimates for selected variables used to delineate regions of potential 611 

earthworm activity. Distributions of occurrences from a recent study14 (black) and values at sites used 612 

in the current study15,43 (blue) are compared. Shaded areas contain 95% of values and the vertical line 613 

indicates the median. The recent study14 enables comparison of a, Soil pH measured on site with b, 614 

soil pH from SoilGrids32 as used in our study. The range of SoilGrids30 pH values is narrower and 615 

most of the occurrences were reported for sites with SoilGrids30 pH > 4.5. c, Sand content from 616 

SoilGrids30 at which occurrences were reported. d, distribution of mean annual temperature (MAT) 617 

and e, mean annual precipitation (MAP). f, Limiting pressure for earthworm cavity expansion as 618 

estimated in this study.  619 
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 620 

Extended Data Fig. 6: Robustness of true positive rate (hit-rate, sensitivity) under variation of 621 

sample size for two sampling schemes. Random re-sampling with replacement (nboot = 5000) of sites 622 

with earthworm occurrences are shown as solid lines and shading (representing median and central 623 

95%) for two sampling schemes. Sites were selected with uniform probability (blue) or with 624 

probabilities inverse to the density of reported occurrences in a five-point neighborhood (orange) 625 

thereby penalizing sites with many reported occurrences nearby (attempting to address observational 626 

bias). The dashed line represents the hit rate using the full dataset.  627 



3
5

 
 

 
6

2
8

 

E
x
te

n
d

ed
 D

a
ta

 F
ig

. 
7

: 
G

lo
b

a
l 

d
is

tr
ib

u
ti

o
n

 o
f 

o
cc

u
rr

en
ce

s 
fo

r 
te

n
 s

p
ec

ie
s 

(o
b

ta
in

ed
 f

ro
m

 t
h

e 
G

lo
b

a
l 

B
io

d
iv

e
rs

it
y

 I
n

fo
rm

a
ti

o
n

 F
a
ci

li
ty

, 
G

B
IF

) 
a

n
d

 a
n

 
6

2
9

 

a
d

d
it

io
n

a
l 

st
u

d
y

 f
ro

m
 A

u
st

ra
li

a
 1

5
. 

T
h

e 
g
re

en
 s

h
ad

in
g
 i

n
d
ic

at
es

 t
h
e 

m
o
d
el

le
d
 r

eg
io

n
s 

th
at

 a
re

 h
o
sp

it
ab

le
 t

o
 e

ar
th

w
o

rm
s 

b
as

ed
 o

n
 s

o
il

 m
ec

h
an

ic
s 

an
d

 a
d
d

it
io

n
al

 
6

3
0

 

fa
ct

o
rs

. 
6

3
1

 


	Front Cover
	PhD Thesis
	Content
	Abstract
	Zusammenfassung
	Acknowledgement
	Motivation
	Introduction
	1 Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes
	Abstract
	1.1 Introduction
	1.2 Results
	1.2.1 Estimation of soil bacterial carrying capacity
	1.2.2 Modeling bacterial diversity considering climate and soil
	1.2.3 Species abundance distribution varies with hydration status
	1.2.4 Global patterns of soil bacterial habitat diversity
	1.2.5 Disentangling soil bacterial abundance and diversity

	1.3 Discussion
	1.4 Materials and Methods
	1.4.1 Soil bacterial carrying capacity derived from NPP
	1.4.2 Soil bacterial abundance dataset
	1.4.3 Soil bacterial diversity datasets
	1.4.4 Estimating soil specific ‘climatic’ water content
	1.4.5 Estimation of aqueous habitat size distribution
	1.4.6 Calculation of bacterial species diversity
	1.4.7 Spatially-explicit individual-based model (SIM)


	2 A hierarchy of environmental covariates control the global biogeography of soil bacterial richness
	Abstract
	2.1 Introduction
	2.2 Results and Discussion
	2.2.1 Univariate analysis of bacterial richness
	2.2.2 Multivariate general additive model (GAM) of bacterial richness
	2.2.3 Varying proportions of low abundance species
	2.2.4 Global patterns of soil bacterial richness

	2.3 Conclusions
	2.4 Materials and Methods
	2.4.1 Data collection and processing
	2.4.2 Metadata-based filtering
	2.4.3 Primer-based filtering
	2.4.4 Denoising
	2.4.5 Taxonomy assignment for filtering of archaea
	2.4.6 Rarefaction and estimation of diversity
	2.4.7 Covariates
	2.4.8 Correlation and clustering
	2.4.9 Generalized additive models
	2.4.10 Causal additive models
	2.4.11 Prediction of global maps using tree-based algorithms


	3 The chosen few – variations in common and rare soil bacteria across biomes
	Abstract
	3.1 Introduction
	3.2 Results
	3.2.1 Relative abundance and prevalence of common and rare soil bacteria.
	3.2.2 Rarity of soil bacterial species driven by climatic water contents.
	3.2.3 How is bacterial species dominance reduced in dry soil?
	3.2.4 Spatial patterns of bacterial rarity and functional consequences.

	3.3 Discussion
	3.4 Materials and Methods
	3.4.1 Soil bacterial community data.
	3.4.2 Classification of common and rare bacteria.
	3.4.3 Climatic data of sampling locations.
	3.4.4 Spatially-explicit individual-based model (SIM).


	4 How soil bacterial microgeography affects community interactions and soil functions
	Abstract
	4.1 Introduction
	4.2 Results
	4.2.1 Average cell density and community sizes linked to rainfall patterns and vegetation
	4.2.2 Community size distribution based on spatial clustering of bacterial cells
	4.2.3 Physical distances between bacterial communities limit trophic interactions
	4.2.4 Variations in community sizes shape the proportion of anoxic bacterial communities across biomes

	4.3 Discussion
	4.4 Materials and Methods
	4.4.1 Average cell density based on diffusion and distance to POM
	4.4.2 Conversion of cell densities using soil particle surface area
	4.4.3 Soil microcosm experiment
	4.4.4 Image analysis for determination of cell locations
	4.4.5 Spatially-explicit individual-based model of bacterial growth on soil particle surfaces
	4.4.6 Clustering of proximal cells for estimation of community size distributions
	4.4.7 Spatial cell aggregation model – community size distribution


	Summary and Outlook
	References
	Curriculum Vitae
	Personal information
	Education
	Positions - current and previous
	Supervision of students
	Other relevant professional experiences
	Publication record

	Appendix
	A1 Supplementary Information for: Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes
	A2 Supplementary Information for: A hierarchy of environmental covariates control the global biogeography of soil bacterial richness
	SI Figures
	SI Tables
	SI Methods

	A3 Supplementary Information for: The chosen few – variations in common and rare soil bacteria across biomes
	A4 Supplementary Information for: How soil bacterial microgeography affects community interactions and soil functions
	A5 Global earthworm distribution and activity windows determined by soil hydromechanical constraints
	A5-Earthworm




