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 11 

Abstract: National institutions and policies could provide powerful 12 

levers to steer the global food system towards higher agricultural 13 

production and lower environmental impact. However, causal 14 

evidence of countries’ influence is scarce. Using global geospatial 15 

datasets and a regression discontinuity design, we provide causal 16 

quantifications how much crop yield gaps, nitrogen pollution, and 17 

nitrogen pollution per crop yield, are influenced by country-level 18 

factors, such as institutions and policies. We find that countries 19 

influence nitrogen pollution much more than crop yields and there is 20 

only a small trade-off between reducing nitrogen pollution and 21 

increasing yields. Overall, countries that cause 35% less nitrogen 22 

pollution than their neighbors only cause a 1 percent larger yield gap 23 

(the difference between attainable and attained yield). Explanations 24 

which countries cause the most pollution relative to their crop yields 25 

include economic development, population size, institutional quality, 26 

foreign financial flows to land resources, as well as countries’ overall 27 

agricultural intensity and its share in the economy. Our findings 28 

suggest that many national governments have an impressive capacity 29 

to reduce global nitrogen pollution without having to sacrifice much 30 

agricultural production. 31 

 32 

Main 33 

The global food system is at the epicenter of many of this century’s greatest challenges1-4. To match 34 

growing demand, crop production will need to increase 25–70% from 2015 to 20504-7. Because natural 35 
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ecosystems must be simultaneously protected, increased production cannot mainly come from 1 

agricultural area expansion, but per-area production must increase3,8,9. Yet, increasing input intensity 2 

can negatively affect water and air quality, climate, biodiversity, and human health10-15. 3 

The main solution to this food-water-environment nexus is to improve agricultural input use efficiency 4 

alongside the necessary increase in inputs2,6,13. However, the opportunities to increase yields while 5 

keeping environmental impacts low are context and country specific. Socio-economic circumstances, 6 

policies, institutions, and regulations are a few examples of the country-level variables that affect crop 7 

mixes, input use, technologies and thus the resulting yields and environmental effects of crop 8 

production13,16,17. For example, for many years, nitrogen fertilizer was heavily subsidized in China 13,18. 9 

More recently, China phased out these subsidies and started to fund improvements in nitrogen and 10 

manure management19-22. However, there are still policies in place that negatively affect nitrogen use 11 

efficiency21,22. Overall, China uses >30% of all global fertilizer on only 9% of global cropland while 12 

achieving intermediate yields22. 13 

Because we now live on a “cultivated planet”2, we can now often already see the impact of country-14 

level factors on satellite images 17,23 (Figure 1). The fields in China are visibly greener than the fields 15 

in Kazakhstan and the fields in Turkey are visibly greener than the fields in Syria, and importantly, the 16 

changes pop up right at the border. In both examples, greener fields generally indicate higher agricultural 17 

production intensity. The only reason why we see these border discontinuities is that the neighboring 18 

countries- as political entities - influence farmer decisions where and how to grow what – and, as we 19 

establish below, there is no natural discontinuity of environmental conditions at these borders. 20 

FIGURE 1 HERE 21 

Fig.1. Revealing borders. Right at the political borders between (a) Kazakhstan and China and 22 
between (b) Turkey and Syria, the color of the agricultural fields changes discontinuously, 23 
revealing the impact of countries on agricultural production decisions. Greener colors indicate 24 
higher production intensity. Credit: (a) NASA Earth Observatory image by Robert Simmon, using 25 
Landsat data from the U.S. Geological Survey, (b) Copernicus Sentinel image, retrieved from 26 
Google Earth Engine  27 

Here, we propose an approach to estimate countries’ causal effect on their crop yields, expressed as 28 

yield gaps that account for differences in local attainable yields (for wheat, maize, rice, potato, soy, 29 

sorghum, and cassava), their nitrogen balances on croplands and their nitrogen pollution in freshwater, 30 
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as well the relationship between countries’ effect on their yields and their pollution. Our approach is a 1 

formal econometric framework that is based on the logic of the examples shown above, applied at the 2 

global scale (examining 289 land-borders around the world). Our analysis also allows us to investigate 3 

the driving forces behind the empirical patterns. 4 

Results  5 

In general, most countries are not comparable to each other and they also do not have 100% influence 6 

on all the agricultural and environmental outcomes on their territories. For example, agricultural and 7 

environmental outcomes are strongly influenced by a range of natural factors that are mostly outside the 8 

influence of the countries. Moreover, in most countries around the world, there is at least some degree 9 

of cultural and institutional variation that also affects agricultural and environmental outcomes that pre-10 

dates the current countries24-26. Considering the examples from above (Figure 1), Kazakhstan and China, 11 

and Turkey and Syria are very different in terms of e.g. their weather, soils, and other natural 12 

characteristics. It is only close to their borders where they become more and more comparable.  13 

Our approach is to analyze only observations within a narrow band around political borders, where 14 

natural conditions tend to be more comparable, control for the general spatial distribution of yields and 15 

pollution, and estimate whether there are statistically significant discontinuities right at the countries’ 16 

borders that can only be explained by country-level characteristics and actions, and not e.g. local or 17 

regional confounders17,27,28. This is a regression discontinuity design29,30 which we estimate as a system 18 

of simultaneous regressions31,32. We describe and discuss this framework and all its assumptions in the 19 

Materials and Methods. We can visually illustrate the main mechanics, showing the spatial distribution 20 

of four outcomes, locally averaged in 200 bins of 300 meters length on each border side, as a function 21 

of border distance, for approximately all land-borders and countries around the world (Figure 2). The 22 

outcomes are the nitrogen balance on croplands (a)3, nitrogen pollution in freshwater (b)14, average yield 23 

gaps (the difference between a location’s attainable yield versus what is actually attained)(c)8, and the 24 

natural vegetation mixture that we would observe without human impact, which is a valuable summary 25 

indicator for overall environmental differences, expressed as percentage of naturally occurring tree 26 

cover from 0 to 100% (d)33. The observations are sorted the same way in all four plots (a – d), namely 27 
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by each country’s comparative water pollution (see Materials and Methods). In each plot, the bins 1 

shown on the left of the border (vertical, dashed line) are from countries that cause more nitrogen water 2 

pollution than their neighboring countries. Then, the fitted linear trends (solid, black line on each side 3 

of the border) indicates the general spatial pattern (e.g. the yield gaps around a particular border might 4 

continuously change from west to east and north to south, because of continuously changing rainfall and 5 

soil fertility). A discontinuity right at the border suggests an effect of the individual countries, whereas 6 

continuity right at the border would suggest no effect. It can be seen that globally, we see a sharp border 7 

discontinuity in cropland nitrogen balances (a), nitrogen water pollution (b), and yield gaps (c) - but not 8 

in the natural vegetation potential (d). The last finding is important for the interpretation of our other 9 

results. If the border areas of countries with more nitrogen pollution and smaller yield gaps were to be 10 

naturally different from the border areas of countries with less nitrogen water pollution and larger yield 11 

gaps, this would compromise our identification strategy, because then border discontinuities could either 12 

be explained by the effect of the countries or the effect of their natural environment. Our data suggests 13 

that, in general, the border sides are naturally comparable, and countries’ characteristics and actions 14 

(which we explore below) cause significant differences in nitrogen pollution and crop yields. However, 15 

we do find natural discontinuities at some borders and we carefully test whether these borders affect our 16 

results and control for these natural discontinuities when analyzing individual borders further below. 17 

FIGURE 2 HERE 18 

Fig 2. Spatial distributions of nitrogen balances, water pollution, yield gaps and the 19 
natural vegetation potential around international borders. Border discontinuities were 20 
examined in (a) cropland nitrogen balances (n=151,232), (b) nitrogen in water pollution (n= 21 
200,367), (c) yield gaps (n= 115,901), and (d) to test our main identifying assumption, natural 22 
vegetation potential (expressed as percentage of naturally occurring tree cover from 0 to 23 
100%)(n= 200,367). Shown are all global data points that fall within a bandwidth of 60km to 24 
at least one of 289 land-borders all around the world, here averaged in 200 bins of 300m width. 25 
All outcomes are shown as standard deviations from their own mean. Border distances are 26 
shown in kilometers.  27 

Global Estimates of Countries Influence on their Yield gaps and Nitrogen Pollution 28 

We obtain three main results (Figure 3). First, we estimate that on global average, countries cause a 29 

much larger discontinuity in the spatial distribution of nitrogen water pollution than in the spatial 30 

distribution of yield gaps. The discontinuity is around 35% for nitrogen pollution, but only between 1 31 
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and 1.5% for yield gaps. Second, the two discontinuities are inversely related, i.e. countries that achieve 1 

lower yield gaps (higher yields) tend to cause more nitrogen pollution. Third, the estimates are robust, 2 

only varying slightly in magnitude between different specifications and sub-samples. 3 

 4 

FIGURE 3 HERE 5 

Fig 3. Estimated effect of countries on their yield gaps and nitrogen pollution. 6 
Circles show point estimates and bars show the 95% confidence interval. In general, 7 
the countries that achieve smaller yield gaps cause disproportionally more nitrogen 8 
pollution than their neighboring countries, and vice versa. In our baseline specification 9 
(1a, n= 91,472), we control for border distance, separately on each side of each border, 10 
fixed border effects, and a linear polynomial of longitude and latitude. Standard errors 11 
are clustered by border. As one robustness check, we then add covariates regarding 12 
environmental characteristics (altitude, depth of bedrock, precipitation during wet and 13 
dry season as well as overall precipitation, and soil organic carbon) in the yield gap 14 
equation and human and animal densities (pigs, cattle, and chicken) in the nitrogen 15 
pollution equation (1b, n= 91,472). With this, we test whether it matters that sometimes 16 
the natural environment is different on one side of the border than it is on the other, 17 
even if this is not so on average, and whether potential discontinuities in human and 18 
animal population densities might confound our nitrogen pollution estimates. Next, we 19 
exclude borders at which we find any discontinuity in the natural environment, first 20 
without (2a, n= 73,754) and then with covariates (2b, n= 73,754). This is an alternative 21 
test for the influence of “natural” borders versus “purely political” borders, and - as we 22 
explain below - also for the influence of data density around each border. Finally, we 23 
exclude borders with low-resolution input data (for some countries, important input 24 
data is only available at high aggregation), again without (3a, n= 88,692) and then with 25 
covariates (3b, n= 88,692). With this, we probe how measurement errors (both random 26 
and systematic) influence our estimates. We find only little variation in our results 27 
across specifications.  28 

The Spatial Distribution of Countries’ Effect on their Yield Gaps and Nitrogen Pollution  29 

Moving beyond global averages, Figure 4 shows a global map of each country’s estimated effect on its 30 

crop yields compared to its effect on nitrogen pollution (an aggregation of each country’s estimated 31 

effect on nitrogen pollution minus its estimated effect on crop yields).  32 

FIGURE 4 HERE 33 

Fig.4. Countries’ estimated effect on their yield gaps versus their nitrogen pollution. 34 
Quantification of how much nitrogen pollution countries are causing compared to how much 35 
they reduce their yield gaps, relative to directly neighboring countries. Darker colors reflect 36 
larger increases in nitrogen pollution compared to the closing of yield gaps, lighter colors 37 
reflect larger decreases in nitrogen pollution compared to widening yield gaps.  38 

By far the highest value is estimated for China (170%, which can be interpreted as China is causing 39 

170% more nitrogen pollution than it is reducing its crop yield gaps, both compared to all its neighboring 40 

countries). Other countries with less but still particularly high nitrogen pollution estimates compared to 41 
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their neighboring countries include Brazil, Mexico, Colombia, Israel, Thailand, and Georgia, whereas 1 

countries such as the United States, Germany, France, South Korea, and Austria achieve relatively high 2 

yields with comparably less nitrogen pollution. Important caveats are that all estimates are based 3 

completely on comparisons between neighboring countries, so they are strictly relative. This means e.g. 4 

that the positive, comparative yield effect of South Korea can be as much attributed to its own high 5 

yields as it can be attributed to the particularly low yields in North Korea, and the comparative nitrogen 6 

pollution effects of Kazakhstan and Mongolia, e.g., are mostly attributable to the fact that they are being 7 

compared to China. It should also be noted that these relative values are an unweighted average of all 8 

discontinuities, i.e. a country might have a positive effect compared to one neighbor and a negative 9 

effect of a similar magnitude compared to another, and its final value then is close to zero. Finally, we 10 

have no results for the few countries worldwide that have no direct neighbors (e.g. Australia). 11 

Explanations for Countries’ Effect on their Yield Gaps and Nitrogen Pollution 12 

Countries that produce a disproportionate amount of nitrogen pollution relative to their yield 13 

performance likely have potential to reduce pollution without large sacrifices in terms of yield. To 14 

learn what distinguishes the countries that cause more pollution per yield from those that cause less, 15 

we regress countries’ estimated effect from above on regional fixed effects (e.g. Sub-Saharan Africa, 16 

North America, etc.) and individual explanatory variables, which are shown together with their 17 

estimated coefficients below (Figure 5). 18 

FIGURE 5 HERE 19 

Fig.5. Explaining countries’ estimated pollution versus yield gaps effect. This figure 20 
shows the results from linear regressions of countries’ estimated effect on their nitrogen 21 
pollution versus their effect on their crop yields (Fig.4) on regional fixed effects and a broad 22 
range of potential explanatory variables (n=143). To test a potential non-linear relationship 23 
with gdp and/or gdp growth, these variables where included linearly as well as squared.  24 

Previous studies have found an asymmetric para-curve relationship between nitrogen pollution and 25 

economic development13,34 (an Environmental Kuznets curve). Consistent with this, we find that middle 26 

income countries cause the most nitrogen pollution compared to the yields they achieve (e.g. China or 27 

Brazil) whereas several richer countries cause less nitrogen pollution compared to the yields they 28 

achieve (e.g. Germany or the US). Overall, however, we find an approximately linearly increasing 29 
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relationship between countries’ gdp and their pollution per yield (specifications 1a and 1b). Simply put, 1 

richer countries cause considerably more nitrogen pollution than poorer countries and this is not matched 2 

by commensurate yield advantages. In contrast, there is no associations with gdp growth (2a and 2b). 3 

However, countries with larger populations cause more pollution compared to their yield effect than 4 

countries with smaller populations (3). There is no association with population growth (4). 5 

We also find a positive association with the quality of countries’ economic institutions35 (5). This 6 

suggests that globally, better institutions are more tightly associated with heightened environmental 7 

impact than better environmental regulation. 8 

A small, but statistically significant, positive association is found with foreign investments into 9 

countries’ land resources (6). There is no association with countries’ agricultural gdp share (7) but we 10 

find that more intensive farming systems are associated with more pollution per yield (8). At the same 11 

time, more pollution per yield is also associated with a significantly higher availability and affordability 12 

of food (9 and 10), which cautions to consider food security issues in this context. 13 

Future research might moreover consider the influence of specific policies19,22, national legislations36, 14 

behavioral factors such as culture26, and different farm sizes21,37. 15 

Discussion 16 

Our global food system is more productive than ever before in human history. However, productivity 17 

growth may still be slightly below what we need to match projected future demand4-6. At the same time, 18 

environmental impacts, foremost nitrogen pollution, are far beyond any safe level10,38. Both are in large 19 

parts because nitrogen use is currently spatially inefficiently distributed11,39,40. We here have exploited 20 

a natural experiment created by spatial discontinuities at international borders, to identify the role of 21 

countries. We find that they have a much larger effect on nitrogen pollution than they have on yield gaps 22 

and many countries cause very high pollution for the yield that they actually achieve. Importantly, 23 

closing yield gaps and mitigating nitrogen pollution is not a technically necessary trade-off. In particular, 24 

our empirical results suggest that nitrogen surpluses can be reduced by ~35% if the more polluting 25 

countries around the world only achieve the pollution levels of their less polluting neighboring countries 26 

and even without any adjustments, this would only increase yield gaps by ~1%. Important to note, this 27 
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1% increase in yield gaps is not necessary, because countries can commonly adjust and even synergies 1 

exists. As we find, this is largely under the control of national governments.  2 

An important lever for national governments is the ratio of fertilizer price to agricultural output price. 3 

Countries with nitrogen surpluses might re-allocate financial resources from agricultural subsidies that 4 

increase environmental impacts to those that incentivize a more environmentally friendly production. 5 

Another option is the introduction of taxation schemes that raise the relative price of nitrogen compared 6 

to its production value41,42. There are also other possibilities for countries to support the adoption of new, 7 

more sustainable technologies and farming practices, e.g. via improving extension systems, and 8 

changing environmental and tenure regulations13,16,19-22. The opposite applies for countries with large 9 

yield gaps, where it is important to support (sustainable) intensification, e.g. via input subsidies43,44. An 10 

increasingly important role might be played by precision farming and new plant breeding in the future, 11 

which require national government support and could vastly increase nitrogen use efficiency45,46. 12 

Materials and Methods 13 

To understand countries’ effect on yield gaps and nitrogen pollution, as well as their relationship, we 14 

analyze large, global datasets with a combination of a regression discontinuity design 17,30,47 and a 15 

seemingly unrelated regression framework 31,32. 16 

We begin with a discussion of our analytical framework (I), its assumptions, and how we test them (II). 17 

Then we describe our four main datasets (III), and the data we use to explain our findings (IV). 18 

Analytical Framework 19 

Our analytical framework is a combination of a regression discontinuity design 17,30,47 and a seemingly 20 

unrelated regression framework 31,32. The basic idea is that under a set of falsifiable assumptions, spatial 21 

discontinuities right at political borders reveal the influence of the countries that are separated there. 22 

Often, political borders can be easily recognized in the landscape, even though natural environmental 23 

conditions are otherwise homogenous (see e.g. Figure 1). In a sense, the division of the world into 24 

different countries functions like a “natural experiment” in many places around the globe. 25 

Technically, we simultaneously estimate whether there is a statistically significant discontinuity at 26 

political borders in yield gaps and nitrogen pollution, while controlling for all continuously distributed 27 
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confounders via linear polynomials of border distance and longitude and latitude, as well as covariates. 1 

For this, we first estimate at each border which country potentially causes more nitrogen pollution: 2 

        log 𝑁 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑖 = 𝛽
1
𝐷𝑖

𝑎 + 𝛽
2

𝑑𝑖𝑠𝑡𝑖
𝐴 + 𝛽

3
𝑑𝑖𝑠𝑡𝑖

𝐵 + 𝛽
4
𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛

𝑖
+ 𝜖𝑖  𝑖𝑓 𝑑𝑖𝑠𝑡𝑖 ≤ 𝜑∗                  (1) 3 

where log 𝑁 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑖 is the natural logarithm of nitrogen pollution in water14 of pixel 𝑖 on a gridded 4 

global map at 5 arc-minute resolution, 𝐷𝑖
𝑎 indicates which of the two countries A or B at every border 5 

might pollute its waters more with nitrogen14, 𝑑𝑖𝑠𝑡𝑖
𝐴 and 𝑑𝑖𝑠𝑡𝑖

𝐵 control for border-distance, separately 6 

in country A and B, 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 controls for natural vegetation potential, expressed as naturally 7 

occurring tree cover in percentage from 0 to 100%, which summarizes a large number of environmental 8 

factors 33, 𝜖𝑖   is an error-term, and 𝜑∗ is the estimated optimal bandwidth (the optimal maximum distance 9 

to each border, defining our sample), balancing bias and precision48. In our case, this is 20km on each 10 

side. We then estimate a global model, in which we simultaneously estimate whether there is a 11 

significant border discontinuity in the average yield gap between the countries with more nitrogen 12 

pollution and those with less and whether there is a significant border discontinuity in nitrogen pollution 13 

between the same countries:  14 

     𝑌𝑖𝑒𝑙𝑑 𝐺𝑎𝑝𝑖 = 𝛽1𝐷𝑖
𝑎 + 𝛽2𝑑𝑖𝑠𝑡𝑖

𝐻 + 𝛽3𝑑𝑖𝑠𝑡𝑖
𝐿 + 𝛽4𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 + 𝛽5𝜃𝑖

𝑎 + 𝛽6𝜗𝑗 + 𝜖𝑖
𝑎  𝑖𝑓 𝑑𝑖𝑠𝑡𝑖 ≤ 𝜑∗     (2a)    15 

   log 𝑁 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑖 = 𝛽7𝐷𝑖
𝑏 + 𝛽8𝑑𝑖𝑠𝑡𝑖

𝐻 + 𝛽9𝑑𝑖𝑠𝑡𝑖
𝐿 + 𝛽10𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 + 𝛽11𝜃𝑖

𝑏 + 𝛽12𝜗𝑗 + 𝜖𝑖
𝑏  𝑖𝑓 𝑑𝑖𝑠𝑡𝑖 ≤ 𝜑∗      (2b) 16 

where 𝑌𝑖𝑒𝑙𝑑 𝐺𝑎𝑝𝑖 is the average yield gap8 in percentage (the difference between a place’s achievable 17 

yield as a function of environmental constraints and the actually achieved yield). 𝜗𝑗 indicates to which 18 

pairwise border the observations belongs, 𝜃𝑖
𝑎 is a vector of six environmental covariates33 summarizing 19 

the influence 58 individual environmental characteristics, such as topography and bio-climate, 20 

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 is described by longitude, latitude, and their interaction, 𝑑𝑖𝑠𝑡𝑖
𝐻 and 𝑑𝑖𝑠𝑡𝑖

𝐿 are linear 21 

polynomials of border distance, fit separately on both side of each border, and 𝐷𝑖
𝑎 quantifies the border 22 

discontinuity. Again, 𝜑∗ is the estimated optimal maximum border distance (the “bandwidth”) that 23 

minimizes omitted variable bias with the largest sample possible. The error term of this first equation is 24 

assumed to be correlated with the error term of the second equation, as the observations are from the 25 

same place. For the second equation, which is simultaneously estimated with the first, the left side 26 

variable is log 𝑁 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑖 which is alternatively the average nitrogen footprint14 in the freshwater or 27 
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the nitrogen balance on agricultural land3 of pixel 𝑖 on a gridded global map at 5 arc-minute resolution. 1 

Then, 𝜃𝑖
𝑏 is a vector of four population densities (chicken, cattle, pigs, and people)49,50, 𝐷𝑖

𝑏 quantifies 2 

again the border discontinuity, and all other variables are defined as above. Throughout, standard errors 3 

are clustered at the border, accounting for common unobservables and spatial auto-correlation. We also 4 

always transform the estimated effects so they are expressed as percentage changes (using the inverse 5 

of the logarithmic function).  6 

Finally, we estimate individually at each border the effect of the countries on their yield gaps and their 7 

nitrogen pollution, to understand the trade-off between mitigating nitrogen pollution and closing yield 8 

gaps. Here, we use cropland N-balances as our measure for nitrogen pollution3, to avoid confounding 9 

by non-agricultural sources, which is more likely when analyzing individual borders. We then aggregate 10 

all estimated effects by country (ignoring discontinuities from borders with natural discontinuities) and 11 

regress each country’s pollution versus yield effect on regional fixed effects and hypothesized 12 

explanations: 13 

                                               pollution versus yield effect = 𝛽
1

𝑋𝑖 + 𝛽
2
𝑅𝑒𝑔𝑖𝑜𝑛

𝑖
+ 𝜖𝑖                               (3) 14 

Where 𝑋𝑖 are possible explanations, such as countries’ gross domestic product, institutional quality, and 15 

several others, and 𝑅𝑒𝑔𝑖𝑜𝑛𝑖 are fixed effects for Sub-Saharan Africa, the Middle East and North-Africa, 16 

Europe and Central Asia, South Asia, East Asia and the Pacific,  and North and Latin America. 17 

Assumptions and Tests 18 

Our main identifying assumptions are that we can distinguish between exogenous and endogenous 19 

borders (a), that we can learn something about countries from focusing on their border areas (b), that 20 

we have sufficient data near borders (c), and that systematic and random measurement error in our input 21 

data is not a first-order problem (d). We discuss each assumption and how we probe it below. 22 

a. Exogenous Borders 23 

Our central assumption is that border discontinuities in nitrogen pollution and yield gaps reveal the 24 

causal influence of countries because there are no “compound treatments”. The “treatment” we are 25 

interested in is that one side of each border belongs to one country, and the other side belongs to another 26 

country. If, however, also one side has one type of soil and the other side another, then we cannot 27 
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interpret a border discontinuity as country-effect but it is possibly in part or in full the result of the 1 

difference in soil type. Thus, we must establish that international borders mostly divide naturally 2 

homogenous areas, i.e. that they are exogenous to differences in yields and nitrogen pollution. 3 

In Figure 2d it is already shown that the countries that cause more nitrogen pollution than their 4 

neighboring countries do not have systematically different environmental and geographical conditions 5 

close to their borders (summarized by their hypothetical natural vegetation). To test this statistically, we 6 

focus on three main determinants of the natural vegetation, which are altitude, temperature, and 7 

precipitation and estimate – similar to how we quantify the border discontinuities in yield gaps and 8 

nitrogen pollution – whether there is a border discontinuity in any of these indicators: 9 

     𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖 = 𝛽1𝐷𝑖 + 𝛽2𝑑𝑖𝑠𝑡𝑖
𝐻 + 𝛽3𝑑𝑖𝑠𝑡𝑖

𝐿 + 𝛽4𝜃𝑖 + 𝜖𝑖   𝑖𝑓 𝑑𝑖𝑠𝑡𝑖 ≤ 𝜑+       (4) 10 

Where the 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖 is alternatively altitude, temperature, and rainfall, 𝐷𝑖 reveals whether there is a 11 

“jump” in the relevant indicator right at the border, 𝑑𝑖𝑠𝑡𝑖
𝐻 and 𝑑𝑖𝑠𝑡𝑖

𝐿 are linear polynomials of border 12 

distance, separately fitted on the two sides of each border, and 𝜃𝑖 are fixed effects for each border. As 13 

before, standard errors are clustered at the border. Neither altitude, temperature, nor precipitation exhibit 14 

any discontinuity at the average border that we use for our analysis. Moreover, moving from a maximum 15 

border distance of 60km to one of 30km, the point estimates move closer to zero, consistent with the 16 

idea that we increase the environmental comparability of observations by excluding observations further 17 

away from the border. This is shown in Supplementary Figure 1 in the Supplementary Materials. 18 

At individual borders, we sometimes do find natural discontinuities, so these borders are less reliable 19 

for our analysis and we investigate this issue further below. First, we examine our second assumption, 20 

which is that we can estimate the causal effect of countries in border areas.  21 

b. Representative Borders 22 

We achieve high internal validity - among others reasons - by only analyzing already quite comparable 23 

observations close to borders. This, however begs the question how representative international border 24 

areas are for countries’ interiors 51. We examine this with a simple correlational analysis of the nitrogen 25 

pollution found in border areas and the nitrogen pollution of the entire countries. Supplementary 26 

Figure 2 shows that there is generally quite a high correlation, even though there are outliers in this 27 

pattern, and, as we discuss below, there is an in-built bias in the data towards this pattern. Overall, this 28 



12 
 

is suggestive that we can learn something about the countries by only estimating what happens in their 1 

border areas.  2 

c. Sufficient Data Density 3 

Our third assumption is that we have sufficiently high densities of croplands left and right of the border. 4 

This is important because we use observations just left and right of the border as counterfactuals, and if 5 

there are not many observations, our sample is small and our estimator imprecise, and if we compare 6 

observations far away from the border, we risk increasing omitted variable bias. We test this assumption 7 

together with our first assumption that natural discontinuities at international borders are small and 8 

seldom. For this, we individually estimate at each border, whether we find a discontinuity in the 9 

hypothetical natural vegetation, as predicted by Bastin, et al. 33. Finding a border discontinuity in the 10 

hypothetical natural vegetation comes either from an actual discontinuity in environmental 11 

characteristics right at the border, or alternatively, it comes from the fact that our observations at this 12 

particular border are actually not right at the border, but further apart. It should be noted that the natural 13 

vegetation depends on many environmental and geographic characteristics that also affect yield and 14 

nitrogen pollution potentials, so it is quite a general indicator. We estimate, similar to before: 15 

𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝑖 = 𝛽1𝐷𝑖 + 𝛽2𝑑𝑖𝑠𝑡𝑖
𝐻 + 𝛽3𝑑𝑖𝑠𝑡𝑖

𝐿 + 𝛽4𝜃𝑖 + 𝜖𝑖   𝑖𝑓 𝑑𝑖𝑠𝑡𝑖 ≤ 𝜑∗     (5) 16 

Where 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝑖 is the vegetation we would see all around the world if there was no human impact. 17 

All other variables are defined as above. 18 

We mark all borders at which we find a statistically significant border discontinuity as “less reliable” 19 

(19% of all borders) and all others as “more reliable” (81% of all borders).  20 

d. Measurement Error 21 

All else equal, modelled data is often less precise than remote sensing data because it involves at least 22 

one more processing step. Thus, there is at least one more source of measurement error. Often, our data 23 

is based on multiple processing steps and it is unlikely that any one is error free. Second, due to data 24 

availability constraints, the global distribution of nitrogen pollution has a rather low resolution. It is not 25 

possible currently to model this at the same resolution like e.g. deforestation 52 or soil erosion 53. For 26 

issues such as nutrient pollution 14 or greenhouse gas emissions 54, a 5-arc-minute resolution is currently 27 
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the highest available resolution. This, however, means that a certain degree of measurement error it 1 

unavoidable.  2 

It is also noteworthy that both yields and water pollution by nitrogen are related to each other but also 3 

caused by third variables. For example, yields are strongly affected by water availability3,5,8 (e.g. via 4 

irrigation) and nitrogen in water also comes from non-cropland and non-agricultural sources14,34,55,56. 5 

Whereas random measurement error might lead to a bias towards statistically insignificant and/or 6 

smaller border discontinuities, our data could also contain systematic measurement error with the 7 

opposite effect. At first, one would not expect any systematic measurement error in our data because all 8 

our main variables are from datasets that have been created globally homogenously. However, there is 9 

a hidden source of systematic measurement error and that is low-resolution, statistical data that has been 10 

used as input data. For example, in the N-pollution data of Mekonnen and Hoekstra 14, the distribution 11 

of cropland and production systems, manure input and N-output are all sub-national, but mineral N-12 

fertilizer applications are only available at the country level 57-59 and for some countries also the yield 13 

data is only available at this level 60. The cropland nitrogen balance data3 incorporate some subnational 14 

fertilizer application rate data from Mueller, et al. 8, but only for a subset of countries. The resolution of 15 

our source datasets could bias estimated border discontinuities. Similar to the rather low resolution 16 

increasing random measurement error, this issue cannot be solved because for many countries in the 17 

world there exists no reliable data sub-national fertilizer application rates. However, even if the ratio of 18 

random to systematic measurement error is such that we over or underestimate the average border 19 

discontinuity in yield gaps and/or especially nitrogen pollution, the estimated association between 20 

countries effect on pollution and yields can still be correctly estimated.  21 

To take into account that yield gaps and nitrogen water pollution are caused by other sources than each 22 

other, we estimate all our specifications once without covariates and then including potential 23 

confounding factors, such as the population densities of humans and several animal species. This allows 24 

us to test how sensitive our estimates are e.g. to the influence of nitrogen pollution from domestic and 25 

industrial sources or yield differences caused by rainfall patterns. Specifically for nitrogen pollution in 26 

water14, we also examine cropland nitrogen balances3, which are the intermediate channel (see e.g. 27 
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Figure 2 above and Supplementary Figure 3). Moreover, Monfreda, et al. 60 provide data on the 1 

resolution of their utilized agricultural information, which is both used for the modelling of yield gaps 2 

and nitrogen pollution. Thus, we are able to test the robustness of our estimates by excluding 3 

observations at the bottom end of the quality spectrum (see Figure 3 above and Supplementary Figure 4 

4 in the Supplementary Materials).  5 

Main Data 6 

Our main data sources are Mueller, et al. 8 for the global distribution of yield gaps, Mekonnen and 7 

Hoekstra 14 for the global distribution of nitrogen pollution, West, et al. 3 for the global distribution of 8 

nitrogen balances on croplands (the direct connection between closing yield gaps and increasing 9 

nitrogen-pollution in freshwater), and Bastin, et al. 33 for global data on the distribution of the natural 10 

environment without human impact (to evaluate our “border exogeneity” assumption). Moreover, we 11 

use environmental characteristics also provided by Bastin, et al. 33, and data on the human population 12 

density from SEDAC 49 and animal population densities from Gilbert, et al. 50. We re-sampled all 13 

datasets at a 5-arc-minute resolution which is the resolution of the dataset of Mekonnen and Hoekstra 14 14 

and dropped all observations further than 100 km away from any border.  15 

To compute yield gaps, first attainable yields are needed. For this, Mueller, et al. 8 created 100 zones of 16 

similar annual precipitation 61 and growing degree-day characteristics 62. Then, they defined attainable 17 

yield as the area-weighted 95th percentile observed yield within each bin. The yield data is from 18 

Monfreda, et al. 60. The yield gap of each place is then defined as the difference between attainable and 19 

actually attained yield. An important “proximate” (in contrast to “fundamental”) explanation for the 20 

existence of yield gaps are differences in nitrogen fertilizer applications8. The main advantage of 21 

working with yield gaps in this study - and not simply with yields - is that the yield gaps already 22 

incorporate an estimate of the yield potential of each observation; working with yields directly would 23 

be subject to the confounding influence of changes in yield potential due to agro-ecological differences. 24 

For this study, we computed the average yield gap, by aggregating the individual yield gaps of the six 25 

major crops (maize, wheat, potato, cassava, sorghum, soy).  26 
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The nitrogen pollution is defined by Mekonnen and Hoekstra 14 as greywater “footprint”, which are all 1 

anthropogenic N emissions divided by the difference between the ambient water quality standard for N 2 

and the natural concentration of N in the receiving water body. This approximates how much pristine 3 

water is necessary to assimilate the entire nitrogen pollution. To compute N-inputs, they combined data 4 

on the global distribution of croplands from Monfreda, et al. 60, which also provides information on N-5 

fixation by legumes, then fertilizer and manure applications 57-59,63, atmospheric N deposition 64, the N 6 

content of irrigation water 65, as well as a large number of point emission sources. To compute N-7 

removal, harvests 60, soil erosion 66, ammonia 67, N2O and NO emissions 68 are considered. Data on soil 8 

parameters comes from Batjes 69, the rooting depths of individual crops is from Allen, et al. 70, and 9 

precipitation data is from Mitchell and Jones 71. 10 

To model nitrogen balances at the landscape level, West, et al. 3 first modelled nitrogen input by adding 11 

crop-specific nitrogen fertilizer applications8 and their own estimate of manure applications, based on 12 

the distribution livestock density, and crop- and pasture land, similar to the approach of Foley, et al. 2 13 

and Potter, et al. 72. Then, nitrogen fixation by legumes was added, using the data of Smil 73, and 14 

atmospheric nitrogen deposition, using the data of  Dentener, et al. 74. To then model nutrient removal, 15 

the nutrient density data of the USDA 75 was combined with the harvest data from Monfreda, et al. 60. 16 

The difference between input and removal is then the estimated nitrogen balance.  17 

Finally, to evaluate which border around the world are endogenously drawn, i.e. along environmental 18 

discontinuities, we use the data of Bastin, et al. 33. The most sophisticated indicator for environmental 19 

border discontinuities is their globally mapped natural vegetation distribution. For this, they let a 20 

random forest algorithm 76 learn how differences in natural environmental characteristics predict 21 

differences in natural vegetation. For this, they trained the algorithm with photo-interpretations from 22 

protected areas all around the world, under the assumption that protected areas are the best available 23 

demonstration for the natural vegetation in each region. Then, they used global data on summary 24 

measures of 58 environmental characteristics to predict the natural vegetation all around the world. For 25 

our analysis, we both use their natural vegetation map and their predictor variables, all available via 26 

Google Earth Engine 23, see also Gorelick, et al. 77. We show the entire global distributions of all four 27 

datasets discussed above in Supplementary Figure 5. For a visual illustration how our initial sampling 28 
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along international borders looks like, please see Supplementary Figure 6 for the example of landscape 1 

nitrogen balances in Asia and Latin America. 2 

For a description of our data to explain the estimated global patterns, see Supplementary Materials 3 

Section S2. 4 

 5 

Data availability 6 

Data can be retrieved from Wuepper, et al. 78 and from the corresponding author upon reasonable request 7 

 8 

Code availability 9 

Code can be retrieved from Wuepper, et al. 78 and from the corresponding author upon reasonable request 10 
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Section S1. Supplementary Figures 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 
Supplementary Figure 1. Testing for Environmental Border Discontinuities. There are 11 
no statistically significant environmental border discontinuities, on average, between the 12 
countries. Diamonds, squares, and circles indicate the point estimates, the bars in blue, 13 
green, and brown show the 95 % confidence intervals, all of which range from positive 14 
upper bounds to negative lower bounds. 15 

 16 

 17 
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 1 

 2 
Supplementary Figure 2. Comparing Water Pollution in Border Areas and Country 3 
Averages. For our analysis, we focus exclusively on international border areas, because 4 
the areas just left and right of a border are more likely to be comparable environmentally 5 
and geographically than the areas further inland. Whether we can interpret our results as 6 
extrapolatable to the rest of the countries depends on how closely related are nitrogen water 7 
pollution in border areas and further inland. The graph above correlates country averages 8 
(x-axis) with border averages (y-axis). We see a strong positive relationship, suggesting 9 
that our findings in border areas are probably relevant beyond our sample.  10 
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 1 

 2 

Supplementary Figure 3. Comparing Nitrogen Pollution in Water and Nitrogen Balances on 3 
Cropland. We are most concerned about nitrogen pollution in water, but not all nitrogen pollution in 4 
water comes from croplands. Here, however, we show that nitrogen pollution in freshwater (y-axis) and 5 
nitrogen balances on croplands (x-axis) are closely related. All observations are averaged in small bins 6 
(green) and their relationship is approximated with a linear regression line (blue). 7 
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The maps in Supplementary Figure 4 below show two-resolutions of the yield data from Monfreda, et 1 

al. 60, once for maize (a), and once for potatoes (b), as examples. The yield data is used both for the 2 

modelling yield gaps and nitrogen pollution and, as can be seen below, the resolution of the data is 3 

distributed heterogeneously around the word. Above, we tested whether this influences our estimates 4 

and found that it does not. For these tests, we used the data shown in the maps below and that for all 5 

other crops that we used to compute local average yield gaps and once included this as a control variable 6 

in the baseline specification, and once excluded the countries with the lowest resolution (bottom 25%). 7 

 8 
Maize 9 

 10 
Potato 11 

Supplementary Figure 4. Maps of Exemplary Yield Data Resolutions. Maize and Potatoes 12 

The maps in Supplementary Figure 5 show the global distributions of nitrogen balances on croplands3 13 

(a), water pollution14 (b), attained yield as percentage of attainable8 (c), and the predicted natural 14 

vegetation we would see without human impact33 (d).  15 
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 1 

 2 

 3 

 4 

 5 

Supplementary Figure 5. Nitrogen Balances and Pollution, Crop Yields, and 6 
Hypothetical Natural Vegetation. The maps a to d show the global distributions of our 7 
main input data. 8 
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 1 

 2 

Supplementary Figure 6. By Analyzing Data Close to International Borders Only, We can 3 
Reduce the Impact of Environmental Influences. Shown here is the nitrogen balance on 4 
agricultural lands close to international borders in Asia and Latin America. Darker reds reflect 5 
larger nitrogen surpluses while darker greens reflect larger nitrogen deficits. The closer together 6 
the observations, the more similar are topography, weather, soils, and other confounders that are 7 
not caused by the countries. Still, comparing e.g. the land just in China with that just in Mongolia, 8 
or land just in Brazil with that just in Bolivia, there are apparent differences that reveal the 9 
influence of the countries. 10 

 11 
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Section S2. Data for the Exploration of Explanations 1 

For our examination of what explains the global variation in countries’ nitrogen pollution per yield, we 2 

require data on various country characteristics that relate directly or indirectly to farmers’ incentives and 3 

constraints, what to grow where and how. First of all, we use data on countries gross domestic product, 4 

their value added in agriculture as percentage of gross domestic product, and their populations, all from 5 

the World Bank 80. Previous studies have found that yield gaps close with increasing development3,8 6 

whereas nitrogen pollution first increases up to a point and then decreases13,34. However, most countries 7 

in the world are still on the increasing part of the curve and overall, richer countries cause more nitrogen 8 

pollution than poorer countries13,34. For population size and growth, the literature suggests lower yield 9 

gaps and more nitrogen pollution. From a policy point of view highly relevant, we also examine the role 10 

of institutional quality. The data comes from Kunčič 35. The influence of institutional quality is 11 

ambiguous ex ante. Agricultural productivity is clearly positively associated with better institutions 81,82. 12 

On the other hand, the effect on nitrogen pollution could be positive, if they mostly increase fertilizer 13 

use, or negative, if they also improve regulatory frameworks and environmental policies 16.  14 

Then, we use data from the United Nations Food and Agriculture Organization - FAO 83 – on global 15 

development flows towards land resources. Previous studies have shown that financial flows can have 16 

large effects on agricultural and environmental outcomes84. However, again the sign is not clear again 17 

ex-ante, because less financial constraints are empirically associated both with more fertilizer input and 18 

higher yields85. We also use data on countries’ agricultural intensity, as measured by fertilizer use, with 19 

data from FAO 83. Higher agricultural intensity is both associated with higher yields and more pollution 20 

and overall, this should be strongly associated with more pollution per yield, given the prior literature 21 

and our own empirical evidence in this study.  22 

Finally, two especially interesting and policy-relevant variables are countries’ availability and 23 

affordability of food, provided by Chaudhary, et al. 86. Thinking about the trade-off between yield gaps 24 

and nitrogen pollution as quantifying how much countries “buy” higher yields with environmental 25 

damage, a natural question is whether perhaps more available and affordable food for all is a benefit of 26 

lowering the costs of agricultural production by externalizing costs to the environment.  27 

 28 
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