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A B S T R A C T

Stimulation of the central nervous system (CNS) via electromagnetic
(EM) fields and acoustic pressure waves (mostly low intensity focused
ultrasound – LIFUS) is used for treatment of a variety of medical disorders
(e.g., stroke, movement disorders, pain, depression). Targeted stimulation
is required to ensure efficacy and to avoid stimulation of non-targeted
neural tissue. Computational tools and models are becoming increasingly
important in this regard to inform treatment planning, the development
and optimization of stimulation devices, treatment efficacy and safety
assessment, and to provide an improved understanding for the underlying
physical and physiological mechanisms. They offer a high degree of control,
facilitate the exploration of large parameter spaces, and provide dense
information, while avoiding ethical issues. Importantly, in particular for
use in clinical treatments, computational modelling must be accurate and
reliable, with known parameter and prediction uncertainties.

The aims of this thesis are: (i) to develop and validate a comprehensive
biophysical modelling framework, based on the Sim4Life computational life
sciences platform, for the reliable simulation and optimization of electric
and ultrasonic neurostimulation, (ii) to apply this framework to advance
innovative therapeutic approaches (in the domains of bioelectronic medicine
and neuroprosthetics), and (iii) to support precision medicine through
personalized, image-based modelling.

Based on a review of the current state-of-the-art in the domain of EM
and FUS neurostimulation modelling, requirements and knowledge gaps
were identified. To close these gaps, important extensions of Sim4Life were
realized, including the implementation of a multi-GPU-accelerated solver
for acoustic propagation and of support for medical image-derived tissue
heterogeneous anisotropy in the EM and LIFUS simulations. This allowed
to establish unprecedentedly realistic multi-scale modelling of physical
exposure and induced electrophysiological responses.

Verification of the modelling framework with analytical and experimental
benchmarks was complemented by experimental ex and in vivo validation
in three application areas: (i) retinal prosthetics (joint work with the FDA),
(ii) spinal-cord stimulation (SCS) for the treatment of paraplegics (as part of
the RESTORE project), and (iii) transcranial ultrasound sonication (tcFUS;
with the Hvidovre Hospital, Denmark).
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(i) Retinal Prosthetics: In addition to providing the necessary confidence
in the modelling framework, the retinal stimulation study also provided a)
unique morphologically-detailed electrophysiological ganglion cell models,
b) insights into three distinct ganglion cell stimulation mechanisms, and c)
requirements for regulatory-grade neurostimulation modelling (including
an uncertainty assessment).

(ii) SCS: As part of the RESTORE project, personalized EM-neural-mod-
elling-based optimization was used to redesign the SCS implant and to
allow for patient-tailored treatments (device placement and stimulation
parameters), yielding vastly superior stimulation selectivity than achieved
by clinical experts. Successful restoration of locomotion to paraplegics could
be achieved.

(iii) tcFUS: Computational modelling is recognized as a promising so-
lution to address the difficulty of focusing tcFUS across the highly het-
erogeneous structure of the skull, but reliable predictions have proven
elusive. Careful computational and experimental studies on requirements
and pitfalls of acoustic transducer and image-based skull modelling were
therefore performed. The importance of properly characterizing and mod-
elling the internal structure and physics of the transducer was demonstrated.
Standing-wave effects in the skull were found to impact transcranial sonica-
tion efficiency to a larger extent than previously believed. The need to use
computed tomography (CT)-based modelling to account for inter-subject
variability was demonstrated. It was shown that not only the heterogeneity
of the skull, but also its structure has an important impact, and that CT-
based mapping requires imaging-parameter-dependent calibration, which
prevents simple translation between clinical sites. All these investigations
were experimentally validated (using explanted skulls and 3D-printed obsta-
cles) and complemented by extensive sensitivity and uncertainty analyses.

In addition to these validation studies, simulation studies on deep brain
stimulation (DBS) and SCS modelling were performed. The results not
only provided mechanistic understanding, but also gave rise to a novel,
activating-function-based multi-contact stimulation optimization approach
that combines the benefits of physiological impact-driven optimization with
those of rapid physics-based optimization. Using this approach, superior
stimulation selectivity and targeting could be achieved.

The confluence of the developed multi-physics and physiological mod-
elling across a wide range of spatial scales was further illustrated in an
application example: transcranial LIFUS neuromodulation. A neural-mass
model of cortical activity was extended with a model of LIFUS-induced,
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membrane-cavitation-mediated modulation of excitatory pyramidal neu-
rons and inhibitory interneurons, resulting in testable predictions of in-
duced changes in the electroencephalogram (EEG).

Finally, the limitations of this work are discussed and new research
directions are suggested.
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Z U S A M M E N FA S S U N G

Die Stimulation des Zentralnervensystems (ZNS) über elektromagneti-
sche (EM) Felder und akustische Druckwellen (meist durch fokussierter
Ultraschall mit geringer Intensität- LIFUS) wird zur Behandlung einer Viel-
zahl von medizinischen Störungen (z. B. Schlaganfall, Bewegungsstörungen,
Schmerzen, und Depressionen) eingesetzt. Eine gezielte Stimulation ist er-
forderlich, um die Wirksamkeit sicherzustellen, sowie um die Stimulation
von nicht-betroffenen Nervengewebe zu vermeiden. Rechnergestütze Mo-
delle gewinnen in dieser Hinsicht zunehmend an Bedeutung; sei es zwecks
der Behandlungsplanung, der Entwicklung und Optimierung von Stimu-
latoren, der Beurteilung der Wirksamkeit und Sicherheit der Behandlung,
oder um ein besseres Verständnis für die zugrundeliegenden physikalischen
und physiologischen Mechanismen zu erreichen. Sie bieten ein hohes Mass
an Kontrolle, erleichtern die Erkundung grosser Parameterräume, liefern
detaillierte Informationen und vermeiden dabei auch ethische Probleme.
Insbesondere für die Verwendung in klinischen Behandlungen muss die
rechnergestützte Modellierung exakt und zuverlässig sein, sowie bekannte
Parameter- und Vorhersageunsicherheiten aufweisen.

Die Ziele dieser Dissertation sind: (i) Die Entwicklung und Validierung
eines umfassenden, biophysikalischen Modellierungssystems (auf der Basis
der Sim4Life-Plattform für rechnergestützte Biowissenschaften) zur zuver-
lässigen Simulation und Optimierung von elektrischer und ultraschallba-
sierter Neurostimulation; (ii) die Anwendung des entwickelten Systems auf
innovative, therapeutische Ansätze (in den Bereichen bioelektronische Medi-
zin und Neuroprothetik); und (iii) die Ermöglichug von Präzisionsmedizin
durch personalisierte, bildgestützte Modellierung.

Basierend auf einer Überprüfung des aktuellen Standes der Technik im
Bereich EM- und LIFUS-Neurostimulationsmodellierung wurden Anforde-
rungen und Wissenslücken identifiziert. Um diese Lücken zu schliessen,
wurden wichtige Erweiterungen von Sim4Life realisiert, einschliesslich der
Implementierung eines multi-GPU-beschleunigten Lösers für akustische
Simulationen und der Unterstützung von heterogenen, anisotropen Gewebe-
modellen in EM- und LIFUS-Simulationen. Dies ermöglichte eine beispiellos
realistische Multiskalenmodellierung der physikalischen Exposition und
der induzierten elektrophysiologischen Reaktionen.
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Die Verifizierung des Modellierungssystems mit analytischen und ex-
perimentellen Richtwerten wurde durch die experimentelle ex und in vi-
vo-Validierung in drei Anwendungsbereichen ergänzt: (i) Retina-Prothetik
(gemeinsame Arbeit mit der FDA); (ii) Rückenmarkstimulation (SCS) zur Be-
handlung von Querschnittslähmungen (im Rahmen des RESTORE-Projekts);
und (iii) transkranielle Ultraschallstimulation (tcFUS; zusammen mit dem
Hvidovre Hospital, Dänemark).

(i) Retina-Prothetik: Zusätzlich zum erforderlichen Vertrauen in das Mo-
dellierungssystem lieferte die Retina-Stimulationsstudie auch a) einzigarti-
ge, morphologisch detaillierte, elektrophysiologische Ganglienzellmodelle,
b) Einblicke in drei verschiedene Ganglienzell-Stimulationsmechanismen,
und c) die Identifikation von Anforderungen zur regulatorischen Neurosti-
mulationsmodellierung (inklusive einer Unsicherheitsabschätzung).

(ii) SCS: Im Rahmen des RESTORE-Projekts wurde eine personalisierte
EM-neuronale, Modellierungs-basierte Optimierung verwendet, um das
SCS-Implantat neu zu gestalten und patientenspezifische Behandlungen
(Stimulatorpositionierungen und -parameter) zu ermöglichen. Die dadurch
erzielte Behandlungsqualität (Stimulationsselektivität) ist der von klinischen
Experten und Expertinnen überlegen. Dadurch wurde Paraplegikern/-
innen das Gehen erfolgreich wiederermöglicht.

(iii) tcFUS: Computermodellierung gilt als vielversprechender Lösungsan-
satz für die Schwierigkeit tcFUS durch die überaus heterogene Struktur des
Schädels zu fokussieren. Zuverlässige Vorhersagen wurden bisher jedoch
noch nicht erreicht. Aus diesem Grund wurden sorgfältige rechnerische
und experimentelle Studien zu den Anforderungen und Fallstricken von
aktustischer Transducermodellierung und bildbasierten Schädelmodellen
durchgeführt. Es wurde aufgezeigt wie wichtig es ist die interne Struktur
und Physik des Transducers richtig zu charakterisieren und zu modellieren.
Es wurde festgestellt, dass Stehwelleneffekte im Schädel die transkranielle
Beschallungseffizienz in einem hoheren Grad beeinflussen als bisher ange-
nommen wurde. Des Weiteren wurde die Notwendigkeit demonstriert eine
Computertomographie-basierte Modellierung zu verwenden, um die Va-
riabilität zwischen Patienten/-innen zu berücksichtigen. Es wurde gezeigt,
dass nicht nur die Heterogenität des Schädels, sondern auch dessen Struk-
tur einen wichtigen Einfluss haben, und dass die Computertomographie-
basierte Extraktion von Gewebeeigenschaftskarten eine bildgebungspa-
rameterabhängige Kalibrierung erfordert, die eine einfache Übersetzung
zwischen klinischen Standorten verhindert. All diese Untersuchungen wur-
den experimentell validiert (unter Verwendung explantierter Schädel und
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3D-gedruckten Hindernissen) und durch umfangreiche Sensitivitäts- und
Unsicherheitsanalysen ergänzt.

Zusätzlich zu diesen Validierungsstudien wurden Simulationsstudien
zur tiefen Hirnstimulation (DBS) und zu SCS durchgeführt. Die Ergebnisse
lieferten nicht nur ein mechanistisches Verständnis, sondern führten auch
zu einem neuartigen und auf Aktivierungsfunktionen-basierenden Ansatz
zur Optimierung einer multipolarer Stimulation. Dieser Ansatz kombinierte
die Vorteile einer impactorientierten Physiologie-basierten Optimierung mit
denen einer schnelleren Physik-basierten Optimierung kombiniert. Mit der
Verwendung dieses Ansatzes konnten eine überlegene Stimulationsselekti-
vität und -anvisierung erzielt werden.

Die Integration der entwickelten multi-physikalischen und -physiolo-
gischen Modelliersverfahren über eine Vielzahl von räumlichen Grössen-
ordnungen wurde an einem Anwendungsbeispiel weiter veranschaulicht,
nämlich der ranskranielle LIFUS-Neuromodulation. Ein neurales Massmo-
dell der kortikaler Aktivität wurde mit einem Modell der LIFUS-induzierten
und durch einer Membrankavitation vermittelten Modulation von exzitatori-
schen pyramidalen Neuronen und inhibitorischen Interneuronen erweitert,
was zu überprüfbaren Vorhersagen von induzierten Veränderungen im
Elektroenzephalogramm (EEG) führte.

Abschliessend werden die Grenzen dieser Arbeit diskutiert und neue
Forschungsrichtungen vorgeschlagen.

xi





A C K N O W L E D G E M E N T S

This thesis work would not have been possible without the help, encour-
agement, and unconditional support from the following people:

Esta tésis no hubiese sido posible sin la ayuda, aliento y apoyo incondicional de
las siguientes personas:

• Niels Kuster, who took a chance with me, welcomed me to the Z43
family, and stuck his neck out for me when I needed him most

• Esra Neufeld, a mentor, friend, role model; his incalculable contribu-
tion to this thesis and my development as a researcher and a person
could never be understated; no permutation of words could fully
capture my gratitude and indebtedness to him, instead I hope my
friendship, respect, and admiration serves as a more suitable means
of expression

• Mi familia, por darme el amor, la fuerza, la confianza y la fe necesaria para
finalizar este trabajo; este trabajo es reflejo de su esfuerzo y dedicación para
conmigo

• Sabine Regel, and her excellent (and always patient) proofreading
work

• Saee Paliwal, for her edits throughout and a strong and beautiful
friendship; for her unwavering (and questionable) belief in me, giving
me a fighting chance at a Doctorate in Switzerland

• Katie Zhuang, for her help and edits in Chapter 2

• Andreas Rowald for help with Chapter 3; always a pleasure (and a
pain) to hack our way through Sim4Life

• Nives Radoja and Klára Kult for their help and dedication in format-
ting Chapter 4

• Giuliano Montanaro, for learning new tools at a moment’s notice to
help prepare the figures in Chapter 5

• Gabriela Michel, for her help with formatting in Chapter 5

xiii



• Cristina Pasquinelli and Axel Thielscher, for the fruitful collabora-
tions of Chapters 7 and 8

• Joe Tharayil and Théo Lemaire, for their talent and dedication, which
made Chapter 9 possible

• Rhiana Spring, for making the german abstract intelligible (and more
gender inclusive)

• Antonino Cassarà, for the friendship and fruitful discussions and
collaborations leading to most of the neuro-related work in this thesis

• Redi Poni and Cindy Karina, without whom this work would not be
completed in time; thank you for caring and for the friendship

• Bryn Lloyd, Manuel Guidon, Stefan Benckler, Stefan Schild, Pedro
Crespo, Nik Chavannes, for their patience, willingness to help, and
for always leaving the door open to me for questions and discussions;
respect and admiration for this talented developer team

• Frederico Teixeira and Philipp Wissmann, for their encouragement,
thoughtfulness, and advise throughout the Doctorate

• Jacqueline Pieper and Yvonne Mader for being there and standing
behind me when I needed them most in all administrative matters

• Saray Soldado, with Gabriela Michel, sisters, for showing me the
way forward and pushing me to be a better version of myself

• Sergey Burnos, for the unwavering support, inspiration, and beers

• Daniel Neil, for his friendship and silent leadership

• Familia Sosa, por darme un lugar en su mesa, como uno más de la familia;
por siempre cuidarme y alentarme

• Patricia y familia Vitale Lesme, por hacerme parte de su familia, por
preocuparse y siempre creer en mí

• Christian Luraschi, un hermano, por siempre estar para darme la mano en
momentos de necesidad

To everybody listed here (and a few more), I owe more than a debt of
gratitude, to be paid with the same token onto others.

xiv



A C R O N Y M S

BLS Bilayer sonophore

CNS Central nervous system

CSF Cerebrospinal fluid

CT Computed tomography

DBS Deep brain stimulation

DCS Direct current stimulation

DTI Diffusion tensor imaging

EEG Electroencephalogram

EES Epidural electrical
stimulation

EMG Electromyography

EM Electromagnetic

FDTD Finite difference time
domain

FEM Finite element methods

FS Fast spiking

FUS Focused ultrasound

FWHM Full width at half
maximum

HIFU High intensity focused
ultrasound

HU Hounsfield Units

HWHM Half width at half
maximum

IPG Implantable pulse generator

IS-SD Initial segment-somato
dendritic

LAPWE Linear acoustic pressure
wave equation

LFP Local field potential

LIFUS Low intensity focused
ultrasound stimulation

MIDA Multimodal imaging-based
detailed anatomical computer
model

MIP Maximum intensity
projection

MMS Method of manufactured
solutions

MRI Magnetic resonance imaging

NIBS Non-invasive brain
stimulation

NICE Neuronal intramembrane
cavitation excitation

NMM Neural mass model

PET Positron emission
tomography

xv



PML Perfectly matched layer

PNS Peripheral nervous system

RS Regular spiking

SCS Spinal cord stimulation

SEFT Single-element focused
transducer

SNR Signal-to-noise ratio

SONIC Multi-scale optimized
neuronal intramembrane
cavitation

tcFUS Transcranial focused
ultrasound

TMS Transcranial magnetic
stimulation

TUS Transcranial ultrasound
stimulation

TVB The Virtual Brain

VB Veroblack

VNS Vagus nerve stimulation

WLE Westervelt–Lighthill equation

xvi



C O N T E N T S

1 introduction 1
1.1 Thesis motivation 2
1.2 Thesis structure 2

2 background 7
2.1 Neuromodulation applications 7

2.1.1 EM neuromodulation 7
2.1.2 Acoustic neuromodulation 22

2.2 Computational modelling 27
2.2.1 Why computational modelling? 27
2.2.2 EM simulations for neuromodulation 29
2.2.3 Finite Difference Time Domain method 30
2.2.4 Low frequency approximations 31
2.2.5 Electrophysiological neuromodulation 33
2.2.6 Applications 34
2.2.7 Acoustic exposure 37
2.2.8 Acoustic stimulation for neuromodulation 38

2.3 Needs, limitations, and thesis motivation 41
3 modelling framework 45

3.1 Sim4Life 45
3.1.1 Framework 45
3.1.2 Quasistatic EM modelling 45
3.1.3 Acoustic modelling 46
3.1.4 Neural modelling 46
3.1.5 Acoustic neuromodulation 46

3.2 Extensions 47
3.2.1 Anisotropy verification 48

3.3 Spinal cord stimulation to restore locomotion 55
3.3.1 Background 55
3.3.2 Method 55
3.3.3 Results 62

3.4 Conclusions 63
4 alpha rgc model of extracellular stimulation 65

4.1 Introduction 66
4.2 Methods 67

4.2.1 Preparation 67

xvii



xviii contents

4.2.2 Recordings 68
4.2.3 Extracellular stimulation 68
4.2.4 Immunohistochemistry 69
4.2.5 Morphological reconstruction 70
4.2.6 NEURON ganglion cell model 70
4.2.7 Sensitivity analysis 72

4.3 Results 73
4.3.1 Measurement results 73
4.3.2 Estimating ion channel distribution 75
4.3.3 Spike adaptation in alpha cells 78
4.3.4 Extracellular electrode stimulation 80
4.3.5 Simulation results 83
4.3.6 Sensitivity and uncertainty analysis 83

4.4 Discussion 85
4.5 Conclusions 90
4.A Appendix 92

4.A.1 Results tables 92
4.A.2 NaV1.6 channel model 95
4.A.3 Calcium clearance mechanism 96

5 neurostimulation optimization 97
5.1 Introduction 97
5.2 Methods 98

5.2.1 EM-electrophysiological modelling 98
5.2.2 Activation functions and optimization 99
5.2.3 Generic neurostimulation model 101
5.2.4 DBS model 101
5.2.5 SCS model 106

5.3 Results 110
5.3.1 Verification 110
5.3.2 Activation function and stimulation location 110
5.3.3 Activation region 114
5.3.4 Activating function threshold 114
5.3.5 SCS selectivity 114
5.3.6 Anisotropy 120

5.4 Discussion 123
5.4.1 Activation function as predictor 123
5.4.2 Targeting optimization 123
5.4.3 Performance 124
5.4.4 Anisotropy 125



contents xix

5.4.5 Generalization 126
5.5 Conclusions 128
5.A Appendix 130

6 acoustic modelling of tcfus 137
6.1 Motivation 137

7 transducer modelling for tcfus simulations 139
7.1 Introduction 140
7.2 Methods 142

7.2.1 Bone samples and phantoms 142
7.2.2 US transducer and water tank measurements 142
7.2.3 Actual measurements with objects 146
7.2.4 Calculation intensity from measurements 146
7.2.5 CT imaging of the objects 146
7.2.6 Simulation framework 148
7.2.7 Transducer modelling 151
7.2.8 Metrics 152
7.2.9 Backpropagation 157
7.2.10 Human head models 157

7.3 Results 158
7.3.1 Acoustic beam in a pure water background 158
7.3.2 Transmission through the VB plate 160
7.3.3 Transmission through the VB 3D-printed skulls 160
7.3.4 Transmission through the bone skull samples 161
7.3.5 Other parameters 161
7.3.6 Backpropagation 163
7.3.7 Human head models 165
7.3.8 Impact of non-linearity 165

7.4 Discussion 165
7.5 Conclusions 171
7.A Appendix 173

7.A.1 Results tables and figures 173
8 ct image parameters and skull tcfus modelling 183

8.1 Introduction 184
8.2 Methods 187

8.2.1 Bone sample 187
8.2.2 Measurements 187
8.2.3 Simulation framework 188
8.2.4 Varied parameters 189
8.2.5 Agreement metrics 196



xx contents

8.3 Results 201
8.3.1 CT parameters 201
8.3.2 Skull properties and mappings from CT 203
8.3.3 Positioning 207

8.4 Discussion 212
8.5 Conclusions 217
8.A Appendix 219

8.A.1 Adjustment of CT noise levels 219
8.A.2 Results figures 221

9 coupled us-electrophysiology-eeg modelling 227
9.1 Background 227
9.2 Method 227

9.2.1 Multi-scale model 227
9.2.2 Anatomical head model 228
9.2.3 Acousto-neural interaction model 228
9.2.4 Cortical oscillation model 231
9.2.5 Acoustic propagation model 238
9.2.6 Coupling 240
9.2.7 EEG computation 241

9.3 Results and discussion 242
9.3.1 Limitations 245

9.4 Conclusions 246
9.A Appendix 248

9.A.1 Tables and figures 248
10 conclusions 249

10.1 Achievements 249
10.2 Next steps and future research 253

bibliography 255



1
I N T R O D U C T I O N

Stimulation of the central nervous system (CNS) via electromagnetic
(EM) fields and acoustic pressure waves is used for treatment of a variety
of medical disorders such as stroke rehabilitation [1], pain palliation [2],
depression [3], and tremors [4]). Typically, targeted stimulation is required
to improve treatment efficacy and avoid unintended stimulation of other
neural tissue. Computational tools and models are becoming increasingly
important in this regard to inform treatment planning, the development and
optimization of stimulator devices, treatment efficacy and safety assessment,
and to provide an improved understanding for the underlying physical and
physiological mechanisms. Consequently, these computational methods
need to be accurate and reliable with known parameter and outcome
uncertainty, in particular for use in clinical treatments.

Brain stimulation can be achieved via external electric (E-) or magnetic
(H-) fields that typically stimulate large volumes, primarily in the cortex [5].
More localized or deep CNS stimulation is attained via implanted electrodes,
such as deep brain stimulation (DBS) devices targeting the subthalamic
nucleus for Parkinson’s disease therapy [6], and spinal cord stimulators [7]
targeting specific dermatomal zones for pain relief. Spinal cord stimulation
(SCS) is typically achieved by delivering currents through an implanted
multi-electrode array in the dorsal epidural space. To date, optimization
of stimulation parameters and placement of the stimulator device for an
individual patient (for treatment safety and efficacy) is very time-consuming
and frequently produces sub-optimal results. Computational models are the
tool of choice for a more systematic and optimal personalization approach.

SCS is an essential and established therapeutic approach for chronic pain
treatment [7]. More recently, the use of SCS (or more specifically, spinal root
stimulation) to restore locomotion in paraplegics, has been demonstrated [8,
9] – an example of neuroprosthetic medicine. Another neuroprosthetic ap-
plication that has reached regulatory submission level is retinal prosthetics,
where the U.S. Food and Drug Administration (FDA) required guidance
on how regulatory grade computational EM and electrophysiology mod-
elling for safety and efficacy assessment could be performed and to gain
mechanistic understanding (Chapter 4).
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2 introduction

Focused ultrasound (FUS) is a promising alternative to electric and
magnetic stimulation of the CNS or PNS where ultrasonic energy is non-
invasively deposited at a millimeter sized focal volume deep inside the
body. Low intensity focused ultrasound (LIFU / LIFUS) has been shown to
stimulate neurons [10] and modulate neural activity inside the brain [11,
12]. Multi-element phased array transducers have been used to achieve
highly focused, non-invasive energy delivery deep in the brain, e.g., for
functional neurosurgery [13], and could potentially be applied for targeted
neurostimulation or brain mapping. Computational models are essential
for predicting and compensating the pressure-wave distorting effects of the
complex, heterogeneous skull structure. This is currently the biggest obsta-
cle to achieving reliable and efficient targeting and presents an unsolved
modelling challenge [14].

Multi-scale, multi-physics computational modelling frameworks for life
sciences applications in the complex environment of the human body –
such as the Sim4Life simulation platform (co-developed by our lab and
ZMT Zurich MedTech AG [15]) – are perfectly suited to model and improve
neurostimulation scenarios in clinical settings. Sim4Life offers an advanced,
full-wave 3D linear and non-linear pressure wave solver optimized for FUS
applications. It also provides functionality for personalized image-based
anatomical model generation and EM modelling, which can be coupled
with neuronal electrophysiology modelling.

1.1 thesis motivation

The aim of this thesis is to develop, validate, and apply a new multi-scale modelling
framework that can use personalized imaging data for the optimized electric and
ultrasonic stimulation of neurons. The work performed in this thesis addresses
various of the currently existing challenges in highly relevant therapeutic areas,
ranging from neuroprosthetics to DBS, SCS, and the application of LIFUS for
brain neuromodulation.

1.2 thesis structure

This thesis is structured into the following chapters:

chapter 2 An overview of therapeutic neuromodulation applications is
provided and the need for computational modelling is discussed. Subse-
quently, a critical review of the current state-of-the-art in EM, acoustic, and



1.2 thesis structure 3

electrophysiology modelling in the context of therapeutic neuromodulation
is provided. Important requirements, limitations, and knowledge-gaps are
identified which motivated parts of the work performed in this thesis.

chapter 3 The Sim4Life computational life sciences platform is intro-
duced that was used for all computational modelling work in this thesis.
The necessary extensions, based on the needs identified in Chapter 2, are
discussed, along with the associated verification work. The most important
extensions are the addition of support for heterogeneous material proper-
ties (as required for proper acoustic modelling of skull heterogeneity) and
anisotropic material properties (important because of the high anisotropy of
white matter and nerves), which were verified using analytical benchmarks
and the method of manufactured solutions. The application of the extended
Sim4Life platform is illustrated through the SCS treatment planning and
optimization activities performed as part of the RESTORE project to achieve
restoration of locomotion to paraplegics.

chapter 4 The coupled EM-electrophysiological modelling is success-
fully validated in a controlled retinal stimulation experimental setup. In
addition to providing the necessary confidence in the modelling framework,
this study also provides mechanistic insights into epiretinal ganglion cell
stimulation. The work, performed jointly with the U.S. Food and Drug
Administration (FDA), addresses the current lack of suitable approaches
to perform safety and efficacy assessment for the regulatory approval of
an FDA-submitted retinal prosthetic device. A unique aspect of that work
is that the biophysical properties of the model, as well as the cells’ mor-
phologies, were obtained from the very same cells that were also used to
obtain electrophysiological validation measurements. Extensive uncertainty
quantification work complements the validation and is used to determine
an objective validation criterion.

chapter 5 A highly detailed, image-based neuro-functionalized head
model for investigating DBS has been created. Inspired by the success of
activation-function-based considerations [16] in explaining features of the
observed behavior (IC fiber stimulation thresholds and locations), a novel
(pre-)optimization approach is established that provides acceleration by
more than three orders of magnitude. A coupled EM-electrophysiological
model of SCS is constructed, based on [7], and used to assess and optimize
SCS selectivity for pain treatment. The activation-function optimization ap-



4 introduction

proach proves highly computationally efficient in determining multi-contact
electrode steering parameters with superior stimulation selectivity. How-
ever, due to the impact of activating function narrowness on the stimulation
threshold, coupled EM-electrophysiological modelling is still required to
reliably predict stimulation and to refine the stimulation parameters. The
activation-function concept is also helpful to understand the unexpectedly
strong impact of neural tissue anisotropy on the penetration depth of e.g.,
epidural stimulation.

chapter 6 Provides a brief introduction and motivation for Chapters 7
and 8, which deal with the modelling of transcranial FUS (tcFUS) stimu-
lation. Due to the difficulty of tightly focusing FUS across the highly het-
erogeneous skull (scattering, aberration), computational-modelling-based
compensation has long been sought [17]. However, the reliable prediction
and optimization of transcranial transmission, focus location, and focality
has proven elusive. Therefore, careful computational and experimental stud-
ies on requirements and pitfalls of acoustic transducer and image-based
skull modelling have been performed.

chapter 7 The importance of properly characterizing and modelling the
internal structure and physics of the transducer is demonstrated through
sensitivity analysis and comparison of experimental and simulation data on
trans-obstacle sonication involving skull samples and 3D-printed obstacles,
and using powerful comparison metrics previously introduced by our lab.
Results show that some compromises on modelling detail can be acceptable
when coupled with experimentally derived corrections, and that standing-
wave effects in the skull play a more important role than previously believed,
explaining some of the sensitivity in accurately predicting transcranial
sonication efficiency.

chapter 8 The need to use computed tomography (CT) image-based
modelling to account for inter-subject variability and personalize treatments
is demonstrated and a detailed sensitivity analysis on imaging, applica-
tion, and modelling parameters is performed. It is shown that not only the
heterogeneity of the skull, but particularly its structure has an important
impact of transcranial sonication, and that CT-based mapping requires
imaging-parameter-dependent calibration (accounting for noise level, tube
voltage, filter sharpness, etc.), which prevents simple translation between
different clinical sites. Furthermore, the need for accurate applicator po-
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sitioning and reproduction of that placement in the treatment planning
model is evidenced.

chapter 9 The confluence of the multi-physics simulation, physiological
modelling, and scales discussed in previous chapters is illustrated for
the example application of tcFUS-based neuromodulation. A neural-mass
model of cortical activity is extended with terms accounting for the duty-
cycle-dependent specific response to LIFUS of regular (pyramidal) spiking
neurons and inhibitory interneurons, and testable predictions about the
impact on the electroencephalogram (EEG) are made. The results of this
initial study demonstrate the potential for future research and applications
in this area.

chapter 10 The final chapter of this thesis summarizes the achieve-
ments of the presented work, discusses its limitations, and suggests a
number of new research directions.





2
B A C K G R O U N D

2.1 neuromodulation applications

Electromagnetic and acoustic neuromodulation are applied in a wide range
of therapeutic applications. The following section aims to provide both a
basic overview of these applications, as a motivation for this thesis, and
an understanding of the role and need for computational modelling in
this research area. Background information on electromagnetism, acoustics,
and their interaction with biological tissues, more specifically the nervous
system, are provided alongside a discussion of different neuromodulation
applications. We will also present a summary of existing computational
models, along with some of their limitations.

2.1.1 EM neuromodulation

EM neuromodulation refers to the use of electric or magnetic fields to in-
hibit, excite, synchronize, regulate, or otherwise affect the dynamics of the
nervous system. It has been shown to directly impact neurological and
neuropsychiatric conditions, in ways that can be therapeutically valuable,
particularly when pharmacological approaches are unsuitable, in that they
do not yet exist, are not sufficiently targeted or effective, or cause too many
undesired side-effects. EM neuromodulation has been successfully applied
in conditions such as Parkinson’s disease [18, 19], essential tremors [20,
21], chronic pain [22], epilepsy [23], motor rehabilitation [24], medication
resistant depression [25], addiction [26], and anorexia [27]. It is also a treat-
ment approach to reverse sensory deficiencies, such as neural deafness [28]
or blindness [29], or to restore a sense of touch, e.g., in neuroprosthetic
applications involving robotic limbs [30].

EM fields are induced in biological tissues through exposure to electric
or magnetic field sources outside or inside the body. Magnetic fields are
generated by creating a time varying current (frequently in coiled wire)
which induces electric fields and currents in the biological tissue. Electric
exposure typically involves electrodes in direct contact with or close prox-

7
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imity of the body. In EM neuromodulation applications, the human body
primarily acts as a heterogeneous resistive medium.

The human body is composed of tissues with varying dielectric properties,
namely permittivity and resistivity. The permittivity of the tissue is related
to the ability of a material to polarize (atomic alignment of its constituent
charges), thus affecting the internal field. The resistivity governs the flow
of electric charges (ionic currents). While isotropic conductivity always
results in currents that are aligned with the field orientation, anisotropic
materials have an electric-field-orientation dependent conductivity, and
produce currents that are not necessarily aligned with the field. Due to their
spatially organized, fibrous structure, this is particularly relevant for white
matter and nerve fibers [31–35].

The nervous system consists of the central nervous system (CNS) and
the peripheral nervous system (PNS). The CNS comprises the brain and
spinal cord, from which the roots and nerves of the PNS branch off. Nerves
contain bundles of nerve fibers which are embedded in the epineurium and
can be organized in fascicles surrounded by a semi-insulating membrane
called the perineurium.

Neurons are electrically excitable cells that make up the nervous system
and transmit information (see Figure 2.1). They process and transmit elec-
trochemical signals and can be divided into the following components. The
soma is the cell body which houses the nucleus. The dendritic tree is an ex-
tension of the soma that collects and processes synaptic input signals from
connected cells. The non-linear, active nature of neural membranes can give
rise to all-or-nothing electrical signals called action potentials. These action
potentials then propagate, e.g., along a long projection of the cell called
the axon. Axons are sometimes covered by a protective and insulative layer
called the myelin sheath, which also serves to accelerate signal conduction.
Axon can connect to other neural cells, e.g., synaptically, or can activate a
motor response.

The cell membrane features ion channels that actively or passively me-
diate the in- and outflow of particular ions – mainly sodium Na+ and
potassium K+). The magnitude of these ionic current typically depends on
the transmembrane voltage. Given a large enough potential difference, the
sodium ion channels open and let in enough ions to change the local cellular
charge concentration which then activates the adjacent ion channels (sensi-
tive to the same or different ions). This complex voltage interaction with
ion channels along the axon ensures that the action potential gets propagated
down the long axon without signal degradation, as the signal is constantly
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Figure 2.1: Schematic representation of a neuron structure. (Figure adapted
from [36])
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bolstered along the way. Action potentials are frequently followed by a
refractory period during which the cell is silent and does not fire again.

Figure 2.2: Illustration of ionic imbalances and the resulting transmembrane
voltage. (Figure adapted from [36])

Neural fibers in fascicles are axons that can be divided into different
subtypes based on their function, morphology, and speed of conduction.
Neurons in the spinal cord can be broadly divided in three main classes:
sensory / afferent, motor / efferent, and interneurons. Sensory neurons are
afferent, in that they receive stimuli from the environment or internal organs.
These neurons can be further classified into A, B, and C fibers based on
the morphology on their axons, taking into account their conduction speed,
diamater and myelination. Motor neurons are responsible for eliciting
muscle activity. Interneurons can form networks and connect afferent and
efferent fibers. Neurons in the brain are much more diverse and specialized.

Neurons in a rest state have a transmembrane voltage around −70 mV
that needs to rise in order for an action potential to be generated. The terms
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Figure 2.3: Schematic illustration of action potential propagation. (Figure adapted
from [36])
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hyper- and depolarization refer to a change of the transmembrane potential.
Hyperpolarization is associated with lowering the neuron’s excitability, and
depolarization with increasing the neuron excitability. Even though action
potentials typically start from the initial segment of the axon, ion channels
along the axon can be driven to start the complex interaction leading to
action potential propagation, e.g., by EM exposure. The activating function is
a useful predictor for the initiation of an action potential along an axon [16].
It is related to the derivative of the tangential electric field along an axon
trajectory (see Chapter 5). Electric fields can also induce activity at dendritic
or axonal endings, or modulate activity in the subthreshold regime. The EM-
modulated neural response depends on cell type, morphology, orientation,
ion channel dynamics, tissue inhomogeneity, and synaptic connections [37].

The brain features large and complex networks of neurons that are fre-
quently described on the level of neuron populations that are arranged in
networks represented by connectivity maps. Electroencephalograms (EEG)
and local field potential (LFP) recordings measure averaged activities of
neuron populations at different scales and distances. Such measurements
provide information about network activity at different frequencies, brain
states, network coherence, etc. Models of neural networks, such as neu-
ral mass and mean field theory approaches, model these populations as
recurrent feedback and feedforward nodes of excitation and inhibitions
affecting population firing rates. Connectivity maps, known as the connec-
tome, are attained through either the staining of neurons with special dyes
or light-sensitive enzymes that reveal connections, or through the use of
imaging modalities that track the diffusion of molecules, such as Diffusion
Tensor Imaging (DTI). Attempts at creating detailed maps of the brain and
its connectivity exist in the form of the Blue Brain Project [38], the Virtual
Brain project [39], and the Connectome Project [40].

2.1.1.1 Modalities and applications

EM neuromodulation is applied using different techniques and modalities.
Typically, either direct or alternating currents are applied by adding a pair
or array of electrodes either on the scalp, for noninvasive stimulation, or
invasively using implanted electrodes (epidurally, subdurally, transcorti-
cally, or deep inside the brain or spinal cord). Implanted electrodes typically
target nearby areas which are specifically chosen based on the neurological
conditions that needs treatment.
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2.1.1.2 Direct current stimulation

Direct current stimulation (DCS) and transcranial direct current stimulation
(tDCS) have been successfully used for a variety of neurological and psychi-
atric conditions such as Parkinson’s disease, essential tremor, chronic pain,
epilepsy, and medication resistant depression. In these cases, anode and
cathode surface electrodes are placed over the scalp. The anode electrode is
placed over the regions of the head that needs depolarization (excitation)
and the cathode over the regions that need to be hyperpolarized (inhibited
or to create a strong enough gradient such that excitation can occur away
from the cathode) [41]. The two surface electrodes (or more than two, in
the case of high definition (HD-)DCS where one anode is used with four
cathode electrodes) inject a low amplitude subthreshold current (typically,
0.5–2 mA) which changes the cortical excitability and the resulting spon-
taneous firing patterns [42, 43]. Electrode placement and voltages are set
according to different anodal, cathodal, or bihemispheric stimulation proto-
cols. Effects outlast the duration of the stimulation: there is an assortment
of short and long term local and regional effects. The applied electrodes are
relatively large, so focality is not possible and brain networks are targeted
instead. Due to the rapid field strength drop with distance, transcranial
direct current stimulation (tDCS) is generally restricted to stimulating the
cortex. Given the susceptibility of neurons to field gradients and orien-
tations, the excitability of the different cells depend heavily on electrode
placement [44]. Experimental work has shown that response rates to these
kinds of treatments may be around 50 % [45, 46]. Invasive forms of DCS
(edidurally, subdurally, or intracortically) have also been applied.

Since the target of DCS is the cortex, epidural stimulation necessarily
needs the injected current to flow through the dura, a membrane surround-
ing the brain, and the highly conductive cerebro-spinal fluid (CSF), acting
as a shunt, before reaching the intended area of stimulation. Computational
modelling work has shown that the resulting exposure is attenuated by
roughly a factor of two [47–49] and spread-out. This highlights the impor-
tance of computational modelling to inform treatment parameters / setups
and improve the success of target stimulation. These treatments need to be
tailored or at least be partly informed by the patient’s anatomy, as patient
physiology can vary wildly, especially in the case of neurological diseases
(shown, for example, in patients with cortex atrophy [24]). More specific
and targeted treatments can be achieved with more invasive methods, such
as intracortical stimulation with implanted electrodes, but these carry ad-
ditional risks (e.g., infection, CSF leak, seizures [50], and foreign body
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response which also affects impedance [51, 52]) and can be sensitive to
small positioning inaccuracies [53].

While precise mechanistic understanding of DCS is elusive, a number
of experimental and computational works have explored its impact on
recruited neuron types and activation sites (i.e., synaptic modulation of
interneurons), and the relation between baseline neurotransmitter and
metabolite concentrations on cortical response [54–56].

2.1.1.3 Deep brain stimulation

An important area of EM stimulation application is Deep Brain Stimulation.
This technique has important applications in psychiatry [57], movement
disorders [58], and chronic pain [59] with proven effectiveness and ben-
efits when compared to lesional surgery alternatives [21]. An electrode
is implanted deep inside the brain near regions such as the subthalamic
nucleus (STN) or the ventral intermediate nucleus (VIM) of a patient to
modulate nearby brain networks involved in the neurological diseases (local
cells, afferent inputs) or tangentially related to them (fibers of passage) [60].
These cells have similar thresholds for activation [61].

Stimulation depends on many parameters, such as frequency, amplitude,
pulse width, and shape. Computational models can be helpful in optimizing
these parameters. Electrodes typically have a quadripolar design to tune
focality and polarity of stimulation and a battery powered implantable
pulse generator (IPG) elsewhere in the body to deliver the electrical stim-
ulation [62]. Typical operation of the device for treatment of Parkinson’s
disease creates repeated bipolar stimulation at 130 Hz with 0.1 ms pulses
with anode and cathode electrodes at 3 and −3 V respectively (a reference
0 V is set at the IPG). To ensure safety and efficacy of treatments, clinicians
typically come up with metrics and heuristics to guide treatment for dif-
ferent patients. Total charge injection is used as one measure for safety,
and is affected by the electrode type, the anatomy, dielectric properties and
electrode contact. Because of this, aspects such as electrode-tissue interface
impedance, and tissue and field heterogeneity and anisotropy must be
considered. Accurate quantification of charge injection relies on computa-
tional models. There is still uncertainty over the most effective targets for
particular treatments; multiple possible targets have been identified and
approximated with the use of brain atlases which are then superimposed
on the patient’s anatomy attained from imaging modalities [19, 20, 63–67].
Computational models of DBS neuromodulation have been useful in eluci-
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dating the neural targets and to predict the volume of tissue activated [37,
68, 69].

2.1.1.4 Spinal cord stimulation

Another relevant and promising area of application is spinal cord stimu-
lation (SCS), in particular, for the treatment of chronic neuropathic and
ischemic pain, and for rehabilitation and locomotion restoration for patients
with spinal cord injuries. The anatomy of the spinal cord can be seen in
Figure 2.4. It is composed of white and gray matter that transmit neural
signals to and from the brain, encode reflexes and motion patterns, and
implement relatively simple circuits. The butterfly shape that can be seen on
cross-sectional images consists of grey matter and the rest is white matter
(rich in spatially organized axons). Typical targets for pain treatment are
specific dermatomal zones in the dorsal column (see Figure 2.5). These are
populated with different fibers associated with different somatosensory
sensations. The spinal cord is divided into segments and roots which branch
off from the spinal cord and form the different branches of the peripheral
nervous system.

Initial theories of spinal cord stimulation (SCS) come from the gate control
theory [70] which proposes that pain sensation modulation relates to the
recruitment of specific fibers with differing diameters. Recruitment of large
diameter sensory fibers (A-beta afferents), which induce a (non-painful)
prickling sensation known as paresthesia, can override feelings of pain
by inhibiting nociceptive small diameter fibers. While this initial theory
has since been substantially expanded and revised to account for different
neuromodulation effects, it has served as the basis of epidural and trans-
cutaneous stimulation of the dorsal column for neuropathic pain therapy.
Feelings of paresthesia associated with stimulation of different subregions
of the dorsal column have served for topographical mapping for pain relief
and sensation.

Initial work in SCS was guided mostly by empirical observations of
effective and ineffective stimulation areas and pulse waveforms. Suitable
computational models enable more systematic and extensive studies. Pulse
waveforms (repetition frequencies: 40–100 Hz) based on empirical knowl-
edge and computational models are employed to achieve appropriate target
specificity and selectivity. Targets are axons in the dorsal column, and acti-
vation of axons in the dorsal roots are avoided [71]. Stimulation is typically
done epidurally; however, transcutaneous spinal cord stimulation is also
being investigated as a non-invasive alternative. Treatments are not always
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Figure 2.4: Schematic representation of the CNS, with a focus on spinal cord
structure. (Figure adapted from [36])
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Figure 2.5: Schematic representation of the spinal-cord and its roots, with differ-
ent sub-structures. (Figure adapted from [36])

effective, and tailor made computational models have the potential to ex-
plain and improve this situation. Treatment has been successfully applied to
different neuropathic and nociceptive conditions such as failed back surgery
syndrome (FBSS) and complex regional pain syndrome (CRPS). More than
half of the patients with chronic pain conditions have reported significant
levels of pain reduction with this kind of treatment [72]. Typical electric
epidural stimulation (EES) treatments involve patients undergoing initial
neuromodulation trials with external electrodes before a surgical paddle
lead is implanted via laminotomy. High frequency (HF-SCS) and burst SCS
are two sample stimulation modalities that employ subthreshold currents
in an attempt to avoid the unpleasantness of paresthesia while alleviating
pain.

Spinal cord stimulation has also been shown to evoke motor responses
by activating proprioceptive circuits, which in turn activate motor neurons
(i.e., lower-limb antagonists). As such, its use in motor rehabilitation has
been investigated, in particular for people with spinal cord injury. Different
spatiotemporal epidural stimulation patterns in the lumbosacral spinal cord
below the injury site can be used to induce rhythmic patterns of locomotion.
Coupled with physical therapy and extensive training, preserved (but
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functionally silent) spinal circuits in paralyzed patients can reorganize.
This allows for the possibility of voluntary motion, even in the absence
of external electric stimulation. Motor responses can then be measured by
surface electromyography (EMG) which correlates with muscle movement
strength.

Complex stimulation patterns informed by computational models were
used by [9] to ease voluntary locomotion in three patients with full paralysis.
Patients participated in 100–278 sessions of rehabilitation over a period of 5–
21 months. Encouragingly, the stimulator allowed for real time coordinated
stepping movements and even voluntary action. Other research groups,
like [73] and [74], have experimented with continuous direct EES to induce
locomotion. Continuous EES, however, has been shown to interfere with
proprioceptive information on the leg’s position, an effect mitigated using
spatiotemporal EES patterns [74].

In both pain relief and locomotion rehabilitation, pulsed waveforms are a
critical component that needs to be fully understood for effective treatments.
Parameters such as pulse frequency, duty cycle, intensity, and waveform
can be utilized to elicit different effects, such as selective fiber recruitment
and zone targeting. They must also be taken into consideration for safety
reasons; injected charge per second should be limited and pulses should
be followed by corresponding pulses with opposite sign to prevent any
unwanted effects from charge buildup. Computational models involving
patient-specific anatomies populated with different neuron fiber types are a
valuable tool to model the impact of these parameters, allowing researchers
to identify stimulation thresholds and selectivity, charge injection, etc.

2.1.1.5 Transcranial magnetic stimulation

Transcranial magnetic stimulation (TMS) is a neuromodulation modality
that has been effective in combating clinical depression [75–79]. The effects
of TMS resemble those of DCS. The electric fields are induced by a time
varying magnetic field from a alternating current driven circuit or figure-
eight coil positioned near the scalp. Increasing stimulus amplitudes result in
the activation of a greater volume of tissue, and also affects the distribution
of neuron subtypes that are recruited. Figure-eight coils are used because
they create stronger, more focal fields, but still stimulate large sections of
the cortex [80]. There are multiple stimulation waveforms and protocols
for TMS, the most common being monopolar, bipolar and half sine, and
more are being actively explored. Repetitive TMS (rTMS) is applied at fixed
stimulation frequencies [81]. Typical observed effects at < 1 Hz result in
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transient inhibition of cortical activity. Above 1 Hz, increased excitability
has been observed [82]. The involved mechanisms remain unclear. Long-
term depression and potentiation effects have been proposed as candidate
mechanisms, potentiating or depressing synapses, dynamically changing
neuron excitation levels. However, inter-patient variability is large, and
occasionally even inverse responses (excitation when inhibition is expected)
are observed [83, 84]. Personalized computational approaches could help
understand and mitigate this situation.

Other TMS modalities have been proposed that change the pulse wave
forms and / or operate in the subthreshold region. Low intensity mag-
netic stimulation (LFMS), first discovered through chance observations of
MRI scanning improving subjects’ moods [85], was then proposed as a
therapeutic intervention for depression and anxiety. Transcranial pulsed
electromagnetic fields (T-PEMF) apply very small alternating magnetic
fields with different waveforms to induce enhanced excitatory or decreased
inhibitory neurotransmission [86, 87].

2.1.1.6 Bioelectric medicine

Bioelectronic medicine [88] aims to replace conventional pharmacology-
based approaches with novel, localized neurostimulation technologies to
improve therapeutic precision. Its ultimate goal is to use neurostimulation
to modulate organ functions (e.g., cardiac activity [89], breathing [90], di-
gestion [91]), as well as to treat neurological disorders [92]), and to relieve
conditions by manipulation of brain-to-organ and organ-to-brain communi-
cation at the level of – primarily – the autonomic component of the PNS
(e.g., vagus nerve). This is achieved primarily through recently introduced
physics-based neuromodulation approaches such as smart, miniaturized,
implantable neural interface called ‘electroceuticals’ [93, 94], optogenet-
ics [95–98], and localized ultrasound application (e.g., ‘neural dust’) [99].
Electroceuticals, such as vagus nerve stimulators (VNS), typically consist of
pair- or multicontact electrodes in direct contact (e.g., wrapped) to a nerve
or complex nerve structure (e.g., neurovascular bundles) of interest that is
powered by internal batteries, connected to an IPG (implanted pulse gener-
ator), or remotely charged (via wireless power transfer [100, 101]). VNSs
were the first type of electroceuticals approved by the US Food and Drug
Administration (FDA) (for the treatment of drug-resistant depression [102]).

However, wide-spread success of bioelectronic medicine requires a wide
range of additional technical developments and improved knowledge in
the following key areas:
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• organ electrophysiology and neural mapping: for many organs –
such as the stomach [91] – neuroelectric characterization (neuronal
populations and their role in regulating organ function) is still missing

• organ innervation: connectome maps for different organs are incom-
plete

• characterization of the internal structure of complex nerves such as
the VN (anatomical structure, including fascicles, spatial functional
organisation, distribution of axonal populations – myelinatation and
fiber diameters) required for functional targeting [103, 104])

• mechanisms of interaction for various physical exposure conditions
(EM fields, ultrasound, temperature, etc.) to permit the development
of corresponding interface technology

• device development and optimization: this includes the development
of smart, precise, and controllable implantable technologies (from
their conception through all the prototyping stages until the clinical
trials [105]).

In 2017, the US National Institute of Health (NIH) began the SPARC
initiative (Stimulating Peripheral Activity to Relieve Conditions, https:
//commonfund.nih.gov/sparc) aimed at advancing research in these focus
areas in order to further develop bioelectronic medicine technologies in
the next decade. An important role is being played by multi-physics and
multi-scale in silico modelling that simulates the interactions between EM
fields, ultrasound, or heat and the neuroelectric activity of neurons and
nerves. Hybrid physico-(electro)physiological simulations involving de-
tailed geometrical representations of neuroelectric interfaces, image-based
models of nerves (including features, such as a multi-fascicular structure,
the presence of perineurium and epineurium, and dielectric heterogeneity
and anisotropy), and realistic anatomical human or animal phantoms per-
mit quantitative predictions of the outcome of electroceuticals interventions.
This approach is currently employed in the following areas: (i) for the de-
sign and optimization of electroceuticals, (ii) to support translational clinical
studies, and (iii) for treatment planning and optimization. Experimentally
validated in silico models of neurostimulation are used to investigate fac-
tors such as the impact of electrode geometry, pulse waveforms, and the
presence / absence of foreign body response. In silico models have also been
used to interpret failures of clinical studies [106] and to define guidelines
for the selection of stimulation parameters for treatment [107]. Closed-loop

https://commonfund.nih.gov/sparc
https://commonfund.nih.gov/sparc
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technologies that combine adaptive stimulation with the recording of bio-
electric activity (e.g., measurable as compound action potentials) could
permit further advances in treatment precision and personalization. From
a modelling point-of-view, this also requires the prediction of neural-ac-
tivity-induced extracellular fields at distant locations and the extraction of
activity / state-related information from such measurable signals.

2.1.1.7 Neuroprosthetics

Neuroprosthetic devices aim to restore lost body functions such as motility,
vision, or tactile sensations [108]. SCS to restore locomotion, nervous-sys-
tem-interfaced robotic arms or legs (bidirectional interfacing can be used
to relay sensor information from prosthetic devices to the CNS and to
enable CNS control of prosthesis motion), as well as cochlear and vision
implants are examples of such technologies. Neuroprostetic devices require
selective stimulation of specific functional sub-units of the nervous system
within anatomical structures (e.g., spinal roots) through selective stimula-
tion / inhibition of corresponding fibers and neurons, which is achieved
through stimulation parameter, device placement, and device design opti-
mization. Typically, implants consist of multicontact electrode geometries
with the possibility of applying specific temporal stimulation patterns to
individual or groups of electrodes. SCS electrode arrays range from four
unidimensionally arranged electrodes to large arrays (such as the 32 con-
tact Pentalead stimulator from Abbott) and have mostly been designed
with pain therapy applications in mind. In current clinical practice, stim-
ulation settings are still optimized / defined iteratively, based on patient
response. In silico models can be used to achieve spatial selectivity (i.e., stim-
ulate / inhibit specific target regions in the nerve or spinal cord) and fiber
selectivity (i.e., target only large or small fibers) by optimization of pulse
shapes or multi-contact array steering parameters. In silico solutions, based
on hybrid EM neuronal simulations have repeatedly been shown to be cru-
cial for personalized precision medicine. In [9], image-based personalized
in silico models of spinal cord stimulation were used to optimize stimula-
tor placement and to dynamically adapt the treatment parameters. Both
the surgical intervention and the subsequent neurostimulation treatment
to restore lost motor function were performed on the basis of modelling
predictions.
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2.1.2 Acoustic neuromodulation

Acoustic neuromodulation achieves the modulation (activation, inhibition,
synchronization) of neurons through acoustic exposure. Acoustic sources
do not directly electrically excite neurons, as the waves are mechanical in
nature. The exact mechanisms underlying acoustic neuromodulation are
an active area of research. An increasing amount of experimental evidence
in mice, rats, monkeys, and even humans allows us to test mechanistic
hypotheses around acoustic neuromodulation and to generate computa-
tional models (discussed in Section 2.2.8) [10, 11, 109–115]. Whereas EM
neuromodulation is an established technique, acoustic neuromodulation
is still in its infancy, and applications have yet to be translated to clinical
settings. Acoustic neuromodulation already provides valuable advantages
over its EM counterpart in the form of noninvasive, targeted deep stimula-
tion. Non-invasive EM stimulation is not well localized and can only act at
short distances from the source (when compared to the size of the brain).
For deep and targeted stimulation, invasive surgery is necessary, and sub-
sequent target steering is very limited without further surgery. Ultrasound,
however, holds the promise of non-invasive stimulation at depth as the
mechanical waves can safely travel through tissues and focus at mm-sized
focal regions deep within tissues [116].

Acoustic waves are elastic in nature and encompass sound waves. They
have an associated speed, wavelength, and frequency. Ultrasonic waves
vibrate in the human non-audible regime (> 20 kHz). Unlike EM waves
that can propagate even in empty space, ultrasonic waves cannot exist in
vacuum as they are synchronized vibrations of the carrier medium (e.g., air
or human tissue) that rely on elastic forces in the medium. Longitudinal
waves are the most common mode of propagation. They are pressure waves,
exists in gases, liquids, and solids, and feature a displacement direction
that is aligned with the wave propagation direction. Shear waves feature
displacements that are orthogonal to the propagation direction, and are
restricted to solid media, as they rely on directional bonds. Other wave
modes include Rayleigh and Lamb waves that are restricted to surfaces and
interfaces.

Of particular importance for the modelling of FUS applications are ab-
sorption (primarily thermal losses; occasionally, other losses, such as scatter-
ing losses in heterogeneous materials, are also modelled as absorption) and
reflection / transmission / refraction [17]. Reflection and refraction occur at
locations where acoustic impedance (related to the product of acoustic ve-
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locity and density) varies. Mode conversion can also occur. It is challenging
to individually characterize different absorption mechanisms experimen-
tally, which is why absorption is typically described as a bulk property
(e.g., obtained through frequency-dependent fitting of experimental data).
Power deposition through absorption is often quantified as (time averaged
for harmonic exposure) acoustic intensity:

I =
p2

2Z
=

p2

2ρc

where I is measured in W/m2, p denotes pressure, Z acoustic impedance, ρ
density, and c is speed-of-sound in the media. This is also a safety-relevant
and a therapeutic effect-relevant quantity. Diffraction occurs at borders, but
is of limited relevance in soft tissue. The wave nature of acoustic waves
results in constructive and destructive interference phenomena, which are
crucial for FUS applications. At high intensities beyond the LIFUS-regime,
various non-linear effects become important.

Therapeutic ultrasound is typically generated using piezoelectric crystals
called transducers that convert alternating currents to oscillatory motion
and can take various shapes to help shape the wave. The transducers used
for focused ultrasound applications are typically cut from a spherical shell
of a given radius at a given aperture. Alternatively, they can be flat and
fitted with a curved acoustic lens with appropriate impedance to achieve
the desired focusing [117]. Multi-element transducers, such as the ExAb-
late 4000 system which has > 1000 elements with individually controllable
phases and amplitudes, can be used to achieve superior focusing and steer-
ing control [118, 119] (see Figure 2.6). Such devices necessitate numerical
optimization algorithms that can involve simulations for increased accu-
racy. A coupling medium, such as (degassed) water or gel, with acoustic
impedance similar to that of soft tissue is used to avoid impedance mis-
match and associated reflections. Bone has considerably higher acoustic
impedance and attenuation losses than soft tissues, resulting in acoustic
aberration, defocusing, focus shifting, undesired secondary hot-spots, and
low transmission efficiency [120]. Skull bone is highly heterogeneous and
is composed of a layer of porous or trabecular bone that is sandwiched
between two very dense layers of cortical bone.

Two other relevant FUS effects are cavitation [121] and the radiation
force [122]. Cavitation refers to the formation of gas bubbles, their oscillation
(stable cavitation), and their occasionally violent bursting / collapse (inertial
cavitation, which can cause tissue damage). Inertial cavitation is avoided by
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imposing limits on peak negative pressure. Proper determination of such
safety-relevant quantities in complex anatomical environments requires
adequate computational models. Cavitation will be discussed again in
Section 2.2.8 in the context of acoustic neuromodulation, as membrane-
sonophore-cavitation is one of the candidate mechanisms. At the boundary
between two media with different acoustic impedances there is a pressure
buildup that can cause steady-state stresses. This is known as the radiation
force, and has been measured to be several orders of magnitude smaller in
biological tissues than the pressure forces associated with the acoustic wave
itself. It is therefore mostly neglected, but could also be mechanistically
involved in acoustic neuromodulation.

2.1.2.1 Neuromodulation

Different forms of acoustic neuromodulation have been shown in vitro
and in vivo, for CNS and PNS stimulation, in species such as mice, frogs,
cats, monkeys, and humans [10, 11, 109–115]. Peripheral nerve stimulation
in humans showed an increase in thermal, heat, and pain sensation [123–
125]. This sensation was frequency dependent; however, the threshold
for sensation depended exclusively on intensity, indicating that acoustic
peripheral nerve stimulation is mechanical and not thermal in nature.

Changes in visual evoked potentials measured by EEG in the visual
cortex have been observed in cats subject to ultrasound stimulation of the
LGN and the optic tract [126]. Ultrasound was shown to produce reversible
modulation of brain activity. In the case of LGN stimulation, the response was
immediately measurable, whereas stimulation in the optic tract delayed
the response by around five minutes, suggesting a transient spreading of
the depolarization activity [127]. Complete and persistent recovery was
achieved. Large scale modulation of brain excitability was also observed
from electrocorticographic (ECoG) recordings in the exposed cortex of cats
and rabbits in the form of suppression of gamma and beta waves [128].
Several experiments also show the impact of US stimulation on nerves in
the CNS in anesthetized rats and rabbit [111, 129]. The level of anaesthetics
played a big impact in the neuron’s susceptibility. Degraded and improved
task performance were observed in monkeys and humans undergoing
different US stimulation protocols [12, 130].

Ultrasonic neuromodulation effects are exposure parameter dependent and
include: impaired conduction, elevated compound action potentials, re-
duced latencies, time-locked action potential generation, evoked potentials,
firing rate modulation, muscle activity, and reduction of epileptic activ-
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ity [11, 109, 113, 131, 132]. Typically, sinusoidal stimulation is applied
(continuous- (CW) or pulsed-wave (PW) stimulation are used). Timescales
for modulation are longer than the corresponding ones for electric stimu-
lation (tens to hundreds of milliseconds of high duty cycle stimulation at
250–650 kHz PW), suggesting mechanical effects at play. For pulsed exci-
tation, the duty cycle level is associated with a change from inhibition to
excitation of the neuron population. In vivo nerve stimulation was achieved
using medium to high ultrasound intensities at frequencies ranging between
0.5 and 3 MHz [133–135]. Short low intensity pulses were used to cause
neurons in mouse brain slice cultures to fire action potentials [136]. Low
intensity and high frequency (2 MHz) stimulation caused reversible conduc-
tion block in peripheral nerves [137]. For excitation, pulse wave-forms were
nearly continuous; for suppression, they were short and discontinuous.
These effects are reproducible, but there is a high degree of variability
between subjects, complicating translation into the clinic.

2.1.2.2 Therapeutic ultrasound

The main modalities for therapeutic focused ultrasound are high intensity
focused ultrasound (HIFU) and low intensity focused ultrasound (LIFU / LIFUS).
HIFU applies sharply focused ultrasonic waves with high pressures and
intensities (10–30 MPa) at varying frequencies (0.5–3.5 MHz). Intended ap-
plications focus mostly on ablation of malignant tissues, particularly in
oncology [138]. LIFU applications (e.g., for neuromodulation) use pres-
sure values of a few MPa (or even lower) at frequencies typically between
200 kHz and 2 MHz. Other applications of FUS include blood brain barrier
opening, sonoporation, and thrombolysis.

HIFU is a procedure in which high intensities are used to ablate tissue
and induce cell death, while avoiding damage to surrounding tissues [139].
This has been successfully applied in the treatment of essential tremors, in
Parkinson’s disease, in certain movement disorders, and in neuro-oncology.
At the moment, improvements are modest when compared to more es-
tablished alternatives [140], and HIFU is mostly applied to avoid invasive
treatments, or when alternatives are not viable. Clinical acceptance has been
achieved for HIFU treatment of prostate cancer, uterine fibroids, and pain
palliation. Neuro-oncological applications involve inducing temperatures
higher than 55°C in brain neoplasms. Epilepsy can be treated by ablation
of the epileptogenic zone or, at lower intensities, by disturbing brain net-
works [141]. Continuous wave forms are typically used and temperature
increases are monitored by MRI or US thermometry (e.g., making use of the
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temperature-dependence of the proton resonance frequency) [142]. LIFU
applications typically involve pulsed wave-forms

2.1.2.3 Transcranial FUS

Transcranial FUS (tcFUS) can ideally achieve focusing precision in the
order of 2 mm [143]. Transcranial targeting and stimulation present an
additional level of challenge over other FUS applications, as the thick
skull is highly heterogeneous and absorbs and scatters waves. Focused
waves are aberrated and attenuated which affects treatment efficacy [120].
Consequently, multi-element transducers are sometimes utilized, such as
the ExAblate with individually controllable amplitudes and phases [119].
Computational approaches, such as the virtual source method, can be
used to compensate for the phase aberrations induced by the skull [144].
This electronic phase correction algorithm uses imaging information on
skull inhomogeneity to build a computational model of the clinical setup
and the patient’s anatomy [145]. A point source is placed at the intended
target location and the outwards wave propagation through the modelled
anatomy is simulated. The resulting steady-state wave amplitude and phase
is measured at the location of each of the transducer elements. By applying
the conjugated signal during treatment administration, phase delays and
aberration can be compensated, resulting in superior focusing and targeting.
Proper skull modelling is highly dependent on the accurate representation
of the skull’s acoustic property distribution. However, simulations that
do not consider individual variability and skull heterogeneity are not
sufficiently accurate for that purpose. CT imaging can be used to estimate
bone density. Works by [146] and [147] have established linear and non-
linear mapping functions relating CT image data to the different acoustic
properties. However, it is unclear how much these mapping functions
depend on imaging parameters, age, or inter-species differences.

When applying transcranial FUS, special safety considerations must be
taken to account for skull surface heating, blood vessel proximity to the
stimulation site, and inertial cavitation [120]. Cavitation can cause blood
vessels to rupture, resulting in hemorrhage. If the intended application
involves thermal ablation, blood vessels also act as local heat sinks which
cool the tissue and might necessitate unsafe levels of energy deposition to
achieve the desired temperature increase [148].

Treatment efficacy for transcranial ultrasound is heavily influenced by
the skull transmission [120]. Skull thickness, incident beam angle, standing
waves, and the level of bone heterogeneity have an important impact on
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transmission. The skull density ratio (SDR) between cortical and trabecular
bone is typically measured using computed tomography (CT). Patients
with SDR above 0.4 are typically not eligible for treatment. Properly vali-
dated computational skull models and efficient focusing algorithms are a
necessary step in broadening the applicability of transcranial FUS.

Figure 2.6: Simulation of tcFUS acoustic propagation from an ExAblate 4000
transducer model. (Figure adapted from [17])

2.2 computational modelling

This section gives an overview of the relevant computational models for the
applications discussed of EM and acoustic neuromodulation. We begin by
first giving a basic overview of EM, EM-neuro, acoustic, and acoustic-neuro
models and how they can be solved with numerical methods. We continue
by discussing the most relevant methodologies for the different applications,
the latest advances and limitations, with a special interest in the topics that
are addressed in this thesis.

2.2.1 Why computational modelling?

Computational models are valuable tools to improve the effectiveness
of clinical applications. They can help with device design, positioning,



28 background

operation, and targeting to improve treatment efficacy. By placing clinical
treatments in a mathematical and quantifiable, validated framework, it is
possible to gain mechanistic insight and to form and test varying hypothesis
where direct or indirect observation of certain relevant quantities are not
feasible. As therapies become more complex and refined, the parameter
space of stimulation configurations becomes too large to explore manually.
Computational methods and algorithms are better suited to explore this
space and find optimal patient-specific parameters. Coupled with real
time measurements of biological signals, adaptive (closed-loop) control of
treatments becomes possible.

Before the advent of computational models for virtual treatment explo-
ration, stimulation protocols were based on empirical evidence based on
patient reports and indirect measures of treatment effectiveness. Heuristics
were constructed to inform treatments; however, there was little in the ways
of tools to understand why certain treatments would not work on certain
patients. Nonetheless, extensive experimental work on the subject has been
recorded. The growth of computational resources, improvements in imaging
modalities and mathematical frameworks explaining observed phenomena
has now made it possible to work in virtual environments and consolidate
the empirical data into models. Imaging modalities like MRI and CT can
be used to construct a model of a patient’s anatomy and to inform critical
clinical considerations. Improvements in resolution and derived imaging
modalities can even be used to visualize and quantify brain connectivity
maps and small relevant brain structures. Computational models can be
used to assess the activated neural tissue volume and which specific cells
are being recruited, and parameters of stimulation protocols can be further
tuned and optimized based on needs and real-time treatment feed-back.

Computational models have been successfully applied in a variety of
therapeutic applications and have led to key insights and novel tools,
resulting in improved safety, understanding, and treatment of neurological
disorders. They have been applied successfully to assess the activated
brain region in DBS, to see which neuron fibers are preferentially recruited
within each tissue and which networks are activated. The impact of pulse
waveforms is an active area of research used for safety and to selectively
recruit specific neuron fibers. In the case of spinal cord injury rehabilitation,
different motor neurons need to be recruited from the spinal cord in highly
specific temporal pattern to initiate walking motions. They have been
successfully used for improved SCS targeting and selectivity in patients
with chronic pain. Safety standards employ computational modelling when
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certain safety-relevant quantities, such as charge injection, cannot be directly
measured and must be estimated.

It is important, before translating any of these models to the clinical
setting, that they are constrained and validated with physiological data and
that their context-of-use and limitations are fully understood.

2.2.2 EM simulations for neuromodulation

Electromagnetic fields, their propagation and tissue interaction, are de-
scribed by Maxwell’s equations.

∇ · E =
ρ

ε0

∇ · B = 0

∇× B = µ0J + µ0ε0
∂E
∂t

∇× E = −∂B
∂t

where E is the electric E-field, B the magnetic B-field, ε0 and µ0 are the
permittivity and permeability of free space, ρ is the charge density, and J is
the current density. These equations are valid on the microscopic level in
vacuum. On a macroscopic, averaged level, dielectric materials and their
interactions with fields are better handled by introducing auxiliary fields
(constitutive relations):

D = εE

B = µH

J = σE + J0

where ε := ε0εr and µ := µ0µr and εr and µr are the relative permittivity
and permeability of the medium. The third equation is Ohm’s law where σ
is the conductivity of the medium and J0 is an external current source. The
macroscopic Maxwell equations read:

∇ ·D = ρ

∇ · B = 0

∇×H = J +
∂D
∂t

∇× E = −∂B
∂t
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Given a source and a simple geometry and medium, the resulting E-
and B-fields can be derived analytically. However, an analytical approach
quickly fails when more complex geometries and mediums are involved, as
is the case for setups involving the highly heterogeneous and irregularly
shaped human body. In such cases, a numerical approach is useful. The
spatio-temporal domain and equations are discretized into elements (voxels,
tetrahedrons, etc.) and nodes. Each element / node has associated equations
(derived from Maxwell’s equations) with the corresponding source, electric,
and magnetic terms. These equations are coupled to those of neighboring
elements / nodes, giving rise to a large set of coupled equations. The dis-
cretization resolution affects the accuracy of the numerical approximation.
Computational and algorithmic advances allow for modern machines and
workstations to handle such tasks efficiently in reasonable time.

2.2.3 Finite Difference Time Domain method

A frequently approach approach to solve Maxwell’s equations is the Finite
Difference Time Domain (FDTD) method. Maxwell’s equations are dis-
cretized and the spatial and temporal derivatives are approximated using
finite differences:

∂F[i, j, k, n]
∂x

=
Fn[i + 1/2, j, k]− Fn[i− 1/2, j, k]

∆x
∂F[i, j, k, n]

∂t
=

Fn+1/2[i, j, k]− Fn−1/2[i, j, k]
∆t

where i, j, k are spatial variables indexed as cell integer values and n refers
to the time step. E- and B-fields are typically discretized on spatially and
temporally staggered grids (Yee discretization [149], hence the half-steps in
the equation above) to reduce discretization errors. Finite differences are
applied to Maxwell’s equations in the following form:

∇×H =
∂

∂t
εE + σE

∇× E = − ∂

∂t
µH− σH

In FDTD, typically uniform or adaptive rectilinear grids are used for
spatial discretization. Adaptive grids allow to increase the resolution near
sources, sharp features, and other accuracy relevant regions. Domain trun-
cation necessitates boundary conditions (such as the Perfectly Matched
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Layer (PML) boundary condition) that absorb outgoing waves, to prevent
reflections reentering the computational domain.

For harmonic (sinusoidal) excitation, results are typically analyzed in the
frequency domain (once the numerical solution has converged and becomes
periodic). Systems with a high energy input and slow energy dissipation
may take a long time before they converge.

On uniform rectilinear meshes, it can be demonstrated that stability is
ascertained, provided that the time-step ∆t remains below a discretization-
and material properties-dependent limit (CFL criterion):

∆t ≤ 1

c
√

1
(∆x)2 +

1
(∆y)2 +

1
(∆z)2

where c and ∆ are the speed-of-sound and dimensions of a given cell.
Heuristic experience has shown, that the same criterion is usually also
sufficient when applying an adaptive rectilinear discretization.

2.2.4 Low frequency approximations

The FDTD formulation solves the full wave equations. This can be computa-
tionally demanding – particularly when structures have characteristic length
scales well below the wavelength, resulting in a large number of required
time-steps (to satisfy the CFL criterion). Under some conditions, Maxwell’s
equations can be further simplified by neglecting negligible terms to de-
couple the equations. For exclusively mono-frequential harmonic sources,
temporal derivations become trivial and the system is further simplified.
For that purpose, it is useful to consider the electric and magnetic quantities
as complex phasors (the real part corresponds to the actual fields):

∇× E = −jωB

∇×H = jωD + J

∇ ·D = ρ

∇ · B = 0

where j =
√
−1 and ω is angular frequency.

These four equations can be further simplified as two equations by
introducing auxiliary potentials. As per the Helmholtz’s decomposition,
fields can be decomposed as a sum of a rotational and an irrotational
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component. As the divergence of the B-field is always zero, a potential A
can be constructed, such that:

B = ∇×A.

This is known as the vector potential of the magnetic field. Using this new
potential one obtains:

∇× (E + jωA) = 0

Similarly, in the absence of internal sources a divergence-free scalar potential
φ can be constructed, such that

E + jωA = −∇φ.

(the sign is a matter of convention). Maxwell’s equations can then be
rewritten as:

∇× 1
µ
∇×A = ω2ε̃A− jωε̃∇φ + J0

∇ · ε̃∇φ = −jω∇ · ε̃A

ε̃ := εrε0 +
σ

jω

where all constitutive equations are grouped into a single complex permit-
tivity ε̃.

Subsequently, quasistatic approximation are applied to further simplify
the system. If the characteristic temporal and spatial scales of the problem
are sufficiently small compared to the temporal and spatial scales of the
wave propagation, selected terms become negligible. As an example, in
the full wave equation, a changing E-field E0 induces a changing B-field
B0 which induces another E-field E1 and and so forth. In the quasistatic
approximation, B1 and E0 are ignored as they are orders of magnitude
smaller then the principal terms. Under this approximation, Maxwell’s
equation reduces to

∇× 1
µ
∇×A = J0

∇ · ε̃∇φ = −jω∇ · ε̃A

The resulting Poisson equation-like problems can be efficiently solved
using the finite element method (FEM), and in homogeneous cases using
Fast Fourier Solvers. The relevant fields are readily obtained from the
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scalar and vector potentials. Dedicated solvers exist for problems with and
without source currents J and for cases where Ohmic terms dominate the
complex permittivity ε̃:

Electro Quasistatic ∇ · ε̃∇φ = 0

Electro Static ∇ · ε∇φ = 0 (σ� ωε)

Ohmic Quasistatic ∇ · σ∇φ = 0 (σ� ωε)

Magneto Quasistatic ∇ · ε̃∇φ = −jω∇ · ε̃A0

M-QS: Displacement ∇ · ε∇φ = −jω∇ · εA0 (σ� ωε)

M-QS: Ohmic ∇ · σ∇φ = −jω∇ · σA0 (σ� ωε)

Sim4Life includes efficient quasistatic FEM solvers for structured and un-
structured discretizations.

FEM solvers are used to model the electromagnetic fields in the highly
heterogeneous human body. In white-matter, nerves, and other fibrous
tissues, such as muscle, it can be important to consider anisotropy, as the
longitudinal and transversal conductivities differ greatly. Imaging modali-
ties, such as DTI [150–152], can be used to obtain anisotropy maps. Dielectric
tissue properties have been compiled in databases such as [153–155].

Frequent boundary conditions in quasistatic FEM problems are Dirichlet
and Neumann boundary conditions. Dirichlet boundary conditions set a
fixed potential (voltage) value at a given boundary. Neumann boundary are
typically applied to fix the normal component of the current density (flux
leaving / entering the domain) or E-field. A special variant of the Neumann
boundary condition is the insulating boundary condition (no flux leaving
the domain).

2.2.5 Electrophysiological neuromodulation

Computational models of neurons are frequently based on the work of [156,
157] who modelled the temporal evolution of transmembrane potential as
a result of transmembrane currents from leakage channels, active chan-
nels and capacitive currents, using coupled first-order non-linear ordinary
differential equations. The conductance of the active channels depend on
rate constants that evolve as a function of the transmembrane voltage. Spa-
tially extended variants can be used to model fibers and action potential
propagation, complex neuron morphologies (e.g., featuring dendritic struc-
tures), and neural networks with synaptic contacts. These models can also
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be represented or implemented as non-linear electric circuits. Commonly
employed fiber models include the Sweeney [158] and MRG [159] models.

Numerical integration methods, such as Euler and Runge-Kutta methods,
can be used to solve the coupled differential equations. The most commonly
employed software for that purpose is NEURON [160], which also supports
high-performance computing applications. Large repositories of neuron
models, such as the ModelDB [161], exist.

Work by [162] introduced coupling to an extracellular potential distribu-
tion (see Figure 2.7). Extracellular voltage compartments are added at each
of the nodes of the discretized neuron model and an external potentials is
applied. This can be used to study electromagnetic neurostimulation.

Figure 2.7: Circuit representation of Hodgkin-Huxley-like neuronal dynamics
model.

2.2.6 Applications

Computational tools have proven valuable for treatments such as DBS and
SCS. Below are brief reviews of the current state-of-the-art in computational
modelling for these applications, their limitations, and current needs.
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dbs In the context of DBS, improvements in neuro-imaging have enabled
more precise electrode implantation, while improvements in computational
modelling have enabled superior targeting and control. Multimodal MRI
imaging techniques (e.g., T1- / T2-weighted, DTI) are employed to directly
visualize and identify brain regions and to establish brain maps and atlases,
instead of having to rely on indirect biomarkers. Imaging enables patient-
specific fiber tractography, and image-based registration of detailed atlases
further facilitates the identification of targets and regions [163–166].

Two types of models are applied: network models to assess the impact of
DBS on brain activity and rhythms, and personalized hybrid EM-neuronal
modelling for the evaluation of the volume of tissue activation (VTA).

Downstream thalamic activity following DBS in patients with Parkinson’s
disease (PD) was modelled by [167]. The model predicted the varying
firing rates of the STN, GPe, GPi, and the thalamus under healthy and PD
conditions. Models by [168] looked at the impact of GPi firing patterns
on thalamic outputs. Neural models were built from fits of data obtained
through in vivo micro-electrode recordings in primates. Work by [168]
extended the model from [167] by including additional signaling pathways
and networks. Work by [169] explored the frequency dependence of STN
DBS and found a mixture of excitatory and inhibitory responses from the
basal ganglia.

Personalized DBS models featuring fiber tracts and atlas-based brain-
region parcellation, are used to calculate the VTA for specific implant
geometries and pulse waveforms and to assess axonal activation in the elec-
trode proximity [170, 171]. Different axons in different regions get recruited
with increasing pulse strength and duration. Modelling has guided clini-
cal application by superimposing simulation results with diffusion tensor
imaging, brain atlases and post operative images [171]. Such computational
models are also used for the design of new multi-contact implants and for
pulse waveform optimization [172, 173]. Efficient algorithms are critical
to achieve real-time adaptive control based on measurable neural activity
signals, such as local field potentials (LFP). Another example is the use of
computational modelling to enable current steering [174].

These modelling approaches suffer from some important limitations: (i)
Hybrid modelling focuses on impact of DBS on STN neurons, GPI fibers,
cortico-spinal fiber tracts (CST) to assess safety issues related to unwanted
side effect stimulation. However, conventional DTI cannot reliably extract
fiber trajectories (e.g., due to crossing fibers in low-anisotropy regions).
(ii) Electrophysiological models of human STN neurons are unavailable
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(rat models are used), while fiber tracts are modelled as generic mam-
malian myelinated fibers (MRG), and other electrically excitable cells are
ignored. The impact of these issues on computational modelling predic-
tions in humans need to be carefully evaluated. (iii) The applicability of
these models to newer DBS approaches that involve higher frequencies or
acoustic stimulation is unclear. (iv) Network and feedback effects are hardly
considered [168]. (v) The same is true for interface effects and foreign-body
response.

In spite of these limitations, DBS computational models are essential
tools to diagnose disease states, evaluate surgical targets, predict networks
recruitment and activity, and optimize treatment protocols.

scs Several computational models of the spinal cord, featuring simplified,
antropomorphic or image-based and personalized spinal cord structures
combined with electrophysiological models of fibers and neurons, have
been built to enhance understanding and identify effective therapeutic
strategies to treat chronic pain disorders and restore locomotion to para-
plegics (through the activation of large myelinated proprioceptive fibers
in spinal roots, which in turn activate complex motion patterns encoded
in the spinal cord [8, 175–178] – motor neurons in other regions in the
spinal cord are only stimulated at much higher exposure [179]). Hybrid
EM-neuronal simulations have been used to investigate fiber recruitment
and achieve the dynamic spatial stimulation steering required for natural
gait. While original stimulation protocols were devised from empirical map-
ping experiments in the mid-line spinal cord [180], hybrid EM-neuronal
models have permitted a deeper understanding of the mechanisms at play
and improved stimulation control. Computational studies [8, 176] enable in
silico optimization of electrode placement and stimulation protocols for the
selective recruitment of individual posterior roots using multi-contact elec-
trode arrays – a precondition for the restoration of the complex locomotion
patterns involved in natural gait.

The first 2D volume conductor spinal cord model model was generated
by [181]. A 3D geometrically realistic model of the lumbo-sacral spinal
cord with embedded epidural electrodes was established by [176]. It distin-
guished gray matter, white matter, CSF, epidural fat, the vertebral column,
and the dura, and includes realistically positioned dorsal and ventral root
fibers. The model was used to investigate fiber recruitment and studied
the impact of fiber curvature and conductivity discontinuities on stimu-
lation predictions. Work by [8] built a detailed EM-electrophysiological
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computational model of a rat spinal cord to study intrafascicular EES in
rodents. Work bu [182] built a full human thoracic spinal cord model and
compared intradural and epidural stimulation modalities for chronic pain.
More recent work by [183] was centered on investigating kHz-frequency
epidural stimulation for the treatment of chronic back pain.

Recent efforts are focused on the development of image-based, personal-
ized spinal cord anatomies to enable patient specific, precise multi-electrode
placement and optimized multipolar stimulation protocols. These models
are functionalized with realistic neuronal trajectories, occasionally even neu-
ral circuits, and consider image-based tissue anisotropy and inhomogeneity
information (unpublished work with our collaborators).

2.2.7 Acoustic exposure

Ultrasonic waves are represented via the wave equation. The full wave
equations are based on stress-strain relationships and consider vectorial
displacements in a typically tensorial equation. However, when shear-waves
can be neglected (e.g., in primarily gaseous, liquid, and soft environments)
this equations can be reduced to the scalar pressure wave equation, which
can be solved with much reduced computational effort (in terms of memory
and computational time requirements). While this is a strong and prob-
lematic simplification, it is frequently required to handle the complexity
of therapeutic exposure scenarios with realistic computational resources.
However, users must be aware that shear waves and mode conversions
are not represented in the pressure-wave approximation. The commonly
employed linear acoustic pressure wave equation reads:

ρ∇1
ρ
∇p− 1

c2
∂2 p
∂t2 −

ã
c2

∂p
∂t

= 0

ã = 2a

√
a2c4

ω2 + c2

where ρ is density, c is speed-of-sound, α is attenuation, p is pressure, t is
time, and ω is angular frequency.

When non-linearity cannot be neglected, the more general Westervelt-
Lighthill equation [184] can be employed:

ρ∇1
ρ
∇p− 1

c2
0

∂2 p
∂t2 +

δ

c4
0

∂3 p
∂t3 +

β

2ρ0c4
0

∂2 p2

∂t2 = 0

where δ is diffusivity, β is the nonlinearity coefficient.
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It is important to properly consider interfaces using the term:

ρ∇1
ρ
∇p

rather than the commonly implemented simplified version ∇2 p.
The full wave equation in highly heterogeneous and irregular geometries

can again be efficiently solved using the FDTD method (as described for EM
in Section 2.2.3) and similar considerations, e.g., concerning stability and ab-
sorbing boundary conditions, apply. Other commonly employed numerical
methods include the angular spectrum method (suitable when a principal
propagation direction exists) and the pseudospectral method. Rayleigh-
Sommerfeld integral methods are frequently employed in homogeneous
environments and can occasionally produce analytical results.

2.2.8 Acoustic stimulation for neuromodulation

The Hodgkin-Huxley [156] model for neurons is based on purely electric
phenomena and can not explain mechanical wave stimulation, such as
US induced neurostimulation. Thermal effects cannot sufficiently explain
acoustic stimulation, as was shown by [135, 185, 186]. Several mechanistic
models with differing levels of biological plausibility and quantitative
agreement with experimental data have been proposed in the recent years.

Several models have been suggested in an attempt to explain this. These
try to couple mechanical and electrical actions in the cell’s membranes,
motivated by the different observed mechanical effects in axons during
action potential propagation. On initiation of an action potential, reversible
heat, length contraction, and thickness changes are observed [187–189]. The
normal force exerted in phase with the action potential propagation has
been measured to be around 1 nm; higher than what can be explained by
physical changes in the ion channels.

The first such model is the rather exotic soliton model which proposes that
action potentials travel as pressure soliton waves due to phase transitions
of the membrane lipids between a liquid and gaseous state [190]. The term
soliton refers to a solitary self-reinforcing wave that, due to non-linear
dynamics of the medium and dispersion, propagates while maintaining
its shape and intensity. Changes in density result in changes in the local
field potential (via large electric dipole moments in the lipid molecules)
which induces a piezoelectric wave effect – polarization of charges due
to compression and expansion. While such an approach naturally lends
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itself to incorporate electro-mechanical coupling, it does not account for the
known importance of ion-channels and considering the important body of
evidence supporting the common model of action potential propagation,
the soliton model appears to be highly questionable.

Another theory to explain acoustic neuromodulation is the flexoelec-
tricity hypothesis. In this theory, membrane curvature changes affect the
transmembrane potential, resulting in action potentials that propagate as
flexoelectric wave [191, 192]. In this theory, ion channels play a fundamental
role (while phase-changes in the lipid layer do not). There is no mathemati-
cal formulation of this model that predicts action potential generation and
propagation.

The two most likely mechanistic theories are the membrane cavitation
model (the Neuronal Intramembrane Cavitation Excitation (NICE) model
from [193]; see Figure 2.8) and the acoustic radiation force [194] model.

Figure 2.8: Schematic representation of the sonophore cavitation (NICE) model
of acoustic neuromodulation.

The NICE model [193] is promising, as it produces predictions which
are in good quantitative and qualitative agreement with experimental data.
Also, it has a mathematical framework that lends itself to implementation
and the formulation of testable hypotheses. It assumes that sonophores
(nanometer sized bubbles) in the double-lipid membrane start cavitating
under acoustic exposure (due to gas-transfer related to pressure changes,
see Chapter 9) and thereby cyclically affect the transmembrane capacitance,



40 background

which – due to the electric non-linearity of membrane channels – results in
a net-charge transfer that can in turn trigger action potentials. The typical
Hodgkin-Huxley like models are modified to account for the intramembrane
sonophore cavitation.

The electrical system is modelled by the following equations:

dV
dt

= − 1
CM

[V
dCM

dt
+ gNa (V − ENa) + gK (V − EK)

+gM (V − EK) + gL (V − EL)]

dn
dt

= αn(1− n)− βnn

dm
dt

= αm(1−m)− βmm

dh
dt

= αh(1− h)− βhh

dp
dt

=
p∞ − p

τp

where the transmembrane voltage V is a deflection dependent quantity
which can in turn affect capacitive displacement currents. The mechanical
coupling is modelled via the following equations:

d2Z
dt2 = − 3

2R

(
dZ
dt

)2
+

1
ρl R

[PG + PM + PEC + P0

+PAC + (PE) + PVS + PVL]

dng

dt
=

2SDa

ξ

(
Cg −

Pg

kH

)
where it is important to note that PE is a charge dependent quantity. Further
explanation of the terms and further accompanying equations are detailed
in [193].

By focusing on the evolution of membrane charge density and applying
cycle averaging and other mathematical techniques, a highly efficient and
physiologically interpretable variant of the NICE model was derived –
the multiScale Optimized Neuronal Intramembrane Cavitation (SONIC)
model [195].

Alternatively, stress-induced ion channels’ mechanosensitivity has also
been suggested as a possible biophysical mechanism by which mechanical
waves may induce neural activity. This theory is simple in nature, and



2.3 needs , limitations , and thesis motivation 41

supported by strong empirical evidence at the cellular level [196, 197]. How-
ever, it lacks universality, as it intrinsically depends on the heterogeneous
mechanosensivity of various types of ion channels expressed across ner-
vous systems. Moreover, the driving force responsible for the hypothesized
membrane stress has yet to be clarified. Acoustic radiation force has been
shown to play a significant role in neuromodulatory effects in in vitro and
ex vivo studies [194, 198], and therefore received strong support in the com-
munity. However, the high US frequencies used in these studies (> 10 MHz)
constrast with the low US frequencies used to trigger significant neuromod-
ulatory effects in vivo [10]. Consequently, a predictive mathematical model
based on this mechanical hypothesis has yet to be formulated.

2.3 needs , limitations , and thesis motivation

Based on the reviewed literature, the following needs and limitations of
hybrid EM / FUS-neuro modelling for therapeutic applications in CNS and
PNS neuromodulation were identified:

• Computational modelling of therapeutic applications typically focus
on determination of physical exposure. This is particularly true for
modelling in the context of treatment planning. However, physical
exposure metrics (such as field- or pressure-strength) are not always
strongly correlated with the physiological impact. It is important to
also model the resulting physiological impact – even if only to identify
a suitable exposure metric that can serve as safety and / or efficacy
estimator. Improved mechanistic insights resulting from hybrid mod-
elling have repeatedly revealed that previously considered exposure
quantities are not suitable. The presented thesis work systematically
employs hybrid physico-physiological modelling approaches.

• Computational modelling necessarily simplifies the represented real-
ity. However, the acceptability of the degree of simplification is rarely
investigated in the context of hybrid neuromodulation modelling.

– EM: The simulated dielectric models typically feature a small
number of distinguished tissues, a strongly simplified anatom-
ical geometry, and assume isotropic, homogeneous dielectric
properties throughout a given tissue. For example, in spinal cord
modelling the important anisotropy of neural tissue is frequently
not represented at all, or only considered in overly simplistic 2.5D
models, where longitudinal and transversal directions can easily
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be distinguished. Head models for transcranial EM stimulation
modelling usually only distinguish scalp, bone, cerebro-spinal
fluid, as well as white and grey brain matter. The insulating
impact of dura, the different skull layers, and the important con-
ductivity differences between skin, fat, and muscle in the scalp
are rarely considered. Spinal cord models neglect the crucial role
of spinal roots and rootlets, which have a highly patient-specific
geometry that crucially affects stimulation and stimulation se-
lectivity. In this thesis, work on generating more realistic and
detailed EM models (in terms of 3D anatomy and dielectric prop-
erty distributions) is performed and the importance of accurate
anisotropy representation is quantified.

– FUS: The difficulty of predicting the magnitude, focality, sec-
ondary hot-spots, and focus location in transcranial FUS ap-
plication, as well as the potentially valuable contribution that
computational modelling could make in this regard, have long
been recognized, and modelling is frequently performed. Never-
theless, the computational prediction of transcranial FUS remains
unreliable. This thesis systematically investigates the assumption
that the lack of reliability is due to oversimplified representation
of the sonication device and the skull heterogeneity.

– Neuro-electrophysiology: Neuron or network models of relevance
to the intended neuromodulation must be realistically embedded
in their anatomical environment to simulate meaningful expo-
sure conditions (not just intensity, but also its heterogeneous
distribution, especially when elongated axons are concerned).
This requires the establishing of complex neuro-functionalized
anatomical models that include representative fiber trajectories
and the dynamics of excitatory and inhibitory neurons in net-
works. Such neuro-functionalized models are exceedingly rare,
and need to be developed. A range of neuro-functionalized mod-
els for specialized purposes (e.g., retinal neuroprosthetics, SCS
for locomotion restoration, acoustic neuromodulation of brain
activity) are established and investigated in the presented thesis
work. It remains to be seen, if models of more general applicabil-
ity can be developed in the future, or if such models continue to
be application-specific.

• Verification, validation, sensitivity analysis, and uncertainty quantification:
When modelling is applied for therapeutic (e.g., treatment optimiza-
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tion) or regulatory (e.g., device safety and efficacy assessment) pur-
poses, a high degree of reliability is required. The modelling tools
must be verified (i.e., ascertaining that the intended model is correctly
implemented) and validated (i.e., ascertaining that the chosen model
accurately represents reality within its intended context of use), and
the factors which most strongly impact the modelling must be un-
derstood (sensitivity analysis), and hence must be highly controlled
and accurately modelled. The uncertainty associated with model
predictions must be quantified. For computational modelling of neu-
romodulation and the underlying (e.g., acoustic) exposure modelling,
little verification, validation, and uncertainty quantification has been
performed, and no systematic sensitivity analyses have been found in
literature, prior to this thesis’ work.

• Personalized treatment optimization: Large inter-subject variability is
characteristic of the neuromodulation field. Nevertheless, the use of
personalized modelling remains limited and tedious manual adjust-
ment over a long time period is frequently required to personalize
and optimize stimulation parameters. Placement of implants relies
on expert knowledge and is hardly guided by systematic physico-
physiological assessment. Furthermore, multipolar stimulation elec-
trode arrays promise more targeted stimulation – however, heuristic,
trial-based optimization is hardly possible, due to the large number
of involved stimulation and steering parameters. Hence, an important
aspect of the work in this thesis is the study of image-based personal-
ized model creation and the development of efficient, physiological
impact driven treatment optimization. That work also informed the
optimization of SCS implant design.

• Mechanistic understanding: Mechanistic understanding is not only re-
quired to gain understanding of the underlying principles of neuro-
modulation, but also to reliably assess treatment risk and to optimize
treatment efficacy. In this thesis, insights into the mechanisms behind
neuromodulation applications such as retinal neuroprosthetics, acous-
tic neuromodulation of brain activity, spinal-cord stimulation for the
restoration of locomotion to paraplegics are sought.

• Complexity of implementing hybrid modelling: The few groups that have
performed hybrid physico-neurophysiological modelling had to es-
tablish complicated pipelines involving a large number of indepen-
dently developed own and third-party tools for that purpose. An
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framework that integrates all steps facilitates usability, and allows
improvements / addition of components (e.g., addition of specialized
methods for anatomical model generation and neuro-functionalization
– as developed in the present work for SCS) to easily benefit the en-
tire pipeline. This thesis has pursued the integration of complete
workflows for the image-based modelling of EM- and LIFUS-neuro-
modulation.

These needs and limitations motivated and guided the work presented
in this thesis. Important progress on all of these points was achieved.
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M O D E L L I N G F R A M E W O R K

3.1 sim4life

3.1.1 Framework

Sim4Life is an advanced computational life sciences platform developed
by the IT’IS Foundation in collaboration with ZMT Zurich MedTech AG
(Zurich, Switzerland). It has been developed to enable multi-physics simu-
lations within complex anatomical environments and encompasses a range
of dynamic tissue and physiology models. The platform features detailed
presegmented anatomical models, such as the IT’IS Virtual Population
models [199], a medical image-segmentation framework for the creation of
patient-specific models, geometric (computer aided design – CAD) mod-
elling functionalities, high-performance computing-enabled physics solvers
(electromagnetism, acoustic, thermal, flow, etc.), integrated neuronal dy-
namics modelling, analysis and visualization functionalities, and a Python
scripting framework, as well as a range of specialized modules (e.g., for
implant safety assessment).

3.1.2 Quasistatic EM modelling

A range of quasistatic EM solvers have been developed that are optimized
for the simulation of low-frequency exposure of large, highly heterogeneous,
and geometrically irregular models, such as anatomical body models. These
solvers are implemented in C++ and high-performance computing-enabled
through message passing interface (MPI) parallelization. The PETSc [200]
library is used for preconditioning and solving.

Two families of solvers exist: solvers for (i) structured (rectilinear) meshes
and solvers for (ii) unstructured meshes. They can be further distinguished
according to the simplifications of Maxwell’s Equations that are employed to
facilitate simulations in the low frequency regime (for efficiency or stability
reasons). For the work in this thesis, the ‘Ohmic Current-Dominated Electro-
Quasistatic Solver’ is employed in its structured and unstructured variants.

45
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It solves the equation: ∇σ∇φ = 0 with Neumann or Dirichlet boundary
conditions, where φ is the electric potential and σ is the electric conductivity.

3.1.3 Acoustic modelling

Sim4Life provides a GPU-accelerated acoustic solver. It solves the linear
acoustic pressure wave equation (LAPWE) [17]:

ρ∇1
ρ
∇p− 1

c2
∂2 p
∂t2 −

ã
c2

∂p
∂t

= 0

ã = 2α

√
α2c4

ω2 + c2

where ρ is density, c is speed-of-sound, α is attenuation, p is pressure, t is
time, and ω is angular frequency. The solver implements a finite-differences
time-domain (FDTD) scheme, which is well suited to deal with complex
anatomical models.

3.1.4 Neural modelling

Sim4Life integrates the NEURON solver from [160] for the simulation of
compartmental neuron models. These can be defined through a Python
interface or through a hoc file. Ion channel dynamics can be inserted by
defining and precompiling corresponding functions and mechanisms, as
specified in mod files. Sim4Life facilitates the coupling of electric potentials
and fields with neuronal dynamics through the ‘extracellular potential’
mechanism of NEURON, to permit simulation of EM-induced neuromodu-
lation. Furthermore, Sim4Life provides a range of predefined fiber models,
allowing users to define spline-trajectories that are then automatically con-
verted into parameterized compartmental axon models (myelinated and
unmyelinated).

3.1.5 Acoustic neuromodulation

An efficient approach to model the impact of acoustic exposure on neural
activity, based on the membrane sonophore cavitation hypothesis [193],
has been co-developed by IT’IS [195]. It parameterizes the ion channel
dynamics to represent an ‘effective’ dynamics that depends on sonication
intensity and duty cycle. The cavitation mechanism hypothesis – i.e., the
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assumption that closed intramembrane compartments that oscillate due to
the periodic pressure variation and related gas transfer result in temporal
variations of the membrane capacitance, which in combination with the
nonlinearity of membrane electrophysiology leads to a net current – has
been found to be well suited in predicting neurostimulation and neural
inhibition for a certain range of acoustic intensities [10]. At high intensities,
radiation pressure appears to dominate. The effective channel dynamics
can be precomputed and stored as look-up tables, which are evaluated in
dedicated NEURON-mechanisms that are specified in mod-files.

3.2 extensions

A range of Sim4Life extensions were implemented within the framework of
this thesis:

• Neural tissues can display strong anisotropy (i.e., up to a factor 10
higher longitudinal than transversal electrical conductivity). There-
fore, the low-frequency EM simulation framework (pre-processing,
solving, post-processing, GUI) was extended to also handle tensorial
electrical conductivities ¯̄σ. This also affected the computation of de-
rived quantities (such as current density j = ¯̄σ · E from the electric
field E.

• Modelling of electrical conduction or acoustic properties heterogeneity,
can be crucial e.g., for transcranial sonication modelling (see Chap-
ter 8). For that purpose, support for heterogeneous material maps has
been added to Sim4Life. Initially, binning into a discrete number of
material classes (solver preprocessing) was implemented, which is
readily compatible with all the available postprocessing. However, to
support heterogeneous anisotropy maps that are required for the SCS
simulations (see Section 3.3), the Sim4Life low-frequency EM solver
framework was extended to also handle heterogeneous material prop-
erties.

• For the investigation of non-linear acoustic effects, frequency-mix-
ing / higher-harmonics formation, a solver for the Westervelt–Lighthill
Equation (WLE) has previously been implemented into Sim4Life at
IT’IS [17]. The WLE model’s dispersion and frequency mixing ex-
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tended the LAPWE equation through additional terms. The WLE
equation is reproduced below:

ρ∇1
ρ
∇p− 1

c2
∂2 p
∂t2 +

δ

c4
∂3 p
∂t3 +

β

2ρc4
∂2 p2

∂t2 = 0

where δ is the diffusivity of the medium and β is the nonlinear-
ity coefficient. The WLE solver implementation was suffering from
stability issues that could only be addressed using very small time-
steps. The formulation has been revised and both a modified stencil
and update-scheme were implemented, resulting in considerably im-
proved stability behavior. Analytical analysis was used to establish a
stability criterion for the time-step. A Fourier-like approach has been
implemented to convert the transient signal of any simulation period
into complex phasors at multiples of the carrier frequency.

• To achieve a performance level of the acoustic solver that permits
simulations with the required large number of degrees-of-freedom,
multi-GPU hardware accelerated parallelization was implemented
with a performance increase of two orders of magnitude.

• User-defined sources were implemented to enable the simulation of
transient, non-sinusoidal pressure-sources. The user can either specify
an analytical expression or provide a time-series for the source scaling.

• To make use of symmetries and thus reduce the computational do-
main, periodic and mirror boundary conditions were implemented in
the acoustic solver to complement the existing Perfectly Matched Lay-
ers (PML) boundary conditions. The different boundary conditions
can be flexibly combined.

• For the needs of the detailed and realistic SCS simulations performed
in the context of neuroprosthetics for paraplegics (see Section 3.3), a
powerful meshing tool for the discretization of complex anatomical
domains with thin features and layers (spinal roots, semi-insulating
membranes) and irregular shapes was developed by the Sim4Life
development team. Some minor contributions have been made to this
development as part of this thesis.

3.2.1 Verification of the heterogeneous anisotropy modelling

In order to verify the implementation of heterogeneous tissue properties
and the support for anisotropy in the quasi-static solver framework, the
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‘Method of Manufactured Solutions’ (MMS) was employed (published in
parts in [201]).

Solver features that require verification are: (i) the correct solving of
the underlying equation (∇ · ¯̄σ(x)∇φ(x) = 0, where ¯̄σ is the conductivity
tensor and φ is the electric potential from which the electric field is obtained
as E = −∇φ), (ii) the convergence to the precise solution with increas-
ing refinement and stricter convergence tolerance criteria, (iii) the correct
handling of sharp dielectic interfaces, and (iv) proper implementation of
boundary conditions (Dirichlet and Neumann).

To verify (i) and (ii), the MMS was used: a ¯̄σ distribution and a reference
solution φre f (x) are defined, allowing the analytical determination of a
source distribution S(x) := ∇ · ¯̄σ(x)∇φre f (x). Subsequently, the equation
∇ · ¯̄σ(x)∇φ(x) = S(x) is solved using the LF FEM solver and the obtained
φ(x) can be compared to φre f (x). Four MMS cases with spatially varying
sources and / or conductivities were created: one isotropic with spatially
varying source ¯̄σ (CaseIa), one homogeneous anisotropic with spatially
varying source ¯̄σ (CaseIb), one heterogeneous anisotropic ¯̄σ (CaseIc), and
one heterogeneous anisotropic with spatially varying source ¯̄σ (CaseId).
In all cases, a cube with 1 mm edge length is simulated. Care was taken
for CaseId to ensure that both the orientation of the conductivity tensor
eigenvectors and the corresponding eigenvalues varied spatially, while the
latter remained larger than zero. To verify (iii) and (iv), a discontinuous
case (CaseII) with scalar σ was implemented where the left half of the cube
was assigned a three times larger conductivity than the right half. The left
side was fixed (Dirichlet) to 0 V, the right to 1 V, and the other four sides
were treated as insulating (Neumann). The reference solution has 0.75 V
at the interface with linear variation from there to the left and right sides.
In all cases, simulations were performed using second order tetrahedral
meshes at four resolutions ranging from 0.05–0.3 mm (200–24 000 elements;
in some cases also 0.02 mm, 300 000 elements) to ascertain convergence. The
error was quantified as maximal deviation from the reference solution.

The exact equations solved for the different cases are presented below.

caseia Isotropic diffusion, spatially varying source
The diffusivity tensor was defined as:

σ = 1

and the potential function (theoretical and expected) as:

ϕ = x3 − z3
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The solver solves the following equation:

∇ ·
(
σ∇ϕ′

)
− S0 = 0

(note that the prime does not denote a derivative, but rather the unknown
potential). With the source term:

S0 = ∇ · (σ∇φ) = 6(x− z)

The problem was solved in a rectangular box mesh, centered at 0 with
edges of length 1 discretized by 7146 second order tetrahedral elements.
The mesh for ϕ and ϕ′ was kept constant across all verification cases. For
the boundary conditions, we set:

ϕ(x, y, z)|Ω = ϕ′(x, y, z)
∣∣
Ω

(a) (b)

(c) (d)

Figure 3.1: Expected (left) and numerical (right) solutions for CaseIa: isotropic
diffusion, spatially varying source.
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caseib Anisotropic diffusion, spatially varying source
The diffusivity tensor is changed to:

¯̄σ =

1 0 0

0 1 1

0 1 1


The remaining parts of the equations remain unchanged.

(a) (b)

(c) (d)

Figure 3.2: Expected (left) and numerical (right) solutions for CaseIb: anisotropic
diffusion, spatially varying source.

caseic Spatially varying anisotropic diffusion, constant source
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The equations are given by:

¯̄σ =

z2 + 0.1 0 0

0 y2 + z2 + 0.1 z2

0 z2 x2 + 0.1


ϕ = −x + z

S0 = ∇ · ( ¯̄σ∇φ) = 0

(a) (b)

Figure 3.3: Expected (left) and numerical (right) solutions for CaseIc: spatially
varying anisotropic diffusion, constant source.

caseid Spatially varying anisotropic diffusion and source
The equations are given by:

¯̄σ =

σxx 0 0

0 σyy f1

0 f1 σzz


ϕ = x + y + z

S0 = 2x + 4z f 2
6 − 4z f5 f6 − 4z f4 f6 + 4z f3 f6

= 2z f4 f5 − 2z f3 f5 −
2z f4 f 2

6
f5

+
2z f3 f 2

6
f5
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where:

σxx = x2 + 0.1

σyy =
(

4x2 + 1.2
)

f1 −
(

2z2 + 1.1
)
( f2 − 1)

σzz =
(

2z2 + 1.1
)

f2 −
(

4x2 + 1.2
)
( f2 − 1)

f1 =

√
1− f2

(
1000x4 + 500x2z2 − 55x2 − 500z4 + 65z2 − 2

)
250

f2 =
(

x2 + z2 − 0.08
)2

f3 = 2z2 + 1.1

f4 = 4x2 + 1.2

f5 =
√

1− f 2
6

f6 = x2 + z2 − 0.08

(a) (b)

Figure 3.4: Expected (left) and numerical (right) solutions for CaseId: spatially
varying, anisotropic diffusion and source.

The above expressions were derived in order to ensure a diffusion that is
always positive on the given mesh. This was achieved as follows: the first
row and first column of the matrix are set. Then, a submatrix σ is derived
that always provides positive eigenvalues across the domain. For this, a
real symmetric matrix is constructed by using an orthogonal matrix and
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a diagonal matrix with the targeted eigenvalues of the resulting matrix
(spectral decomposition):

a = x2 + z2 − 0.08

U =

[
a

√
1− a2

√
1− a2 −a

]

V =

[
4x2 + 1.2 0

0 2z2 + 1.1

]

σ =

[
2 3

2 3

]
= UTVU

3.2.1.1 Results

All four cases CaseIa-d showed the expected exponential convergence to the
reference solution as evident in log-log plots of maximum deviation against
resolution that can be fitted linearly with an R2 > 0.998 (see Figure 3.5 for
the convergence of CaseIc). All resolutions of CaseII result in maximum
deviations of < 3× 10−7 V, limited by the adaptable solver convergence
tolerance criterion.

Figure 3.5: Exponential reduction of error due to solution convergence with
increasing mesh refinement, shown for CaseIc.

The verification demonstrates the correctness of the heterogeneous aniso-
tropic LF FEM solver implementation. For more detail on the verification of
the coupled EM-neuro modelling, see [201].
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3.3 spinal cord stimulation to restore locomotion

3.3.1 Background

Spinal cord injury can interrupt communication between the brain and
the neuro-muscular system, potentially resulting in an inability to control
and elicit motion. Recently, a unique approach, based on SCS, has been
developed to trigger motion units that are hard wired in the spinal cord
with the correct temporal dynamics, resulting in regained locomotion [9].
It is assumed that the underlying mechanism is based on inducing neural
activity in spinal-roots, selectively and in the right sequence, to mimic
proprioceptive input to the spinal cord, triggering, in return, the right
sequence of motion patterns.

For that purpose, highly selective stimulation of individual spinal roots
is required, which can be achieved by implanting a suitable multi-contact
stimulation electrode in the spinal epidural space [202]. Computational
modelling has been used within the European RESTORE consortium
(https://www.eurostars-eureka.eu/project/id/10889; partners: Founda-
tion For Research On Information Technologies In Society (IT’IS), Ecole
Polytechnique Federale De Lausanne (EPFL), Universitair Medisch Centrum
Utrecht, G-Therapeutics B.V., ZMT Zurich Medtech AG) to personalize and
optimize treatments (required to achieve the necessary root stimulation
selectivity), to develop a suitable implant electrode geometry that is capa-
ble of such selective stimulation, and to assess the impact of anatomical
variability throughout the patient population on treatment efficacy, and to
confirm that the chosen electrode design is sufficiently broad to cover the
bulk of the relevant population.

Full publication of the RESTORE modelling work is currently planned
for the end of 2020 and results are still embargoed. Therefore, only selected
technical results can be presented in this thesis.

3.3.2 Method

3.3.2.1 Anatomical model generation (EPFL)

RESTORE partners at EPFL have developed an image segmentation pipeline
combining classic computer vision approaches with machine learning and
template-based segmentation to transform optimized MRI and CT images
of a patient’s spine into a detailed geometric model, distinguishing white

https://www.eurostars-eureka.eu/project/id/10889
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Figure 3.6: Illustration of the use of SCS to compensate for lost supra-spinal
input.
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and grey spinal cord matter, spinal roots, cerebrospinal fluid, spinal dura
mater, epidural fat, and vertebrae (see Figures 3.6–3.9).

A stimulator electrode model is inserted in the epidural space of the
model and its position is parameterized. The electrode features a large
number of contacts (see Figure 3.8) which can be assigned individual
voltages and parameterized for the purpose of treatment optimization.

Figure 3.7: The steps from medical image data to patient-specific stimulation
selectivity predictions.

3.3.2.2 Tissue property assignment

While most of the tissue properties are assigned according to the IT’IS
tissue properties database [155], a special approach had to be established to
properly model the spinal roots and white matter. These tissue feature very
high anisotropy, with principal electrical conductivity direction aligned with
the fiber orientation. Due to the complex, curved shape of these structures, it
is not easily possible to define an associated curvilinear coordinate system.

This challenge has been addressed by performing a diffusion simula-
tion that is restricted to the root and white matter domains. For this, the
low-frequency EM solver is used in combination with a constant scalar
conductivity σC to solve the equation ∇σC∇φH = σC∆φH = 0 and obtain a
helper potential φC. The boundary conditions of the diffusion problem are
set to insulating, except for the rostral end of the spinal cord white matter,
where a Dirichlet boundary condition φH = 1 is set, and the caudal end
of the spinal cord white matter, where – as for the spinal root endings – a
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Figure 3.8: Simulation-based optimization of implant positioning (top) and elec-
trode voltages (bottom). The simulation-based optimized placement
differed greatly from the expert-suggested optimal site and was
found to produce vastly superior stimulation selectivity. Similarly,
simulation-based multipolar stimulation configurations result in su-
perior selectivity than achievable using monopolar stimulation, as
experimentally confirmed.
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(a)

(b) (c)

Figure 3.9: Unstructured tetrahedral meshes of the spinal cord stimulation setup.

Dirichlet boundary condition φH = 0 is assigned. The orientation of the
gradient ∇φH = − ~EH is used as principal axis of the conductivity tensor
¯̄σ, which is computed according to ¯̄σ = σl · P + σt · (I − P) (σl , t are the
longitudinal and transversal conductivity values, P = ( ~EH ⊗ ~EH)/( ~EH · ~EH)
is the normalized projection matrix along the direction EH , and I is the
identity matrix).

3.3.2.3 Fiber integration

The helper potential φH is also used to identify fiber trajectories. For that
purpose, streamline tracing of ∇φH was performed using vtk [203]. Seed
points were placed randomly following a top-hat distribution at the end
cross-sections of the spinal roots. Streamlines that exit the root or white
matter domains are discarded (see Figure 3.10). Sim4Life functionality is em-
ployed to convert the remaining streamline trajectories into parameterized
Sweeney fiber models [158] or motor and sensory MRG models [159]. At
least 10 fibers were modelled per spinal root, and up to 100 fibers where
the resolution was sufficient (see Figure 3.11).
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(a) (b) (c)

Figure 3.10: (A) Helper Potential φH , used to define the conductivity tensor
orientations and for fiber tracking, with seed points at base of roots.
(B) Tracked root fibers and (C) close-up.

3.3.2.4 EM simulation

Based on the dielectric property distributions obtained using the approaches
from Section 3.3.2.2, ohmic current-dominated E-QS simulations were per-
formed, prescribing the voltages at the different electrode contacts as bound-
ary conditions (insulating boundary conditions at the domain boundaries).

3.3.2.5 Neuro simulation

Neuro-electrophysiology simulations according to the Sweeney model were
performed and the Sim4Life titration functionality was used to establish
fiber-recruitment curves for the different spinal roots.

Pulse shape was biphasic and done in accordance with the pulses avail-
able with the implantable pulse generator (IPG; Medtronic PLC, Dublin).
Pulse phase was altered to observe its impact on recruitment patterns.

3.3.2.6 Optimization

To perform automatic optimization of the electrode contact steering param-
eters, the contact voltages were parameterized. Subsequently, the genetic
optimization for global optimization variant of the Sim4Life optimization
framework was used, in combination with the selectivity index goal function
from [204] (see Figure 3.12).
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Figure 3.11: Spinal cord model with fiber trajectories along roots. Close up of dis-
cretization of single fiber, its different compartments, and equivalent
circuit model.
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Figure 3.12: Implementation of the SCS optimization within Sim4Life and illus-
tration of optimization convergence (bottom graph), along with the
performance of two optimization goals.

Electrode lead placement is optimized by varying its position in 5 mm
steps. Approximately 10 positions are evaluated and selectivity indices,
consisting of the euclidean distance between desired recruitment and actual
recruitment for the L1, L2, L4, S1, S2 roots are computed (these roots are
primarily responsible for Iliopsoas, vastus lateralis (VLat), tibialis anterior
(TA), medial gastrocnemius (MG), and soleus (Sol) muscle activation, respec-
tively). The coarsely identified 5 mm interval with the highest selectivity is
then further refined with 1 mm steps and the optimal position is identified.

To achieve and accelerate convergence, a preselection of candidate con-
tacts was performed by determining selectivity indices for all combinations
of electrode contact configurations (on / floating / ground). Thus, we re-
stricted the parameter space during the genetic optimization step.

While pulse-shapes were not optimized, the established framework would
readily allow for that possibility.

3.3.3 Results

Detailed results of the RESTORE project, including the medical follow-up
of the treated patients, will be part of a forthcoming publication targeted
for end of 2020. The following illustrative results, obtained by the RESTORE
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project partners, serve to highlight the value of the established modelling
approaches:

• The treatment modelling functionality has played a fundamental role
in allowing the successful restoration of locomotion to paraplegics [9].

• The model predictions about spinal root activation selectivity could be
experimentally confirmed by measuring EMG activity in key muscles
after single pulse application in an inter-operative and post-operative
setting.

• Computational modelling was also used to design a dedicated elec-
trode that replaced the previously employed commercial electrode.
Besides spatially rearranging the electrode contacts, an additional
contact belt was added, as it was predicted to have important bene-
fits in stimulation targeting (validated in rodents). The therapeutic
performance of the original implant design was compared to that
of the redesigned implant, demonstrating therapeutic benefits of the
redesign.

• Optimized implant placement and steering parameters were predicted
that were very different from the treatment parameters the surgeons
would have selected. Subsequent experimental analysis confirmed the
important superiority of the simulation-based optimized treatment
parameters.

3.4 conclusions

Sim4Life is a powerful platform for the modelling of EM and acoustic
(ultrasound) exposure, as well as induced neuromodulation. The following
important extensions of the platform were developed for the purpose of
this thesis and carefully verified: support for anisotropic and heterogeneous
materials, non-linear acoustic propagation modelling, multi-GPU solver
acceleration, user-defined (non-sinusoidal) sources, extended boundary
conditions, and unstructured mesh generation. The extended platform
functionality has played a critical role in enabling restoration of locomotion
to paraplegics through SCS (as part of the European RESTORE project) by
providing patient-specific treatment planning and optimization, as well as
device optimization capabilities.
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D E V E L O P M E N T O F A N A L P H A R E T I N A L G A N G L I O N
C E L L M O D E L O F E X T R A C E L L U L A R S T I M U L AT I O N

abstract

Retinal ganglion cells are the primary stimulation target of epiretinal
electrode prostheses, as their action potentials encode the visual signals to
the brain. Coupled electromagnetic / neuron-electrophysiology simulations
involving faithful ganglion cell models with realistic physiology could
support prosthetic device design multi-physics models and safety / efficacy
assessments / optimization. However, most ganglion cell models have been
constructed by combining cell morphologies and ion channel distributions
obtained from different neuron types. In this study, we apply whole-cell
recording, simultaneously measure intracellularly the biophysical behavior
of OFF-alpha rabbit ganglion cells, and use epiretinal electrodes to deter-
mine spatial stimulation threshold maps to extracellular current pulses.
We immunolabeled the recorded alpha ganglion cells and reconstructed
them through confocal microscopy and then utilized the measured action
potential phase plots and spike trains to estimate the ion channel distri-
butions and generate computational NEURON models. Several alpha cell
models were evaluated with a novel electromagnetic (EM)-induced neu-
rostimulation platform, which combines an existing, well validated, EM
solver and the open-source NEURON modelling package. Modelling re-
vealed three electrode location dependent stimulation mechanisms (listed
in order of increasing threshold): initial segment stimulation (potentially
mediated by a low threshold sodium channel), axonal stimulation at loca-
tions of high field inhomogeneity, and extracellular stimulation of dendritic
termini (potentially a modelling artifact). Simulated, location-dependent,
extracellular current pulse action potential stimulation thresholds were com-
pared to measurements on the same cell. The computationally predicted
threshold magnitude spatial maps and experimental measurements agree
within the combined (experimental and measurement) uncertainty, thereby
validating the ganglion cell NEURON model and the novel EM-induced
neurostimulation platform.

65
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new and noteworthy

Retinal ganglion cells are the stimulation target of many retinal pros-
theses. Modelling this computationally can support device development
and safety / efficacy assessment. We developed detailed rabbit OFF-Alpha
ganglion cell NEURON models by combining cell-type specific whole-cell
recording and confocal microscope reconstructions. The models and a novel
simulation platform for coupled EM-neurophysiology were validated by
epiretinal stimulation experiments, including careful uncertainty assess-
ment. Stimulation sensitivity maps are established and different activation
mechanisms are identified.

4.1 introduction

Retinal ganglion cells are the main stimulation target of epiretinal prosthe-
sis electrodes, as their axons send action potentials to the visual areas of
the brain. However, the current models of epiretinal electrode extracellular
stimulation of ganglion cells do not analyze these properties on single gan-
glion cells as the biophysical properties of ganglion cell types differ [205–
208]. Currently, many extracellular ganglion cell stimulation models are
generated by incorporating voltage-gated channels and ganglion cell mor-
phologies taken from different species and retinal eccentricities [209–211].
In this paper, we have developed rabbit ganglion cell models of epiretinal
stimulation that are based on the actual physiologically recorded properties
of alpha retinal ganglion cells and then validated the model against the
recorded extracellular activation properties (e.g., spatial maps of stimula-
tion current thresholds) of ganglion cells exposed to extracellular epiretinal
stimulation by large, prosthetic-sized stimulation electrodes near the inner
retinal surface.

The alpha ganglion cell is a morphological type present in many mam-
malian species [212–214] with similarities to the magnocellular retinal
ganglion cell, their anatomical homologue in human and primates. It has
a large soma, a wide dendritic field, and a large-diameter axon with a
fast conduction velocity [215]. Here, we have used the whole-cell record-
ing technique to selectively record from OFF-center alpha retinal ganglion
cells. The biophysical properties of a small group of OFF-alpha cells were
measured, and the dendritic arborizations of two recorded cells have been
reconstructed with confocal microscopy. NEURON models were developed
based on the measured stimulation data with incorporation of a low thresh-
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old initial segment zone on the alpha cell axon [216, 217]. These models,
when compared to the extracellular stimulation data of two alpha cells by
means of whole-cell recording, produced phase plot profiles and electrical
stimulation sensitivity profiles similar to the data measured in the real cells.
The main goals of this paper are to:

• Present the development of morphologically and electrophysiologi-
cally detailed alpha ganglion cell models, based on the morphology
and electrophysiology from single cells.

• Validate these retinal ganglion cell models by comparing simulations
of the measurement setup against the experimentally measured data,
specifically electrode stimulation ganglion cell thresholds, pulse shape,
and transmembrane voltage traces.

• Apply these models to study mechanisms involved in stimulation of
alpha ganglion cells and study the sensitivity of stimulation thresh-
olds to a range of parameters to assess simulation and measurement
uncertainty.

• Use the measurements and simulations to validate and demonstrate
the applicability of our newly developed simulation platform for
coupled electromagnetic-neuronal dynamics modelling [201].

4.2 methods

4.2.1 Preparation

Dutch belted rabbits (2–3 lbs) were anesthetized with ketamine-xylazine
(35–50 mg/kg, 5–10 mg/kg), in accordance with an animal protocol ap-
proved by the Food and Drug Administration (FDA) Institutional Animal
Care and Use Committee (IACUC). The eyes were denucleated and the
retina was isolated under dim red light. The isolated retina was attached
to nitrocellulose filter paper which had 3 mm holes in it, mounted over
fine nylon mesh, and perfused with Ames Ringer’s solution [218] which
contained the following salts (in mM): NaCl, 120; KCl, 3.1; KH2PO4, 0.5;
NaHCO3, 23.0; Mg2SO4, 1.2; CaCl2, 1.15; and 26 vitamins and amino acids
(US Biologicals, Salem, MA). The Ringer’s solution was allowed to flow by
gravity at a rate of approximately 5 mL/min and was heated to 35°C with
an in-line heater just before entering the retinal chamber. The temperature
was monitored with a thermocouple at the entrance to the chamber. To
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visualize the ganglion cell bodies, the isolated retina was stained with dilute
0.006 % Azure B vital dye [219]. The retinal terminal axon bundles from the
optic radiations were oriented to the left of the viewing field using a Zeiss
Axioskop FS upright microscope equipped with IR Normarski interference
contrast illumination, a rotating stage, a 40× water-immersion objective
lens, and an infrared (IR) surveillance camera / monitor.

4.2.2 Recordings

Whole-cell recordings of ganglion cells were made using borosilicate glass
patch electrodes (1.5 mm outer diameter, 0.9 mm inner diameter, 5–7MΩ)
held in a Model 5177 Eppendorf micromanipulator (Eppendorf, Hamburg,
GE), a DAGAN 3900A patch-clamp amplifier (Dagan Corp, Minneapolis,
MN), and the pClamp 10 data acquisition program (Molecular Devices,
Sunnyvale, CA). The potassium-based internal solution (pH 7.2) contained
(in mM): potassium methanesulfonate, 120; KCl, 4; MgCl2, 2; HEPES, 5;
EGTA, 5; glutathione, 1; NaATP, 1; NaGTP, 0.5; all reagents were obtained
from Sigma-Aldrich (St. Louis, MO). In addition, 0.05 % lucifer yellow,
lithium salt (Invitrogen, Grand Island, NY) was added to the internal
solution for visualization and labeling of the recorded ganglion cell. To
target an alpha cell for whole-cell recording, a small hole was made in the
inner limiting membrane on the side opposite the axon bundles with a patch
electrode to allow membrane access. Whole-cell recordings in current clamp
mode were digitized at 25 kHz with a Molecular Devices Digidata 1440A
data acquisition system (Molecular Devices Corp, Sunnyvale, CA). Cell
resting potentials used AgCl as the reference electrode and were corrected
for a liquid junction potential of 7 mV [220, 221].

4.2.3 Extracellular stimulation

A Pt-Ir stimulus electrode 100 µm in diameter insulated with a thin ∼10 µm
layer of Epoxylite resin was placed opposite the recording electrode and
used to stimulate the ganglion cell extracellularly. The conducting disc
electrode surface (FHC Inc., Bowdoin ME), was beveled at an angle of
30° relative to the retinal surface, and positioned 50 µm above the surface
of the inner limiting membrane of the retina. The X/Y position of the
stimulus electrode was controlled by computer (MP285 Sutter Instruments,
Novato CA). To determine the action potential threshold at each point
tested around the cell body, a model A395 linear stimulus isolator (WPI,
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Inc., Sarasota FL) was used to generate an ascending series of ten 0.5 ms
biphasic current pulses (2 or 4 µA increments) with a 20 ms interphase
period, under computer control. A long 0.25 mm diameter Pt-Ir wire in
the bath served as the counter electrode. See Figure 4.1 for a schematic
representation of the experimental setup.

Figure 4.1: Schematic diagram of the platinum stimulation electrode and the
patch pipette used for whole-cell recording alpha retinal ganglion
cells in the isolated rabbit retina.

4.2.4 Immunohistochemistry

After whole-cell recording, the alpha cell dendritic morphology of the Lu-
cifer yellow filled cell was visually confirmed by means of epifluorescence
microscopy, and the cell was photographed with a digital camera. The retina
was removed and placed in 4 % paraformaldehyde fixative in phosphate
buffer overnight at 4°C. To recover the complete dendritic morphology of
the recorded ganglion cell, we used a modified anti-Lucifer yellow antibody
immunolabeling technique [222, 223]. The retina was washed 3 times in
phosphate-buffered saline (PBS) (Sigma-Aldrich, St. Louis, MO), incubated
in 0.5 % Triton X-100 in 6 % normal goat serum (NGS) in PBS for 2 hours,
then incubated at room temperature (RT) for 2 days in Invitrogen anti-
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lucifer yellow biotin tagged antibody (Thermo Fisher Scientific, Waltham,
MA), diluted 1:500 in PBS with 3 % NGS and 0.5 % azide. To visualize
the antibody, the retina was washed 6 times in PBS with 3 % NGS, then
incubated overnight in Alexa 488 streptavidin secondary label (Jackson
ImmunoResearch, West Grove, PA) 1:100 in PBS with 3 % NGS. After 6
washes in PBS, the retina was mounted on a slide in Fluoro-Gel (Electron
Microscopy Sciences, Hatfield, PA), a coverslip was added, and it was
examined for fluorescent immunolabeled recorded ganglion cells. After pro-
cessing, four alpha retinal ganglion cells were recovered for morphological
analysis.

4.2.5 Morphological reconstruction

The immunolabeled alpha cell dendritic arborizations were reconstructed
on an Olympus Fluoview 1000 confocal microscope at 20× magnification as
a series of 0.6 µm Z-section image stacks. In some cases, the retinal borders
were also post-labeled with the red nuclear dye propidium iodide. The den-
dritic morphologies of the 2 alpha ganglion cells were manually digitized
from the confocal image stacks with the Neurolucida reconstruction pro-
gram (MBF Neuroscience, Williston VT). The resulting files were exported
and edited to generate hoc ganglion cell morphology files for import into
the NEURON modelling program [224].

4.2.6 NEURON ganglion cell model

4.2.6.1 Simulation and fitting

Custom MATLAB (The Mathworks, Natick, MA) scripts were used to con-
vert pClamp ascii files of the real ganglion cell spikes recorded during
depolarizing current steps into phase plot files for reading in the NEURON
vector file format. Using the NEURON graphical interface, the real alpha
ganglion cell action potentials were displayed as spike phase plots which
allowed direct comparison in real-time to the phase plot spikes generated
from the model alpha ganglion cell ion channel conductance mechanisms.
A modified 5-channel Hodgkin and Huxley (H-H) model [156, 225, 226]
with an additional low threshold initial segment sodium channel was used
to fit the real cell impulse spiking properties to current steps and the spike
phase plots to the model cell (see Tables 4.1 and 4.2). The simulation step for
most preliminary fits was 0.001 ms; we also investigated simulation steps of
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1× 10−4 and 1× 10−5 s. The phase plots of the same model data for the 3
integration time steps are superimposable, which suggests negligible error,
however the final figures and fits reported herein are made from the data
sets of the 1× 10−4 s step.

4.2.6.2 Coupled EM-neuronal dynamics modelling

Coupled electromagnetic-neuronal dynamics modelling of the experimental
setup has been performed to help validate the computational ganglion cell
model and to gain an understanding about the underlying mechanisms,
the parameters that impact measured and simulated retinal stimulation
thresholds, and their related experimental uncertainties. The mechanistic
insights and sensitivity analysis aided our understanding of the electrode
position-dependent extracellular EM exposure-induced ganglion cell ac-
tivation by stimulus electrode pulses (see Figure 4.7 and Table 4.3). The
setup allowed the NEURON ganglion cell model obtained to be evaluated
against the actual whole-cell recorded ganglion cell extracellular stimula-
tion thresholds. EM and neuronal dynamics models were set up within the
computational life sciences simulation environment of Sim4Life (developed
jointly with ZMT Zurich MedTech AG, Zurich, Switzerland).

4.2.6.3 EM model of ganglion cell stimulation

The computational model of the experimental stimulation setup consists of
a planar layer that represents the isolated retina in a saline bath solution
and a stimulus electrode (see Figure 4.7). The dimensions and placement
of the Pt stimulus and return electrode, including their insulation, are as
shown in Figure 4.1 and these were modelled as perfect electrical conduc-
tors. The retinal thickness, conductances, and dielectric parameters (see
Table 4.1 and 4.2) were derived from [227] and electrical conductivities
values of 0.357 S/m for the sensory retina and 1.282 S/m for the saline
were assumed [227]. The large pore size nylon mesh support was mod-
elled as saline. The simulations were performed with the Sim4Life ‘Ohmic
Current Dominated Electro-Quasistatic’ solver, which solves the equation
∇σ∇φ = 0, where σ is the electrical conductivity and φ is the electric po-
tential from which the electric (E-) field can be obtained as E = −∇φ. This
quasi-static approximation is valid, as the following criteria are satisfied:
ω2εµd2 � 1 and ωσµd2 � 1; i.e., the wavelength is large compared to the
characteristic domain length d; where ω denotes the angular frequency,
ε the permittivity, µ the permeability; and σ » ωε; i.e., ohmic currents
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dominate over displacement currents. Dirichlet boundary conditions were
applied to the electrode, and the current flux density was integrated over
a surface enclosing one electrode for current normalization purposes. The
computational domain was discretized with a graded rectilinear mesh of
21 million voxels; the minimal grid step in the region surrounding the
neuron model and the stimulation electrode was 0.02 mm, and the coarsest
grid step in regions with mostly constant potential was 1.25 mm. A grid
convergence study was performed to ascertain that the discretization and
the convergence tolerance criterion, a relative reduction of the residuum by
8 orders of magnitude, was found sufficient.

4.2.6.4 Neuronal dynamics model

The neuronal dynamics was modelled with the T-NEURO module of
Sim4Life, which uses the integrated NEURON library [224] to unidirec-
tionally couple EM fields to electrophysiological modelling by means of the
‘extracellular mechanism’ of NEURON [201]. The ganglion cell morphology
and channel distribution model developed above was imported, embedded
within the retinal layer at a depth of 5 µm from the inner limiting membrane
surface, and shifted relative to the electrode to investigate the dependence
of the stimulation thresholds on lateral position in 20 µm step increments
over a range of 0.8 mm in both X-Y plane directions to cover the neuron
area. Titrations (bifurcation search for spike threshold) were performed to
identify the extracellular stimulation thresholds and current strengths, and
in each case, the spatial location of the spike initiation at the threshold level
was recorded.

4.2.7 Sensitivity analysis

To evaluate the impact of modelling parameters on the stimulation thresh-
old, the depth of the neuron within the retina, the thickness of the retina,
the electrical conductivities of the retina and the saline solution, the dis-
tance from the electrode to the retina, the position and the relative angle of
the electrode over the retina, diameter of the electrode and the insulation,
and the simulation resolution were assessed, also over a range of 0.8 mm
but with a coarser step-size of 0.1 mm. Subsequently, the change in the
stimulation threshold was assessed for each electrode placement location.
By dividing the threshold changes (in dB) by the parameter change, the
sensitivity factors were determined. Multiplication of the sensitivity factors
with the uncertainty of the underlying parameters yielded the contribu-
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tion to the stimulation threshold uncertainty. The discretization related
numerical uncertainty was assessed by comparing a simulation with finer
resolution (grid step reduction factor 1.5×) with the reference simulation.
The parameter values, sensitivities, underlying parameter uncertainties,
and contributions to the uncertainty in the stimulation threshold examined,
as well as the combined simulation uncertainty, is reported in Tables 4.3–4.5.
The combination of the measurement and simulation uncertainty produces
the total uncertainty, which also serves as the criterion for the success of
the validation. The uncertainty analysis was performed according to the
approach described in [228].

4.3 results

4.3.1 Measurement results

We targeted large ganglion cell bodies for whole-cell recording by pre-
labeling the retinal ganglion cells with dilute Azure B vital dye (see Fig-
ure 4.2). Access to the ganglion cell bodies was obtained by loosening
a patch of the inner limiting membrane on one side adjacent to the cell
body, opposite from the axon fibers from the optic radiations. The patch
pipette was filled with a potassium-based Ringer’s solution and a fixable
Lucifer yellow dye, which allowed identification post-recording of the
alpha cell morphology using the epifluorescent illumination of the micro-
scope. We recorded from 5 alpha cells, and their resting potentials averaged
−61.4 ± 5.5 mV. After biophysical characterization, stimulation, fixation
and immunocytochemical processing of the cells, we were able to recover
the complete axonal arborizations and dendritic trees of 4 cells (see Sec-
tion 4.2.5). These all had large cell bodies averaging 30.7± 3.8 µm (n = 4),
and a wide field dendritic morphology as originally described for rabbit
alpha ganglion cells by [213] and as type G11 by [229]. The light-response of
the 5 ganglion cells studied in cell-attached or whole-cell configurations all
showed transient firing at light-OFF. Each of the 4 recovered ganglion cells
had thick ascending primary dendrites with dendritic arbors that averaged
907.3± 148.6 µm in diameter. Confocal microscopic reconstructions of the
dendrites showed arborization in the OFF-sublamina of the inner plexiform
layer (IPL).
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Figure 4.2: Examples of reconstructed OFF-alpha ganglion cells whole-cell
recorded and their light-evoked responses. (A) Confocal microscopic
Z-stack reconstruction of an immunostained whole-cell-recorded al-
pha ganglion cell, showing the typical wide-field dendritic tree mor-
phology and large cell body (Cell 1). The overlying ganglion cell’s
axon is shown as an inset on the left side of the image. (B) Light-
evoked action potentials of the alpha retinal ganglion cell shown in
A recorded in current clamp mode to full field stimulation showed a
hyperpolarization at light-ON and a transient depolarizing burst
of spikes at light offset. (C) Voltage clamp recording of another
OFF-alpha cell shows an outward current at light-ON, and an in-
ward excitatory current at light-OFF, similar to those reported in the
cat [206].
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4.3.2 Estimating ion channel distribution

We examined the kinetics of the real alpha cell action potential using
phase plot analysis to estimate the voltage-gated channel distributions
in the axon, soma, and dendrites of the NEURON model. We previously
showed that phase plots of dV/dT vs. V of the spikes for a ganglion
cell recorded at the soma is functionally equivalent to the ganglion cell
capacitive membrane current in µA/cm2 (given the membrane capacitance
Cm = 1 µF/cm2). This allows direct comparison and fitting of the real alpha
cell phase plot to its NEURON model to estimate ion channel distributions
directly in NEURON [226]. To avoid any possible influence of depolarization
on the action potential shape or multispike adaptation mechanisms, we
chose to analyze either spontaneous action potentials of the alpha cell at
rest or spikes to small current steps to make an accurate fit. Each spike
appeared to be followed several milliseconds later by a small, delayed after-
depolarization [230]. An example of the fitting process is shown in Figure 4.3.
The phase plots of all axon-bearing alpha cells showed a prominent initial
segment-somato dendritic (IS-SD) break at the action potential threshold.
The peak dV/dT of the alpha cells was 0.6–0.9 V/ms (µA/cm2).

A single action potential of the recorded alpha ganglion cell and the
corresponding spike action potential phase plot, compared with that of the
NEURON model of the action potential are superimposed in Figure 4.3.
Alpha ganglion cell action potentials were very rapid, with half-widths of
180–250 µs at 35°C. The action potential model of [226] provided a good fit
to real alpha cell data along the main portion of the phase plot curve [226].
A careful balance of sodium and potassium channel densities was used to
start the empirical fitting process. At 35°C, the size of the loop reflected
largely the sum of the magnitudes of voltage-gated sodium current INa
and delayed rectifier channel densities IK on the soma and dendrites. The
positive peak velocity of the phase plot loop reflected the density of voltage-
gated sodium channels on the soma and dendrites, while the negative
peak velocity reflected the balance of the soma and dendrite potassium
channels. Voltage-gated calcium currents appear to contribute weakly to
the peak voltage of the action potential, while calcium-activated potassium
and A-type currents had little effect on phase plot shape.

While the Fohlmeister model [226] provides a good fit to the main portion
of the action potential phase plots, there was one region where the model
did not appear to provide a good fit to the real anatomical and physio-
logical data. Phase plots of the alpha cell action potentials often display
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Figure 4.3: Example of the process for fitting the ganglion cell action potentials
to generate the alpha cell models in NEURON. (A) Raw spike data
of alpha cell 1 (see Figure 4.2a) to a 180 pA current step generated
weak action potentials. Inset: A single action potential (*) is shown.
The sloped rising phase of the action potential (arrow) denotes the
IS-SD break. (B) Spike phase plot of the real action potentials (black
dots) compared to data of the NEURON model (red trace) show close
correspondence when a sodium channel mechanism with a lower
threshold is incorporated in the axon’s initial segment. Black dashed
phase plot curves show attempts to match the IS-SD break with dif-
ferent classic H-H Na channel model initial segment current densities.
(C) NEURON model voltage plot of the reconstructed ganglion cell
1 responding to spike activation (arrow) by a depolarizing current
pulse of 600 pA injected in the soma with the patch electrode (right).
Note the trigger segment region or initial segment (color scale in mV
at the left) has the lowest threshold for sodium channel spike activa-
tion (yellow zone) compared to the cell body shown in the voltage
plot box. The action potential then simultaneously back propagates
into the soma / dendrites and down the axon from the trigger initial
segment zone. Inset: Comparison of action potential activation from
the initial segment (red trace), into the presegment region (blue trace),
and into the soma (black trace).
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IS-SD breaks (see Figure 4.3a). Such a break is currently thought to reflect a
high density of low-threshold sodium channels in the axon initial segment;
originally detected by means of immunocytochemistry [216]. Work by [217]
reported that the initial segment of rabbit ganglion cell axons also exhibit
a high sodium channel density immunolabeling in this region. Confocal
reconstructions of all our axon-bearing rabbit alpha ganglion cells showed
that the axon exited the cell body without the constricted axon diameter
region trigger segment (TS) previously reported in ganglion cell models
based on amphibian ganglion cells [205, 225]. The thickness range of the
alpha cell axons was 1.9–2.2 µm. While an IS-SD bump could be generated
by increased axonal conductance of H-H Na channels in the unconstricted
trigger segment region of the axon, the recorded IS-SD breaks of the real
ganglion cell spike phase plots (red traces) could not be reproduced, except
at very high IS channel densities (see Figure 4.3b). Therefore, we incorpo-
rated in our alpha ganglion cell models an initial segment axon zone of
low-threshold sodium channels similar in location and width to the high
sodium channel density region reported by [217], shown in Tables 4.1 and
4.2. We refer to this trigger segment region of the axon as the initial segment
(IS), where the action potentials initiate and propagate down the axon and
also back through the pre-segment to elicit a regenerative spike in the soma
and dendrites [231].

On real alpha cell phase plots, spike threshold averaged −57.6± 5.5 mV
(n = 4). However, the model H-H Na channel phase plot based on the
channel kinetic densities of [226] had a spike voltage onset of −53 mV.
A comparison of the actual ganglion cell threshold data and the model
suggested a threshold voltage difference of approximately 5 mV. We found
that the best way to fit the actual IS-SD bump was to develop a voltage-
shifted H-H model of a NaV1.6 sodium channel found in these initial
segment regions with gating variables shifted 5 mV more negative than
normal (see Figure 4.3, and Tables 4.1 and 4.2) [216, 232]. The development
of this empirically estimated inner segment Na channel mechanism is
shown in Figure 4.3 with phase plot comparison of the final model (red
dashed curve) to the real ganglion cell phase plot spike data (black dots).
In initial attempts to model the IS-SD activation, we used a trigger segment
of classic H-H channels similar in channel density to those used in [226],
which resulted in a model ganglion cell that needed large stimulus currents
to reach spike threshold. The use of a classic H-H Na trigger segment
channel density of ∼800 mS/cm2 resulted in a diminished phase plot cycle
of smaller amplitude spikes shown in Figure 4.3b (inner circle, fine dashed
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line). While an extreme increase of 40× the normal density of H-H sodium
channels could match the observed IS-SD spike activation voltage of the
real cell, but resulted in a slight overshoot of the IS-SD hump in the phase
plot (course dashed lines).

4.3.3 Spike adaptation in alpha cells

Current vs. spike frequency (f-I) curves were studied on all alpha cells
whole-cell recorded. A series of 100 pA steps of depolarizing current were
injected to analyze their firing patterns. Figure 4.4 shows examples of the
firing patterns to large current steps of real and model alpha cells. In real
cells, positive current injections caused action potentials to be evoked, and
spike adaptation was observed (see Figure 4.4a), similar to previous reports
for alpha ganglion cells in the cat retina [208, 233]. Similar to previous
descriptions of alpha cells, the alpha cell membrane resistance was low:
13.3± 3.4 MΩ (n = 5).

We used a 173 ms, 900 pA current step to analyze the spike adaptation
kinetics of 5 alpha ganglion cells. On average, alpha cells fired 8.2± 3.4
spikes, (mode 7, n = 5) during the step. The adaptation kinetics of the spike
trains were analyzed by binning the current step spike responses. Spike
times during the current step were divided into 8 bins and normalized
to the total spikes during the step. The spiking probability pattern of 5
ganglion cells were normalized and then multiplied by the average to
indicate the average number of spikes per time bin. While there was often
an initial burst of spikes at the step onset, the spiking rapidly declined to
one spike per bin during most of the current step (see Figure 4.4c). The
alpha cell calcium clearance mechanism time constants were adjusted to
modulate the calcium-activated potassium currents in the model to show a
similar spike adaptation pattern to the current pulse step as in the real cells
(see Figure 4.4b, and Tables 4.1 and 4.2).

Phase plot analysis of real alpha cell spikes during the current injection
step revealed that spikes with the largest and most negative activating IS-SD
breaks occurred at step onset from the resting potential (blue curve, arrow),
while spikes evoked later in the step at more positive potentials showed
less IS-SD break (red curves), even though the repolarization phase of these
action potentials were nearly as negative as the initial spike (see Figure 4.4d).
On all cells displaying IS-SD breaks, current steps from more negative
potentials evoked larger spikes and IS-SD breaks. Phase plots of 4 cells
showed the first spike threshold to the current step averaged 59.1± 3.7 mV.
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Figure 4.4: Comparison of the spiking properties of real and model alpha retinal
ganglion cells. (A) Real recorded alpha cell action potentials generated
by a 900 pA, 173 ms current step show spike adaptation (alpha cell
2). (B) Model alpha cell action potentials to the same 900 pA step also
adapt. (C) Average spike probability histogram of real alpha cells to
the same current pulse step: bars: mean ± SD, n = 5 cells. (D) Phase
plots of real alpha cell action potentials during the current step (same
cell as in A). Compared to the initial current step (blue trace), the
IS-SD break onset voltages of the action potentials (arrow) become
more positive later in the spike train (red traces).
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In contrast, phase plots of the model alpha cell action potentials showed no
spike adaptation in their IS-SD break onset voltage during the current step
(data not shown).

4.3.4 Extracellular electrode stimulation

Extracellular electrode stimulation using biphasic current pulses, also
evoked IS-SD breaks when action potentials were elicited (see Figure 4.5).
To better visualize the current phase generating the action potential during
whole-cell recording, a short duration current pulse of 0.5 ms was used in
combination with a 20 ms interphase interval to separate the cathodic and
anodic phase contributions. We found that action potentials were elicited
only when cathodal stimulation pulses were used [234]. The extracellular
stimulation action potential phase plots often showed a prominent loop
below the IS-SD break due to the cathodic stimulus pulse artifact, par-
ticularly on ganglion cells with higher stimulus current thresholds (see
Figure 4.5c). We examined the extracellular stimulation spike threshold
on 4 axon-bearing OFF-alpha ganglion cells with the 100 µm diameter Pt
insulated electrode 50 µm above the surface of the retina with an ascending
series of biphasic current pulses. Starting at the cell body / IS region, the
spatial sensitivity of the spike threshold of a cell was determined in 100 µm
increments across the retina in a T-shaped pattern; the completeness of
which depended on the duration of the whole-cell recording (see Figure 4.6).
Examination of regions to the right of the cell body were physically blocked
by the patch recording electrode. At the cell body / IS region, extracellular
stimulation spike threshold averaged 6.0± 4.1 nC (n = 4 cells). In four
cells, we studied the stimulation spike threshold along the axis near the
estimated axon, which declined 200 µm from the soma IS starting location.
The precise axon direction could be determined only after histological pro-
cessing post-recording, as only the orientation of the fine axon fiber bundles
near the ganglion cell body were visible in the infrared (IR) viewer during
recording. In two cells, we were able to study stimulation thresholds along
3 axes around the cell body that suggested threshold declined away from
the cell body / IS region (see Figure 4.6). The results of these stimulation
studies suggested that the lowest threshold zone of stimulation is a region
at or near the cell body / IS itself.
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Figure 4.5: Comparison of action potentials generated by 0.5 ms steps of cathodic
and anodic extracellular stimulation electrode current pulses. The
stimulus electrode location was 100 µm down the axon (left) from the
starting location (soma / IS). Same cell (cell 2) as in Figure 4.6. (A)
Cathodic stimulus pulses elicited action potentials, with the red trace
showing the first spike. Action potentials from cathodic stimulation
showed a lagged rise time (arrow) during the onset of the action
potential and a small post-spike after-depolarization was observed
at A (see also Figure 4.3a) [235]. Traces have been aligned at the
mean pre-stimulus resting potential for clarity. (B) Anodic pulses
up to 28 µA did not elicit any action potentials on any cell studied.
(C) Phase plot of a single cathodic-evoked stimulus electrode action
potential on an alpha cell (8 µA) showed a prominent negative IS-SD
break activating at −63 mV in the waveform (arrow). Same cell as in
Figure 4.2. Similar IS-SD breaks were seen on all stimulation sites
tested eliciting action potentials (n = 5 cells).
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Figure 4.6: Stimulation electrode pulse charge sensitivity map of alpha ganglion
cell 2 shown superimposed on the reconstructed ganglion cell for size
comparison. With 100 µm diameter stimulus electrodes, the lowest
extracellular spike threshold was found in a region near the cell
body / axon IS region. ND: No threshold for eliciting action potentials
was detected at the maximal current steps tested in this region.
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4.3.5 Simulation results

We performed coupled EM-neuronal dynamics modelling of the experi-
mental setup for stimulation to help validate the computational ganglion
cell model and gain some understanding about spatial mechanisms and
experimental parameters impacting ganglion cell stimulation thresholds.
The electrode position was mapped in 20 µm steps in a grid pattern across
the alpha cell model. The experimentally measured spatial sensitivity of
the threshold for action potential generation due to extracellular stimula-
tion and the simulated spatial maps of the stimulation electrode position
dependence of the threshold are similar in form and magnitude, as seen in
Figures 4.6 and 4.7. The stimulation threshold is lowest when the electrode
is near the axon IS, where the low threshold sodium channels were inserted.
The threshold is also low for electrode positions on top of the axon trajec-
tory. A few dendritic tip regions showed small peaks of sensitivity, possibly
related to a sealed-end boundary modelling artefact. Electrode positions
near the initial segment and cell body first activate the initial segment, while
locations further down the axon first activate the axon. This is coherent
with the observed stimulation threshold behavior. The simulations also
suggest small peaked regions associated with the stimulation of different
dendritic termini, which might however be simulation artifacts related to
the simulated boundary conditions at the termini. The sensitivity profile
of the model is close to the experimentally observed stimulation threshold
behavior, with the cell body IS region being lowest in threshold and the
axon being roughly double the threshold of the cell body. The thresholds for
these locations remote from the cell body were often higher than the limits
of the experimentally applied linear current step range tested, and hence
activation could not be detected, in accordance with the computational
model predictions.

4.3.6 Sensitivity and uncertainty analysis

We performed a sensitivity analysis with regard to measurement and mod-
elling parameters and, on that basis, established uncertainty budgets. Each
of the following individual parameters were varied, and the impacts on
the ganglion cell stimulation threshold were investigated. The uncertainty
contributions to the stimulation threshold originating from the material
properties, neuron location, electrode placement, electrode and retina ge-
ometries, and the numerical discretization (based on reported or estimated
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(a)

(b) (c)

Figure 4.7: Assessment of ganglion cell stimulation (threshold and mechanism)
using coupled electromagnetic-electrophysiological computational
modelling. (A) Computational model of the alpha ganglion cell (Cell
1, see Figure 4.2) and the stimulation electrode (50 µm above retinal
surface). The cell body position is shown as an orthogonal bar at cen-
ter. (B) Simulated spatial sensitivity map of current required to elicit
action potentials in the model. The lowest simulated spike threshold
(11 µA / 5.5 nC) was found in a zone near the cell body / axon initial
segment, as in the real cell threshold measurements (10–12 µA). The
remaining axon had 2–3 times higher threshold. (C) Spatial regions
associated with specific sites of predicted spike initiation. A demarks
initiation at the initial segment and B initiation at the axon – the other
regions are associated with the different dendritic termini and may
be artefacts of the modelling.
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uncertainties of the underlying parameters) can be found in Tables 4.3–4.5.
The dominant uncertainty contribution is related to the uncertainty concern-
ing the distance of the electrode from the retinal surface. Other important
contributions stem from the electrode angle and the neuron depth within
the retina. By estimation of the uncertainty of the underlying parameters
and assuming them to be normally distributed and independent, the com-
bined simulation uncertainty is obtained as the root-sum-square of the
product of the sensitivities and parameter uncertainties. The combined
stimulation threshold simulation uncertainty at the electrode position of
maximal uncertainty is 2.6 dB (k = 1). It should be noted that the uncer-
tainty of the neuronal dynamics modelling was not included, as it is unclear
how such an assessment could be performed. The principal contributor to
the measurement uncertainty is the step size of the current used to search
for the stimulation threshold (2 µA) of the ganglion cell, while uncertainty
related to amplifier linearity and calibration offset were small. The com-
bined measurement uncertainty is 1.0 dB (k = 1). The total uncertainty,
combining simulation and measurement uncertainties, is 2.8 dB (k = 1),
which corresponds to ∼ 35 % (see Table 4.5).

4.4 discussion

We have developed a retinal ganglion cell model of extracellular epiretinal
stimulation based on anatomical and physiological analysis of a large gan-
glion cell type in the rabbit retina. By recording from a single type of retinal
ganglion cell, we attempted to understand the common properties of the
OFF-alpha ganglion cell type in the rabbit retina. This cell type, the largest
ganglion cell type found in rabbits, has a large diameter dendritic tree
and cell body, a thick axon, and fast conduction velocity [213, 215]. Large
diameter alpha cell axons are also thought to have the lowest extracellular
electrode stimulation thresholds. We reconstructed two recorded OFF-alpha
ganglion cells and digitized their dendritic arborizations to develop NEU-
RON models to match their observed physiological properties [160, 224].

firing rates and spike adaptation We examined the firing pat-
terns of alpha cells to current steps of up to 900 pA. All alpha cells showed
spike adaptations to sustained current steps and low membrane resistance,
similar to previous reports of alpha cells in the cat retina [208, 233]. This
spiking adaptation was implemented in the NEURON alpha cell model
by incorporation of a slow calcium-activated potassium current channel,
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voltage-gated calcium currents, and a slow internal calcium clearance mech-
anism similar to that described by Destexhe [236] see also [225, 226]. The
alpha cell model spike adaptation mechanism was designed to match the
average spike adaptation probability profile of the alpha cell cohort. The
activation of this calcium-activated potassium current, which was consid-
erably slower than the faster voltage-gated sodium and delayed rectifier
potassium currents involved in spike generation, appeared to constrain the
spiking adaptation characteristics of the alpha cells to long current steps
during current injection through the patch electrode. Therefore, given the
delayed action of the calcium-activated potassium currents and the small
contribution of the voltage-gated calcium channel currents to the action
potential, these currents do not play a significant role in the action poten-
tials evoked by the ms duration current pulses on extracellular stimulation
electrodes.

action potential Close examination of individual spike phase plots
during current steps shows that most alpha cells exhibit a prominent IS-SD
break in their action potentials similar to those reported for classic studies
of motoneuron activation [231, 237]. This specialized axonal site near the
soma was referred to as the IS, which initiated the impulse and activated
a regenerative response that propagates into the soma and dendrites. The
one exception appeared to be an alpha retinal ganglion cell where the axon
was accidentally cut in the process of exposing the cell body for whole-cell
recording. The IS-SD breaks could be activated at voltages as negative as
−63 mV. To strong depolarizing current steps, phase plots of their spiking
showed the IS-SD threshold break was largest on the initial ganglion spike
from the resting potential, which occurred at more negative potentials, and
the IS-SD break threshold of subsequent spikes decreased with continued
depolarization, which suggests that a low-threshold process triggers the
ganglion cell spike when resting at more negative potentials. However, close
examination of the alpha cells bearing axons showed that the IS segment
axon zone smoothly exits the cell body to enter the nerve fiber layer. No
constriction of the axon IS was observed on any alpha ganglion cell axon
recovered, unlike those reported for ganglion cells in amphibians [205]. We
therefore used an unconstricted axon to constrain our NEURON model
voltage-gated axon channel densities to more closely resemble the actual
recorded cell used for extraceullular stimulation.
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cell model fitting We started the fitting of our model alpha cell using
the Fohlmeister model [226] as a general template for sodium-, calcium-,
and potassium-channel distributions. Good phase plot fits to the main
loop of the action potential were obtained by employing a rough ratio of
voltage-gated sodium / potassium (delayed rectifier) current conductances
in a ∼ 1:1 ratio. However, fits according to the Fohlmeister model to the IS-
SD portion bump of phase plots were poor when the real axon anatomical
data – i.e., lacking a 90 µm trigger segment region that is 36 % of the
original axon diameter – was used for IS axon diameters, even after a
large sodium-channel conductance 8× the conductance density of the soma
was added to the axon IS (see Figure 4.3). This necessitated the addition
of a modified sodium channel with empirically-based channel activation
kinetics. Previous immunocytochemical studies of the proteins found in
the axon IS (trigger zone) in mouse retinal ganglion cells indicated the
presence of ankyrin G and the NaV1.6 sodium channel type are present
on the IS in a zone 15–20 µm distal to the soma [216, 238–240]. This high
conductance NaV1.6 channel zone was found to correspond to a zone of
high immunoreactivity when a Pan sodium channel antibody was used.
More recent studies, like the work from [217] using a Pan sodium channel
antibody have shown a similar zone of high immunoreactivity on rabbit
alpha cell axon on average 30 µm distal to the cell body, the dimensions of
which have been incorporated in our current NEURON model. However, we
were unable to fit the IS-SD break activation voltage of the real cell phase
plot data to phase plots based on the Fohlmeister [226] channel kinetics
on our unconstricted axon alpha cell models except at extreme channel
densities, which may not be physiologically relevant [241] (see Figure 4.2).
To approximate the more negative IS-SD break seen in the phase plots
of our recorded alpha cells with unconstricted IS axons, we developed
a modified NaV1.6 H-H model, with the gating parameters adjusted to
be activated at voltages 5 mV more negative than previously. A NaV1.6
conductance density on the unconstricted axon IS, 6–9× higher than that
of the soma, appeared to provide an acceptable fit to the alpha cell phase
plots when combined with a higher density of axonal delayed rectifier
potassium channels to stabilize the mechanism (see Table 4.1 and 4.2 for
modelling details). Our realistic alpha cell models, while reproducing the
physiological data, also show channel distributions that may reflect natural
variation in morphological and physiological properties [242].
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stimulation sensitivity Many studies show that the trigger region
of the IS plays an important role in controlling action potential activation
of retinal ganglion cells to short (0.1–1 ms) electrical stimulation currents
pulses evoked by epiretinal retinal prosthetic stimulus electrodes. Analysis
of single electrically evoked spikes all show prominent IS-SD breaks in their
phase plots. In this aspect, the electrically evoked spikes in simulations and,
in the real cell, appear to fit the model, given the potential variability in
electrode-retina proximity from our error analysis of the process. However,
it is also likely that our model is an incomplete simulation of alpha cell
dynamics; while our models exhibit sustained spike adaptation to large
stimulus current pulses (500–900 pA), the voltage threshold for the NaV1.6
IS-SD break appeared to be reduced during current steps to more depolar-
ized potentials in the real alpha cell but was invariant in the model. This
changing threshold may be due to slow inactivation of NaV1.6 sodium
channels previously reported at more positive potentials [243, 244]. Because
electrical stimulation of retinal neurons by Pt electrodes largely relies on
short current pulses, these differences may not be of practical significance,
however synaptic activation of alpha cell stimulation by light or glutamate
pulses may cause differences between real cells and our NEURON model
in the observed firing patterns.

While our physical method of soma access for whole-cell recording could
potentially lower the extracellular stimulus threshold of the recorded gan-
glion cell, we found the lowest extracellular current stimulation threshold
values were near the soma IS, with thresholds similar to those reported from
previous extracellular recording studies by [245] and [217]. Our stimulation
electrode sensitivity mapping was physically limited by the presence of the
patch recording electrode on the cell body. While our orientation of the axon
to the cell body was based on the very visible nerve fiber orientation of the
local axon bundles in the microscope, the orientation of the axon exiting
from an individual ganglion cell body will vary slightly, as can be seen
in two reconstructed ganglion cells (see Figure 4.2a). The data acquisition
program we used only generated a series of linear stimulation electrode
current steps to determine action potential threshold. As a consequence,
the higher thresholds of distal axon and ganglion cell dendrites may have
been beyond the range of stimulation current steps currently investigated.

stimulation simulation The stimulation threshold and spike ini-
tiation maps of the models suggest that three distinct mechanisms are
involved in stimulation of retinal ganglion cells by localized extracellular
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electrodes: The lowest current stimulation threshold is observed when the
electrode is in the vicinity of the IS, where spike initiation occurs. This
agrees with previous experimental results and suggests that the IS is the
most sensitive location. At twice that threshold, direct stimulation of the
axon is obtained [245]. This mechanism is likely to be related to the field
inhomogeneity, producing a high activating function, i.e., second potential
derivative along the nerve fiber [210], that leads to a net charge injection
and subsequent generation of the action potential. Finally, small peaked
zones in the vicinity of the dendritic tree termini also appear to be weakly
activating at a threshold 2.2× higher than the initial segment stimulation
threshold, which may reflect simulation artifacts resulting from the mod-
elled boundary condition. Termini have been modelled according to the
approach commonly chosen when exposure safety is assessed [246], but
sealed boundary conditions might be a better representation of the real
electrophysiology. Currently, these zones have not been reported in real
alpha cells stimulated with extracellular electrodes [217, 245].

uncertainty assessment We performed a measurement and a sim-
ulation parameter sensitivity analysis of the stimulation threshold and
established measurement and simulation uncertainty budgets to provide
objective criteria of the model validation. Our results show that the uncer-
tainty in the ganglion cell stimulation threshold is dominated by the impact
of the distance between the neuron and the stimulation electrode, in terms
of the proximity of the electrode to the retina, the tilt of the electrode, and
the depth of the ganglion cell in the retina. This finding is consistent with
previous studies, where it was shown that the electrode tissue access resis-
tance or the ganglion cell spike threshold currents of stimulus electrodes
change rapidly when positioned closer than 100 µm to retinal surface, which
enhances small proximity errors in the measurements [245, 247]. Electrode
proximity factors must be carefully controlled in future experiments. The
uncertainty assessment presented does not take into consideration uncer-
tainty related to the electrophysiological modelling. Such an analysis would
be difficult to perform, as there are a very large number of parameters (e.g.,
channel distributions) and only limited knowledge about the equations that
describe electrophysiological activity, and it is unclear how the constraining
information on possible modelling parameters obtained from the patch
clamp measurements (e.g., phase plot fits) can be taken into account.
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model validation We validated our alpha cell models of extracellular
stimulation by comparing experimental stimulation thresholds to computa-
tional predictions. A stimulation threshold of 10–12µA was determined in
repeated measurements for an electrode located above the soma; at 100 µm
further down the axon, the stimulation threshold increased to 10–14µA;
another 100 µm further down the axon, the stimulation threshold was 12–
16µA. Simulations at corresponding locations yield thresholds of 11, 14.5,
and 22 µA respectively, which is within the range of the measured values
with the uncertainty margin (2.8 dB, coverage factor k = 1), even without
the contribution of the neuronal dynamics modelling related uncertainty.
Thus, it can be concluded that our simulations are in general agreement
with the stimulation measurements. While the alpha cell neuronal dynam-
ics model was influenced by measurement information about the action
potential phase plots, no information about stimulation thresholds, or in-
deed stimulation by an external electrode, went into the model, such that
validation by measured stimulation threshold maps can be considered to be
mostly independent information and hence usable for validation purposes.

4.5 conclusions

Epiretinal electrode stimulation is often used to activate ganglion cells
in the blind patient’s retina [248–250]. We have developed an integrated
ganglion cell model in NEURON of extracellular stimulation with the focus
on the analysis of a single OFF-alpha ganglion cell type in the rabbit.
The biophysical properties of the model were derived on the basis of
whole-cell recording. To examine the parameters that affect the ganglion
cell spiking thresholds, we performed a sensitivity analysis and related
uncertainty assessment of our computational modelling and experimental
measurements data. This assessment showed that computed and measured
results agree within the combined uncertainty, thus validating our cell
models. The results also contribute validation evidence for our coupled EM-
electrophysiology modelling and the neurostimulation simulation platform.

The applied modelling approach may have clinical utility for the de-
velopment of computational models of ganglion cells in the human fovea,
which could aid the devlopment of future retinal prostheses and other novel
stimulating medical devices. As current epiretinal extracellular stimulation
electrodes typically stimulate several hundreds of ganglion cells and can
also activate the overlying axons of distal ganglion cells, resulting in bright,
arc-shaped visual-artefacts, future work should be aimed towards genera-
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tion of not only individual ganglion cell models, but also larger scale retinal
models encompassing a representative range of ganglion cell types and
retinal neurons, within a realistic layered dielectric tissue structure. Thus,
computational modelling will be able to contribute to the development of
not only safer but also more effective neurotherapeutic devices.
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4.a appendix

4.a.1 Results tables

Alpha Cell 1 Fitted Conductances G [mS/cm2]

Channel Dendrites Soma Preseg. Initial seg. Axon

Na H-H 119.0 90.7 486.3 0 124.5

NaV1.6 0 0 0 528.9 0

K H-H 139.0 120.7 218.1* 797.7 49.9

Ca 2.5 3.0 2.5 0 0

Ca-activated K 2.2 2.2 2.2 2.2 2.2

A-current 2.7 3.8 0 0 0

Surface Area 47104.7 3569.7 496.7 281.6 5869.4

[µm2]

Process length — 43.6 38.7 43.3 1297.8

[µm]

Table 4.1: Distribution of ion channels and G-bar membrane conductances
(mS/cm2) on the alpha ganglion cell model 1 for T = 35°C. * indicates
values that are arbitrary for which changes cannot be distinguished
in soma recording phase plots. g_pas = 0.0006, e_pas = −65.0,
Ra = 143.2, global_ra = 143.2, ENa = 60.59 mV, EK = −95.31 mV.
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Alpha Cell 2 Fitted Conductances G [mS/cm2]

Channel Dendrites Soma Preseg. Initial seg. Axon

Na H-H 75.8 63.4 903.1 0 124.5

NaV1.6 0 0 0 562.0 0

K H-H 129.7 80.5 149.6* 199.4 49.8

Ca 2.5 3.0 2.5 0 0

Ca-activated K 2.2 2.2 2.2 2.2 2.2

A-current 2.7 3.8 0 0 0

Surface Area 71856.9 4885.1 315.0 258.2 8185.8

[µm2]

Process length — 40.4 38.2 39.9 1194.6

[µm]

Table 4.2: Distribution of ion channels and G-bar membrane conductances
(mS/cm2) on the alpha ganglion cell model 2 for T = 35°C. * indicates
values that are arbitrary for which changes cannot be distinguished
in soma recording phase plots. g_pas = 0.0002, e_pas = −65.0,
Ra = 143.2, global_ra = 143.2, ENa = 60.59 mV, EK = −95.31 mV.
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Uncertainty Factor U [dB]

Current step (2 µA) 0.95

Amplifier linearity 0.05

Calibration offset 0.05

Combined uncertainty (k = 1) 1.00

Table 4.4: Measurement uncertainty budget for the stimulation threshold.

Uncertainty Factor U [dB]

Simulation 2.6

Measurement 1.0

Total uncertainty (k = 1) 2.8

Table 4.5: Total uncertainty for the stimulation threshold.

4.a.2 NaV1.6 channel model

Hodgkin-Huxley style gating rate constants were used in this model for
simulating voltage-gated sodium, potassium, and calcium channel kinetics
were as reported for mammalian retinal ganglion cell action potentials [226].
However, the addition of a modified gating mechanism for NaV1.6 channels
was required for the axon initial (trigger) segment (IS) of high sodium-
channel density. Currently, there is large variability in the reported axon IS
activation gating voltages of NaV1.6 channels and position in the literature,
as they appear to be dependent on activity [251, 252]. We used an empirical
solution-based approach to obtaining an adequate fit to the IS-SD break
bump in the phase plot. The IS NaV1.6 m3h gating variable kinetics format
was standard, but included a gating rate activation constant (m) shifted 5 mV
more negative, although other values for the gating shift were investigated.
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NaV1.6 m:

αm(V) =
−2.725(V + 40)
e−0.1(V+40) − 1

βm(V) = 90.83e−(V+65)/20

τm =
1

αm(V) + βm(V)

m∞ = αm(V)τm

NaV h inactivation was left intact:

αh(V) = 1.817e−(V+52)/20

βh(V) =
27.25

1 + e−0.1(V+22)

τh =
1

αh(V) + βh(V)

h∞ = αh(V)τh

4.a.3 Calcium clearance mechanism

The calcium clearance model was based on the first-order decay internal
calcium pump model capump.mod originally described by [236] and mod-
ified by Carnevale (unpublished) with improved integration, with the 4
model parameters passed to NEURON as global variables as shown below:

depth_cas = 15

taur_cas = 280 (alpha cell 1)

taur_cas = 150 (alpha cell 2)

kd_cas = 0.0002

cainf_cas = 1× 10−5

The fits match the average number of spikes to 900 pA depolarizing
current pulses. The initial calcium concentration parameters were [Ca2+]0 =
1.8 mM and [Ca2+]i = 0.0001 mM.
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abstract

A novel modelling approach to automatically tune the stimulation param-
eters of multi-contact electrodes in order to achieve targeted and steerable
stimulation has been developed. The approach, which is based on pre-
computed activating function contributions determined along individual
neuron fiber trajectories, was successfully compared and validated against
fully coupled EM-neurophysiological modelling in neuro-functionalized
computational anatomical models. The approach provides acceleration by
more than three orders of magnitude. The applications investigated include
deep brain stimulation (DBS) and spinal cord stimulation (SCS). Proper
consideration of tissue anisotropy has been found to be crucial for the
prediction of fiber recruitment.

The development of an image-based, neuro-functionalized virtual head
model for DBS-related modelling is also described.

5.1 introduction

A wide range of therapies that rely on stimulation of neural activity through
application of EM fields with external or implanted devices exist. In the
majority of cases, a population of neurons is to be stimulated, while inter-
ference with the activity of other neurons is to be avoided [8]. Selective
targeting can be achieved through application of multiple electrode contacts,
for which the voltage or current amplitudes are individually controlled [253,
254]. However, when the number of independent electrodes becomes large
and patient-specific treatment optimization is required, application of pre-
defined steering parameters or manual tuning becomes suboptimal, time
consuming, or even impossible. Optimization must take into consideration
the field distribution within the complex inhomogeneity of the human
anatomy, but also the trajectories and morphologies of neurons, as well as
the electrophysiological behavior of these neurons (including pulse-shape-

97



98 neurostimulation optimization

dependent responses). While coupled EM-neuronal dynamics modelling
within functionalized virtual anatomical models has recently become pos-
sible [201], the computational effort is typically still too costly to allow
brute-force stimulation parameter optimization by means of, e.g., genetic
algorithms – at least on ordinary computational hardware. Therefore, an
alternative approach is needed.

In this study, DBS and SCS were studied by comparing coupled EM-neuro
modelling with simplified predictions based on the activation function
concept from [16]. A computationally efficient optimization scheme suitable
for the latter is proposed and applied to SCS targeting. The limits of the
activation function approximation are investigated, along with the impact
and importance of considering spinal cord anisotropy. The extension of the
proposed approach to pulse-shape optimization is discussed.

5.2 methods

5.2.1 EM-electrophysiological modelling

For the coupled EM-electrophysiological modelling Sim4Life (ZMT Zurich
MedTech AG, Switzerland) is used that offers a range of EM solvers for
the full Maxwell equations, as well as a range of (quasi-)static approxima-
tions suitable for electric or magnetic exposure at low frequencies. The EM
solvers are optimized for the modelling of in vivo field conditions within
complex virtual anatomical models. Sim4Life facilitates electrophysiological
modelling of neuron models with complex channel dynamics and mor-
phologies by integrating the NEURON libraries [255] and offers a range of
predefined axonal dynamics models. Coupling between the electric E-field
distributions or electric potentials and the compartmental neuron models is
achieved using NEURON’s extracellular mechanism. Using this approach,
it is possible to simulate neuronal dynamics within suitably functionalized
anatomical models [201]. Titration functionality is available to determine,
for a given field distribution, neuron model, and pulse shape, the scaling
required to reach the stimulation threshold.

For all simulations below, Sim4Life’s ohmic-current-dominated electro-
quasistatic solvers (structured and unstructured) have been employed, to-
gether with the low-frequency tissue parameters from [199].
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5.2.2 Activation functions and optimization

The activation function (also sometimes referred to as ‘activating function’)
is a quantity related to the second derivative of the electric potential φ
along a nerve fiber trajectory that was proposed as a means of assess-
ing stimulation by fields applied extracellularly to the fiber. Axonal fibers
can be stimulated by the tangential E-field at the fiber end, by field in-
homogeneity along the fiber, and by bends in the fiber trajectory [246].
While the first is related to field strength, the latter two can be predicted
based on the activation function. Activation functions A(l) can either be
derived from the continuum partial differential equation representation of
the electrophysiological model resulting in the formula

A(l) =
d

4ρC
∂2φ(l)

∂l2 ∝
∂2φ(l)

∂l2 =: A∗(l)

where l is the position along the fiber, d the fiber diameter, ρ the axoplas-
matic resistivity, and C the membrane capacitance. It can also be understood
in a discretized way in myelinated nerves as the charge build-up resulting
from the difference between the neural current flowing between a Ranvier
node and the previous one as a result of their potential difference and the
current flowing between the node and the subsequent one:

AD(li) ∝ A∗D(li) =
(

φi+1 − φi
∆l

− φi − φi−1

∆l

)
/∆l =

φi+1 − 2φi + φi−1

∆2
l

where ∆l is the internodal distance. Notice that this formula is equivalent
to the central differences discretization of the second derivative along the
nerve trajectory. Functionality to extract the activation function along fiber
trajectories for a simulated EM field was implemented in Sim4Life.

While investigating the dependence of the activated regions and neurons
on varying electrode configurations, it was found that the activating func-
tion (i.e., a quantity proportional to the second spatial derivative of the
potential along the trajectories) is an excellent predictor for the stimulation
of axonal fibers by field inhomogeneity – one of the principal stimulation
mechanisms – (see Section 2.1.1). Whether the maximum or the absolute
value of the minimum (depending on the polarity / shape of the pulse) of
the activating function along a fiber is above a threshold AT determines
whether that fiber is activated. The threshold at which a neuron spikes
depends on the type of neuron and its dynamics (e.g., motor vs. sensory,
A / B-type, diameter), as well as the pulse shape of the applied field. It can
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be determined from a single neuronal dynamics simulation per fiber type,
diameter, and pulse shape, irrespective of electrode geometry, placement,
local anatomy or tissue properties. For monopolar pulse shapes, action
potentials are likely to be initiated in fibers where the activation function
maximum (or the maximum of −A(l), depending on cathodic vs. anodic
stimulation) along the fiber exceeds the threshold, while other fibers are
unlikely to respond. For bipolar pulses, the maximum of both A(l) and
−A(l) can be relevant. An approach that relies on precomputed activating
functions along all fibers and electrodes and uses an efficiently evaluable
functional can be employed to optimize the stimulation parameters.

Due to the linearity of Maxwell’s equations, the total potential for any
steering parameter set is:

φ(l) = ∑
i

ciφ(l)i

where ci are the weights of the field generated by the i-th contact / channel;
e.g., the applied voltage if the fields have been normalized accordingly. The
activating function can then be evaluated as follows:

A∗(l,~c) =
∂2φ(l)

∂l2 =
∂2 ∑i ciφ(l)i

∂l2 = ∑
i

ci
∂2φ(l)i

∂l2 = ∑
i

ci A∗i (l)

Therefore, if the A∗i have been precomputed for all individual chan-
nels, maxl A∗(l,~c) can be evaluated very efficiently for any ~c, allowing
optimization using standard approaches. A corresponding approach was
implemented as a Python script in Sim4Life to maximize the functional:

w+ ∑
i∈F+

S
(

maxl ∑i ci A∗i (l)
AT

− 1, d
)
− w− ∑

i∈F−
S
(

maxl ∑i ci A∗i (l)
AT

− 1, d
)

S(x, d) =
2

1 + e−x/d − 1

where S(x, d) is a sigmoid function, w+/− are weighting coefficients for the
activation of fibers that should be activated (F+) or not (F−; weight-ratio
w := w−/w+), and d is the sharpness of the sigmoid. (Note: there are
about 20 times fewer targeted fibers than fibers to avoid – hence equal
weighing would correspond to about w = 0.05.) The Nelder-Mead opti-
mization method from SciPy was used [256, 257]. The ratio of the weighting
coefficients expresses the importance of effective stimulation vs. unwanted
side-effects. d is related to the importance of stimulation robustness (fibers



5.2 methods 101

with activation function peaks within d · AT of the threshold are not con-
sidered fully activated or silent, reflecting the uncertainty about the exact
activation threshold; see Section 5.4.1). d also influences optimization con-
vergence, as with decreasing d the sigmoid approaches a step function
that is flat nearly everywhere and does not provide gradient information
anymore.

5.2.3 Generic neurostimulation model

The activating function-based stimulation assessment is an approxima-
tion. The activation function varies along the fiber resulting initially in a
de- / hyperpolarization pattern resembling the activating function. How-
ever, conduction along the fiber subsequently leads to an influence from
neighboring regions, especially for longer pulse durations. Therefore, the
activation function threshold is expected to depend, e.g., on the width of
the exposure. To investigate this, gaussian potentials with varying width (1–
15 mm) were applied to a fiber model and the activation function threshold
was determined by titration. A Sweeney fiber model [158] (diameter 12 µm;
parameterized to mimic dynamics at 37°C) was used given its relevance for
the SCS application studied in this chapter.

5.2.4 DBS model

Coupled EM-electrophysiological DBS models were developed by integrat-
ing the corresponding neurons and fibers within the detailed anatomical
‘MIDA’ head-model [258] that features the thalamic nuclei of interest. The
MIDA model is based on high resolution (at least 0.5 mm isotropic), mul-
timodal MRI data of a healthy volunteer that has been segmented into
a large number of detailed tissue structures. It is complemented by high
quality, non-rigidly registered diffusion tensor imaging (DTI) data of the
same volunteer, which allows to assign inhomogeneous, anisotropic mate-
rial property distributions to the neural tissues. Furthermore, an atlas of
thalamic and subthalamic nuclei has been integrated in some versions of
the MIDA model.

For the work presented here, the functionalization of the MIDA model
involved two steps: the anatomo-morphological reconstruction and the
electro-physiological functionalization. First, real, MIDA-specific nerve tra-
jectories of the internal capsule (IC) fibers were derived from the acquired
DTI data. Internal globus pallidus (GPi) fibers were reconstructed on the ba-
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sis of the neuroanatomical description of the GPi fiber trajectories from [259].
A replica of the subthalamic nucleus (STN) neurons according to the mod-
els of Miocinovic [171] (see Figure 5.1) were positioned within the STN.
Secondly, the compartmentalization and biophysical properties assignment
according to [260] was performed for the myelinated GPi and IC axons,
while the biophysics of the STN neurons was imported unchanged from
the Miocinovic’s model.

stn neurons In the work of Miocinovic [171], three different base
models of STN neurons were used. All three models have identical neuronal
bodies (i.e., soma and dendritic tree) but different axonal trajectories to
account for anatomical differences. In the present work, N = 100 replicas
of the Miocinovic STN base neurons (see Figure 5.1) were positioned within
the STN with the axon pointing toward the GPi. To position the neurons,
three points were defined for each base neuron, marking the soma, as well
as the first and the last axonal node. The coordinates of the axonal nodes
were used to determine the orientation of the axon, while the coordinates
of the first node, closest to the soma, was chosen for the positioning of the
neuron within the STN. N points within the STN were randomly distributed
to uniformly cover the entire STN volume. Then, each neuronal replica
was positioned with its initial axonal node at one of these random point
locations and rotated in order to orient the axonal axis toward the closest
point of the GPi. A neuronal position was accepted when two conditions
were satisfied: (i) the soma, including the dendritic arbour, was completely
enclosed within the STN; and (ii) the neurons did not intersect with the
electrode geometry. In case at least one of these conditions was violated,
a new choice for the position was considered and conditions (i) and (ii)
verified until a sufficient number of neurons could be placed.

ic fibers A DTI fiber tracking algorithm was implemented and used
to identify trajectories of largest diffusion – hence identifying fibers – in
a region of interest (ROI) that includes the whole GPi, STN, and the DBS
stimulator geometry. 500 random fibers were created.

This large number of fibers permitted the exclusion of ‘unrealistic’ fibers,
i.e., fibers with evident spatial irregularities in proximity of the electrodes
and the STN, fibers which were too short, or fibers that were very similar
to other fibers. This selection was performed visually and resulted in a
reduction of the number of possible candidate fibers to 265 (52 %), from
which 50 fibers were finally chosen (see Figure 5.2). Specifically, ten random
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(a) (b) (c)

Figure 5.1: (A) Multi-contact ring electrode, (B) the three base STN neuron mor-
phologies, (C) selected STN neurons (blue), GPi fibers (black), and IC
fibers (red); the GPi is shown in light green and the STN in light blue.

permutations of always 50 fibers were chosen from the 265 visually selected
ones. A statistical analysis was performed on the impact of the selection
(ten permutations) on the titration factors for spike initiation in any IC
fiber, which showed that the selection of 50 fibers from the 265 suitable
candidates has only a minor impact on the functionalized model behavior
(see Figure 5.3). The IC trajectories were converted into electrophysiological
models comprising nodes, paranodal compartments (MYSA and FLUT) and
internodes (STIN) compartments according to [171, 260].

gpi fibers To integrate the GPi fibers into the MIDA model, the follow-
ing strategy was used: first, one basic GPi fiber running from the internal
segment of the GPi to the ventral thalamus was traced, while referring
to the description of the lenticular fasciculus trajectory from Parent and
Parent [259]. In a second step, a population of fibers was obtained by
cloning the basic geometry and distributing the clones in the model with
random translations of 10µm in all the three directions. This was followed
by conversion into electropysiological models [260].

intrinsic neuronal activity STN neurons and GPi fibers possess
intrinsic activity, also in the absence of external electric stimuli, as origi-
nally considered in Miocinovic’s model. This intrinsic activity is enforced
artificially in the GPi fibers by including a current source (‘IClamp’) with
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Figure 5.2: IC fiber candidates obtained from DTI-based fiber tracking. From left
to right: all fibers, accepted fibers, and discarded fibers.

a frequency of 80 Hz at the initial node. For the STN neurons, the spon-
taneous activity emerges physiologically from the specific ionic channel
distribution and conductivities.

limitations A range of limitations of the neuron models still exist
and should be considered, in particular with regard to predictions of the
response to DBS stimulation in humans.

• The STN neurons are based on the ModelDB [161] models from
Miocinovic and have been generated from macaque monkey data. The
current nonexistence of similar neuronal models for humans limits the
direct translation of the modelled single cell DBS stimulation response
to humans. Moreover, the STN axons of the ModelDB models are not
sufficiently long to reach the GPi, due to the larger STN-GPi distance
in humans compared to macaques. However, it is is not expected to
affect the results obtained from studies of STN stimulation, as the
STN axonal end-nodes are outside of the critical near field generated
by the electrodes and hence largely unaffected by direct stimulation.

• Although the tracing of GPi fibers was performed for the specific
human MIDA model and based on detailed atlas data and the neu-
roanatomical description from Parent and Parent [259], it is not ex-
pected to be fully accurate.
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Figure 5.3: Top: different fibers sets randomly selected from the 265 suitable
candidate fibers, including visualization of the spike initiation site
at the stimulation threshold (indicated by spheres). For each image,
the largest sphere indicates the location of the lowest threshold spike-
initiation-site. Bottom: recruitment curves as a function of the titration
factor for different sets of fibers.
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• The fiber tracking algorithm used to trace IC fibers from the DTI
data might not accurately follow fibers in regions of low fractional
anisotropy, resulting in unrealistic bends. However, angle criteria as
well as visual inspection were used to avoid the inclusion of unsuitable
fiber trajectories – at the cost of reducing the density of usable fibers
with trajectories passing regions of low fractional anisotropy.

em modelling Here we focus on reporting the study-part related to
IC fiber activation as the other neuron populations manifest spontaneous
activity, complicating the discussion of exposure-related spike-initiation.
Avoiding collateral activation of IC fibers is frequently an objective when
adjusting DBS stimulation parameters or designing DBS implants.

A generic electrode with three active ring contacts was placed in a trajec-
tory reaching the STN, mimicking a common implantation trajectory (see
Figure 5.1). ‘Damaged’ neurons, i.e., neurons overlapping with the implant,
were discarded. For the EM modelling, an unstructured quasistatic finite
element method (FEM) solver has been used that properly accounts for
the important anisotropy of the neural tissue. In the MIDA computational
head model, the inhomogeneous map of anisotropic electrical conductivity
was derived from DTI data [258], following the relationship between frac-
tional DTI anisotropy and anisotropic conductivity reported by [150]. Two
sets of Dirichlet boundary conditions were applied to the active contacts:
[0/1/0] and [-1/0/1] (arbitrary scaling as basis for the titration procedure).
Neuronal dynamics simulations were performed for the modelled IC fibers
(including titration), and the location of spike initiation at the stimulation
threshold was recorded for each fiber. The activating function along the
fibers was computed from the simulated potential distribution.

5.2.5 SCS model

To investigate activation function-based stimulation parameter optimization,
a SCS model similar to the one from [7] was constructed (see Figure 5.4).
It includes a 2.5D spine model with epidural fat, dura, cerebrospinal fluid
(CSF), grey and white matter, and distinguishes 22 dermatomal zones. A
generic paddle electrode featuring an array of 5-by-4 contacts was placed in
the epidural fat, in the position closest to the spinal cord (for most tests, only
5–10 contacts were included for optimization to reduce the optimization
search-space). EM simulations were performed for each contact using the
ohmic-current dominated real-valued electro-quasistatic solver, setting the
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contact voltage to 1 V and the voltage of all others to 0 V, while isolating
boundary conditions were applied at the domain boundary. From these
simulations, any set of electrode current or voltage conditions can be ob-
tained by superposition. 1952 axially-aligned Sweeney neuron models were
positioned throughout the dorsal column at a density of 400 fibers/mm2

(see Figure 5.4). These fibers run nearly the full longitudinal length of
the spinal cord and are each randomly offset by a distance of maximally
the internode distance (uniform offset probability distribution), such that
the different fiber’s nodes are not unrealistically aligned. Fibers are long
enough to avoid non-physiological stimulation originating at either end
of the fiber, as ascertained numerically. All fibers were set to have a fiber
diameter of 12µm, as in [7].

(a) (b)

(c) (d)

Figure 5.4: (A,B) Setup featuring the spinal cord with an inserted stimulator
paddle model. (C,D) Close-ups of the 22 dermatomal zones and the
neuron fibers running longitudinally along the dorsal column (den-
sity: 400 modelled fibers/mm2). White points indicate fiber activation
for a given stimulation condition.

The stimulation conditions from [7, 261], reproduced in Figure 5.5, were
simulated to verify that similar activation maps were obtained. Subse-
quently, stimulation threshold titration and activation function extraction
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was performed for one of the fibers with a monopolar pulse of 0.1 ms, to de-
termine the corresponding AT . The spinal cord subdomains were assigned
dielectric properties listed in Table 5.1, obtained from [7]. Four variants
of the white matter electrical conductivity were simulated: (i) anisotropic
(longitudinal: 0.72 S/m, transversal: 0.083 S/m; as in [7]); (ii) isotropic low
(0.083 S/m); (iii) isotropic average (0.4015 S/m, corresponding to the aver-
age of the longitudinal and transversal conductivities from [7]; and (iv)
isotropic high (0.72 S/m). Simulations were performed with different grid
refinement to ensure that the impact of discretization on neural stimulation
thresholds were negligible (less than 2 %). A strong convergence criterion
was used for the numerical solver (residuum reduction by nine orders of
magnitude).

(a)

(b)

Figure 5.5: (A) Electrode configuration from [7] and (B) ‘guarded’ configuration
from [261] indicating (+) and (-) potentials. (Figures adapted from
original papers)

For the neuronal dynamics simulations, a stimulation waveform con-
sisting of a cathodic 100 µs step pulse with an initial delay of 100 µs (for
equilibration purposes) was employed.

optimization Automatic steering parameter optimization was per-
formed by specifying which dermatomal zones should be activated. The
suitability of this approach has been investigated in the spinal cord model
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Material Conductivity [S/m]

Epidural Fat 0.05

CSF 1.67

DC and White Matter

isotropic 0.4015

aniso. longitudinal 0.72

aniso. transversal 0.083

Grey Matter 0.25

Paddle 0

Table 5.1: Material dielectric properties used in the SCS model

by defining regions of targeted activation and shifting them laterally (from
the far left to the far right), as well as varying their size (1–11 consecutive
zones). Initially, only the front row of neurons was considered, but subse-
quently the depth was extended to obtain the typical depth of activation
in [262, 263]. Optimization was performed (i) for a single row (1D array)
of five active contacts, (ii) a single row sandwiched between two grounded
rows, and (iii) a 2D array (three rows, 15 contacts; to allow configurations
similar to the ‘guarded’ ones in [261]). The initial guess cInit of the ci (iden-
tical for all i) was varied, as well as the sigmoid parameter d, to assess the
impact on optimization performance and to study optimization robustness.

metrics The following metrics were used to quantify stimulation selec-
tivity:

• coverage ratio: ratio of successfully activated fibers in the targeted
region (as a measure of effectivity).

• collateral ratio: ratio of activated non-targeted fibers (as a measure of
collateral side-effects).

• stimulation robustness:

∑
i∈F+

S
(

maxl ∑i ci A∗i (l)
AT

− 1, 12.5%
)

/|F+|

as a measure of robustness of the intended stimulation. The 12.5 %
were chosen, reckoning that a safety distance of 1/8 · AT from the



110 neurostimulation optimization

assumed activation-function-threshold should be sufficient to handle
actual threshold-variations.

• safety robustness:

∑
i∈F−

S
(

1− maxl ∑i ci A∗i (l)
AT

, 12.5%
)

/|F−|

as a measure of safety from unwanted stimulation.

5.3 results

5.3.1 Verification

When comparing the results obtained using the SCS model with those
from [7], the minimal titration threshold of 1.95 mA is 3 % higher than the
1.89 mA found in [7], demonstrating a good agreement. Visual comparison
of the predicted activated region at 2.6 mA (see Figure 5.6) also shows good
agreement with [7], when anisotropic properties are used. This serves as
additional verification of the coupled EM-neuro modelling implementation.

5.3.2 Activation function and stimulation location

The E-field generated by the DBS stimulator for the two electrode config-
urations ([0/1/0] and [-1/0/1]) has been characterized in homogeneous
tissue with conductivity equal to the STN to obtain a clear idea of its spatial
features. Figure 5.7 illustrates the E-field distributions for both electrode
configurations, on a symmetry plane containing the electrode axis.

Titration predicts that a minimal current of 0.5 mA is required for IC
fiber activation for configuration [0/1/0]. For configuration [-1/0/1], spike
initiation in IC fibers occurs at a minimum threshold of 2.58 mA. Figure 5.8
compares the recruitment curves of IC-fibers for the two stimulation config-
urations. It illustrates the large effect of different choices of the electrode
configuration on the threshold levels for IC fiber activation: configuration
[0/1/0] has a threshold for IC fiber recruitment 5.4 larger than that of
configuration [-1/0/1].

Figure 5.7 illustrates the activating function calculated for each IC fiber for
the two electric configurations, with fiber-specific, symmetric color-scales
ranging from [−m, m] (m being the maximum absolute value of the activat-
ing function along that fiber; the color-scale is thus different for each fiber).
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(a)

(b)

Figure 5.6: (A) Figure from [7] showing the fiber activation for a range of un-
guarded configurations at a 2.6 mA stimulation magnitude. (B) Cor-
responding result obtained using the model from this study, for
configuration ‘Step 15’.
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(a) (b)

(c) (d)

Figure 5.7: (Top) Combined slice-field and streamline views of the E-field in a
plane containing the electrode axis for configuration (A) [0/1/0] and
(B) [-1/0/1]. (Bottom) Surface line plots of the activating function
along the IC fibers using fiber-specific but symmetric color-scales, i.e.,
with a range [−m, m]) – (C) [0/1/0] and (D) [-1/0/1]. The locations
of spike initiation at the threshold level, determined through the
titration procedure, are indicated as red spheres.
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Figure 5.8: (Left) Comparison of the recruitment curves for the two investigated
electrode configurations. (Right) Activation function along two fibers,
as well as locations of recorded spike initiation (for electrode configu-
ration [-1/0/1]). The spike-initiation locations coincide with extrema
of the activation functions.

The location of spike initiation at the threshold exposure level is visualized
for each fiber, as a red sphere. The activating functions successfully predict
the location of spike initiation for the IC fibers, therefore providing an alter-
native method to investigate the locations of spike initiation in axonal fibers
and to roughly estimate thresholds without performing actual neuronal
dynamics modelling.

While for the stimulation configuration [0/1/0] the sites of stimulation al-
ways occur at activating function minima, for the configuration [-1/0/1] the
stimulation sites are partly located at maximal activating function locations.
This can be understood when looking at the investigated pulse, which is
a short, symmetric bipolar pulse, thus producing comparable stimulation
thresholds for positive and negative activating function values of similar
magnitude (unlike monophasic pulses which result in different thresholds
for cathodic and anodic stimulation). For the stimulation configuration
[0/1/0] the activating function magnitude is maximal at the level of the
non-grounded electrode (where the activating function is negative), while
for the stimulation configuration [-1/0/1] two levels (bands) with similar
activation function magnitude, but opposite sign, exist. Depending on the
distance between fibers and specific electrodes, the actual location of spike
initiation will vary between the two levels.
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5.3.3 Activation region

To compare the activation-function and the electrophysiological modelling-
based stimulated region predictions, the maximum along the fiber direction
of the second potential derivative is visualized across a spine cross-section
(activation function maximal intensity project (MIP)), while the activation
of fibers is indicated through color-coded dots (see Figure 5.9).

Figure 5.9: Comparison of fiber activation prediction methods. The white / red
dots indicate stimulation predictions based on detailed coupled EM-
neuro simulations, whereas the green line indicates the delineation
of the region where the activation function along the fibers exceeds
the activation function stimulation threshold. The color map in the
background visualizes the projected activation function maxima along
the fiber directions on a plane perpendicular to the fiber orientation.

5.3.4 Activating function threshold

The impact of the gaussian width on AT in the generic model is shown in
Figure 5.10.

5.3.5 SCS selectivity

Figures 5.11–5.14 illustrate the selectivity and robustness of activation with
regard to safety and efficacy measures, as well as the impact of the sigmoid
sharpness d and the ratio of the weights w = w−/w+ – the latter expressing



5.3 results 115

(a)

0 5 10 15 20
Gaussian Width [mm]

Th
re

sh
ol

d

(b)

Figure 5.10: (A) Illustration of the second derivative of a gaussian curve, which
features two side extrema with opposite sign next to the principal
extremum. This means that a gaussian extracellular potential along
a nerve fiber results in two opposing activation function regions on
both sides of an activation function maximum. If the width of the
gaussian becomes small, this results in a opposing transmembrane
current flows that have a non-negligible impact on the activating
function based stimulation threshold. (B) Gaussian width depen-
dence on stimulation threshold.

the relative importance assigned to activating the targeted fibers vs. not
activating unwanted fibers (for safety reasons).

Figure 5.11 shows stimulation robustness, safety robustness, coverage
ratio, and collateral ratio (as defined in Section 5.2.5) for the chosen reference
configuration: optimization of a single row of five contacts, w = 0.5, d =
0.015, and cInit = 75. Note that the values for ci and cInit depend on the
computed activating function threshold and would need to be further
normalized to translate to a physically meaningful quantity.

Figure 5.12 compares the coverage ratio, collateral ratio, stimulation
robustness, and safety robustness plots for the reference configuration
(single row with 5 electrode contacts) and a 3× 5 array .

Figure 5.13 compares the coverage ratio, collateral ratio, stimulation
robustness, and safety robustness plots for the reference configuration for
two different values of the relative weighting of avoidance of non-target
regions vs. successful activation of targeted regions w.

Figure 5.14 compares the stimulation robustness, safety robustness, cov-
erage ratio, and collateral ratio plots for the reference configuration for two
different values of the sigmoid width d.

Figure 5.15 compares the coverage ratio, collateral ratio, stimulation
robustness, and safety robustness plots for the reference configuration for
two different values of the initial guess cInit.
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Figure 5.11: Stimulation robustness, safety robustness, coverage ratio, and collat-
eral ratio (top to bottom) for the chosen reference configuration. The
top row in the trapezoidal visualization corresponds to targeting a
single dermatomal zone and the subsequent rows increase that to
up to 11 zones. Left-to-right corresponds to corresponding lateral
shifting of the targeted zones. The row averages are displayed on
the left and the column averages below.
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Figure 5.12: Comparison of the stimulation robustness, safety robustness, cover-
age ratio, and collateral ratio plots (top to bottom) from the reference
configuration (single row with 5 electrode contacts; shown left), a
single row sandwiched between two grounded rows (middle), and a
3× 5 array (right).

Figure 5.13: Impact of the relative weighting of avoidance of non-target regions
vs. successful activation of targeted regions w = w−/w+ on the
stimulation robustness, safety robustness, coverage ratio, and collat-
eral ratio plots (top to bottom) of the reference configuration. Left:
w = 0.5; right: w = 0.1.
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Figure 5.14: Impact of the sigmoid width d on the stimulation robustness, safety
robustness, coverage ratio, and collateral ratio plots (top to bottom)
of the reference configuration. Left: d = 0.015; right: d = 0.050.

Figure 5.15: Impact of the initial guess cInit on the stimulation robustness, safety
robustness, coverage ratio, and collateral ratio plots (top to bottom)
of the reference configuration. Left: cInit = 75; right: cInit = 750.
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The impact of varying w, d, and cInit on the robustness of stimulation
is quantified in Figure 5.16. The monotonic decrease of the stimulation
robustness, coupled to an increase of the safety robustness, with increasing
w is evident and expected. The opposite trend is seen for the dependence
on cInit, demanding again a compromise between safety and efficacy. For d,
an optimal choice (around 0.02) seems to be possible.
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Figure 5.16: The parameter dependence of the coverage (left) and collateral (right)
ratios, as a function of w (top), d (middle), and cInit (bottom).
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5.3.6 Anisotropy

To gain understanding of the impact of anisotropy, the influence on distri-
butions of the potential in selected slices through the electrode center and
between the anode and cathode electrodes (see Figures 5.23–5.26) and along
selected lines (see Figures 5.18–5.19) has been studied for the four electrical
conductivity models described in Section 5.2.5. Furthermore, the titration
factors obtained using these four models were compared for three selected
neuron fibers at different depths (see Table 5.2).

Depth Unguarded Guarded

Front 2.6 4.0

Middle 3.7 5.8

Back 6.1 9.8

Table 5.2: Stimulation thresholds (in mA) at the three selected fibers (varying
depths – ‘Front’ is closest to the paddle).

Figure 5.17: Predicted activated fibers at 2.6 mA stimulation current when as-
signing an average isotropic conductivity (left) and a more realistic
anisotropic conductivity (right).
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(a) Unguarded, front (b) Guarded, front

(c) Unguarded, middle (d) Guarded, middle

(e) Unguarded, back (f) Guarded, back

Figure 5.18: Longitudinal variation of EM potentials along longitudinal lines at
different depths in the spinal column. Configurations are compared
for anisotropic and isotropic tissue property assignments. The loca-
tions of the longitudinal lines in the DC along which the data was
extracted are indicated by corresponding dots in the top figure.
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(a) Unguarded, normal (b) Guarded, normal

(c) Unguarded, parallel (d) Guarded, parallel

Figure 5.19: Potential variation along two lines for the unguarded and guarded
configurations. The locations in the DC of the lines along which the
corresponding data was extracted are illustrated in the top figure: a
line normal to and through the active cathode (‘normal’) and a line
across the spinal cord and parallel to the paddle (‘parallel’).
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5.4 discussion

5.4.1 Activation function as predictor

dbs The large IC fiber activation threshold differences observed for the
two stimulation voltage patterns (factor 5.4 between configurations [0/1/0]
and [-1/0/1]) are a consequence of the change in localized potential width
which strongly impacts the second derivative and hence the activation
function. A rough estimation shows that the configuration-change from
[0/1/0] to [-1/0/1] doubles the potential peak width and, hence, is ex-
pected to increase the stimulation threshold by a factor in the order of four.
Interesting differences in spike initiation locations are found that can be
readily understood by studying the activating function variation along the
fibers.

scs It is evident in Figure 5.9, that an MIP isoline perfectly separates
the region within which all fibers are activated from the non-activated
region, confirming that the activating function can be used to predict fiber
activation.

AT Figure 5.10 shows that AT does not vary much more when the stim-
ulation localization exceeds about 4–6 mm. For more localized exposures,
thresholds increase, as neighboring transmembrane net-charge-transfer
has a relevant inhibitory impact (for gaussian potential shapes, the sec-
ond derivative features side-extrema with opposite sign). This must be
compensated.

5.4.2 Targeting optimization

selectivity The automatic optimization is capable of identifying pa-
rameters that result in targeted activation of selected fibers / dermatomal
zones, failing only when the target region is very narrow (1–2 zones) and
centrally located (see Figure 5.11).

1d vs . 2d contact array Targeting performance increases from a
single row of five active electrode contacts, over the active row sandwiched
between grounded rows, to the full 2D array (3× 5). The robustness, how-
ever, shows the opposite trend (see Figure 5.12). This is to be expected as
an increase of the number of optimization parameters (degrees-of-freedom)
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enlarges the solution space, such that it encompasses solutions with better
optimization functional values (higher stimulation selectivity). It does so,
however, at the cost of the robustness of the stimulation configuration –
probably as it relies on subtly balancing out the impact of the individual
contacts (compensation), resulting in a reduced safety margin.

optimization parameters Depending on the number of steering
parameters (contact voltages) to be optimized, the optimization (based on
precomputed fields) takes between a few seconds and a few minutes, com-
pared with 30 min for performing a single electrophysiology simulation of
all the fibers (i.e., one optimization iteration; could be trivially parallelized,
as long as the fibers are treated as disconnected). Selecting an initial guess
of the right magnitude (voltage range) is required to ascertain convergence
to an optimal solution. Increasing the sigmoid width d strongly accelerates
convergence but reduces stimulation robustness – likely because changes
of the activation function distance from the stimulation threshold have a
smaller impact on the optimization functional. As expected, increasing the
w+/w− ratio prioritizes achieving effective stimulation over safety, and vice
versa. Thus, successful optimization is dependent on proper tuning of the
optimization parameters (sigmoid width, magnitude of initial guess). More
work is required to find a general approach to setting these parameters.

validity of approximation The predicted and optimized stimulation
based on the activating function-related functional has been successfully
compared and validated against full EM-electrophysiological modelling,
with the complexity of the channel dynamics taken into consideration.

5.4.3 Performance

One full neuro-simulation featuring all 1952 took 30 min on the employed
computational infrastructure (which allowed parallel execution of 20 fiber
simulations), meaning that an optimization-run with 100 iterations (op-
timizations for the SCS setup in Chapter 3.3 typically required 100-200
iterations) would require in the order of 50 hrs. Using the activation function-
based approached reduced the optimization time to < 2 min (and below a
minute when optimizing only a single row of contacts), without making
use of parallelization. This corresponds to an acceleration of more than
three orders of magnitude.
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5.4.4 Anisotropy

The titration factor behavior is not in agreement with the naive expectation
that the anisotropic model should produce thresholds intermediate between
those observed for the low-conductivity and high-conductivity isotropic
models. Instead, the titration factors are similar for the different isotropic
models, and the behavior of the anisotropic model is unique. It has a
titration factor between the low and the average isotropic models for the
closest fiber, but the titration factor rapidly increases with increasing depth.

This behavior can be better understood by observing the potential along
these fibers (see Figure 5.18). While the potential variation along superficial
fibers is similar in the isotropic and anisotropic cases, the curvature (second
derivative) of the curves rapidly decreases with increasing fiber depth
in the case of the anisotropic model compared to the curvature behavior
observed for the isotropic cases. The stimulation threshold is known to
be related to the second derivative [16, 246] and, thus, reduced curvature
is related to an increased stimulation threshold. For a field line from the
cathode to the anode (see Figure 5.20) to reach a location deep within the
spine, the current has to travel to that depth when entering and exiting the
spinal cord. Most of the voltage drop occurs along those path segments,
where there is an important field component in the transverse direction
(along which resistance is high). At the same time, the voltage drop along
the part of the path in between is reduced due to the higher conductivity.
This scenario can be compared to a serial arrangement of a large resistor,
a small resistor, and another large one, where the voltage drop over the
small resistor is comparably small. Furthermore, a trajectory that rapidly
gains depth, then travels mostly in a longitudinal direction, and leaves the
spinal cord again on a short path results in overall reduced resistivity –
even if the overall field line length increases – thus further stretching the
potential along the neuron fiber, reducing the curvature, and increasing the
stimulation threshold. A field line that barely penetrates the spinal cord,
however, will be little affected by the anisotropy, and its trajectory will not
deviate much from that of a field line in the isotropic case. Therefore, the
stimulation threshold of fibers near the stimulator remains similar in the
anisotropic and in the isotropic case.

In conclusion, the important impact of tissue anisotropy on stimulation
thresholds, selectivity, and recruitment curves is understandable, as conduc-
tivity is highest precisely along the direction of the fibers which is also the
direction along which the second derivative of the potential is computed,
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while it is low perpendicular to that direction. This configuration facilitates
potential drops between fibers and simultaneously smooths the potential
variation along fibers, thus reducing the activating function and the related
stimulatability.

When comparing the anisotropic and isotropic models, it is important
to remember that the spinal cord is surrounded by highly conductive CSF
that mostly dominates the potential distribution across the entire geometry.
The lower conductivity spinal cord locally distorts and compresses the
isopotential surfaces, producing a higher field within the spine than in
the surrounding CSF. This compression slightly increases the potential
variation – and hence curvature – on the dorsal side, while decreasing
it on the ventral side (see Figures 5.23–5.26). The degree of that effect
depends on the exact conductivity value and explains the titration factor
behavior observed for different isotropic models with varying conductivity:
with increasing conductivity, the titration factor and stimulation threshold
of neurons near the paddle (‘front’ neuron) increases slightly, while the
titration factor of remote neurons (‘back’ neuron) decreases.

In conclusion, neural tissue anisotropy has an important impact neu-
rostimulation thresholds and recruitment. While the limit stimulation
threshold can be estimated with an isotropic model, the prediction of
penetration depth and activation region size is considerably overestimated
when an isotropic model is used, even if low transversal conductivity is
applied.

5.4.5 Generalization

In future work, the use of activation functions for rapid optimization of
targeted stimulation could be extended beyond the demonstrated applica-
tion to steering parameter optimization for a homogeneous population of
neural fibers.

heterogeneous fiber population In cases where different types of
fibers need to be considered (e.g., myelinated and unmyelinated, varying
diameters, varying channel characteristics and / or distribution), the princi-
pal adaptation of the presented scheme is that instead of a global AT value,
fiber-specific activation function thresholds AT(fiber-type) are required.
Several applications, such as nerve stimulation selectivity optimization, e.g.,
in the context of neuroprosthetics [204] or bioelectronic medicine, could
benefit from this finding.
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(a) Comparison of two field lines that reach different depth in the spinal cord.

(b) ‘Equivalent circuit’ for field line b (anisotropic conductivity).

(c) Potential variation along a field line that initially goes through a high-resistive region, then
a low-resistive region, and then a high-resistive once again (1); comparison to the potential
variation when going through a constant resistivity region (2).

(d) Two paths reaching the same depth. Path ii might be longer than path i, but it minimizes
the parts with mostly transversal orientation and larger resistivity.

Figure 5.20: Interpretation of the observed strong impact of anisotropy on the
stimulation. Anisotropy reduces the voltage variation in the part of
the path with mostly longitudinal orientation, as understandable
when looking at a simple circuit example with serial resistors (B),
and favors paths with reduced length in transversal direction (D).
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pulse shape In cases where the pulse-shape has to be optimized (e.g.,
to improve stimulation selectivity by fiber-type), AT cannot be taken as
constant anymore. Instead, in each optimization iteration, a single electro-
physiological simulation per fiber-type must be performed, to determine
the new AT(pulse-shape).

5.5 conclusions

Inspired by the successful prediction of stimulation locations and thresholds
in computational models of DBS and SCS based on activation function, a
novel optimization approach for targeted stimulation with multi-contact
electrodes that is capable of efficiently determining optimal stimulation
parameters has been developed. It optimizes the physiological response
based on features of the electric potential. The approach requires informa-
tion about fiber orientation, but can be performed without the need for
repeated coupled EM-neuronal dynamics modelling, resulting in computa-
tional acceleration by more than three orders of magnitude. The quality of
the stimulated region predictions has been successfully validated against
such coupled EM-neuronal dynamics modelling and applied in the context
of SCS to obtain superior targeting (focus and steering). Extension of the
approach to pulse-shape optimization and / or heterogeneous fiber popula-
tions (as relevant in neuroprosthetics and bioelectronic medicine) have been
discussed. Adaptation of the approach is likely to be required when the
distance between independent electrodes along the fiber direction drops
below about 4 mm.

In the process of that work, a computational neuro-functionalized hu-
man head model for DBS was created based on the work by [171]. The
computational ‘MIDA’ head model was employed for computational elec-
tromagnetics and as a source of information (DTI data, brain nuclei atlas)
supporting neuron placement and fiber trajectory tracing. Populations of
electrophysiological STN neurons, as well as GPi and IC fiber models were
created, positioned realistically within the head anatomy, and can now
be used for coupled electromagnetic-neuronal dynamics simulations. The
neuro-functionalized MIDA model was applied to compare two different
electrode configurations with similar inter-electrode voltage-differences.
Large differences in IC fiber activation thresholds (factor of 5.4) were found
and explained based on activation function considerations.

Activation function considerations also help to understand the unex-
pectedly strong impact of anisotropic conductivity of stimulation penetra-
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tion depth (e.g., in epidural stimulation applications). The origin of that
phenomenon is twofold: (i) increased longitudinal conductivity results in
smoothed potential variations along the fiber orientation, reducing the acti-
vation function and increasing the stimulation threshold, and (ii) increased
transversal resistance accelerates the field intensity decrease with increasing
distance to the electrodes.
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5.a appendix

(a) Potential

(b) Electric field (E)

(c) Current Density (J)

Figure 5.21: Planes cutting longitudinally through the active electrodes, show-
ing the potential, E-field, and current density distributions for the
unguarded step 15 configuration from [7].
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(a) Potential

(b) Electric field (E)

(c) Current Density (J)

Figure 5.22: Cross section planes cutting longitudinally through the active elec-
trodes, showing the potential, E-field, and current density distri-
butions for the guarded step 5 configuration from [261]. Note the
different scales used for the Vector and Slice Field Viewers.
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(a) Anisotropic (b) Low isotropic

(c) Average isotropic (d) High isotropic

Figure 5.23: EM potential on a longitudinal plane across the cathode (Slice Field
View); unguarded configuration with different conductivity models.
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(a) Anisotropic (b) Low isotropic

(c) Average isotropic (d) High isotropic

Figure 5.24: EM potential on a longitudinal plane across the cathode (Slice Field
View); guarded configuration with different conductivity models.
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(a) Anisotropic (b) Low isotropic

(c) Average isotropic (d) High isotropic

Figure 5.25: EM potential on a transversal plane across the cathode (Slice Field
View); unguarded configuration with different conductivity models.
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(a) Anisotropic (b) Low isotropic

(c) Average isotropic (d) High isotropic

Figure 5.26: EM potential on a transversal plane across the cathode (Slice Field
View); guarded configuration with different conductivity models.





6
A C O U S T I C M O D E L L I N G O F T R A N S C R A N I A L F O C U S E D
U LT R A S O U N D

6.1 motivation

Transcranial FUS (tcFUS) was initially introduced for functional neuro-
surgery, starting with the treatment of chronic pain patients (stereotactic
lesioning, [264]), but later also for applications in brain cancer surgery [265]
and epilepsy therapy [141]. In all these applications, tissue lesioning (ther-
mal coagulation) is performed by using high intensity tcFUS. Lower in-
tensity tcFUS, on the other hand, has been found to achieve reversible
blood-brain-barrier disruption [266], and to have neuromodulatory abili-
ties [109].

However, since its introduction in 1947 by [267], it has become clear
that achieving a sharp focus, precise targeting, and reliable prediction of
transcranial sonication efficiency are difficult [268]. This is mostly due to
acoustic scattering and aberration induced by the highly heterogeneous
structure of the skull [120] which shows high inter-patient variability and is
the principal cause for the need of personalized treatment planning and op-
timization. Therefore, modelling approaches also need to be patient-specific.
This can be achieved by using medical image data to obtain information on
the individual anatomy and tissue property distributions of each patient.
Particularly CT scans offer valuable data on skull structure and properties.

Chapters 7 and 8 provide valuable contributions to the understanding of
various factors that affect image-based personalized modelling of tcFUS, as
well as the requirements of reliable modelling, along with pitfalls. These
insights were obtained through careful, experimentally validated computa-
tional studies, including sensitivity analyses and mechanism elucidation.
Particular focus is placed on the modelling of the acoustic transducer in
order to get a reliable source model, and on image-based skull heterogeneity
modelling.
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T R A N S D U C E R M O D E L L I N G F O R A C C U R AT E A C O U S T I C
S I M U L AT I O N S O F T R A N S C R A N I A L F O C U S E D
U LT R A S O U N D S T I M U L AT I O N

abstract

Objective: Low-intensity transcranial ultrasound stimulation (tcFUS) is
emerging as non-invasive brain stimulation technique with superior spatial
resolution and the ability to reach deep brain areas. Medical image-based
computational modelling could be an important tool for individualized
tcFUS dose control and targeting optimization, but requires further valida-
tion. This study aims to assess the impact of the transducer model on the
accuracy of the simulations.

Approach: Using hydrophone measurements, the acoustic beam of a
single-element focused transducer (SEFT) with a flat piezoelectric disc and
an acoustic lens was characterized. The acoustic beam was assessed in a
homogeneous water bath and after transmission through obstacles (3D-
printed shapes and skull samples). The acoustic simulations employed the
finite-difference time-domain method and were informed by computed
tomography (CT) images of the obstacles. Transducer models of varying
complexity were tested, representing the SEFT either as a surface bound-
ary condition with variable curvature, or also accounting for its internal
geometry. In addition, a back-propagated pressure distribution from the
first measurement plane was used as source model. The simulations and
measurements were quantitatively compared using key metrics for peak
location, focus size, intensity and spatial distribution.

Main results: While a surface boundary with an adapted, ‘effective’
curvature radius based on the specifications given by the manufacturer
could reproduce the measured focus location and size in a homogeneous
water bath, it regularly failed to accurately predict the beam after obstacle
transmission. In contrast, models that were based on a one-time calibration
to the homogeneous water bath measurements performed substantially
better in all cases with obstacles. For one of the 3D-printed obstacles,
the simulated intensities deviated substantially from the measured ones,
irrespective of the transducer model. We attribute this finding to a standing
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wave effect, and further studies should clarify its relevance for accurate
simulations of skull transmission.

Significance: Validated transducer models are important to ensure accu-
rate simulations of the acoustic beam of SEFTs, in particular in the presence
of obstacles such as the skull.

7.1 introduction

Transcranial focused ultrasound (tcFUS) has been successfully applied
for stereotactic neurosurgery, brain tumor ablation, and reversible blood
brain barrier (BBB) disruption. More recently, tcFUS has also emerged as
a promising non-invasive brain stimulation technique due to the smaller
focal size and the possibility to reach deeper brain areas compared to other
non-invasive stimulation techniques [123]. Both excitatory and inhibitory
neuromodulatory effects of tcFUS have been repeatedly demonstrated in
several animal species, including non-human primates [11, 109, 130, 269,
270] and humans [12, 269, 271, 272].

Safe application of tcFUS requires the precise control of the ultrasound
dose in the brain. So far, this mostly relates to the control of the focus
position and size of single element focused transducers (SEFT) that have
been used in the majority of studies due to their relative ease of use and
low cost, despite a more limited control of the energy deposition and spa-
tial targeting compared to multi-element phased array transducers. The
SEFT’s beam profile can be characterized using hydrophone acoustic pres-
sure measurements both in a homogeneous water environment and after
the transmission through skull samples. These measurements, however,
allow only for a limited assessment of the actual tcFUS dose in human
in vivo applications as the beam profile depends strongly on the skull’s
heterogeneous and individually varying structure and thickness [14]. Com-
puter simulations informed by imaging techniques like magnetic resonance
imaging (MRI) and computed tomography (CT) could play an important
role in a non-invasive dose control and treatment planning on an indi-
vidual patient basis. Simulations typically make use of some numerical
method (e.g., the Finite Difference Time Domain - FDTD method) to solve
the pressure wave equation [17] for modelling the propagation of acoustic
waves through inhomogeneous media. Their usefulness for dose control in
practical applications directly depends on their accuracy.

Much prior work has focused on the geometry and acoustic properties
of the skull [146, 147, 273–276], as inadequate skull models will cause
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significant errors in transcranial simulations. However, special care also
must be taken when modelling the transducer device. SEFTs typically
consist of either a physically curved vibrating piezoelectric element or a flat
piezoelectric disk with an acoustic lens shaped like a concave spherical cap.
For the second case, SEFTs are frequently modelled by representing only
the forward facing, spherical-cap-shaped surface and imposing a pressure
or velocity boundary condition on it, neglecting the internal structure of the
device. The simulated beam profile of this simplified model differs from the
real profile when modelling the transducer surface curvature according to
its real curvature, as shown in Figure 7.3b. Manufacturers therefore typically
report an effective curvature to match the experimentally measured focus
location [277] in a homogeneous water bath, as shown in Figure 7.3c.
Simulations then model the transducer by using this reported effective
curvature or by adapting the simulated curvature to fit experimental data on
the focus location, and ignore the real and internal transducer geometry [14,
278–281].

While this approach allows matching the experimental location of the
beam focus and its size (i.e., the peak dose location and full width at half
maximum) in a test tank with water as medium and no obstacle, further
validation is required when moving to more complex and heterogeneous
obstacles, such as the skull. In this study, we used a SEFT with a flat
piezoelectric disk and an acoustic lens and compared the simplified effective
transducer model, as per the manufacturer’s specification (Seff), against (1)
physically realistic and detailed models of the transducer accounting for its
internal geometry (P1-2; see Section 7.2.7), and (2) a source model derived by
back-propagation (MB-P) of the measured pressure distribution to a virtual
source plane. We investigated the sensitivity of the new models to the
different underlying parameters and assessed their accuracy by comparing
the results with hydrophone measurements of the beam in the presence
of different obstacles. Obstacles consisted of two bone samples (sheep
and pig) and three 3D-printed simple and skull-shaped phantoms made of
Veroblack, a material of known acoustic properties. In addition, we acquired
CT data of the obstacles with the transducer and obstacle holder for precise
positioning and to derive estimates of the obstacle’s geometry and acoustic
property distributions in the case of the bone skulls. Finally, we assessed
the sensitivity of simulations to the modelling parameters when employing
full human head models instead of the obstacles. Our results show that the
simplified, effective transducer model that was based on the specification
sheet of the manufacturer produces substantial deviations between the
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simulations and measurements. Specifically, clear deviations occurred in the
presence of skull obstacles even though the correspondence was reasonable
for the case of a homogeneous water background. This effect is even larger
for a model that assigns a boundary condition to a surface reproducing the
real, geometrically correct (physical curvature radius) transducer surface
shape (Sgeom). The deviations were substantially reduced for the transducer
models that were established based on calibration measurements in a pure
water background.

7.2 methods

Figure 7.1 gives an overview of the methodological workflow, which is
discussed in detail in the next sections.

7.2.1 Bone samples and phantoms

In this study, two animal skull samples (pig and sheep; see Figure 7.1a)
and three phantoms were tested. The pig skull was bought from a butcher
and the sheep skull was donated by a local farmer. Soft tissue from both
skulls was mechanically removed with tweezers, and the samples were cut
to maintain the upper parts of the skull. While the entire upper part of the
sheep skull was preserved, only part of the pig skull was extracted to have a
thickness comparable with that of the human cranium. A mostly flat surface
was obtained where the pig skull was cut. The two bone samples were then
glued to holders (see Figure 7.2) and subsequently continuously kept under
phosphate-buffered saline (PBS) solution. The skulls were not degassed, but
the CT data acquired before and after the measurements did not reveal the
presence of gas inside the samples. In addition, three 3D-printed phantoms
were constructed from Veroblack (acoustic properties in Table 7.1). Two
of those phantoms replicated the outer shape of the pig and sheep skull
samples, as reconstructed from CT data (see Figure 7.1a). The third phantom
consisted of a printed rectangular slab obstacle (100× 100× 5 mm3).

7.2.2 US transducer and water tank measurements

A single element spherical ultrasound transducer element with a flat
piezoelectric disc and an acoustic lens (IPBD2, Hagisonic, South Korea,
shown in Figure 7.1a) operating at 500 kHz, with an aperture diameter
of 3 cm, a radius of curvature of 2.5 cm, and a reported focal length of
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Figure 7.1: Workflow in the methods section. (A) The propagation of an ultra-
sound transducer (left) was characterized in a pure water background
and after the transmission through obstacles. Specifically, the obstacles
were a pig and a sheep skull (center, top and bottom, respectively),
and the corresponding 3D printed phantoms (right). (B) The CT data
of the obstacles were acquired, (C) to map their acoustic properties
and to import their geometry in the simulation environment. (D) An
example of the normalized intensity beam with the pig skull obstacle
is shown, together with a view of the transducer model based on its
actual internal geometry.
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Material ρ [kg/m3] c [m/s] α [Np/m] Z [MRayl]

Water (generic) 1000 1500 0 1.5

Water (20°C) 1000 1482 0 1.5

Veroblack 1180 2495 21.3 2.9

Acrylic Resin 1190 2750 7.3 3.3

Acrylic M1-7 1180 2610 14.2 3.1

Human Cortical Skull 1908 2814 27.2 5.4

Table 7.1: Acoustic properties of different materials used in this paper, for a
center frequency of f = 500 kHz from [14, 155, 282]. In particular,
the density (ρ), the speed-of-sound (c), the coefficient of attenuation
(α) and the acoustic impedance (Z) are indicated for each material.
Different values for speed-of-sound in water that were used in the
uncertainty assessment are included (see Section 7.2.6).

5 cm (incorrectly reported as radius of curvature by the manufacturer spec-
ification sheet [277]), was used to generate the acoustic pressure waves.
The setup used for the bone samples employed two function generators
(33220A, Agilent Technologies, California, United States) to generate a
burst (20 pulses / burst) of sinusoidal waves with a center frequency of
500 kHz at a pulse repetition frequency of 1 kHz. The pulse was subse-
quently amplified by a power amplifier (5312, OPHIR, California, USA)
and sent to the transducer. We first measured the pressure distribution
along the symmetry axis from far to near field with different numbers of
pulses (from 2 up to 30) per burst. In the far field, we observed that the
measured beam intensity did not change beyond 15 pulses, meaning that
the steady-state was reached. We chose a number of pulses / burst of 20,
which, considering a speed-of-sound in water of 1500 m/s, corresponds to
a travelled distance of 6 cm. A custom-designed 3D-printed holder was
used to fix the transducer inside a tank filled with de-ionized water. The
pressure wave was sampled with a calibrated needle hydrophone with an
active diameter of 1 mm (NH1000, Precision Acoustic, Dorset, UK) care-
fully inserted in a holder surrounded by a sponge in order to minimize
reflection, as tested for continuous waves. The sponge is an open-cell foam
for packing material (see Figure 7.2a). More importantly, since the distance
between the transducer and hydrophone holder was greater than 8 cm even
when the hydrophone was close to the transducer, reflections from the
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holder did not affect the measurements of the 20 pulses / burst. Before each
measurement series, the position of the transducer inside the holder was
measured using a caliper. The hydrophone was moved by a stepper-motor
system (Sciencetown Co., Incheon, South Korea) with a plane sampling
distance of 0.25 mm and controlled by custom written software in MATLAB.
The signal from the hydrophone was transmitted and visualized with an
oscilloscope (DSOX2022A, Agilent Technologies, California, United States).
The raw data for each acquisition point were sent via USB to a computer
and stored. In order to decrease noise, the signal was acquired using the
average mode of the oscilloscope, with 32 samples averaged at each mea-
surement position. For logistic reasons, the measurement setup used for the
3D-printed phantoms was changed to employ a different function generator
(33500B, Keysight, California, United States), amplifier (240L, E&I, New
York, United States) and oscilloscope (DSO-X 3024A, Agilent Technologies,
United States), and an in-plane sampling resolution of 0.3 mm. The material
of the hydrophone holder was Plexiglas in these measurements, rather
than aluminum, to improve the acoustic impedance matching with water.
Measurements of the beam profile in water confirmed that this change did
not affect the recorded data.

Thirteen planes parallel and one perpendicular to the transducer aperture
were acquired to fully characterize the beam profile. The distance between
twelve of the parallel planes was 5 mm and an additional plane near the
focus was acquired at a distance of 2.25 mm from the nearest plane to better
sample the strong spatial variations of the beam. The axial distance between
the nearest parallel plane and the center of the transducer was 2 cm. The
aperture-perpendicular plane was chosen to traverse the beam position
of maximum intensity. In the case a strong secondary focus was detected,
an additional perpendicular plane was acquired to cover it appropriately.
The number of points for each acquired plane varied. The largest plane
had a size of 3× 8 cm2 with a sampling distance of 0.25 mm resulting in
38841 points. The smaller planes had a size of 0.9× 0.9 cm2 with a sampling
distance of 0.3 mm (961 points in total). Prior to each plane measurement,
the position of maximum intensity in water was determined as follows.
First, two parallel planes with a separation of 2 cm were acquired near the
focus and the positions of the peak intensities in each plane determined.
Subsequently, measurements were performed along a line through these
two positions. The obstacle was then put in place and several planes were
acquired as stated above.
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7.2.3 Actual measurements with objects

In order to precisely position the objects in the water tank, a holder was 3D-
printed for each obstacle. This holder allows for the obstacle to be screwed
in place at one of 5 different locations (position 1, 2A, 2B, 2C, and 3; see
Figure 7.2).

The exact distance between transducer and obstacle was determined as
follows: first, the location of the peak was determined in a water tank. Its
position was recorded and used to define the symmetry axis. Then, the
obstacle and its holder were inserted in the water tank. The distance along
the symmetry axis between the forward facing obstacle surface and the
previously determined focus location (in the absence of the obstacle) was
measured. These measurements are used to accurately determine the posi-
tion of the obstacle relative to the transducer. The complete set of obstacle
distances to the transducer are shown in Figure 7.2. Beam profiles were mea-
sured after transmission through the two animal skull samples. A similar
procedure was followed for the three 3D-printed Veroblack phantoms.

7.2.4 Calculation of US intensity from the measured data

The stored raw signals were first filtered with a high pass 4th order Butter-
worth filter with a cutoff frequency of 200 kHz to remove low-frequency
noise. For each measured position, the intensity in W/m2 was then calcu-
lated as

I =
p2

2ρc

where p is pressure in Pa, ρ is the density of water (1000 kg/m3) and c is
the speed-of-sound in water (1500 m/s). To calculate the signal phase, a
Hanning window was applied to the time domain signal to select only a
central period (10th pulse). The Fourier transform was then calculated and
the phase for the center frequency determined.

7.2.5 CT imaging of the objects

We acquired CT data of all objects attached to their holders both in water
and air backgrounds using a PET / CT scanner (positron emission tomog-
raphy, Biograph 128, Siemens, Germany). For each object, we acquired
CT data with tube current-time product of 115 mAs and tube potential of
80 kV, which would correspond to a low dose of 0.3 mSv for a human head
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Figure 7.2: Details of the measurement setup. (A) The orange arrow points to the
transducer, inside its 3D-printed holder (silver plastic). The transducer
holder has an opening that allows the cable from the transducer to
easily reach the amplifier and the curved face of the transducer
to be positioned towards the hydrophone and the obstacles. The
skull holder (gold plastic) is connected to the transducer holder with
screws, in a way which is stylized by the black dotted line. The
obstacle (here, the sheep skull) is glued to thin acrylic rods that are
fixated in holes of the main part of the holder. The distance between
the outer part of the transducer holder and the acrylic rods is 2.3 cm,
as indicated in the figure. The white arrow points to the hydrophone.
It is fixed in a holder, which is surrounded by sponge to absorb
acoustic reflections. While the transducer and the skull stay in the
same position throughout a measurement, the hydrophone holder is
moved by a stepper-motor system. (B) Holders of the hydrophone
and object seen from the side (indicated by the green arrow in A).
The relative position of the skull and the transducer can be changed
in steps using different screw holes. (C) A schematic of the employed
configurations in this study. Black dots indicate the position of the
screws, and the transducer holder is shown in grey. The transducer
face is inside the cylindrical part of the holder, as displayed in the
figure. The horizontal distance of the holes in the skull holder is 1 cm
and the vertical one is 8 mm.



148 transducer modelling for tcfus simulations

scan (roughly one third of the dose of clinical head scans). A sharp filter
(H60s) was used during reconstruction. The nominal spatial resolution of
the reconstructed images was 0.36× 0.36× 0.6 mm3. An example of one
slice of the CT data for the pig skull is shown in Figure 7.1b.

7.2.6 Simulation framework

Acoustic propagation was simulated within the Sim4Life (ZMT Zurich
MedTech AG, Zurich, Switzerland) platform for computational life sciences,
which encompasses functionality for image-based modelling, a range of
acoustic propagation solvers, a Python scripting interface, as well as post-
processing, visualization, and analysis functionality. For the purpose of this
study, the linear acoustic pressure wave solver (LAPWE) from [17] was
employed, which implements FDTD on rectilinear, inhomogeneous meshes
and supports multiple graphical processing units (GPU) parallel execution
to permit simulation of models with a large number of degrees-of-freedom
within reasonable time. The LAPWE solver solves the wave equation:

ρ∇1
ρ
∇p− 1

c2
∂2 p
∂t2 −

ã
c2

∂p
∂t

= 0

ã = 2α

√
α2c4

ω2 + c2

where ρ is density in kg/m3, c is speed-of-sound in m/s, α is attenuation
in Np/m, p is pressure in Pa, t is time in s, and ω is angular frequency in
rad/s. This equation accounts for reflections due to acoustic impedance
(Z = ρc in kg/(m2 s) or Rayl) variations and discontinuities, standing waves,
and the combined impact of absorption and scattering. However, it neglects
shear waves in the rigid skulls, as well as tissue non-linearities, which can
lead to frequency mixing and higher harmonics, but are not relevant at
the studied intensities [273]. Grid generation ensured that the voxel size
in every material remained below a tenth of its wavelength. The coarsest
grid step was 0.3 mm outside the skull region and 0.1 mm in the skull
region, resulting in a simulation mesh with about 500 million voxels. To
ascertain the suitability of the discretization, a grid convergence analysis
was performed for all obstacles in the holder’s first position, where the
grid resolution was increased until the peak amplitude change remained
below 1 %. Perfectly Matched Layers (PML) boundary conditions with
16 layers were used to ascertain that reflections at the domain boundary
remain negligible (< 2 % amplitude change [283]). Undulations are still
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apparent in some of the simulations (see Figure 7.3). These result from
imperfect wave absorption at the boundaries. It has been confirmed that
enlarging the domain or increasing the number of PML layers indeed
strongly reduces the undulations, at the cost of increased computation
times. Detailed information about the verification and validation of this
solver and its implementation can be found in [283].

In addition to performing simulations using the LAPWE solver, simi-
lar simulations were executed (for the sheep skull setup) with Sim4Life’s
Westervelt-Lighthill Equation (WLE) solver. This solver implements a higher-
order (larger stencil) finite-difference scheme and also accounts for non-
linearity (e.g., frequency mixing) and a first order frequency dependence
of acoustic properties. These simulations allow to assess the impact of
the numerical solver implementation, as well as the impact of neglecting
non-linearity. The non-linearity parameter of B/A = 374 was assigned
according to [284], which is described as a conservative choice [285].

Simulations of the experimental setup were performed for a pure water
background, as well as for the two skulls and the 3D-printed Veroblack
plate and skulls, at up to five positions each (see Figure 7.2). The skull
models were generated by thresholding the normalized CT images at
500 Hounsfield Units (HU) and extracting the skull component. Image
up-sampling (from 0.36 mm base resolution to 0.111 mm resolution) and
gaussian smoothing (σ = 1 mm) were applied to avoid surface staircasing
related to the CT resolution which is large compared to the discretization
step in the simulation domain (0.1 mm). The transducer holder geometry
was readily available from the computer-aided-design model used for rapid
prototyping. For more details on the transducer geometry modelling, see
Section 7.2.7. Reflections from the hydrophone and the tank walls were not
simulated and had a very low impact on the measurement data because
of the use of pulsed rather than continuous sonication. Using sufficiently
short pulses prevents returning (reflected) waves from interfering with the
outgoing wave in the measurement volume, due to the different arrival
times.

Water was assigned generic properties (speed-of-sound: 1500 m/s, atten-
uation: 0 Np/m) and the properties of Veroblack were set according to [14].
Some simulations also used 1482 m/s as the speed-of-sound in water in ac-
cordance with the IT’IS database (value at 20°C from [155]). For the acrylic
acoustic lens material, properties were assigned within the range provided
for acrylic resin and acrylic M1-7 in [282]. Acoustic properties of the differ-
ent materials used in simulations are listed in Table 7.1. Transducer acoustic
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lens properties are discussed in Section 7.2.7 and the employed values for
the final models P1-2 can be found in Table 7.3. Further lens variations can
be found in Figures 7.11 and 7.12. To simulate the inhomogeneity of the
bone skulls, the approach from [146] was used, which assumes that the
CT HU can be linearly mapped into bone density, which in turn maps to
speed-of-sound according to the following linear relations:

ρ = ρref1 +
ρref2 − ρref1

HUref2 − HUref1
HU

c = cref1 +
cref2 − cref1
ρref2 − ρref1

ρ

where ref 1 and ref 2 refer to the reference values used to anchor the linear
mappings. ref 1 was chosen as water, and ref 2 was set to species specific
average skull properties (density and speed-of-sound). For simplicity, at-
tenuation in the skull was set to a constant value that was experimentally
adjusted to match the maximum measured intensity when the skull was
placed in the holder’s first position. Typically, acoustic skull attenuation is
experimentally inflated and adjusted to account for microscopic backscat-
tering effects that cannot be effectively captured by even high resolution
CT images [14, 146, 286]. As discussed in Section 7.4, attenuation primarily
impacts the overall field scaling, but has little impact on focus shape and
position. Skull mapping parameters are provided in Table 7.2. In order to
determine them, a histogram of the skull CT HU data was extracted and
clipped at the HU of water (0 HU). The very apparent subsequent peak to-
wards higher HU was assumed to be the average HU in skull and assigned
to the corresponding (species-specific) value, as found in the literature
– [287] for pig, [280] for sheep.

HU-based property assignment was restricted to the skull region and
linear interpolation was used to relate the finer voxel resolution (0.1 mm) to
the coarser CT (0.335 mm). To efficiently handle inhomogeneity, voxels were
assigned to 20 different bone classes based on HU binning. This permits
precomputation and storage of update coefficient look-up tables for the
GPU accelerated solver, thus increasing solver efficiency. An increase of
the number of binning classes beyond 20 was found to not significantly
affect the acoustic distributions anymore (< 1 % change in peak intensity).
Examples of a map of speed-of-sound in a cross section of pig skull and
how the simulated beam appears are shown in Figure 7.1c and d, respec-
tively. Acquiring the CT data of the skulls allowed also to replicate the
exact position of the skulls in the simulation, and to correctly model their
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thickness. The thickness of the skulls varied from 13 to 3.5 mm for the pig
and from 6 to 8 mm for the sheep. The thickness of the sheep skulls along
the ultrasound beam was 6 mm, while for the pig skull it varied because we
shifted vertically the skull (see Figure 7.2). The impact of geometry segmen-
tation, skull thickness, and inhomogeneous mappings using different CT
scanner parameters (including the one in this work) is analyzed in [288].

Skull ref 1 (Water) ref 2 (Average Skull)

HU ρ c HU ρ c α

kg/m3 m/s kg/m3 m/s Np/m

Pig 0 1000 1500 630 1260 1903 62.5

Sheep 0 1000 1500 1400 1710 2500 100

Human 0 1000 1500 peak 1908 2814 27

Table 7.2: Parameters used for skull property mappings, based on the approach
from [146], but using species specific values from [287] [280] and [155].
peak corresponds to the peak HU value of the histogram of the seg-
mented human skull.

7.2.7 Transducer modelling

Acoustic sources were modelled as time-harmonic sinusoidally varying
Dirichlet pressure boundary conditions. The transducer casing was treated
as a perfect reflector (zero pressure). Initially, an effective transducer model
(termed Seff in the following) was created using a spherical cap as pressure
boundary, with an aperture diameter of 30 mm and an outer surface curva-
ture radius of 50 mm, as provided in the manufacturer specification sheet.
To confirm the given specifications of this model, ten simulations with
varying curvature radii (25–70 mm) were performed, while the aperture
diameter was held constant (30 mm). It was found that a curvature radius
of 50 mm indeed optimally reproduces the measurements in water, both in
term of peak location and Gamma metric (see Section 7.2.8), as shown in
Figure 7.10.

As the curvature of the above effective model differed clearly from that
of the real transducer surface, we explored the beam shape predicated by a
model (Sgeom) consisting of a simplified spherical cap as pressure boundary,
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but having the geometrical surface curvature (radius of 25 mm). As shown
in Figure 7.3b and 7.4, Sgeom expectedly failed to reproduce the intensity
distribution in water, and was therefore excluded from further analyses.

A subsequent inquiry with the manufacturer revealed that the actual
piezo element is in fact a flat piston and that an additional acrylic element
with the measured surface shape is inserted on top of this disk (see Fig-
ure 7.3). Hence, a detailed transducer model was constructed that features a
flat disk, which is assigned a time-harmonic sinusoidally varying pressure
distribution, while the curved acrylic resin element on top (acoustic lens)
is treated as a passive medium that shapes the wave-front (see Figure 7.1).
The acoustic properties (density, speed-of-sound, and attenuation) of the
acrylic layer were based on [282] and varied within the associated uncer-
tainty range (see Figures 7.11 and 7.12) until simulation results matched
the measured field in the obstacle-less water bath setup (using the Gamma
metric introduced in Section 7.2.8 as criterion). The depth of the disk was
set to a quarter of the wavelength in the lens as reported in [289] and
also varied. Furthermore, a radial dependence p(r) of the pressure p0 on
the disk was introduced (constant: p(r) = p0, linear: p(r) = p0(1 − r),
cosine: p(r) = p0 cos(π

2 r), and spherical: p(r) = p0
√

1− r2 for r ∈ [0, 1])
to reflect the potential impact of the transducer walls on the vibrational
mode (‘aperture function’) of the piezo source. That way, two candidate
physical transducer models (P1-2; see Table 7.3) were generated. These fitted
‘physical’ models and the ‘effective’ model were then used to analyze how
well they are able to predict transcranial ultrasound intensity distributions.
The LAPWE solver typically employs ‘hard’ boundary conditions (i.e., the
pressure at the source is imposed as a time varying Dirichlet boundary con-
dition). This results in reflections of incoming (e.g., back-scattered) waves,
which might not be completely accurate. Furthermore, a hard source im-
pacts the pressure wave from the physical transducer models even in the
absence of an obstacle, due to internal reflection in the transducer (e.g., by
the transducer casing). Hence, a special version of the solver implementing
the opposite extreme (‘soft’ sources, i.e., continuous addition of pressure at
the source location) was used to study the resulting exposure change.

Table 7.3 summarizes the main transducer models employed in this paper.

7.2.8 Metrics

All simulated pressure distributions were normalized by the peak simulated
pressure in the absence of a bone or printed skull obstacle. The following
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Figure 7.3: Transducer Models: (Top) Normalized acoustic intensity along the
symmetry axis for different transducer models, compared to measure-
ment data. The Full Width at Half Maximum extent of the measured
focus is indicated by vertical green line. (A-G) Measured and simu-
lated normalized intensity distributions. (A) Measurement, (B) Sgeom,
(C) Seff, (D-E) P1-2 physical transducer models, (F) reconstruction
using the plane-wave decomposition approach (from the first mea-
surement plane), (G) simulation using the back-propagated pressure
from the first measurement plane to the transducer aperture plane as
pressure source.
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Model Description Parameters

Sgeom Curved element with the actual -

transducer curvature (25 mm)

Seff Curved element with a curvature optimized -

to reproduce the focus location (50 mm)

MB-P Flat element, derived from holographic -

reconstruction -

P1 Transducer with an internal structure, c = 2600 m/s

flat element and cosine aperture function α = 50 Np/m

P2 Transducer with an internal structure, c = 2600 m/s

flat element and spherical aperture function α = 14 Np/m
.

Table 7.3: Main transducer models employed in this paper. Parameters c and
α are the speed-of-sound and attenuation properties, respectively, of
the acrylic acoustic lens. P1 and P2 are the best physical candidate
models. For them, the density of the acrylic acoustic lens was set to
ρ = 1180 kg/m3 and the distance of the piezo element (in wavelengths
of the lens material λ) from the base of the lens surface was set to
d = 0.25λ

metrics were used for quantification and comparison purposes: (i) dz and
d: peak location as a measure of focus position (position along z-axis to
quantify focal depth and (x, y, z)-position to quantify absolute focal shift);
(ii) Ipeak: peak intensity (normalized by the peak intensity in the absence of
any obstacle); (iii) FWHMz: extent of the focus full width at half maximum
along the principal propagation axis (where available); (iv) HWHMz+: half
maximum past the location of the focus (or the length until the intensity has
decayed by a factor of two, in case the obstacle prevents measuring the peak
location); (v) Gamma: Gamma comparison value. These quantities were
all obtained based on the field distribution past the obstacle. The metrics
were selected (and adapted, as described above) depending on availability
(particularly for configurations where obstacles are placed far from the
transducer).

The Gamma comparison method was proposed by [290] to compare
planned and administered radiological dose distributions. It permits to
quantitatively compare fields that include both shape distortions and varia-



7.2 methods 155

tions in amplitude, and its use in validation experiments has been advocated
by [283]. Given spatial tolerances and an amplitude tolerance (∆dx,y,z and
∆D, respectively), the gamma index (γ) compares every measurement point
with all simulation points and finds the simulation point that minimizes an
Euclidean distance norm combining distance and value ( f (~r)) deviations
(normalized by the corresponding tolerances):

Γ (~rmodel,~rmeas,i) =√√√√ ( fmodel(~rmodel)− fmeas(~rmeas,i))
2

∆D2 + ∑
j=x,y,z

(
rj,model − rj,meas,i

)2

∆d2
j

The minimized Euclidean distance norm is subsequently assigned as the
score of the corresponding measurement location:

γ (~rmeas,i) = min {Γ (~rmodel,~rmeas,i)} ∀~rmodel

A value of 0 corresponds to a perfect match for this point and a value of 1
reflects the limit of what lies within the total tolerance. The total tolerance
is obtained as root-sum-square reflecting the simplified assumption of
statistical independence. We report the gamma comparison value ‘Gamma’
as the percentage of measurement points that have been assigned a norm
exceeding 1 (outside of the tolerance). Furthermore, the spatial distribution
of γ(~rmeas) provides an intuitive visualization of disagreement locations (see
Figure 7.4 for an illustrative example of the Gamma comparison method).

γ (~rmeas,i) > 1 : disagreement exceeds combined tolerance

The chosen agreement criteria were motivated by the intended application
– i.e., the spatially precise targeting of a small cortical patch – and the
physical beam properties. Given a focus size with a FWHM of 42 mm along
the beam axis and 5 mm perpendicular to it (determined for pure water,
see Figure 7.3), we set ∆dz = 5 mm and ∆dxy = 2 mm as upper thresholds
for shifts of the focus position in these directions. Shifts exceeding these
criteria would result in the undesired stimulation of a neighboring cortical
patch, or in a peak position that is in cerebral spinal fluid (CSF) or white
matter, rather than in gray matter. Based on the approximately sigmoidal
dependence of tcFUS intensity on neural response as demonstrated in [291],
a 15 % difference in peak intensity maximally changes the stimulation
success rate by 10 %. For this reason, ∆D = 15 % was set as the amplitude
tolerance.
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Figure 7.4: Illustrative example of a good (right) and a bad (left) Gamma com-
parison. (A) Measurement normalized to the peak intensity; (B) Seff,
Sgeom; (C) Gamma comparison distribution (γ(r); tolerances: 5 mm
longitudinal, 2 mm transverse, and 15 % intensity); (D) FWHM of
measurement profile in red, iso-curves of γ(r) at 100 % in purple and
at 50 % in blue. Notice that the biggest differences for Seff occur in
the near field and in the region of the focus – the latter indicating
that the measurement focus does not align perfectly with the sym-
metry axis. A γ value below 100 % indicates deviation within the
combined tolerance. The purple iso-curve demarks the regions that
exceed the combined tolerance. For Sgeom, almost the entire region of
the measurement focus is outside the acceptable tolerance.
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The same tolerance values were also used to normalize deviations in
focus location and size. As we’re measuring a euclidean distance for d, we
used a single 5 mm deviation tolerance, independent of particular axial
directions, for simplicity.

7.2.9 Backpropagation

To assess the choice of aperture functions (see Section 7.2.7), back-propaga-
tion from a plane parallel to the transducer aperture at an axial distance of
7.2 mm from the center of the transducer was performed (in the obstacle-free
setup) and the resulting pressure distribution on the transducer surface was
compared to those obtained in the different simulations. Back-propagation
was performed using the plane-wave decomposition method (PWD, also
known as angular spectrum method, [292, 293]) in free space – neglect-
ing the attenuation in water –, which precluded propagation beyond the
transducer surface into the heterogeneous transducer structure. Evanescent
modi were not exponentially increased in the back-propagation to avoid
inflating measurement errors and sampling-related errors. Apodization
and zero-padding were used before the Fourier transformation step of
the plane-wave decomposition to reduce ringing and folding artifacts. The
backpropagated pressure field on the plane encompassing the transducer
aperture was used as source (MB-P) in simulations with and without sheep
skull obstacle.

7.2.10 Human head models

Simulations involving three different human head models (S1, S2, S3)
from [294] were performed using the P1 and the Seff transducer model (see
Figure 7.8). These head models were created from multi-modal image data
(different MRI sequences, as well as CT), permitting the consideration of
skull heterogeneity. For a list of the 15 segmented tissues, see [294]. Tissue
properties have been assigned according to [155], while the skull density
and speed-of-sound were linearly mapped from the CT’s HU according to
Table 7.2. While no reference measurements exist to assess the validity of
the simulated pressure distribution, these simulations can serve to illustrate
the principal impact of transducer modelling on simulated transcranial
sonication.
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7.3 results

7.3.1 Acoustic beam in a pure water background

Modelling the transducer as a pressure Dirichlet boundary condition on an
‘effective’ model that adapts the curvature radius in accordance with the
effective radius provided by the manufacturer (Seff) results in a low Gamma
error (0.2 %; see Table 7.4). We confirmed that the chosen effective radius
best reproduced the focus position in water and minimized the Gamma
metric in water (see Figure 7.10). The physics-based transducer models
further improve the agreement (Gamma = 0 %), yet this is expected as they
have been tuned to match water measurements. The impact of the various
transducer parameters on the intensity distribution and along the symmetry
axis is depicted in Figures 7.11 and 7.12.

Watertank Comparison [%]

Gamma dz d FWHMz HWHMz+

Seff 0.2 -26.5 28.7 -166.1 -90

P1 0.0 -13.3 18 33.6 28.7

P2 0.0 -16.3 19.8 -55.4 27.7

MB-P 0.0 -16.3 22.4 -25.7 -0.01

Table 7.4: Differences between the measured and simulated intensities in a wa-
tertank setup without obstacle. The differences are expressed in per-
centages normalized to the tolerances from Section 7.2.8.

When a ‘soft’ source is used instead of Dirichlet boundary conditions,
transducer-internal reflections by structures behind the piezo-element be-
come relevant. Due to the lack of knowledge about the internal transducer
structure, the region within the casing and behind the piezo was modelled
as homogeneous material with varying absorption (50 and 150 Np/m),
while the casing was treated as perfect reflector. In comparison to the Dirich-
let pressure boundary condition, the secondary foci in the near field are
less prominent and the focus length is shortened by 37 % (see Figure 7.13).
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Figure 7.5: Sample measurement and simulation intensity distributions normal-
ized to the peak intensity in water, and gamma comparison distribu-
tion past obstacles. (A-D) Illustrative ‘good’ simulation result (sheep
skull, position 1) and (E-H) ‘bad’ simulation match (sheep skull, po-
sition 3) with measurement. (A,F) Measurement, (B,G) Seff, (C,H) P1
physics-based transducer model, (D) MB-P plane source, (E,I) Gamma
comparison of normalized deviation between measurement and dif-
ferent transducer models (from top to bottom, Seff, P1, MB-P, where
available). The overlaid red contour denotes the Half Maximum iso-
contour of the measurement distribution; the purple contour indicates
the region with a deviation that exceeds the combined tolerance.
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7.3.2 Transmission through the Veroblack plate

Once the Veroblack plate obstacle is introduced, the ‘effective’ transducer
model fails to reproduce focus location and size. The two physics-based
transducer models, however, are capable of predicting the focus location,
size, and overall pressure distribution reliably (0 % disagreement of the
Gamma metric vs. 15 % and 19 % of the points failing the Gamma com-
parison for the effective transducer model at two different positions; see
Table 7.5).

7.3.3 Transmission through the Veroblack 3D-printed skulls

pig (thick skull) The 3D-printed pig skull is the thickest Veroblack
obstacle (the thickness along the propagation axis can exceed 10 mm),
resulting in standing wave patterns inside the obstacle. While one side is
mostly flat (due to the cutting), the other is slanted such that small shifts
in predicted focus position can result in clear changes of the standing
waves in the obstacle and the related transmission efficacy (see Section 7.4).
Depending on the skull position perpendicular to the propagation direction
(positions 2A-C), the beam goes through the maximal thickness or partly
passes outside the skull fragment border (2C). This results in two separate,
prominent focal lobes and some weak secondary foci. In all the Veroblack
printed pig skull cases, the peak intensity is within the (unmeasurable)
region inside the skull or near its surface. Therefore, while the Gamma
comparison is meaningful, reported peak intensity (Ipeak) and focus size
comparisons (HWHMz+) are not. The ‘effective’ model is unable to predict
focus intensity (the error is smaller than the tolerance only for position
3) and frequently fails to correctly predict focus extent. Consequently,
it displays poor Gamma metrics. The physics-based transducer models
produce good results, except for positions 2B and 3, where the intensity
is off, despite very good agreement in the relative distribution pattern.
The physics-based simulations are all well able to handle the challenging
2C case, where the focus is right at the border of the skull fragment (see
Table 7.6).

sheep The 3D-printed sheep skull is thinner and curved and the agree-
ment between simulations and hydrophone intensity measurements is better
than for the 3D-printed pig skull. The physics-based models outperform the
‘effective’ model, based on the Gamma criterion, and, with the exception of
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position 3 where the ‘effective’ model shows a > 30 % Gamma error rate,
the Gamma criterion remains below 5 % for all transducer models. However,
the focus position error frequently exceeds the chosen 5 mm tolerance (see
Table 7.7).

7.3.4 Transmission through the bone skull samples

pig The physics-based transducer models show near perfect Gamma met-
rics (always < 1 %), whereas the percentage of data-points failing to agree
with the hydrophone measurements (according to the Gamma criterion)
can reach over 20 % for the ‘effective’ transducer model. While the physics-
based transducer model occasionally slightly exceeds the prescribed peak
intensity tolerance of 15 %, the ‘effective’ model nearly always fails and
exceeds the tolerance threshold by up to 4.8 times (see Table 7.8).

sheep Simulation performance with the sheep skull obstacle is inferior
to the accuracy achieved for the pig skull. However, the physics-based
models again outperform the ‘effective’ model. The latter fails to pass the
Gamma criterion for 7–40 % of the measurement points, while the failure
rate of the former is in the 4–20 % range (see Figure 7.5). In most cases, the
prediction of the peak intensity is insufficient (considering the defined 15 %
threshold), which seems to be related to the simulations predicting two
distinct but overlapping intensity peaks, while the measurements show a
single, merged peak of combined (higher) intensity (see Table 7.9).

combined results Figures 7.6 show the averaged deviation between
the measured and simulated distributions for the different transducer mod-
els. The physical transducer models clearly outperform the ‘effective’ model
in terms of the Gamma metric and the accuracy of the focus location and
size predictions. However, it is also apparent, that none of the models can
always guarantee predictions within the desired tolerances. This is particu-
larly true with regard to the peak intensity prediction and in cases where
standing-wave effects occur (e.g., Veroblack pig skull). The performance of
the two physical transducer models is comparable.

7.3.5 Other parameters

water speed-of-sound The speed-of-sound of water is temperature
dependent. A slight difference in speed-of-sound in combination with a
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Figure 7.6: Averaged deviations for each obstacle at different positions between
the measured and simulated distributions for the different transducer
models: Seff and P1-2. Values normalized to the prescribed spatial
(5 mm) and intensity tolerances (15 %). Values above 100 % fall outside
the permitted tolerance. The data in the abscissa are in arbitrary order,
so that the dotted lines do not indicate any trend, but are used for a
better visual grouping of the results of the different transducers.
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large distance (in terms of wavelengths) can result in a noticeable change
of the interference pattern and pressure distribution. Changing cwater from
1500 to 1482 m/s has no visible impact on the pressure distribution in water.
The impact is more pronounced after transmission through the sheep skull
(see Table 7.9). Particularly the peak position shifts significantly. However,
inspection of the pressure distribution as well as the Gamma metric reveal
that this is due to small changes in the region of a flat peak and that the
distribution difference remains small.

7.3.6 Backpropagation

The backpropagated pressure distribution on the transducer surface is
depicted in Figure 7.7, which also shows the sonication intensity in water, as
reconstructed from the first measurement plane using the angular spectrum
method. The measured and reconstructed intensity distributions are in
good agreement. When comparing the backpropagated radial dependence
of the pressure with those obtained using the physical transducer models
with varying aperture functions, it is found that the backpropagated one
lies between the ‘cosine’ and the ‘spherical’ aperture function simulations.
It does, however, also display a pronounced central maximum, similar to
that observed with the ‘linear’ aperture function. The radial dependence
of phase primarily reflects the varying path length from the piezo element
to the transducer surface. All aperture functions result in similar phase
patterns. In general, it can be seen that a pressure boundary condition with
suitable aperture function is capable of reproducing the physical exposure,
even though a velocity boundary condition might be more physically
meaningful and can produce noticeable differences, particularly with regard
to secondary maxima near the piezo-element.

The backpropagated pressure distribution on the plane encompassing the
transducer aperture was used as source in simulations with and without
sheep skull obstacle. Table 7.4 quantifies the obtained agreement with the
measured intensity distribution. While the agreement in water is high, some
differences are obtained in the presence of a skull (reflected in all of the
metrics, see Table 7.9 and Figure 7.5). In particular, a large shift of the beam
position occurs in that case. The disagreement metrics are larger than those
observed for the physical transducer simulation models, but smaller than
those obtained using Seff. These differences could be due to limitations of
the backpropagated source approach in handling multiple reflections or
uncertainties in the measurements.
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Figure 7.7: Top: (A) Absolute value and (B) angle of the reconstructed complex
pressure at the curved surface of the transducer lens via backprop-
agation of measurements. Bottom: Line plots of different ‘aperture’
functions and the reconstruction, interpolated on an arc going through
the center of the transducer’s curve (green line in top figures).
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7.3.7 Human head models

The transcranial intensity distribution results obtained using the human
head models can be seen in Figure 7.8. The different transducer mod-
els primarily affect the intensity scaling (skull transmission efficacy). The
distribution is less affected.

7.3.8 Impact of non-linearity and pressure wave approximation

The WLE simulations of the sheep skull showed no non-linearity impact
(differences < 1 % of the peak intensity) at the simulated exposure strength
(tested by using WLE with and without non-linear term; in agreement
with [285]). The negligible differences (> 1 % of the peak pressure) between
the pressure fields obtained using the LAPWE solver and WLE solver
without non-linear term can be readily explained by the differing stencil
choices and time-integration schemes (higher order for the WLE solver).

7.4 discussion

translatability of transducer model While it is correct that
the physical transducer model has been optimized to fit measurements,
it is important to note that this optimization was only performed for the
water measurements and the fitted model was subsequently used without
further adaptation for all the different obstacle setups (bone and Veroblack
obstacles).

‘effective’ and physical transducer model The results demon-
strate that using the measured transducer surface geometry as pressure
source fails to correctly predict the intensity distribution and results in
strong deviations in focus location and shape. Applying the ‘effective’
model geometry provided by the manufacturer or artificially varying the
curvature, as frequently done [14, 278–281], permits to mimic focus loca-
tion, but results in important deviations in focus shape, both in terms of
primary focus size and secondary foci in the near-field. Furthermore, the
fact that this model is an unphysical model means that it is an ‘effective’
model only in the absence of obstacles. As the overall intensity distribution
provided by the ‘effective’ model deviates substantially from that of the real
transducer, the presence of the obstacle results in a completely different
interference pattern that prevents reliable modelling even of focus location
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Figure 7.8: Transcranial intensity (normalized to water) of three different human
head models with two different transducer models (P1 and Seff). Top:
Sample CT tissue segmentation used to generate head models and
simulation setup with superimposed intensity profile. Left: Head
models with superimposed point for reference (target location at
50 mm distance from base of transducers). Right: Resulting normal-
ized intensity beam for the shown transducer models. All colorbars
are set to the same normalized intensities for ease of comparison.
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(see Figure 7.4). In contrast, the simulations based on the physical trans-
ducer model were substantially more accurate (see Figure 7.6) for all tested
cases after the model was calibrated to fit the measurements obtained for
the pure water background. As such, similarly to the ‘effective’ model, our
proposed approach for setting up the physical transducer model requires
initial reference measurements, but subsequently results in more accurate
predictions of the acoustic beam. However, we only varied the radius of
curvature to find the best Seff (see Section 7.2.7). A better agreement with
the measurements might be obtained when using a more complicated effec-
tive model, optimizing for additional free parameters, such as the aperture
diameter and the focal distance. Accurate transducer modelling is also
expected to be a prerequisite for simulation-driven design of acoustic lenses
placed on top of transducers, as in [295, 296].

transducer modelling in water Different parameters of the phys-
ical transducer model had specific, distinguishable impacts on the intensity
distribution (see Figures 7.11 and 7.12). Changing the attenuation param-
eters (of the acoustic lens material or the obstacle) hardly affected the
intensity distribution and only resulted in a change in magnitude scale.
Both modification of the lens material speed-of-sound and of the piezo
element depth have a similar effect, namely a noticeable impact on the
intensity distribution. This is due to the fact that a change in speed-of-
sound in the region where the wave is still mostly traveling paraxially
corresponds to an effective change in the traveled distance. The curved
surface primarily produces a radial distance dependent phase delay, which
is slightly affected by the speed-of-sound. The mechanical construction of
the transducer (e.g., transducer walls and housing) affect the vibrational
modes. We have considered the impact of such an effect on the acoustic
pressure wave by introducing an aperture function. A change in aperture
function has a small impact on focus sharpness, but its main effect is to
modify the location and occurrence of secondary foci.

We have modelled the piezo element as time-harmonic Dirichlet bound-
ary condition (prescribed pressure). This is the natural and common choice
when using FDTD. However, other methods exist where boundary con-
ditions are commonly defined in terms of prescribed velocities. Constant
velocity and constant pressure are not equivalent, as evident, e.g., when
looking at the analytical solution for a vibrating circular disk obtained
using Rayleigh-Sommerfeld integrals [17] where velocity is constant across
the transducer surface, while pressure is not. However, this should be in-
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vestigated further as the different boundary conditions will give rise to
different intensity distributions. Replacing the ‘hard’ with a ‘soft’ boundary
condition modifies the exposure in a similar way as shifting the piezo-depth
does (i.e., less pronounced secondary peaks in the near-field, sharper focus).
This can be understood as a result of the modified internal interference
pattern inside the transducer. In the absence of knowledge about the exact
internal mechanical structure of the transducer, the associated modelling
ambiguity cannot be avoided.

sensitivity and tolerances In line with [283], our results indi-
cate that small variations in acoustic material properties such as speed-of-
sound, can have an important impact on the complex interference pattern
of (curved) acoustic transducers. Therefore, it is important to reduce un-
certainty by properly characterizing the acoustic properties of relevant
materials in the sonication setup.

The choice of the tolerances (∆dx,y,z and ∆D) for the Gamma metric –
which is used in this study to judge simulation-measurement agreement –
is driven by application specific criteria. That is, prediction errors above the
tolerances would significantly compromise the accuracy and precision of
the conclusions with regards to the targeted position in the brain and the
intensity at the target. This approach is unlike that followed in [283] where
agreement tolerances were based on a thorough uncertainty analysis. The
Gamma tolerances obtained in [283] at similar frequencies (550 kHz rather
than 500 kHz) through uncertainty analysis of sonication in the absence
of an obstacle (1.3 times the wavelength in water, i.e., 4 mm; 14 % of the
peak intensity) are comparable to the ones used in this study (5 mm, 15 %).
However, a similar uncertainty assessment in the presence of skull obstacles
would have resulted in much larger tolerances. Therefore, the approach
chosen for this paper results in much stricter criteria that are hard to meet
but reflect application needs.

standing waves in the obstacle The large difference in acoustic
impedance between Veroblack and water (see Table 7.1) results in strong
reflections at the interfaces (32 % of the pressure amplitude for a plane
wave with normal incidence). This leads to a standing wave effect within
the obstacle [297], which results in resonator behavior (similar to that
known from Fabry-Pérot resonators in laser-physics [298]) and is known
to be associated with fluctuations in transmitted power as a function of
the effective cavity length (see Figure 7.9). When the planar Veroblack slab
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is placed at the focus location, varying the frequency (or equivalently the
wavelength or obstacle thickness) results in up to 20 % changes in pressure
transmission (> 40 % change in intensity, see Figure 7.9). This standing-wave
effect helps explain the focus intensity differences observed with Veroblack
obstacles (see Section 7.3.3). Further research should be performed to assess
the relevance of such findings for transcranial sonication. It is expected that
skull heterogeneity and losses related to absorption or scattering reduce the
occurrence of standing waves. On the other hand, the higher density and
speed-of-sound of cortical bone compared to Veroblack – and the related
increase in acoustic impedance mismatch – leads to a more than fourfold
variability of the transmitted intensity for relatively moderate changes
in speed-of-sound assignment and skull thickness modelling (computed
analytically for a homogeneous cortical bone plate of realistic thickness
immersed in water; see Figure 7.9). This results in a high sensitivity to
modelling errors. This phenomenon has been discussed by [299], where
an approach to optimize transcranial focal-gain by suitably tuning the
sonication frequency is proposed.

standing waves before the obstacle Similarly, standing waves
occur between the transducer and the obstacle. Changing the transducer
models affects this standing-wave configuration – as evident when com-
paring the ‘effective’ with the physical transducer model (see Figure 7.8) –,
which in turn affects the skull exposure. This is likely to be an important
factor in explaining the observed changes in the pressure distribution.

limitations and further work A ‘first principles’ approach would
consist in performing proper mechanical modelling (i.e., full dynamic
stress-strain simulation) of the transducer, from which the vibrational mode
would emerge and might allow for accurate predictions of the acoustic beam
without the need for reference measurements. However, this is beyond the
scope of this paper.

The simulated sonication intensities for the bone skull samples agreed
satisfactorily with the measurements only after resorting to species-specific
skull attenuation maps (see Table 7.2). This might reflect different bone
compositions between species, which can result in different properties
for similar HU values. A more detailed evaluation of CT image-based
modelling of skull properties is the subject of a companion paper [288].

A recent work [300] proposed an alternative way of constructing an ultra-
sound source model, based on holographic projections. Briefly, this method
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Figure 7.9: Impact of the standing wave effect on transmission. (Top) Analyti-
cally computed plane wave (pressure) transmission factor past a flat,
homogeneous obstacle (blue: Veroblack, red: cortical bone c and ρ;
see Table 7.1), as a function of obstacle thickness and for different
attenuation factors (0, 10, 20, or 30 % attenuation when propagat-
ing through the plate). (Bottom) Pressure distribution obtained for a
physical transducer model past a Veroblack obstacle of varying thick-
ness (5–7.3 mm, corresponding to 1–1.5 wavelengths in the obstacle,
0.5 mm steps). The color-bar remains identical. Notice that the top
figure is computed for plane-wave exposure, while the bottom figure
shows results for a focused sonication.
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allows the derivation of an equivalent source model from pressure measure-
ments in a plane parallel to the transducer face by iterative optimization of
the pressure distribution on the surface of the equivalent source. Similar to
the source reconstructed by back-propagation here, the equivalent source
can then be employed in a full-wave model to estimate the ultrasound
beam through complex and heterogeneous media. In general, both our and
their [300] work highlight the need for source models that are more accurate
than ‘effective’ models. In contrast to our physical transducer models, the
method in [300] has the advantage of not requiring information about the
internal structure of the transducer (nor the construction of a corresponding
acousto-mechanical model), but depends on measurement data (phases
and amplitudes) at very high resolution, accuracy and precision instead,
as measurement errors might be amplified in the equivalent source model
reconstruction process. Our approach constrains the fitting of the equivalent
model to a few key parameters, so that measurement errors are more likely
to be identifiable as mismatches between modelled and measured beams.

7.5 conclusions

Careful transducer modelling and experimental validation is crucial for
the reliable simulation of tcFUS fields. The currently commonly employed
approaches – i.e., assigning a boundary condition to the real shape of the
transducer surface, or using an ‘effective’ transducer shape model that has
been constructed to produce a focus at the right location in a homogeneous
water setup – are inadequate for flat piston transducers with a curved
acoustic lens and, possibly, for other geometrically complex transducer
models. This is particularly true in the presence of acoustic obstacles and
inhomogeneity. This suggests that effective transducer models should be
validated also in the presence of complex and inhomogeneous obstacles in
order to ensure that they perform well also in realistic usage scenarios. Even
physics-based transducer modelling can sometimes fail to reach the chosen,
clinically motivated, agreement criteria (15 % peak intensity, 5 mm for focus
position and length). An optimal, but highly demanding and typically im-
practicable approach would include complete mechanical modelling of the
transducer with its housing and fixation. However, a compromise combin-
ing improved acoustic modelling of the transducer and its internal structure
with an aperture function to account for the missing mechanical modes
can be an acceptable solution, but requires the acquisition of reference data
using hydrophone measurements. An alternative approach would be to
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adapt the transducer model or the transducer placement heuristically, using
image-based information, to compensate for, e.g., the skull lens effect [301].
Image-based information, such as MRI data, is readily available and can
also be used to optimize the sonication path.

If possible, experimental effort should be invested in characterizing sensi-
tive material properties of the transducer components and obstacle media
(particularly speed-of-sound and species-specific attenuation). Compre-
hensive uncertainty assessment should typically be performed along with
computational modelling. Standing wave effects have been found to have
a high impact on the sensitivity and accuracy of transmitted intensity
predictions for the 3D-printed and other homogeneous obstacles (up to
fourfold variation of peak transcranial intensity for relatively small speed-
of-sound assignment errors in cortical skull). Additional studies should be
performed to investigate how much skull heterogeneity affects the forma-
tion of standing-waves. Approaches involving, e.g., stochastic modulation,
to suppress standing waves have been proposed [302–304].
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7.a appendix

7.a.1 Results tables and figures

Veroblack Plate Comparison [%]

Gamma Ipeak dz d HWHMz+

VB Plate Seff 18.9 -77.1 -134.9 134.9 -180.6

(2 cm dist.) P1 0.0 5.4 -71.9 71.9 -55.1

P2 0.0 -39.6 -41.9 41.9 -51.6

VB Plate Seff 14.9 -37.4 -11.5 18.9 -190.3

(3 cm dist.) P1 0.0 -15.4 -29.6 33.9 -10.8

P2 0.0 -89.8 -29.6 33.9 46.2

Table 7.5: Comparison of the difference metrics of simulated and measured
intensity distributions with the Veroblack plate obstacles at varying
positions (the tolerance-normalized deviation in %).
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Veroblack Printed Skulls Comparison [%]

Gamma Ipeak HWHMz+

VB Pig 1 Seff 25.4 -284.4 -65.1

P1 0.0 100.5 -57.0

P2 0.0 71.1 -41.0

VB Pig 2A Seff 47.7 -530.0 -161.5

P1 0.0 -74.7 26.5

P2 0.0 -67.5 26.5

VB Pig 2B Seff 0.0 118.7 -127.2

P1 44.0 -616.4 -72.3

P2 48.4 -616.4 -72.3

VB Pig 2C Seff 0.1 287.6 -155.8

P1 8.0 -113.1 -35.9

P2 5.6 12.2 -120.9

VB Pig 3 Seff 0.0 -32.3 -102.5

P1 27.6 -454.9 -35.2

P2 35.5 -524.4 -40.2

Table 7.6: Comparison of the difference metrics of simulated and measured
intensity distributions with the pig-skull-shaped Veroblack obstacle at
varying positions (the tolerance-normalized deviation in %).
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Veroblack Printed Skulls Comparison [%]

Gamma Ipeak dz d HWHMz+

VB Sheep 1 Seff 3.9 -17.4 -99.7 101.1 -80.6

P1 0.0 -42.0 -92.2 93.4 27.3

P2 4.1 -151.2 -94.7 95.6 0.6

VB Sheep 2A Seff 1.7 30.2 -125.0 126.7 -70.5

P1 1.8 120.3 -122.2 124.2 -11.3

P2 0.4 132.5 -122.2 124.2 -38.7

VB Sheep 3 Seff 31.0 -35.5 -247.1 247.2 -80.0

P1 2.0 85.2 -136.1 137.3 50.7

P2 0.7 80.1 -136.1 137.6 48.3

Table 7.7: Comparison of the difference metrics of simulated and measured
intensity distributions with the sheep-skull-shaped Veroblack obstacle
at varying positions (the tolerance-normalized deviation in %).
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Skulls Comparison [%]

Gamma Ipeak dz d HWHMz+

Pig 1 Seff 16.4 -134.7 3.4 30.3 -174.9

P1 0.0 -11.7 10.6 33.7 -53.0

P2 0.1 -55.6 2.2 31.9 -73.3

Pig 2A Seff 6.3 -238.6 - - -46.5

P1 0.0 -50.5 - - 67.2

P2 0.1 -129.5 - - 62.3

Pig 2B Seff 21.8 -53.6 - - -187.1

P1 0.0 19.1 - - -30.0

P2 0.4 -19.6 - - -54.9

Pig 2C Seff 6.8 - - - 212.1

P1 0.3 - - - 44.9

P2 0.4 - - - 82.3

Pig 3 Seff 4.2 -193.4 - - 142.1

P1 0.2 -36.1 - - 209.4

P2 0.7 -108.6 - - 236.9

Table 7.8: Comparison of the difference metrics of simulated and measured inten-
sity distributions with the real pig skull obstacle at varying positions
(the tolerance-normalized deviation in %). dz, d and Ipeak comparisons
omitted for simulation results where maxima occurs at first measure-
ment position.
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Skulls Comparison [%]

Gamma Ipeak dz d HWHMz+

Sheep 1 Seff 38.7 -105.2 -91.0 101.6 -123.2

P1 4.2 25.2 -27.5 48.7 3.9

P2 11.4 75.9 -28.7 50.4 -60.7

MB-P 15.9 49.6 -81.4 90.4 -87.2

P1-W1492 6.4 35.7 -190 192 110.5

Sheep 2A Seff 7.9 -115.8 98.6 101 -241.1

P1 3.8 -192.4 106.5 110.5 -16.2

P2 7.6 -256.1 102.8 105.2 -33.5

Sheep 3 Seff 21.6 -447.1 1.7 32 -36.9

P1 4.8 -297.2 5.4 31 286.3

P2 19.4 -5.6 1.7 31 231.4

Table 7.9: Comparison of the difference metrics of simulated and measured
intensity distributions with the real sheep skull obstacle at varying
positions (the tolerance-normalized deviation in %). P1-W1492 indicates
the simulation where the acoustic property of water at 20°C were
employed.
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Figure 7.10: (Top) The intensity profiles of the measurement and the simplified
SEFT transducer models with different radii of curvature (ROC)
normalized by the maximum. The x-axis indicates the distance from
the base of the transducer in the longitudinal direction. (Bottom) The
Gamma metric comparing the disagreement of the measurement
and the transducer models with different ROC is shown. Notice that
the model with 50 ROC is the best match. We employed the latter
throughout the paper and called it Seff.
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Figure 7.11: Variation of the normalized intensity distribution of a physical trans-
ducer model resulting from changes: (B-E) to the aperture function
(radial pressure variation of the piezo element boundary condition;
constant, linear, cosine, and spherical, respectively), and (F-H) to the
acoustic lens layer thickness (0.125, 0.25, and 0.5 wavelengths). (A)
The measurement reference. (Top) Plot along the symmetry axis.
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Figure 7.12: Variation of the normalized intensity distribution of a physical trans-
ducer model resulting from changes: (B-D) to the speed-of-sound
of the acrylic acoustic lens (2600, 2660, and 2750 m/s), and (E-G) to
the acrylic acoustic lens attenuation (14, 28, and 40 Np/m). (A) The
measurement reference. (Top) Plot along the symmetry axis.
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Figure 7.13: Comparison between piezo-element boundary conditions in simu-
lations of the beam profile in a pure water background. (A) Refer-
ence measurement. Normalized intensity distribution with piezo
(B) ‘hard’ source and (C-D) ‘soft’ source. The casing is treated as a
perfect reflector. The backing layer is modelled with the same density
and speed-of-sound as the acoustic lens and is assigned varying
absorption values (B-C: 50 Np/m and A: 150 Np/m). The green line
is provided as reference to indicate the extent of the FWHM in the
measurement.
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T H E I M PA C T O F C T I M A G E PA R A M E T E R S A N D S K U L L
H E T E R O G E N E I T Y M O D E L L I N G O N T H E A C C U R A C Y O F
T R A N S C R A N I A L F O C U S E D U LT R A S O U N D
S I M U L AT I O N S

abstract

Objective: Low-intensity transcranial ultrasound stimulation (tcFUS) is
a promising non-invasive brain stimulation (NIBS) technique. tcFUS can
reach deeper areas and target smaller tissue regions in the brain than
other NIBS techniques, but its application in humans is hampered by the
lack of a straightforward and reliable procedure to predict the induced
ultrasound exposure. Here, we examined how the modelling of the skull
affects computer simulations of tcFUS.

Approach: We characterized the ultrasonic beam after transmission
through a sheep skull with a hydrophone. We then performed computed
tomography (CT) image-based simulations of the experimental setup. To
study the impact on the skull model, we varied: CT acquisition parameters
(tube voltage, dose, filter sharpness), image interpolation, skull segmenta-
tion parameters, and mapping of the acoustic properties (speed-of-sound,
density, and attenuation). We also studied how slight skull position mis-
matches affect the predictions. Peak intensity, peak position, total power,
and the Gamma metric, as a measure for distribution differences, are used
as quantitative criteria.

Main results: Skull attenuation assignment and transducer positioning
had the most important impact on peak intensity, followed by imaging
parameters such as filter sharpness and tube voltage, which require proper
calibration of the mapping functions. Positioning also strongly affected
the intensity distribution (including focus-shape and location), as does
the structure of skull heterogeneity, which must be obtained from patient
image-data, rather than simulated as stochastic variability.

Significance: Our study reveals the importance of properly modelling the
heterogeneity of the skull and its structure, of accurately reproducing the
transducer position. Our results also raise red flags in terms of translating
modelling approaches among clinical sites without proper standardization

183
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and calibration of the imaging procedures or re-calibration of modelling
parameters.

8.1 introduction

Low intensity transcranial focused ultrasound stimulation (tcFUS) has good
spatial resolution and can also target deeper brain areas compared to
established transcranial stimulation methods, offering a complementary
application profile [123]. Its neuromodulatory effects have been repeatedly
demonstrated in animals [11, 109, 130, 269, 270] and humans [12, 269, 271,
272], but its cornerstones still need to be better established in order to move
tcFUS from basic research towards clinical applications. In particular, an
accurate and precise control of the spatial distribution and intensity of the
tcFUS beam is needed to ensure that neurally effective and safe stimulation
doses are delivered in the brain.

While standardized procedures have been established to measure the
profile of an ultrasound beam in water (for example IEC 62127-1 or [305]),
the characterization of the beam profile in the brain after propagation
through the dense, heterogeneous skull structure is a difficult problem
for in vivo applications in humans. The mismatch in acoustic impedance
between the skull and the surrounding soft tissue and water strongly affects
the tcFUS beam. In addition, the skull itself is composed of two outer layers
of cortical bone with a layer of inhomogeneous cancellous bone inside, each
having different density and thickness [306].

So far, computer simulations based on computed tomography (CT) im-
ages are considered the best choice for dose estimations for human tc-
FUS [146, 147, 273–276, 307]. CT images offer a strong contrast between
bone and other tissues, allowing for an accurate segmentation of the skull
surfaces, and can further be used to estimate the bone density. Using the
assumption that tissue density systematically relates to acoustic proper-
ties, several works [146, 147, 276] established mappings between the CT
Hounsfield units (HU) and the acoustic properties of bone. This approach
is promising, but still requires further development and validation, as the
mapping of HU to density without further calibration typically only applies
for soft tissue and not bone [308]. Small variations of the geometry and
acoustic skull properties (speed-of-sound, attenuation) can significantly
affect the dose shape, location and peak intensity [14], suggesting the need
for individualized dosing approaches.
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To account for differences in scanner types and settings, CT attenuation
grayscale values are typically mapped to the dimensionless linear scale
of HU using air (−1000 HU) and water (0 HU) as reference points. The
calibrated HU can then be mapped to the density of soft tissue, since most
organs behave like water with regards to radiation physics [308]. This,
however, does not hold strictly true for bone (between 300 and 3000 HU), as
it further depends on the X-ray spectrum and beam hardening correction,
which requires additional calibration [309]. Even after calibration, there
is no linear map that correctly fixes the HU and density relation for air,
water, and skull. Furthermore, clinical CT images lack the spatial resolution
to fully resolve the microstructure of the highly heterogeneous cancellous
bone layer.

Practically, this presents a challenge as the HU derived acoustic properties
of bone now depend on scanner type and settings (see Figure 8.1a for
the impact of tube voltage on HU distribution in the sheep skull). The
HU values outside the calibrated linear range of air and water depend
on acquisition parameters such as the chosen tube potential, the current-
time product, and the reconstruction filter (see Figure 8.2). In practice, CT
parameters are set to minimize the radiation dose at the expense of image
resolution and signal-to-noise ratio (SNR) for the application at hand. It
is so far unclear how sensitive the simulated tcFUS beam profile reacts to
variations of the dose and smoothness of clinical CT images, and how this
affects the match between the simulated and real beam profile of tcFUS
after transcranial transmission.
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Figure 8.1: Histograms of HU values, skull density, and speed-of-sound (mapped
linearly using air and water as anchor points) at two different CT tube
voltages: 140 (blue line) and 80 (red line) kV. Clearly, the tube voltage
affects the image-based property maps when no specific calibration
is applied.
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Compounding the issue are variations found between different mappings
from bone density to acoustic properties (see Figure 8.3). The linear map-
ping from density to speed-of-sound from [146] has two free parameters
that can be adjusted to compensate for the variations in the CT, while the
non-linear mapping from [147] is fixed and derived for a particular CT
configuration and stimulation frequency. The proper way to map image-
derived density to skull acoustic attenuation map is still an open problem
and its parameters are normally artificially tuned to match the experimental
beam profile [14, 146, 286].

In this study, we investigated the impact of CT image parameters (energy
levels, filter sharpness, and noise levels), of the skull shape reconstruction
approach, of the different mappings from HU to acoustic properties, and
of transducer positioning uncertainties on the simulated acoustic exposure
from a single element focused transducer (SEFT) operated at 500 kHz.

Using a state-of-the-art clinical CT, we acquired images of a sheep skull
sample. The nominal image resolution was chosen as high as possible
to allow for an accurate reconstruction of the object boundaries and the
internal heterogeneous structure. The dose was varied to correspond to
that of a standard clinical head scan ( 1–2 mSv), a low-dose scan previously
used for research purposes (0.3 mSv) [294] and a high-dose one as com-
parison baseline. Image reconstruction was repeated with different filters
that resulted in varying trade-offs between image smoothness and noise
levels. While the majority of the images were acquired at a tube voltage of
140 kV, we also considered one image acquired with a tube voltage of 80 kV.
The image HU were mapped to acoustic properties employing different
transformations, such as the ones proposed by [146] and [147] (see Fig-
ure 8.3), and used to simulate acoustic transmission through a sheep skull,
as further described in [307]. Systematic comparisons of the simulations
with hydrophone measurements of the beam profiles allowed assessing the
impact of the parameter choices on the accuracy of the simulations. The
analysis distinguished between effects of the parameter variations on the
focus shape and the absolute magnitude, respectively, of the transcranial in-
tensity distribution. As the absolute pressure magnitude strongly depends
on the attenuation in the skull that is often experimentally tuned for the
particular model, skull attenuation was treated separately.

The goal of this study is to provide guidance on the application of image-
based skull modelling (imaging and image processing parameters, skull
reconstruction, property mapping), to point out remaining limitations, and



8.2 methods 187

to give insight into the sensitive parameters dominating the modelling
uncertainty.

8.2 methods

8.2.1 Bone sample

In this study, we tested the same sample of sheep skull used in [307]. Soft
tissue from the skull was mechanically removed with tweezers, and the
sample was cut to maintain the upper section of the skull. The bone sample
was then glued to a holder (see Figure 8.4) and subsequently continuously
kept under phosphate-buffered saline (PBS) solution.

8.2.2 Measurements

A detailed description of how the ultrasound beam was characterized with
hydrophone measurements of acoustic intensity in a water tank, with and
without the skull, and how we analyzed the data can be found in [307].
Briefly, we employed two function generators (33220A, Agilent Technolo-
gies, California, United States) to generate a burst (20 pulses / burst) of
sinusoidal waves with a center frequency of 500 kHz, at a pulse repetition
frequency of 1 kHz. The pulse was subsequently amplified by a power am-
plifier (5312, OPHIR, California, USA) and sent to a single element spherical
ultrasound transducer (IPBD2, Hagisonic, South Korea, as in [307]). Two
custom-designed 3D-printed holders were used to fix the transducer and the
skull inside a tank. To sample the pressure wave, we employed a calibrated
needle hydrophone (NH1000, Precision Acoustic, Dorset, UK). The hy-
drophone was moved by a stepper-motor system (Sciencetown Co., Incheon,
South Korea) with a plane sampling distance of 0.25 mm, and controlled
by custom written software in MATLAB. The signal from the hydrophone
was transmitted and visualized with an oscilloscope (DSOX2022A, Agilent
Technologies, California, United States).

The data analyzed in this paper was acquired with the sheep skull at a
distance of 18.2 mm between the transducer and the surface of the skull
facing the hydrophone (corresponding to ‘position 1’ in our companion
paper [307]).
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8.2.3 Simulation framework

Acoustic propagation was simulated with the same methodology as in [307]
within the Sim4Life (ZMT Zurich MedTech AG, Zurich, Switzerland) plat-
form employing the linear acoustic pressure wave solver (LAPWE) from [17].
The LAPWE solver solves the wave equation:

ρ∇1
ρ
∇p− 1

c2
∂2 p
∂t2 −

ã
c2

∂p
∂t

= 0 (8.1)

where ρ is density in kg/m3, c is speed-of-sound in m/s, p is pressure in
Pa, t is time in s, ω is angular frequency in rad/s, and ã is:

ã = 2α

√
α2c4

ω2 + c2

where α is attenuation in Np/m. The acoustic properties assigned to the
materials are listed in Table 8.1.

Voxel size in every material remained below a tenth of its wavelength
with the coarsest grid step at 0.3 mm outside the skull region and 0.1 mm
in the skull region, resulting in a simulation mesh with about 500 million
voxels.

Simulations of the experimental setup were performed for a pure water
background, as well as with the skull obstacle in a water background (see
Figure 8.4b).

We carefully modelled the transducer in order to account for its internal
structure and vibrational modes and to ensure accurate estimations of the
beam transmission through complex obstacles [307]. The transducer model
is identical to the P1 model in [307], which distinguishes the outer, concave
acoustic lens (matching layer made from acrylic resin, properties as in
Table 8.1) and a disk shaped piezo-element (treated as Dirichlet pressure
boundary condition with a sinusoidal ‘aperture function’ that accounts for
the spatial variation of the pressure magnitude).

HU-based inhomogeneous property assignment was restricted to the
skull region. Voxels were assigned to 30 different bone classes based on HU
binning. An increase of the number of binning classes beyond 30 was found
to not significantly affect the acoustic distributions anymore (less than 1 %
change in peak intensity).
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8.2.4 Varied parameters

We defined a baseline configuration for the parameters used in acquiring
the CT images and in setting up the simulations, and then varied them
individually. Table 8.2 presents all parameter variations and the baseline
parameters.

8.2.4.1 CT imaging of the skull

We acquired CT images of the skull attached to its holder in air background
using a positron emission tomography / computed tomography (PET / CT)
scanner (Biograph 128, Siemens, Germany). We acquired CT data with two
tube potentials, 80 and 140 kV. The latter corresponds to the tube potential
used in [147] for mapping HU to acoustic properties. Figure 8.1a shows
the different distribution of HU for the two tube voltages. For 80 kV, a
tube current-time product of 115 mAs was used, together with a sharp
filter (H60s) during reconstruction. This corresponds to a low effective
dose of ∼ 0.3 mSv for a human head scan (roughly one-third of the dose of
clinical head scans) [294]. The spatial resolution was 0.36× 0.36× 0.6 mm3.
For 140 kV, three current-time products were used: 300, 70, and 25 mAs
corresponding, respectively, to a high (∼ 4.3 mS), clinical (∼ 1 mS), and low
(∼ 0.3 mS) effective dose. The spatial resolution was 0.39× 0.39× 0.6 mm3.
For each dose, three reconstruction filters were used, corresponding to three
different filter levels (H60s: sharp filter, H48s: medium filter, H41s: smooth
filter). As the image noise is not only dependent on the parameter settings,
but also on properties of the scanned object such as size and density,
gaussian noise was added to the images acquired with H60s and H41s
filters to emulate the noise levels of human images at low and clinical doses
(see Section 8.A.1 for details). Table 8.4 in the Appendix lists the adjusted
noise levels of the images depending on the CT parameters. Table 8.2 gives
an overview of the acquisition and reconstruction parameters considered
here. Figure 8.2 shows six examples of images acquired with different
parameters.

8.2.4.2 3D skull geometrical model

Skull model parameters were varied to assess their impact on the simulated
beam. The skull models were generated by first thresholding the CT im-
ages at 0 HU (the skull CT images are acquired in air-medium where the
background is around −1000 HU) to extract a surface model of the skull
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Figure 8.2: The figure shows six examples of the same slice of the sheep skull,
acquired with different scan / processing parameters: (A) high-dose
and sharp filter (H60s), (B) high-dose and smoother filter (H41s), (C)
high-dose and sharp filter (H60s), with nearest-neighbor interpolation,
(D) clinical-dose, sharp filter (H60s), (E) low-dose and sharp filter
(H60s), and (F) with a tube voltage of 80 kV. When not indicated
otherwise, the tube voltage was 140 kV, and linear interpolation was
used. In images (D) and (E), additional noise was added to emulate
typical human imaging conditions, as described in Section 8.A.1. The
insets show a zoomed region of the image, indicated by the white
square. The images clearly show that the level of detail changes
depending on the employed acquisition or reconstruction parameters.
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HU ρ [kg/m3] c [m/s] α [Np/m]

Air -1000 1.275 343 0

Water 0 1000 1500 0

Sheep skull variable* 1710 2500 100

Matching layer - 1190 2600 50

Table 8.1: Parameters used for skull property mappings, based on the approach
from [146], but using species-specific values from [280]. variable* in-
dicates that the HU value of bone is scan parameter-dependent and
defined here as the location of the corresponding HU-histogram peak.

component. Image up-sampling via either nearest-neighbor or linear inter-
polation (baseline: linear) was applied to relate the coarse CT resolution to
the fine discretization step in the simulation domain (0.112 mm).

8.2.4.3 Skull acoustic property maps

heterogeneity The importance of considering skull heterogeneity and
structure was investigated by either modelling the skull as a homoge-
neous medium or as heterogeneous with image-based tissue properties
distributions (baseline, defined below). To test the impact of the struc-
ture of the skull heterogeneity on the acoustic beam, virtual images were
constructed by replacing the skull’s HU values with random values fol-
lowing a gaussian distribution with the mean and standard deviation of
the original HU value distribution (see Figure 8.15) before the different
acoustic property maps were applied. The spatial granularity of the assign-
ment of the random values was varied (resolution: 0.1 mm, granularity:
1× 1× 1 / 2× 2× 2 / 3× 3× 3 voxels). The mean wavelength inside the
skull varies between 4.5–5 mm.

density and speed-of-sound To simulate the inhomogeneity of the
skull, we first used an approach similar to the one from [146] to map HU
to acoustic properties. This approach was also explored in our previous
study [307]. It assumes that the CT HU can be linearly mapped to bone
density, which in turn maps to speed-of-sound according to the following
relations:

ρ = ρref 1
+

ρref 2
− ρref 1

HUref 2
− HUref 1

HU
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Varied parameters

CT imaging

Tube voltage 80, 140kV

Filter (smoothing) H41s, H48s, H60s

Dose Low, Clinical, High

Skull model generation

Interpolation Nearest neighbor, Linear

Acoustic property mapping

Speed-of-sound Homogeneous, Gaussian1,

Gaussian2, Gaussian3,

Linearw,s, Lineara,s,

Pich836, Pich500i, Pich270

Attenuation 0, 50, 100, 150, 300 Np/m,

Pich836, Pich500i, Pich270

Skull position

Translation 0, ±1, 2, 3 mm

Rotation 0, ±1, 3°

Table 8.2: The different parameters considered in this paper and their baseline pa-
rameters (italic+bold; individual parameters are varied while keeping
the other parameters at their baseline). The mappings are explained in
detail in Table 8.3 and Section 8.2.4.3.
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Image-based skull map parameters

HU→ ρ ρ → c α

ref 1, ref 2 ref 1, ref 2 Np/m

Linearw,s water, skull water, skull 100

Lineara,s air, skull air, skull 100

Pich836 air, water [147] [147]

Pich836,100 air, water [147] 100

Pich500i air, water interpolated [147] interpolated [147]

Pich500i,100 air, water interpolated [147] 100

Pich270 air, water [147] [147]

Table 8.3: The different acoustic property mapping schemes (density ρ, speed-
of-sound c, and attenuation α). ρ is mapped from HU, and c from ρ. α

is either mapped from density, or kept homogeneous. The mapping
can be linear, with water and sheep skull (Linearw,s), or air and sheep
skull (Lineara,s), as anchor points. In addition, the mapping can be
non-linear, following the method proposed by [147]. In [147], mappings
relative to two frequencies were studied (270 and 836 kHz, Pich270 and
Pich836). We also consider interpolated mapping functions to handle
the 500 kHz (Pich500i) frequency used in this study.
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c = cref 1
+

cref 2
− cref 1

ρref 2
− ρref 1

ρ

where ref 1 and ref 2 refer to the reference anchors (air, water or skull)
of the linear mappings and their corresponding HU and density values.
ref 1 is chosen as either water or air and ref 2 as species specific average
skull properties. As mentioned earlier, the HU of water and air are fixed by
definition, however the average skull value is not. To set HUref 2

, a histogram
of the skull CT HU data was extracted and the HU value corresponding to
the peak of the histogram was used. ρref 2

and cref 2
were set to the species-

specific average skull properties (density and speed-of-sound, respectively)
as obtained from [280]. Adjusting the linear mapping to the peak HU of
skull ensured that the density and speed-of-sound histograms of 80 and
140 kV acquisitions agreed reasonably (see Figure 8.5 vs. 8.1).

Additionally, the non-linear mappings from [147] were also explored (see
Figure 8.3). These mappings have no free parameters since the linear HU
to density conversion depends uniquely on water and air for calibration
(which are independent of CT settings), and the mapping from density to
speed-of-sound and attenuation are fixed and only depend on frequency.
These mappings were established for a discrete set of frequencies (270 kHz
and 836 kHz are the ones closest to the stimulation frequency of 500 kHz
employed in this study). Therefore, simulations at 500 kHz were performed
using the experimentally determined relationships at 270 kHz and 836 kHz,
as well as a point-wise linear interpolation thereof.

Note, however, that these maps were obtained by fitting experimental
data from human skulls. The density to speed-of-sound and attenuation
curves do not necessarily translate to other species, as discussed in [307].
It is also important to note, that the curves have been fitted to provide
good approximations in a certain range of densities. Outside that range, the
extrapolated evaluation of these fitting functions is not suitable, and in this
study, the mapped properties are treated as constant above 1200 and below
2600 kg/m3 (corresponding to 200 and 1600 HU, respectively).

Parameters used for the different mappings are shown in Table 8.3. The
mappings are reproduced in Figure 8.3 and the resulting distribution of
acoustic properties inside the skull for the baseline CT settings are plotted
in Figure 8.5.

attenuation Previous work has assigned skull attenuation α based on
the bone density ρ, as in [146] and [147]. However, in [146], this relation
is heuristically tuned to better match simulation results with measure-
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ments. This is justified as a way to account for microscopic back-scattering
effects that cannot be effectively captured by even high resolution CT im-
ages [14, 146, 286]. Works by [286, 301] instead suggest using homogeneous
absorption maps in the skull, based on the finding that the introduction
of heavy stochastic noise (greater than 20 %) into a previously homoge-
neous attenuation distribution has almost no effect on the transcranial field
distribution [14].

To investigate the impact of attenuation, first homogeneous attenuation
with varying attenuation strengths (0 / 50 / 100 / 150 / 300 Np/m) were
applied (baseline: 100 Np/m), and subsequently, the different image-based
non-linear mappings from [147] at 270 and 836 kHz were used, as well as a
linearly interpolated version at 500 kHz.
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Figure 8.3: Speed-of-sound and attenuation mapping as a function of HU (A, B)
and density (C, D). Up to 1700 HU, the combined ρ(HU) and c(ρ)
mapping results in mostly linear and equivalent c(HU) maps.
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Figure 8.4: Setup used to characterize the ultrasound beam (A) and the corre-
sponding simulation setup with results (B). In (A), three parts of
the setup are visible: the hydrophone (white arrow), the sheep skull
holder (green dotted arrow), and the transducer holder (orange dot-
ted arrow). In the bottom corner of (B), the direction of the three
Cartesian axes are indicated. Adapted from [307].

8.2.4.4 Positioning sensitivity

Sensitivity assessment was also conducted by running simulations with
the skulls shifted (± 1 / 2 / 3 mm) and rotated (± 1 / 3°) along the principal
axes. Positive rotations are defined in a counterclockwise direction around
the stated plane with the origin at the skull’s bounding box center according
to the right hand rule. The direction of the principal axes can be seen in
Figure 8.4.

8.2.5 Agreement metrics

We aimed to determine how sensitive the simulations are to changes of the
parameters described above. To do so, we used one parameter combination
as the reference case (highlighted in italic and bold in Table 8.2) and sys-
tematically varied single parameters to assess the impact on the simulated
transcranial distribution. For quantitative analysis, we defined metrics to
characterize both changes in the spatial beam profile (irrespective of the
absolute intensity) and changes of the beam intensity.

In a second analysis, we tested how the parameters affected the fit be-
tween simulation and measurements, again using metrics that characterized
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different mappings.
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the differences in beam shape and beam intensity, respectively. The em-
ployed metrics are described in detail below.

8.2.5.1 Comparison between simulations

We defined four measures to compare the spatial distribution and the
intensity of the acoustic beam after skull transmission between simulations
and the reference simulation:

gamma comparison of the beam profiles The Gamma method
allows for a quantitative comparison of shape and intensity differences
between two fields [283, 290, 307]. Here, we apply it to simulations that are
first normalized to the total power in the volume after the skull obstacle,
resulting in a measure that is mostly sensitive to changes in the spatial
beam shape, and not to the overall intensity.

The method relates differences between the distributions to acceptable
spatial tolerances and an amplitude tolerance (∆dx,y,z and ∆D, respectively)
defined by the user (see Section 8.2.5.3). It compares every point in the
reference dataset with all points in the second dataset to determine the point
in the second dataset that minimizes an Euclidean distance norm combining
distance (~r) and value ( f (~r)) deviations, weighted by the corresponding
tolerances:

Γ (~rmodel,~rmeas,i) =√√√√ ( fmodel(~rmodel)− fmeas(~rmeas,i))
2

∆D2 + ∑
j=x,y,z

(
rj,model − rj,meas,i

)2

∆d2
j

where i is the index of a specific point in the reference dataset, x, y and z
are the spatial coordinate system of the two datasets, and the subscripts
ref and model indicate the reference and the second dataset, respectively. A
gamma index (γ) is subsequently assigned to each point by choosing the
minimized Euclidean distance norm:

γ (~rref,i) = min {Γ (~rmodel,~rref,i)} ∀~rmodel

A value of γ (~rref,i) = 0 corresponds to a perfect match for a point i, a
value of γ (~rref,i) ≤ 1 means that the disagreement lies within the total
tolerance, and γ (~rref,i) > 1 means that the disagreement exceeds the com-
bined tolerances. Finally, we determine the gamma comparison value γ%
for reporting, which is the volume in which gamma exceeds the threshold
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criterion, relative to the volume of the full width at half maximum (FWHM)
of the beam in water background:

γ% = 100
volume with γ > 1

volume of FWHM in water
(8.2)

This normalization allows comparison of the volume in which gamma
exceeds the threshold to the overall volume of the beam. However, please
note that the gamma volume corresponds to positions both in- and out-
side the FWHM. See Figure 8.6 for an illustrative example of the Gamma
comparison method.

peak location |d| We report the Euclidean distance |d| in mm between
the peak locations of the two distributions.

peak intensity We report the difference between the peak intensities
of the two simulations relative to the peak intensity of the reference case in
percent:

∆Ipeak = 100
Ipeak,sim − Ipeak,re f

Ipeak,re f
= 100 (

Ipeak,sim

Ipeak,re f
− 1)

where Ipeak,sim and Ipeak,re f are the peak intensity in the simulation and in
the reference case, respectively.

total power Similarly to the peak intensity, we report the difference
between the total power of the distribution after skull transmission, relative
to the total power of the reference case:

∆P = 100 (
Psim
Pre f
− 1)

where Psim and Pre f are the total transcranial power of the simulation and
of the reference simulation, respectively.

8.2.5.2 Comparison of simulations to measurements

The above measures were adapted for the comparison of simulations and
measurements as follows:

gamma comparison of the beam profiles Using the measurement
data as reference, we changed the Gamma comparison by normalizing
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the intensity distributions of both simulations and measurements to their
respective total power in a pure water background without obstacles. Total
power calculations for the simulations and measurements were done over
the same domain (the measurement volume in water). We refer to this
Gamma metric as γ̃%.

peak location | d̃ | We determined the Euclidean distance |d̃| in mm
between the peak locations in the simulation and measurement distribu-
tions.

peak intensity We report the difference between the simulated and
measured peak intensities, each normalized to the respective peak inten-
sities in a pure water background, in % relative to the normalized peak
intensity of the measurements:

∆ Ĩpeak = 100 (
Ipeak,sim/IpeakWater,sim

Ipeak,meas/IpeakWater,meas
− 1)

where IpeakWater,sim and IpeakWater,meas are the peak intensities of the simu-
lation and the measurements, respectively, in a pure water background
without obstacles.

total power We report the difference between the simulated and
measured total power of the distribution after skull transmission, each
normalized to the respective total power in a pure water background
(Pwater,sim and Pwater,meas, respectively), in % relative to the normalized total
power of the measurements:

∆P̃ = 100 (
Psim/Pwater,sim

Pmeas/Pwater,meas
− 1)

8.2.5.3 Tolerances for the Gamma comparisons

The chosen tolerances were motivated by the intended application – i.e.,
the spatially precise targeting of a small cortical patch – and the physical
beam properties. Given a focus size of the used transducer with a FWHM
in water with no obstacle of 42 mm along the beam axis and 5 mm perpen-
dicular to it, we set ∆dz = 5 mm and ∆dxy = 2 mm as upper thresholds
for shifts of the focus position in these directions. Shifts exceeding these
criteria would result in the undesired stimulation of a neighboring cortical
patch, or in a peak position that is in cerebral spinal fluid (CSF) or white



8.3 results 201

matter, rather than in gray matter. A criterion of ∆D = 10 % was set as
the amplitude tolerance, which is more conservative than the ∆D = 15 %
used in our prior publication [307]. We updated it in order to make the
Gamma comparison more sensitive to the impact of parameter changes on
the power-normalized distributions, which can be expected to agree better
with respect to amplitude.

8.2.5.4 Qualitative comparison

The impact of varying individual parameters on the simulated 3D inten-
sity distributions were compared qualitatively through visualization of the
maximum intensity projection (MIP) along the y-axis (see Figure 8.4b) onto
a 2D plane containing the main axis of propagation (xz-plane). Figure 8.12
shows sample MIPs with two different intensity normalization schemes:
Psim and Pre f , corresponding to the field scaling by the inverse of the simu-
lation’s total power or to the reference simulation’s total power, respectively.
Furthermore, the spatial distribution of γ(~rref) provides an intuitive visual-
ization of disagreement locations (see Figure 8.6 for an illustrative example
of the Gamma comparison method).

8.3 results

In the following, we refer to the Gamma metrics and peak location as
measures of the spatial profile distribution (irrespective of the overall
average absolute intensity), while we use the peak intensity and total power
as measures of the strength or intensity of the distribution.

8.3.1 Impact of CT parameters

Figure 8.7 summarizes the sensitivity of the simulations to changes of the
imaging parameters (red curves) and the dependence of the fit between
simulation and measurements on these parameters (blue curves). Overall,
the simulations are only moderately sensitive to the tested imaging param-
eters. The strongest impact is seen for the peak intensity and total power
that vary up to 20 % between the two tube voltages and the different filter
settings. However, it is worth noting that we fixed the peak of the bone
density histogram to the value taken from literature (see Figure 8.5a). The
choice of the interpolation scheme for upsampling (nearest-neighbor vs.
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Figure 8.6: Simulated focus shape (intensity isolevel). The red iso-surface and
violet iso-curves represent the 50 % level of the simulated and mea-
sured intensity distributions (after deposited power normalization).
The black curves demark the regions where a γ-comparison value
of 100 % is exceeded: (A) simulation setup, (B, C) enlarged focus
region with and without simulation iso-surface display, and (D) view
from the top displaying the full γ-distribution in a slice. (B) and (C)
show that the simulated beam and measured beam point in slightly
different directions and as such creates a corresponding mismatch of
the gamma metric on one side of the beam (black curves).
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linear) had only a small impact on the simulation results, likely due to the
inherent smoothness of the underlying images from a clinical CT scanner.

None of the tested parameter variations strongly influenced the fit be-
tween simulated and measured spatial distributions (Gamma and Euclidean
distance), indicating that error sources such as measurement errors and
coregistration errors between simulations and measurements likely con-
tributed to the mismatch (see Section 8.3.3.1 below for details). These error
sources might in part also explain the underestimation of the peak inten-
sity and total power by the simulations that was observed in most cases.
This is more apparent for the total power that was underestimated in the
order of 20–30 %. The different behavior for peak intensity and total power
indicates that while the simulations underestimate the deposited power,
they simultaneously tend to overestimate the focusing quality, thus partially
compensating the intensity underestimation in the beam center.

Additional visualizations of the beam distribution can be found in Fig-
ures 8.12 and 8.13 in the Appendix. Visual inspection of the MIP of the
simulated acoustic intensity maps confirm the overall weak impact of the
parameters on the simulated beam, and indicate that the strongest changes
occurred in the transducer near-field (see Figure 8.12).

8.3.2 Impact of skull properties and mappings from CT to acoustic properties

8.3.2.1 Attenuation

The spatial distribution of the simulated beam is slightly affected by the
attenuation of skull (red curves in Figure 8.8a and b). Correspondingly, the
fit between simulated and measured beam profiles did not strongly change
with the simulated skull attenuation (blue curves in Figure 8.8a and b).
Visual inspection revealed that the beam profile after skull transmission
became increasingly smooth with increasing attenuation (right column of
Figure 8.14), without a strong change in its distribution. In contrast, the
skull attenuation had a profound impact on the absolute intensity of the
simulated beam (see Figure 8.8c and d), as expected. A good fit between
simulations and measurements was obtained for an attenuation of α =
100 Np/m. However, this value is known to be species-dependent [274, 287,
310, 311] and subject to a large uncertainty. It is thus unclear whether the
good fit in intensity observed here would translate to human applications.
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Figure 8.7: Dependence of (A) the Gamma metrics (γ% and γ̃%), (B) the Eu-
clidean distance between the peak positions (|d| and |d̃|), (C) the peak
intensity (∆Ipeak and ∆ Ĩpeak), and (D) the total power (∆P and ∆P̃) on:
Tube voltage, reconstruction filter settings, dose, and interpolation
scheme during upsampling. The red lines show the comparison with
the chosen reference case (the reference parameters are highlighted
as bold labels on the x-axis). The blue lines show the comparison
to the acoustic measurements. Please see Section 8.2.5 for a detailed
description of the metrics.
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∆ Ĩpeak ∆Ipeak

(c)

0 50 10
0

15
0

30
0 0 50 10

0
15

0
30

0

0

200

400

80kV 140kV

α [Np/ m]

[%
]

Total power

∆P̃ ∆P

(d)

Figure 8.8: Dependence of the simulations on tube voltage and skull attenuation.
Metrics as in Figure 8.7.
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8.3.2.2 Heterogeneity

structure Motivated by the weak impact of the skull attenuation on
the spatial beam profile, we wanted to additionally test the relevance of
accurately modelling the heterogeneous spatial distribution of the skull
density and speed-of-sound in the simulations. Therefore, we modelled the
skull as a homogeneous medium (using the values for the sheep skull in
Table 8.1) and as random heterogeneous region (gaussian distribution with
mean and standard deviation matching that of the HU values in the skull,
see Figure 8.15 for details). We compared the results to those of our reference
case with a linear mapping of the acoustic properties from the CT HU values
(Linearw,s). Neglecting the internal structure of the skull and replacing it by
a homogeneous region or gaussian noise strongly affects both the spatial
distribution and intensity of the simulated beam (red curves in the left part
of the four sub-figures in Figure 8.9). Also, the fit to the measurement beam
is generally decreased compared to the reference case (see Figure 8.9, left
part of the four sub-figures, blue curves). Total power is less affected than
peak intensity. This suggests that the tested changes of the internal skull
structure mainly affects the spatial profile of the beam while leaving the
overall power transmitted through the skull relatively unaffected. Sample
cross sections of the speed-of-sound distribution inside the skull with the
corresponding beam profiles can be seen in Figure 8.16. Visualizations of
the FWHM envelope of the beam together with the γ-distribution show
that homogeneous or random-gaussian material properties result in more
focused, symmetrical and smoother intensity distributions (see Figure 8.17).
This is in disagreement with the measurement results and increases the
γ-errors on the two sides of the main lobe.

hu to properties mapping After confirming the importance of mod-
elling the heterogeneity of the skull, we compared the impact of different
linear and non-linear mapping schemes that relate the HU values in the CT
to the acoustic properties of bone. The linear maps are only used to generate
the distributions of bone density and speed-of-sound, while attenuation is
modelled as spatially homogeneous in the skull. We used either water and
cortical bone (reference case) or air and cortical bone as reference anchor
points to establish the linear mappings. The tested non-linear mappings
are based on the approach presented in [147], which includes mapping
functions at 270 kHz and 836 kHz. We linearly interpolated these two maps
to also construct a mapping function for 500 kHz (Table 8.3 provides a
summary of the tested mappings). We aimed to separate the effect of the
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mapping of the speed-of-sound and density from the effect of the mapping
of the attenuation. Therefore, we also considered two skull models with the
non-linear mappings for speed-of-sound and density from [147], but with a
constant attenuation of 100 Np/m (Pich836,100, Pich500i,100). This attenuation
was chosen as it gave overall the best match with the measurements (as
highlighted in Section 8.3.2.1).

The results for the two linear mappings are nearly identical, independent
of the selection of the lower anchor point (right halves in Figure 8.9).
Importantly, however, changing the value of the upper anchor point (here
set to the peak of cortical bone) can be expected to have a large impact on
the simulations.

The non-linear mappings (Pich836, Pich500i, Pich270) that also estimate
the position-dependent attenuation from the CT affect the fit between the
simulated and measured spatial beam profiles only moderately and the
mappings for 270 kHz even improve the Gamma metrics (see Figure 8.9a
and b, blue curves). However, the beam intensity varies strongly between
the non-linear mappings (see Figure 8.9c and d, right halves).

When non-linear speed-of-sound maps with homogeneous attenuation
were employed (Pich836,100, Pich500i,100), the shape of the normalized pres-
sure distribution were rather similar to those obtained using heterogeneous
attenuation maps (see Figure 8.9a and b, Pich836, Pich500i). However, the
intensity prediction improved when the attenuation was kept constant (see
Figure 8.9c and d). These results indicate that attenuation mainly affects
the overall intensity of the acoustic beam after skull transmission, while the
the speed-of-sound and the density mainly affect the spatial distribution.

8.3.3 Positioning

The skull was shifted along and rotated around the main axes in the
simulations. In general, shifts and rotations have a large, non-linear impact
on focus location and intensity. This is due to the variation of skull thickness,
skull heterogeneity and the changing orientation of the skull surface relative
to the propagation axis. The data are shown in Figures 8.10 and 8.11.

8.3.3.1 Translation

The simulations are sensitive to small translations (red curves in Figure 8.10).
In particular, shifts in the y-direction by 1 mm already result in changes
of the peak intensity by more than 50 % and a shift of the peak position
by 3 mm. The high sensitivity to shifts in this particular direction is likely
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Figure 8.9: Dependence of the simulations on the modelling of the acoustic
properties of the skull. Metrics as in Figure 8.7. See Table 8.3 for
further details.
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Figure 8.10: Dependence of the simulations on translations of the skull. Metrics
as in Figure 8.7.
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Figure 8.11: Dependence of the simulations on rotations of the skull. Metrics as
in Figure 8.7.
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caused by the associated changes in the distance between the skull interface
and the transducer in combination with changes in the incidence angle of
the beam due to changes of the orientation of the skull surface in the beam
center (see Figure 8.4). Due to the irregular shape of the skull, this effect
is more pronounced for shifts in the y-direction (the anterior - posterior
direction) than in the x-direction (medial - lateral direction). The Gamma
metric is on average slightly affected by shifts.

Comparison to the measurements (blue curves in Figure 8.10) in general
confirm the importance of an accurate control of the transducer position
relative to the skull, but does not allow for a straightforward identification
of the cause of the differences between simulations and measurements.
Specifically, while the peak position and peak intensity seem to be best
matched for the reference case without shifts, Gamma and total power
are better matched for shifts in the positive y-direction. Correspondingly,
visualizations of the FWHM envelope of the beam together with the γ-
distribution indicates that the γ distribution of the reference case has high
values (frequently exceeding 1) on two sides of the main lobe that are
reduced for shifts in the positive y-direction (see Figure 8.18a vs. b). This
suggests a systematic slight shift of the lobe relative to the measurements,
which can result from a simulation-related focus shift, or of inaccuracy in
reproducing the exact skull or sensor position relative to the transducer.

8.3.3.2 Rotation

In general, the simulations are less affected by rotations in the tested range
than they are by the translations (red curves in Figure 8.11). Rotations
in the yz-plane (i.e., rotations around an x-axis centered in the skull),
however, have a strong impact, which is in line with the observed impact
of translations along the y-direction. We suggest that the same structural
features of the skull as described above for shifts in the y-direction also
cause the sensitivity of the simulations to the rotations in the yz-plane.

The fit to the measurements is most sensitive to rotations in the yz-plane,
and counterclockwise rotations improve the fit (see Figure 8.18a vs. c).
Conversely, rotations around the xz-plane gradually sharpens the focus and
shifts it further away, resulting in worse agreement (see Figure 8.18d). As in
the case of the tested translations, there is no particular rotation that results
in the best fit in all measures, making the identification of the root cause of
the differences difficult.
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8.4 discussion

impact of internal structure of the skull Our results confirm
the importance of accounting for the internal structure of the skull in order
to accurately estimate the transmitted acoustic wave [312]. Simulations
employing a homogeneous skull model, similar to those used in some prior
studies [272], resulted in sharper foci and more regular and symmetric lobe
shapes than observed in our measured distributions and in the simulations
using CT-based acoustic skull properties (see Figure 8.17). A similar dis-
agreement with the measurements was also seen for simulations based on
unstructured, random skull heterogeneities. Presumably, CT-based skull
modelling introduces a structured heterogeneity that more profoundly
distorts the wave front than homogeneous and random-heterogeneous
skull properties. The latter mainly affect the skull transmission through
reflections at the skull boundaries that might also cause standing-wave
effects [307]. Modeling CT-based structured skull heterogeneity also tends
to predict a reduced focus intensity – likely due to scattering and dephasing
–, but also predicts suppressed side-foci (also a consequence of dephasing),
which would be beneficial effect from a clinical perspective. While it seems
generally useful to consider image-based information about skull structure
in the simulations, the results can depend strongly on various imaging and
image-processing choices made by the user. As detailed in the following
paragraphs, this includes the CT imaging parameters, the strategies used
to facilitate transferability between CT scanners or scanning protocols, and
the mapping functions from CT HU values to acoustic properties.

impact of ct parameters Varying the imaging parameters and in-
terpolation schemes had small to moderate effects on the simulations and
their accuracy. In particular, the result indicate that the chosen CT dose
(and by that the noise levels) did hardly affect the simulations that were
based on a linear mapping between CT HU values and bone density. This
is particularly important for future applications in humans, where it is
preferable to minimize the X-ray dose. On the other hand, changing the
filter sharpness and tube voltage moderately changed the simulations, in
particular the estimated peak intensity and total power. Thus, controlling
for these parameters and clearly documenting them in publications seems
useful to improve the comparability of simulation results between studies.
In this respect, it is important to note that the obtained HU values of the
skull sample were clearly affected by the tube voltage. This is not unex-



8.4 discussion 213

pected, as the HU values of CT scanners are usually only calibrated and
linear within the range corresponding to air (−1000 HU) and water (0 HU).
Achieving a good correspondence between the simulation results obtained
for the two tube voltages thus required us to rescale the HU values by
choosing upper anchor points for the linear mappings that corresponded
to the peak of the HU histograms (representing compact bone). While this
was effective in reducing the dependence of the simulation results on the
CT tube voltage, this approach would in practical applications also remove
interindividual differences in bone density and speed-of-sound values.

spatial distribution of acoustic wave Surprisingly, the tested lin-
ear and non-linear mappings from HU to acoustic skull properties resulted
in similar predictions of the spatial distribution of the transmitted acoustic
wave. This was on first sight unexpected, as the modelled range of bone
densities differed clearly between the linear and non-linear mappings (see
Figure 8.5a), with the non-linear mappings predicting on average higher
densities. However, the mappings from density to speed-of-sound also
differed between linear and non-linear mappings (see Figure 8.3c). These
two differences partly compensated for each other, so that the resulting
mappings from HU to speed-of-sound (see Figure 8.3a) were again mostly
similar.

However, the spatial distribution of the transmitted wave is also affected
by the amount of scattering inside the skull that is estimated by the linear
and non-linear mappings. Spatial variations in bone density cause variations
in acoustic impedance (Z = ρc) and hence scattering. The term ρ∇( 1

ρ∇p)
from Equation 8.1 can be rewritten as:

∆p + (ρ∇1
ρ
) · ∇p

so the contribution of density heterogeneity results from the (ρ∇ 1
ρ ) term.

The speed-of-sound histograms (see Figure 8.5b) show that the non-linear
mappings result in narrower distributions than the linear ones and thus gen-
erally in reduced scattering predictions. Finally, comparing the histograms
of the three non-linear mappings with each other reveals a right shift and
narrowing of the distribution for 836 kHz compared to 270 kHz, which
increases the focality of the predicted acoustic beam.

Obviously, attenuation strongly and predominantly affects the strength
of the acoustic intensity distribution (see below). However, comparing the
image-based speed-of-sound mapping used with homogeneous attenuation
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vs. CT-based heterogeneous attenuation maps indicates an improvement
in focus location prediction when considering attenuation heterogeneity –
a finding that differs from [14], because only stochastic heterogeneity was
considered in that study.

strength of the transmitted acoustic wave While we found
that using CT-based acoustic property maps helped to better estimate the
spatial distribution of the acoustic wave after skull transmission compared
to a homogenous skull model, a more complex pattern arose for the estima-
tion of the magnitude of the transmitted wave. The latter is mostly affected
by the acoustic attenuation of the skull. As noted by [146, 286], even high
resolution CT is not detailed enough to account for acoustic attenuation re-
lated microscopic backstattering effects. Therefore an empirical relationship
is employed. Some groups [14, 301] have advocated for a constant skull
attenuation. For the linear mappings, we selected a spatially homogeneous
attenuation value that resulted in a good match between the simulated and
measured intensity. The optimized value fell within a reasonable range,
supporting the validity of the simulation framework. The resulting peak
intensity and the total power was on average still underestimated by up
to 40 %, and could likely have been improved further by fine-tuning the
chosen attenuation (see Figure 8.7). However, this approach is not feasible
for simulations of the tcFUS beam in human in vivo applications. Rather, we
then have to rely solely on attenuation values reported in the literature. Un-
fortunately, values between α = 10 and α = 300 Np/m have been reported
for humans [147, 313], making the simulated intensities uncertain (see
Figures 8.8c and d). In addition, attenuation might exhibit interindividual
variations that are lost when assigning a constant value from literature.

The non-linear mappings suggested in [147] aimed to resolve these prob-
lems by also estimating a position-dependent attenuation value from the
CT image. In addition, they do not involve a rescaling of the CT HU values,
as we had to use for the tested linear maps. Thus, the proposed non-linear
mappings provide comprehensive informing about the spatial distributions
of bone density, speed-of-sound and attenuation inside the skull, includ-
ing interindividual differences of the acoustic properties. In its current
form, however, this approach unfortunately still suffers from two major
limitations. First, as already discussed above, CT images are usually not
calibrated in the higher HU ranges. Thus, a mapping from HU values to
bone density that was established for a particular CT scanner cannot be
unambiguously applied to data acquired from another scanner. Even for the
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same scanner, the mappings will change when changing the tube voltage
(see Figure 8.1). Here, we aimed to ameliorate the latter problem by using
the same tube voltage as in [147] (140 kV, personal communication by the
authors). It is still likely that the data from the CT scanners used here and
in [147] differed in the upper HU range.

Second, the mappings were established for specific ultrasound frequen-
cies, and need to be adapted when applied at other frequencies. In our re-
sults, this becomes apparent when using the original mappings for 270 kHz
and 836 kHz to estimate the acoustic wave at 500 kHz. The simulated peak
intensity and total power strongly deviates by around 100 % for Pich270 and
by −90 % for Pich836 (see Figures 8.9c and d), which corresponds to the re-
sults for constant attenuation values of the skull of about 50 and 300 Np/m,
respectively, when using a linear mapping (see Figures 8.8c and d). This
can be understood when analyzing the mapping functions. Attenuation
as a function of HU are non-monotonous relationships for the Pichardo
models (see Figure 8.3c). The 270 kHz transfer function oscillates around the
constant attenuation value used for the homogeneous model, being lower in
the 300–400 HU range and higher elsewhere. Applied to our CT data, the re-
sulting histogram of the attenuation values inside the skull (see Figure 8.5c)
has two peaks – one around 20 Np/m (reflecting the shallow minimum of
the transfer function at medium HU) and one around 115 Np/m (reflecting
the flat transfer function at high HU) – and is on average clearly lower
than the constant attenuation value of α = 100 Np/m used for the linear
mappings. The 836 kHz transfer function is much higher than the constant
attenuation value used for the homogeneous modelling throughout the
spectrum. Correspondingly, also the histogram of the attenuation values
ranges from 180 Np/m to 270 Np/m (see Figure 8.5c).

While it was expected that the non-linear mappings that were established
at too low (270 kHz) and high (836 kHz) frequencies resulted in under- and
overestimated attenuation values, our results indicate that estimating a
transfer function at an intermediate frequency through interpolation im-
proves the results. However, as the shape of the transfer functions strongly
and non-linearly depends on the frequency and the transfer functions are
only available for a sparse set of frequencies, interpolation to other frequen-
cies, e.g., at 500 kHz in our case, should be performed with caution and
awareness. The comparison of Pichardo mappings used with homogeneous
vs. image-based attenuation demonstrates that deviations from the mea-
surements are influenced (and probably caused) by both speed-of-sound
and attenuation heterogeneity.
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The Pichardo [147] models were established for human skulls, so that a
part of the mismatch between simulated and measured intensities might
also stem from species- and age-specific differences in acoustic skull proper-
ties, e.g., differences in the skull microstructure or composition that are not
resolved at the spatial resolution of clinical CT scanners [312]. Irrespective
of this, the limitations outlined above generally apply and affect the reliabil-
ity of the simulations. Resolving them would likely require reestablishing
the mappings based on a CT scanner that is calibrated at higher HU for a
specific tube voltage so that they could be transferred to data acquired from
other similarly calibrated scanners. Alternatively, dual-energy CT might
be used to reliably estimate bone density [314], probably at the expense of
increasing the radiation dose.

impact of the positioning accuracy Our results confirm the
high sensitivity of the simulations to translations and rotations of the
transducer relative to the skull. Even changes in the order of 1–2 mm or
2–3° can affect the predictions of both shape and intensity. Here, this was
particularly apparent for shifts and direction in the direction along which
the curvature or structure of the skull changed the most. For the human
skull, the effect might be often less pronounced as the skull composition and
curvature does not change as quickly as seen here for the smaller sheep skull.
However, the results still point to the need to control the transducer position
very accurately in practical applications. For human non-invasive brain
stimulation, neuronavigation based on frameless stereotaxy is considered
the gold standard for position control. However, its reported accuracy lies
within a few millimeter, i.e., in the range that resulted in clear errors in
our simulations [315], suggesting the need for improvements. It is also
likely that a slight systematic mismatch of the modelled transducer position
contributed to the differences between the simulated and measured acoustic
beam shape in our case, despite our efforts to precisely control the position.

study limitations The presented results reflect measurements per-
formed on a single sample of a sheep skull. Considering the known inter-
species and interindividual (e.g., age-related) differences of the acoustic
properties of bone [316], it can be expected that the reported absolute result
values are sample specific and would vary if repeated for other samples.
However, we find it unlikely that our conclusions on, e.g., the relevance of
specific CT parameters would fundamentally change. In particular, most of
our main findings help to reveal general limitations of CT-informed tcFUS
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simulations that are independent of the tested sample, but are caused by
the procedures used for the CT image acquisition.

Our results indicate that a part of the observed mismatch between sim-
ulations and measurements might be due to positioning errors in the
measurement. An even more careful position control might be needed to
resolve the remaining mismatch between the spatial distribution of the
simulated and measured acoustic waves. Considering the highlighted lim-
itations of the CT data, it is less obvious whether an improved position
control would also help to improve the estimation of the strength of the
acoustic waves.

8.5 conclusions

Properly modelling skull heterogeneity is important to accurately predict
the acoustic intensity distribution. Interestingly, the structure of the hetero-
geneity has a much larger impact than the degree of heterogeneity and must
be considered to reliably and accurately predict the beam shape. Our study
confirms the value of informing tcFUS simulations by CT-images of the
skull heterogeneity. In particular, the image information helps to estimate
relative spatial variations of bone density and speed-of-sound within the
skull, which improves the accuracy of the simulated spatial distribution
of the transmitted wave. Of note, this also works for low-dose CT scans
of the head that minimize the exposure of the participants to radiation at
the expense of having a lower SNR than standard diagnostic clinical CT
scans. On the other hand, reliable estimation of the strength of the trans-
mitted wave is still a challenge even when CT information is available. CT
scanners are usually not calibrated in the upper HU range that covers bone.
Consequently, CT images do not provide reliable quantitative information
about the absolute bone density, which in turn reduces the reliability of
the estimated speed-of-sound and acoustic attenuation. The uncertainty of
these parameters affects mostly the simulated strength of the acoustic wave,
while its relative spatial distribution seems to be more robustly estimated.
In order to ameliorate this problem, some studies chose to use a spatially
homogenous attenuation value for the skull that was either empirically
adjusted to match the measurements, or – as this is not feasible for human
applications – was based on literature values. Indeed, it seems that the
best option so far is to base the simulations on linear mappings of the CT
information to bone density and speed-of-sound that are adjusted for a
scanner-specific upper reference point for compact skull, in combination
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with using a homogenous skull attenuation. Literature values can be used
for the purpose of fixing the reference point properties and attenuation, at
the cost of loosing part of the subject-specific information.

Besides their importance in the context of personalized tcFUS modelling
and treatment planning / optimization, the presented results make it evi-
dent that particular care is needed when translating a modelling approach
from one clinical site to another, as imaging conditions are likely to change.

Our findings also confirm that the transmitted acoustic wave is sensitive
to small changes (1–2 mm, 2–3°) of the transducer position relative to the
skull. When aiming to use acoustic simulations to inform personalized
tcFUS applications, a precise control of the transducer placement is thus
needed that seems to be at the limit of the accuracy provided by currently
available neuronavigation systems.

Future progress would benefit from the use of CT scans that are cali-
brated and quantitative in the upper HU range, which can for example be
achieved by using dual-energy scans. This would improve the compara-
bility of simulation results across studies. Transferability would be further
improved when controlling for the image smoothness caused by the recon-
struction filter. Importantly, calibrated and standardized CT scans would
also ensure that mapping functions between CT information and acoustic
bone properties are not scanner-specific, but can be transferred between
studies. Our results indicate that this is a key requisite for improving the
reliability of CT-based estimates of the acoustic properties of the skull, in
particular when aiming to also estimate the attenuation of the skull.
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8.a appendix

8.a.1 Adjustment of CT noise levels

The level of noise in a CT image does not only depend on the dose and
the reconstruction filter, but also on the amount of absorbed X-rays by the
scanned object and the surrounding background medium. CT scans of a
human head will thus have more noise than a scan of the rather small
sheep skull sample used here when keeping the scan settings unchanged.
Therefore, we mimic the noise levels of human clinical- or low-dose CT
images by adding gaussian noise to our images taken in a air background
to re-create realistic patient scanning conditions. To do that, we considered
the noise distribution in a region of interest (ROI) in the brain in a human
CT image acquired at low-dose and with H60s reconstruction filter [294].
We first verified that the values in the ROI were normally distributed
(Kolmogorov-Smirnov test), and added corresponding gaussian noise to
the CT images of the sheep skull (air background). When two normally
distributed random variables X and Y with variances of σ2

x and σ2
y are

summed up, the sum Z has a variance which is the sum of the variances
(σ2

z = σ2
x + σ2

y ). In our case, we determined the variance in a ROI in the
center of a human low-dose CT image (i.e., not involving skull and assuming
that the values for brain and cerebrospinal fluid are close to water) and a
ROI in a water glass in the CT data of the sheep skull sample (same CT
parameters). We then adjusted the noise level of the sheep skull image by
adding gaussian noise with a variance that corresponded to the difference
between the variances of the human and sheep CT scans.

As we had no human CT scan with clinical dose available, we estimated
the corresponding noise variance by comparing the variances in ROIs
placed in water and in air of sheep CT scans with low versus clinical dose.
The variance of the sheep CT scans with clinical dose was then adjusted
accordingly by adding gaussian noise.
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Dose Filter σ [HU]

High H60s 17.0

High H48s 5.2

High H41s 4.0

Low H60s 171.0

Clinical H60s 126.2

Low* H60s 45.0

Clinical* H60s 33.9

Table 8.4: HU standard deviations (σ) in a water region of interest of 100 ×
100 pixels. Images were acquired at tube voltage 140 kV with varying
doses (high, clinical, low) and smoothing filters (H60s, H48s, H41s).
The rows marked with an asterisk refer to the original CT data without
added noise.
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8.a.2 Results figures

Figure 8.12: Assessment of the scan parameter impact on the intensity distribu-
tion shape (left: before normalization, right: after normalization to
the case-specific deposited power). The same scale ranging from zero
to the peak value in the measurement is used throughout. Isolines
demark 50, 75, and 100 % of that peak value.
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Figure 8.13: Same as in Figure 8.12, but for the different interpolation schemes
for upsampling.

Figure 8.14: Same as in Figure 8.12, but for different homogeneous skull attenua-
tion values.
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Figure 8.15: HU histogram of the skull, as well as fitted gaussian distribution
used to investigate the impact of heterogeneity structure (as opposed
to only the heterogeneity level) on transcranial sonication.
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Figure 8.16: Impact of skull heterogeneity on the intensity distribution. The
color map refers to the skull speed-of-sound distributions (intensity
distributions are displayed as in the left columns of Figures 8.12–
8.14).
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Figure 8.17: Impact of skull heterogeneity modelling on the focus shape and
γ-distribution. See Figure 8.6 for an explanation of the different
iso-contours and surfaces.
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Figure 8.18: Same as in Figure 8.17, but with varying skull alignment.
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C O U P L E D U LT R A S O U N D - E L E C T R O P H Y S I O L O G Y- E E G
M O D E L L I N G

9.1 background

It has been recently demonstrated that low intensity focused ultrasound
(LIFUS) can stimulate neural activity non-invasively [10, 12, 113, 130, 132,
317, 318]. This is of high value for both therapeutic (stimulation, neuro-
prosthetics, etc.) and diagnostic (preoperative mapping, etc.) purposes. A
multi-scale simulation platform for image-based and personalized mod-
elling of transcranial LIFUS stimulation would be an important tool to
support ongoing efforts in this research area. Such a platform would not
only provide useful information during device development and the design
of experiments, but also allow the performance of mechanistic studies,
hypothesis formulation and testing, and, ultimately, personalized treatment
planning, safety, and efficacy assessment of LIFUS.

In this chapter, a preliminary study is presented to illustrate how the
research and results described in the previous chapters – combined with
IT’IS research on the mechanisms of acoustic stimulation, as well as neural
network dynamics and EEG modelling – can be used to achieve such
(personalized) multi-scale LIFUS modelling. The presented model is highly
speculative and greatly simplified, but it contains the building blocks and
approaches that can be used to establish physics- and physiology-based
modelling of acoustic neuromodulation to assess the impact of LIFUS on
brain network function.

9.2 method

9.2.1 Multi-scale model

A multi-scale model was set up, ranging from the cell membrane-level to
the head anatomy level (see Figure 9.1). On the macroscopic level, acoustic
propagation in a transcranial LIFUS sonication setup targeting the cortex
was simulated. A micro-scale model based on the NICE model for acoustic
neuromodulation [193] was used to relate acoustic exposure to the result-

227



228 coupled us-electrophysiology-eeg modelling

ing change in the spiking activity of specific neuron populations. On the
mesoscopic level, cortical activity was simulated using a distributed neural
mass model (NMM) approach [319]. This models populations as recur-
rent feedback and feedforward nodes of excitation and inhibition affecting
population firing rates. Combining the macroscopic and mesoscopic levels
allowed the simulation of the impact of acoustic exposure on cortical activ-
ity maps. In a last step, this neural activity information is combined with
electromagnetic simulations on the macroscopic level to obtain virtual EEG
traces.

9.2.2 Anatomical head model

Simulations were performed using the MIDA anatomical head model [258],
a highly detailed (resolution < 0.5 mm, > 160 distinguished tissues and
structures) computational head model implemented for computational life
sciences applications (with a particular focus on neurostimulation applica-
tions). The model has been created based on extensive, high resolution MRI
data, obtained from a healthy volunteer. The segmentation was performed
based on various structural image data sets, with different contrasts to
facilitate the detection of a large number of structures. In addition, DTI was
performed, which permits to obtain information about the orientation of
neural fibers in the brain, dielectric heterogeneity and anisotropy, as well
as neural connection strengths (see Figure 9.2). The latter was particularly
important for the generation of the cortical activity model (see Section 9.2.4).

9.2.3 Acousto-neural interaction model

model Despite intense investigation in the past decade, the underly-
ing mechanisms by which ultrasound waves interact with neural tissue
at the cellular scale are still unclear. Several theories have emerged to try
and explain this interaction. Among them, the Neuronal Intramembrane
Cavitation Excitation (NICE) model [193] hypothesizes that ultrasound
waves excite neurons through the complex interplay of two phenomena
occurring at distinct time scales: (1) microsecond mechanical oscillations of
‘bilayer sonophores’ in the plasma membrane resonating at the ultrasound
frequency, and (2) millisecond ion channel’s gating transitions driving a
progressive neuronal electrical response. This model provides quantitative
predictions of cell-type-specific neural responses upon ultrasound expo-
sure [320] that correlate indirectly with the results of numerous animal
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Figure 9.1: Schematic representation of the different processes and components
involved in the multi-scale modelling of acoustic brain activity modu-
lation and its impact on EEG.
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(a) (b)

Figure 9.2: The MIDA head model (left), as well as underlying MRI image data
and DTI tractography (right).

in vivo studies sonicating the central nervous system (CNS) [10, 11, 115,
317, 321, 322]. However, as it establishes a bi-directional link between me-
chanical membrane oscillations at the US frequency and the millisecond
development of an electrical neural response, the NICE model effectively
couples two dynamical systems evolving at significantly different time
scales. As such, it is computationally expensive and difficult to interpret.
Furthermore, the NICE model predicts a very singular membrane dynamics
upon sonication that has not been directly observed experimentally, hin-
dering a potential validation. Recently, a multi-Scale Optimized Neuronal
Intramembrane Cavitation (SONIC) model has been proposed to alleviate
those limitations [195]. It partly decouples the NICE model by integrating
the coarse-grained evolution of effective electrical variables as a function
of a pre-computed, cycle-averaged impact of the mechanical system. The
SONIC model accurately reproduces cell-type-specific neural responses
of cortical and thalamic neurons predicted by the full NICE model, while
drastically reducing computational costs, thereby facilitating systematic
explorations of dense parametric spaces and the study of connected neuron
populations. Moreover, it offers an increased interpretability to the effects of
ultrasonic stimuli in terms of effective membrane dynamics, which explains
the predicted singular signature of ultrasound-triggered spikes compared
to electrically induced and physiological spikes.

Based on the literature, we selected two point-neuron models of cortical
neurons whose functional characteristics corresponded to those of the ex-
citatory and inhibitory elements of the distributed neural mass model: a
pyramidal, regular spiking (RS) excitatory neuron and an aspiny, fast spik-
ing (FS) inhibitory interneuron [323]. Both neuron models are composed of
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a fast voltage-gated sodium channel, fast and slow voltage-gated potassium
sodium channels, as well as a passive leakage channel. They display very
similar electrophysiological behaviors upon electrical stimulation, differing
only in their firing rate adaptation to prolonged stimuli (enhanced for the
RS neuron).

setup We used the SONIC model to measure the isolated neuromodula-
tory effect of continuous-wave ultrasound stimuli on each neuron type, for
a wide range of post-synaptic states. To do so, the SONIC-neuron model
was simulated for numerous combinations of ultrasound amplitudes (rang-
ing from 0–600 kPa) and intracellular driving currents (Q, ranging from
−300–1000 mA/m2) meant to represent excitatory or inhibitory input. For
each combination, the model was simulated for 1000 ms, neural spikes were
detected over the last 500 ms of stimulus delivery, and the resulting firing
rate was stored in a two-dimensional lookup table. The necessary automa-
tion and evaluations were implemented using Python scripting. Look-up
tables have been computed for continuous exposure and pulsed exposure
(duty cycle: 25 %, pulse repetition rate: 100 Hz).

9.2.4 Cortical oscillation model

model A modified version of the Jansen-Rit model [319] was used to
simulate the activity of a single cortical column. The Jansen-Rit model
consists of three interacting populations, representing inhibitory interneu-
rons, excitatory interneurons, and pyramidal cells, which together represent
the activity of a single cortical column (see Figure 9.7). Both classes of
interneurons synapse onto pyramidal cells, which in turn synapse onto the
interneurons. The membrane potential of each population is determined
by the convolution of an alpha function (representing delays and synaptic
dynamics) and the firing rates of the inputs to the population. Membrane
potentials (v) are converted to a firing rate by a sigmoid function.

A network of coupled Jansen-Rit oscillators was implemented in order
to represent activity across the entire cortical surface. From each node, an
output, scaled by connectivity weight, is added to the excitatory interneuron
inputs of the other nodes. We separate short-range and long-range inter-
column connectivity. The short range connectivity from node m to node
n is proportional to the difference between the membrane potentials of
excitatory and inhibitory interneurons in node m; long-range connectivity
is proportional to the membrane potential of the pyramidal cells; the long-
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Figure 9.3: The sonophore caviation (NICE) model of acoustic neuromodulation.
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Figure 9.4: Pressure-dependence of the sigmoid parameters (v0, r and its inverse,
and e0) for the RS neuron, as obtained through fitting.
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Figure 9.5: Pressure-dependence of the sigmoid parameters (v0, r and its inverse,
and e0) for the FS neuron, as obtained through fitting.
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Figure 9.6: Principal steps for the derivation of the SONIC model from the NICE
model [195]
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Figure 9.7: Schematic representation of the different neuron populations in the
Jansen-Rit model. Three column models, each featuring three dis-
tinct neural populations (pyramidal cells, excitatory and inhibitory
interneurons), as well as their short and long range connectivity are
illustrated.
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range, but not short-range, input to node n is delayed according to the
spatial distance between nodes m and n.

Our model is therefore defined at each node n by the system of differential
equations:

ẏ0 = y3

ẏ3 = Aas0(y1 − y2)− 2ay3 − a2y + 0

ẏ1 = y4 +
(0.5Aa(pmax − pmin))

2

2
σ(t)

ẏ4 = Aa(µ + a2 Js0,1 + cn + ln)− 2ay4 − a2y1

ẏ2 = y5

ẏ5 = Bb(a4 Js1,3)− 2by5 − b2y2

The sigmoid functions which define the mapping from membrane potential
to firing rate are given by the following relations:

sj =
2e0j

1.0 + e
rj(v0j−yj)

sj,k =
2e0j

1.0 + e
rj(v0j−ak Jyj)

Here, cn and ln are the nth terms of the vectors ~c = Mc~y′0 and ~l =
Ml( ~y1 − y2), where Mc and Ml are the long-range and short-range connec-
tivity matrices, ~yj is the vector of values yj from each node m, and ~y′0 is
the vector of values y0 from each node m, delayed by the distance between
node m and node n. Mc is derived from DTI data as described below. Ml
is defined according to a gaussian scaling function that depends on the
spatial distance between nodes. σ(t) is a gaussian white noise input, which
is scaled by a function of pmin and pmax, the minimum and maximum noise
input rates used in [319].

implementation A network of approximately 600,000 coupled Jansen-
Rit neural mass models (NMM) was implemented in The Virtual Brain
(TVB) [324]. A single cortical column NMM was positioned at each vertex
of a cortical surface mesh derived from the MIDA head model [258]. In
addition, single cortical NMMs were used to represent each subcortical
region of the MIDA head model. Using SCRIPTS [325], a cortical surface
mesh was generated, parcellated, and combined with a DTI-based inter-
region connectivity map (obtained from original DTI data of the same



9.2 method 237

Figure 9.8: Illustration of neural-mass networks in TVB [39].

volunteer on whose MRI structural images the MIDA head model is based).
The cortical surface mesh derived using the SCRIPTS pipeline was manually
aligned to the mesh used in the acoustic simulation. The mesh used in the
acoustic simulation was parcellated in accordance to the SCRIPTS mesh,
using a nearest neighbor algorithm, and the parcellation information was
injected in the TVB model (vertices parcellated as ‘unknown’ were assigned
to ‘left cortex unknown’ or ‘right cortex unknown’ based on their position
relative to the midline). Subcortical regions were positioned aribitrarily in
space, distant from the cortex, such that their connectivity to cortical regions
was defined entirely by the DTI-based inter-region connectivity map and
not by anatomical geometry. This approach ensures that the computational
model is consistently personalized with regard to both anatomical geometry
and network connectivity.

For each node in the network, a current dipole proportional to the dif-
ference between the Jansen-Rit state variables y1 − y2 (corresponds to post-
synaptic potential) was computed, and aligned with the cortical surface
normal. An EEG trace was calculated from the current dipoles using the
reciprocity theorem [326] (described below in Section 9.2.7).

setup The inherent ambiguity of the connectivity scaling is resolved
by rescaling connectivity matrices Mc and Ml to reproduce approximately
the total input to each node in TVB’s pre-defined and published setup (in
the absence of acoustic exposure). Mc was multiplied by the ratio between
the average weight of the TVB default connectivity matrix and that of the
connectivity matrix obtained from SCRIPTS, and by the ratio between the
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number of nodes in the TVB example Jansen-Rit simulation (76) and the
number of nodes the present simulation (to compensate for the much larger
number of simulated cortical nodes). As the TVB Jansen-Rit simulation
did not include local connectivity, Ml was scaled by 2−10 (as found in a
published TVB simulation for a different NMM) and by the node number
ratio. As described in Section 9.2.6, the values rj, e0j and v0j are made local
pressure dependent, as described below (distinguishing between excitatory
and inhibitory cell types). Thus, values of r, e0 and v0 are identical for
pyramidal cells and excitatory interneurons. At zero acoustic pressure,
the parameterized, pressure-dependent sigmoid parameters are identical
to those previously published in the absence of exposure and they are
identical for the inhibitory and excitatory populations. Numerical values
for all parameters are given in Table 9.1.

9.2.5 Acoustic propagation model

model and implementation As in Chapters 7–8, the FDTD imple-
mentation of the linear acoustic pressure wave equation (LAPWE) from
Sim4Life was used to simulate acoustic exposure. It considers heterogeneity-
related scattering and employs anisotropic, adaptive, rectilinear meshes
(voxels) for discretization.

setup For consistency and to allow straightforward mapping from the
acoustic propagation model to the distributed cortical oscillation model,
the MIDA head model was also used for the acoustic simulations. Image-
based skull heterogeneity modelling was not possible due to the absence
of CT data for the MIDA model. Therefore, only cortical and cancellous
bones could be distinguished. Tissue properties were assigned according
to the IT’IS tissue properties database [155], which includes dispersive
relationships for acoustic properties of a large number of tissues, that have
been carefully curated based on an extensive literature review.

The exposure model was based on [12] and [272]. Transducer placement
was done as in [12], with the transducer normal to the skull surface and at a
comparable distance (see Figure 9.9), targeting the left primary somatosen-
sory cortex (S1). A single element focused transducer (SEFT) with 30 mm
aperture and curvature operating at 500 kHz was modelled (as in [12]).
The SEFT was driven at a constant pressure of 1 MPa, and the output field
subsequently scaled to the desired peak pressure value in the skull.
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The simulation domain is large enough to encompass the entire brain
region of the MIDA head model, the acoustic transducer, as well as the
structures in between. A high resolution grid of 0.1 mm (30 points per mini-
mum wavelength) was used in a domain of 40× 40× 50 mm3 comprising
the transducer and its geometric focus. The rest of the grid was discretized
at a resolution of 0.2 mm (15 points per minimum wavelength). The total
grid size was 812 MCells. Simulation was performed in continuous wave
mode and over a sufficient amount of periods to reach convergence. PML
boundary conditions were used at the boundaries and no reflections were
observed.

(a)

(b) (c)

Figure 9.9: Visualization of the pressure distribution resulting from tcFUS soni-
cation using a SEFT.
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9.2.6 Coupling

model The integration of pressure-modulation of neural activity in
the cortical oscillation model was achieved on the level of the sigmoid
functions that translate the average membrane potential (v) of a neuronal
sub-population to its average spiking frequency f according to:

f (v) = Sigm(v; e0, v0, r) = 2e0/(1 + er(v0−v))

This transformation had to be extended to consider the local LIFUS expo-
sure: f (v, p, s), where p is the acoustic pressure and s stands for the pulse
form (e.g., duty cycle (DC), pulse repetition frequency (PRF)). The following
steps and assumptions were made for that purpose:

• It is assumed that a linear relationship between the average postsynap-
tic membrane potential (PSP) and the injected current Q exists. This
is a reasonable assumption while the transmembrane voltage is in a
range where leakage current dominate. Once the non-linear active
channels become relevant, their effective contribution will quickly
dominate over the PSP contribution.

• It is further assumed that the average population action potential
density is proportional to the spiking frequency of a single neuron
with a membrane potential similar to the average membrane potential
of the population.

• Finally, based on the observed behavior, to avoid strong modifications
to the TVB Jansen-Rit implementation, and for simplicity reasons, it is
assumed that f (v, p, s) = Sigm(v; e0(p, s), v0(p, s), r(p, s)). This is not
a fundamental assumption and could be generalized rather easily.

• Therefore, first the fQ(Q; p, s) curves were fitted with sigmoids to
obtain e0,Q(p, s), v0,Q(p, s) and rQ(p, s).

• e0(p, s), v0(p, s) and r(p, s) were then obtained through the transfor-
mations e0(p, s) = e′0(p, s) e0

e′0(0,s) , r(p, s) = r′(p, s) r
r′(0,s) , and v0(p, s) =

v0 +
r

r′(0,s) (v
′
0(p, s)− v′0(0, s)). These transformations reflect the lin-

earity assumptions above and ascertain that the original Jansen-Rit
parameterization is obtained in the absence of acoustic exposure.
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Figure 9.10: Illustration of the sigmoid fitting to the injected current-dependent
spiking frequencies of the FS (left) and RS (right) neurons.

implementation The sigmoid fits of the fQ(Q; p, s) were performed in
Scipy [256, 257] with the curve_fit function using the dogbox method, and
look-up tables (NumPy arrays) for e0,Q(p, s), v0,Q(p, s) and rQ(p, s) were
produced. The acoustic pressure field was interpolated at the locations of
the cortical-column NMMs. In the TVB implementation of the Jansen-Rit
model, the pressure distribution calculated from the acoustic simulation
was imported and scaled. For each node, values of e0,Q(p, s), v0,Q(p, s) and
rQ(p, s) were interpolated based on the pressure at the corresponding node.

9.2.7 EEG computation

model EEG traces resulting from the transient current dipole activities in
the cortex are computed using the reciprocity theorem [326]. The reciprocity
theorem provides a relation between the potential difference (V) of an
electrode pair originating from an electric dipole (~d) and the electric field
(~E) at the dipole location originating from a current (J) injected through
the electrode pair: J ·V = −~d · ~E. It allows to efficiently compute transient
electrode voltages at an electrode pair from a given set of distributed dipole
activities (obtained in this study from the cortical network NMM) and a
single simulation of the E-field distribution resulting from the application
of a current to that electrode pair.

implementation The reciprocity theorem-based computation of tran-
sient electrode voltage was implemented using Sim4Life’s Python scripting
functionality. The EEG trace is the sum of the dot products of each current
dipole and the E-field at the corresponding point on the cortical surface.
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setup Square-shaped electrodes (diameter: 12.5 mm) with rounded cor-
ners were positioned on the MIDA head model according to the 10–20
system and E-field maps for electrode pairs were computed using the
Sim4Life ohmic-current dominated electro-quasistatic solver (structured
rectilinear grid with (x, y, z) mesh resolution ranging from (0.47, 0.42,
0.45)–(1.8, 1.95, 11.75) mm; tissue properties assignment based on the low-
frequency conductivity values from [155]; Dirichlet boundary conditions
at the electrodes and insulating boundary conditions at the head surface).
The applied current at an electrode was computed by applying the flux-
integration functionality of Sim4Life to a box surrounding the electrode and
the current density distribution J.

9.3 results and discussion

acoustic exposure Figure 9.9 illustrates the predicted acoustic expo-
sure of the cortex. The distribution is in good qualitative agreement with the
focus location, extent, and intensity from [12]. The focus is located in the S1
area of the cortex, and has a length / diamater of of 17/4 mm (quantified by
looking measuring the half-peak isosurface inside the skull). The pressure
can be flexibly scaled (linearly) to mimic different exposure strengths, as
non-linear effects do not matter at the investigated LIFUS intensities.

sigmoid parameters Figures 9.4–9.5 show the pressure dependence of
the sigmoid parameters. As the pressure increases, the sigmoidal transitions
(inversely proportional to r) become much sharper and resulting in near-
instantaneous transitions (on-off switch). The peak firing rates (proportional
to e0) of the inhibitory and excitatory populations increase and firing
starts at increasingly low membrane voltages. The pressure sensitivity of
FS neurons is stronger than that of RS neurons, such acoustic exposure
strengthens the inhibitory populations at lower acoustic intensities than the
intensities required to further activate the excitatory populations.

single column activity To get a better understanding of the re-
sponse of the cortical network model building blocks – the cortical column
NMM – simulations have been performed that feature a single, decoupled
column exposed to pressures ranging from 0–10 kPa. No stochastic noise
is added, to get a unperturbed picture of the temporal dyamics. Two inter-
esting transitions are observed: In the absence of pressure, the Jansen-Rit
model has a well known resonance around 10 Hz. As the pressure increases,
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that single resonance frequency shifts slightly downwards. Subsequently,
additional resonances appear at what seem to be multiples of half of the
principal resonance frequency. As the pressure increases further, oscillations
are suppressed and a flat plateau is observed (see Figure 9.10).

Figure 9.11: Pressure dependence of the frequency spectrum of the noise-less
single-column Jansen-Rit model.

cortical network activity Figure 9.12 illustrates selected spectra
of y2− y1 for a range of nodes in the network. The frequency domain power
spectra for different regions are shown. The spectra of nodes corresponding
to the same cortical region (from the parcellation) are averaged to statisti-
cally reduce noise. The overall average of the spectra of all nodes is also
shown in Figure 9.12 for a range of pressures. Similar behavior as for the
single column is observed. In the absence of acoustic exposure, a single,
well defined peak around 10 Hz is observed (at a slightly lower frequency
than the single column resonance). With increasing pressure additional
peaks at half that frequency and multiple thereof appear. In the regional
spectra, these additional peaks are only prominent in exposed regions (e.g.,
left cuneus), as well as regions with strong connections to exposed regions
(e.g., parahippocampal gyrus).

eeg The computed EEG traces and spectra are shown in Figure 9.13. They
still show the same resonance frequencies, but the peaks are not as distinct
anymore. Instead, they feature broad tails. As the EEG traces are weighted
averages of the individual dipole traces (due to the linearity of Maxwell’s
equations), which all show much more distinct peaks in their regionally
averaged spectra, that difference is unexpected. The likely explanation
is the averaging spectra – as performed for the regional spectra – hides
correlations between the individual contributions, whereas computation
of the spectrum of an average – as performed for the EEG – conserves
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Figure 9.12: Averaged spectra of all nodes of the cortical model and of the nodes
in the ‘Left Cuneus’ region, the ‘Parahippocampal Gyrus’ region,
and the ‘Frontal Cortex’ region at different exposure levels (peak
pressure).
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correlations. The coupling of correlated dipoles appears to induce a broader
range of frequencies in the averaged behavior.
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Figure 9.13: Trace of the EEG at C5, as well as spectra at C5 and O1 for different
exposure levels (peak pressure).

9.3.1 Limitations

In addition to the limitations inherent to the EM, acoustic, NICE / FOCUS,
and NMM modelling (discussed throughout this thesis, as well as in the
relevant literature), additional assumptions and limitations apply to the
specific multi-scale model setup:

• It is assumed that the RS and FS neurons are representative of the
inhibitory, excitatory, and pyramidal neuron populations. A similar
assumption has been made by [320].
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• It is assumed the the averaged membrane potential of a neuronal
subpopulation can be linearly mapped to input current to obtain a
pressure dependent spiking frequency.

• It is assumed that the average membrane potential dependence of
spiking frequency can be approximated by a sigmoid, as it is com-
monly done in NMMs, across all the relevant pressure range.

• The scaling of the local and global connectivity matrices is set some-
what arbitrarily. While the raw matrices are based on subject-specific
MRI, the connectivity strengths are scaled by the default prefactors
used in TVB, adjusted for the increased number of nodes in our
network relative to the TVB default. While this is likely to produce
reasonable results, the default connectivity strengths used had not
been previously confirmed to be appropriate for a Jansen-Rit model.
In the future, a full bifurcation analysis should be performed on the
connectivity strengths. In addition, while delays between brain re-
gions are based on DTI tract lengths, conduction speed is assumed to
be uniform throughout the brain.

• Our model does not accurately model the behavior of subcortical
regions, instead treating each subcortical region as a single cortical
NMM. We also assume that the parcellation of the cortical surface
obtained through the SCRIPTS pipeline can be projected to the MIDA
mesh using a nearest-neighbor algorithm. The projection of the data
from the SCRIPTS pipeline to the MIDA mesh inadvertently led to
the creation of an ‘extra’ cortical region consisting of two vertices.
As this region is spatially distant from the rest of the mesh, and has
no long-range connectivity to any other region, it is not expected to
influence the behavior of the model.

9.4 conclusions

A prototype multi-scale framework for the computational investigation
of LIFU neuro-stimulation was developed. It enables personalized, image-
based modelling and combines microscale modelling of neural membrane
sonophore cavitation (a mechanistic model for acoustic neuromodulation),
effective single neuron dynamics, cortical network NMM, and macroscopic
acoustic and EM propagation modelling in realistic anatomical models to
compute EEG traces.
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The multi-scale model is an important step towards the goal of allowing
mechanistic studies, hypothesis formulation and testing, device develop-
ment, and, ultimately, personalized treatment planning, safety, and efficacy
assessment.

The proposed multi-scale modelling approach can be easily extended,
for example, to incorporate other neuronal dynamics models than the
RS and FS neurons (extension to multi-compartmental models is more
challenging, but feasible), to employ more realistic network models, as well
as to more accurately model acoustic propagation (e.g., if image-based skull
heterogeneity information is available).

The presented prototype multi-scale model relies on a large number of
simplifying assumptions that should be carefully investigated and refined
in future research work. The experimentally measurable EEG signals will be
valuable for validation of the computational model, as they can be readily
obtained and compared with model predictions.
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9.a appendix

9.a.1 Tables and figures

Parameter Value

A 3.25 mV

a 0.1 1/ms

pmin 0.12 1/ms

pmax 0.32 1/ms

a1 1.0

a2 0.8

a3 0.25

a4 0.25

µ 0.22

J 135

B 22 mV

b 0.05 1/ms

e0,Zero-Pressure 0.0025 1/ms

rZero-Pressure 0.56 1/mV

v0,Zero-Pressure 6 mV

Table 9.1: Values of the different cortical model parameters.



10
C O N C L U S I O N S

The work performed in this thesis focuses on computational modelling
of neuromodulation by EM or LIFUS exposure that is typically applied for
therapeutic purposes. In addition to establishing requirements for reliable
treatment modelling and planning, the simulation approaches have also
been validated experimentally, principal uncertainty contributors have been
identified, mechanistic insights have been gained, a novel treatment opti-
mization approach has been established, and the developed framework has
been applied to a range of clinical applications. This includes contribut-
ing to the development of spinal-cord stimulation for the restoration of
locomotion of paraplegics.

Many of the issues and shortcomings that were identified within the crit-
ical review of the current state of research (such as going beyond physical
exposure quantification to assess physiological impact, avoiding oversimpli-
fication, performing careful verification, validation, sensitivity analyses, and
uncertainty quantification, developing personalized modelling for precision
medicine, and reducing the difficulty for researchers to implement hybrid
modelling pipelines; see Section 2.3) have been addressed in this thesis, and
important contributions to resolving them have been made. This chapter
summarizes the main achievements and proposes potential future research
directions.

10.1 achievements

• Modelling framework

– The Sim4Life platform, which already included extensive func-
tionality for modelling EM fields and acoustic propagation in
complex anatomical environments as well as EM-induced neu-
romodulation, has been successfully extended. Specifically, the
functionality required to realistically and reliably simulate EM
and acoustic neuromodulation applications has been added.

– One important extension of the Sim4Life platform concerns the
addition of tissue heterogeneity support. This includes image-
based heterogeneity, which provides a high degree of realism, as

249
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well as the option of personalizing simulations. Heterogeneity
support has been added to the acoustic solver to support, e.g.,
CT-based skull heterogeneity modelling, as well as to a range of
EM-solvers, e.g., to support DTI-based conductivity maps.

– Another important extension of the Sim4Life platform relates to
the support for anisotropic (tensorial) electrical conductivity. The
significance of considering neural tissue anisotropy is demon-
strated in great detail in the context of SCS in this thesis, and a
mechanistic explanation for the non-trivial behavior in terms of
activating functions has been developed.

– Furthermore, the Sim4Life acoustic solver has been extended to
offer multi-GPU acceleration that allows detailed simulations to
be performed within an acceptable time frame thanks to a speed
boost by two orders of magnitude. The extended solver also
includes a large variety of boundary conditions, non-sinusoidal
user-defined sources, as well as numerical enhancements to in-
crease the stability of non-linear simulations (required to study
frequency mixing, higher harmonics formation, and dispersive
attenuation).

– All these extensions have been carefully validated (analytically
and against numerical benchmarks) and stability analyses have
been performed. This is required to provide the reliability (and
the related confidence in the models) needed for life-sciences
applications.

– The use of the simulation framework in a range of high-impact
therapeutic and exposure safety applications has been demon-
strated. This includes applications in neuroprosthetics (device
development and treatment optimization for the restoration of
locomotion of paraplegics, as part of the RESTORE collabora-
tion), SCS for pain relief, and tcFUS modelling (e.g., for LIFUS
neurostimulation).

• Experimental validation of coupled EM-neuro modelling

– In addition to the careful verification of the newly developed
simulation functionality, experimental validation has been per-
formed to ascertain the suitability of the EM-neuro interaction
modelling approach.

– Successful experimental validation in the context of retinal pros-
thetics has not only provided validatory evidence supporting the
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model and modelling approach, but also resulted in an under-
standing of the three different mechanisms that can be involved
in electric stimulation of alpha retinal ganglion cells. These new
insights are very valuable as they can help, e.g., with the design
of improved neuroprosthetic devices for the visually impaired.

– For that purpose, the first computational ganglion cell models
using electrophysiological and cell-morphological data from the
same cell (per model) have been generated, assuring cell model
consistency. The observed variability between cells indicates the
necessity for building cell specific models, rather than combining
measurements obtained from different cells.

– The retinal stimulation study (conducted jointly with the FDA)
has also been used to demonstrate how careful uncertainty quan-
tification in the context of EM-neuromodulation modelling can
be performed. This is of particular importance as the work helps
to establish the basis for regulatory-grade neurostimulation mod-
elling.

– Further validatory evidence is currently being gathered in the
context of the RESTORE project by comparing computational
predictions with experimental data from patients that have been
treated using simulation-based treatment planning and optimiza-
tion.

• Activation function

– The predictive value of the activation function concept has been
studied in two clinically important neurostimulation applications:
SCS for pain-relief and DBS.

– It was demonstrated that this concept not only provides tractabil-
ity to stimulation selectivity and the impact of different tissues
and their properties on stimulation thresholds, but also has quan-
titative predictive value.

– This has been exploited to develop a new stimulation parameter
optimization approach that is capable of increasing the stim-
ulation selectivity. The approach is superior to simple E-field
optimization as it uses a functional which directly relates to an
electrophysiologically meaningful quantity. At the same time it
retains the advantages of E-field optimization by not requiring
computationally costly neuronal dynamics simulations (accel-
eration by more than three orders of magnitude). Exploitation
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of linearity can further accelerate optimization, resulting in an
approach capable of optimizing selectivity by controlling the
voltage or current of a large number of electrode contacts.

– The activation function-driven optimization has been used to
achieve superior focusing and steerability in a computational
model of SCS for pain therapy, permitting the targeting of se-
lected dermatomal zones.

– On that basis, a new approach for pulse-shape optimization has
also been proposed.

– The limitations of the activation function approach for very
localized sources (producing narrow activation function peaks)
have been investigated.

• Transcranial FUS modelling and experimental validation

– The extended simulation framework has been applied to tcFUS
applications, which is a recently introduced attractive approach
to non-invasive neural modulation.

– Careful investigations of the correct modelling of acoustic trans-
ducers and of the complex structured skull have been performed.
These investigations have been experimentally validated, using
ex vivo tcFUS hydrophone measurements (with explanted skulls
from different species), and complemented by extensive sensitiv-
ity and uncertainty assessment.

– The importance of modelling the physics and internal structure
of transducers to reliably predict tcFUS has been demonstrated,
and commonly applied approaches have been shown to be un-
suitable.

– The critical impact of standing waves in the skull has been estab-
lished, which primarily affects focus intensity.

– Consideration for the heterogeneous nature of the skull has
been found to be crucial for the reliable prediction of tcFUS
(intensity and distribution). Not only the degree of heterogeneity,
but also its structure. This makes it necessary to use personalized
models, established based on patient image data (CT). However,
the details of the imaging parameters have an important impact
on the HU-to-acoustic-parameters mapping functions, such that
site-specific calibration is necessary and translation of modelling
approaches between clinics can be complicated.
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– The high sensitivity to transducer positioning errors has been
confirmed. Clinically suitable approaches are needed to ensure
reliable reproduction of the treatment planning setup during the
treatment administration.

• Multiscale modelling of tcFUS neuromodulation

– A first multi-scale model of acoustic neuromodulation of brain
rhythms has been established which combines macroscale mod-
elling of tcFUS exposure and the generation of EEG signals from
cortical activity maps (using a novel, reciprocity theorem-based
approach), mesoscale modelling of pressure modulated brain
network activity, and microscale modelling of a promising mech-
anistic model for acousto-neuron interaction.

– The modular design of this multi-scale model readily permits
extension, e.g., by more realistic brain network models.

– The implemented pipeline supports models that are personal-
ized with regard to anatomy, tissue properties, and network
connectivity.

10.2 next steps and future research

Considering the needs of the scientific and medical communities, the fol-
lowing next steps and future research directions should be considered:

• The work performed on tcFUS should be extended to cover anatomical
inter-subject and inter-species variability and age effects. It should
also be generalized to more transducer types.

• The developed activation function-based optimization approach is
expected to be of high value in optimizing stimulation selectivity in
the area of bioelectronic medicine and neuroprosthetics. It should par-
ticularly be applied to the problem of selectively stimulating certain
spatially or electrophysiologically distinct fiber populations within
complex, fascicular nerve structures.

• While important contributions to establishing verification and vali-
dation approaches for regulatory grade neurostimulation modelling
have been made, they principally focus on the impact of exposure
uncertainty on the electrohysiological response; they do not yet ad-
dress the question of electrohysiological uncertainty. This problem is
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hard to solve as even the equations used to describe neuronal activity
are only mathematical approximations to capture the extraordinarily
complex underlying physics.

• Extensive, application-specific in vivo validation is required. This
is particularly true for cases when predictions on physiological re-
sponses are made (such as neuromuscular, behavioral, or EEG re-
sponses). Some validation effort is ongoing in the context of the
RESTORE project on restoring locomotion to paraplegics, where in
vivo electrophysiology and motor-response measurements are being
carried out.

• The multi-scale model of acoustic brain-activity modulation presented
in the last chapter is strongly simplified and includes a wide range of
assumptions. The model is flexible and can easily be extended, but
further research is required before this promising approach can yield
meaningful predictions.
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