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Abstract

In this thesis we investigate the whole image processing pipeline for
neuronal geometry extraction and synapse detection in electron mi-
croscopy images. Advancements in automated sample preparation
and image acquisition for electron microscopy enable recording of
large data sets. This process is especially important for the �eld
of computational neuroanatomy and connectomics, as the analysis of
neuronal connections requires imaging of large volumes with a res-
olution su�cient for synapse detection. Manual processing of elec-
tron microscopy data is time-consuming and becoming the main bot-
tleneck in gaining new insights into the functional structure of the
brain. Automated processing of biological electron microscopy im-
ages is challenging due to the rich texture, low signal to noise ratio
and the great variability of image characteristics depending on sam-
ple preparation and animal type. To enable quantitative evaluation of
the data, the images are corrected against lens distortions, stitched,
and aligned. Structures of interest are then segmented and grouped
across serial sections to extract the 3d geometry. The proposed reg-
istration methods employ unsupervised approaches to identify arti-
fact signals like non-linear distortions, cracks, or staining blurs. We
demonstrate that identi�cation of these signals leads to superior reg-
istration results compared to state-of-the-art methods. The distor-
tion correction enables structure preserving mosaicing with sub-pixel
precision. The non-linear distortion �eld is estimated from overlap-
ping image areas and does not require special calibration samples.
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To solve for correspondences between adjacent images we propose a
non-linear warping with anomaly detection. Correspondences are not
�xed beforehand, but estimated as latent variables in an expectation
maximization framework, which assigns image anomalies to an outlier
class. Our approaches to membrane segmentation and geometry ex-
traction combine the output of a trained random forest classi�er with
biologically inspired smoothness constraints. We demonstrate that
the proposed feature sets capture the relevant statistics with very lit-
tle training data. Thus, the framework can be adapted to data sets
of varying animal types and staining protocols with minimal e�ort.
For the segmentation of thin elongated structure we propose a sub-
modular binary energy term which enforces gap completion by good
continuation. An additional term incorporates membrane detections
from adjacent sections. The resulting energy function can be globally
optimized using graph cut and signi�cantly outperforms state-of-the-
art segmentation using gradient �ux. Geometry extraction requires
grouping of the segmented regions to 3d objects. The output of a
classi�er trained for region similarity based on shape and texture fea-
tures is combined with geometrical consistency constraints to obtain
a weighted connectivity matrix. Agglomerative clustering is employed
to �nd 3d groupings of correspondent regions. We demonstrate that
our method yields fully automatic reconstructions of drosophila larva
neurites over 30 sections. With respect to dense reconstruction and
synapse classi�cation the proposed framework can be employed for
semi automatic processing, enabling the analysis of large data sets.



Zusammenfassung

Diese Dissertation behandelt den vollständigen Bildverarbeitungspro-
zess für die Geometrierekonstruktion von Neuronen und die Identi-
�kation von Synapsen in Elektronenmikroskopiebildern. Durch die
Fortschritte in der Elektronenmikroskopie im Bereich der automa-
tischen Probenpräparation sowie der Bildaufnahme ist es möglich,
groÿe Datensätze zu erstellen. Diese Entwicklung ist besonders wich-
tig für den Bereich der rechnergestützten Neuroanatomie und der
Analyse von Neuronennetzwerken. Die Analyse neuronaler Kontak-
te benötigt Bilddatensätze über groÿe Volumina, deren Au�ösung die
Identi�kation von Synapsen zulässt. Manuelle Verarbeitung von Elek-
tronenmikroskopiedaten ist zeitaufwendig und stellt ein bedeutendes
Hindernis für neue Einsichten in die funktionale Struktur des Gehirns
dar. Durch die starke Texturierung der Bilder und ein geringes Signal-
Rauschverhältnis sowie eine groÿe Varianz in Bezug auf Bildcharakte-
ristiken, abhängig von der Probenpräparation und der Tierart, ist die
automatische Verarbeitung dieser Daten eine groÿe Herausforderung.
Die vorgeschlagenen Registrierungsmethoden verwenden unüberwach-
te Methoden, um Artefaktsignale wie nichtlineare Verzerrungen, Risse
oder Färbungs�ecken zu identi�zieren. Wir zeigen, dass die Erkennung
dieser Signale bessere Ergebnisse liefert, als aktuelle Vergleichsmetho-
den. Die Korrektur von Linsenverzerrungen ermöglicht die struktur-
erhaltende Montage von Bildern mit Subpixelpräzision. Hierzu wird
das nichtlineare Verzerrungsfeld aus überlappenden Bildbereichen ge-
schätzt, ohne auf speziellen Kalibrierungsproben zurückzugreifen. Zur
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Lösung des Korrespondenzproblems zwischen benachbarten Bildern
verwenden wir eine nichtlineare Registrierung, welche enthaltene An-
omalien erkennt. Korrespondenzen werden nicht zuvor festgelegt, son-
dern während der Optimierung geschätzt. Unsere Methode verwendet
Erwartungswertmaximierung, wobei Bildanomalien einer Ausreiÿer-
klasse zugewiesen werden. Für die Segmentierung von Membranen
und die Extraktion von Geometrien kombinieren wir die Ausgabe ei-
nes trainierten Klassi�kators mit biologisch inspirierten Glattheits-
beschränkungen. Wir zeigen, dass die vorgeschlagenen charakteristi-
schen Merkmalsmengen die relevanten Statistiken mit einer geringen
Menge von Trainingsdaten erfassen. Folglich kann das System für un-
terschiedliche Datensätze mit geringem Aufwand angepasst werden.
Für die Segmentierung von dünnen, gerichteten Strukturen stellen wir
einen submodularen, binären Energieterm vor, der Lücken nach dem
Prinzip der guten Fortsetzung schlieÿt. Ein weiterer Energieterm be-
rücksichtigt Membranendetektionen von benachbarten Schichten. Die
resultierende Energiefunktion kann durch Grafenzerlegung global op-
timiert werden und erzielt bessere Ergebnisse als aktuelle Segmentie-
rungsmethoden, die das Gradientenfeld berücksichtigen. Für die Ex-
traktion von Geometrien ist es notwendig segmentierter Regionen zu
dreidimensionalen Objekten zu gruppieren. Hierzu kombinieren wir
die Ausgabe eines Klassi�kators, der auf der Grundlage von Form
und Textur für die Erkennung von ähnlichen Regionen trainiert wur-
de, mit geometrischen Konsistenzbeschränkgungen, um eine gewichte-
te Konnektivitätsmatrix zu erhalten. Hierarchische Gruppierung wird
verwendet, um dreidimensionale Objekte bestehend aus korrespon-
dierenden Regionen zu erhalten. Wir zeigen, dass unsere Methode
die vollständig automatische Rekonstruktion von neuronalen Zellfort-
sätzen der Drosophila Larve über 30 Probenschnitte ermöglicht. In
Bezug auf dichte Rekonstruktionen und die Klassi�kation von Syn-
apsen kann das vorgeschlagene Rahmenwerk dazu verwendet werden,
Bilder halb automatisch zu verarbeiten und so die Annotierung groÿer
Datensätze ermöglichen.
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Chapter 1

Introduction

Biological electron microscopy images pose a great challenge for au-
tomated analysis with pattern recognition methods. Due to electron
beam damage, the electron dose used for image acquisition is limited
and leads to low signal to noise ratio. In addition, biological samples
are densely packed with structures, which lead to rich image textures
and non uniform background. Di�erent data sets typically express a
large variability not only by shape and size of biological structures,
but also in terms of image characteristics dependent on the staining
protocol and the microscopy technique. The acquired images typi-
cally consist of a combination of structural and artifact signals, which
need to be identi�ed. In this thesis we propose a range of automated
image processing methods for electron microscopy data, in the con-
text of computational neuroanatomy and connectomics. The main
idea behind the proposed techniques is to discriminate relevant signal
in data for geometry reconstruction from irrelevant signal related to
sample preparation and to processing artifacts. For the developed
image registration methods, this discrimination is learned in an unsu-
pervised fashion. For image segmentation and structure annotation
we employ supervised learning and combine the output of a trained
classi�er with constraints which are biologically given and thus invari-
ant to animal types or staining protocols.
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CHAPTER 1. INTRODUCTION

1.1 Computational Neuroanatomy and Con-

nectomics

The �eld of computational neuroanatomy investigates neuronal struc-
tures employing computational techniques, such as visualization, mod-
eling, and analysis. An important aspect of computational neuro-
anatomy is to identify relations between biological structure and func-
tion. To gain insight in the functional structure of the brain, neu-
roanatomists analyze the structure of individual neurons, the density
of neuronal elements within speci�c brain areas and their connectiv-
ity. Imaging methods employed for data acquisition range from high
resolution electron tomography of single synapses over light micro-
scope images of neurons to MIR imaging of whole brains. While light
microscopy is su�cient in resolution for the analysis of single neurons,
only electron microscopy can provide a resolution which renders the
identi�cation of synapses possible. Thus, the �eld of neuroanatomy
faces the challenge to acquire and analyze data volumes which cover
a brain tissue volume large enough to allow meaningful analysis of
circuits and detailed enough to detect the synapses and thus the con-
nectivity structure of the circuit. White et al. (1986) reconstructed
the connectivity matrix for C. elegans from serial section transmission
electron microscopy images. The C. elegans worm consists of 959 cells
of which 302 are neurons. In comparison, a cubic millimeter of cere-
bral cortex contains roughly 50,000 neurons. While recent advances
in the sample preparation and image acquisition work�ow of electron
microscopy make signi�cant process towards automatic acquisition of
large data sets, manual segmentation and annotation of these images
is a serious bottleneck for the evaluation of the acquired data. Iden-
ti�cation of synapses requires a resolution of 5 nm per pixel. Imaging
a one cubic millimeter of brain tissue at this resolution and with a
section thickness of 50 nm leads to 20,000 sections of 20 gigapixels
each. Thus, automated image processing in this context is not only
a spoonful of sugar to lighten the work of the neuroanatomist. In-
stead, automated image processing is a necessity to gain new insights
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1.2. IMAGE PROCESSING WORKFLOW FOR
CONNECTOMICS

in the functional structure of the brain. While computational neu-
roanatomy deals with all functional structures, e.g. vesicle formations,
mitochondria, etc. connectomics as a sub-�eld of computational neu-
roanatomy, concentrates on the wiring diagram of the brain. Thus,
the two key tasks with respect to image processing are neuron geom-
etry extraction and synapse detection in electron microscopy images.
To create connectivity matrices on the cell level, dense reconstruction
of all neurons is required. To analyze the connectivity between dif-
ferent brain areas, sparse reconstruction of randomly sampled struc-
tures is often employed. The results can be extrapolated to whole
brain regions using stereological methods. With respect to the im-
age processing work�ow, dense and sparse geometry extraction are
very similar. The main di�erence is that dense reconstruction typi-
cally involves processing of larger data sets than sparse reconstruction.
Thus, dense reconstruction leads to high demands regarding memory
management and parallel processing techniques. But, sparse recon-
struction often involves estimation of detailed statistics like volume
and shape measurements and hence requires a detailed analysis of the
data.

1.2 Image ProcessingWork�ow for Connectomics

The image processing work�ow for connectomics, as depicted in Fig-
ure 1.1 consists of the following steps:

Distortion correction: The electromagnetic optics of the elec-
tron microscope induces a non-linear distortion in the images. Dis-
tortion Correction is necessary to preserve structural information in
the images and to obtain seamless stitchings in the next step of the
processing work�ow.

Stitching: To acquire an image larger than the �eld of view of
the camera, the microscopist takes several translated images. These
images have to be assembled into one panorama image covering the
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CHAPTER 1. INTRODUCTION

z-alignment membrane 
segmentation 

geometry 
extraction 

image stack 

single TEM images distortion correction stitching 

synapse detection 

Figure 1.1: Image processing work�ow for geometry extraction and
synapse detection
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1.3. ORIGINAL CONTRIBUTIONS

area of interest on the sample. This process is called stitching or
mosaicing.

Z-alignment: To render recording of an image possible with a
transmission electron microscope, the sample has to be sliced into
ultra thin sections of 40-60 nm thickness. Afterwards, the images of
the single sections have to be aligned into one image stack.

Membrane segmentation: While the texture of neuronal regions
can express di�erent characteristics based on intracellular structures
and cutting angle, all neuronal regions are surrounded by a cell mem-
brane. Thus, segmentation of these membranes permits identi�cation
of single neuronal regions by solving a binary classi�cation task.

Geometry extraction: Due to the anisotropic resolution of trans-
mission electron microscopy images, segmentation of membranes is
performed on the two dimensional images. To extract the neuron
geometry from the segmentation, corresponding regions have to be
grouped across sections to three dimensional objects.

Synapse detection: Detection of synapses identi�es connections
between neurons. Thus, synapse detection is a crucial task for con-
nectomics. Figure 1.1 depicts the synapse detection as dependent
on membrane segmentation. In principle, it is possible to perform
synapse detection without this pre-segmentation. However, the presy-
naptic and postsynaptic membranes are necessary components of a
synapse and therefore a pre-segmentation of neuronal membranes sig-
ni�cantly reduces possible synapse locations.

1.3 Original Contributions

The main contributions of this thesis are the following:
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CHAPTER 1. INTRODUCTION

• Multi scale stitching: We developed a framework for multi
scale stitching, employing automatic landmark extraction with
SIFT features and robust estimation of the stitching transforms
with Huber loss. The framework e�ciently solves the mosaic-
ing problem without constraints on the speci�c ordering of tiles
(Kaynig et al., 2007).

• Distortion correction for electromagnetic lenses: Lens
distortions do not only prevent seamless stitchings of images,
but also alter the size and shape of structures, leading to biased
measurements. We developed a novel auto distortion correction
based on overlapping image areas, which corrects for non-linear
deformations in the images. The method does not require spe-
cial calibration samples, preserves structural information and
reduces stitching errors to sub-pixel precision. The distortion
correction enabled us to evaluate a series of experiments, iden-
tifying the projective lens system as the main source for lens
distortions in transmission electron microscopes (Kaynig et al.,
2010a).

• Non-linear warping wih anomaly detection: Image ar-
tifacts such as cracks or folds in an image, make non-linear
warping of adjacent sections challenging. We demonstrate that
treating the warping problem in a Bayesian framework with cor-
respondences as latent variables and an additional outlier term,
leads to signi�cant improvements in the warping, compared to a
warping based on �xed correspondences and robust Huber loss
(Kaynig et al., 2008).

• Gap completion for graph cut: For the segmentation of thin
and elongated structures, graph cut is well known to have prob-
lems with shrinking bias. We propose a novel sub-modular en-
ergy term, which enhances gap completion in segmented struc-
tures. The proposed approach outperforms state-of-the-art seg-
mentation using smoothness and gradient �ux on electron mi-
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1.4. ORGANIZATION

croscopy images as well as street satellite imagery (Kaynig et al.,
2010c).

• Geometrical consistent region grouping: Geometry ex-
traction of neuronal processes from segmented regions requires
grouping these regions across sections. We propose a novel
framework for geometry extraction which takes the geometri-
cal consistency of whole sections into account (Kaynig et al.,
2010b).

• Synapse detection: We present a new feature set for the de-
tection of synapses which takes characteristics of the pre- and
post-synaptic side into account. Our experiments demonstrate
signi�cant improvement over state-of-the-art methods, which
concentrate on the post-synaptic density.

• Open source software: The lens distortion correction has
been implemented as open source plugin for the ImageJ distri-
bution Fiji (Fiji, 2010). It also has been integrated into TrakEM
(Cardona, 2006) by Stephan Saalfeld. Furthermore, we wrote
an additional open source plugin for Fiji, which allows us to in-
teractively train a random forest classi�er for membrane detec-
tion. The plugin has been extended to multiclass classi�cation
and multithreaded processing by Ignacio Arganda-Carreras and
Albert Cardona.

1.4 Organization

The structure of this thesis follows the image processing work�ow for
connectomics. Chapter two discusses di�erent high throughput elec-
tron microscopy techniques and their special challenges with respect
to image processing. Chapter three contains the di�erent registra-
tion methods, from multi resolution stitching and distortion correc-
tion over a�ne z-alignment and non-linear warping. Chapter four
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CHAPTER 1. INTRODUCTION

describes neuron geometry extraction including membrane segmenta-
tion with gap enhancement and geometrical consistent region group-
ing. Chapter �ve contains methods for functional structure annota-
tion like vesicles and synapses.

1.5 Publications

Parts of this thesis have been published in the following papers:

• Verena Kaynig and Bernd Fischer and Roger Wepf and Joachim
M. Buhmann. Fully automatic registration of electron microscopy
images with high and low resolution. Microscopy and Micro-
analysis, 13: 198-199, 2007.

• Verena Kaynig, Bernd Fischer, Joachim M. Buhmann. Proba-
bilistic Image Registration and Anomaly Detection by Nonlinear
Warping. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2008.

• Verena Kaynig, Thomas Fuchs, Joachim M. Buhmann. Neu-
ron Geometry Extraction by Perceptual Grouping in ssTEM
Images. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2010.

• Verena Kaynig, Bernd Fischer, Elisabeth Müller, Joachim M.
Buhmann. Fully Automatic Stitching and Distortion Correc-
tion of Transmission Electron Microscope Images. Journal of
Structural Biology, 171(2):163-173, 2010.

• Verena Kaynig, Thomas Fuchs, Joachim M. Buhmann. Geo-
metrical Consistent 3D Tracing of Neuronal Processes in ssTEM
Data, Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI), 209-216, 2010.

10



Chapter 2

Electron Microscopy

Techniques

Electron microscopy is the only image acquisition technique which
can provide a resolution of below 5 nm per pixel. Such a �ne resolu-
tion is necessary to identify neuroanatomical structures like vesicles
and synapses. The following chapter describes the di�erent electron
microscopy techniques and their implications for automated image
processing. The focus of the chapter is on transmission electron mi-
croscopy, since this technique is widely used and all data sets used for
training and evaluation in this thesis are generated by transmission
electron microscopy.

2.1 Transmission Electron Microscopy

Traditionally, Transmission electron microscopy (TEM) is the method
of choice for the reconstruction of neuronal circuits. The whole ner-
vous system of C. elegans has been manually reconstructed from TEM
images (White et al., 1986).

Figure 2.1 depicts the typical design of a basic TEM. At the top
of the microscope, an electron gun emits electrons which are accel-
erated by a high tension (e.g. 100 kV) into the electromagnetic col-
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CHAPTER 2. ELECTRON MICROSCOPY TECHNIQUES

Figure 2.1: Layout of optical components in a basic TEM (Eccles,
2009)
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2.1. TRANSMISSION ELECTRON MICROSCOPY

umn. Inside the column the electron beam is �rst collimated by the
condenser lens and aperture and then focused by the objective lens.
When the electrons hit the inserted sample, one part of the electrons
is absorbed and another is scattered according to the atomic num-
ber of the local atoms. For heavy metal stained samples the signal
is formed by inserting an objective aperture, which absorbs scattered
electrons. Thus, electrons hitting the specimen at thick regions or
in regions with high atomic number are excluded from the imaging
system, revealing scattering absorption contrast.

After interaction with the sample, the electron beam is focused
and magni�ed by a set of electromagnetic lenses. The objective lens
focuses the beam and the projective lens system magni�es the image
and expands the beam on the imaging device, i.e. a CCD Camera or
a phosphor screen.

The nature of the image formation process in a TEM leads to sev-
eral important consequences for further processing of the captured im-
ages. An obvious consequence is the limitation to gray value images.
Unlike light or �uorescence microscopy, where staining of samples can
lead to valuable color information, electron microscopy is limited to
image formation by electron counts. Stainings can be employed to
enhance the electron density of structures, e.g. membranes, and thus
improve the image contrast. But, identi�cation of structures like vesi-
cles, mitochondria, boutons, etc., often cannot be based on the gray
value of single pixels. Instead, local context like shape information
and texture is crucial for structure identi�cation.

Another important aspect of TEM is that the image is in prin-
ciple a two dimensional projection of the sample. Thus, the section
thickness has signi�cant impact on the image quality. Figure 2.2
demonstrates the in�uence of the section thickness. The upper part
of the �gure shows a TEM image of a 60 nm section of cat brain tissue
and the lower part of the �gure an image of a 40 nm section from the
same sample. The thick section leads to overlaid projections and mul-
tiple electron scattering, reducing the image contrast and rendering
the detection of single structures, like vesicles, di�cult. Furthermore,

13



CHAPTER 2. ELECTRON MICROSCOPY TECHNIQUES

membranes surrounding neuronal processes appear more blurred or
even merged in the 60 nm section and textures are not as well de�ned
as in the image of the 40 nm section. Thus, automated structure de-
tection, segmentation and classi�cation becomes more di�cult with
increased section thickness. Very recent work by Veeraraghavan et al.
(2010) virtually reduces the section thickness by reconstruction the
section volume from di�erent tomographic views of the TEM section.
While this approach leads to much better image quality, the required
tilt views lead to considerably more overhead in the image acquisition
process.

While the before mentioned aspects of TEM image acquisition
mainly in�uence the detection and segmentation of neuronal struc-
tures, there are two additional points which are important for image
alignment. These points are the lens distortions induced by the elec-
tromagnetic �eld lenses and the mass loss of the sample due to beam
damage. Both aspects lead to non-linear deformations in the images,
which render the alignment of TEM images challenging. Electron
lenses in principle work similar to optical light microscopy lenses and
also lead to respective distortions. TEM lenses typically consist of
electromagnetic coils which generate a convex lens to focus the elec-
tron beam at a constant focal length. If the produced �eld is not
rotationally symmetric, the lens induces severe aberrations like astig-
matism and spherical aberration. Unlike optical lenses, which are
solid and not deformable, electromagnetic lenses can be in�uenced by
electrostatic interferences, leading to more variability in possible dis-
tortions. In section 3.3 we describe a novel approach for automated
distortion correction of TEM images.

Biological samples are sensitive to beam damage, leading to a mass
loss during image acquisition. The interaction with the electron beam
causes non-linear distortions by physically deforming the sample. As
this process is unavoidable and the major part of the damage is caused
at �rst exposure, the sample is often exposed twice to the electron
beam. First, in the pre-baking stage, the sample is deformed by the
beam. Afterward the actual images are acquired. This technique leads
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2.1. TRANSMISSION ELECTRON MICROSCOPY

Figure 2.2: In�uence of the section thickness on image quality. Top:
60 nm section, bottom: 40 nm section
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CHAPTER 2. ELECTRON MICROSCOPY TECHNIQUES

to stable mosaicing of images in 2d. However, for z-alignment the
deformation of the sample leads to a non-linear registration problem
(see Section 3.6).

2.1.1 Sample Preparation

Most biological samples have a minimum dimension of more than 100
nm and thus need to be cut into ultra thin sections to be viewed in
TEM. Several steps are necessary to enable the cutting of the sample
into ultra thin sections of about 40-60 nm and make structures of
interest visible in the TEM. According to Flegler et al. (1995) these
steps include specimen isolation, �xing, preembedded staining, dehy-
dration, resin in�ltration and embedding, ultra thin sectioning, and
on section staining. Figure 2.3 provides an overview of the whole
sample preparation process.

The specimen isolation and �xation aim at stabilizing the sample
protecting it as good as possible from disruption, dimensional change
and loss of material in the following dehydration and embedding pro-
cess. Typically, �xation consists of two steps. In the �rst step the
sample is treated with a mixture of di�erent aldehydes. In the second
step, a complementary secondary �xative, i.e. osmium tetroxide, is
applied. Regardless of the �xation method, dehydration of the sample
is necessary for later embedding. Dehydration is usually accomplished
by serially exchanging the water in the sample with a solvent that is
soluble with the embedding medium and water. Common agents are
ethanol and acetone. To phase the water out of the specimen, the
sample is transferred to a graded series of solutions containing the
solvent and water. When all water is replaced by the solvent, the tis-
sue is in�ltrated by resin monomers and �nally polymerized to render
the sample solid. Embedding provides support during the sectioning
and retains the spatial organization of the section on the TEM grid.
A good embedding medium must provide satisfactory cutting prop-
erties as well as low viscosity to infuse the sample and compatibility
with the staining method applied after cutting the sample. Epoxy
resins are widely used for TEM sample embedding. After the speci-
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Figure 2.3: Specimen preparation process for transmission electron
microscopy (Preparation, 2010)
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men has been cast into a block of resin, the next step is to cut ultra
thin sections. Ideally the sections should be cut as thin as possible,
while still providing uniform thickness. The lower left corner of Fig-
ure 2.3 shows a diamond knife with a boat for conventional ultra thin
sectioning. The sections cut from the sample �oat onto the water,
forming a ribbon of subsequent sections as the cutting continues.

Figure 2.4: Cutting of ultra thin sections with a diamond knife (Fle-
gler et al., 1995).

As can be seen in Figure 2.4 the cutting can cause severe vertical
compression of the sections. To reduce compression artifacts, the sec-
tions can be temporarily softened by either chemical or thermal treat-
ment. The surface tension of the water then acts on the hydrophobic
section and pulls the compression out. Once the sections have been
decompressed, they are picked up on a small copper supporting grid,
which can be placed into a TEM specimen holder for imaging. Before
the grids are transferred to the microscope, the sections are usually
stained with an electro-dense stain to increase electron contrast. To
work e�ectively, the stain must be able to penetrate the resin sur-
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face of the section. Common EM stains for biological samples are
uranylacetate and lead citrate.

In summary, the sample preparation tries to �nd a compromise be-
tween preserving the original sample structure and enabling recording
of the specimen in the unsustainable TEM environment. The di�er-
ent stages of the preparation process can cause a variety of artifacts
to the structure and and the �nal image re�ects the sum of all these
changes. Staining can cause dark blobs or stripes in the images, which
occlude the structural signal. The �nal staining procedure takes place
after the plastic sections have been cut and adsorbed on a TEM grid.
Thus, the staining can vary between sections and grids leading to
very di�erent image contrast. During cutting and placement on the
grid, plastic sections can su�er folds or cracks, which lead to highly
non-linear deformations. In addition, entire sections can be lost dur-
ing the cutting. Figure 2.5 provides examples for di�erent artifacts
caused by the preparation process.

The preparation pipeline also compromises structural geometry
information. Shrinkage during chemical �xation can be reduced by
high pressure freezing followed by freeze substitution or cryo TEM.
But, these techniques are very di�cult to apply, expensive and time
consuming and thus not applicable for large neuroanatomy projects.
With respect to geometry extraction, the most interesting part of
the sample preparation is the actual cutting of sections. Slicing the
sample and recording images of the single sections can be seen as a
discrete sampling of the neuron geometry in the direction orthogonal
to the cutting plane. According to the sampling theorem, the section
thickness limits the geometry reconstruction to frequencies lower than
half the sampling frequency. In general this limitation is not severe
for neurites, as the geometry is smooth enough to be reconstructed
from 40 nm sections. However, small structures like spine necks or
thin parts of dendrites can be lost due to the coarse sampling. Cut-
ting of serial sections not only leads to a discrete sampling of the
neurite geometry, it also causes non-linear deformations of the single
sections. As depicted in Figure 2.4, a lot of stress is put on the sam-
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Figure 2.5: Image artifact examples. Upper left: plastic fold, upper
right: crack in plastic section, lower left: badly stained section, lower
right: staining blobs. The scale bar corresponds to 1µm
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ple during sectioning, leading to non-linear transformations. Thus,
changes in the geometry signal between adjacent sections are caused
by two non-linear transformations. One transformation consists of
the changes in structural geometry of the neurites between sections.
The other transformations represents artifact deformations caused by
cutting of the sample and beam damage during image acquisition.
An ideal image alignment would correct for artifact transformations,
while preserving the structural changes between sections. As such an
alignment method does not exist up to today, images are typically
registered with restriction to rigid or a�ne transformations. The lin-
ear image alignment preserves all structural transformations, at the
cost of also keeping all artifact transformations in the reconstructed
signal. Saalfeld et al. (2010) recently proposed as-rigid-as-possible
image registration, which follows the rigid alignment approach, but
allows for non-linear adjustments to gain smooth 3d reconstructions.
However, no distinction is made between structural and artifact trans-
formations. From the experimental side, it is possible to reconstruct
the sample geometry with correlative microscopy. Before serial sec-
tioning of the sample, a light microscopy image is taken. The geome-
try reconstructed from TEM data, can then be matched to the light
microscopy image to verify the reconstruction (see Figure 2.6).

2.2 High Throughput Techniques

Until recently high throughput techniques were limited to light mi-
croscopy. Photons are easier to detect than electrons. In addition the
sample preparation is not as complicated as for electron microscopy
(EM) and can be automated with robots. But, the resolution of a light
microscope is limited by the wavelength of light and cannot resolve
important neuroanatomical structures like synapses or mitochondria.
Thus, the �eld of neuroanatomy is facing the challenge of producing
image data, which on one hand provides su�cient resolution to iden-
tify all important structures and on the other hand captures a �eld of
view, which is large enough to contain a meaningful circuit of connec-
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Figure 2.6: A: geometry reconstruction from TEM images, B: the
same reconstruction superimposed on a light microscopy photograph.
The scale bar corresponds to 10µm (Costa and Martin, 2010)
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tions. Recent developments like automated microtomes, dual beam
and block face microscopes, aim at transforming EM from qualita-
tive hypothesis testing to a high throughput technique which renders
quantitative evaluation of structures on a nanometer scale possible.
The following section describes the most prominent high throughput
techniques in the �eld of EM for neuroanatomy and discusses the ad-
vantages and challenges of the single techniques with respect to image
processing.

High throughput sectioning: Cutting of ultra thin sections un-
der 100 nm thickness is not only labor intensive, but also the main
source for heavy artifacts like compression, knife marks, or cracks in
the images. In addition, continued sectioning and collection of sec-
tion ribbons on TEM grids causes problems such as folds, wrinkles
or even loss of individual sections. The Automatic Tape-collecting
Lathe ultramicrotome (ATLUM) automatizes this process by cutting
a continuous tape from a cylindrical resin block. The process is simi-
lar to continuously peeling an apple. The tissue sample is embedded
in the resin block such that each rotation of the microtome cuts away
one section of the tissue block. A typical block may be 2mm wide,
20mm in circumference and can contain four 1mm3 tissue samples
(Hayworth et al., 2006).

High throughput TEM: Image acquisition with the microscope
can be automated by motorized stages which acquire large image
stitchings without user interaction (Suloway et al., 2005). Bock et
al. used a custom build Transmission Electron Microscopy Camera
Array (TEMCA) to speed up the image recording in a TEM and im-
aged a 450 × 350 × 50 micron volume of neuropil from 1,215 serial
sections (Bock et al., 2010). Up to today, no other microscope tech-
nique is able to record such a large tissue volume with a resolution of
4nm per pixel. The challenges of TEM images for image alignment
and segmentation are discussed in detail in Section 2. With respect to
high throughput TEM data volumes up to multiple terabytes pose an
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additional challenge to adapt the developed methods for TEM image
analysis.

Focused Ion Beam Scanning Electron Microscope (FIBSEM):

Unlike TEM, Scanning Electron Microscopes (SEM) do not require
ultra thin sections for imaging. The image in a SEM is formed from
electrons which are back scattered from below the surface of a spec-
imen block. Regions of high electron dense stain cause great back
scattering and lead to high image intensity. In a FIBSEM a focused
ion beam is directed parallel to a block face to mill away thin layers of
embedded tissue. A data volume is captured by sequentially imaging
the block surface and then milling away a layer of tissue. Knott et al.
(2008) used a FIBSEM to record a sub volume of neuronal tissue.
From a milled surface of 30 × 30µm a 8.2 × 7.1µm �eld of view was
selected and recorded continuously through the volume with 4nm per
pixel. Surprisingly the image acquisition time and not the milling
time is the main limiting factor for recording large volumes with FIB-
SEM. Images are generated by the electron beam scanning the block
surface and a balance needs to be reached between fast acquisition
time, high resolution and signal to noise ratio. For the described
data set each image was acquired in four minutes with a dwell time
of 100µs per pixel. With respect to image processing, FIBSEM data
has the advantage of possible isotropic voxel size of 5×5×5nm. This
resolution renders structure segmentation and identi�cation an easier
task than for TEM images. Due to the projective nature of TEM im-
ages, structures like patches of vesicles or non-orthogonal membranes
appear blurry. In FIBSEM these structures can be recorded with well
de�ned boundaries. In addition the high z-resolution allows to distin-
guish small 3d textures like balls (vesicles) and tubes (microtubuli)
which appear only as rings (vesicles) vs. �lled circles (microtubuli
cut orthogonally) in TEM images. As FIBSEM captures the block
surface before it is milled away, image alignment is restricted to com-
pensating a translational drift caused by charging e�ects. Currently
the main disadvantage of FIBSEM is the very limited �eld of view.
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Serial Block-Face Scanning Electron Microscopy (SBFSEM):

The SBFSEM also uses the SEM technique for image acquisition. In
contrast to FIBSEM, the block surface is not milled away after im-
age acquisition. Instead, a microtome is integrated in the vacuum
chamber of the microscope (Denk and Horstmann, 2004). Using a
microtome renders large surface areas accessible, which could not be
milled entirely with a focused ion beam. In principle the SBFSEM
captures �elds of view larger than possible with current TEM tech-
niques (Knott et al., 2008). But, imaging the surface with a resolution
suitable to see synapses means that signi�cant energy is delivered to
the block face, resulting in changes in the resin structure (i.e. cross-
linking). The increased hardness of the embedding medium hinders
continuous sectioning with the knife. With respect to image process-
ing, SBFSEM like FIBSEM has the advantage that image alignment
is not necessary. For image segmentation and structure classi�cation,
SBFSEM data provides a lateral resolution of about 10nm per pixel,
which renders vesicle and synapse identi�cation very challenging. A
couple of publications in the �eld of image processing have investi-
gated geometry reconstruction of neurons from SBFSEM data with
an isotropic resolution of 25 × 25 × 25nm per voxel (Andres et al.,
2008; Jain et al., 2007; Yang and Choe, 2009). But, the staining used
for this data set concentrates on intracellular space, eliminating all
structures and texture from the inner cell areas. Thus, the images are
basically chemically segmented and the image processing task shifts
from structure identi�cation to the challenge of reconstructing the
neuron geometry from low resolution images.
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Chapter 3

Registration

To enable geometry extraction of neuronal processes from transmis-
sion electron microscopy imagery, the images have to be distortion
corrected, stitched, and aligned across sections. We employ feature
based registration to estimate the respective transformations.

The following chapter �rst introduces automatic landmark extrac-
tion based on SIFT features for electron microscopy images and then
addresses the individual registration methods from stitching and dis-
tortion correction to non-linear warping with anomaly detection. For
image stitching, feature based registration has the advantage, that
correspondences can be extracted from overlapping image areas, with-
out prior knowledge about the image arrangement. Our experiments
demonstrate, that the distribution of the found correspondences is
dense enough to reliably estimate a non-linear transformation to cor-
rect for lens distortions. For the a�ne alignment of adjacent sec-
tions, the rotation invariance of SIFT features is bene�cial. However,
due to the changing image content across sections, the landmarks are
not dense enough to estimate a non-linear warping. Thus, the pro-
posed warping method re�nes the initial feature based a�ne align-
ment based on image intensities.
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3.1 Automatic Landmark Extraction with SIFT

Alignment of images de�nes an important part of the image processing
pipeline for neuron geometry extraction from ssTEM images. Mon-
taging of several images from one serial section as well as alignment
of images from di�erent sections requires to extract correspondence
points between images. Important aspects of automatic landmark
extraction are: (i) scale invariance to enable montaging of high res-
olution images on a lower resolution overview image, (ii) robustness
against noise in the images (iii) robustness against non-linear trans-
formations between images. As our experiments demonstrate, Scale
Invariant Feature Transform (SIFT) descriptors of local image prop-
erties introduced by Lowe (2004) yield robust correspondence points
with good localization. Alternative approaches for automatic land-
mark extraction include SURF (Bay et al., 2008) and DAISY (Tola
et al., 2010).

Lowe's keypoint extraction, consists of the following steps: (i)
First, points of interest are detected in both images. These land-
marks preferentially cluster around regions with high contrast. (ii)
Then scale and rotation invariant feature descriptors based on local
gradient information are calculated for each point. (iii) In the next
step, correspondences are detected according to Euclidean distance in
feature space: For each point x(i) in image i, a correspondence point
x(j) in image j is identi�ed that is the nearest neighbor of x(i) in fea-
ture space. If this nearest neighbor point is signi�cantly closer to x(i)

than all other points of image j in feature space, then the points x(i)

and x(j) are marked as correspondent.

Scale invariance of SIFT features enables to match correspon-
dences between images taken with di�erent magni�cation settings.
Figure 3.1 shows an example of correspondences found automatically
between an overview image, recorded with a magni�cation of 3400x
and a high resolution image recorded at a magni�cation of 25000x.

Cryo TEM images are challenging for correspondence point ex-
traction due to low contrast, noise, and preparation artifacts. Figure
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Figure 3.1: Automatically extracted landmarks between images taken
at di�erent magni�cations. White: Matching correspondences, Black:
Outlier correspondences

3.2 depicts correspondences automatically extracted from two cryo
TEM images. The left image shows a cryo section containing a plasma
membrane, vesicles and a mitochondrium in the lower right corner.
The image on the right shows the same section with a translated
�eld of view. Preparation artifacts in the form of compression waves
and knife marks are clearly visible in both images. Despite the low
contrast, the noise and the preparation artifacts, 14 correct correspon-
dences are automatically found in the area with structural informa-
tion. The two false positive matches can be �ltered out automatically
based on large a�ne alignment error.

In the context of lens distortion correction or alignment of consec-
utive sections, it is important, that the automatically extracted corre-
spondences are robust with respect to non-linear transformations. In
order to demonstrate the reliable performance of SIFT features in this
context we applied a highly non-linear transform to a neuroanatomical
TEM image. The results are shown in Figure 3.3. The original image
(a) and the transformed image (b) were normalized to a gray value
range from zero to one and white noise with a standard deviation of
0.1 was added to both images. Sub�gure (c) depicts correspondences
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Figure 3.2: Correspondences extracted from two translated cryo TEM
images with low contrast and preparation artifacts in form of compres-
sion waves and knife marks. The sample contains a plasma membrane
with an ice area above and structural information like vesicles and a
mitochondrium below. The landmarks are concentrated on the area
with textural information and neglect the ice part in the upper part
of the images. Out of the 16 correspondences found, only two are
outliers (marked with a circle).
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found in the images by a line for each point pair. The line connects the
coordinates of the point from the original image with the coordinates
of the point from the transformed image when plotted into the same
coordinate system. As can be seen, the whole image range is densely
covered with correspondences. Furthermore, the needle diagram of
the estimated correspondence connections forms a smooth �eld which
follows the ground truth transformation (d). Sub�gure (e) and (f)
provide a quantitative evaluation of the accuracy of the landmarks.
The histograms show the distance between the landmarks found in
the transformed image and the known ground truth position of the
landmarks. Without noise present in the images the median distance
is 0.54 pixels demonstrating that SIFT features allow for automatic
correspondences with sub-pixel precision for large non-linear transfor-
mations. With noise added to the images, the correspondence points
are found on a coarser scale level of the feature space than for the noise
free case. As a consequence the number of correspondences decreases
and the median distance to the ground truth precision increases to
1.46 pixels. As conventional TEM or SEM images typically contain
less noise than the noise level chosen for this experiment, this result
can be seen as a lower bound on the accuracy of the automatically
detected landmarks.

As the examples listed above demonstrate, automatic correspon-
dence point extraction via SIFT features yields robust results with
respect to scale, noise and non-linear transformations.

3.2 Stitching

Frequently, microscopists are interested in analyzing regions of a sam-
ple which are too large to be captured by a single image at a su�cient
magni�cation. Therefore, it is common experimental practice to cap-
ture several translated images of such a large region of interest and
to assemble these images afterwards to cover the whole area under
investigation. This process is commonly referred to as stitching, mo-
saicing or montaging. Montaging of images taken from one section is
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Figure 3.3: SIFT correspondences for a highly non-linear deformation
and considerable noise. (a) original image with noise, (b) transformed
image with noise, (c) connection between automatically obtain corre-
spondences plotted in one coordinate system, (d) ground truth trans-
formation, (e) and (f) histograms of distances and orientation error
between found landmarks and ground truth without noise (e) and
with noise (f).
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widely done by maximizing the normalized cross correlation of over-
lapping image areas. Typically, images are assumed to be arranged
in a regular grid with overlapping areas of 10% - 20% of the image
size.

When stitching two images together, two conditions have to be
ful�lled:

1. a number of reliably recognizable contrast patterns have to be
identi�ed and captured by both images;

2. the images have to be free of distortions, e.g. perspective dis-
tortions or vignetting.

In this chapter we introduce two approaches to the stitching prob-
lem. First, we solve the stitching based on overlapping areas by fea-
ture based registration, instead of intensity based cross correlation
methods. In the next subsection, the problem is extended to stitch-
ing of images with multiple resolutions.

3.2.1 Robust Stitching of Overlapping Regions

The problem of image montaging based on overlapping areas is typ-
ically solved by �nding the a�ne transformation that maximizes the
cross correlation between the overlapping areas. Computation of cross
correlation in the Fourier Domain is very fast, rendering this approach
attractive for user interaction. However, in practice maximizing the
cross correlation often yields undesirable matchings, forcing the user
to correct the alignment manually. When montaging images it is im-
portant that the stitching border yields good matches for edges in the
image. Thus, the optimization criterion should depend on the image
gradient instead of intensity values. One way to solve this issue is to
calculate the cross correlation of the gradient image instead of the in-
tensity values. However, we chose to employ a feature based approach
based on SIFT keypoint detection instead, for the following reasons:

• SIFT is based on the image gradients
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• keypoints are detected at well localized positions with sub-pixel
accuracy leading to precise landmarks

• correspondence point extraction based on SIFT features is very
robust against non-linear distortions and noise (see Figure 3.2)

Stitching of images based on automatically extracted landmarks
is also used in the �eld of photogrammetry. Lingua et al. (2009)
evaluated the performance of SIFT correspondences in this �eld and
demonstrate good matching results for large geometric and photomet-
ric distortions.

Assuming that the microscope does not cause non-linear distor-
tions, all images can be stitched together by estimating an a�ne trans-
formation A(i) for each image i. The transformation maps each image
coordinate system to the common stitching coordinate system. The
mapping is optimal, if the distances between correspondence points
in the stitching coordinate system are minimal.

This translates to the following least squares problem:

min
A

B∑
i,j=1,
j 6=i

∥∥∥X(i,j)A(i) −X(j,i)A(j)
∥∥∥2 (3.1)

The coordinatesX(i,j) of the correspondence points between image
i and image j are represented as homogeneous coordinates, transform-
ing the 2D-coordinate (x, y) to a 3D-coordinate (x, y, 1) by adding a
one as the constant third dimension. The a�ne transformations A(i)

are then represented as 3x3 transformation matrices. B denotes the
total number of images to be stitched together.

Typically, one a�ne transformation is set to identity to de�ne the
coordinate system of the stitching image. To estimate the remaining
a�ne transformations we de�ne X(i) as the set of all correspondence
points in image i, i.e., X(i) =

⋃B
j=1X

(i,j) and Y (i) as the set of all

corresponding points in the stitching coordinate system, i.e., Y (i) =⋃B
j=1X

(j,i)A(j)

34



3.2. STITCHING

The minimization problem (3.1) can now be solved by pseudoin-
verse method

A(i) =
(
X(i)T ·X(i)

)−1
·X(i)T · Y (i). (3.2)

As Y (i) depends on the a�ne transformations estimated, the problem
is solved iteratively, alternating between updating the a�ne transfor-
mations A(i) and the mapped correspondence coordinates Y (i).

The solution described so far weights the distance ξ between two
correspondent points quadratically. But, SIFT features may lead to
some false correspondence points, because points are only compared
based on their feature vectors. Similarities in the structure or repeated
patterns can cause incorrect correspondences. Thus, it is bene�cial
to use robust estimation methods, like Huber loss or RANSAC to
estimate the a�ne transformations (Szeliski, 2004; Kaynig et al., 2007;
Saalfeld and Toman£ák, 2008).

Applying Huber-loss, one replaces the squared loss function L(ξ) =
ξ2 by the Huber-loss function which only gives linear weight to large
errors:

Lc(ξ) =


c|ξ| − c2

2
, for |ξ| > c

ξ2

2
, for |ξ| ≤ c.

. (3.3)

In Equation (3.2) the Huber loss introduces a diagonal weight matrix
Ω which reduces the in�uence of outliers on the estimated transfor-
mation accordingly.

A(i) =
(
X(i)T · Ω ·X(i)

)−1
·X(i)T · Ω · Y (i) (3.4)

The assigned weights Ω depend on the residuals ξ and thus on
the estimated transformation A(i). Therefore, the optimization iter-
ates between estimating the transformation matrix and updating the
weight matrix accordingly.
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3.2.2 Multiple Resolutions

So far we have only considered stitching of images with the same res-
olution, based on overlapping image areas. The stitching gets more
reliable, with increasing size of the overlapping image area, but large
overlaps lead to a lot of redundant data acquisition. However, SIFT
features are scale invariant and thus enable automatic landmark de-
tection between images with di�erent resolutions. Thus we propose
to employ an overview image at a coarse resolution as a template for
the stitching. This approach has several advantages:

• Reliability of the image montage does not depend on the size of
overlapping areas between high resolution images.

• Acquisition of an overview image is less e�ort for the micro-
scopist than providing su�cient overlap for all high resolution
images.

• The context between regions of interest with high resolution is
preserved in the overview image, e.g. allowing for measurements
between the areas.

Figure 3.4 depicts an example stitching of high resolution images
on an overview image. High resolution images are not required to be
arranged in a grid like structure and the context between regions of
interest is preserved in the low resolution overview image. In principle
the approach can be easily extended to stitchings of multi resolution
pyramids of images.

In addition, if non-linear transformations like lens distortions are
present in the images, and no calibration data is available, the high
resolution images can be stitched non-linearly to the overview image.
This way, a seamless stitching can be achieved, with the smallest
artifact deformation possible.
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Figure 3.4: Upper image: Example stitching of high resolution images
on a low resolution overview image. Lower image: region of interest
marked by a rectangle in the upper image.
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3.3 Distortion Correction

The goal of stitching is to assemble a set of images that are capturing
a larger part of the sample and that have su�cient overlap (Figure
3.6). When the images are distorted by the electromagnetic lenses of
the microscope, it is not possible to �nd an a�ne transformation that
stitches the images together without major errors. Figure 3.5 shows
a zoom in two di�erent regions with large stitching errors by an a�ne
transformation. The stitching boundary can easily be detected in
both images. A non-linear correction is required to stitch the images
neatly together. Here we introduce a new method to estimate this
non-linear transformation that can be used to correct the images.

When image distortions occur in the imaging process, it is not
only di�cult to seamlessly stitch the images together in a reliable
way. Distortions also alter the shape of structures in the images and
thus are a possible source of measurement errors. Typically, distor-
tion �elds are growing with increasing distance to the image center.
This observation suggests, that the distortion problem is less severe
for CCD-cameras with a small number of pixels than for image cap-
turing devices with a large �eld of view despite the increasing de-
mand for stitching. Using �lms, �lm plates or the latest generation
of 10 mega pixel large-size CCD-cameras, the image distortions can
severely perturb reliable stitching of large �eld of view images. The
following chapter introduces a fully automatic calibration and stitch-
ing approach, that can correct for non-linear distortions in the images
caused by the electromagnetic lenses, while preserving structural in-
formation of the images.

Figure 3.6 illustrates the stitching scenario with distortions. The
same region of the specimen is captured by two di�erent images. The
microscope induces the same distortion to all images. But, the orig-
inal structure of the specimen is recorded in di�erent areas of the
local image coordinate system and thus the structure is distorted dif-
ferently in both images. Our approach uses the information of the
overlapping image areas to estimate a non-linear distortion correction
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Figure 3.5: Two example regions of the stitching intersection (2.7 x 2.7
µm). In the top line without distortion correction the image border
is clearly visible. In the lower line the distortion correction produces
a seamless stitching.
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Figure 3.6: Illustration of the stitching and calibration scenario. The
same region of the specimen is covered by the overlapping image ar-
eas. Due to non-linear distortions in the images, overlapping regions
cannot be matched with an a�ne transformation alone. The pro-
posed self calibration method uses the redundant information in the
overlapping areas to estimate the non-linear transformation �eld that
corrects the distortion.
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that preserves the structural geometry of the images. For a series of
images taken with the same parameter settings of the microscope, the
distortion correction �eld has to be estimated only once in the begin-
ning and can then afterwards be applied to all images. The method
uses redundant information in overlapping images to estimate the
non-linear transformation. Thus, no special calibration samples are
required.

The approach has been implemented as an open source plugin for
the ImageJ (Rasband, 2010) distribution Fiji(Fiji, 2010), is freely
available and also has been integrated into TrakEM2 (Cardona, 2006).
More information about the plugin is on the website:

http://pacific.mpi-cbg.de/wiki/index.php/Distortion_Correction

3.3.1 Related Work

Lens calibration is commonly achieved by use of special calibration
images, like pictures of checkerboards or other objects with straight
lines (Devernay and Faugeras, 2001; Gremban et al., 1988; Zhang,
2000) in order to reproducibly correct the images after their acquisi-
tion. However, this method is not applicable to electron microscopy.
While there are crystalline structures that might be used as calibra-
tion samples (i.e. a non-scale checker board), it is possible that the
whole process of removing the calibration sample from the micro-
scope, inserting the actual sample of interest and refocusing on that
sample again changes the distortion �eld. This often uncontrollable
variability is caused by the electromagnetic lenses, which do not corre-
spond to �xed shaped glass lenses of camera objectives. Instead they
change shape according to di�erent con�gurations of the microscope
parameters. Due to hysteresis e�ects, there is no clear correspondence
between the parameter settings and the induced distortion.

Other methods often incorporate a speci�c distortion model, like
radial symmetric �barrel� or �pincushion� distortions (Wang et al.,
2009; Shih-Schon and Bajcsy, 2001; Hartley and Kang, 2007). While
in principle, these distortions may a�ect imaging in electron micro-
scopes, we prefer to not restrict our distortion model to speci�c shapes
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as done in (Sawhney and Kumar, 1999; Stein, 1997). This generality
enables superior correction in case of non-ideal electromagnetic �elds
in the microscope column. To our knowledge the only alternative
approach to calibrate electron microscopes is described in (Koshevoy
et al., 2006). Koshevoy et al. parametrize lens distortions by Legren-
dre polynomials where intensity variance is used as a similarity mea-
sure. Our new proposed method distinguishes itself in three major
points from the method by Koshevoy et al.: First, SIFT features are
used to measure similarity between image patches/corners instead of
intensity. This choice renders the approach more robust and therefore
better applicable to handle noisy electron microscopy images than the
alternative distortion correction. Second, our image assembly relies
on a grid like matching, where we maximize the similarity between
all overlapping pairs jointly. Instead, Koshevoy et al. only estimate a
cascade of transformations over a prede�ned hierarchical order of the
images. Due to the fact that errors are propagated over the image
cascade, large errors can occur at the end nodes of such a cascade as a
consequence of error propagation. Third, we only correct a non-linear
distortion �eld caused by the electron microscope that is shared by all
images. Koshevoy estimates an additional non-linear transformation
independently for each image. This procedure renders the approach
problematic, as the non-linear correction induces structural changes
to the images. Our method instead corrects only for the distortion
�eld that is the same in all images. Marsh (2007) automatically
extracts correspondences in tomograms by cross correlation of sub-
volumes stating that, manual interaction is necessary to exclude false
positive matches even for a large support of 80x80x70 voxels. SIFT
features instead yield robust matches and are typically computed at
an interpolated position with sub-pixel accuracy, which signi�cantly
outperforms localization based on cross correlation. Lawrence et al.
(2006) describe non-linear lens distortions as an issue for three dimen-
sional tomogram reconstructions and account for these distortions by
extending the linear reconstruction method to a curvilinear model of
cubic order. The distortion model described in this paper enables the
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correction of non-linear transformations of higher than cubic order
while simultaneously preserving structural information.

3.3.2 Origins of Distortions

The most faithful and e�cient way to remove distortions is by hard-
ware adjustments, e.g. by changes of the electron optical conditions.
A hardware correction would restore the signal before analog to dig-
ital conversion and, therefore, it would recover the signal with the
smallest possible loss. Such a strategy succeeds e.g. for light mi-
croscopes, where objective lens systems are built to minimize distor-
tions. In electron microscopy, however, there exist several obstacles
that render hardware controlled distortion corrections di�cult. First,
the distortions can sensitively depend on the electron optical con-
�guration selected for image acquisition. This dependency implies
that the correction would need to be adaptable to di�erent parame-
ter settings. Second, the distortion parameters are commonly speci�c
for the respective microscope. Third, little information has been re-
ported in the literature about typical characteristics of imaging dis-
tortions induced by electron microscopes. In Figure 3.7, a sketch of a
transmission electron microscope (TEM) is shown. The main electron
optical components of a TEM to be identi�ed as possible sources for
distortions are the condenser lens system, the objective lens and the
projective lens system. The condenser lenses de�ne the beam incident
on the specimen, i.e. an almost parallel beam (cross-over far after the
specimen), a focused beam (cross-over on the specimen) or an over-
focused beam (beam cross-over before the specimen). The objective
lens is located directly below the sample. This lens has short focal
length and gives rise to a �rst magni�ed image. The �rst intermediate
image plane is further magni�ed by the projective lens system, which
consists of all lenses below the objective lens, e.g. di�raction, interme-
diate and projective lenses. Finally, the magni�ed image is captured
by the camera or a viewing screen. The objective lens is well known
for giving rise to distortions, because it su�ers like every rotationally
symmetric electromagnetic lens from spherical aberration. This e�ect
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Figure 3.7: Sketch of the basic components of a transmission electron
microscope. Components in�uencing the distortions are the condenser
lens system, the objective lens and the projective lens system.
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mainly leads to a blurring of the images being equivalent to a loss of
resolution. The spherical aberration exhibits its main degrading im-
pact in high-resolution imaging. The projective lens system so far has
not been thoroughly analyzed in the literature with respect to distor-
tions. The large variety of magni�cations accessible by the projective
lens system is achieved by a combination of two e�ects. The strength
of the lens current can be controlled for each individual lens sepa-
rately, resulting in a change of the focal length of the respective lens.
The experimenter can also select di�erent combinations of the set of
lenses below the objective lens. As charged particles move on a helical
trajectory in an electromagnetic �eld, a change of the focal length of
a lens not only causes the desired change in magni�cation, but it also
induces a comparably small image rotation, while a di�erent combi-
nation of the lenses can generate a large jump in image rotation. The
condenser lens, the objective lens and the projective lens systems may
all su�er from instabilities caused by hysteresis e�ects when changing
the focal length of electromagnetic lenses.

3.3.3 Estimation Framework

Stitching of images can be seen as an inversion of the coordinate trans-
forms which are applied during the image acquisition process. The
diagram in Figure 3.8 illustrates the two main coordinate transforma-
tions which we consider in the stitching approach presented in this
paper. The sample itself de�nes the original object coordinate sys-
tem. If an image is taken from the sample, a region of interest from
the original object coordinate system is mapped to its own image co-
ordinate system. The transformation between object coordinate sys-
tem and image coordinate system is a�ne with a translation de�ned
by the positioning of the �eld of view of the microscope, a rotation
caused by the spiral movement of the electrons inside the microscope
and a scaling according to the magni�cation settings. The lens dis-
tortion of the microscope now acts on the intermediate coordinate
system and hence is the same for all images. Thus, for example the
upper left corner of each image is distorted in the same way for all
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images, regardless of the absolute positioning of the region shown in
the image in the original object coordinate system of the sample. To
stitch a set of single images back to a common coordinate system,
the two transformations applied to the images beforehand have to be
inverted. Hence, �rst a non-linear transformation is applied to cor-
rect for the lens distortion and then the images are mapped with an
a�ne transformation to the coordinate system of the stitched image.
The coordinate system of the stitched image and the original object
coordinate system of the sample are only equivalent up to an a�ne
transform because the relative positioning of the sample in the object
coordinate system is lost when the sample signal is mapped to the
intermediate coordinate system (see Figure 3.8). A common prac-
tice is to de�ne one of the image coordinate systems as the stitching
coordinate system and then map all other images to this coordinate
frame.

A non-linear transformation is necessary to correct the images
against distortions. To model the non-linear transformation we use
an explicit polynomial kernel expansion to map the correspondence
points into high dimensions and then estimate the transformation
matrix α that projects the points back to the 2D image plane.

The polynomial expansion of degree d for a 2D point x with co-
ordinates (u, v) yields

φd(u, v) =
(

1, u, v, u2, uv, v2, . . . , vd
)
. (3.5)

For a n × 2 point matrix X the kernel expansion φd(X) denotes the

n × (d+1)(d+2)
2 -matrix where the kernel expansion is applied to all n

rows separately. In all our experiments d = 5 provided su�cient de-
gree of freedom to estimate the non-linear distortion correction. As
little is known about the characteristics of distortions induced by elec-
tromagnetic lenses, the polynomial kernel used for our experiments
does not restrict the estimated transformation to correct for particu-
lar models like barrel or pincushion distortions. However, the method
described in this paper can easily be restricted to speci�c transfor-
mation models by choosing another kernel function φ, and lifting the
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Figure 3.8: Illustration of the image acquisition process. First a region
of interest from the object coordinate system is chosen and mapped
with an a�ne transformation (translation, rotation, scaling) to its
own intermediate coordinate system. The lens distortion then trans-
forms this image further to the �nal image coordinate system.
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points e.g. to a circular feature space (Geyer and Daniilidis, 2001;
Claus and Fitzgibbon, 2005).

The non-linear transformation of a set of points X(i) is written as
a matrix multiplication φd(X

(i))α with a (d+1)(d+2)
2 × 2 transforma-

tion matrix α which projects the kernel expanded points back into
2D space. For homogeneous coordinates a third column is added to
α which maps the third coordinate of the transformed points to a
constant.

The joint calibration and stitching is formulated as a minimization
problem which directly follows the inverse transformations of Figure
3.8: for each correspondence point the non-linear transformation is
applied to its local image coordinates in image i and image j. Af-
ter correcting the distortions, the correspondences are mapped by an
a�ne transformation to a common coordinate system corresponding
to the mosaic image. For the set of all images B, the squared Eu-
clidean distance between correspondence points should be minimal in
the coordinate system of the mosaic image. This goal induces the
following optimization problem:

min
α,A

B∑
i,j=1,
j 6=i

(∥∥∥∥ (φd(X(i,j))αA(i)
)
−
(
φd(X

(j,i))αA(j)
)∥∥∥∥2

+ λ

∥∥∥∥φd(X(i,j))α−X(i,j)

∥∥∥∥2
)
.

(3.6)

Using homogeneous coordinates, the 3× 3 transformation matrix
A(i) for each image is estimated according to Eq. (3.4). The reg-
ularization term in equation (3.6) penalizes transformations which
map the transformed image points far apart from the original image
points. Experiments clearly demonstrate that λ = 0.01 is a su�cient
weight for the regularization term. By explicitly regularizing the In
practice the objective can be optimized by iteratively obtaining the
a�ne transformations A(i) and then the non-linear transformation
matrix α. Our experiments demonstrate, that very few iterations are
su�cient to obtain α and A(i).
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When keeping all A(i) �xed, the solution for α is unique and is
obtained by setting the derivative of Eq. (3.6) with respect to α to
zero and then solving for α. This yields

vec(α) =

[
B∑

i,j=1,
j 6=i

N(i,j)∑
n=1

(
2 ·A(i)A(i)T ⊗ x̃(i,j)Tn x̃(i,j)n

−2 ·A(j)A(i)T ⊗ x̃(j,i)Tn x̃(i,j)n + λ(I3×3 ⊗ x̃(i,j)
T

n x̃(i,j)n )

)]−1
·

vec

(
B∑

i,j=1,
j 6=i

N(i,j)∑
n=1

(
+λ · x(i,j)Tn x̃(i,j)n

))

(3.7)

where x̃(i,j) = φd(x
(i,j)) and x

(i,j)
n denotes the coordinates of the

nth correspondence point between image i and image j in the coor-
dinate system of image i. The index n of the second sum runs over
all N(i, j) correspondence points between image i and image j.

The operator vec(α) applied to a matrix α concatenates the columns
to a vector. The operation Y ⊗ Z denotes the Kronecker product of
an m × n matrix Y and an r × q matrix Z that yields a mr × nq
matrix, de�ned as:

Y ⊗ Z =


Y11Z Y12Z . . . Y1nZ
Y21Z Y22Z . . . Y2nZ
...

...
Ym1Z Ym2Z . . . YmnZ

 (3.8)

3.3.4 Experimental Validation

In this section we experimentally evaluate our calibration approach.
Simulated data are employed to test the quality of the correction
against known ground truth. In addition we show on real electron
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microscopy data, that our calibration method is able to reduce dis-
tortions with an average uncorrected stitching error larger than 10
pixels to sub-pixel precision. The experiments are designed to focus
on di�erent lens systems in order to determine the origin of the distor-
tions in a TEM and to provide guidelines how often a new calibration
has to be estimated.

The distortion correction estimation does not require images from
special calibration samples. The only limitation is, that the images
have enough contrast and texture to �nd correspondence points with
SIFT features and that su�cient image overlap is provided. We pro-
pose to take one initial calibration set of nine images arranged in a
3x3 grid with a vertical and horizontal overlap of at least 50% per
image in both directions. The large overlap region ensures that all
areas of the image, including the center, contribute to the estimated
distortion correction. Afterwards the obtained correction transform
can be applied to any image taken under equivalent electron optical
conditions.

3.3.5 Simulated Ground Truth Data

To test our calibration method with available ground truth, a set of 9
calibration images (1603x1069 pixels) has been warped by using the
SplineDeformationGenerator ImageJ plugin (Arganda-Carreras et al.,
2006). Figure 3.9 summarizes the results after the images have been
unwarped by our method. Sub�gure (a) shows one of the nine original
images. The distortion applied to the images can be seen in Sub�gure
(b). To demonstrate the stitching quality we show an image overlay
of the example image and another one with 50% overlap. The uncor-
rected stitching (c) appears blurred in the overlapping area, as the
stitching could not seamlessly match image features together. Af-
ter the correction (d) the images show a satisfactory correspondence.
Sub�gures (e) and (f) depict the same situation as inverted di�er-
ence images instead of overlays. Here, a dark pixel in the overlapping
area demonstrates an error in the stitching. The good quality of the
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calibration can also be seen by the large reduction of di�erences be-
tween the original and the distorted image (g) when the correction is
applied (h). The distortion is removed and the original structure of
the image has been recovered. In the distorted images, the average
matching error is 6.88 pixels. After the correction had been applied,
the error was reduced to 0.41 pixels.

Our method is limited by isotropic scaling since it cannot correct
for anisotropic scaling induced by the distortions without knowledge
of the original size of image structures. Therefore the regularization
term in Eq. (3.6) ensures that the applied correction changes the
scaling factor as little as possible.

3.3.6 Electron Microscopy Data Experiments

To test our new method on real world data, we performed a series
of experiments. All images (4008x2672 pixels) were acquired with a
Philips CM100 equipped with a side-mounted Morada TEM camera
from Olympus. The microscope was operated at 100 kV. We used a
commercial cross-grating sample, which is a ruled di�raction grating
with a periodicity of about 460 nm along two perpendicular axis. The
grating is shadowed with gold which yields high contrast in a trans-
mission electron microscope. The grating sample is stable under the
electron beam and it is not expected to su�er from severe charging
e�ects. As demonstrated before, our method does not require special

Figure 3.9 (following page): Evaluation on ground truth data: (a)
original image, (b) applied barrel distortion; (c) stitching overlay of
the distorted images, (d) stitching after distortion correction; (e) and
(f) di�erence images for the stitchings shown in the row above; (g)
di�erence image of the original and the distorted image, (h) di�erence
image of the original and the corrected image. Di�erence images are
shown with inverted contrast to enhance visibility and sub �gure (f)
and (h) are rescaled quadratically.
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(b)

Figure 4.6: Evaluation on ground truth data: (a) original image, (b) applied
barrel distortion; (c) stitching overlay of the distorted images, (d) stitching
after distortion correction; (e) and (f) di�erence images for the stitchings
shown in the row above; (g) di�erence image of the original and the dis-
torted image, (h) di�erence image of the original and the corrected image.
Di�erence images are shown with inverted contrast to enhance visibility and
sub �gure (f) and (h) are rescaled quadratically.
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calibration samples, but the grid structure of the cross-grating sample
enhances the visual impression of the distortion and the correction.
The experiments have been designed to answer two questions: (i)
The experiments are conducted to measure the reduction of the aver-
age stitching error by the distortion correction. (ii) The experiments
should allow us to gain a �rst insight into possible causes and mecha-
nisms of the distortions. In order to distinguish distortions caused by
the di�erent lens systems of the TEM, images were captured under
the following experimental conditions:

1. condenser lens in over- and under-focus, i.e. crossover of the
beam before and after the specimen

2. objective lens in focus and in strong under-focus (20µm), i.e.
severely di�erent focal lengths

3. sample not at correct height, compensation for the correspond-
ingly wrong position of the image by the focal length of the
objective lens (z-height of specimen too low, objective at 20µm
over-focus)

4. change of magni�cation leaving all other parameters unchanged
(3'400, 19'000, 25'000 and 64'000 times magni�cation)

5. specimen shifted sidewards by some distance, leaving all electron
optical parameters unchanged

6. all settings listed have been checked before and after a full align-
ment of the microscope.

The following information is expected from these settings: the �rst
setup tests the in�uence of the condenser lens system; conditions two
and three probe the dependency of distortions on the objective lens;
test four identi�es the in�uence of the projective system; the setting
�ve is expected to yield information about e�ects due to the speci-
men. Procedure six, �nally, is performed to measure how sensitively
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iter 0 1 2 3 4

med 10.0708 1.2921 0.6438 0.5968 0.5941

stddev 1.9843 0.4875 0.1971 0.1637 0.1599

Table 3.1: The table contains the median stitching error (med) and
its standard deviation (stddev) over all 28 calibration sets. The error
is rapidly reduced with very few iteration steps (iter)

distortions depend on the electron optical parameters. This informa-
tion is important to judge how often a new distortion correction has
to be estimated.

A general analysis over all experiments enables us to measure the
performance of the distortion correction. Then the in�uence of the
single parameter settings on the distortion is discussed in relation to
the experimental conditions. Figure 3.10 shows the results summa-
rized over all experiments in a box plot. The �rst box, corresponding
to iteration step 0, depicts the original uncorrected error in the stitch-
ing. The large variance of this entry is due to the di�erent parameter
settings that cause di�erent distortions. But, already the second iter-
ation step corrects the distortion su�cient enough to reach sub-pixel
accuracy. The small variance in the corrected result demonstrates,
that the method performs reliably for all parameter settings. The
numerical values of the median stitching error and the standard de-
viation for the single iteration steps are summarized in Table 3.1.

A visual impression of a distortion and the correction result is
depicted in Figure 3.11, showing the lower left region of a cross-grating
sample image. When the grid structure is compared to the straight
lines drawn in blue, it is clearly visible, that the upper image contains
distortions. In the lower left corner the distortions exceed the grid
distance of 460 nm. In the bottom image, the correction has been
applied and the geometry of the sample is restored.
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Figure 3.10: Box plot showing the convergence of the algorithm for 28
di�erent sets of calibration images. On each box, the red line marks
the median stitching error in pixels (log scale), the edges of the box
are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers. The dashed black line
marks the 1 pixel error boundary.

55



CHAPTER 3. REGISTRATION

Figure 3.11: A region of a cross-grating sample image. Top: before
correction, bottom: after correction. The distortion correction visibly
restores the geometry of the grid structure in the image. In the lower
left corner, the distortion is about as large as the grid distance which
is 460 nm.
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mag 3400 3400 19000 25000 25000 64000

before alignment

A 6.24 11.20

B 6.32 6.92 9.76 10.07 10.65 10.12

C 6.43 11.14 8.43 8.95

D 6.10 5.95 10.48 10.93 10.30

after alignment

A

B 6.22 6.64 10.69 10.61 9.16

C 6.32 10.47 10.71

D 6.13 10.22 10.18

Table 3.2: The table contains the median stitching error in pixels for
all 28 calibration sets. A: condensor lens in over-focus, B: condensor
lens in under-focus, C: condenser lens in under-focus and objective in
under-focus (20µm), D: condensor lens in under-focus and objective
in over-focus (20µm) correcting for specimen lower than optimal eu-
centric height. For magni�cation settings 3400 and 25000 experiments
were repeated on a second region of the sample.

A comparison of the distortion correction �elds, that have been
determined by the described procedures, reveals that they are very
similar for all settings. The central part of the images shows almost
no distortions at all, while severe distortions are observed mainly near
the corners of the images (see Figure 3.12 for some examples). The
stitching error for all single settings is given in Table 3.2. The most
prominent change in the transformation �elds can be detected when
the magni�cation changes from 3'400x to 19'000x. At magni�cation
3'400x the stitching error amounts to six pixels. Varying other micro-
scope parameters or even a full realignment of the electron microscope
column has only a marginal e�ect on the distortion. Increasing the
magni�cation to 19'000x, causes the error to grow up to ten pixels for
all di�erent parameter settings. The images as well as the estimated
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mag 3400 19000 25000 64000

C1 391 391 391 391

C2 2601 2601 2599 2601

OBJ 2259 2259 2260 2259

DIF 1098 1619 1613 1579

INT 354 608 657 1007

P1 775 1544 1262 1364

P2 1972 1972 1952 1929

Table 3.3: The table contains the lens currents for the di�erent magni-
�cation settings in [mA]. The abbreviations have the following mean-
ing: C1 and C2 are the condenser lenses, OBJ is the objective lens,
DIF is the di�raction lens, INT the intermediate lens, P1 and P2 the
projective lenses of the Philips CM100

transformation �elds exhibit a signi�cant jump in rotation (see Fig-
ure 3.12). This result identi�es the projective lens system as the main
in�uencing factor for the distortions.

For di�erent magni�cations, the lens currents of the condenser
lenses as well as the current of the objective lens remain constant
(see Table 3.3) and thus, the �rst intermediate image is not changed.
A region of this image plane is magni�ed by the projective lens sys-
tem. With increasing magni�cation, the zoom area selected from the
center of the intermediate image plane is shrinking. Hence, only the
central, little distorted image area is further magni�ed and imaged by
the CCD camera, and a decrease in the distortions for high magni�-
cations would be expected if the condenser and objective lens system
would cause the distortions. This analysis identi�es the projective
lens system as the most likely cause for the distortion change in our
experiments. In addition, the increase in the distortions is correlated
with a rotation jump, clearly visible in the images shown in Figure
3.12. Between the �rst two magni�cations a clear rotation jump is
visible. This is caused by a di�erent setting for the projective lens
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system. From 19'000x to 25'000x the rotation angle is small. The
rotation jump is caused by a di�erent lens con�guration for the new
magni�cation setting. As a consequence of this observation we suggest
to estimate transformations for distortion correction for each major
projective lens con�guration. These transformations can then be used
as default correction for single images, in cases where no sub-pixel ac-
curacy is required. Table 3.2 shows, that a careful alignment of the
microscope stabilizes the distortions with respect to di�erent focus
settings. Hence a good alignment of the microscope increases the
bene�t of an estimated default distortion correction �eld. The largest
impact was observed on the under focus setting, which is widely used
to enhance contrast for biological samples.

Figure 3.12 (following page): Original images (left) and the estimated
distortion correction �elds (right) for di�erent magni�cations. Arrows
are scaled by a factor of three to enhance visibility. In the transfor-
mation �eld images, hue indicates the direction and saturation the
magnitude of the transformation. Primary magni�cation from top to
bottom: 3'400x, 19'000x, 25'000x, again 25'000x after alignment of
the microscope. All images are 4008x2672 pixels.
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Figure 4.9: Original images (left) and the estimated distortion correction
�elds (right) for di�erent magni�cations. Arrows are scaled by a factor of
three to enhance visibility. In the transformation �eld images, hue indicates
the direction and saturation the magnitude of the transformation. Primary
magni�cation from top to bottom: 3'400x, 19'000x, 25'000x, again 25'000x
after alignment of the microscope. All images are 4008x2672 pixels.

Version of January 8, 2011 53

60



3.4. Z-ALIGNMENT: AFFINE VS. NON-LINEAR ALIGNMENT

3.4 Z-Alignment: A�ne vs. Non-linear Align-

ment

During sample preparation, the specimen needs to be cut into ultra
thin sections of approximately 50 nm. After the data acquisition,
the images of single sections need to be aligned into one data vol-
ume. Registration of serial section images is not trivial, as the whole
image content changes non-linearly between sections. In contrast to
other registration problems, there is no separation between object and
background, but the image contains densely packed objects, which all
transform non-linearly between sections. In addition staining arti-
facts, tissue fractures, and neuronal processes starting and ending
between sections, lead to images regions with no correspondence in
the adjacent image.

The non-linear transformation between images of di�erent sections
is a combination of transformations originating from di�erent sources.
The individual transformations can be divided into two groups. One
part are the structural transformations, which are non-linear and are
caused by processes being cut at di�erent positions. Structural trans-
formations are larger for neuronal processes which run longitudinal
to the cutting plane, than for processes which run orthogonal to the
cutting plane. The other part are artifact transformations, which
origin from the sample preparation and image acquisition process.
The rotation of the section on the grid holder, the region of interest
chosen by the microscopist and the spiral trajectory of the electrons
inside the microscope cause an a�ne artifact transformation. In ad-
dition non-linear distortions origin in the cutting process, the placing
of the section on the grid holder and the mass loss caused by the
electron beam during image acquisition. An ideal registration of the
images would correct for all artifact transformations, while preserving
structural changes between the images. However, the correct trans-
formation is not known, as the original shape information from the
neuronal processes is lost in the cutting process. Therefore, there
is a trade o� between aligning images perfectly and preserving the
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structural geometry in the data. Non-linear warping of the images to
the best �t allows to get correspondences between the images for sin-
gle pixels. If registration is restricted to a�ne transformations then
structural geometry is preserved to a high degree, but non-linear arti-
fact transformations are not corrected. As the methods described in
this thesis are designed to be applicable to a wide range of data, we
propose a�ne or rigid alignment methods to extract the 3D geome-
try of neuronal processes, and non-linear warping of images to solve
for correspondences. If prior information about the correlation of the
geometry of structures in the sample exists, this information can be
employed to guide the registration. In this case the non-linear image
alignment can be regularized to correct for artifact transformations
which correlate over an area larger than the correlation area of the
geometrical transformations.

3.5 A�ne Registration

A�ne registration is employed to assemble images of multiple sec-
tions into one data volume. Manual alignment of images is typically
achieved with a color overlay interface. For translations the color
overlay interface is su�cient, but rotations often already are hard to
optimize. The alignment of sections is di�cult, as the user has to �nd
the rigid transformation that best corrects for the non-linear defor-
mations between sections. Instead of �nding the best compromise for
the whole image, a human is prone to biasing the alignment in favor of
a prominent structure in the images. Automatic alignment methods
estimate an a�ne transform either by optimizing intensity based sim-
ilarity measures between images, or extracting correspondent land-
marks between images and estimating a transformation which maps
correspondent landmarks with minimal error. For the registration be-
tween sections, the same principles apply, as discussed for the align-
ment of overlapping image areas for montaging (see Section 3.2.1).
Hence we follow the same approach as for image stitching, employing
SIFT keypoint detection for automatic landmark extraction and then
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obtaining the optimal a�ne transformation by minimizing the Huber
loss between corespondent points. The example given in Figure 3.13
shows a 3d reconstruction of a dendrite, on the left side with manually
aligned images, on the right side with automatically aligned images.
The segmentation was performed manually and is the same for both
reconstructions, only the alignment di�ers. As can be seen, the auto-
matic alignment leads to a more meandering reconstruction than the
manual registration.

Figure 3.13: 3d reconstruction of dendrite from cat brain. Left: man-
ual alignment, right: automatic alignment.

Figure 3.14 shows an analysis of the cross correlation coe�cient
between the aligned images. We compare the correlation between the
image background and a region around the dendrite of interest for
the reconstruction. The manual alignment focuses on enhancing the
alignment around the region of interest leading to better correlations
in this region. The automatic alignment instead uses the whole im-
age context to �nd the optimal transformation. The increase in the
cross correlation of the background demonstrates, that the automatic
method corrects for a global linear transformation, which was not cor-
rected in the manual alignment. As this transformation is linear over
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the whole image, it is an artifact transformation and not caused by
structural geometry. Therefore, this transformation needs to be cor-
rected and thus the meandering reconstruction is closer to the original
geometry of the dendrite, than the smooth manual reconstruction.

Figure 3.14: Comparison of the cross correlation coe�cient between
adjacent images for the dendrite reconstruction shown in Figure 3.13.
Left: background area, right: region around the dendrite.

3.6 Non-linear Warping with Anomaly Detec-

tion

The target of non-linear warping methods is to estimate a non-linear
transformation which minimizes the di�erence between two images.
In contrast to a�ne registration, which aims at preserving structural
geometry between images, warping solves the correspondence prob-
lem between images, by correcting for all transformations present.
An ideal warping estimates correspondeces for all pixels, thus the
proposed warping method does not rely on SIFT landmarks, as de-
scribed for the stitching and the a�ne alignment of adjacent sections.
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Instead, we propose a direct alignment and estimate the optimal non-
linear warping, given two images. Non-linear warping methods have
a wide range of applications in medical image processing, as compar-
isons of images form di�erent time points or across patients require
to establish correspondences between images. In computer vision reg-
istration is required as a preprocessing step for motion tracking and
3D reconstruction. In the context of neuroanatomy, non-linear warp-
ing enables tracking of neuronal processes between sections and for
propagating membrane detections across sections.

An overview of image registration is given by Zitova and Flusser
(2003) in general and by Hill and Batchelor (2001) for medical image
analysis. In (Glocker et al., 2007; Johnson and Christensen, 2002; Li
and Leung, 2004; Perperidis et al., 2005) image registration methods
are introduced that incorporate both spatial distance of correspon-
dence points as well as intensity values. Gay-Bellile et al. (2006)
registered images by using thin-plate splines. Thin-plate splines were
also used for point matching (Chui and Rangarajan, 2000) which is
highly related to image registration (Stewart et al., 2003). A ro-
bust framework to estimate optical �ow was proposed by Black and
Anandan (1996) and Brox et al. (2004), which is also related to im-
age registration. An iterative approach to register TEM images of
neuronal structures based on Gabor features is presented in (König
et al., 2001). Luther et al. (1988) documented damages of the speci-
men caused by the electron beam of the TEM that leads to non-linear
transformations of the acquired image. In our work we extend the pre-
vious work by introducing additional �visibility� variables that detect
image anomalies. This concept is related to identifying regions that
are visible from both images in stereo reconstruction. E.g., Strecha
et al. (2004) used hidden visibility variables to detect visible and non-
visible regions.

Transmission electron microscopy with its special preparation of
biological samples causes problems that are not solved by existing im-
age registration methods. In addition to strong changes of the image
content between slices, the preparation process causes artifacts in the
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images. Examples of such artifacts are fractures in the serial sections
or staining errors which result in darker blobs in the image. Changing
image content, as well as staining blobs lead to image regions, which
do not have a correspondent region in adjacent images. In addition,
fractures as well as folds, do cause strong non-linearly deformations
of the section and thus the image to align.

3.6.1 Expectation Maximization

We solve the warping problem by way of an expectation maximization
algorithm that calculates a non-linear warping which is parametrized
by a polynomial kernel expansion of reference points. The correspon-
dence points are not a priori �xed but selected during the registration
process. Anomalies, which are caused by the biological sample prepa-
ration, are estimated in the image.

In a Bayesian framework the optimal transformation matrix β
maximizes the posterior probability

p(β|X,Y ) =
∑
M∈M

p(X,Y |β,M) · p(β) · p(M)

p(X,Y )
, (3.9)

where X and Y correspond to the warp image and the target im-
age. The variable M denotes a binary correspondence matrix. Mij is
one, if point xi in the warp image corresponds to point yj in the target
image and zero otherwise. In addition a point xi can be assigned to
an outlier class, denoted as Mi0. Thus, the whole matrix M is of size
n1 × (n2 + 1) where n1 is the number of chosen points in the warp
image and n2 is the number of possible correspondences for each of
these points in the target image.

Application speci�c constraints on the assignments can be mod-
eled by an appropriate de�nition ofM. As each point xi should be as-
signed to only one correspondence point yj the setM = {0, 1}n1·(n2+1)

denotes all admissible assignment matrices M . We de�ne p(M) to
be zero for con�gurations that assign more than one correspondence
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point to xi and assume all valid con�gurations to be uniformly dis-
tributed:

p(M) =


1

n1·(n2+1) if
n2+1∑
j=0

Mij = 1 for all i = 1, . . . , n1

0 else

(3.10)

This de�nition of p(M) ensures that each point xi is assigned
exactly to one correspondence point or is marked as not relevant.

To de�ne p(β) the components of the solution vector β are as-
sumed to be normally distributed. Therefore, we introduce a ridge
penalty which is described by the normal distribution ϕµ,σ with loca-
tion parameter µ and variance σ2 as prior distribution

p(β) =

nβ∏
i=1

ϕ0,1/
√
λ (βi) (3.11)

for β. The parameter λ is the ridge penalty that controls the com-
plexity of the regression function.

The distribution of p(X,Y |β,M) should depend on the similarity
of the correspondence points based on gray values, as well as on the
quality of the geometric �t. Furthermore, we need to take care of im-
age anomalies that are assigned to the outlier class. This outlier class
is modeled as a uniform distribution. The complete data likelihood is
distributed as

p(X,Y |β,M) =
1

N

n1∏
i=1

n2∏
j=1

(
ϕ0,σ1

(
v(xi)− v(yj)

)
·

ϕ0,σ2

(
φ(xi)β − yj

))Mij

·
n1∏
i=1

(
ϕ0,σ1(cσ1)

)Mi0 (3.12)
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Here v(xi) is a vector of the gray values of a small patch centered
at xi. The di�erence of two such patches serves as a dissimilarity
measure that is easy to compute and takes context information about
a small area around the points into account. The non-linear transfor-
mation is modeled again as a polynomial kernel expansion (Eq. 3.5)
followed by a multiplication with the matrix β to project the points
back to two dimensions.

The second factor provides a penalty for points that are marked
as not relevant. The constant c is given as the 0.98 quantile of the
cumulative chi square distribution, where the degrees of freedom in
principle correspond to the number of pixels in v(xi)− v(yj). To re-
duce the in�uence of noise in the similarity measure, we perform a
principal component analysis and project the high dimensional di�er-
ence vectors down to the eigenvectors that correspond to the largest
98% of the eigenvalues. This also reduces the degree of freedom of
the cumulative chi square distribution. Thus, the outlier factor trans-
forms the assumed normal distribution of the gray value similarity
into a heavy tailed distribution, providing a robust solution for out-
liers caused by non relevant elements.

In order to maximize p(β|X,Y ) which yields an optimized trans-
formation, we maximize the logarithm of p(X,Y |β,M) · p(β) under
the constraint that M is a valid matrix, i.e.

∑n2
j=0Mij = 1 for all

i = 1, . . . , n1. Since the assignment variables M are unobservable, we
use the EM-algorithm to maximize the joint log-posterior. The algo-
rithm iterates between estimating the expectation of the latent vari-
ables Mij while keeping β �x and maximizing the joint log-posterior
while keeping the expectation values of Mij constant. The variances
for the normal distributions are also calculated during the maximiza-
tion step. The log-posterior is maximized with respect to the trans-
formation β as well as the variances of the normal distributions σ1
and σ2.
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E-step: In each iteration the expectation values γij for all possible
assignments are updated using the currently optimized β:

γij = E[Mij |X,Y, β]

=
p(X,Y |β,Mij = 1)∑n2
l=0 p(X,Y |β,Mil = 1)

(3.13)

M-step: The computed expectation values γij are substituted for
the unobserved correspondence assignmentsMij in the joint log-posterior
Equation 3.12. The missing parameters β, σ1, σ2 are then estimated
by maximization. For the transformation β this MAP approach yields
a weighted ridge regression problem (Hastie and Tibshirani, 2001)
with weights γij . The transformation matrix β is maximized by

β ← (φ(X̃)TΓφ(X̃) + λσ22I)−1φ(X̃)TΓY (3.14)

where Γ is a (n1 · n2) × (n1 · n2)-dimensional diagonal matrix of the
weights γij . The (n1 · n2) × 2 matrix X̃ contains n2 copies of each
position vector xi and the (n1 · n2) × 2 matrix Y contains n2 possi-
ble correspondence points for each position xi. The parameter λ is
the regularization parameter de�ned by the prior distribution p(β)
(Eq. 3.11). In our experiments λ = 0.001 su�ciently regularizes the
assignments.

The standard deviations are updated by

σ1 ←

√∑n1
i=1

∑n2
j=1 γij · ρ(xi, yj)2∑n1
i=1

∑n2
j=1 γij

(3.15)

σ2 ←

√∑n1
i=1

∑n2
j=1 γij · ||φ(xi)β − yj ||2∑n1

i=1

∑n2
j=1 γij

(3.16)

where σ1 and σ2 are invariant to outliers since γi,0 ≈ 1 for these points
and therefore γi,j ≈ 0 for 1 ≤ j ≤ n2.
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Choice of initial points xi: So far all warping points xi are as-
sumed to be arranged on a regular grid. While this design ensures
that all interesting structures in the image are covered by a warp
point nearby, interest points are often placed in background areas.
To increase precision we would like to position each point directly
in content rich parts of the image while still covering all biologically
relevant structure in the image. For this purpose we calculate the en-
tropy of the intensity value in a 132 neighborhood around each point
in the image. The entropy is high for pixels along structures with a
high contrast. Now we shift each warp point xi of the regular grid to
the position with the highest entropy value in its neighborhood. This
local adaptation method preserves the coverage of the whole image
while emphasizing areas with rich image content.

3.6.2 Experiments

For our experiments we have used images gathered in a computational
neuroscience project. When imaging with a TEM it must be possible
for single electrons to penetrate the probe. Therefore the specimen is
�rst stained, then embedded into resin and cut into ultra thin sections
of 40− 50 nm thickness.

As described in detail in section 2.1.1, the three major sample
preparation steps that may cause artifacts in the image are the stain-
ing, the cutting and the recording with the electron beam. Staining
may produce additional dark areas in the image that do not corre-
spond to original biological structures. During the cutting process
the slice is exposed to signi�cant stress and it may be non-linearly
transformed or it even can encounter fractures. Finally, exposure to
an electron beam causes a mass loss of the specimen and leads to
additional transformations.

Figure 3.15 depicts example image from the data set used for our
experiments. The top part shows an image of typical quality. The
structure in the left bottom quarter of the image with the pike on the
right hand side shows a dendrite. The smaller ellipse like structures
over the image are myelinated axons. The four smaller images below
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Figure 3.15: Examples of experimental data. Top: image of typical
contrast, bottom: examples of staining blurs and a crack. The scale
bar corresponds to 4µm.
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contain examples of image artifacts, that are caused by the sample
preparation: In the lower right corner we see an example of a crack
in the specimen caused by the cutting process. The dark spots in the
upper left image and the dark stripes in the upper right and lower
left image are artifacts of the staining procedure.

Figure 3.16: Di�erence images for (left) a�ne transformation, (mid-
dle) least squares matching with polynomial basis functions, (right)
expectation-maximization including visibility estimation. The origi-
nal images are shown in Figure 3.17

We tested our approach on two series of electron microscopy im-
ages. The �rst series contains 97 images that were taken at 3400x
magni�cation with a resolution of 1032x1376 pixels, one image per
section. The second series consists of 284 images taken at 13500x
magni�cation that were distortion corrected and stitched into 71 sec-
tion images. The resolution of the second stack is 2672x4008 pixels.

In a preprocessing step we correct the radial illumination gradient
visible in the images by dividing each image with a smoothed version
of itself (σ = 30 pixel). Then an initial a�ne transformation based
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on SIFT features is estimated for each image. This transformation is
then re�ned with our warping approach based on expectation maxi-
mization. For comparison we also provide the re�nements for ridge
regression with the ordinary least squares error

min
β
E(β) = min

β

n∑
i=1

‖φ(xi)
Tβ − yi‖2 + λ‖β‖2 (3.17)

and the robust version, where the Huber loss function is used
instead of the least squares error

Lc(ξ) =


c|ξ| − c2

2
for |ξ| > c,

ξ2

2
for |ξ| ≤ c.

This robust method can be seen as a non-linear extension of the
rigid approach described by Ourselin et al. (2001). As these meth-
ods require �xed corresponding points, we calculate the correlation
coe�cient of a patch around xi and the appropriate patches of the
target image. The result is then weighted with a Gaussian density
centered at the position of xi and a standard deviation of two times
the standard error of the a�ne match. Each mapping point xi is then
assigned to its correspondence point yi according to the maximum of
the obtained function.

To provide a visual impression of the obtained warpings we �rst
show di�erence images for the a�ne initialization and two warpings
(Figure 3.16). The original images are shown in Figure 3.17. The
darker the color in the di�erence image, the larger the absolute di�er-
ence in gray values between the warped image and the target image.
The images in the left column show the di�erence map for the robust
a�ne transformation, the images in the middle the result for ridge
regression with polynomial basis functions. The third column shows
the di�erence maps for our new expectation-maximization method. If
one focuses on the images in the upper row on the top left region as
well as on the right and bottom border, one can observe dark stripes
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in the a�ne transformation image that are getting thinner for the
least squares and even more thinner for the expectation maximiza-
tion method. This error measure shows clearly that important edges
are not matched very well by the a�ne transformation, but for the ex-
pectation maximization solution, there are only very small di�erences
left over. Edges in the image are �tting signi�cantly better than for
the standard technique. In addition we tried to compare our method
to optical �ow methods (Black and Anandan, 1996; Brox et al., 2004).
We could not �nd parameter settings that were able to cope with the
signi�cant structural changes between sections.

Figure 3.17: Left: The �rst image, Middle: The visibility map (De-
tected image anomalies). Right: The second image.

Since the detection and localization of image anomalies is im-
portant for our method, we show examples of the estimated image
anomaly regions in Figure 3.17. The darker the color in this image,
the more likely the region belongs to an artifact. The dark strip over
the upper image as well as the dark blobs in the lower image are
clearly detected as not relevant structures which is our desired goal.
The information about these anomalies can now be used for further

74



3.6. NON-LINEAR WARPING WITH ANOMALY DETECTION

Figure 3.18: A needle diagram of non-linear image warping.
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Figure 3.19: Gain or loss of EM warping (solid line) and ridge regres-
sion (dashed line) relative to robust Huber loss estimation. Top: the
single image stack containing 97 images, bottom: distortion corrected
and stitched image stack containing 71 images.
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processing steps in computational neuroanatomy, e.g. in the 3D re-
construction of the neural connectivity structure. To visualize the
estimated non-linear transformation of the image, we show a needle
diagram of the transformation in Figure 3.18.

To demonstrate the improvement of the new method, we have
registered both stacks of TEM images from the above described neu-
roanatomy project and measured the cross-correlation between the
target image and the warped image. Figure 3.19 shows the results for
the two image stacks. Our EM approach has been initialized with the
robust ridge regression solution. Therefore, improvements in cross-
correlation values over the robust ridge regression solution serves as
a measure of success for our model of image registration, i.e., large
di�erences in cross-correlations denote a signi�cantly better registra-
tion of the TEM images than with the robust Huber loss. The EM
method clearly outperforms the other techniques by up to 15 percent
gain in cross-correlation.

3.6.3 Conclusion

Registration of images is an important step in the 3D reconstruction.
Especially in Transmission Electron Microscopy of biological samples,
image anomalies occur frequently caused by the sample preparation
process and by the image acquisition process. In this paper we pro-
pose a novel method for image registration that jointly estimates im-
age anomalies and an image matching in a Bayesian model. The
mixture model enables us to estimate assignment probabilities as well
as probabilities for damages. The method performs superior to stan-
dard methods like linear a�ne transformation, and non-linear trans-
formation. Even state-of-the-art outlier detection methods are infe-
rior in performance compared to our mixture model. The expectation-
maximization algorithm optimizes the model e�ciently and is straight
forward to implement. The experiments convincingly demonstrate
that the model not only improves the image registration process, but
also detects image anomalies. So far we applied our method to solve
the correspondence problem between two adjacent images. It is pos-
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sible to estimate the complete warping of a stack, by propagating the
estimated non-linear transformations across sections. For artifacts
like section raptures, estimating the warping independently for each
pair of sections is bene�cial, as the warping is not smooth across sec-
tions. However, if the non-linear transformations change smoothly
across sections, the proposed approach can be employed to estimate
a three dimensional warping, taking the lateral smoothness into ac-
count.
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Chapter 4

Geometry Extraction

Due to the low lateral resolution of serial section TEM images, we
divide the geometry extraction into two steps. First, cell membranes
are segmented employing a trained random forest classi�er combined
with sub-modular binary potentials for gap closing. While the gap
enhancement incorporates membrane detections in adjacent sections,
the focus of the segmentation is on the two dimensional high resolution
image. In the second step the membrane enclosed regions are grouped
across sections to extract the three dimensional geometry of neuronal
processes. The grouping process takes the geometry of the whole
section into account to yield consistent groupings.

4.1 Segmentation

To extract the geometry of neuronal processes from electron microscopy
images, the images have to be segmented into regions corresponding to
structures of interest. One possibility is to directly classify pixels, e.g.
as representing a bouton, dendrite or axon. This multiclass scenario
is hard to solve, as the classi�cation of a pixel often cannot be decided
by its intensity alone. A bouton for example is in most cases identi�ed
by the vesicles inside, which express a prominent texture. But, regions
of a bouton with few vesicles are likely confused with the texture of an
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axon. To overcome this ambiguity, we propose a di�erent approach,
which concentrates on the segmentation of membranes, reducing the
segmentation to binary classi�cation. All structures of interest for ge-
ometry extraction, are surrounded by membranes. Thus, a complete
membrane segmentation results in closed regions corresponding to
structures of interest. Functional annotation is then performed based
on the characteristics of the whole region instead of the local context
around a pixel. Our membrane segmentation approach provides as
an additional advantage that image characteristics of membranes are
robust with respect to di�erent animal types and staining protocols.
Figure 4.1 contains two example images showing the variability of im-
age characteristics for di�erent animal types and staining methods.
The left image is from drosophila larva brain and contains thick, but
sometimes blurry membranes with weak contrast. The image from cat
brain shown on the right side expresses strong contrast and very rich
texture. While the texture characteristic changes drastically between
the images, the main attributes of membranes, as thin, smooth, and
elongated structures remain the same. Thus, the focus on membrane

Figure 4.1: Two example images, for di�erent animal types and stain-
ing methods. Left: drosophila larva, right: adult cat.
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segmentation makes our approach easily adaptable to a wide range of
data from di�erent neuroanatomy projects as well as segmentations
of other thin elongated structures.

4.1.1 Random Forest Classi�er for Membrane Detec-

tion

Classi�cation of membranes in electron microscopy images poses a
challenging task. The rich and dense structure of brain tissue and
other biological samples leads to highly textured images. Objects of
interest are typically identi�ed by shape and context rather than by
gray value information. As a consequence, state of the art methods
train a classi�er on manual annotations to capture the image char-
acteristics of membranes. Classi�ers employed for this task include
neuronal networks (Jurrus et al., 2010; Mishchenko, 2009), boost-
ing (Vitaladevuni and Basri, 2010),convolutional neuronal networks
(Jain et al., 2007) and random forest (Andres et al., 2008). For our
framework we decided to employ a random forest classi�er for several
reasons: (i) Random forests are fast in training and prediction, which
is ideal for large data sets. (ii) The classi�er is robust against over-
�tting and little manual annotations are necessary to train a random
forest for good membrane detection rates. The large variability of
image characteristics depending on animal type and sample prepara-
tion, requires the retraining of the classi�er for data sets from di�erent
neuroanatomy projects. With a robust classi�er, the manual e�ort in-
volved for retraining, is kept to a minimum. (iii) The only parameters
to tune are the number of trees and the size of the feature subset used
to build each decision tree of the forest. The method is not very sen-
sitive to these parameters and default values produce good results for
all data sets in our experiments. We employ 500 trees and we set the
number of features chose to the square root of the total number of
features, which is the default suggested by Breiman (2001). (iv) The
vote output of the trees can be interpreted as probability measure for
membrane detection. This choice allows us to re�ne the classi�cation
of pixels with a high uncertainty, either by guided user interaction
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or with our gap closing framework introduced in the following sec-
tion. The feature set extracted from the images is designed to capture
the characteristics of membranes with little computational cost. Ex-
tracted features include the gray value, gradient magnitude, Hessian
eigenvalues, and di�erence of Gaussian for the image smoothed with
Gaussian �lters of di�erent kernel sizes. In addition we convolve the
image with a steerable �lter at di�erent orientations. Each �lter out-
put serves as a feature, as well as the minimal, maximal and average
output of the steerable �lter at a pixel position.

Figure 4.2 demonstrates the classi�er output with very little train-
ing data. The random forest classi�er was trained exclusively on the
annotated pixels given in the original image shown at the top of the
�gure. The middle image shows the output of the random forest for
the whole image. Pixels with higher membrane probability appear
darker in the image. The classi�cation thresholded at a probability of
0.5 is given in the bottom image. Regions with less than 100 pixels are
�ltered from the output. Even with this small training set and sim-
ple postprocessing, the classi�cation captures most of the membranes
around neuronal structures in the image. Membranes around mito-
chondria pose a special problem for classi�cation. On the one hand
mitochondria are surrounded by membranes, expressing characteris-
tics identical to other membranes. On the other hand, mitochondria
are intracellular structures, and should be distinguished from neuronal
processes. In many cases, the distance between the outer cell mem-
brane and the mitochondrium is so small, that the two membranes are
merged in the segmentation, rendering the removal of mitochondria
membranes from the segmentation output di�cult.

4.1.2 Segmentation with Graph Cut

As demonstrated in Figure 4.2, the random forest classi�er captures
the main image characteristics of membranes with little manual anno-
tations data. But, the segmentation also shows false negative classi-
�cations, leading to gaps in the detected membranes. One reason for
missing membrane detections are membranes, which run non orthog-
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Figure 4.2: The random forest classi�er captures the membrane char-
acteristic with very little training data. Top: original image with
training annotations (green: membrane, red: background), bottom:
overlay with detected membrane, classi�cation is �ltered to delete
small regions and skeletonized.
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onal to the cutting direction and thus get blurred by the projection
of the physical sample section to the image. In addition, membranes
can be obscured by mitochondria or staining artifacts. Manual in-
teraction is necessary to correct these false classi�cations. Graph
cut provides an excellent framework for semi-automatic segmentation
(Rother et al., 2004). Typically, the probabilistic output of a clas-
si�er and manual user annotations are combined with a smoothing
constraint to reduce false positive detections (Wels et al., 2008).

For thin and elongated structures like membranes, graph cut is
well known to have problems with �shrinking bias�. Current state of
the art segmentation methods overcome this problem by combining
overall smoothness with gradient �ux, to enhance the segmentation
result (Vasilevskiy and Siddiqi, 2002; Boykov and Funka-Lea, 2006).
Vu and Manjunath (2008) employ gradient �ux to segment the inte-
rior region of a dendrite. But, in images with textured background,
like electron microscopy images, gradient �ux leads to false positive
detections, due to the high gradient in the background.

We improve the segmentation of thin elongated structures by en-
hancing gap completion. The energy term is submodular and thus
can be e�ciently globally optimized using max-�ow/min-cut compu-
tation. The novel energy framework combines a discriminative model
for membrane appearance learned by a random forest classi�er with
perceptual grouping constraints for contour completion in a single en-
ergy minimization framework. The gap completion term follows the
principle of good continuation, which states that elongated structures,
which form a continued visual line should be grouped together. Thus,
the proposed energy term focuses on the main characteristics of mem-
branes as thin elongated structures, which are biologically given and
therefore not in�uenced by di�erent sample preparations. We also
take information of adjacent sections into account to support the seg-
mentation of membranes which are not prominent in one image, but
better detectable in corresponding regions of nearby sections. This
corresponds to the principle of non accidental occurence, which states
that elements should be grouped, if their con�guration is unlikely to
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occur by chance.

The framework is evaluated on two di�erent data sets of conven-
tional ssTEM images from neuroanatomy. The image stacks di�er
not only in the type of animal brain shown (mammal and insect), but
also in the staining protocols used, leading to very di�erent image
characteristics. On both data sets, the proposed cost function with
perceptual grouping constraints outperforms the state-of-the-art seg-
mentation using gradient �ux. These results point out the robustness
of the proposed perceptual grouping constraints to di�erent staining
protocols and animal types. The high quality of the membrane seg-
mentations supports fully automatic 3D reconstructions of neuronal
structures. To demonstrate the wide applicability of the proposed
framework we also tested the constrained segmentation method on
street detection in satellite imagery and we present convincing re-
sults.

4.1.3 Graph Cut with Gradient Flux

In the graph cut framework each pixel p is mapped to correspond-
ing labels yp ∈ {0, 1} such that the entire labeling y for all pixels
minimizes a given energy function E(y). Typically the energy func-
tion E(y) consists of a summation over the data term Ed(yp) and a
smoothness term Es(yp, yq) over neighboring pixels:

E(y) =
∑
p∈P

Ed(yp) + λ
∑

p∈P,q∈N2(p)

Es(yp, yq), (4.1)

where P denotes the set of all pixels and N2(p) the set of all pixels
adjacent to a pixel p in the 2D image plane. As long as Es is regular,
i.e. Es(0, 0) + Es(1, 1) ≤ Es(1, 0) + Es(0, 1), the global minimum
of E(y) can be e�ciently found by max-�ow/min-cut computation
(Kolmogorov and Zabin, 2004; Boykov and Kolmogorov, 2004). For
this purpose, a graph G = (V, E) is de�ned. The set of graph nodes V
consists of all pixels p ∈ P and two additional terminal modes s and t
which represent foreground and background in the segmentation. As
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Figure 4.3: Illustration of the standard graph cut framework. The
unary potential de�nes edge weights from all pixel nodes to the source
(red) and sink (blue). The binary potential de�nes edge weights be-
tween pixel nodes (black lines). A valid cut has no path between
source and sink.

illustrated in Figure 4.3, the set of directed edges E connects all pixels
p to their neighbors q ∈ N2(p). Weights are assigned to these edges
as speci�ed by the smoothness term Es(yp, yq). In addition the set of
edges E connects each pixel to the two terminal nodes s and t with
weights speci�ed by Ed(yp). Minimizing E(y) corresponds to �nding
the optimal cut C ⊂ E such that no path exists between the terminal
nodes s and t in the graph Gcut = (V, E − C). The cut is optimal in
the sense that the sum of all edge weights of all edges included in the
cut is minimal.

Often graph cut approaches use a de�nition of Es which penalizes
for discontinuities in the segmentation for neighboring pixels of similar
intensities (Boykov and Funka-Lea, 2006):

Es(yp, yq) = exp

(
−(xp − xq)2

2σ2s

)
· δ(yp, yq)
dist(p, q)

, (4.2)

where xp is the gray value of the image at pixel p and dist(p, q) takes
the distance between neighbored pixels into account. The Kronecker
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delta function δ(yp, yq) equals 0 if yp = yq and 1 otherwise. This
ensures that the energy term is regular.

For the segmentation of thin and elongated structures, like blood
vessels, it is common to use an additional term Egf (yp) that incorpo-
rates the �ux of the gradient vector �eld into the segmentation. It has
been shown that gradient �ux can overcome the problem of �smooth-
ing away� thin structures (Vasilevskiy and Siddiqi, 2002). Flux is
de�ned according to

F (p) =
∑

q∈N2(p)

< upq, vq >, (4.3)

where upq is a unit vector oriented from pixel p to the neighboring
pixel q ∈ N2(p) and vector vp corresponds to the gradient vector
at pixel p. This term can be seen as the �ow of the gradient vector
�eld through the contour of the segmented region. The corresponding
unary potential Egf (yp) is de�ned as:

Egf (yp) =

{
max(0, F (p)) for yp = 1

−min(0, F (p)) for yp = 0
(4.4)

Kolmogorov and Boykov (2005) provide a detailed description on how
to de�ne edge weights for �ux in graph cut.

In a simple setting, the term Ed(yp) of Equation (4.1) can be
de�ned as relying directly on the pixel intensities in the original gray
value image. But, structures in electron microscopy images are often
only recognizable by their texture in the local context. Therefore, we
use the probabilistic output of a random forest classi�er trained on
annotated data for membrane detection, similar to the approaches in
(Wels et al., 2008; Dollar et al., 2006). To account for the random
forest classi�er, we rename the data term to Erf (yp) throughout the
paper.

Taking the details explained above into account, our implementa-
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tion of the state of the art segmentation method looks as follows:

E(y) =
∑
p∈P

Erf (yp) + λs
∑
p∈P

,q∈N2(p)

Es(yp, yq) + λgf
∑
p∈P

Egf (yp). (4.5)

Using gradient �ux to enhance the segmentation of thin objects also
has a drawback. In textured images the image gradient is not only
very high at the desired segmentation borders, but also at other im-
age regions with high contrast. Therefore the gradient �ux can cause
a large amount of false positives in the resulting segmentation. In
addition we want to use the output of a trained membrane detector
as data term for the segmentation. Experiments showed that gradient
�ux and smoothness alone is not su�cient to compensate for weakly
detected membranes, as is illustrated in the following toy data set-
ting. We generate an image, of a perfect membrane represented as
straight black line on a white background. A weak classi�er response
is simulated by fading out a section of the line (Figure 4.4). Although
the gradient �ux and smoothness terms were calculated on the per-
fect, non-faded line, they cannot compensate for the weak Erf input.
The gradient enhances segmentation of the rim of the lines, but any
attempt to make the segmented regions solid by using the smoothness
term Es leads to gaps in the membranes segmented. This problem
is more aggravated on real data, since weak classi�er responses often
occur in the case of membranes which appear fuzzy in the image due
to non orthogonal cutting or staining conditions. In these cases the
gradient along the membrane is small and thus further limits the use
of the gradient vector �ux in the segmentation. To overcome this
problem we introduce a novel energy term, that focuses on the princi-
ple of good continuation to close gaps along membranes. To overcome
the shortcomings of gradient �ux, we introduce a directional energy
term that is based on the perceptual concept of good continuation.
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Figure 4.4: Toy example for membrane segmentation. The good con-
tinuation energy term is able to produce a solid segmentation where
gradient �ux fails. From top to bottom: (1) original perfect line, (2)
line with a faded out segment as input for the data term Erf , (3)
with gradient �ux, segmentation of borders is improved, (4) attempt
to close segmented structures by additional use of the smoothness
term Es, (5) solid segmentation using only Erf ,and the directed term
Egc.

4.1.4 Closing Gaps: Submodular Energy Term for Good

Continuation

Intuitively, lines as well as membranes are directed structures. By
the principle of good continuation well classi�ed parts of directed
structures should enforce smoothness in labels along their orientation.
This is formulated by Egc(yp, yq):

Egc(yp, yq) = | < vp, upq > | · exp

(
−(xp − xm)2

2σ2gc

)
· δ→(yp, yq)

dist(p, q)
, (4.6)

where upq is a unit vector with the orientation of a straight line
between pixels p and q, and vp is a vector directed along the mem-
brane. The length of vp re�ects the orientedness of the image at p.
For this purpose we use a directed �lter consisting of a straight line
with a thickness comparable to the membrane thickness in the train-
ing images. < vp, upq > is then estimated by the response to this
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�lter oriented according to upq. The value of xm is given as the av-
erage gray value of membrane pixels and σ2gc can be estimated as the
variance of these gray values. Thus, the di�erence (xp − xm) weights
the energy term according to the similarity of xp to the typical gray
value of a membrane.

In contrast to Equation 4.2 the factor δ→(yp, yq) is not symmetric.
Instead δ→(yp, yq) = 1 for yp = 1, yq = 0 and δ→(yp, yq) = 0 for
all other cases. This asymmetric de�nition ensures that Egc only
penalizes for cuts that violate the smoothness along the direction
of membrane pixels. Although δ(yp, yq) is not symmetric, it is still
regular and thus the global optimality of the resulting segmentation
is assured (see also (Boykov and Funka-Lea, 2006; Winn and Shotton,
2006)).

In addition we incorporate information from adjacent sections into
the segmentation using:

Ena(yp, yq) = mq · | < vp, vq > | ·
δ←(yp, yq)

dist(p, q)
, (4.7)

where mq is the probability of pixel q being a membrane and vp is
the large eigenvector of the Hessian at pixel p multiplied by the cor-
responding eigenvalue. Thus, a high con�dence in pixel q being a
membrane is propagated to the next section if the corresponding re-
gion is similarly oriented. This orientation constraint has the bene�t,
that it is unlikely for false positive detections to be propagated to the
next section, as they will not have a similar oriented correspondence
in the other image. δ←(yp, yq) again is de�ned asymmetrically, such
that only Ena(0, 1) is penalized. In Equation (4.8) the corresponding
sum runs over all neighbors N3(p), which are de�ned as neighbored
pixels in adjacent sections (3 dimensional). To solve the correspon-
dences between images we followed the non-linear warping method
described in (Kaynig et al., 2008).

From our experience, the use of gradient �ux is likely to lead to
false positive membrane segmentations due to texture in the images.
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Thus, we decided to omit gradient �ux in the �nal energy term:

E(y) =
∑
p∈P

Erf (yp) + λgc
∑
p∈P,

q∈N2(p)

Egc(yp, yq)

+λs
∑
p∈P,

q∈N2(p)

Es(yp, yq) + λna
∑
p∈P,

q∈N3(p)

Ena(yp, yq).
(4.8)

Although this energy term incorporates information from adjacent
sections, the main focus of the segmentation is two dimensional. This
is due to the fact that the resolution of TEM images is high (about 5
nm per pixel), but along the vertical direction of the image stack, the
resolution is limited by the section thickness of the sample. Even very
skilled human operators can at best cut sections of 40 nm thickness.
Thus, resolution along the z direction is an order of magnitude lower
than the resolution along the x-y plane (see also Figure 4.9). This
anisotropic resolution strongly favors a 2D segmentation approach.

4.1.5 Experiments and Results

We evaluate the proposed method on two di�erent neuroanatomical
data sets of ssTEM images. Data set 1 shows part of the dorsolateral
fasciclin-II tract of the ventral nerve cord of the �rst instar larva of
drosophila, at abdominal segment 5. It consists of 40 images with
512x512 pixels, divided into two sub volumes of 10 and 30 sections.
The resolution is 3.7 nm per pixel in the image plane and section
thickness is 50 nm. Data set 2 was taken from layer 4 of Area 17
(primary visual cortex) of one adult cat. The data set consists of
9 images with 4312x3018 pixels. Resolution is 1.38 nm per pixel in
the image plane and section thickness is 40 nm. Both data sets re-
semble average image quality from neuroanatomy projects and were
fully manually segmented by human experts using TrakEM2 (Car-
dona, 2006), a free plugin for ImageJ (Abramo� et al., 2004). As can
be seen in Figure 4.8, the membranes of data set 1 appear very dark
in the images, but also fuzzy in a lot of areas. Data set 2 contains
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considerably more texture caused by sub cellular elements like vesi-
cles, microtubules and mitochondria inside the cells. Despite these
di�erent challenges, the new approach yields good segmentations on
both data sets, demonstrating the great robustness against varying
image characteristics.

In addition the proposed framework was applied to satellite images
of San Francisco. The extracted features and the classi�er employed
for the segmentation of streets are the same as for the membrane
segmentation, as the focus of the evaluation is on the di�erent graph
cut energy terms and not the quality of the classi�er.

For the evaluation of the perceptual grouping framework all data
sets were split into training and test sets. For the drosophila data
set, the small volume was used for training and the large volume for
testing. For the cat data set only nine annotated images are avail-
able, therefore leave one image out cross validation was used in this
case. The random forest classi�er ensemble consists of 500 trees. The
trees were build with 10 out of 116 features randomly selected for
each split. The plots in Figure 4.5 show the precision and recall of
the segmentations on all test images. Here, precision can be seen
as the probability that a pixel classi�ed as foreground by the auto-
matic segmentation is also marked as foreground in the hand labels
given. Recall corresponds to the probability that a foreground pixel
is detected. For the membrane segmentation on both data sets the
perceptual grouping framework was evaluated with λs = 0.6 and for
the evaluation of Ena, λgc = 1.6. For the state of the art segmenta-
tion with gradient �ux λgf was set to 5. For the San Francisco street
data set the parameters are λs = 0.8 and λgf = 10. The street data
set contains no 3d information, therefore Ena is not included in the
evaluation.

In all three data sets the good continuation energy term Egc leads
to a considerable improvement in recall. As can be seen in the example
segmentations in Figure 4.8 the loss in precision is mainly caused
by thicker membrane segmentations. For the 3d reconstruction of
neuronal structures, high recall with closed contours is more desirable
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Figure 4.5: Comparison of the proposed framework Erf +Egc +Es +
Ena against the state of the art gradient �ux energy term Erf +
Egf + Es. The plots depict the precision and recall performance per
pixel over all test images. The combination of random forests with
perceptual grouping constraints yields a considerable improvement
in recall. The split and merge error plot (B) demonstrates that the
improved recall is caused by gap completion which is highly desirable
for 3d reconstructions of neuronal structures.
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Figure 4.6: Example segmentation at 0.73 precision for an example
image of the drosophila larva data set. Green: membrane detection
by Egc, red: membrane detection by Egf , black: membrane detection
by both methods. Arrows point to gaps which are close by the good
continuation term.
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than a good precision, as long as no splitting errors are introduced.
Therefore, we also evaluate the number of splitting and merging errors
per region for the drosophila larva data set (see plot B in Figure
4.5). The plot shows the number of splits and merges per region in
the automatically obtained segmentation with respect to the manual
ground truth. The splitting error counts the number of times a region
from the ground truth segmentation is overlapped by more than one
region from the automated segmentation. In order to be signi�cant
the split has to be bigger than one percent of the ground truth region.
The merging error is the same in reverse. It counts how often a region
of the automated segmentation is overlapped by more than one region
in the ground truth. Thus, the error is increased if a segmented
membrane is not closed and ground truth regions are merged in the
automated segmentation. A low splitting and merging error per region
preserves the duality between membranes and enclosed regions and
thus enables automatic reconstructions of neuronal structures. Plot
B in Figure 4.5 clearly demonstrates the substantial improvement in
the segmentation by our good continuation term. Figure 4.6 provides
a qualitative example for the gap closing performance. The cat brain
data set does not contain enough regions to provide meaningful results
in terms of splitting and merging errors, due to the large size of the
neuronal structures in these images. The term Ena that incorporates
information from adjacent sections, is very bene�cial for the cat data
set and leads to an additional increase in recall. For the drosophila
data set, the in�uence of adjacent sections is smaller than for the cat
data set because the drosophila images change signi�cantly between
sections.

Example segmentations of test images are given in Figure 4.8.
Most membranes are correctly segmented and the segmentation is
very good with respect to texture caused by vesicles and microtubules.
Mitochondria still pose a challenge. They are not only surrounded by
a membrane, but also very similar to small dendrites in shape, lead-
ing to false positive detections. A possible solution to this problem
would be to include extra labels for mitochondria in the training set
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and either make the random forest classi�er more sensitive to these
structures or train a second classi�er speci�cally for mitochondria.
This is part of our future research. A segmentation result for the San
Francisco data set is given in Figure 4.7. Shown are the segmentation
results with 0.85 precision for smoothness combined with good con-
tinuation (green) or gradient �ux (red). Black pixels were marked as
streets by both methods. Although this image is from a completely
di�erent domain, the segmentation result shows the same characteris-
tic for both methods as for the electron microscopy images. The good
continuation constraint leads to thicker segmentations, but improves
the segmentation by gap completion, whereas the gradient �ux gives
false positive responses at background pixels with high contrast.

The split and merge error of our cost function is low enough, to ob-
tain fully automatically reconstructed dendrites over several sections.
An example reconstruction is shown in Figure 4.9. The �ve dendrites
are segmented over 30 sections. Regions were automatically grouped
between sections by maximum overlap. This simple tracking method
will fail if the structures of interest are not orthogonal to the cutting
direction. Also shown in this Figure are cutting planes through the
image volume. The very low resolution of the volume in the direc-
tion orthogonal to the cutting plane is clearly visible. Because of this
di�erence in resolution we decided to focus our segmentation on the
image plane.

4.1.6 Conclusion

The framework introduced in the sections above addresses one of the
main bottlenecks for 3D reconstructions in neuroanatomy: the fully
automated segmentation of membranes in ssTEM images. The ar-
chitecture comprises a random forest for classifying single pixels, and
novel energy terms for membrane segmentation with graph cut op-
timization. Large scale quantitative evaluation experiments demon-
strated the algorithms performance on cat and drosophila larva brain.

In summary the proposed framework is characterized by the fol-
lowing bene�ts: (i) local to global optimization: a random forest clas-
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Figure 4.7: Example segmentation at 0.85 precision for the San Fran-
cisco street data set. Green pixels are positive detections with the
good continuation constraint, red pixels are positive detections by
smoothness and gradient �ux, black pixels were marked by both meth-
ods as streets. Segmentation by good continuation looses precision
by thickening the detected streets, but gains additional recall by gap
completion. Gradient �ux looses precision by false positive detections
at high gradient contours.
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Figure 4.8: Example images and segmentations from two data sets.
Left: drosophila larva, right: cat. From top to bottom: original
image, automatic segmentation with perceptual grouping constraints,
manual labels.
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Figure 4.9: Five dendrites fully automatically reconstructed over 30
sections from drosophila larva. The cutting planes surrounding the
dendrites show the good resolution of the data volume in xy-direction
in contrast to the low resolution in z-direction.
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si�er estimates the probability for a membrane locally, while a regular
cost function guarantees a global optimum employing graph cuts. (ii)
good continuation: novel energy terms stabilize contour completion
in situations where gradient �ux based methods fail. (iii) robust-

ness: the algorithms produces proper results even on di�erent animal
species. (iv) consistency : we have successfully reconstructed a 3D
model of dendrites based on the consistent segmentation of an image
stack with 30 slices. (v) excellent performance: the presented algo-
rithm outperforms the state of the art on all quantitatively evaluated
real world scenarios.

4.2 Region Grouping

Segmentation of neuronal structures from ssTEM images is usually
performed in two dimensions, using the �ne resolution to identify
membranes of neuronal processes like dendrites and axons (Kaynig
et al., 2010c; Mishchenko, 2009; Reina et al., 2009; Kannan et al.,
2009). The regions surrounded by the detected membranes then need
to be grouped over consecutive sections to extract the geometry of
neuronal processes. Figure 4.10 depicts examples of correspondent
regions from adjacent sections. The grouping of segmented regions to
3d objects is challenging, as all structures change in their appearance
between the sections. Thin processes are especially di�cult, because
their �exibility is larger than the variability of large regions. In some
cases the correspondent regions do not overlap between the sections.
Previous work has addressed the grouping problem by tracking single
processes through the image stack (Jurrus et al., 2008, 2009). We ex-
tend the previous approaches with respect to three important points:
(i) instead of tracking single processes the labeling of the whole data
volume is optimized, allowing for neuronal processes to start or end
inside the volume, (ii) similarity of regions is learned from annotated
data, (iii) geometrical consistency between whole sections is taken
into account.

We regard the problem of three dimensional geometry extraction
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Figure 4.10: Example groupings of regions from two adjacent section
images (correspondence is indicated by color). Structures running
longitudinal to the cutting plane, express signi�cant changes in ap-
pearance between sections (a-c). Example d has no correspondence
in the left section.

as partitioning an edge weighted graph into connected components
representing an image volume belonging to the same neuronal process.
The regions are represented by the vertices V of the graph and the
set of edges E connects each region to all regions of the two adjacent
sections. Each edge is assigned a weight wij according to the similarity
between regions i and j.

We propose the following processing pipeline to build the edge
weight matrixW and to �nd connected components representing neu-
ronal processes (see Figure 4.11). First, a set of weight matrices based
on features like region overlap or similarity of texture is created. A
detailed description of the features is given in Section 4.2.1. A ran-
dom forest classi�er is trained on manual annotations to predict the
similarity between two regions based on the extracted features. The
weight matrix predicted by the random forest classi�er only captures
the similarity of pairwise regions and does not take the geometry of
contiguous processes into account. Therefore, a further step re�nes
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Figure 4.11: Processing pipeline for the extraction of 3d geometry of
neuronal processes as proposed in this paper. First, a similarity ma-
trix of pairwise regions is learned by a random forest classi�er. The
learned weight matrix is then combined with geometrical constraints,
taking the geometry of all neuronal processes from the whole section
into account. Optimization is performed by expectation maximiza-
tion. Finally agglomerative clustering is used to extract continuous
neuronal processes.

the weight matrix using geometrical consistent constraints that take
the geometry of all neuronal processes included in the section into ac-
count. Finally, agglomerative clustering is employed to partition the
graph into connected components representing neuronal processes.
The hierarchical clustering scheme starts from individual objects and
then progressively merges the regions which are most similar to each
other. This system mirrors the approach of the neuroanatomist, who
�rst establishes correspondences between regions that are easy to de-
tect and then re�nes the partitioning.

4.2.1 Similarity Measures between Regions

The following paragraphs describe the features that are used to train
the random forest classi�er from manually annotated data. For each
feature we build a weight matrix W , each entry representing the edge
weight of the corresponding edge in the graph.
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Euclidean distance of region center: Each region i is repre-
sented by its center of mass ci ∈ R3 . The distance of two regions is
then given by the Euclidean distance between the two centers:

Wdistance(i, j) =
√

(ci − cj) · (ci − cj)T (4.9)

Overlap of region areas: For each region i, the set Pi contains
the position of all pixels belonging to the region (Pi ∈ R3). The over-
lap of two regions is measured by projecting both regions orthogonally
to the same plane and building the intersection of both projections:

Woverlap(i, j) = #(Pi ·A ∩ Pj ·A), with A =

 1 0 0
0 1 0
0 0 0

 (4.10)

Di�erence in region size: Neuronal processes have only smooth
variations in diameter. Therefore the size of corresponding regions
should be similar to each other as long as the neuronal process is
running in a direction orthogonal to the cutting plane.

Wsize(i, j) =
(#Pi −#Pj)

2

#Pi + #Pj
(4.11)

Here #Pi describes the size of region i in number of pixels. The size
di�erence between two regions is measured by the squared di�erence
in pixels divided by the total size of both regions. This normaliza-
tion accounts for the comparability of processes with large or small
diameter.

Texture similarity: For the neuroanatomist, texture is an im-
portant clue for the extraction of neuronal processes. Intracellular
structures like mitochondria, vesicles or microtubules provide infor-
mation about the type of neuronal process, e.g. bouton or axon, and
about the consistent grouping of regions. Following the approach de-
scribed in (Jurrus et al., 2008), we measure the similarity in texture
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by the cross correlation coe�cient of two regions

Wxcorr(i, j) = Xmax(ri, rj). (4.12)

Where ri represents the gray values of region i and Xmax denotes the
maximal cross correlation between the two regions. For computational
e�ciency the cross correlation is computed in the Fourier domain.

Smooth continuation: This feature weights the connection be-
tween two regions i and j according to the smoothest continuation to
the next sections. The smoothness of a possible continuation is given
by the angle θhij between the three region centers ch, ci and cj (see
Figure 4.12).

1

ci

cj

θhij

ch

θijk

ck

nh

nk

Figure 4.12: Illustration of the smooth contin-
uation feature. The connection between region
i and j is weighted according to the smoothest
continuation to the next sections. The smooth-
ness of a possible continuation is given by the
function θ(ch, ci, cj) which measures the angle
between the three region centers ch, ci and cj .

Wsmooth(i, j) =
1

2
· (min
h∈nh

θ(ch, ci, cj) + min
k∈nk

θ(ci, cj , ck)), (4.13)

with θ(ch, ci, cj) = abs(π − ∠(ch, ci, cj)). The set nh contains all
regions from the section above region i and the set nk contains all
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regions from the section below region j. Thus, the weight between
two regions is small when there exist smooth continuations at both
ends of the connection. Re�ection is employed as border treatment to
compute the smooth continuation feature for the �rst and last section
of the stack.

4.2.2 Global Geometrical Consistency

So far the single edge weights de�ned by each feature are focused on
the two regions being connected. But, region correspondences should
also be assigned in consistency with the overall geometry changes
from one section to the next. For example, a clear shift of several ad-
jacent processes from one section to the other cannot be detected by
local features and thus would likely lead to false correspondences. We
address this problem by establishing geometrical consistency of the
correspondences between sections. The approach implements a non-
linear but smooth transformation between sections to match corre-
spondent points. Similar to the warping method described in Section
3.6, correspondences are not �xed beforehand, but obtained during
the optimization. For the non-linear transformation we use an ex-
plicit polynomial kernel expansion to map the points ci into a higher
dimension

φ(ci) = [1, ci1, ci2, c
2
i1, ci1ci2, c

2
i2, . . . , c

d
i2]
T (4.14)

A transformation matrix β is de�ned to project these points back into
the image plane, leading to a non-linear transformation. Correspon-
dences are assigned by a binary matrix M whose entry mij is one, if
point ci in one section corresponds to point cj in the adjacent section
and zero otherwise.

The energy function to be optimized depends on the similarity of
the correspondent regions as classi�ed by the random forest, as well
as on the quality of the geometric �t:
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E(β,M) =

ni∑
i=1

nj∑
j=1

−mij ||φ(ci)β − cj ||2 +mij · ln(W (i, j)) (4.15)

Here the index i runs over the number of regions ni from one section
and j over the number of regions nj from the adjacent section. The
variable mij contains the associated value of the assignment matrix
M and W (i, j) corresponds to the similarity edge weight given by
the random forest classi�er. Maximizing this energy function can be
interpreted as maximizing the data likelihood p(Ci, Cj |β,M) where Ci
and Cj are matrices containing all points from two adjacent sections.
We use expectation maximization to optimize the joint log-posterior,
treating the correspondences as unobservable. The algorithm iterates
between estimating the expectation of the latent variables mij while
keeping β �x and maximizing the joint log-posterior while keeping the
expectation values of M constant.

E-step: In each iteration the variables mij are replaced by their
conditional expectation given β. The expectation values are calcu-
lated using the currently optimized β. Under the condition that M
is a valid assignment matrix
(
∑n2

j mij = 1, for all i = 1, . . . n2), we derive the following result:

γij = E[mij |Ci, Cj , β] =
p(Ci, Cj |β,mij = 1)∑n2
l=1 p(Ci, Cj |β,mil = 1)

(4.16)

M-step: The expectation of the joint log posterior has the same
form as the joint log posterior itself, but with mij replaced by γij .
Under the assumption that β is smooth, i.e the components of β
are assumed to be normally distributed, maximizing for β yields a
weighted ridge regression problem with weights γij :

β ← (φ(C̃i)
TΓφ(C̃i) + 2λI)−1φ(C̃i)

TΓCj (4.17)
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where Γ is a (ni · nj) × (ni · nj)-dimensional diagonal matrix of the

weights γij . The (ni · nj) × 2 matrix C̃i contains nj copies of each
center point ci from the �rst section and the (ni · nj) × 2 matrix Cj

contains nj possible correspondence points from the adjacent section
for each point ci. The parameter λ is the regularization parameter
de�ned by the prior distribution p(β). In our experiments λ is set to
0.001.

4.2.3 Evaluation

The proposed method is evaluated on neuroanatomical ssTEM im-
ages, resembling average image quality from neuroanatomy projects.
The data set depicts part of the dorsolateral fasciclin-II tract of the
ventral nerve cord of the �rst instar larva of drosophila, at abdom-
inal segment 5. It consists of 30 images with 512x512 pixels. The
resolution is 3.7 nm per pixel in the image plane and section thick-
ness is 50 nm. The whole data set was annotated exclusively by a
neuroanatomist, providing the ground truth for the evaluation. The
random forest classi�er was trained on this data set using ten fold
cross validation to obtain the test error. The remaining pipeline is
free of tuning parameters and therefore just applied to the test results
of the classi�er.

As demonstrated by the plots in Figure 4.13, each step of our
processing pipeline yields signi�cant improvement for the geometry
extraction in terms of split and merge error per object. The split
error counts the number of ground truth labels assigned to each cluster
by the automatic approach. A perfect solution would assign exactly
one label per ground truth cluster. For each additional label a split
error is counted. A merge error occurs when two clusters from the
ground truth labeling are assigned the same label. If two ground truth
clusters are merged more than once, we follow the de�nition of Turaga
et al. (2010) and count this as one error as the same two objects are
involved.

The agglomerative clustering is restricted to establish a maximum
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Figure 4.13: Evaluation of clustering results according to split/merge
error per neuronal process. Depicted are the results for di�erent
weight matrices: (i) Euclidean distance of region centers only (dot
dashed line), (ii) weights learned by the random forest classi�er
(dashed line), and geometrical consistent weights (solid line). The
random forest is evaluated using ten-fold cross validation. The plot
clearly demonstrates that each step of our processing pipeline yields
signi�cant improvement for the geometry extraction. The dotted line
corresponds to the best result obtainable without considering branch-
ing processes.
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of two correspondences for each region, one to the upper and one to
the lower section. Thus, our model allows for starting and ending of
new neuronal processes inside the volume, but does not account for
branching of processes. The dotted line in Figure 4.13 marks the best
clustering performance achievable by this model.

Examples of extracted geometries are given in Figure 4.14. The
examples demonstrate, that the proposed method is capable of ex-
tracting correct geometries also in di�cult cases of neuronal processes
running longitudinal to the cutting plane and in cases of discontinu-
ities in the geometry due to alignment errors.

a b

c

Figure 4.14: The 3d reconstruction shows all parts of neuronal pro-
cesses that were correctly tracked over all 30 sections from the data
set. A black circle marks an example where regions were correctly
grouped despite not having any overlap in adjacent sections. The
neuronal process shown in detail in Figure b (ground truth) and Fig-
ure c (clustering result) shows an example for a split. The large part
including regions moving longitudinal to the cutting direction was
correctly grouped by the proposed method and the remaining part
was also grouped together as one object.
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4.2.4 Conclusion

We introduced a novel framework for global tracing of neuronal pro-
cesses in stacks of serial section transmission electron microscopy im-
ages. The setting is formulated as a partitioning problem on edge
weighted region-graphs.

The main contributions of this work are threefold: (i) On the mod-
eling side we propose the use of a random forest classi�er to learn a
predictor for neighborhood relations of regions within the 3d volume.
(ii) Predicted region correspondences are re�ned taking the geometri-
cal consistency of whole sections into account. (iii) The unsupervised
clustering approach results in a robust procedure for partitioning the
graph.

In depth evaluation of all single steps of the pipeline and cross
validation of the similarity classi�cation demonstrate signi�cant im-
provement in terms of split and merge error per object.
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Chapter 5

Functional Structure

Annotation

Intracellular structures, like vesicles and mitochondria play an im-
portant physiological role in neuroanatomy. Geometry extraction of
neurites could be interpreted as extracting the wires from the neu-
ronal network, but only through intracellular structures, the func-
tional parts of the wires can be identi�ed. Vesicles, for example, are
a strong indicator that an axon is forming a bouton. Furthermore,
the presence of vesicles is a necessary requirement for a synapse. We
distinguish two di�erent tasks for structure annotation:

• Annotation of basic structure units, for example vesicles, mito-
chondria, and membranes.

• Classi�cation of compositional structures, e.g. synapses or bou-
tons.

The following Chapter describes our framework to solve the tasks
above.
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CHAPTER 5. FUNCTIONAL STRUCTURE ANNOTATION

5.1 Basic Structure Annotation

There are four basic cellular structures, which are prominent in EM
images and are of great importance for neuroanatomy: cell mem-
branes, vesicles, mitochondria, and myelin sheaths. Figure 5.1 depicts
examples for these structures.

Figure 5.1: Examples for di�erent structures of interest for annota-
tion, upper left: myelinated axon, upper right: dendrite surrounded
by normal cell membrane, lower left: patch of vesicles, lower right:
mitochondria.

Segmentation of cell membranes, as discussed in detail in Section
4.1, is required for neuron geometry extraction. While mitochondria
are on their own objects of interest for neuroanatomy, they do not
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directly contribute to functional structure annotation. However, it
is bene�cial to segment mitochondria in the images to reduce false
positive detections of other intracelluar structures. Segmentation of
mitochondria has been successfully demonstrated using ray and radon
like features (Lucchi et al., 2010; Kumar et al., 2010). Myelin sheaths
are very pronounced, dark structures and can be �ltered with local
edge histograms (Jeong et al., 2009). To the best of our knowledge no
work has been performed so far and reported in the literature on the
detection of single vesicles. The following subsection describes our
approach to detect vesicles in TEM images.

5.1.1 Vesicle detection

Vesicles are small spheres �lled with neurotransmitters, which can be
released at a synapse by the presynaptic neuron. Therefore, vesicle
detection is highly signi�cant for the identi�cation of boutons and
synapses in EM images. As can be seen in the lower left part of Fig-
ure 5.1, vesicles appear as dark circles in the images and often have a
bright center. A very simple approach to vesicle detection is to gener-
ate a template by averaging di�erent vesicle appearances in the image
and then perform template matching based on normalized cross cor-
relation. In our experiments, this approach leads to poor results due
to variations in the vesicle shape and false positive responses at mem-
branes and mitochondria. To enhance the detection rate, we employ
the following set of features to capture discriminative characteristics
of vesicles:

• gray value in the center

• mean gray value of the vesicle area

• di�erence of center gray value to the vesicle frame value

• distance of center pixel to nearest local gray value minimum
along all four vertical axes
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• minimal, maximal and average response of the template match-
ing output in the vesicle area

• minimal, maximal and average value of the large Hessian eigen-
value in the vesicle area

• smoothed gradient response at the center pixel

• minimal, maximal and average value of the accumulation area
of a Hough transform in the vesicle area

The feature set is fast to compute and focuses on the shape in-
formation which discriminates vesicles from other intracellular struc-
tures. To train a classi�er on this set of features, supervised informa-
tion is necessary. But, vesicles are very small structures and therefore
unguided user annotation is bound to be imprecise. We propose to
overcome this problem, by a two stage approach. First, points of in-
terest are identi�ed by a Hough transform looking for circles based
on the image gradient. These points of interest are then classi�ed
according to the features listed above. The advantage of the interest
point detection is that manual labels can be given on the classi�cation
of the detected circles. In addition, the estimated radii of the circles
can be employed to specify the area of a vesicle and region of interest
for features extraction.

Figure 5.2 demonstrates the vesicle detection on a test image. A
random forest classi�er was trained on 200 annotated examples of cir-
cles detected in a training image. The training samples are randomly
chosen and typically contain 20-25% positive examples, leading to un-
balanced training data. There are di�erent methods to compensate
for unbalanced training data when training a random forest classi�er.
These include reweighting of the samples, oversampling of the small
training set or downsampling of the large training set. We follow the
approach of Chen et al. (2004) who proposed to combine the down
sampling technique with the ensemble idea of the random forest clas-
si�er. They down sample the minority class and grow each tree on
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Figure 5.2: Example of the vesicle detection on a test image. Top:
original image, bottom: detected vesicles marked with a yellow cross.
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Figure 5.3: The out-of-bag error of the random forest classi�er trained
for vesicle detection.

a more balanced data set . Figure 5.3 contains the out-of-bag er-
ror of the random forest classi�er and the class speci�c error rates
for the vesicle and the background class. The detection performance
is reasonable, given the limited training data and the image quality.
But, the detection rates are not su�cient for automatic counting of
vesicles. However, the overall performance is su�cient to provide a
valuable feature for the detection of synapses.

5.2 Synapse Detection

At a synapse, the axon terminal of one neuron comes into functional
contact with a second neuron. Analyzing these connections is re-
garded as one of the keys to understanding the functional structure
of the brain. Thus, the detection of synapses is crucial for the �eld
of neuroanatomy. A synapse between two neurons typically consists
of three parts: the presynaptic side, the synaptic cleft, and the post-
synaptic side. The presynaptic part contains the neurotransmitter
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enclosed in vesicles. When a nerve impulse reaches the synapse, the
neurotransmitter is released into the synaptic cleft, which is a gap
between the two neurons. The neurotransmitter then binds to the re-
ceptors on the postsynaptic membrane, triggering an action potential
on the second neuron.

Figure 5.4: Synapses in a TEM image. Annotated are the vesicles (A),
the synaptic cleft and postsynaptic density (B), and the receiving part
of the second neuron (C)

Figure 5.4 depicts a typical example of a synapse in a TEM image.
Only the presynaptic part contains vesicles. The postsynaptic mem-
brane appears thicker and darker in the image than other extracellu-
lar membranes. This electron dense region is called the postsynaptic
density. Close geometrical con�gurations of boutons, containing vesi-
cles, and dendrites are possible candidates for contacts between two
neurons, but the expression of a postsynaptic density is a necessary
requirement for a valid synapse. The synaptic cleft is visible as a thin
bright line between the presynaptic and postsynaptic membrane.

To capture the main components of a synapse, we designed a
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A 

B 

C 

Figure 5.5: Feature extraction template for synapse detection.

feature extraction template, as depicted in Figure 5.5. We extract
features to identify the presynaptic and post synaptic neuron parts
for regions A and C of the template. Region B covers the area of
the postsynaptic density and the synaptic cleft. As demonstrated in
the right part of Figure 5.5, the template is aligned along to the ori-
entation of the intracellular membrane. If region A or C are larger
than the neuronal region adjacent to the membrane, features are only
extracted from the small area of this neuronal region. If the neu-
ronal region is larger than area A or C of the template, features are
extracted from the area covered by the template. This way, vesicles
are only considered for a synapse if they are in close proximity to the
membrane. The following list contains the features extracted from
region A and C:

• size of the feature extraction area in pixels

• mean, variance, minimum, maximum, and histogram bins of
gray values

• weighted histogram of gradient orientations (HOG)
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• mean, variance, minimum, and maximum of the structure tensor
at di�erent scales

• mean, variance, minimum, and maximum of the gradient mag-
nitude

• mean, variance, minimum, maximum and sum of the vesicle
detector output and the output thresholded at 0.5

• squared di�erence between the features listed above for region
A and C of the feature extraction template

In addition to the output of the vesicle detection, the features for
template regions A and B focus on the gradient directions. For a patch
of vesicles the orientation of the gradient vector �eld is uniformly
spread over the whole orientation range. Microtubuli instead often
give rise to elongated textures, leading to dominant directions in the
gradient orientation.

To capture the characteristics of the postsynaptic density and the
synaptic cleft, we employ the following feature set for template region
C:

• mean gray value of the whole region

• median gray value along the single stripes parallel to the mem-
brane (see Figure 5.5)

• position of �rst local gray value minimum on the �rst half of
the stripes

• position of �rst local gray value minimum on the second half of
the stripes

• distance between the two local gray value minima

• maximal gray value in between the two local gray value minima
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The postsynaptic density gives rise to a wide dark region, which
is captured by the mean gray value of region C. The rest of the fea-
tures set is designed to capture the orthogonal pro�le of the synaptic
cleft. The presynaptic and postsynaptic membranes give rise to local
minima in the gray value pro�le, whereas the cleft itself appears as a
bright stripe between the two membranes.

membrane 

 segmentation 

feature 

extraction 

vesicle 

detection 

synapse 

output 

random  

forest 

Figure 5.6: Work�ow for our synapse detection framework.

The diagram in Figure 5.6 contains the whole work�ow for the
synapse detection. First, intracellular membranes are segmented ac-
cording to our method discussed in Section 4.1. Then, the features
listed above are extracted and a random forest classi�er is trained
on manual synapse annotations. As described already for the vesicle
detection in Section 5.1.1, the training data is biased, as only about
20% of all membrane pixels belong to synapses. Again we employ
sub sampling of the majority class independently for each tree of the
random forest to compensate for this imbalance.

To evaluate our synapse detection framework we employ a dataset
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of 40 consecutive cat brain TEM images of 1654 × 1051 pixels. The
data set contains a minimum of 10 and a maximum of 20 synapses
per image, with a median of 15. Manual annotation was indepen-
dently performed by two neuroanatomists. We take one set of labels
as gold standard and take the second set of labels as comparison
for human performance on the data set. The images were corrected
against lens distortions, stitched and aligned. On �ve images from
the stack we made annotations to provide training labels for mem-
brane and vesicle classi�cation. The segmentation of membranes was
enhanced by enforcing gap completion (see Section 4.1.2. As the out-
put of the classi�er gives a synapse probability for each membrane
pixel, positive detections have to be grouped together to count for a
synapse. Thus, we introduce a postprocessing step, in which detected
synapse membrane pixels are grouped together and single detections
are deleted by morphological operations. The values for the range of
the grouping and the small region �ltering are estimated using cross
validation. From our 40 image data set, nine randomly chosen images
are taken as a validation set for the postprocessing parameters and
one image as test data. The remaining 30 images form the training
data for the classi�er. Figure 5.7 demonstrates the median precision
and recall performance taken over all images.

We compare our feature set to state of the art synapse detec-
tion methods, which solely concentrate on the postsynaptic density
as the identifying feature Mishchenko et al. (2010); Kreshuk et al.
(2011). While these features are very fast to compute, our exper-
iments demonstrate that taking pre- and postsynaptic regions into
account leads to a signi�cant gain in the detection. At the preci-
sion rate achieved by an independent human expert (green dot), our
method outperforms the state of the art approach by a factor of two.
Figure 5.8 depicts the detection performance on an example test im-
age from the data set. There are two false positive detection examples
in this image. The red dot in the lower right part of the image marks
a false positive detection where part of a mitochondrium in a bouton
was confused with a postsynaptic density. In the upper right corner
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Figure 5.7: Precision recall curves for synapse detection. Red curve:
performance of state-of-the-art method, concentrating on postsynap-
tic density and the syneptic cleft only (psd), blue curve: our complete
feature set taking characteristics of pre- and postsynaptic regions into
account, green dot: human expert performance
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the false positive detection is caused by a fuzzy membrane between
a bouton and a dendritic process. Figure 5.9 depicts some additional

Figure 5.8: Example image with detected synapses (precision: 0.7,
recall: 0.43) . Green: true positive detections, yellow: false negative
detection, red: false positive detections.

examples of false positive detections caused by fuzzy membranes. The
examples in the top row contain all a bouton and dendritic part of a
synapse, but do not express a postsynaptic density. For comparison
the examples in the bottom row show true positive detections with
postsynaptic densities.

While the performance of the synapse detection is very promising,
the results are not good enough for a fully automatic synapse detec-
tion. We are planning to employ the synapse detection framework so
far as an interest point detector in a semi automatic scenario to speed
up the labeling of large data sets.
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Figure 5.9: Examples of false positive (top row) and true positive
(bottom row) detections thresholded at 0.5. For the examples shown,
both neuroanatomists independently provided the same label.
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Chapter 6

Conclusion

In this thesis we address the whole image processing pipeline for com-
putational neuroanatomy and connectomics. For image stitching and
alignment we propose unsupervised approaches to identify artifact
signals like lens distortions or staining blurs in the images. For mem-
brane segmentation and geometry extraction we propose feature sets,
which can be employed to train a random forest classi�er with very lit-
tle user annotations, rendering our framework adaptable to di�erent
data sets with minimal e�ort. The output of the classi�er is com-
bined with di�erent smoothness constraints, which are biologically
inspired and therefore independent of staining protocols or animal
types. The developed approaches are applicable to a wide range of
data sets and have been demonstrated to outperform state of the art
methods for all steps of the image processing work�ow. The proposed
pipeline yields fully automatic reconstructions of neuronal processes
over 30 sections. However, dense reconstruction of a volume needs ad-
ditional proof reading steps for the segmentation of membranes and
the extraction of the geometry from the segmentations. In a soft-
ware implementation the costs of the geometrical consistent region
assignment matrix can be employed to detect inconsistencies in the
segmentation in order to guide the user interaction. Since manual
annotation of electron microscopy images is very time-consuming and
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identi�cation of synapses needs to be done by trained experts, the
annotated data sets currently available for neuron reconstruction and
synapse detection are very limited. With the methods proposed in
this thesis, manual user interaction is greatly reduced, enabling anno-
tation of large data sets with little e�ort compared to manual annota-
tions. For geometry reconstruction, the segmentation of membranes
is the part of the processing pipeline with the greatest potential to
improve the overall performance for dense reconstruction. As adja-
cent sections contain valuable information, future work could compose
the non-linear registration and membrane segmentation into a uni�ed
framework. In addition the grouping of corresponding regions across
sections needs to be enhanced to account for merging and splitting of
neuronal processes. With the recent developments in the �eld of elec-
tron microscopy the section thickness is greatly reduced, leading to an
increase in the similarity of adjacent sections. As a consequence, the
image alignment becomes easier than for the 50 nm z-resolution used
in our experiments. With increased z-resolution the synapse detection
can be extended to a full 3d approach.
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Appendix A

Derivation of Closed Form

Solutions

A.1 Distortion Correction Transform

This supplement material describes the closed form optimization of
the non-linear transformation matrix α in the distortion correction
and stitching formula as described in Section 3.3.

De�nitions:

• x(i,j)n is an 1 × 3 vector containing the coordinates of the nth
correspondence point in image i to image j in homogeneous
coordinates.

• x̃(i,j)n = φd(x
(i,j)
n ) is the point x

(i,j)
n expanded with a polynomial

kernel.

� d is the degree of the polynomial kernel expansion.

� φd(u, v, 1) =
(
1, u, v, u2, uv, v2, . . . , vd

)
.

• α is a (d+1)(d+2)
2 × 3 transformation matrix that projects the

kernel expanded points back to the 2D image plane in homoge-
neous coordinates.
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• A(i) is a 3× 3 a�ne transformation matrix for image i.

• B is the number of images.

• N(i, j) is the number of correspondence points between image
i and image j.

Assumptions:

• For all images i, A(i) is given (estimated by weighted least
squares using Huber loss, as described in Section 3.2.1).

• λ is �x (in all our experiments set to 0.01).

Optimization: Correspondence points are automatically detected
using SIFT features. For each correspondence point the non-linear
transformation is applied to its local image coordinates in image i
and image j. After correcting for distortions, the correspondences are
mapped by an a�ne transformation to a common coordinate system
corresponding to the mosaic image. For the set of all images B, the
squared Euclidean distance between correspondence points should be
minimal in the coordinate system of the mosaic image. This goal
induces the following optimization problem:

min
α,A

B∑
i,j=1,
j 6=i

N(i,j)∑
n=1

(∥∥∥∥ (x̃(i,j)n αA(i)
)
−
(
x̃(j,i)n αA(j)

)∥∥∥∥2+λ∥∥∥∥x̃(i,j)n α−x(i,j)n

∥∥∥∥2
)
.

(A.1)

The quadratic norm can be written as matrix multiplication
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min
α,A

B∑
i,j=1,
j 6=i

N(i,j)∑
n=1

[(
x̃(i,j)n αA(i) − x̃(j,i)n αA(j)

)

·
(
A(i)TαT x̃(i,j)

T

n −A(j)TαT x̃(j,i)
T

n

)
+ λ

(
x̃(i,j)n α− x(i,j)n

)(
αT x̃(i,j)

T

n − x(i,j)Tn

)]
(A.2)

and then solved according to distributive law

min
α,A

B∑
i,j=1,
j 6=i

N(i,j)∑
n=1

[
x̃(i,j)n αA(i)A(i)TαT x̃(i,j)

T

n − x̃(i,j)n αA(i)A(j)TαT x̃(j,i)
T

n

−x̃(j,i)n αA(j)A(i)TαT x̃(i,j)
T

n + x̃(j,i)n αA(j)A(j)TαT x̃(j,i)
T

n

+λ(x̃(i,j)n ααT x̃(i,j)
T

n − x̃(i,j)n αx(i,j)
T

n − x(i,j)n αT x̃(i,j)
T

n

+x(i,j)n x(i,j)
T

n )

]
.

(A.3)
The set of correspondence points is symmetric, i.e. N(i, j) =

N(j, i). Thus, the formula above simpli�es to:

min
α,A

B∑
i,j=1,
j 6=i

N(i,j)∑
n=1

[
2 · x̃(i,j)n αA(i)A(i)TαT x̃(i,j)

T

n − 2 · x̃(i,j)n αA(i)A(j)TαT x̃(j,i)
T

n

+λ(x̃(i,j)n ααT x̃(i,j)
T

n − 2 · x̃(i,j)n αx(i,j)
T

n + x(i,j)n x(i,j)
T

n )

]
.

(A.4)
To obtain the closed form solution for the optimal α we now dif-

ferentiate the formula above with respect to αT and set the result to
zero.
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B∑
i,j=1,
j 6=i

N(i,j)∑
n=1

[
4 ·A(i)A(i)TαT x̃(i,j)

T

n x̃(i,j)n − 4 ·A(j)A(i)TαT x̃(i,j)
T

n x̃(j,i)n

+λ(2 · αT x̃(i,j)Tn x̃(i,j)n − 2 · x̃(i,j)Tn x(i,j)n )

]
= 0

(A.5)
In the next step, the formula is divided by two and all α terms

are sorted to the left side of the equation.

B∑
i,j=1,
j 6=i

N(i,j)∑
n=1

[
2 ·A(i)A(i)TαT x̃(i,j)

T

n x̃(i,j)n − 2 ·A(j)A(i)TαT x̃(i,j)
T

n x̃(j,i)n

+λαT x̃(i,j)
T

n x̃(i,j)n

]
=

B∑
i,j=1,
j 6=i

N(i,j)∑
n=1

[
λx̃(i,j)

T

n x(i,j)n

]

(A.6)

This equation now has the structure of an encapsulating sum Pe-
tersen and Pedersen (2008):

∑
n

YnXZn = C ⇒ vec(X) = (
∑
n

ZTn ⊗ Yn)−1vec(C) (A.7)

where Y ⊗ Z denotes the Kronecker product of an m× n matrix
Y and an r × q matrix Z. The result is an mr × nq matrix, de�ned
as:

Y ⊗ Z =


Y11Z Y12Z . . . Y 1nZ
Y21Z Y22Z . . . Y 2nZ
...

...
Ym1Z Ym2Z . . . YmnZ

 (A.8)
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After transposing both sides of the equation, the closed form to
estimate α is:

vec(α) =

[
B∑

i,j=1,
j 6=i

N(i,j)∑
n=1

(
2 ·A(i)A(i)T ⊗ x̃(i,j)Tn x̃(i,j)n

−2 ·A(j)A(i)T ⊗ x̃(j,i)Tn x̃(i,j)n + λ(I3×3 ⊗ x̃(i,j)
T

n x̃(i,j)n )

)]−1
·

vec

(
B∑

i,j=1,
j 6=i

N(i,j)∑
n=1

(
+λ · x(i,j)T x̃

(i,j)
n

n

))

(A.9)

For the implementation of the distortion correction, it is possible
to avoid the homogeneous coordinate system and separate the a�ne
transformation matrix A into a 2× 2 matrix R and a 1× 2 matrix T :

A =

R11 R12 0
R21 R22 0
T11 T12 1

 (A.10)

Following this notation, the minimization problem is:

min
α,R,T

B∑
i,j=1,
j 6=i

(∥∥∥∥ (φd(X(i,j))αR(i) + T (i)
)
−

(
φd(X

(j,i))αR(j) + T (j)
)∥∥∥∥2 + λ

∥∥∥∥φd(X(i,j))α−X(i,j)

∥∥∥∥2
)
.

(A.11)

Following the same conversion scheme as described above, the
closed form solution for α is:
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vec(α) =

[
B∑

i,j=1,
j 6=i

N(i,j)∑
n=1

(
2 ·R(i)R(i)T ⊗ x̃(i,j)Tn x̃(i,j)n

−2 ·R(j)R(i)T ⊗ x̃(j,i)Tn x̃(i,j)n + λ(I2×2 ⊗ x̃(i,j)
T

n x̃(i,j)n )

)]−1
·

vec

(
B∑

i,j=1,
j 6=i

N(i,j)∑
n=1

(
− 2 · R(i)T (i)T x̃(i,j)n + 2 ·R(i)T (j)T x̃(i,j)n

+ λx(i,j)
T

n x̃(i,j)n

))
(A.12)

A.2 Non-linear Warping

This supplement material describes the closed form optimization of
the non-linear transformation matrix α for the warping of adjacent
serial section images, as described in Section 3.6.

De�nitions:

• n1 is the number of reference points in image X

• n2 is the number of reference points in image Y

• ϕµ,σ describes a normal distribution with mean µ and standard
deviation σ

• v(xi) gives the gray value of the correspondent image at point
xi

• xi is a 1× 2 vector containing the coordinates of the ith corre-
spondence point in the reference image X

132



A.2. NON-LINEAR WARPING

• yj is a 1× 2 vector containing the coordinates of the jth corre-
spondence point in the warping image Y

• φd(xi) is the polynomial kernel expansion of point xi

� d is the degree of the polynomial kernel expansion

� φd(u, v) =
(
1, u, v, u2, uv, v2, . . . , vd

)
• β is a (d+1)(d+2)

2 × 2 transformation matrix that projects the
kernel expanded points back to the 2D image plane

• nβ is the number of entries for β ⇒ nβ = (d+ 1)(d+ 2)

• M is a n1× (n2 + 1) matrix and its entries Mij specify whether
xi is correspondent to yj

• c is a constant and de�nes an outlier penalty

• I is a (d+1)(d+2)
2 × (d+1)(d+2)

2 identity matrix

Optimization: The goal is to �nd the optimal transformation
matrix β which maximizes the posterior probability

p(β|X,Y ) =
∑
M∈M

p(X,Y |β,M) · p(β) · p(M)

p(X,Y )
(A.13)

The correspondence matrices M are uniformly distributed and
thus, can be omitted under the assumption that M is a valid assign-
ment matrix. In addition, the denominator p(X,Y ) is constant for
any two given images and thus does not in�uence the optimal param-
eter setting. Therefore, the optimization problem simpli�es to:

n1∏
i=1

n2∏
j=1

(
ϕ0,σ1(v(xi)− v(yj)) · ϕ0,σ2(φ(xi)β − yj)

)Mij ·

n1∏
i=1

(
ϕ0,σ1(cσ1)

)Mi0 ·
nβ∏
i=1

ϕ0, 1√
λ

(βi)

(A.14)
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Maximizing the term above corresponds to minimizing the nega-
tive logarithm:

−
n1∑
i=1

n2∑
j=1

Mij

[
lnϕ0,σ1(v(xi)− v(yj)) + lnϕ0,σ2(φ(xi)β − yj)

]
−

n1∑
i=1

Mi0

[
lnϕ0,σ1(cσ1)

]
−

nβ∑
i=1

lnϕ0, 1√
λ

(βi)

(A.15)
For the optimal solution for β only the prior and the geometric �t

term are important . The normalization constants can be omitted as
they do not depend on β.

min
β

n1∑
i=1

n2∑
j=1

Mij ·
(φ(xi)β − yj)(φ(xi)β − yj)T

2σ22
+
λ

2
Tr(ββT ) (A.16)

The formula above is now di�erentiated with respect to βT and
the result set to zero:

n1∑
i=1

n2∑
j=1

Mij

2βTφ(xi)
Tφ(xi) + 2yTj φ(xi)

2σ22
+ λβT = 0. (A.17)

We sort all terms containing β to the left side and take the trans-
pose:

n1∑
i=1

n2∑
j=1

Mij
φ(xi)

Tφ(xi)β

σ22
+ λβ =

n1∑
i=1

n2∑
j=1

Mij
φ(xi)

T yj
σ22

. (A.18)

So the closed form solution for the optimal choice of β is:

β =
[ n1∑
i=1

n2∑
j=1

Mijφ(xi)
Tφ(xi) + λσ22I

]−1
φ(xi)

T yj . (A.19)
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