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Abstract

This thesis investigates the design of control objectives for the auto-
matic feedback control of dynamical systems. In particular, it presents
methodologies—in addition to their applications—that aim to improve the
operation of dynamical systems by learning from human interactions. The
methodologies rely on a melding of model-based design and data-based
calibration, where model classes are defined that ensure the system’s safe
operation, while data are exploited to improve the performance of the auto-
matic feedback controller. The thesis discusses three concepts for learning
from human-generated data: optimality condition-based learning, super-
vised learning, and statistical estimation. The three concepts are discussed
in three parts and are employed for learning optimal controllers for pre-
dicting human movements, for automating a rehabilitation robot, and for
personalizing the driving style of autonomous vehicles.
The first part considers the learning of control objectives and constraints

for predictive control formulations. It develops algorithms for learning from
noisy data, where the model assumptions are expressed by optimality con-
ditions in the form of the Karush-Kuhn-Tucker conditions. The methods
can capture complex behaviors from data by means of control objectives
and constraints, while generalizing well due to model assumptions on the
controller structure. The methods are applied to training a predictive
model of human movements in a manipulation task. Learning results in-
dicate that individual human movements in a manipulation task can be
predicted using an optimal control formulation.
The second part considers the design of control objectives using a su-

pervised learning technique. The learning technique uses ratings as quan-
titative evaluations of the dynamical system’s operation and introduces an
application-motivated constraint to render the control objective suitable
for a gradient-based feedback controller. The approach is applied to a gait
rehabilitation robot with the goal of reducing the dependency on expert
therapists during gait training with the robot. In this context, the con-
trol objective to be optimized by the automatic feedback controller is the
physiology of the gait pattern. The supervised learning technique offers
an efficient alternative to reinforcement learning without the need for a
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potentially lengthy trial and error search, which is vital for a gait rehabili-
tation robot in order to reduce the strain put on the patients. Experiments
with able-bodied subjects suggest that the proposed technique permits the
learning of a suitable control objective and facilitates automatically walk-
ing patients physiologically—without the intervention of therapists.
The third part considers the data-based calibration of optimal controllers

using a statistical estimation technique, which is formulated by interpret-
ing the control objective in terms of requirements for the system operation
and their joint probability distribution. The key benefit of this formulation
is that it systematically imposes a model for the probability distribution
on the data through the control objective. The technique is applied to
calibrate a motion planner for autonomous driving applications using data
provided by human drivers to personalize the driving style of autonomous
vehicles. Learning results using data from human drivers in a simula-
tion environment suggest that the proposed control objective for human-
conscious driving along with the statistical estimation technique enable
a more natural and personalized driving style of autonomous vehicles for
their human passengers.
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Kurzfassung

Diese Arbeit untersucht den Entwurf von Kostenfunktionen für die Rege-
lung von dynamischen Systemen. Die Arbeit präsentiert sowohl Methoden
als auch deren Anwendungen, die darauf abzielen, den Betrieb dynamischer
Systeme zu verbessern, indem sie von menschlichen Interaktionen lernen.
Die Methoden stützen sich auf eine Mischung aus modellbasierter Formu-
lierung und datenbasierter Kalibrierung, sodass Modellklassen den siche-
ren Betrieb des dynamischen Systems bewahren, während Daten genutzt
werden, um die Regelgüte zu verbessern. Diese Arbeit diskutiert drei Kon-
zepte für das maschinelle Lernen von menschlichen Interaktionen: Lernen
basierend auf Optimalitätsbedingungen, überwachtes Lernen und statisti-
sches Lernen. Die drei Konzepte werden in drei Teilen erörtert und werden
eingesetzt für die Prädiktion menschlicher Bewegungen, das Automatisie-
ren eines Rehabilitierungsroboters und das Personalisieren von autonomen
Fahrzeugen.
Der erste Teil handelt vom Erlernen von Kostenfunktionen und opera-

tiven Beschränkungen für die modellprädikative Regelung. Es werden Al-
gorithmen für das Lernen von verrauschten Daten entwickelt, indem Mo-
dellannahmen mittels Optimalitätsbedingungen in der Form der Karush-
Kuhn-Tucker Bedingungen genutzt werden. Die entwickelten Methoden
können komplexe Zusammenhänge aus Daten erfassen, während die Mo-
dellannahmen bezüglich der Reglerstruktur sicherstellen, dass die gelernten
Resultate gut generalisieren. Die Methoden werden angewendet, um ein
Prädikationsmodell für menschliche Bewegungsabläufe in einer haptischen
Manipulierungsaufgabe zu erlernen. Die gelernten Resultate deuten darauf
hin, dass individuelle menschliche Bewegungen in solch einer haptischen
Aufgabe mit einem prädikativen Regler prognostiziert werden können.
Der zweite Teil handelt vom Erlernen von Kostenfunktonen mittels einer

Technologie für überwachtes Lernen. Die Lernmethode nutzt Bewertungen
als quantitative Evaluierung vom Betrieb dynamischer Systeme und führt
eine Beschränkung für den Lernalgorithmus ein, womit die Kostenfunktion
für die optimale Regelung nutzbar wird. Die Methode wird angewendet
für die Automatisierung eines Rehabilitierungsroboters für Gangtherapie
mit dem Ziel, die Therapie unabhängiger von den Therapeuten zu ma-
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chen beziehungsweise die Therapeuten zu unterstützen. Die Kostenfunk-
tion zielt darauf ab, ein möglichst physiologisches Gangbild zu erreichen.
Das entwickelte Verfahren bietet eine effiziente Alternative zu Methoden,
die verstärkendes Lernen nutzen, da es kein Ausprobieren bestimmter Ope-
rationszustände bedarf, was für eine gesunde Gangtherapie essentiell ist.
Experimente mit unbeeinträchtigten Freiwilligen indizieren, dass die ent-
wickelte Methode eine geeignete Kostenfunktion für die Regelung des Ro-
boters lernen kann und damit ein physiologisches Gangbild erzielt.
Der dritte Teil handelt vom datenbasierten Kalibrieren eines optima-

len Reglers mittels einer Methode für statistisches Lernen, welche darauf
basiert, dass die Kostenfunktion als stochastisch interpretiert wird. Der
Hauptvorteil dieser Formulierung ist, dass den Daten eine Wahrscheinlich-
keitsverteilung systematisch auferlegt wird. Die Methode wird angewendet
für das Kalibrieren eines Trajektorienplaners für autonomes Fahren mit
dem Ziel, autonome Fahrzeuge auf den individuellen Fahrstil der Insassen
anzupassen. Die Resultate mit Daten aus einem Fahrsimulator zeigen, dass
die vorgeschlagene Kostenfunktion für menschennahes Fahren, zusammen
mit der Methode für statistisches Lernen, einen natürlicheren und perso-
nalisierten Fahrstil für autonome Fahrzeuge ermöglichen.

iv



Acknowledgments

Many people have supported me on my path to graduating from ETH
Zurich.
First and foremost, I owe my deepest gratitude to my adviser Melanie

N. Zeilinger for her unfaltering support during the past four years, in both
my research agenda and my career. I am very thankful to her for the
freedom that she has given me to pursue various projects, the trust she
has put into me to deliver results, and the group culture that she has
created. I am also very grateful to Robert Riener and Aude Billard for co-
examining my doctoral thesis and to Raffaello D’Andrea for his support. A
special thanks to Florian Holzapfel for paving the way for me from Munich,
through Massachusetts, to Zurich.
I want to thank my collaborators, Lars Lünenberger and the team from

Hocoma AG, Stefano Di Cairano and Karl Berntorp from Mitsubishi Elec-
tric Research Labs, Alex Domahidi from embotech AG, Stefan Schrade
from the Rehabilitation Engineering Laboratory at ETH Zurich, as well as
the entire breathe team. They all have helped to shape my perspective on
control theory, my approach to research, and my scientific thinking. I am
very thankful to my fellow team members and colleagues at ETH Zurich,
especially Lukas, Andrea, Kim, Elena, Simon, Jérôme, Michael, and Thiva,
for engaging discussions, for unforgettable trips, and for their friendships.
Thanks to Helen for her great administrative work and to all the students,
who I had the pleasure of supervising and who have supported me with
their ideas and projects. I want to thank my colleagues in the research
communities, who I interacted with at conferences, during my internship,
and at summer schools. They all were important in making my Ph.D.
experience so memorable.
I want to thank my friends and my family for the support system that

allowed me to further my education. I would like to specifically acknowl-
edge my parents, Jutta and Reimund, for their guidance and love over the
years, and my brother, Marco, for the levity in life that only a sibling can
provide. Finally, I would like to thank Courtney for being my confidant
and for her loving encouragement over the past four years.

v



Financial Support:
This thesis has been supported by the Swiss National Science Foundation
under grant number PP00P2_157601/1.

vi



Contents

I Introduction 3

II Contributions 9

III Discussion & Future Work 17

IV Overview of Inverse Learning Concepts 25

Bibliography for Chapters I–IV 37

A Learning Optimal Controllers using Optimality
Conditions 43

P1 Constrained Inverse Optimal Control With Application
to a Human Manipulation Task 45
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2 Shortest Path Inverse Optimal Control . . . . . . . . . . . 47
3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . 53
4 Manipulation of a Passive Kinematic Object . . . . . . . . 55
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

P2 Maximum Likelihood Methods for Inverse Learning of
Optimal Controllers 69
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . 71
3 Inverse Learning Methods . . . . . . . . . . . . . . . . . . 73
4 Algorithm for Maximum Likelihood Estimation . . . . . . 75
5 Analysis for Linear Systems and Quadratic Cost Function 77
6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 80
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vii



Contents

B Automating a Rehabilitation Robot using Super-
vised Learning 89

P3 Using Human Ratings for Feedback Control: A Super-
vised Learning Approach With Application to Rehabil-
itation Robotics 91
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2 Hardware Description & Problem Definition . . . . . . . . 95
3 Controller Design based on Human Ratings . . . . . . . . 98
4 Adaptation of Gait Rehabilitation Robot to Walk Patients

Physiologically . . . . . . . . . . . . . . . . . . . . . . . . . 103
5 Model Evaluation in Simulation . . . . . . . . . . . . . . . 109
6 Experimental Results - Closed-Loop Testing . . . . . . . . 114
7 Conclusion and Future Work . . . . . . . . . . . . . . . . . 120
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C Personalizing Self-Driving Cars using Statistical Es-
timation 127

P4 Inverse Learning for Data-driven Calibration of Model-
based Statistical Path Planning 129
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . 130
3 Qualitative Comparison with Related Work . . . . . . . . 133
4 Notation & Preliminaries . . . . . . . . . . . . . . . . . . . 136
5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . 137
6 Estimation of Covariance Matrices . . . . . . . . . . . . . . 140
7 Requirements for Autonomous Driving and their Personal-

ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8 Overall Algorithm, Variants, and Computational Require-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9 Simulation Setup with Human Driver . . . . . . . . . . . . 152
10 Learning Results & Hardware Requirements . . . . . . . . 154
11 Personalized Motion Planning . . . . . . . . . . . . . . . . 160
12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

viii



Preface

This thesis documents the research carried out by the author during his
doctoral studies under the supervision of Professor Melanie N. Zeilinger at
the Institute for Dynamic Systems and Control (IDSC) at ETH Zurich be-
tween May 2016 and May 2020. It is presented in the form of a cumulative
thesis: its main content is four self-contained research articles that have
been published or are accepted for publication.
The research articles are divided into three parts and put into context

by four introductory chapters. Part A describes methodologies for learning
control objectives using optimality conditions. Part B introduces a method
for learning control objectives using supervised learning, and presents its
application to automating a rehabilitation robot. Part C presents an ap-
proach for learning control objectives for personalizing self-driving cars.
Chapter I provides the motivation for the research and introduces the
problems addressed in the thesis. Chapter II provides a summary of the
scientific contributions in this thesis, as well as related publications. An
outlook of possible future work is given in Chapter III. Chapter IV provides
an extended overview of the related work in the literature.
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Chapter I

Introduction

The study of feedback mechanisms and dynamical systems has created a
far-reaching understanding of many aspects of society and technology.

In a feedback mechanism, an observation or output of a system impacts the
behavior of the same system, thereby forming a closed loop. If a feedback
mechanism is well-understood, then the behavior of the system may be
manipulated in order to obtain a desirable outcome. Control theory stud-
ies the manipulation of a dynamical system using feedback mechanisms by
exploiting a mathematical representation of the system [1]. This mathe-
matical representation is referred to as a model and facilitates making pre-
dictions about the evolution of the system being considered. However, as
dynamical systems and robots become more and more complex and operate
in increasingly unstructured environments, engineering suitable feedback
mechanisms has become more difficult. On the other hand, the surge in
sensing capabilities and computational resources provides a new potential
for automating the design of feedback mechanisms for control using data
and algorithms.
In the context of systems engineering or process engineering, utilizing

feedback mechanisms is a powerful tool to automatically steer the system to
its intended purpose or operating point [2]. In a very general and abstract
form of automatic feedback control, a dynamical system aims to optimize
a certain goal (or reach a target), while respecting the laws of nature, as
well as safety measures and potential regulations:

optimize goal (1a)
respecting laws of nature (1b)

safety and regulations. (1c)

The goal in (1a) that the dynamical system aims to optimize is often appar-
ent to the system designer, but not easily stated as a precise mathematical
expression, e.g., it could be given in semantic language. The laws of na-
ture can be viewed as deterministic, such that knowing the state of the
universe, along with all forces acting in nature at a given instant, an oracle
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Chapter I. Introduction

could predict the state of the world at any subsequent time, cf. Laplace [3,
page vi]. In principle, an oracle controller would be capable of manipu-
lating the dynamical system using a pre-determined set of control actions,
referred to as feedforward control. However, even if the state of the universe
and all forces in nature were known, a model with all necessary intricacies
to accurately reflect nature is infeasible to build and to simulate. In con-
trast to the laws of nature, the safety conditions and regulations in (1c)
are man-made laws that a system ought to obey.
The task of the control system designer is to formalize (1) by finding a

sufficient level of mathematical abstraction to facilitate its usability in a
real-world system. Predictive control frameworks are suitable methodolo-
gies for this task and rely on repeatedly solving a mathematical formulation
that approximates (1), while using sensor measurements as feedback signals
to mitigate the uncertainties that result from the approximation:

optimize control objective φ(x, u) (2a)
subject to system dynamics model 0 = f(ẋ, x, u) (2b)

constraints and bounds on x and u, (2c)

where x refers to the state of the system and u denotes the control action.
In the context of mechanical systems, the dynamics in (2b) is represented
by a set of differential equations that describe the approximated motion of
the system and is often derived from first principles, e.g., Newton’s laws.
The constraints in (2c) reflect both safety and regulation requirements,
as well as bounds for the validity of the model for the system dynamics
in (2b).
This thesis focuses on the design of control objectives and constraints for

optimal controllers. As such controllers are executed in real-time, there is
limited time available to compute the control actions [4]. Consequently, a
control objective suitable for the real-time implementation of an automatic
feedback controller requires the following:

Req. 1. The control objective in (2a) must be a surrogate for the actual
goal in (1) that the dynamical system is meant to achieve or opti-
mize.

Req. 2. It must be modeled in terms of the decision variables, i.e., the
state, x, and the control action, u.

Req. 3. It must facilitate numerical optimization, e.g., gradient-based op-
timization or particle filtering.

Often these three requirements make the controller design not very in-
tuitive resulting in a tedious manual engineering effort to meet all three

4



requirements. In this thesis, we take a more systematic approach and use
data for the automated design of control objectives.

Data-based Calibration of Optimal Controllers

Increased sensing and computing capabilities offer a novel potential in not
only using data in the form of sensor measurements for the feedback control
of the dynamical system, but also to alleviate the discrepancy between
(1) and (2) to improve controller performance. This string of research
is commonly referred to as learning-based control, see e.g. the review in
[5] in the context of predictive control. Mathematically, the problem of
learning a model, e.g., of the objective or the system dynamics, for the
control of a dynamical system characterizes an inverse problem, in which
the causal factors that produce a set of observations are inferred [6]. We
define learning-based optimal control as methodologies that improve (in
some suitable sense) the formulation in (2), measured with respect to (1).
The main focus of research has been on "improving" the system dynamics
used for the controller design as data are accumulated, either online, e.g.,
in [7], [8], or episodically, e.g, in [9]–[11].
This thesis largely focuses on the learning of control objectives for opti-

mal control formulations from data, but also touches upon the principles
of learning constraints. The three requirements for the design of a control
objective promote the idea of using a gray-box learning approach, in which
model classes with a fixed structure and with free parameters are defined
that satisfy Requirements 2 and 3, while data are used to calibrate the pa-
rameters in order to meet Requirement 1. In other words, we are learning
under model constraints that render the control objective applicable for
feedback control. While a more flexible model class would, in principle,
be possible, it is more difficult to maintain the three requirements. This
philosophy stands in contrast to end-to-end learning, e.g., [12], that results
in a black-box learning approach, which does not necessarily guarantee
the satisfaction of the three requirements and consequently, mathematical
guarantees for the system’s safe operation can often not be established.
The research in this thesis is centered on the learning of control objec-

tives that are tailored to accommodate the numerical procedure involved
in solving the corresponding control problem. For the considered learning
tasks, the data are provided by humans, who either demonstrate how the
dynamical system should be operated or provide a quantitative evalua-
tion of the system’s behavior under different operating conditions. Part A
presents methods for learning both control objectives and operational con-
straints for optimal control formulations that use gradient-based numerical
optimization. In particular, the methods learn from demonstrations and
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Chapter I. Introduction

focus on accommodating noisy data, which is particularly challenging in
the presence of constraints. Part B presents a method for leveraging la-
beled data in the form of ratings for learning a control objective to be used
for a gradient-based feedback controller. Part C presents methodologies
for learning control objectives from demonstrations, which are particularly
well suited for particle filter-based numerical optimization techniques, but
can also be used for learning control objectives for gradient-based opti-
mization.

Learning from Human Interactions

Learning from human interactions has gained momentum in the last
decades as robotic systems are becoming more and more potent in their
actuation, mechanical design, software, as well as computational resources.
Often robots are intended to take over tasks from humans, e.g., opening
doors, doing chores, assembling a product, or driving a car [13], [14]. This
suggests that a robot may be trained by imitating an expert executing the
task, which led to the coining of the terms of apprenticeship, imitation,
or expert learning [15]. Learning from human interactions is a paradigm
that exploits a human’s experience by utilizing either demonstrations or
ratings for the systematic design of autonomous systems, cf. [16]. Thus,
methodologies for learning from human interactions are grounded in the
fundamental hypothesis that the data represent the desired behavior or, at
least, that the desired behavior can be inferred from humans.
This thesis focuses on the data-based design of automatic feedback con-

trollers for robots and autonomous systems, where the data are provided
by humans in the form of demonstrations or ratings. For learning from
demonstrations, the data are not labeled, i.e., we make an implicit as-
sumption or hypothesis that the data represent intended behavior. For
learning from ratings, the data are labeled, i.e., the human provides an
explicit evaluation of the behavior. In the context of learning from hu-
man interactions, one major challenge—motivating the development of the
methodologies in this thesis—is the presence of noise and the suboptimal
nature of the human-generated data.
The research in this thesis is centered on learning optimal control for-

mulations, either for the purpose of predicting systems with a human in
the loop or controlling autonomous systems to achieve human-like perfor-
mance. Part A models human locomotion in a manipulation task with an
optimal and predictive control formulation. This control model is trained
using data from a human’s manipulation movements and utilized for mak-
ing motion predictions of individual human subjects. Part B builds a con-
trol objective required for the automation of a gait rehabilitation robot.
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In this research project, the goal, as in (1a), is to "walk patients with a
healthy/natural gait," which is formalized into a usable control objective
satisfying the three requirements using ratings provided by experienced
therapists. Part C presents methods to calibrate a motion planner for au-
tonomous driving applications using data provided by human drivers for a
personalized autonomous driving experience.

7





Chapter II

Contributions

This chapter briefly summarizes the key contributions of each paper and
draws connections between the individual publications. Many of the results
were obtained in close collaboration with industry partners and through
supervised student projects, as indicated below. Additional contributions
were made in several co-authored publications and participation in inter-
disciplinary projects, as well as through teaching assistance.

Part A. Learning Optimal Controllers using
Optimality Conditions

[P1] M. Menner, P. Worsnop, and M. N. Zeilinger, "Constrained Inverse
Optimal Control With Application to a Human Manipulation Task,”
IEEE Transactions on Control Systems Technology (early access),
2019.

This journal contribution considers the design of optimal controllers,
where model assumptions, e.g., a safe operating region or the sys-
tem dynamics, are explicitly formulated and enforced as constraints.
We developed algorithms for learning the control objective of opti-
mal control formulations from potentially noisy and corrupted data,
where the model assumptions are expressed by means of optimality
conditions, i.e., first-order derivative tests in the form of the Karush-
Kuhn-Tucker (KKT) conditions [17], [18]. This paper demonstrates
how to formulate a finite-dimensional inverse problem of an infinite-
horizon, constrained optimal control problem. Furthermore, it shows
how to leverage the KKT conditions for learning the constraints of
an optimal controller and shows how to cope with noise corrupting
parts of the data.

The motivation for this work is to predict the movements of humans
by means of an optimal control formulation. The methods developed
for learning from noisy and corrupted data are particularly useful in
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Chapter II. Contributions

this context as human movements are not purely predictive, but of-
ten corrupted by noise and reactive movements. The method was
verified in experiments, which were conducted in collaboration with
Peter Worsnop, former Master’s student, at UC Berkeley. In the ex-
periments, human subjects manipulated a passive kinematic object
to achieve a certain configuration. The results indicate that indi-
vidual human movements in a manipulation task can be predicted
using an optimal control formulation.

[P2] M. Menner and M. N. Zeilinger, "Maximum Likelihood Methods
for Inverse Learning of Optimal Controllers," in 21st IFAC World
Congress (forthcoming), 2020.

Similarly to [P1], this conference contribution uses optimality con-
ditions for the learning of optimal controllers. This contribution
delineates three different KKT-based learning methodologies that
vary in their model assumptions and their computational complexi-
ties. It proposes an efficient algorithm for learning control objectives
in the presence of constraints, provides an interpretation of inverse
optimal control methods as a bilevel optimization problem, and ex-
amines their theoretical properties.

Part B. Automating a Rehabilitation Robot using
Supervised Learning

[P3] M. Menner, L. Neuner, L. Lünenburger, and M. N. Zeilinger, "Using
Human Ratings for Feedback Control: A Supervised Learning Ap-
proach With Application to Rehabilitation Robotics,” IEEE Trans-
actions on Robotics, vol. 36, no. 3, pp. 789–801, June 2020.

This journal contribution considers control tasks, where the objective
is very abstract and not trivial to define mathematically but is more
intuitive for humans. We developed a supervised learning method,
where the key idea is to treat ratings provided by humans as data
samples from an unknown control objective. The supervised learning
method uses the system’s state to calculate a feature vector and de-
fines the human ratings as labels. The control objective, i.e. the map
from the features to the ratings, is learned using classification-type
ideas under model constraints that render the objective applicable
for feedback control.

This method was developed in the context of a research project in
collaboration with Dr. Lars Lünenburger from Hocoma AG, with
the goal of automating a gait rehabilitation robot. One bottleneck
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restricting the automation of the robot is that therapists are needed
to "set up the robot to walk patients with a natural/healthy gait"
(the abstract objective). The method overcomes this bottleneck
and enables the automation of the gait rehabilitation robot, which
can improve patient training and can be more cost-effective. The
method was successfully verified in closed-loop experiments (with
able-bodied volunteers). The experiments along with the implemen-
tation of the algorithm on the robot were conducted in collaboration
with Lukas Neuner, former Master’s student.

Part C. Personalizing Self-Driving Cars using
Statistical Estimation

[P4] M. Menner, K. Berntorp, M. N. Zeilinger, and S. Di Cairano, "In-
verse Learning for Data-driven Calibration of Model-based Statisti-
cal Path Planning," IEEE Transactions on Intelligent Vehicles (early
access), 2020.

This journal contribution considers the design of optimization-based
controllers that are expressed by means of a probability distribution,
which allows for formulating complex requirements/targets while
achieving statistical guarantees. We developed a method for learn-
ing such a probabilistic control objective from data using statistical
estimation. Similarly to [P1], the data originate from a human who
demonstrates how the dynamical system should be operated. The
key benefit of this control objective is that it systematically adds
stochasticity to the data, which are naturally noisy and nondeter-
ministic as they are generated by humans.

This research project was conducted in collaboration with Dr. Ste-
fano Di Cairano and Dr. Karl Berntorp from the Mitsubishi Electric
Research Laboratories and the motivation is to adapt the driving
style of autonomous vehicles to the individual human passenger. The
motive for the individualization stems from the fact that the feeling
of comfort and cautiousness in traffic can vary between human pas-
sengers. The method was verified in a simulation environment in
which human subjects demonstrated their individual driving style.

Related Publications

Further contributions were made in several co-authored publications that
are not included in this cumulative doctoral thesis.
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Chapter II. Contributions

[P5] M. Menner and M. N. Zeilinger, "Convex Formulations and Alge-
braic Solutions for Linear Quadratic Inverse Optimal Control Prob-
lems," in European Control Conference, 2018, pp. 2107–2112.

This conference contribution proposes inverse optimal control
methodologies for linear quadratic regulator problems, which rely on
the algebraic Riccati equation [19]. The contribution presents con-
vex formulations—i.e., algebraic formulations, linear programs, as
well as semidefinite programs—for learning control objectives, and
highlights their computational efficiency.

[P6] M. Menner and M. N. Zeilinger, "A User Comfort Model and Index
Policy for Personalizing Discrete Controller Decisions," in European
Control Conference, 2018, pp. 1759–1765.

Similarly to [P3], this conference contribution proposes a supervised
learning technique, however, differently to [P3], it shows how to learn
a control objective in closed-loop using trial and error search. This
contribution presents both an index-based control policy to smartly
collect and process user feedback and a user comfort model in the
form of a Markov decision process with a priori unknown user-specific
state transition probabilities. The control policy utilizes explicit
user feedback in the form of ratings to optimize a reward measure
and addresses the exploration-exploitation trade-off in a multi-armed
bandit framework.

[P7] M. Menner, K. Berntorp, M. N. Zeilinger, and S. Di Cairano, "In-
verse Learning for Human-Adaptive Motion Planning," in 58th IEEE
Conference on Decision and Control, 2019, pp. 809–815.

This conference contribution is the initial investigation of the journal
publication [P4]. It focuses on the principles and ideas of person-
alizing autonomous vehicles, without elaborating on computational
and implementation aspects.

[P8] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger,
"Learning-based Model Predictive Control: Towards Safe Learning
in Control,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 3, pp. 269–296, 2020.

This journal contribution provides an overview of research efforts in
learning-based model predictive control. It categorizes three main
research branches: In the first branch, data are used to form or
enhance the model of the system dynamics. In the second branch,
data are used to directly adjust the controller formulation with the
goal of improving the closed-loop performance. In the third branch,
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predictive control methodologies are used to augment learning-based
control systems with inherent safety properties, i.e., the predictive
controller acts as a safety filter.

[P9] S. O. Schrade, M. Menner, C. Shirota, P. Winiger, A. Stutz, M. N.
Zeilinger, O. Lambercy, and R. Gassert, "Knee Compliance Reduces
Peak Swing Phase Collision Forces in a Lower-Limb Exoskeleton
Leg: A Test Bench Evaluation,” IEEE Transactions on Biomedical
Engineering (early access), 2020.

This journal contribution considers powered lower limb exoskeletons,
which are a viable solution for people with a spinal cord injury to
regain mobility for their daily activities. In particular, it examines
compliant actuation, which may reduce forces during a potential col-
lision impacting both the hardware and the user. We investigated
experimentally how a variable stiffness actuator at the knee joint in-
fluences collision forces transmitted to the user via the exoskeleton.
The results indicate that compliance in the knee joint of an exoskele-
ton can be favorable in case of a collision and should be considered
when designing powered lower limb exoskeletons.

[P10] V. Lefkololous, M. Menner, A. Domahidi, and M. N. Zeilinger,
"Interaction-Aware Motion Prediction for Autonomous Driving: A
Multiple Model Kalman Filtering Scheme," IEEE Robotics and Au-
tomation Letters, vol. 6, no. 1, pp. 80–87, Jan. 2021.

This journal publication considers the problem of predicting the
motion of vehicles in the surroundings of an autonomous car, for
improved motion planning in lane-based driving scenarios without
inter-vehicle communication. The paper proposes an algorithm for
generating intention-based motion predictions with a multiple model
Kalman filter, combining ideas from physics-based, maneuver-based,
and interaction-aware prediction approaches, cf. [20]. The motion
primitives produce non-colliding predictions and are calibrated us-
ing the inverse optimal control techniques in [P5] in order to obtain
human-like motions.

This research project was conducted in collaboration with Dr.
Alexander Domahidi from embotech AG and the motivation is to
achieve real-time capable and accurate motion predictions needed
for autonomous driving algorithms that employ predictive planning
techniques. The algorithm was verified with human-driven vehicle
data from the Next Generation Simulation (NGSIM) dataset.
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Chapter II. Contributions

Contributions to Interdisciplinary Projects

Further contributions were made in two interdisciplinary projects.

Low-Cost Ventilator for COVID-19 Patients

This interdisciplinary research project was started to meet the peak venti-
lator demands for patients suffering from COVID-19. It is a collaboration
between groups headed by Kristina Shea (Engineering Design and Comput-
ing Laboratory, ETH Zurich), Marianne Schmid Daners (Product Develop-
ment Group Zurich, ETH Zurich), Martin Meier (Product Design, Zurich
University of the Arts), and Melanie N. Zeilinger (Intelligent Control Sys-
tems Group, ETH Zurich). The goal of the project was the development of
a low-cost and modular ventilation system using two paddles that squeeze
an AmbuBag, thereby pushing air into the lungs of a patient.

[P11] L. Hewing, M. Menner, N. Tachatos, M. Schmid Daners, C. du
Pasquier, T. S. Lumpe, K. Shea, A. Carron, and M. N. Zeilinger,
"Volume Control of Low-Cost Ventilator with Automatic Set-Point
Adaptation,” in European Control Conference (submitted).

This contribution i) experimentally shows that for satisfying the
medical requirements on the ventilator, in particular for accurately
tracking tidal volumes, the controller needs to be adapted to the
individual patient and the different configurations, e.g., hardware or
operation modes; ii) proposes a set-point adaptation algorithm that
uses sensor measurements of a flow meter to automatically adapt the
controller to the setup at hand; and iii) experimentally shows that
such an adaptive solution improves the performance of the ventilator
for various setups.

Furthermore, the ventilator solution "breathe, from ETH with ♥" at-
tracted public attention and press coverage:

https://ethz.ch/en/news-and-events/eth-news/news/2020/05/creating-a-
low-cost-ventilator.html

Data-based Diagnosis of Normal Pressure Hydrocephalus

Machine learning techniques are often used to identify similarities and dif-
ferences in data sets that are too large or too complex for humans to
assess. The goal of this project is the assistive diagnosis of normal pres-
sure hydrocephalus leveraging machine learning techniques. This project
is a collaboration with Kiran Kuruvithadam and Marianne Schmid Daners
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from the Product Development Group, ETH Zurich, and the Neurosurgery
Department of the University Hospital Zurich.
The main symptoms used for the diagnosis of normal pressure hydro-
cephalus are characteristics in the gait cycle, which are difficult to identify
in the doctor’s office. The conceptual idea is that wearable IMU sensors
can be used to capture gait characteristics over days in the patient’s home
environment, where the data could be used to improve the diagnosis.
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Chapter II. Contributions

Teaching Activities

Teaching Assistance

Model Predictive Control (151-0660-00L) Spring 2017, 2018
Signals and Systems (151-0575-01L) Fall 2016, 2017

Student Supervision

Master’s Theses

• Vasileios Lefkopoulos, 2019,
Collaboration with embotech AG, Zurich, Switzerland.

• Lukas Neuner, 2018,
Collaboration with Hocoma AG, Volketswil, Switzerland.

• Peter Worsnop, 2017,
Collaboration with UC Berkeley, co-supervised with Aaron Bestick.

Semester Projects

• Sophie Hall, 2020.
• Kristof Descotes, 2019.
• Ueli Wechsler, 2019,

Co-supervised with Lukas Hewing.
• Riccardo Schira, 2018.

Bachelor’s Theses

• Jan Schilliger, 2017.

Studies on Mechatronics

• Clara Baumhauer, 2016.
• Jasmine Belfrage, 2016.
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Chapter III

Discussion & Future Work

Novel paradigms in machine learning and the availability of computational
resources give rise to innovative concepts to automate the design and cal-
ibration of feedback controllers. This chapter discusses possible future
directions for learning control objectives. The methodologies presented
in this thesis fuse model-based architectures grounded in control theory
with the flexibility of data science, under the assumption that the data
originate from a certain model class, at least approximately. Weakening
this assumption offers a variety of research ideas for principled theoretical
research, as well as for applications.

Quantification of Suboptimalities

Suboptimalities in the form of noise or inexact execution are a core com-
ponent and one of the main challenges in learning from (human-generated)
data. While assumptions made on the model class and on the subopti-
malites reduce the amount of data needed for the learning, specific choices
of the assumptions may significantly deteriorate the results. A possible
extension of the proposed methods is to not only learn the parameters but
also the noise distribution of the data, and to identify the sources of subop-
timalities. While such an approach would require more data and substan-
tially more computational resources, the imminent benefits are improved
learning results and, in the context of learning from human interactions,
the potential to incorporate the identified suboptimalities into the model
of human behavior for making more accurate predictions.
Concrete use cases for such an extension are found in nearly all methods

in this thesis. For example, the assumptions made on the distribution of
the data in [P1] or [P2] could be revisited and the distribution could be
learned from the data; the assumption that human motions can be modeled
as resulting from a particle filter algorithm with only one particle, as in
[P4] and [P7], could be generalized to an arbitrary number of particles;
or inexact execution in the form of the planning horizon that humans use
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Chapter III. Discussion & Future Work

for their motions could be inferred from data, rather than assumed to be
constant as in [P1], [P2], or [P5]. The latter example is particularly useful
for motion planning problems in autonomous driving applications, such as
[P10], in order to make more accurate predictions of human-driven vehicles,
i.e., by learning how far ahead do humans plan their actions.

Flexibility of Model Classes & Generalization
Properties

For automatic feedback controllers with a desired and fixed structure, the
methods proposed as part of this thesis offer powerful tools for their cal-
ibration. However, for the operation of some complex dynamical systems
or robots, the assumption of a fixed controller structure might limit the
achievable performance. While other paradigms such as imitation learning
[21] can yield superior flexibility in learning, they often come at the price
of less compelling generalization properties. A potential future research
direction for learning control objectives is to examine model classes that
allow greater flexibility, while not sacrificing properties required for em-
ploying the feedback controller, e.g., generalization to tasks different from
the demonstrated one.
Concrete examples of more flexible model classes are Gaussian processes

or kernel-based models [22], whose complexity and flexibility scale with
the number of data points. Gaussian processes are very flexible function
approximators, however they are not trivially usable as the model class for
control objectives as their shape does not necessarily facilitate the feed-
back controller, e.g., they have many local optima. A possible remedy is
to attempt to constrain the shape of the Gaussian process to promote its
usability for feedback control, e.g., by constraining the mean of the Gaus-
sian process to be convex or concave. This idea of constrained Gaussian
processes has gained some attention recently, e.g., in [23]–[25], but there is
still great research potential for designing control objectives. Alongside the
flexible approximation properties, Gaussian processes provide an intrinsic
uncertainty quantification, which in turn could also be used for feedback
control. A relevant paradigm is to incorporate shape constraints into a
Bayesian optimization framework. Fig. III-1 shows a toy example of a goal
expressed as a reward function, y = max(0,−16x(x − 0.5)), that is not
easy to use as a control objective, e.g., due to a vanishing gradient for
x > 0.5. It shows three approximations of the reward function using (a)
an unconstrained Gaussian process, (b) a concavely-constrained Gaussian
process, and (c) a pseudo-concavely-constrained Gaussian process. The
approximation in (a) is difficult to use as a control objective due to a local
optimum at x > 0.5, however, both (b) and (c) are suitable control objec-
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tives, where (c) approximates the goal well. This toy example illustrates
the approximation capabilities of a more flexible model class, along with
an uncertainty quantification with the standard deviation. Such a model
class could be useful to better approximate abstract goals such as the one
in [P3], where the uncertainty quantification provides information about
the level of exploration of the state space.

0 0.5 1
−1

0

1

x

y

0 0.5 1
x

0 0.5 1
x

(a) (b) (c)

Figure III-1. Example of flexible model class for control objectives. The
true reward function (dashed black) is approximated with
three versions of Gaussian processes (mean: solid black,
standard deviation: shaded blue). The approximations are
learned using samples (red) of the true reward function.

Addendum to Paper P1

Related Work on Manipulation Tasks

Manipulation tasks have been investigated in various forms, and the ap-
proaches can be categorized as reactive, adaptive, or predictive [26], [27].
A reactive approach, e.g., [28]–[30], decouples the manipulation task and
treats human inputs as a disturbance to the system. In an adaptive ap-
proach, e.g., [31], [32], the robot learns a control objective or task model
over multiple interactions, treating human inputs as corrective perturba-
tions of its own state. A predictive approach, e.g., in [33]–[37], learns
a model for the human’s actions enabling an optimal interaction through
predictions. For example, [33] uses a predictive model to accommodate hu-
man movement in co-manipulation, whilst employing a reactive controller
to deal with errors in predictions. In [34], a method is developed for opti-
mizing robot-to-human handover poses for predicted human behavior given
an ergonomic objective function. In [35], path-integral inverse reinforce-
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Chapter III. Discussion & Future Work

ment learning is applied to human-human collaboration and [36] applies
an inverse optimal control approach with probabilistic movements in order
to predict human reaching motion online.
Related learning approaches that are often applied to identifying human

preferences or predicting human movements are reinforcement learning,
e.g., [38], inverse reinforcement learning, e.g., [15], [39]–[41], or apprentice-
ship learning, e.g., [42]–[44]. For example, [45] shows that the training time
with human supervision can be effectively reduced by introducing relative
ratings, i.e., pairwise comparisons of trajectory segments. In [46], an im-
itation learning technique based on probabilistic movement primitives is
proposed and applied to human-robot interaction. In [47], human-robot
interaction policies are constructed for a scenario with multiple highly dis-
tinct future outcomes in decision making. Game-theoretic approaches are
examined in [48], [49]. In [48], possible utilities motivating the agents’
equilibrium behavior are identified in an inverse game theory framework
and [49] presents a cooperative inverse reinforcement learning approach.

Practical Considerations of Inverse Optimal Control

The manipulation task in [P1] was included to showcase the inverse optimal
control algorithm along with the constraint learning procedure. The study
indicated that even with such a rather simple control objective, the human
arm movements in such a manipulation task are expected to be individual
and thus, the individuality of human subjects should be considered when
making predictions. However, for more complex robotic tasks, the control
objective considered in [P1] may not model the task sufficiently well in or-
der to make accurate predictions. Instead, the model may only be valid for
making short-term predictions and it may be beneficial to consider more
sophisticated model classes, e.g., hybrid or multiple models, which in turn
will increase the complexity of the inverse optimal control algorithm. How-
ever, the shortest path approach in [P1] may be useful when considering
a multiple-model task because it allows for decoupling the task into sub-
tasks, where optimality of the complete multiple-model task implies that
each segment (a subtask) is optimal with respect to a shortest path formu-
lation. The difficulty for such a learning procedure is that this decoupling
requires the knowledge of the transition point between the single models,
e.g., by using a detection procedure. Note that for the considered setup
with a single prediction model, the learned constraints may not necessarily
be a bound on the physical limitations of the human subjects, but a bound
on the validity of the prediction model.
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Scalability of Candidate Constraint Sets

Often convex hulls (as a collection of half-space constraints) scale badly
with increased data sizes or higher state spaces—especially in the presence
of noisy data. As a consequence, the algorithm to learn constraints from
a pre-defined candidate constraint set as in [P1] may become infeasible for
some tasks. Possible remedies are i) to remove certain half-spaces, e.g.,
based on area or volume criteria, in order to reduce the number of half-
spaces, ii) utilize box constraints that use maximum and minimum values
to define constraints for each dimension independently, or iii) use ellip-
soidal constraints, e.g., a minimum volume ellipsoid. Table III-1 revisits
Table P1-2 and shows the error metric as in (P1-17) for the three differ-
ent model classes of constraint sets, i.e., the convex hull, box constraints,
and ellipsoidal constraints. Compared to making predictions with an un-
constrained optimal control formulation, the prediction accuracy increases
with both the box and the ellipsoidal constraints, although not as much
as with the convex hull. This suggests that the prediction accuracy and
the computational effort can be traded off with such an optimal control
formulation.

Table III-1. Prediction errors: Unconstrained vs. constrained (with differ-
ent model classes)

unconstrained constrained
convex hull box ellipsoid

Subject 1 0.96◦ 0.78◦ 0.89◦ 0.90◦

Subject 2 3.26◦ 2.45◦ 3.03◦ 3.19◦

Subject 3 1.87◦ 1.56◦ 1.78◦ 1.80◦

Implementation Details: Gradient Computation of Kinematic
Model

For the manipulation task considered in [P1], the derivative of the system
dynamics in (P1-1) with respect to the input is obtained as

∂f(x(k), u(k))

∂u(k)
= Ts

[
I

J‡o (xo(k))Jh(xh(k))

]
.

The derivative with respect to the state is more involved with

∂f(x(k), u(k))

∂x(k)
= I + Ts

[
0 0

fh(x(k), u(k)) fo(x(k), u(k))

]
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and the two partial derivatives

fh(x(k), u(k)) =
∂J‡o (xo(k))Jh(xh(k))u(k)

∂xh(k)
∈ R4×4 (3)

fo(x(k), u(k)) =
∂J‡o (xo(k))Jh(xh(k))u(k)

∂xo(k)
∈ R4×4. (4)

Eq. (3) can be computed analytically or numerically with widely avail-
able numerical differention software such as the Symbolic Math Toolbox in
MATLAB [50]. Eq. (4) cannot be computed symbolically as it involves the
derivative of a pseudo-inverse with respect to its argument, which does not
yield a closed analytical solution. In order to address this issue, we utilize
the chain rule and techniques from tensor calculus and the derivative of
the pseudo-inverse and compute (4) as

∂J‡o (xo(k))Jh(xh(k))u(k)

∂Jo(xo(k))︸ ︷︷ ︸
∈R4×6×4

:
∂Jo(xo(k))

∂xo(k)︸ ︷︷ ︸
∈R6×4×4

,

where the operator : is defined in the following.

Tensor Calculus Two fourth order tensors ε and τ are defined as

εijkl = δikδjl

τijkl = δilδjk,
(5)

where δij is the Kronecker delta [51]. The operator : of two tensors A and
B is defined as

A : B ⇔ AijklBklmn

and the tensor product AB indicates

AB ⇔ AijklBlmno,

where we use the Einstein summation convention as summation over a set
of indexed terms in an expression, i.e.

AijklBklmn :=
∑
k,l

AijklBklmn.

Eq. (5) can be used to write the following two identities:

AXB = AεB> : X (6a)

X> = τ : X. (6b)
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Differential of Pseudo-Inverse The derivative of the pseudo-inverse
P =

(
A>A

)−1
A> with respect to the original tall matrix A yields a fourth

order tensor and is derived using the differential dP :

dP = PP>dA>(I −AP ) + (I − PA)dA>P>P − PdAP, (7)

cf. [52]. Using the introduced tensor ε in (5), the differential (7) can be
written as

dP =
(
PP>ε(I −AP )> + (I − PA)εP>P

)
: dA> − P ε̄P : dA,

cf. (6a), where ε̄ and ε are fourth order tensors as in (5) of different
dimensions. Further, τ in (5) is used to write

dP =
((
PP>ε(I −AP )> + (I − PA)εP>P

)
: τ − P ε̄P

)
: dA,

cf. (6b), and thus, the derivative of the pseudo-inverse P with respect to
A results into

dP

dA
=
(
PP>ε(I −AP )> + (I − PA)εP>P

)
: τ − P ε̄P. (8)

Addendum to Paper P2

Scalability of Algorithm P2-1

The computational complexity of Algorithm P2-1 highly depends on the
considered problem setup, i.e., how many constraints can be discarded in
Step 2, how many constraint combinations are feasible in the set D in
Step 3, and how quickly the stopping criterion is satisfied in Step 5.
For learning tasks where the data are expected to be very noisy or where

the problem setup has many different constraints in the vicinity of the
data, the algorithm might scale badly as constraints may not be discarded
in Step 2 and the stopping criterion might not be satisfied early. Note that
the number of feasible constraint combinations in Step 3 is independent of
the noise in the data. If the algorithm is expected to be computationally
too expensive, the index set can be fixed, e.g., similarly to Method 1 in
[P2]. Then, Algorithm P2-1 reduces to solving the optimization problem
in (P2-7) with a fixed index set rather than idx ∈ {0, 1}s.
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Chapter IV

Overview of Inverse Learning Con-
cepts

This chapter provides an extended literature review and contrasts different
methodologies used for learning control objectives from data. It considers
the problem of learning a (parametrization of a) control objective for op-
timal control formulations.

1 Formal Problem Statement

We consider dynamical systems, represented in discrete time, of the form

xk+1 = f(xk, uk), (3)

where xk ∈ Rnx is the state at time k and uk ∈ Rnu is the control input.
This model for the dynamics is used to predict the evolution of the system
in an optimal control framework with

max
xk,uk

rθ(x0, ..., xT , u0, ..., uT ) (4a)

s.t. xk+1 = f(xk, uk) (4b)
c(xk, uk) ≤ 0, ∀k = 0, ..., T, (4c)

where T is the prediction horizon, c(xk, uk) ≤ 0 defines constraints for the
state, xk, and the control input, uk, and

rθ(x0, ..., xT , u0, ..., uT ) =

T∑
k=0

lθ,k(xk, uk) (5)

is the control objective expressed as a reward function, with the parameters
θ, where lθ,k(xk, uk) is called the stage reward. Using the model for the
system dynamics in (3), we can express the reward as a function of the
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Chapter IV. Overview of Inverse Learning Concepts

control inputs, uk for times k = 0, ..., T , and the initial state, x0. In order
to ease exposition, we therefore define the shorthand notation

rθ(x0, U) := rθ(x0, ..., xT , u0, ..., uT ),

where U = [ uT0 , u
T
1 , . . . , u

T
T ]T denotes the input sequence.

Notation

Given mean vector µ and covariance matrix Σ, p(x|µ,Σ) denotes the prob-
ability density function of the Gaussian distribution, with

p(x|µ,Σ) =
1√

(2π)n|Σ|
exp

(
− 1

2
(x− µ)T Σ−1 (x− µ)

)
.

Further, ∝ reads "proportional to." We define I as the identity matrix of
suitable dimension, vec as the vectorization operator, and ‖x‖Σ := xTΣx.

Problem Definition

The learning methodologies in this chapter aim to find a parametrization of
the reward function using data in the form of demonstrations. In Bayesian
statistics terms, the learning methods maximize the posterior distribution
of the parameters, θ, i.e., p (θ|data) ∝ p (data|θ) p(θ), where p (data|θ) is
called the likelihood (of the data given the parameters) and p(θ) denotes
the prior likelihood. Note that for computational reasons, learning methods
typically optimize the logarithmic likelihood (log-likelihood). Formally, the
inverse problem can be stated as

max
θ

log(p (data|θ) p(θ)) = log p (data|θ) + log p(θ) (6a)

s.t. θ ∈ Θ. (6b)

Some learning methodologies restrict the parameters to satisfy certain
properties, which can be encoded as θ ∈ Θ. In this context, the data
are control inputs and state trajectories of the form{{

x
(1)
0 , ..., x

(1)
T , u

(1)
0 , ..., u

(1)
T

}
, . . . ,

{
x

(D)
0 , ..., x

(D)
T , u

(D)
0 , ..., u

(D)
T

} }
,

which we concisely express, using the control inputs and the initial state,
as

D =
{{

x
(1)
0 , U (1)

}
,
{
x

(2)
0 , U (2)

}
, . . . ,

{
x

(D)
0 , U (D)

} }
,

where {x(i)
0 , U (i)} denotes the ith demonstrated trajectory and D is the

total number of demonstrated trajectories. For ease of exposition, we de-
velop the remaining chapter for one demonstrated trajectory, {x0, U}. The
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2 Inverse Reinforcement Learning

extension to multiple demonstrated trajectories is straightforward for all
methods, by multiplication of the likelihoods (addition of the logarithmic
likelihoods).
The learning methodologies presented in this chapter are categorized

in Fig. IV-1 and differ by virtue of the model for the likelihood term
p (data|θ), as well as the assumptions on the valid parameter space, Θ.
Inverse reinforcement learning methodologies in the literature tend to fo-
cus on maximizing the observed rewards, while inverse optimal control
methodologies typically utilize optimality conditions for learning control
objectives. In the following, we describe the learning methods in the lit-
erature as well as in this thesis with respect to the problem definition in
(6). Note that the papers included in this chapter introduce the specific
learning concepts. An extended discussion of related work that builds on
these concepts is omitted. Furthermore, branches in the literature that
focus on problems different from the setup introduced in this section, e.g.,
discrete state spaces, are also omitted.

Discussion of the prior

Frequent choices for the prior likelihood are the Laplace distribution, com-
monly referred to as Lasso regression; the Gauss distribution, commonly
referred to as Ridge regression; and p(θ) = constant, for which (6) is re-
ferred to as maximum likelihood estimation [60]. For example, [53] uses a
Laplace distribution, p(θ) ∝∏i exp(−λ|θi|), and [P4] uses a normal distri-
bution, p(θ) ∝ ∏i p(θi|θ

prior
i , σ2

p). In what follows, we use p(θ) = constant
for all learning methodologies to ease exposition.

2 Inverse Reinforcement Learning

Inverse reinforcement learning methods tend to focus on maximizing the
demonstrated reward and less on the structure of the (constrained) optimal
control problem in (4). In the following, we discuss three conceptually
different ideas that classify as inverse reinforcement learning. Note that
inverse reinforcement learning methodologies are often stated for Markov
decision processes with a discrete state and action space. However, the
model for the learning proposed in the respective methods can similarly
be applied for the setup considered in this chapter, i.e., as a model for the
likelihood and the valid parameter space in (6).

2.1 Matching Feature Expectation

In [42], a learning method is proposed that is based on the idea that
demonstrations yield the highest possible reward, given the structure of

27



Chapter IV. Overview of Inverse Learning Concepts

Inverse Reinforcement Learning

Matching Feature
Expectations [42]

Maximum Entropy
[39]

Local approx.
[41]

Sampling-based
[53], [54]

Kalman Filtering
[P4], [P7]

Inverse Optimal Control

Riccati-based
Learning [55]

KKT-based
Learning [56]

Noisy Control
Inputs [57]

Noisy Riccati
Equation [P5]

Noisy Control
Inputs [58], [P2]

Noisy KKT
Cond. [59], [P1]

Figure IV-1. Overview and categorization of inverse reinforcement learning
and inverse optimal control methodologies in the literature
and proposed as part of this thesis.
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2 Inverse Reinforcement Learning

the parametrized reward function. Here, the reward function rθ(x0, U) =
θTφ(x0, U) is expressed in terms of the feature vector φ(x0, U). The goal
is to find a policy, πθ with ‖θ‖2 ≤ 1, i.e., a parametrization of the re-
ward function, that minimizes the deviation to the demonstrated features:
|θTφ(x0, πθ)− θTφ(x0, U)| ≤ ε, where {x0, U} is the demonstrated trajec-
tory. Using the notation in (6), the matching feature expectations approach
in [42] uses

p(data|θ) ∝ exp
(
−|θTφ(x0, U)− θTφ(x0, πθ)|

)
Θ =

{
θ
∣∣ ‖θ‖2 ≤ 1, θTφ(x0, U) ≥ θTφ(x0, πθ)

}
.

As θTφ(x0, πθ) is nonlinear in the parametrization of the reward function,
θ, [42] uses an iterative algorithm, where at iteration j, the following opti-
mization problem is solved:

{t(j), θ(j)} = arg max
t,θ

t (7a)

s.t. θTφ(x0, U) ≥ θTφ(x0, πθ(i)) + t, i = 0, ..., j − 1 (7b)
‖θ‖2 ≤ 1, (7c)

where the feature vector, φ(x0, πθ(i)), is computed with the parameters
θ(i). In other words, the algorithm alternates between finding the param-
eters θ(i) and the feature calculation, φ(x0, πθ(i)). The iterative algorithm
terminates when t(j) ≤ ε.
Expected advantages & limitations. The main advantages of this
learning method are the low computational requirements and its easy imple-
mentation. Furthermore, the iterative implementation offers the advantage
that constraints can be considered in the feature computation. The main
limitation of this method is that suboptimal behavior is not explicitly con-
sidered and may corrupt the learning results. The only design choice to be
made is the trajectory segment that is used to learn the parameters.

2.2 Maximum Entropy

In [39], a model for the likelihood term in (6) is proposed that is based on
the concept of entropy, with

p(data|θ) =
exp (rθ(x0, U))

Zθ
(8)

and the partition function

Zθ =

∫
U

exp
(
rθ(x0, Ũ)

)
dŨ
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if the control input space, U , is continuous, which is the considered setup.
If the control input space is discrete, Zθ =

∑
Ũ∈U exp(rθ(x0, Ũ)). This

model for the likelihood term has the advantage of interpreting the reward
of the observed data as a sample from a probability distribution of an
exponential family. However, maximizing (6) with the likelihood term (8)
is often intractable due to the partition function, Zθ, and the following
methods use different approximations of Zθ.

Local approximation of reward function

In [41], a second-order approximation of the reward function in (5) is used
in order to tractably approximate the partition function, with

rθ(x0, Ũ) ≈ rθ(x0, U) + (Ũ − U)T gθ +
1

2
(Ũ − U)THθ(Ũ − U),

where

gθ =
∂rθ(x0, Ũ)

∂Ũ

∣∣∣∣
Ũ=U

, Hθ =
∂2rθ(x0, Ũ)

∂Ũ2

∣∣∣∣
Ũ=U

.

Then, the partition function in (8) is approximated locally, around the
observed trajectory, and the likelihood term in (6) is given by

p(data|θ) =
exp(rθ(x0, U))∫

U exp(rθ(x0, Ũ))dŨ

≈ exp

(
1

2
gTθ H

−1
θ gθ

)
| −Hθ|

1
2 (2π)−

nuT
2 .

The inverse problem is given by maximizing the log-likelihood, using the
second-order approximation of the reward function,

max
θ

1

2
gTθ H

−1
θ gθ +

1

2
log | −Hθ| − nuT

2
log(2π). (9)

Expected advantages & limitations. For linear systems, i.e.,
f(xk, uk) = Akxk+Bkuk in (3) without constraints and a quadratic reward
function, (9) yields the exact solution to (8). Consequently, the learning re-
sults are expected to be limited by the approximation accuracy of the reward
function, i.e., for nonlinear systems and in the presence of constraints, the
results may deteriorate. An additional advantage is that the only design
choice to be made is the trajectory segment used for learning.
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2 Inverse Reinforcement Learning

Local sampling-based approximation

Rather than using a local approximation of the reward function, in [53],
the partition function, Zθ, is approximated by K samples in the vicinity
of the observed demonstration, denoted U (k). Thus, the likelihood term in
(6) is given by

p(data|θ) =
exp (rθ (x0, U))∑K

k=1 exp (rθ (x0, U (k)))
.

The inverse problem is given by maximizing the log-likelihood,

max
θ

rθ (x0, U)− log

K∑
k=1

exp
(
rθ
(
x0, U

(k)
))

. (10)

Expected advantages & limitations. The main advantage of this learn-
ing method is its relatively easy implementation. The learning results are
expected to depend on the choice of the sampling distribution that is used to
generate the trajectory samples as an approximation of the partition func-
tion. Furthermore, constraints are not explicitly considered in this learning
formulation. Design choices to be made are the sampling distribution, the
number of samples, as well as the trajectory segment used for learning.

Guided sampling-based approximation

Similarly to [53], [54] uses samples to approximate the partition function,
Zθ. This method, in contrast, suggests that the samples are generated
from a distribution q ∝ exp(rθt(x0, U)), defined with the true reward func-
tion parameters, θt. However, since θt is unknown, [54] samples adaptively
from the distribution with the current best estimate of the parameters,
exp(rθl(x0, U)), while optimizing for the parameters. This allows for grad-
ual improvement of the sampling distribution—and the partition function
along with it—while optimizing for the parameters. This method is tar-
geted to a class of control objectives with a nonlinear parametrization, e.g.,
a neural network, for which other sampling-based learning methods may
deteriorate.
For this method, the likelihood term in (6) is chosen as

p(data|θ) =
exp (rθ (x0, U))

1
K

∑K
k=1 zk exp (rθ (x0, U (k)))

,

where K is the total number of sampled trajectories and zk is the im-
portance weight of the sampled trajectory k. The weights are computed
as zk = ( 1

L

∑L
l=1 ql(x0, U

(k)))−1, where ql(·) with l = 1, ..., L are the L
sampling distributions, chosen as ql(x0, U

(k)) ∝ exp(rθl(x0, U
(k))), i.e., the
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reward function with parameters θl that are used to generate the samples.
Finally, maximizing the log-likelihood using this guided sampling-based
method yields the following inverse problem:

max
θ

rθ (x0, U)− log
1

K

K∑
k=1

zk exp
(
rθ
(
x0, U

(k)
))

. (11)

Expected advantages & limitations. This version of maximum en-
tropy inverse reinforcement learning is expected to yield very robust learn-
ing results due to the adaptive sampling of trajectories. The sampling-based
partition function is expected to converge to the true partition function as
K →∞. The main limitations of the learning method are the demand for
computational resources and that constraints for the system operation are
not explicitly considered in the learning procedure. For the application of
[54], one needs to choose the segment used for learning, the times or iter-
ations at which to sample new trajectories, as well as the number of newly
sampled trajectories, e.g., N new trajectories sampled from ql(x0, U

(k)) with
the current parameters, θl.

2.3 Kalman Filtering

This learning method has been proposed in [P7], and detailed in [P4], for
a class of reward functions that can be formulated using positive definite
quadratic forms. It is based on the observation that such a reward function
can similarly be expressed using probability density functions of Gausian
distributions, with

rθ(x0, U) =
T∑
k=0

−‖vk‖Qθ − ‖uk‖Rθ ∝ log

T∏
k=0

p
(
vk|0, Q−1

θ

)
p
(
uk|0, R−1

θ

)
with vk = yref,k − h(xk), where yref,k denotes the reference and h is the
function mapping the state to the reference. Then, modeling vk and uk as
random variables, the optimal control problem in (4) can be interpreted as
a statistical estimation problem in a Kalman filter framework, where yref,k

is treated as a sensor measurement. As a result, (4) can be solved using
particle filtering rather than gradient-based numerical optimization. This
learning method models the data to be the result of particle filtering with
one particle, for which the likelihood term and the valid parameter space
are given by

p(data|θ) =
T∏
k=1

p(vk|0, Q−1
θ )p(uk|0, R−1

θ )
p(wk|0, Q−1

θ )

p(ek|0,Γθ,k)

Θ = {θ |Qθ � εQ · I, Rθ � εR · I}

32



3 Inverse Optimal Control

with some εQ, εR > 0, ek = yref,k − h(f(xk−1, 0)), wk = ek − Jkuk, Γθ,k =

Q−1
θ + JTk R

−1
θ Jk, and Jk = HkGk, where Hk = ∂h(x)

∂x
|x=xk and Gk =

∂f(x,u)
∂u
|x=xk,u=uk , see [P7] and [P4] for details. Then, maximizing the

log-likelihood results in the following inverse problem:

max
θ
−

T∑
k=1

(
‖vk‖Q−1

θ
+ ‖uk‖R−1

θ
+ ‖wk‖Q−1

θ
− ‖ek‖Γθ,k

)
(12a)

s.t. Qθ � εQ · I,Rθ � εR · I. (12b)

Expected advantages & limitations. The main advantages of the
method are that the data do not have to be segmented into specific trajecto-
ries prior to learning and that there are no design choices to be made. The
main limitation of this method is the class of control objectives (quadratic
form). Furthermore, constraints for the system operation are not explicitly
considered in the learning procedure.

3 Inverse Optimal Control

Differently from inverse reinforcement learning methodologies, inverse op-
timal control utilizes optimality conditions of the corresponding optimal
control problem. Considering the general problem statement in (6), the op-
timality conditions are stated by means of the allowed parameter space, Θ.
For example, if the corresponding optimal control problem is stated for un-
constrained, linear systems and a quadratic control objective, i.e., a linear
quadratic regulator (LQR) problem, then the inverse problem utilizes the
Riccati equation; if the corresponding optimal control problem is stated for
nonlinear and/or constrained systems with a potentially more general con-
trol objective, then the inverse problem utilizes the Karush-Kuhn-Tucker
(KKT) conditions. For learning using both, Riccati equation and KKT
conditions, we present one convex and one nonconvex variant in what fol-
lows, where the difference lies in the interpretation of the noise in the data.

3.4 Learning based on Riccati Equation

If f(xk, uk) = Axk + Buk in (3) and the control objective is rθ(x0, U) =∑∞
k=0−xTkQxk − uTkRuk with Q � εQ · I and R � εR · I in (5), then the

optimal policy is given by uk = Kxk [19], where K is called the feedback
gain and satisfies

(BTPB +R)K +BTPA = 0

ATPA− P +ATPBK +Q = 0

with some P � 0.
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Noisy control inputs (nonconvex formulation)

In this nonconvex formulation, proposed in [57], the likelihood term is given
by the difference of the observed control inputs and the policy, and the
parameter space Θ spans all admissible θ satisfying the Riccati equation:

p(data|θ) =

T∏
k=0

p(uk|Kxk,Σ)

Θ =
{
θ
∣∣ (BTPθB +Rθ)K +BTPθA = 0,

ATPθA− Pθ +ATPθBK +Qθ = 0,

Pθ � εP · I, Qθ � εQ · I, Rθ � εR · I
}

with some εP , εQ, εR > 0. The resulting learning problem is given by

max
θ,K

T∑
k=0

−‖uk −Kxk‖Σ−1 (13a)

s.t. (BTPθB +Rθ)K +BTPθA = 0 (13b)

ATPθA− Pθ +ATPθBK +Qθ = 0 (13c)
Pθ � εP · I, Qθ � εQ · I, Rθ � εR · I. (13d)

Expected advantages & limitations. The first advantage of the method
is that its implementation does not require segmentation of the trajectory.
The main limitation of this method, by design, is the class of systems and
the control objective. For nonlinear systems, it is possible to linearize the
system dynamics, but the performance may deteriorate. Furthermore, op-
erational constraints are not explicitly considered in the learning procedure.
The design choice to be made is the covariance matrix of the noise distri-
bution, Σ.

Noisy optimality condition (convex formulation)

An alternative convex formulation to (13) is to assume that the Riccati
equation is only fulfilled approximately, where the policy, K, is obtained
in a first step [P5]. Then, the likelihood term is stated in terms of noise in
the Riccati equation, i.e., Λ1,Λ2:

p(data|θ) = p (vec(Λ1)|0,Σ1) p (vec(Λ2)|0,Σ2)

Θ(Λ1,Λ2) =
{
θ
∣∣ (BTPθB +Rθ)K +BTPθA = Λ1,

ATPθA− Pθ +ATPθBK +Qθ = Λ2,

Pθ � ε · I, Qθ � ε · I, Rθ � ε · I,
K = arg minK̃

∑T
k=0 ‖uk − K̃xk‖Σ−1

u

}
.
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Maximizing the log-likelihood yields the learning problem, as a convex
semi-definite program:

max
θ,Λ1,Λ2

− ‖vec(Λ1)‖
Σ−1

1
− ‖vec(Λ2)‖

Σ−1
2

(14a)

s.t. (BTPθB +Rθ)K +BTPθA = Λ1 (14b)

ATPθA− Pθ +ATPθBK +Qθ = Λ2 (14c)
Pθ � εP · I, Qθ � εQ · I, Rθ � εR · I, (14d)

where K = arg minK̃
∑T
k=0 ‖uk − K̃xk‖Σ−1

u
is the least squares solution.

Expected advantages & limitations. This method yields the same ad-
vantages and limitations as its nonconvex counterpart in (13). Addition-
ally, the convex formulation makes this approach computationally very ef-
ficient. Design choices to be made are the several covariance matrices, Σ1,
Σ2, and Σu.

3.5 Learning based on Karush-Kuhn-Tucker Conditions

For constrained, nonlinear systems and a more general control objective,
the optimality conditions are given by the KKT conditions [61], which are
first-order derivative tests for constrained optimization problems:

∇Ũ
(
rθ(x0, Ũ) + λT c(x0, Ũ)

)∣∣∣
Ũ=U

= 0

c(x0, U) ≤ 0

λT c(x0, U) = 0

λ ≥ 0,

where λ are called the dual variables.

Noisy control inputs (nonconvex formulation)

Similarly to (13), the control inputs can be modeled as noisy, with
p(U |V,Σ), where V is an optimal control input sequence that satisfies the
KKT conditions [58], [P2]:

p(data|θ) = p(U |V,Σ)

Θ(V ) =
{
θ
∣∣ ∇Ũ (rθ(x0, Ũ) + λT c(x0, Ũ)

)∣∣∣
Ũ=V

= 0,

c(x0, V ) ≤ 0, λT c(x0, V ) = 0, λ ≥ 0
}
.
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Maximizing the log-likelihood, the resulting learning problem is given by

max
θ,λ,V

− ‖U − V ‖Σ−1 (15a)

s.t. ∇Ũ
(
rθ(x0, Ũ) + λT c(x0, Ũ)

)∣∣∣
Ũ=V

= 0, (15b)

c(x0, V ) ≤ 0, λT c(x0, V ) = 0, λ ≥ 0. (15c)

Expected advantages & limitations. The main advantage of this learn-
ing method is the systematic treatment of operational constraints. The main
limitation is the computational burden that comes with the nonconvex for-
mulation. Design choices that have to be made are the segment for the
learning and the covariance matrix of the noise distribution, Σ.

Noisy optimality condition (convex formulation)

Rather than assuming that the noise manifests itself in the control inputs,
it is also possible to assume that the optimality conditions are noisy rather
than being satisfied perfectly [59], [P1]. This results in a convex formula-
tion for reward functions that are linear in their parameters. The likelihood
term and the parameter space are given by

p(data|θ) = p(Λ|0,Σ)

Θ(Λ) =
{
θ
∣∣ ∇Ũ (rθ(x0, Ũ) + λT c(x0, Ũ)

)∣∣∣
Ũ=U

= Λ,

λidx = 0, λ ≥ 0
}
,

where idx indicates the index set of inactive constraints. Identifying the set
of inactive constraints from noisy measurements is not trivial. However,
an easily implementable option—used in [P2]—is to define idx as the set of
constraints for which ci(x0, U) < −εi, where ci is the ith constraint. The
resulting learning problem is given by

max
θ,λ,Λ

− ‖Λ‖Σ−1 (16a)

s.t. ∇Ũ
(
rθ(x0, Ũ) + λT c(x0, Ũ)

)∣∣∣
Ũ=U

= Λ (16b)

λidx = 0, λ ≥ 0. (16c)

Expected advantages & limitations. Similarly to (15), the main ad-
vantage of this formulation is the systematic treatment of constraints. The
main limitation is that the index set idx of inactive constraints has to be
fixed to obtain a convex formulation. Design choices that have to be made
are the segment for the learning, the covariance matrix of the noise distri-
bution, Σ, and the index set, idx.
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methodology and its application to training a predictive model
of human motor control from a manipulation task. It intro-
duces a convex formulation for learning both objective func-
tion and constraints of an infinite-horizon constrained optimal
control problem with nonlinear system dynamics. The inverse
approach utilizes Bellman’s principle of optimality to formulate
the infinite-horizon optimal control problem as a shortest path
problem and Lagrange multipliers to identify constraints. We
highlight the key benefit of using the shortest path formulation,
i.e., the possibility of training the predictive model with short
and selected trajectory segments. The method is applied to
training a predictive model of movements of a human subject
from a manipulation task. The study indicates that individ-
ual human movements can be predicted with low error using
an infinite-horizon optimal control problem with constraints on
shoulder movement.
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1 Introduction

As robotic systems are applied to increasingly unstructured and unpre-
dictable environments, the ability to identify and adapt to their environ-
ment is becoming of critical importance. The collaboration with humans
represents a particular challenge, as the interaction varies between individ-
uals. The manipulation of an articulated object by a human in collabo-
ration with a robot is one example, where the robot performance can be
improved by learning a model to describe and predict the human motor
control behavior [1].
The literature on human control behavior widely agrees on the fact that

human motor performance is achieved through the reactive and predictive
component (see the review in [2]). The reactive component is triggered by
sensory inputs and updates an ongoing motor command; it can, therefore,
be interpreted as the feedback control action. The predictive component
capitalizes on the ability to anticipate motor events based on memory in
order to accomplish a given task under foreseeable conditions, which can
be interpreted as feedforward action [3]. The existence of these two com-
ponents has been highlighted in studies of various motor control tasks,
including grasping and manipulation [4]–[6].
In this work, we present a shortest path inverse optimal control method,

which is applied to train a predictive model of human motor control. The
inverse optimal control method is thereby used to learn the parameters of
an optimal control problem from demonstrated state and input trajecto-
ries. In particular, it learns both the objective function and constraints
of an underlying infinite-horizon optimal control problem from observed
trajectory segments of finite length using optimality conditions of a cor-
responding shortest path problem and a candidate constraint set. The
optimality conditions are derived based on Bellman’s principle of optimal-
ity [7] and the Karush-Kuhn-Tucker (KKT) optimality conditions [8]. The
proposed method is convex for objective functions that are linear in their
parameters and for general nonlinear systems, where relevant constraints
are identified from the candidate constraint set using Lagrange multipliers.
The method is utilized to train a predictive model of movements of three
human subjects from a human manipulation task.
We set up a human manipulation experiment, where three human sub-

jects manipulated one end of a passive kinematic object whose position was
changed consecutively by a robot. In this context, the goal of the inverse
learning method is to train a predictive model of human movements. The
underlying hypothesis is that the demonstrations of the human manipula-
tion task are optimal with respect to an infinite-horizon constrained opti-
mal control problem. The experimental study highlights the potential of
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the proposed learning approach by providing good predictive performance
for individual human movements. In particular, the proposed shortest
path formulation is shown to be beneficial for suboptimal execution, i.e.,
disregard the reactive human motor control component in the application
considered in this paper.
Related inverse optimal control approaches are presented in [9]–[15]. The

approaches in [9]–[11] can be interpreted as an inverse method of an infinite-
horizon optimal control problem, but they are restricted to unconstrained,
linear systems and quadratic objective functions. In [12], a bilevel ap-
proach to solve an inverse unconstrained optimal control problem is pre-
sented. The techniques closest to our method are [13]–[15], where the KKT
conditions are similarly used for learning the stage cost but the constraints
are assumed to be known. The two main distinctions of our approach with
respect to [13]–[15] are the consideration of an optimal control problem
with an infinite horizon and the simultaneous identification of constraints
from a candidate constraint set that is constructed from data with a convex
optimization problem. By using a shortest path formulation, the required
trajectory segment for learning the parameters of the underlying optimal
control problem can be shorter, e.g., compared to [14], and the learned pa-
rameters are invariant with respect to the chosen trajectory segment. As
for the application, the incorporation of constraints results in better pre-
dictions of human movement, whereas the consideration of a shortest path
formulation allows for isolating trajectory segments where the predictive
component is dominant, i.e., where the hypothesis of optimal demonstra-
tions with respect to an optimal controller is valid.

2 Shortest Path Inverse Optimal Control

This section presents an inverse optimal control (IOC) approach based on
a shortest path formulation to learn an objective function and constraints
from observations. The observations are represented as trajectories of state
measurements x(k) ∈ Rn and inputs u(k) ∈ Rm at time-step k, where

x(k + 1) = f(x(k), u(k)) (P1-1)

with the potentially nonlinear function f(·) modeling the evolution of the
state. For the derivation of the inverse method in this section, we assume
that f(·) is given. Section 4 discusses how to identify f(·) for the considered
application.
Observed trajectories are assumed to be optimal with respect to an

infinite-horizon constrained optimal control problem, i.e., x(k + i) = x?i
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and u(k + i) = u?i ∀ i ≥ 0 with

{x?i , u?i }∞i=0 = arg min
xi,ui

∞∑
i=0

l(xi, ui;L) (P1-2a)

s.t. xi+1 = f(xi, ui) ∀ i ≥ 0 (P1-2b)
C(xi, ui) ≤ 0 ∀ i ≥ 0 (P1-2c)
x0 = x(k) (P1-2d)

with stage cost l(xi, ui;L) defined as a parametric function with parameters
L, constraint set C(xi, ui) ≤ 0, and initial state x(k). The notation {·}∞i=0

is used to indicate indices from i = 0 to ∞. The goal in this work is to
train a predictive model by learning both l(xi, ui;L) and C(xi, ui) from
state and input measurements, which is referred to as the inverse problem
to (P1-2) in the following.

Problem Definition

The first difficulty in the inverse problem of (P1-2) is that measurements
x(k), u(k) are not available for k →∞ but only in some finite segment. We
address this using a shortest path formulation (see Section 2.1). For cases,
where the constraint set C(·, ·) is unknown, we propose the construction of
a candidate constraint set. The main step of the proposed approach is the
derivation of optimality conditions of the shortest path formulation using
the candidate constraint set (see Section 2.2). The optimality conditions
are then used to simultaneously identify constraints from the candidate set
and learn the stage cost parameters.

2.1 Formulation of infinite-horizon as shortest path
problem

We formulate the infinite-horizon problem as a shortest path problem of
finite length e and show that the minimizers of both the infinite-horizon
problem and the shortest path problem are identical along the path, i.e.,
from time k to k+e. LetXm := [ x(k)T x(k+1)T . . . x(k + e)T ]T ∈ Rn(e+1)

and Um := [ u(k)T u(k + 1)T . . . u(k + e− 1)T ]T ∈ Rme be the collection
of state and input measurements, respectively, over the time interval k
through k + e. If Xm, Um describe the shortest path, then they (at least
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locally) minimize

{Xm, Um} = arg min
xi,ui

e−1∑
i=0

l(xi, ui;L)

s.t. xi+1 = f(xi, ui)
C(xi, ui) ≤ 0 i = 0, ..., e− 1
x0 = x(k)
xe = x(k + e).

(P1-3)

Using Bellman’s principle of optimality [7], we can show that Xm, Um

then also correspond to minimizers of (P1-2) for i = k, ... k + e, which is
formally stated in the following theorem.

Theorem 1. Consider a trajectory segment of measurements Xm, Um

from a dynamical system (P1-1). If the observed inputs Um are the result
of the optimal control problem in (P1-2) for times k, ..., k+e−1, then Xm,
Um also (at least locally) minimize the optimization problem in (P1-3).

Proof. The optimization problem in (P1-2) can be written as

J?(x(k)) = min
xi,ui

e−1∑
i=0

l(xi, ui;L) +

∞∑
i=e

l(xi, ui;L)

s.t. (P1-2b), (P1-2c), (P1-2d).

(P1-4)

If x?e is known, then, using Bellman’s principle of optimality [7] with xe =
x?e , (P1-4) can be formulated as

J?(x(k)) = min
xi,ui

e−1∑
i=0

l(xi, ui;L) + J?(x?e)

s.t. xi+1 = f(xi, ui) i = 0, ..., e− 1
C(xi, ui) ≤ 0 i = 0, ..., e− 1
x0 = x(k)
xe = x?e .

(P1-5)

Hence, the minimizers of (P1-2) and (P1-5) are equal for all i = 0, ..., e.
The result follows with x?e = x(k + e).

Note that problem (P1-3) differs from a standard finite-horizon formula-
tion as used in [14] by the end-point constraint xe = x(k+e), which makes
a key difference for learning the problem parameters, as will be illustrated
in Section 3.
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Remark 1. The shortest path formulation originates from the hypothesis
that demonstrations are optimal with respect to the infinite-horizon problem
in (P1-2). For a different model/ hypothesis, the formulation of the inverse
problem can differ. A particular advantage of the shortest path formulation
is that any path along the measured trajectory can be used for learning.
This allows for selecting particular paths where the assumption of optimal
execution/data is fulfilled "more closely," e.g., high signal-to-noise ratio
or negligible reactive human motor control component in the application
considered.

2.2 Optimality conditions

In the following, we derive optimality conditions of the shortest path prob-
lem in (P1-3) and show how they can be used for learning both param-
eters of the stage cost and constraints. First, we express the optimiza-
tion problem in (P1-3) in terms of the inputs ui by recursively defining
xi = Fi(U, x0):

Fi(U, x0) :=

{
x0 if i = 0

f(Fi−1(U, x0), ui−1) else
(P1-6)

with U :=
[
uT0 uT1 . . . uTe−1

]T. Hence, the resulting optimization prob-
lem is given as

min
U

e−1∑
i=0

l(Fi(U, x(k)), ui;L)

s.t. C(Fi(U, x(k)), ui) ≤ 0 i = 0, ..., e− 1
Fe(U, x(k)) = x(k + e),

(P1-7)

where we use x0 = x(k). The Lagrangian L(U, λ, ν, L) of the optimization
problem in (P1-7) is given by

L(U, λ, ν, L) = νT(Fe(U, x(k))− x(k + e))

+

e−1∑
i=0

l(Fi(U, x(k)), ui;L) + λTiC(Fi(U, x(k)), ui)
(P1-8)

with the Lagrange multipliers λi ≥ 0 and ν ∈ Rn (see [16]), and L denoting
the parameters of the stage cost l(xi, ui;L). Using L(·) in (P1-8), the KKT
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optimality conditions for the trajectory segment are given by

∇UL(U, λ, ν, L) = 0 (P1-9a)

λTiC(Fi(U, x(k)), ui) = 0 i = 0, ..., e− 1 (P1-9b)
λi ≥ 0 i = 0, ..., e− 1 (P1-9c)
C(Fi(U, x(k)), ui) ≤ 0 i = 0, ..., e− 1 (P1-9d)
Fe(U, x(k))− x(k + e) = 0. (P1-9e)

Construction of candidate constraint set

Eq. (P1-9d) will hold for any observed trajectory with optimal execu-
tion (primal feasibility); however, the function C might be unknown. If
C is unknown, we propose to use (P1-9d) to construct candidate con-
straints C̄(xi, ui) as the convex hull of all observed data points of the form
P [xTi u

T
i ]

T ≤ p. A subset of the candidate constraints is then identified as
constraints via the KKT conditions. A method for computing the convex
hull, i.e., P and p, is, e.g., presented in [17].

Optimality conditions for learning

The idea of the proposed approach is to solve (P1-9) for the parameters L
of the stage cost l(xi, ui;L) as well as for λi and ν, given measurements
Xm, Um and the candidate constraints C̄(xi, ui), i.e.

∇U L̄(U, λ, ν, L)
∣∣
U=Um

= 0 (P1-10a)

λTi C̄(x(k + i), u(k + i)) = 0 i = 0, ..., e− 1 (P1-10b)
λi ≥ 0 i = 0, ..., e− 1 (P1-10c)

with the approximate Lagrangian L̄(·) defined as in (P1-8) where C̄(Fi(U,
x(k)), ui) replaces C(Fi(U, x(k)), ui). Eq. (P1-9d) is only needed for the
construction of candidate constraints and (P1-9e) holds by construction.
Hence, both C̄(x(i), u(i)) ≤ 0 and (P1-9e) are not needed for learning the
stage cost parameters [see (P1-9) with (P1-10)]. The feasibility problem in
(P1-10) is convex if l(xi, ui;L) is linear in L. One can show that (P1-10)
is always feasible using the convex hull as the candidate constraint set,
provided optimal and noise-free data.
The Lagrange multipliers λi and their values are essential in the proposed

IOC approach in order to identify constraints from the candidate set. Each
scalar λi,j can be interpreted as a force keeping the optimization problem
(P1-7) from violating the corresponding primal constraint C̄j(xi, ui) ≤ 0
at time i. In other words, the value of a dual variable λi,j indicates the
sensitivity of the optimization problem to the corresponding constraint
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[16]. We define a measure for the identification of constraint j as Λj ≥ Λ̄
with

Λj =
∑e−1
i=0 λi,j , (P1-11)

where Λ̄ ≥ 0 is a problem-specific threshold value. If, e.g., Λj = 0, the jth

constraint does not affect the minimizer of the optimization problem and
does not represent a constraint. If, however, the value of Λj is very high,
the minimizer is strongly affected by the constraint j and the constraint is
therefore crucial in explaining the observed trajectory. Hence, Λj relates
directly to the importance of constraint j. The larger Λj , the more impor-
tant is constraint j. We utilize this relation to identify constraints from the
candidate set. The identified constraints are used in the predictive model,
along with the learned parameters of the stage cost.

2.3 Sub-optimal and noisy data

Eq. (P1-10) will be feasible if, and only if, the trajectory is the solution of
an optimal control problem of the form (P1-2). In practice, however, even
if this modeling assumption is correct, the feasibility problem in (P1-10)
will not be satisfied exactly due to measurement or process noise. In order
to learn from sub-optimal or noisy data, we propose to solve the relaxed
problem

min
L,ν,λi

∥∥∇U L̄(U, λ, ν, L)
∣∣
U=Um

∥∥2

2

s.t. λTi C̄(x(k + i), u(k + i)) = 0
λi ≥ 0 i = 0, ..., e− 1.

(P1-12)

It is easy to verify that
∥∥∇U L̄(·)

∣∣
U=Um

∥∥2

2
= 0 indicates optimality with

respect to (P1-10) and that (P1-12) is always feasible.

Remark 2. The use of a shortest path formulation in this work is reflected
through the term νT(Fe(U, x(k)) − x(k + e)) in (P1-8). Thus, an inverse
approach with finite horizon as in [14] is obtained with ν = 0.

Remark 3 (On active and identified constraints). A constraint j is active
if C̄j(xi, ui) = 0 at time i. Using the proposed method for constructing
candidate constraints, there are always active candidate constraints. How-
ever, it is important to note that not all active candidates yield Λj > 0; it
is also possible that candidate j is active, i.e., C̄j(xi, ui) = 0, and Λj = 0.
Inversely, Λj = 0 does not mean that the candidate j is never active but
that the observed trajectory would have been the same with and without
candidate j. Hence, candidate constraint j is not identified as constraint if
Λj = 0. Section 3 illustrates this concept in a simulation example.
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3 Illustrative Example

In this section, we illustrate the IOC procedure and highlight its key ben-
efits in simulation for a pendulum with the discrete-time state-space rep-
resentation:[

x1(k + 1)
x2(k + 1)

]
=

[
x1(k) + Tsx2(k)

x2(k)− Ts gl sinx1(k)

]
+ Ts

[
0
1
ml2

]
u(k)

with x1(k) = θ(t) at t = kTs and Ts = 0.01s, g = 9.81m/s2, l = 1m,
and m = 1kg. θ(t) is the angle and u(t) is the applied torque in Nm,
where |u(t)| ≤ ū with ū = 5Nm is assumed to be the available torque.
In the following, we consider an optimal controller of the form (P1-2)
with constraints ui ≤ 5 and −ui ≤ 5 and stage cost l(xi, ui;Qgt, rgt) =
xTiQ

gtxi + rgt|ui|+u2
i . The goal in this example is to learn the constraints

and the parameters Qgt and rgt.

3.1 Learning with shortest path and finite horizon methods

First, we highlight the main differences between the proposed shortest
path formulation and two finite-horizon methods, i.e., a method using the
KKT conditions similarly as in [14] and a probabilistic IOC method which
uses a likelihood maximization similarly as in [18]. The finite-horizon
KKT method differs from the presented approach by virtue of the term
νT(Fe(U, x(k)) − x(k + e)) in (P1-8) and thus, follows readily with ν = 0
(removing the term). The proposed IOC approach, similarly as the ap-
proach in [14], yields a convex semi-definite program, which can, e.g., be
solved with MOSEK [19], whereas the likelihood maximization method
yields a non-convex optimization problem, which in this example is solved
with a projected gradient descent method.
Figure P1-1 shows results with trajectory segments from t = 0s through

te generated with Qgt = I and rgt = 0, where we enforce Q � 0. The
middle plot shows that the proposed method only needs a segment from
t = 0s through te ≈ 0.5s to find the ground truth. Both methods with
finite horizon are not able to learn the ground truth even if the segments
are long and θ(t) is close to stationarity (see Q12 ≈ 1 at te = 1000s).

3.2 Learning with and without candidate constraints

Next, consider the trajectories with Qgt = 10I and rgt = 1 for comparing
methods with and without candidate constraints using segments from ti to
ti + 2s [see Figure P1-2 (top)].
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Figure P1-1. Top: State and input trajectories. Middle: Q learned with
shortest path IOC. Bottom: Q learned with two finite-horizon
methods: KKT and maximum likelihood.

IOC, constrained (2nd plot from the top)

The first step is to construct candidate constraints for the input u(k):

u(k) ≤ gu (P1-13a)
−u(k) ≤ gl (P1-13b)

where gu and gl depend on the chosen segment and are displayed in red
(diamond markers) and green (triangle markers), respectively. The algo-
rithm returns Q and r as well as Λ1 and Λ2, which are defined in (P1-11)
and correspond to the candidate constraints (P1-13a) and (P1-13b), re-
spectively. The parameters Q and r are very close to the ground truth for
all ti. If ti < 0.96s, gu = 5 and Λ1 > 0 suggesting that u(k) ≤ 5 is indeed a
constraint. If ti > 0.96s, gu < 5 and Λ1 = 0 suggesting that u(k) ≤ gu < 5
is not a constraint, which is correct, as the constraint is not active. For all
ti, gl < 5 and Λ2 = 0 (not displayed) suggesting that −u(k) ≤ gl < 5 is not
a constraint. Overall, Q is learned reliably and for ti < 0.96, u(k) ≤ umax
is learned as constraint. The trajectory does not provide conclusive evi-
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dence about the existence of a lower bound, i.e., −u(k) ≤ umax, which is
expected as gl < 5 ∀ti.

IOC, unconstrained (3rd plot from the top)

If ti > 0.96s, Q and r are very close to the ground truth, which is expected
since the control problem is virtually unconstrained in these segments.
However, if no candidate constraints are constructed a priori, Q and r
differ for ti < 0.96s as the observed trajectory cannot be explained by
means of an unconstrained optimal control problem.

Finite-horizon IOC, constrained (bottom plot)

The method learns the constraint u(k) ≤ 5 using similar arguments as
the proposed shortest path IOC method; however, it fails to capture the
ground truth stage cost parameters with r ≈ 0 and Q not close to Qgt for
all trajectory segments.

3.3 Summary of analysis

In this section, we have illustrated the benefits of the proposed approach.
In particular, we showed the candidate constraint construction and how to
simultaneously learn parameters of the stage cost and identify constraints
from the candidate set. Further, we have shown that the proposed shortest
path formulation only requires a short segment of measurements to learn
the stage cost parameters and identify constraints, whereas finite-horizon
approaches require a comparably long segment. Moreover, we have shown
the importance of the candidate constraint set as a substantial component
for correctly identifying the stage cost.

4 Manipulation of a Passive Kinematic Object

In this section, we show how to train a predictive model for human move-
ments in a manipulation task using the proposed method. We conducted
experiments with three human subjects where the underlying hypothesis
is that humans plan their movements by solving a constrained optimal
control problem.

4.1 Experiment description and system modeling

In the experiment, the human subjects manipulated one end of an object
whose position was changed consecutively by a robot. The manipulation
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Figure P1-2. Top: State and input trajectories. 2nd from the top: Pa-
rameters learned with the proposed method with candidate
constraints. 3rd from the top: Q learned without candidate
constraints. Bottom: Parameters learned with finite-horizon
method with candidate constraints.

task was set up to provide a foreseeable environment triggering the hu-
man’s predictive motor control component such that the reactive control
component can be disregarded (at least at the beginning of the move-
ment). The object was articulated and unactuated and was composed of
three lightweight wooden links and one cardboard handle, which acted as
both a revolute joint and the manipulation point (see Figure P1-3). Hence,
it had four revolute joints, one connecting its end link to the robot (joint
1), two connecting the three wooden links (joint 2 & 3), and the cardboard
handle (joint 4), which was gripped by the subject such that the forearm
and the handle acted as a single rigid body.
After familiarizing themself with the robot, the human was instructed

to achieve specific angles for two of the object’s joints, the joint connecting
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the object to the robot (joint 1 in Figure P1-3) and the first joint after that
(joint 2), both of which have vertical rotational axes (perpendicular to the
ground). The target angles were communicated to the subjects visually by
reference-markers attached to the links. The subjects were asked to only
move when the robot was stationary. First, the robot moved to disturb
the system state. When the robot’s motion ended, the subject corrected
the reference error. Motion capture sensors were placed on all links of each
kinematic chain and recorded through the Phasespace Python API.

Joint 1
Joint 2

Joint 3

Joint 4 (cardboard handle)

Figure P1-3. Top: Modeling of the human arm and the object. Bottom:
Experiment setup with the Kuka LBR iiwa robot. Joints in-
cluded in the model are shown in green, while the blue joint
represents a freedom of motion that was constrained by ex-
periment design. The motion capture markers are illustrated
in red.

The derivation of the individual movement model, i.e., the system dy-
namics, of each subject is based on modeling the passive kinematic object
and the human arm as a kinematic chain [20] whose parameters were iden-
tified from measurements. In this model, the base frame is attached to the
torso and the manipulation frame is attached to the grip location of the
hand. Ball joints such as the shoulder joint are modeled as three revolute
joints in series with orthogonal axes intersecting at the center of the joint.
This leads to the ball joint configuration being described with intrinsic Eu-
ler angles rotating around a point in space [21], [22]. The elbow joint is
modeled as a single revolute joint. The wrist is modeled as three revolute
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joints in series; however a wrist brace was used in the experiment to restrict
the motions in the frontal and sagittal plane, that is, waving and flapping
motions. Pronation and supination (twisting about the forearm) could not
be restricted by the brace; however the experiment was designed such that
the kinematic chain of the object itself constrained this movement. Both
the placement of the motion capture markers and the kinematic modeling
are shown in Figure P1-3.
The system state x(t) = [ xh(t)T xo(t)

T ]T is composed of the joint angles
of the human, xh(t) ∈ R4, and of the object, xo(t) ∈ R4. The input to the
system, u(t) = ẋh(t), is given by the joint velocities of the human arm.
The velocities of the object joint angles are given by:

ẋo(t) = J‡o (xo(t))Vg(t), (P1-14)

where Jo(xo(t)) ∈ R6×4 is the Jacobian mapping joint velocities of the
object to Vg(t), the absolute twist velocity of the manipulation frame, and
J‡o (xo(t)) ∈ R4×6 denotes its Moore-Penrose pseudo-inverse [23]. Given
that the human maintained a stationary base in the experiment, we can
express Vg(t) in terms of the human arm joint velocities and the Jacobian
of the human arm, Jh(xh(t)) ∈ R6×4:

Vg(t) = Jh(xh(t))ẋh(t). (P1-15)

Using (P1-14) and (P1-15), ẋo(t) = J‡o (xo(t))Jh(xh(t))ẋh(t), and thus, the
overall dynamics of the system is given by[

ẋh(t)
ẋo(t)

]
=

[
I

J‡o (xo(t))Jh(xh(t))

]
u(t). (P1-16)

In order to obtain the Jacobians, the twists representing the joints in each
kinematic chain are identified by recording traces of the subject’s range of
motion and applying the techniques in [24]. The Jacobians Jh(xh(t)) and
Jo(xo(t)) in (P1-16) are derived using the formula for the body Jacobian
as in [25].
A discrete-time representation of (P1-16) is derived using an Euler-

forward scheme with the sampling time Ts:[
xh(k + 1)
xo(k + 1)

]
=

[
xh(k)
xo(k)

]
+ Ts

[
I

J‡o (xo(k))Jh(xh(k))

]
u(k).

An unscented Kalman filter as described in [26] is implemented to estimate
the system state, where a static process model is chosen to smoothen the
estimated angles, since measurement noise is amplified by the kinematic
transformation. The inputs are computed as u(k) = (xh(k+1)−xh(k))/Ts.
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4.2 Learning predictive model for human movements

Each of the three subjects maneuvered the object 15 times to correct the
reference error induced by the robot. For each experiment, we recorded the
entire trajectory from the start of the human movement until the subject
was instructed to remain stationary. For reasons discussed in Section 4.3,
we use the initial 1.2s, i.e., e = 65 in (P1-10) with sampling time Ts =
0.0185s for learning, which corresponds to roughly 60% of each trajectory.
In order to generalize from the available sparse data, we utilize leave-one-
out cross-validation [27], where we learn the parameters of the predictive
model 15 times, each time removing one of the recorded trajectories. This
is done to assess the robustness of the model.

Design choices

In this work, we train a predictive model with quadratic stage cost. Our
goal is to exemplify the proposed method to build a simple predictive
model of human movement. Quadratic stage costs are commonly used as
objective function in optimal control offering a good compromise between
complexity and expressivity, where the cost minimizes a trade-off between
tracking a given target and control effort. Note that higher-order or more
complex stage cost terms are possible with the proposed framework and
there are various possibilities to express human movements [28]. Given
that the task requires tracking a reference for only two of the states, we
take a stage cost of the form

l(xi, ui) = (Sxi − ys)TQ(Sxi − ys) + uTiRui,

where ys ∈ R2 is the reference, S = [ 02×4 I2 02×4 ] selects the states (two
joint angles of the object) tracking ys, and Q,R are the penalty parameters.
We enforce Q,R � 0 in order to obtain physically meaningful penalties for
both deviation to the target angles and control effort. Also, we restrict the
input penalties to

∑m
i=1 Rii = 1, which fixes the scaling of the stage cost

and avoids the trivial solution of all parameters being zero. We train one
predictive model without constraints and one with a polytopic candidate
constraint set for each subject.

Candidate constraints

The object’s states xo(k) are modeled as unconstrained. The human’s
states xh(k) consist of the three shoulder joint angles and the elbow angle;
the inputs u(k) are the three angular velocities of the shoulder joint and
the angular velocity of the elbow. Constraints on joint angles directly
relate to constraints on xh(k), velocity constraints relate to constraints
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on u(k), and acceleration constraints are computed as a rate constraint:
a(k) = (u(k + 1)− u(k))/Ts.

Learning results

Figure P1-4 shows the mean and standard deviation of Q and R obtained
with the proposed IOC method. The most distinct feature is the scale
of the parameters Qij , varying from order 10−2 for Subject 1, 10−3 for
Subject 2, to 10−6 for Subject 3. The second most distinct feature is
the difference in the diagonal elements of R that reflect movement of the
shoulder, i.e., R11, R22, and R33, whereas the penalty on elbow velocity is
comparable, i.e., R44 ≈ 0.2 for all subjects. Off-diagonal elements in R are
similar across subjects.
Table P1-1 shows the sum of Lagrange multipliers as in (P1-11), which

are used to identify constraints from the candidate constraint set. The La-
grange multipliers are stated as the mean over all experiments to identify
constraints on the angle, velocity, and acceleration of shoulder and elbow
joints. We consider constraint j as identified if the corresponding Lagrange
multiplier Λj ≥ Λ̄ = 10−3. It can be seen that constraints are predomi-
nantly on shoulder movement. Constraints on elbow movement seem less
important for all subjects. Note that even though the stage cost parame-
ters in Figure P1-4 obtained with constrained and unconstrained IOC are
relatively close for the individual subject, the resulting prediction models
differ by virtue of the constraints identified as in Table P1-1.
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Figure P1-4. Mean and standard deviation of cost parameters Q and R for
unconstrained learning (black stars) and constrained learning
(red diamonds).
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Table P1-1. Lagrange multipliers to identify constraints

Angle Velocity Acceleration
Shoulder Elbow Shoulder Elbow Shoulder Elbow

Subject 1 22.8 0 3.31e-2 0 1.38e-2 8.66e-4
Subject 2 11.5 0 2.78e-1 0 2.15e-2 6.98e-4
Subject 3 3.50 0 4.36e-1 2.86e-4 1.05e-1 0

4.3 Evaluation of trained human manipulation model

The difficulty in evaluating the quality of the trained model for human-
centered experiments is the lack of a ground truth as reference. We there-
fore assess the quality of modeling human movement as an optimal control
problem (P1-2) by comparing the true trajectory with the prediction pro-
vided by the model. The predictions are obtained by solving problem
(P1-3) with the learned stage cost and identified constraints from the ini-
tial position at time t = 0s through t = te = 1.2s using IPOPT [29] (see
Figure P1-5 for a sample prediction). We compute 15 sets of stage cost ma-
trices by leaving out one trajectory for each learning. In order to evaluate
the quality of the trained model, we use the left-out measured trajectory
for validation against the predicted trajectory, which would result from
(P1-3) with the learned stage cost and constraints. This technique ensures
that the predicted trajectory is not biased by the corresponding measured
trajectory. The mismatch between prediction x̂ji ∈ R8 and measurement
xj(i) ∈ R8 of trajectory j is measured as the root mean square (RMS)
error:

Ej =
√

1
8e

∑e
i=1 ‖x̂

j
i − xj(i)‖22. (P1-17)

Intra-subject evaluation

First, we compute the errors Ej in (P1-17) for each trajectory j per subject.
Figure P1-5 shows one measured trajectory of Subject 2 and the predic-
tions obtained with the unconstrained and the constrained model. The
prediction obtained with the unconstrained model shows a larger RMS er-
ror, best seen in the plot of human joint angles. The prediction obtained
with the constrained model shows a lower error. Table P1-2 presents the
mean and standard deviation over all 15 prediction errors for all subjects.
It shows that, generally, the predictions have low errors (< 3.3◦), where
Subject 1 has the lowest (< 1◦). On average, the presence of constraints
improve the predictions by 20%-25%.
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Figure P1-5. Measured trajectory in black, predicted trajectory with the
unconstrained model in gray (error 4.17◦) and the constrained
model in red (error 1.40◦). The upper plot shows the shoulder
flexion, shoulder abduction, and shoulder rotation, as well as
elbow flexion. The object states to be tracked are shown in
the lower plot as dashed black lines and are related to the
corresponding joints with a diamond and a star marker.

Table P1-2. Prediction errors: Unconstrained vs. constrained

Constraint set unconstrained constrained
Subject 1 0.96◦ ± 0.49◦ 0.78◦ ± 0.42◦

Subject 2 3.26◦ ± 1.75◦ 2.45◦ ± 0.87◦

Subject 3 1.87◦ ± 1.00◦ 1.56◦ ± 0.79◦

Inter-subject cross-evaluation

Next, we analyze the individuality of the trained models, where the error
Ej in (P1-17) is computed three times for each trajectory j: We compute
the error using the prediction model of the subject who generated trajec-
tory j; then, we compute Ej of the predicted trajectory x̂ji using the other
subjects’ prediction models, where we use the proposed IOC method with
polytopic constraints.

62



4 Manipulation of a Passive Kinematic Object

Figure P1-6 shows an example of a measured trajectory from Subject 1,
compared against predictions generated with the models of all subjects.
The measured trajectory and the predicted trajectory of Subject 1 are
close (error: 0.55◦). The predicted trajectories of Subject 2 & 3 show
higher errors. Table P1-3 states the mean and standard deviation of the
errors between measurements of Subject j in columns j and prediction
with the objective of Subject i in rows i over all trajectories. Hence, good
separation between the subjects means large entries in the off-diagonal
entries i 6= j. The results show high confidence in separating Subject 1
from the other two with high confusion errors (3.23◦, 2.39◦ vs. 0.78◦).
The confidence to identify Subject 2 from a given trajectory is also high
with confusion errors (3.99◦, 3.59◦ vs. 2.45◦). A less clear separation is
observed for Subject 3, where the confusion errors are lower (2.22◦, 1.91◦

vs. 1.56◦). Overall, this cross-validation suggests that the models trained
to predict the distinct motor behavior are individual.
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Figure P1-6. Measured trajectory of Subject 1 in black, predicted trajec-
tory of Subject 1 in red (error: 0.55◦). Left plots: Predicted
trajectory of Subject 2 in green (error: 3.62◦). Right plots:
Predicted trajectory of Subject 3 in blue (error: 1.97◦).
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Table P1-3. Prediction errors: Cross-validation between subjects

Trajectories of Subject 1 Subject 2 Subject 3

M
od

el Subject 1 0.78◦ ± 0.42◦ 3.99◦ ± 1.53◦ 2.22◦ ± 1.14◦

Subject 2 3.23◦ ± 1.03◦ 2.45◦ ± 0.87◦ 1.91◦ ± 0.93◦

Subject 3 2.39◦ ± 0.68◦ 3.59◦ ± 1.68◦ 1.56◦ ± 0.79◦

Benefit of shortest path formulation

In the following, we discuss the advantages of using a shortest path formu-
lation over a finite horizon in the context of the considered application. If
the entire trajectory is used for training and stationarity is reached, i.e.,
e is large, both the proposed shortest path method and a finite-horizon
method are similar. In the context of the considered application, however,
we encountered two main challenges when considering the entire trajec-
tory. Firstly, in the final part of the trajectory, the target angles are more
or less reached and the measured signals are close to stationarity. As a
result, the signal-to-noise ratio is low and can corrupt learning. Secondly,
we observed small corrections around the target angles in the experiment
suggesting the presence of reactive movements, which renders the final part
of the trajectory not indicative of the predictive human motor control.
For shorter segments, the predictive component dominates both noise

and reactive component but the solution from a finite-horizon formulation
diverts from that with a shortest path (see Section 3). The proposed IOC
approach allows for using only the initial part of the trajectory for learning
where stationarity is not reached. Overall, the presence of both the reactive
human motor control component and noise do not fulfill the assumption of
optimal execution with respect to (P1-2). We used the initial 60% of the
trajectory, which was observed to be a good trade-off between segment-
length and avoidance of the reactive component.
Figure P1-7 revisits the trajectory in Figure P1-5 to illustrate the above

discussion on the horizon length e. The upper plot shows the complete
recorded trajectory, where some correction around the target angles can
be observed for t ≥ 1.4s (see joint angle marked by the diamond symbol).
The lower plot displays the RMS error (P1-17) of the predictions that result
from different horizon lengths e. The RMS error increases as a result of
both the correction around the target angles and the low signal-to-noise
ratio. It highlights that the modeling assumption as an open-loop optimal
control problem is suitable for the predictive part, but not in the presence
of the reactive component.
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5 Conclusion

This paper presented an inverse optimal control approach to learn both cost
function parameters and constraints from demonstrations, i.e., state and
input measurements of dynamical systems. The shortest path formulation
is shown to be the inverse problem to an infinite-horizon optimal control
problem. By relying on the Karush-Kuhn-Tucker conditions, the problem
is convex for cost functions that are linear in their parameters. We set up
a human manipulation experiment to exemplify the proposed approach for
modeling and predicting human arm movements. In the experiment, three
human subjects manipulated one end of a passive kinematic object whose
position was changed consecutively by a robot. The benefits of using a
shortest path formulation and the consideration of constraints on human
movements were highlighted. The results showed that a model with good
predictive capabilities can be learned using a quadratic cost function for
both states and inputs together with constraints on shoulder movements
using the proposed formulation. Finally, it was shown that the predictive
models of the human subjects are individual.
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ing of objective functions for constrained optimal control prob-
lems, which is based on the Karush-Kuhn-Tucker (KKT) con-
ditions. We discuss three variants corresponding to different
model assumptions and computational complexities. The first
method uses a convex relaxation of the KKT conditions and
serves as the benchmark. The main contribution of this paper
is the proposition of two learning methods that combine the
KKT conditions with maximum likelihood estimation. The key
benefit of this combination is the systematic treatment of con-
straints for learning from noisy data with a branch-and-bound
algorithm using likelihood arguments. This paper discusses the
theoretic properties of the learning methods and presents sim-
ulation results that highlight the advantages of using the max-
imum likelihood formulation for learning objective functions.
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1 Introduction

Objective functions used for control design do not necessarily correspond
to the actual performance specifications for a dynamical system, which
may comprise complex or sparse targets. Instead, they are often chosen
to facilitate gradient-based numerical optimization, which, in turn, makes
their design not very intuitive and their calibration can require a tedious
manual engineering effort to meet the performance specifications. Inverse
learning concepts such as inverse optimal control offer an attractive design
paradigm for learning objective functions from data to avoid their manual
tuning. In this context, the data can originate, e.g., from a human actor,
who demonstrates how to optimally operate the dynamical system being
considered. Learning from demonstrations, however, necessarily implies
that the data are subject to noise and other sources of sub-optimalities,
which have to be taken into account.
In this paper, we present and contrast three variants of an inverse op-

timal control approach that leverages the Karush-Kuhn-Tucker optimality
conditions, cf. [1], [2], to learn objective functions of optimal controllers,
e.g., for linear quadratic or model predictive control, from noisy data. The
first method is based on a convex relaxation of the KKT conditions to allow
for noisy data, which is similar to the formulation in [3], [4] and included
in this paper as the benchmark. The main contribution of this paper is the
proposition of two inverse optimal control methods that combine the KKT
conditions with a maximum likelihood estimation algorithm, which offer
the key benefit of systematically dealing with state and input constraints
in the presence of noisy data. The underlying assumption is that the data
are samples from a distribution (rather than expecting deterministic, op-
timal data). Maximum likelihood estimation is enabled by an algorithm
that uses branch-and-bound-type ideas based on the likelihoods of active
constraints. The second contribution is a theoretical and simulative anal-
ysis of the properties of the three methods. In theory, we analyze the
learning results of the inverse optimal control methods for unconstrained,
linear dynamical systems and a quadratic cost function. In simulation, we
present learning results for both constrained, linear and nonlinear systems.

Related work

Inverse optimal control methods typically model data as deterministic and
resulting from an optimal control problem [5], whereas we explicitly con-
sider the data as stochastic. In [6]–[8], inverse optimal control methods for
linear, unconstrained systems are presented. Englert et al. [3] and Menner
et al. [4] use a formulation similar to the first method presented in this
paper, which is based on the relaxation of the KKT conditions. Chou et
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2 Problem Statement

al. [9], [10] address a related problem by learning constraints. The method
in [11] considers a non-deterministic model, but does not consider con-
straints in the learning procedure. The closest to the proposed likelihood
estimation methods is [12], where the main difference lies in the proposed
formulation using likelihood arguments offering the key advantage of deal-
ing with constraints using a branch-and-bound algorithm.
Inverse reinforcement learning methods typically model data by means

of a Markov decision process, cf. [13]–[15]. As a result, these methods can
deal with noise by construction, but constraints are typically not consid-
ered. Compared to inverse reinforcement learning methods, we base our
algorithm on the KKT conditions in order to explicitly consider constraints
and noisy data.

2 Problem Statement

We consider discrete-time dynamical systems of the form

x(k + 1) = f(x(k),u(k)), (P2-1)

where x(k) ∈ Rn is the state at time k, u(k) ∈ Rm is the input, and f is,
in general, a nonlinear function.

Control Model

We consider optimal controllers of the form

v?k = arg min
vk,zk ∀k

θTφ (v0, ...vN ,z0, ...zN+1)

s.t. zk+1 = f(zk,vk) ∀k = 0, ...N

g(zk,vk) ≤ 0 ∀k = 0, ...N

z0 = z(0),

(P2-2)

where v?k are optimal inputs at time k, zk are the predicted states given
inputs vk, and the initial condition is z(0). The minimizers of (P2-2), i.e.,
the nominal states z?k and inputs v?k, express a motion plan and do not
necessarily coincide with the measured states x(k) and inputs u(k). The
objective function is defined by φ, which is weighted by the parameters θ.
The function g defines constraints and N is the prediction horizon. We
assume that φ, f , and g are known and continuously differentiable.

Assumption on the data

In expectation, the data are assumed to be the solution to (P2-2), i.e.,
the demonstration, e.g. from a human agent, is modeled as an optimal
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controller. Due to noise and other sources of sub-optimalities, we assume
a probability distribution for the data:

i) We model the initial condition, denoted x(0), as uncertain and as-
sume

x(0) ∼ N (z(0),Σ0), (P2-3a)

i.e., x(0) is Gaussian distributed with mean z(0) and covariance Σ0.

ii) We model the observed inputs, denoted u(k), as suboptimal and
assume

u(k) ∼ N (v?k,Σ
u
k) ∀k = 0, ..., N, (P2-3b)

where v?k are the minimizers of (P2-2).

In the context of learning from data generated by a human agent, eq.
(P2-3a) and eq. (P2-3b) model that a human agent may be uncertain
about the true initial state x(0) and may not execute the intended motion
plan optimally.

Objective

In this paper, we learn the parameters θ of the optimal controller in (P2-2)
from data represented in the form of state x(k) and input u(k) measure-
ments satisfying (P2-1) generated, e.g., by a human actor modeled as in
(P2-3).

Notation & Preliminaries
In order to ease exposition, we vectorize sequences

U =


u(0)
u(1)
...

u(N)

 , Z =


z0

z1

...
zN+1

 , V =


v0

v1

...
vN


and use the function F relating the vectorized sequences as in (P2-1):
Z = F (V ,z0). We use φ (v0, ...vN ,z0, ...zN+1) = φ (V ,Z), as well as
g (v0, ...vN ,z0, ...zN+1) = g (V ,Z) equivalently. Further, U ∼ N (V ,Σ)
implies u(k) ∼ N (v?k,Σ

u
k) for all k = 0, ..., N , i.e., Σ ∈ RmN×mN is block-

diagonal with blocks Σu
k and we define ‖x‖X = xTXx.

Let idx,¬idx ∈ {0, 1}s with idx + ¬idx = {1}s. For a vector λ ∈ Rs, we
define λidx selecting all elements λi for which idxi = 1 (λ¬idx selecting λi
for which idxi = 0). δi is a unit vector with δij = 1 if i = j and δij = 0 if
i 6= j.
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Consider the optimization problem

V ? = arg min
V

θTφ(V ,x)

s.t. g(V ,x) ≤ 0.
(P2-4)

The KKT conditions of (P2-4) are given by

KKTθ(V ?,x) =


∇V Lθ(V ,x)|V =V ? = 0

λTg(V ,F (V ,x)) = 0

g(V ,F (V ,x)) ≤ 0

λ ≥ 0

(P2-5)

with the dual variables λ and the Lagrangian

Lθ(V ,x) = θTφ(V ,F (V ,x)) + λTg(V ,F (V ,x)).

The KKT conditions are necessary for constrained optimization (first-order
derivative tests), i.e., any V ? locally minimizing (P2-4) satisfies (P2-5). For
more details, the reader is referred, e.g., to [16].
Proposition 1. Consider

f1 = max
x∈Rn

f(x) f2 = max
x∈Rn

f(x)

s.t. g1(x) ≤ 0 s.t. g1(x) ≤ 0, g2(x) ≤ 0

and let {x|g1(x) ≤ 0} be a non-empty set and f(x) be bounded. Then,
f1 ≥ f2.

3 Inverse Learning Methods

This section presents three methods for inverse learning of the objective
function, which utilize the KKT conditions in (P2-5) as follows: Suppose
V ? is the result of (P2-2) for some true parameters θ = θt and initial
condition z(0). Then, KKTθ(V ?,z(0)) hold for θ = θt. Hence, the KKT
conditions can be used to learn θt given V ?. Method 1 is based on a relax-
ation of the KKT conditions in (P2-5) to allow for noisy data. Methods 2
and 3 are based on maximum likelihood estimation and use the distribu-
tion in (P2-3). The three methods vary in computational complexity and
model assumptions in the form of approximations.
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Method 1

This method uses a relaxation of the KKT conditions to directly relate the
data U ,x(0) with θ:

θ̂ = arg min
θ,λ
‖∇V Lθ(V ,x(0))|V =U‖I

s.t. λ ≥ 0

λ¬idx = 0,

(P2-6a)

where ¬idx indexes inactive constraints, gi(U ,x(0)), with

¬idxi =

{
1 if gi(U ,x(0)) < 0

0 else.

The main advantage is that (P2-6a) is a convex optimization problem.
Compared to (P2-5), ∇V Lθ(V ,x(0))|V =U 6= 0 as well as g(U ,F (U ,x)) 6=
0 due to noisy data. Therefore, we minimize ∇V Lθ(V ,x(0))|V =U , where
λTg(V ,F (V ,x)) = 0 with λ ≥ 0 is relaxed to λ ≥ 0 and λ¬idx = 0.

Method 2

This method is based on maximum likelihood estimation and uses the
expected value of the initial condition in (P2-3a) with x(0) = z(0). Using
the distribution of the control inputs in (P2-3b), the parameters θ are
estimated to maximize the probability of observing U :

θ̂ = arg max
θ

p(V |U ,Σ)

s.t. V = arg min
Ṽ

θTφ(Ṽ ,F (Ṽ ,x(0)))

s.t. g(Ṽ ,F (Ṽ ,x(0))) ≤ 0.

(P2-6b)

Method 3

This method considers the uncertainty about the initial condition explicitly.
The method additionally optimizes over the initial condition with x(0) ∼
N (z(0),Σ0) and the model for the inverse learning problem is given by

θ̂ = arg max
θ,z(0)

p(V |U ,Σ)p(z(0)|x(0),Σ0)

s.t. V = arg min
Ṽ

θTφ(Ṽ ,F (Ṽ ,z(0)))

s.t. g(Ṽ ,F (Ṽ ,z(0))) ≤ 0.

(P2-6c)

Both maximum likelihood estimation methods (P2-6b) and (P2-6c) yield
bi-level optimization problems that are solved as described in Section 4.
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4 Algorithm for Maximum Likelihood Estimation

In the following, we outline the algorithm for learning θ using Method 2.
The algorithm for Method 3 follows analogously. We first replace the
likelihood p(V |U ,Σ) by its logarithmic likelihood log p(V |U ,Σ) (log-
likelihood) and the lower level optimization problem in (P2-6b) by its
KKT conditions in (P2-5). This way, the bi-level optimization problem
is replaced by a combinatorial problem due to the complementary slack-
ness condition λTg(V ,F (V ,x)) = 0:

p = max
θ,V ,λ,idx

log p (V |U ,Σ)

s.t. KKTθ,idx(V ,x(0))

idx ∈ {0, 1}s
(P2-7)

with idx selecting which of the s constraints are active, i.e.

KKTθ,idx(V ,x) =



∇Ṽ Lθ(Ṽ ,x)|Ṽ =V = 0

g(V ,F (V ,x)) ≤ 0

g(V ,F (V ,x))idx = 0

λ ≥ 0

λ¬idx = 0.

Solving the combinatorial optimization problem in (P2-7) directly is com-
putationally intensive. However, using likelihood arguments with branch-
and-bound-type ideas, (P2-7) becomes practically feasible as outlined in
the following.
Algorithm P2-1 summarizes the procedure to solve (P2-7), which is based

on systematically enumerating candidate solutions and is conceptually sim-
ilar to active-set methods, cf., [17]. The algorithm aims at reducing the
number of times (P2-7) has to be solved for a fixed combination of active
constraints, denoted idxj ∈ {0, 1}s, where we use j to index the specific
combination of active constraints. First (Line 1 in Alg. P2-1), we solve

p0 = max
θ,V

log p (V |U ,Σ)

s.t. KKTθ,idx0={0}s(V ,x(0)),
(P2-8)

where p0 is the log-likelihood of observing U and no active constraints
(idx0 = {0}s). Next (Line 2), we compute an upper bound on the log-
likelihood of constraint i’s activeness given the data U as

p̄i = max
V

log p(V |U ,Σ)

s.t. g(V ,F (V ,x(0))) ≤ 0

g(V ,F (V ,x(0)))δi = 0.

(P2-9)
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From Proposition 1, constraint i is not likely to be active if p̄i ≤ p0 and
consequently, constraint i does not need to be enumerated, which is the
first key component of the algorithm’s efficiency as the number of possible
constraint combinations, denoted c, can be reduced significantly.
Next (Line 3), we compute upper bounds for the log-likelihood p in

(P2-7) for the fixed combinations of the active constraints idxj (excluding
the discarded constraints):

p̃j = max
V

log p(V |U ,Σ)

s.t. g(V ,F (V ,x(0))) ≤ 0

g(V ,F (V ,x(0)))idxj = 0

(P2-10)

for all j = 1, ...c. As a result, we obtain c possible candidate constraint
combinations as well as their upper bounds:

D =
{{

idx1, p̃1} ,{idx2, p̃2} , ..., {idxc, p̃c}
}
. (P2-11)

For ease of exposition, D is ordered so that p̃j ≥ p̃j+1. The log-likelihoods
p̃j are the second key component for the algorithm’s efficiency and are used
as the stopping criteria, i.e., (P2-7) is solved for idxj starting with j = 1
until p̃j ≤ max{p0, ..., pj−1} (Line 5–9).

Algorithm P2-1 Overall algorithm

1: θ̂, p0 ← Solve (P2-8) with idx = {0}s
2: For each i = 1, ..., s, compute p̄i using (P2-9) and discard constraint i

if p̄i ≤ p0

3: Compute D in (P2-11) using (P2-10)
4: j = 1, p̂ = p0

5: while p̃j > max{p0, ..., pj−1} = p̂ . end if less likely
6: θj , pj ← Solve (P2-7) with fixed active constraints idxj

7: if pj ≥ p̂
8: θ̂ ← θi, p̂← pi

9: j ← j + 1

Remark 1. We implemented a projected gradient method that uses back-
tracking line search [18] to solve both (P2-6a) for Method 1 and (P2-7) with
the fixed active constraints idxj for Method 2 and Method 3. Section 6 de-
tails the computation times of the three inverse learning methods, which
show that the proposed algorithm is computationally feasible.

Fig. P2-1 illustrates the concept of the upper bounds on the constraint
likelihoods (Line 2 in Algorithm P2-1). In the given example, constraint
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4 and constraint 5 do not have to be considered for learning, i.e., do not
need to be enumerated. The resulting candidate constraint combinations
are

D =






1
0
0
0
0

 , p̃1

 ,




0
1
0
0
0

 , p̃2

 ,




1
1
0
0
0

 , p̃3

 ,




0
0
1
0
0

 , p̃4




Note that p̃1 = p̄1, p̃2 = p̄2, p̃3 = p̄2, and p̃4 = p̄3.
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Figure P2-1. Illustration of upper bounds on likelihoods p̄i as computed
in (P2-9) for polytopic constraints i = 1, ...5. The five upper
bounds p̄1–p̄5 (gray ellipses) for the five constraints (C1–C5)
as well as p0 (black ellipse) are displayed as level sets. For
Ci, V i denotes the corresponding, projected input sequence.

5 Analysis for Linear Systems and Quadratic Cost
Function

In this section, we present properties of the learning methods for a common
class of dynamical systems and cost functions. Suppose the system in
(P2-1) is unconstrained and linear (time-invariant or time-varying), i.e.,

fk(xk,uk) = Akxk +Bkuk, (P2-12a)

and the cost function is of the form

θTφ(V ,Z) =

N∑
k=0

zTkQθzk + vTkRθvk (P2-12b)
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with Qθ,Rθ � 0. Then, the stationarity condition can be written as

∇V Lθ(V ,z(0)) = MθV +Nθz(0),

where both Mθ and Nθ depend on the system dynamics, i.e., Ak,Bk,
and are linear in their parameters θ, i.e., Mµθ1+θ2 = µMθ1 +Mθ2 and
Nµθ1+θ2 = µNθ1 +Nθ2 with the scalar µ.
Let θt be the true parameters and, without loss of generality, ‖θt‖2 = 1

(scale-invariance of the cost function), i.e., ∇V Lθt(V ,z(0)) = MθtV +
Nθtz(0) = 0. The goal of the learning methods is thus to estimate θt or
any scaled version θ̂ = µθt with µ > 0 from data. Desirable properties of
the learning method are that θt results in expectation and that all θ̂ = µθt

with µ > 0 are equally likely.
Theorem 1 shows that the expected value of Method 3 is the true pa-

rameter vector θ̂ = θt and that Method 3 is indifferent toward the cost
function’s scale, i.e., any θ̂ = µθt with µ > 0 are equally likely (in expecta-
tion). Method 2 is equally indifferent toward the parameters’ scale but the
expected parameters are only θ̂ = θt if x(0) = z(0) (proof omitted as it
can be similarly derived). Theorem 2 shows that the expected parameters
θ̂ of Method 1 are not necessarily θt and that Method 1 is not indifferent
toward the parameters’ scale.

Theorem 1. Consider unconstrained, linear systems of the form
(P2-12a) and cost functions (P2-12b). Let U ∼ N (V ,Σ) and x(0) ∼
N (z(0),Σ0). In expectation, Method 3 returns θt (result 1) and any other
parameter realization is necessarily θ̂ ∝ θt (result 2).

Proof. Without loss of generality, define θ = θt + µ∂θ with µ ∈ R and
∂θ ∈ Rp such that ‖∂θ‖2 = 1. The results will be shown by proving the
following statements:
Claim 1: For any ∂θ,

µ̂ = 0 = arg max
µ,V

E
[
−‖U − V ‖Σ−1 − ‖x(0)− z(0)‖

Σ−1
0

]
s.t. 0 = Mθt+µ∂θV +Nθt+µ∂θz(0)

Claim 2: For ∂θ = θt, any µ ∈ R minimizes

µ̂ = arg max
µ,V

E
[
−‖U − V ‖Σ−1 − ‖x(0)− z(0)‖

Σ−1
0

]
s.t. 0 = Mθt+µ∂θV +Nθt+µ∂θz(0)

Result 1 follows readily from Claim 1 as θ = θt. Result 2 follows from
Claim 2 as θ = (1 + µ̂)θt ∝ θt.
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Proofs of Claim 1 and Claim 2. Notice first that Mθ � 0 is invertible.
The log-likelihood of Method 3 in (P2-6c) is proportional to

−‖U − V ‖Σ−1 − ‖x(0)− z(0)‖
Σ−1

0
. (P2-13)

Using V = −M−1
θ Nθz(0), (P2-13) can be written as

−‖MθU +Nθz(0)‖
(MT

θ
ΣMθ)−1 − ‖x(0)− z(0)‖

Σ−1
0
. (P2-14)

Then, using linearity (Mθ = Mθt + µM∂θ and Nθ = Nθt + µN∂θ),
U = V + ∂V , and x(0) = z(0) + ∂z, the expected value of (P2-14) yields

−µ2‖M∂θV +N∂θz(0)‖
(MT

θ
ΣMθ)−1

−trace
(
ΣΣ−1)− trace

(
Σ0Σ

−1
0

) (P2-15)

Therefore, for any ∂θ, µ = 0 maximizes (P2-15), which proves Claim 1.
For ∂θ = θt, M∂θV +N∂θz(0) = 0 and µ ∈ R minimizes (P2-15), which
proves Claim 2.

Theorem 2. Consider unconstrained linear systems of the form
(P2-12a) and cost functions (P2-12b). Let U ∼ N (V ,Σ) and x(0) ∼
N (z(0),Σ0). Then, θt does not result in expectation from Method 1 (re-
sult 1). Further, Method 1 is not scale-invariant (result 2).

Proof. For the considered class of dynamical systems, the cost function in
(P2-6a) is

‖MθU +Nθx(0)‖I . (P2-16)

We define θ = θt + µ∂θ with µ ∈ R and ∂θ ∈ Rp and ‖∂θ‖2 = 1. Then,
using linearity (Mθ = Mθt + µM∂θ and Nθ = Nθt + µN∂θ), U =
V + ∂V , and x(0) = z(0) + ∂z, the expected value of (P2-16) yields

E [‖MθU +Nθx(0)‖I ] =

µ2 (‖M∂θV +N∂θz(0)‖I + t∂θ,∂θ) + 2µ tθt,∂θ + tθt,θt
(P2-17)

with

tθt,θt = trace(MT
θtMθtΣ) + trace(NT

θtNθtΣ0)

tθt,∂θ = trace(MT
θtM∂θΣ) + trace(NT

θtN∂θΣ0)

t∂θ,∂θ = trace(MT
∂θM∂θΣ) + trace(NT

∂θN∂θΣ0).

The optimal µ minimizing (P2-17) is not necessarily 0 but a function of
∂θ, which proves result 1:

µ = − tθt,∂θ
‖M∂θV +N∂θz(0)‖I + t∂θ,∂θ

.

For ∂θ = θt, µ = −1 and θ = θt − θt = 0, i.e., the estimator is not
scale-invariant, which proves result 2.
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6 Simulation Results

In this section, we utilize the three discussed methods for learning the cost
function’s parameters.

6.1 Simulation Setup

System dynamics and constraints

We consider one linear system and one nonlinear system with dynamics

x(k + 1) =

[
1 1
0 1

]
x(k) +

[
0
1

]
u(k) (P2-18a)

x(k + 1) =

[
1 1− u(k)2

0 1

]
x(k) +

[
0
1

]
u(k). (P2-18b)

The inputs are constrained as |u(k)| ≤ 1.

Cost function

The true cost function is chosen as

θt
Tφ(V ,Z)

with

θt =


1
1
1
1

 , φ(V ,Z) =


∑N
k=0 z

2
1,k∑N

k=0 z
2
2,k∑N−1

k=0 (vk+1 − vk)2∑N
k=0 v

2
k


with zk = [z1,k z2,k]T and N = 10. As the cost function is scale-invariant,
we fix one parameter and learn

θ̂T =
[
θ̂1 θ̂2 θ̂3 1

]
.

Data generation

In order to generate the data, we sample the initial conditions z(0) from
z(0) ∼ N (0, I). Using z(0), we obtain the optimal input sequence V
using (P2-2). Then, the (sub-optimal) demonstration is generated as
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U ∼ N (V , σ2
uI10) and x(0) ∼ N (z(0), σ2

0I2), where σu and σ0 are varied
logarithmically as

σu, σ0 ∈ {0.0001, 0.000215, 0.000464, 0.001,

0.00215, 0.00464, 0.01,

0.0215, 0.0464, 0.1,

0.215, 0.464, 1}

Evaluation criterion

We evaluate the learned parameters by comparing V resulting from (P2-2)
with θt and V̂ resulting from (P2-2) with θ̂ as

error =
‖V̂ − V ‖2
‖V ‖2

. (P2-19)

6.2 Learning Results

For every tuple {σu, σ0}, we repeat the data generation process 1000 times
and learn θ̂ using the three inverse learning methods.
Fig. P2-2 illustrates the median of the error in (P2-19) for the 1000

trials for {σu, σ0} and the three learning methods. For σu = σ0 = 0,
error = 0 for all three methods. In the presence of noise σu, σ0 > 0, the
learning results degrade differently. The error increases for larger standard
deviations {σu, σ0} for all three methods. However, it can be seen that
with increased noise levels (sub-optimal data), the error increases more
quickly for Method 1, whereas the errors remain smaller for Method 2
and Method 3. Now, consider small σu. For increased σ0, the error for
Method 3 is significantly smaller than Method 2, which is expected since
Method 3 optimizes over z(0). For small σ0 and increasing σu, Method 3
also outperforms Method 2, which suggests that optimizing over the initial
condition is advantageous even for small uncertainties in the initial condi-
tions. Note that the standard deviations σu = σ0 > 0.1 are unrealistically
high as |u| ≤ 1.
Fig. P2-3 shows a more detailed statistical evaluation of the error in

(P2-19) for the 1000 trials and σu = σ0. First, it can be seen that the
estimation with Method 2 and Method 3 have a lower error compared to
Method 1. The errors tend to be lower for the nonlinear system compared
to the linear system, which can best be seen for σ0 = σu < 0.01. The
relatively low errors of Method 2 and Method 3 suggest the superiority of
the maximum likelihood formulation over the convex relaxation approach
of Method 1 measured with respect to the predictive performance, i.e.,
(P2-19).
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Evaluation Linear System
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Figure P2-2. Median of error ∈ [0, 0.6] for different standard deviations σu
and σ0 (color map from white to black) for the three inverse
learning methods.
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6.3 Computation Time

Table P2-1 states the median computation time for all samples of the ini-
tial conditions for the three learning methods using MATLAB with the
hardware configuration: 3.1 GHz Intel Core i7, 16 GB 1867 MHz DDR3,
and Intel Iris Graphics 6100 1536 MB. Method 1 is convex and, therefore,
the computation is cheap and requires less than one second. Method 2 is
computationally slightly more involved but can still be solved in around
one second. Method 3 is more demanding as also the initial condition,
z(0), is an optimization variable.

Table P2-1. Computation time
System Method Median over all samples

Linear (P2-18a)
Method 1 TL,M1 = 0.148s
Method 2 TL,M2 = 1.19s (8.04TL,M1)
Method 3 TL,M3 = 3.07s (20.8TL,M1)

Nonlinear (P2-18b)
Method 1 TNL,M1 = 0.142s
Method 2 TNL,M2 = 0.584s (4.12TNL,M1)
Method 3 TNL,M3 = 1.44s (10.2TNL,M1)

Fig. P2-4 shows a more detailed statistical evaluation of the computa-
tion times for σu = σ0. The three learning methods have their respective
peak computation times at different noise levels, i.e., Method 1’s maxi-
mum computation times are highest for lower noise levels (peak of median
at σu = σ0 = 0.0001); Method 2’s maximum times occur for slightly higher
noise levels (peak at σu = σ0 = 0.00215); whereas Method 3’s peak is for
high noise levels (peak at σu = σ0 = 0.0215). For all methods and noise
levels, the mean value is higher than the median, which is expected as the
median is less susceptible to outliers, i.e., instances with particularly long
computation times.

7 Conclusion

This paper presented three inverse optimal control methods; one method
that uses a convex relaxation of the KKT optimality conditions and two
methods that combine the KKT conditions with maximum likelihood es-
timation. It proposed a branch-and-bound-style algorithm for the max-
imum likelihood formulation, which is based on likelihood arguments to
systematically deal with constraints in the presence of noisy data. A sim-
ulation study exemplified the three inverse learning methods with both a
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constrained, linear and a nonlinear system. The results showed that the
likelihood estimation methods can be implemented quite efficiently and
yield robust learning results, whereas the convex method is computation-
ally efficient but less robust to noise in the training data.
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pervised Learning Approach With Application to
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Abstract: This article presents a method for tailoring a para-
metric controller based on human ratings. The method lever-
ages supervised learning concepts in order to train a reward
model from data. It is applied to a gait rehabilitation robot
with the goal of teaching the robot how to walk patients phys-
iologically. In this context, the reward model judges the physi-
ology of the gait cycle (instead of therapists) using sensor mea-
surements provided by the robot, and the automatic feedback
controller chooses the input settings of the robot to maximize
the reward. The key advantage of the proposed method is that
only a few input adaptations are necessary to achieve a physio-
logical gait cycle. Experiments with nondisabled subjects show
that the proposed method permits the incorporation of human
expertise into a control law and to automatically walk patients
physiologically.

©2020 IEEE. Reprinted, with permission, from M. Menner, L. Neuner, L. Lünen-
burger, and M. N. Zeilinger, "Using Human Ratings for Feedback Control: A Su-
pervised Learning Approach With Application to Rehabilitation Robotics,” IEEE
Transactions on Robotics, vol. 36, no. 3, pp. 789–801, June 2020.
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1 Introduction

Humans can perform very complex tasks that are difficult to achieve with
autonomous systems. The dependency on human supervision or expertise
still restricts the efficient operation of many complex systems. An im-
portant domain where human expertise is usually needed is rehabilitation
robotics, where we consider the robot-assisted gait trainer Lokomat® [1] in
this paper, see Fig. P3-1. Robotic systems like the Lokomat have recently
been introduced in gait rehabilitation following neurological injuries with
the goal of mitigating the limitations of conventional therapy [2]–[6]. How-
ever, training with such robots still requires the supervision and interaction
of experienced therapists [1].

Figure P3-1. Lokomat® gait rehabilitation robot (Hocoma AG,
Volketswil, CH).

Gait rehabilitation with the Lokomat currently requires physiotherapists
to manually adjust the mechanical setup and input settings, e.g., the speed
of the treadmill or the range of motion, in order to bring patients into a
physiological and safe gait cycle. Therapists have to be trained specifically
for the device and acquire substantial experience in order to achieve good
input settings. Although there are guidelines for their adjustment [7], it
remains a heuristic process, which strongly depends on the knowledge and
experience of the therapist. Automatic adaptation of input settings can re-
duce the duration of therapists’ schooling, improve patient training, make
the technology more broadly applicable, and can be more cost-effective. In
this work, we propose a method to automatically adapt the input settings.
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1 Introduction

Although the motivation behind this work is in the domain of rehabilita-
tion robotics, the proposed method addresses general human-in-the-loop
scenarios, where expert knowledge can improve system operation.
In this paper, we propose a two-step approach to achieve automatic in-

put adaptations: First, we define a feature vector to characterize the gait
cycle and postulate a reward model to judge the physiology of the gait
cycle using the feature vector. The reward model is trained with ther-
apists’ ratings using a supervised learning technique, where the feature
vector is obtained from sensor measurements provided by the robot. The
sensor measurements are the angle, torque, and power of both the hip and
knee joints of the robot. Second, we use the gradient of the reward model
to determine input adaptations that achieve the desired gait cycle. This
involves a steady-state model to relate the gradient of the reward model
with respect to the feature vector (high dimensional) to input settings (low
dimensional) that adjust the gait cycle. A key component in the proposed
formulation is that the reward model and its gradient are formulated as
functions of the feature vector rather than the input settings. The high di-
mensionality of the feature vector allows us to use one model for all human
subjects with very different body types, which enables a very efficient on-
line application of the proposed method. In order to train both the reward
model and the steady-state model, we collected data with various physio-
logical and non-physiological input settings from 16 nondisabled subjects.
The subjects were instructed to be passive while being walked by the robot
in order to imitate patients with limited or no ability to walk in the early
stages of recovery. Experiments with ten nondisabled subjects highlighted
the ability of the proposed method to improve the walking pattern within
a few adaptations starting from multiple initially non-physiological gait
cycles.

Related Work

Adaptive control strategies have been the subject of a body of research in
robotic gait trainers with the goal of improving the therapeutic outcome of
treadmill training [8]–[13]. The work in [8] presents multiple strategies for
automatic gait cycle adaptation in robot-aided gait rehabilitation based
on minimizing the interaction torques between device and patient. Biome-
chanical recordings providing feedback about a patient’s activity level are
introduced in [9], [10]. Automated synchronization between treadmill and
orthosis based on iterative learning is introduced in [11]. In [12], a path
control method is proposed to allow voluntary movements along a phys-
iological path defined by a virtual tunnel. An algorithm to adjust the
mechanical impedance of an orthosis joint based on the level of support
required by a patient is proposed in [13]. Further research in the domain
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of rehabilitation robotics is presented, e.g., in [14], [15]. In [14], the human
motor system is modeled and analyzed as approximating an optimization
problem trading off effort and kinematic error. In [15], a patient’s psy-
chological state is estimated to judge their mental engagement. Different
from the work in rehabilitation robotics presented in [8]–[15], we present a
method for input setting adaptation of a rehabilitation robot based on a
feedback controller, which is derived from human ratings.
In the following, we discuss research directions related to the techniques

employed in the proposed approach.
Gait cycle classification is often used to distinguish human subjects ac-

cording to two classes [16]–[19], e.g., young/elderly or healthy/impaired. In
[16], a supervised learning method for automatic recognition of movement
patterns is presented to discriminate gait patterns of young and elderly peo-
ple. In order to improve classification performance, [17] employs a kernel-
based principal component analysis for the extraction of features. Gait
patterns are also used to diagnose diseases that symptomatically cause gait
abnormalities, e.g., [18], [19]. Different from [16]–[19], this paper does not
aim to identify or classify human individuals but to generalize from data of
multiple individuals by classifying gait patterns according to their physiol-
ogy. Further, the obtained classifier is not used to predict discrete/binary
classes but as a continuous reward, which is maximized using feedback
control.
Reinforcement learning uses a trial and error search to find a control

policy [20]–[28]. The framework proposed in [21] allows human trainers
to shape a policy using approval or disapproval. In [22], human-generated
rewards in a reinforcement learning framework are employed for a 2-joint
velocity control task. In [23], a policy-shaping method is presented where
human feedback is not used as a reward signal but directly as a label for
the policy. In [24], human preferences are learned through ratings based
on a pairwise comparison of trajectories with the goal of reducing human
feedback. In [25], a robot motion planning problem is considered, where
users provide a ranking of paths that enable the evaluation of the impor-
tance of different constraints. In [26], a method is presented that actively
synthesizes queries to a user to update a distribution over reward param-
eters. In [27], user preferences in a traffic scenario are learned based on
human guidance by means of feature queries. In [28], human ratings are
used to learn a probability distribution of individual preferences modeled
as a Markov decision process. While a reinforcement learning approach
could in principle be applied to the considered problem, the online appli-
cation of these methods typically requires a few hundred human ratings
to learn a policy. This is infeasible when working with a patient, where a
comparatively small number of feedback rounds has to be sufficient. The
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main difference between our method and reinforcement learning is that
we do not use trial and error search but we build a reward model that is
maximized online.
Inverse optimal control and inverse reinforcement learning aim at learn-

ing a reward model or cost model from demonstrations of human behavior
[29]–[46]. Inverse optimal control methods model demonstrations to be the
result of an optimal control problem [33]–[40] and often aim at transferring
human expertise to an autonomous system, e.g., for humanoid locomotion
[33], [34], identifying human movements [35]–[37], robot manipulation tasks
[38], or autonomous driving [39]. In inverse reinforcement learning [41]–
[46], demonstrations are typically modeled to be the result of probabilistic
decision-making in a Markov decision process. The fundamental difference
between the proposed method and inverse optimal control/inverse rein-
forcement learning methods is the utilization of ratings instead of demon-
strations to learn a reward model.

2 Hardware Description & Problem Definition

The Lokomat® gait rehabilitation robot (Hocoma AG, Volketswil, CH)
is a bilaterally driven gait orthosis that is attached to the patient’s legs
by Velcro straps. In conjunction with a bodyweight support system, it
provides controlled flexion and extension movements of the hip and knee
joints in the sagittal plane. Leg motions are repeated based on predefined
but adjustable reference trajectories. Additional passive foot lifters ensure
ankle dorsiflexion during the swing. The bodyweight support system par-
tially relieves patients from their bodyweight via an attached harness. A
user interface enables gait cycle adjustments by therapists via a number of
input settings [1], [10].

Input Settings

One important task of the therapist operating the Lokomat is the adjust-
ment of the input settings to obtain a desirable gait trajectory. A total
of 13 input settings can be adjusted to affect the walking behavior, which
are introduced in Table P3-1. In this work, we propose a method that can
automate or assist the therapists in the adjustment of the input settings
by measuring the gait cycle.

2.1 State-of-the-Art Therapy Session

The current practice of gait rehabilitation with the Lokomat includes the
preparation and setup of the patient and device, actual gait training, and
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Table P3-1. Input Settings of the Lokomat

Input Setting & Description Step-size Range

Hip Range of Motion (Left & Right) 3◦ 23◦, 59◦

Defines the amount of flexion and extension
Hip Offset (Left & Right) 1◦ -5◦, 10◦

Shifts movements towards extension or flexion
Knee Range of Motion (Left & Right) 3◦ 32◦, 77◦

Defines amount of flexion
Knee Offset (Left & Right) 1◦ 0◦, 8◦

Shifts movement into flexion for hyperextension correction
Speed 0.1km/h 0.5km/h, 3km/h
Sets the treadmill speed
Orthosis speed 0.01 0.15, 0.8
Defines the orthosis and affects walking cadence
Bodyweight Support continuous 0kg, 85kg
Defines carried weight for unloading
Guidance Force 5% 0%, 100%
Sets amount of assistance
Pelvic 1cm 0cm, 4cm
Defines lateral movement

finally removing the patient from the system [7]. Gait training is further
divided into three phases:

1. Safe walk: The patient is gradually lowered until the dynamic range
for the bodyweight support is reached. The purpose of this first phase
is to ensure a safe and non-harmful gait cycle.

2. Physiological walk: After ensuring safe movements, the gait cycle is
adjusted so that the patient is walked physiologically by the robot.

3. Goal-oriented walk: The gait cycle is adjusted to achieve therapy
goals for individual sessions while ensuring that the patient’s gait
remains physiological.

In this paper, we focus on the physiological walk. In a state-of-the-
art therapy session, therapists are advised to follow published heuristic
guidelines on how to adjust the input settings based on observations (vi-
sual feedback) in order to reach a physiological walk. Three examples of
the heuristic guidelines are as follows: If the step length does not match
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walking speed, then the hip range of motion or treadmill speed should be
adjusted; if the heel strike is too late, then the hip offset or the hip range of
motion should be decreased; if the foot is slipping, then the orthosis speed
or the knee range of motion should be decreased. An extended overview
of heuristics can be found in [7]. This heuristic approach requires expe-
rience and training with experts, which incurs high costs and limits the
availability of the rehabilitation robot due to the small number of experi-
enced experts. The proposed method aims to alleviate this limitation as
described in the following.

2.2 Technological Contribution

We propose a method for automatically suggesting suitable input settings
for the Lokomat based on available sensor measurements in order to walk
patients physiologically. The proposed framework can be used for rec-
ommending input settings for therapists, automatic adaptation of input
settings, or as an assistive method for therapists during schooling with the
Lokomat. Fig. P3-2 illustrates the proposed method as a recommendation
system. The method is derived assuming that the mechanical setup of the
Lokomat is done properly, such that the purpose of adapting the input
settings is the improvement of the gait cycle and not corrections due to an
incorrect setup.

Recommender

0

-10

Lokomatinput
settings

measurements

observation

Novel Technology

Figure P3-2. Overview of the proposed method as a recommendation sys-
tem. The novel technology (dashed lines) augments the state-
of-the-art control loop of a therapist and the Lokomat. Sensor
measurements of angle, torque, and power of both hip and
knee joints provided by the Lokomat are used to compute
recommendations for the input adaptations.
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3 Controller Design based on Human Ratings

This section describes the proposed human feedback-based controller. In
the setup considered, input settings s ∈ Rm of the controlled system lead
to a gait cycle represented by a feature vector x ∈ Rn in steady-state:

x = f(s), (P3-1)

where f is an unknown function. For the considered application, the input
settings s are given in Table P3-1 and the feature vector x is composed of
statistical features of measurements, which characterize the gait cycle and
are further discussed in Section 4. Here, the notion of a steady-state means
that any transients due to an input adaptation have faded. The control
objective is to find input settings s? for which x? = f(s?) represents
a desired system state, i.e., a physiological gait cycle in the considered
application.

Control Law and Conceptual Idea

The method is based on a reward model, reflecting the control objective,
and a steady-state model, associating a feature vector with an input setting.
The reward model is a function that assigns a scalar value to the feature
vector estimating an expert rating of the "goodness" of the feature vector.
The reward thereby provides a direction of improvement for the feature
vector, which is mapped to a change in input settings via the steady-state
model.
We define the control law in terms of input adaptations ∆s:

∆s = f−1(α∆x+ x)− s,

where ∆x is the direction of improvement, f−1 : Rn → Rm is the steady-
state model (the inverse mapping of f in (P3-1)), and α > 0 is the gain
of the control law. We compute ∆x as the gradient of the reward model
r(x) ∈ R, i.e.,

∆x = ∇xr(x).

Fig. P3-3 shows an example of a reward model and indicates how its
gradient is used for feedback control using the steady-state model. Both
models r(x) and f−1(·) are inferred from data. In order to train the reward
model, we utilize ratings on an integer scale as samples of the reward model,
i.e., ri = 1, ...S, where ri = 1 is the worst and ri = S is the best rating.
Additionally, we train a steady-state model f−1(·) to relate the direction
of improvement suggested by the reward model to the corresponding input
adaptation (bottom part of Fig. P3-3). In order to build both the reward
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model and the steady-state model, N training samples are collected. Each
training sample with index i consists of a feature vector xi, the input
settings si, and the corresponding rating ri ∈ {1, ..., S}:

{xi, si, ri}Ni=1. (P3-2)

Note that throughout this paper, the feature vector x is normalized using
collected data xi such that the collected data are zero-mean with unit-
variance in order to account for different value ranges and units, cf., [47].

b2

b1

∇xr(x)∇xr(x)

x1
x2

∆x∆x
xx

x + ∆xx + ∆x

x1

x2
f−1

∆s∆s
ss

s + ∆ss + ∆s

s1

s2

Figure P3-3. Top: Example of reward model with gradient vector ∇xr(x)
where x = [x1 x2]T and projected level sets onto the x1 − x2

plane. The example shows a case of three ratings ri = 1, 2, 3
separated by two classification boundaries indicated as solid
black and dashed black ellipses. Bottom: Steady-state model
to compute ∆s from ∆x where s = [s1 s2]T.
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Outline

The reward model is trained with the feature vector xi and its correspond-
ing rating ri in (P3-2) using a supervised learning technique (Section 3.1).
The resulting reward model is then used to compute the gradient ∇xr(x)
as the direction of improvement. Finally, a steady-state model relates this
direction of improvement with necessary changes in input settings s. The
steady-state model is computed using a regression technique (Section 3.2).

3.1 Reward Model using Supervised Learning

The first step of the framework is the learning of a reward model reflecting
the physiology of the gait based on supervised learning techniques [47].
The reward model is a continuous function, i.e., it provides a reward for
all x, whereas observations xi are potentially sparse.
In view of the considered application, we postulate a reward model of

the form:

r(x) = 0.5xTWx+wTx+ b, (P3-3)

whereW = WT ≺ 0, w ∈ Rn, and b ∈ R are the parameters to be learned
from expert ratings given in the form of integers on a scale from 1 to S. The
rationale for selecting a quadratic model with negative definite W is the
observation that the gait degrades in all relative directions when changing
input settings from a physiological gait. The important properties of this
reward model are that a vanishing gradient indicates that global optimality
has been reached and its computational simplicity. This motivates the
gradient ascent method for optimizing performance.
In order to learnW , w, and b in (P3-3), we construct S−1 classification

problems. These S−1 classification problems share the parametersW , w,
and b of the reward model and the corresponding classification boundaries
are given by

rl(x) = 0.5xTWx+wTx+ bl

for all l = 1, ..., S−1 with bl = b− l−0.5 separating the S different ratings
such that rl(xi) > 0 if ri > l + 0.5. Further, for each data sample i and
each l, we define

yli =

{
1 if ri > l + 0.5

−1 else.

Hence, an ideal reward model with perfect data and separation satisfies

ylir
l(xi) ≥ 0

∀ i = 1, ..., N
∀ l = 1, ..., S − 1.

(P3-4)
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In order to allow for noisy data and imperfect human feedback, (P3-4)
is relaxed to find rl(x) that satisfies (P3-4) "as closely as possible" by
introducing a margin ξli ≥ 0. This approach is closely related to a Support
Vector Machine, cf., [47], with a polynomial kernel function of degree two.
The functions rl(x) correspond to S−1 classification boundaries in a multi-
category classification framework. The parameters W , w, and b of the
reward model (P3-3) are computed by solving the following optimization
problem using L1 regularization:

minimize
W ,w,bl,b,ξli

S−1∑
l=1

N∑
i=1

ξli + λ1 · (‖W ‖1 + ‖w‖1) (P3-5a)

subject to ylir
l(xi) ≥ 1− ξli, ∀ i = 1, ..., N (P3-5b)

ξli ≥ 0, ∀ l = 1, ..., S − 1 (P3-5c)

rl(xi) = 0.5xTiWxi +wTxi + bl (P3-5d)

bl = b− l − 0.5 (P3-5e)

W = WT ≺ 0 (P3-5f)

where λ1 > 0 controls the trade-off between minimizing the training error
and model complexity captured by the norm ‖W ‖1 =

∑n
j=1

∑n
k=1 |Wjk|

(elementwise 1-norm) and ‖w‖1, which is generally applied to avoid over-
fitting of a model and is sometimes also called lasso regression [47].

3.2 Feedback Control using Reward Model

The second step of the proposed framework is to exploit the trained reward
model for feedback control. The idea is (i) to use the gradient of the reward
model as the direction of improvement and (ii) to relate this gradient to a
desired change in inputs with a steady-state model.

(i) Gradient of reward model

The gradient of the inferred reward model is the direction of best improve-
ment. The control strategy is to follow this gradient in order to maximize
reward. The gradient of the quadratic reward model in (P3-3) is

∆x = ∇xr(x) = Wx+w.

(ii) Mapping of gradient to setting space with steady-state
model

In order to advance the system along the gradient direction, we relate the
direction of improvement ∆x to a change in input settings with a steady-
state model f−1. We use a first order approximation s = f−1(x) ≈
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Mx + m with M ∈ Rm×n, m ∈ Rm to compute the change in input
settings ∆s as

∆s = M(α(Wx+w) + x) +m− s, (P3-6)

where α can be interpreted as feedback gain or the learning rate in a
gradient ascent method. The steady-state model is estimated as the least
squares solution of the data in (P3-2):

minimize
M,m

N∑
i=1

‖si −Mxi −m‖22 + λ2 · (‖M‖1 + ‖m‖1) (P3-7)

where, again, we use λ2 > 0 to control the trade-off between model fit and
model complexity.
Using the quadratic reward model in (P3-3) and the linear steady-state

model in (P3-7), the application of the proposed control strategy (P3-6)
requires only matrix-vector multiplications, which is computationally inex-
pensive and can be performed online, cf., Algorithm P3-1 for an overview
of the method. Additionally, as will be shown empirically, the application
requires only a few online input adaptations.

Algorithm P3-1 Training and Application of the Method

Training . rating needed
1: Collect data set in (P3-2).
2: Compute reward model W ,w, b with (P3-5) and steady-state model
M ,m with (P3-7).

Online Algorithm
3: do
4: Obtain feature vector x from measurement.
5: Apply adaptation ∆s = M(α(Wx+w) + x) +m− s.
6: Wait until steady state is reached.
7: while stopping criterion not fulfilled . cf. Section 4.4

Remark 1. As we will show in the analysis in Section 5, the linear map-
ping s ≈ Mx + m yields sufficient accuracy for the considered applica-
tion. For more complex systems, one might consider a different steady-state
model, e.g., higher-order polynomials or a neural network to approximate
f−1.

Remark 2. In principle, reinforcement learning could be applied to di-
rectly learn physiological settings. The proposed two-step and model-based
method, in contrast, makes use of the higher dimensionality of the feature
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vector to characterize the gait cycle. Its key advantage is that fewer sam-
ples are required online and thus, fewer steps to find physiological settings,
which is essential for the considered application.

Remark 3. The proposed method iteratively approaches the optimal set-
tings s? with the gradient ascent method. This is important for the consid-
ered application to cautiously adapt the input settings of the robot with a
human in the loop.

Remark 4. It is also possible to determine the direction of improvement
using second-order derivatives of the reward model, e.g., using a Newton-
Raphson method. However, as numerical second-order derivatives would
be noisier, we choose first-order derivatives, which are simple and yield a
more stable estimate of the best (local) improvement.

4 Adaptation of Gait Rehabilitation Robot to Walk
Patients Physiologically

In this section, we show how to apply the method presented in Section 3 to
automatically adapt, or recommend a suitable adaptation, of the Lokomat’s
input settings in order to walk patients physiologically. A core element is
the reward model that has been built on therapists’ ratings and is used
to judge the physiology of the gait. For simplicity, we adjust settings for
the left and right leg symmetrically. This does not pose a problem for
the presented study with nondisabled subjects but might be revisited for
impaired subjects in future work.
In this work, we focus on the physiological walk and exclude the guid-

ance force and the pelvic input settings as they are mainly used for goal-
oriented walk [7]. This exclusion is valid for the physiological walk where
the guidance force and pelvic settings are kept constant at 100% and 0cm,
respectively. Hence, seven input settings are considered in the application
of the method.

Safety

The proposed method is implemented to augment a previously developed
safety controller that ensures the safe operation of the Lokomat. This safety
controller intervenes if the input settings exceed nominal ranges for forces
and positions of the robot’s joints. An additional contingency controller
stops the robot when the deviation of the measured gait trajectory and the
desired gait trajectory becomes too large. In this way, the overall behavior
is guaranteed to have the necessary safety requirements for the patient
and the robot, yet among the safe input settings, the ones that improve
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the gait cycle are chosen. The reader is referred to [48] for a more detailed
description of the Lokomat’s safety mechanisms.

4.1 Gait Cycle

The walking of a human is a repetitive sequence of lower limb motions to
achieve forward progression. The gait cycle describes such a sequence for
one limb and commonly defines the interval between two consecutive events
that describe the heel strike (initial ground contact) [49]. The gait cycle is
commonly divided into two main phases, the stance and the swing phase.
The stance phase refers to the period of ground contact, while the swing
phase describes limb advancement. Fig. P3-4 illustrates the subdivision of
these two main phases of the gait cycle into multiple sub-phases, beginning
and ending with the heel strike. This results in a common description of
gait using a series of discrete events and corresponding gait phases [49].
We focus on four particular phases of the gait cycle, which are emphasized
in Fig. P3-4:

Heel strike (HS): The moment of initial contact of the heel with the
ground.

Mid-stance (MS): The phase in which the grounded leg supports the full
body weight.

Toe off (TO): The phase in which the toe lifts off the ground.

Mid-swing (SW): The phase in which the raised leg passes the grounded
leg.

4.2 Evaluation of Gait Cycle and Data Collection

We derive the reward model based on the four phases. For evaluating
the four gait phases, we introduce a scoring criterion in consultation with
experienced therapists:

Rating 1: Safe, but not physiological.

Rating 2: Safe, not entirely physiological gait cycle.

Rating 3: Safe and physiological gait cycle.

Data Collection

A total of 16 nondisabled subjects participated in the data collection. The
16 subjects were between 158cm - 193cm (5’2” - 6’4”) in height, 52kg -
93kg (115lbs - 205lbs) in weight, and aged 25 - 62. Informed consent for
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the use of the data has been received from all human subjects. The data
collection for each subject involved an evaluation of the four gait phases
by therapists for several input settings in order to collect data in a wide
range of gait cycles. The nondisabled subjects were instructed to be passive
throughout the data collection, i.e., they were walked by the robot. This
allowed us to collect data for both physiological and non-physiological gait
cycles. Measurements of the Lokomat were recorded for all evaluations.
For each subject, the experienced therapists first manually tuned the in-
put settings to achieve rating 3 for all four phases (Set 0 in Table P3-2),
where the resulting input settings are referred to as initial physiological
gait (IPG). Table P3-2 shows the input settings used in the data collection
as deviations from the initial physiological gait. Each subject walked for
approximately 60 seconds for each set of input settings, while the therapist
provided evaluations of the walking pattern. The assessment started after
a transient interval of approximately 15 seconds to ensure that the walking
has reached a steady state. Note that the input settings resulting in a
physiological gait pattern varied between subjects.

Stance Swing

HS FF MS HO TO SW HS

Figure P3-4. Gait phases in order: Heel strike, foot flat (FF), mid-stance,
heel off (HO), toe off, mid-swing. Both FF and HO phase
are not rated in this work, but presented for consistency with
the literature [49].

The scoring criterion and the consideration of the four phases, as well as
the data collection protocol, were introduced in consultation with clinical
experts from Hocoma (U. Costa and P. A. Gonçalves Rodrigues, personal
communication, Nov. 05, 2017). As a result, we obtained the chosen
input settings, the corresponding ratings on an integer scale from 1 to 3,
and the recording of measurements of the Lokomat. Next, we discuss the
computation of the feature vector from the recorded measurements.
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Table P3-2. Input Setting for Data Collection

Set Input Settings Value
0 Initial Set IPG
1 Hip Range of Motion IPG + 6◦

2 Hip Range of Motion IPG + 12◦

3 Hip Range of Motion IPG – 6◦

4 Hip Range of Motion IPG – 12◦

5 Hip Offset IPG + 4◦

6 Hip Offset IPG + 8◦

7 Hip Offset IPG – 5◦

8 Hip Range of Motion, Hip Offset IPG + 12◦ / IPG – 3◦

9 Hip Range of Motion, Hip Offset IPG + 12◦ / IPG + 3◦

10 Hip Range of Motion, Hip Offset IPG – 12◦ / IPG – 3◦

11 Hip Range of Motion, Hip Offset IPG – 12◦ / IPG + 3◦

12 Knee Range of Motion IPG + 6◦

13 Knee Range of Motion IPG + 12◦

14 Knee Range of Motion IPG – 9◦

15 Knee Range of Motion IPG – 15◦

16 Knee Offset IPG + 4◦

17 Knee Offset IPG + 8◦

18 Knee Range of Motion / Knee Offset IPG + 15◦ / IPG + 6◦

19 Knee Range of Motion / Knee Offset IPG + 21◦ / IPG + 6◦

20 Speed IPG + 0.5km/h
21 Speed IPG + 1.0km/h
22 Speed IPG – 0.5km/h
23 Speed IPG – 1.0km/h
24 Orthosis Speed IPG + 0.03
25 Orthosis Speed IPG + 0.05
26 Orthosis Speed IPG – 0.03
27 Orthosis Speed IPG – 0.05
28 Bodyweight Support IPG + 15%
29 Bodyweight Support IPG + 30%
30 Bodyweight Support IPG – 15%
31 Bodyweight Support IPG – 30%

Feature Vector

We use the gait index signal of the Lokomat as an indicator to identify
progression through the gait cycle. The gait index is a sawtooth signal
and is displayed in the bottom plot in Fig. P3-5. It is used to determine
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the time-windows of the four phases, cf., the dashed lines in Fig. P3-5.
The time-windows are used to compute the feature vector, composed of
statistical features for power, angle, and torque for both hip and knee
joints, cf., Table P3-3. The result is one feature vector for each phase:
xHS,xMS,xTO,xSW ∈ R12. The Lokomat provides measurements of all the
signals listed in Table P3-3 synchronized by the gait index signal, which
makes the computation of the features simple.
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Figure P3-5. Top: Joint angles. Bottom: Segmentation of time signals into
four phases using the gait index with HS in 34.5%-47.5%, MS
in 47.5%-65.5%, TO in 84.5%-92.5%, and SW in 9.5%-21.5%
of one period of the gait index. The falling edge of the gait
index does not align with the biomechanical definition of a
gait cycle but enables separation of the gait cycle into phases.

Remark 5. For each subject, the data collection takes around one hour,
including rating the gait cycle. As described in Algorithm P3-1, the appli-
cation of the control law does not include further training and the control
law is therefore not personalized to the subject.

Remark 6. Initially, we defined more features than the twelve in Table P3-
3, e.g., frequency domain features, which the supervised learning problem
in (P3-5) with L1 regularization discarded. In order to reduce the problem
dimension in the online algorithm, we discarded them as well.

4.3 Reward Model and Steady-State Model for Lokomat

Given the data set, we apply the method in Section 3 to learn four reward
models. We obtain a reward model for each of the four phases represented
as W j , wj , and bj from solving (P3-5), where j ∈ {HS,MS,TO, SW}.
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Table P3-3. Values for Feature Vector

# Joint Signal Unit Feature

x1 hip joint power Nm/s mean
x2 hip angle rad min
x3 hip angle rad max
x4 hip angle rad range
x5 hip torque Nm mean
x6 hip torque Nm variance
x7 knee joint power Nm/s mean
x8 knee angle rad min
x9 knee angle rad max
x10 knee angle rad range
x11 knee torque Nm mean
x12 knee torque Nm variance

The steady-state model M ∈ R7×48, m ∈ R7 in (P3-7) is computed by
stacking the features of the four phases:

x =
[
xTHS xTMS xTTO xTSW

]T
.

4.4 Control Law for Gait Rehabilitation Robot

Once the four reward models and the steady-state model are trained us-
ing the data in (P3-2), the controller automatically chooses input setting
adaptations given the current measurements, i.e., it does not require rat-
ings from therapists. The input adaptation ∆s is computed as

∆s = M


α(WHSxHS +wHS) + xHS

α(WMSxMS +wMS) + xMS

α(WTOxTO +wTO) + xTO

α(W SWxSW +wSW) + xSW

+m− s.

While ∆s yields continuous values, the input settings are adjusted in
discrete steps, cf., the step-sizes in Table P3-1. We aim to change one
setting at a time, which is common practice for therapists [7] and eases the
evaluation. The following suggests a method to select one single adaptation
from ∆s.
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Input Setting Selection & Stopping Criterion

In order to select one single discrete change in input setting, we normalize
∆s to account for different value ranges and different units per individual
setting and select the input corresponding to the largest in absolute value:

k? = arg max
k=1,...,7

∣∣∣∣ ∆sk

s̄k − sk

∣∣∣∣
with associated index k?, where the normalization s̄k−sk is the range of the
input setting k in Table P3-1. Hence, the algorithm chooses one adaptation
with step-size in Table P3-1. The input adaptation is stopped when the
largest normalized absolute value of change is smaller than a pre-defined
parameter β, i.e.,

∣∣∣∆sk?/(s̄k? − sk
?

)
∣∣∣ ≤ β. This indicates closeness to the

optimum, i.e., that a physiological gait is reached.

5 Model Evaluation in Simulation

We first analyze the algorithm in simulation to investigate the model qual-
ity. In this simulation study, we compare two reward models: One that
uses ratings on an integer scale from 1 to 3 (S = 3 in (P3-5)) and one that
uses only binary ratings, i.e., good and bad (S = 2 in (P3-5)). For the
case S = 3, we use the collected ratings without modification. For the case
S = 2, we combine the data points with rating 1 and rating 2 as samples
of a bad gait and use the data points with rating 3 as samples of a good
gait.

5.1 Evaluation Metrics and Results

In order to evaluate the trained models, we split the experimentally col-
lected data into training (80%) and validation data (20%). This split is
done randomly and repeated 500 times to assess the robustness of the mod-
els. This technique is known as 5-fold cross validation [50] and ensures that
the validation data are not biased by training on the same data.

Evaluation of Reward Model

We evaluate the accuracy of the reward model trained with three ratings,
i.e., S = 3, by computing the pairwise difference in estimated rewards
r(xi)− r(xj) for two data samples i and j, classified with respect to their
ratings ri and rj . The metric is motivated by the fact that two different
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ratings should be distinguishable. We define ∆r̄nm as

∆r̄nm =
1

|In||Im|
∑
i∈In

∑
j∈Im

(r(xi)− r(xj)) , (P3-8)

where In = {i|ri = n} is an index set of data points with ratings ri = n. If
the trained reward model and data were perfect, ∆r̄nm = n−m with zero
standard deviation.
We evaluate the accuracy of the reward model trained with binary rat-

ings, i.e., S = 2, by computing the classification accuracy of good versus
bad ratings:

p̄good/bad =
1

|Igood||Ibad|
∑

i∈Igood

∑
j∈Ibad

Ir(xi)>r(xj) (P3-9)

with Ir(xi)>r(xj) = 1 if r(xi) > r(xj) and Ir(xi)>r(xj) = 0, otherwise, and
Igood = I3 and Ibad = I1 ∪ I2 = {i|ri = 1 or ri = 2}.
Fig. P3-6 reports statistical values of both ∆r̄nm in (P3-8) for evaluating

the reward model with S = 3 and p̄good/bad in (P3-9) for evaluating the
reward model with S = 2 over the 500 splits of training and validation
data. For the reward model computed with S = 3, the overall deltas in
estimated rewards match the deltas in ratings very closely with 2.00 for
∆r̄31, 0.97 for ∆r̄32, and 1.04 for ∆r̄21. For the reward model computed
with S = 2, the overall classification accuracy (r(xi) > r(xj) if ri > rj) is
92.5%.

Evaluation of Steady-State Model

The steady-state model is evaluated using the prediction error ēk defined
as

ēk =
1

N

N∑
i=1

|ski −Mk?xi −mk|, (P3-10)

where k is the index of the input setting andMk? is the kth row of matrix
M and mk is the kth entry of vector m. As we use normalized values
for the input settings with ski ∈ [0, 1], the error ēk can be interpreted as a
percentage offset from the correct input setting.
Table P3-4 reports the mean and standard deviation of the errors ēk in

(P3-10) over the 500 random splits of training and validation data for all
input settings k. It shows an overall average error of 4.17% and that the
errors for all input settings are consistently lower than 6%.

110



5 Model Evaluation in Simulation

Evaluation of Overall Algorithm

We evaluate the performance of the overall algorithm by comparing the
collected data with the output of the algorithm. Let the changes in input
settings during data collection for all data samples i = 1, ...N be ∆sex

i =
sex − si, where si are the input settings of data point i and sex are the
physiological settings, which are set by the therapist at the beginning of the
data collection. Note that sex depends on the subject, however, we omit
this dependency in the notation for ease of exposition. It is also important
to note that sex are not the only possible physiological input settings. We
compare the input adaptation proposed by our algorithm ∆si against the
deviation from the physiological settings ∆sex

i , where we can have three
different outcomes:

Case 1 (Same Setting & Same Direction)

The algorithm selects the input adaptation in the same direction as during
data collection, which is known to be a correct choice as it is closer to the
physiological settings sex.

Case 2 (Same Setting & Opposite Direction)

The algorithm selects the same setting but in the opposite direction as
during data collection, which is likely to be an incorrect choice.

Case 3 (Different Setting)

The algorithm selects a different input adaptation, the implications of
which are unknown and could be either correct or incorrect, which can-
not be evaluated without closed-loop testing.
We compute the percentage of data points falling in each case for each

setting k and for ∆sex
i = 0 (no adaptation), i.e., pkC1, pkC2, and pkC3 for

Case 1, Case 2, and Case 3, respectively, where pkC1 + pkC2 + pkC3 = 1. If
the algorithm replicated the data collection perfectly, then pkC1 = 1 for
all settings k. Given the discrete and unique setting selection, the overall
algorithm has 15 options to choose from: An increase in one of the seven
settings by one unit, a decrease in one of the seven settings by one unit,
or no adaptation. Hence, random decision-making yields a probability of
p = 1/15 ≈ 6.7% for each option.
Table P3-5 reports mean and standard deviation of the percentage val-

ues of the three cases. The algorithm chooses the input adaptations for
hip range of motion, hip offset, knee range of motion, and knee offset very
often when their adaptation leads to sex (86.7%–100.0%). Also, it often
chooses no adaptation when the gait is physiological, with input settings
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Evaluation of reward model with three ratings

Heel Strike Mid-Stance Toe Off Mid-Swing Overall

1

1.5

2

∆r̄31 ∆r̄32 ∆r̄21

Evaluation of reward model with binary ratings

Heel Strike Mid-Stance Toe Off Mid-Swing Overall

80%

90%

100%

p̄good/bad

Figure P3-6. Evaluation of reward models for individual phases and over-
all. The mean over 500 splits of training and validation data,
along with the median, 25th and 75th percentiles, and maxi-
mum and minimum values are indicated by a diamond, a line,
box edges, and whiskers, respectively. Top: Pairwise differ-
ence in estimated rewards ∆r̄31, ∆r̄32, and ∆r̄21. Bottom:
Classification accuracy p̄good/bad.

Table P3-4. Mean and Standard Deviation of Steady-State Model

sk Setting Error ēk

s1 Hip Range of Motion 0.0578± 0.0019
s2 Hip Offset 0.0370± 0.0008
s3 Knee Range of Motion 0.0547± 0.0021
s4 Knee Offset 0.0324± 0.0009
s5 Speed 0.0307± 0.0009
s6 Orthosis Speed 0.0315± 0.0010
s7 Bodyweight Support 0.0542± 0.0017

Overall 0.0417± 0.0186

sex. Table P3-5 also shows that decision-making with the proposed algo-
rithm is more ambiguous for the input adaptations of speed, orthosis speed,
and bodyweight support. Overall, the algorithm proposes a setting that is
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closer to sex (Case 1) in 80.7% and 80.6% for the reward models trained
with S = 3 and S = 2, respectively. The algorithm suggests a probably
incorrect input adaptation in less than 1% (Case 2). In around 19%, the
algorithm suggests a different input adaptation (Case 3).

Table P3-5. Evaluation of Overall Algorithm in Simulation

Three ratings (1, 2, or 3) S = 3

sk Setting pkC1 in % pkC2 in % pkC3 in %

No Adaptation 77.6± 3.6 - 22.4± 3.6
s1 Hip Range of Motion 86.7± 1.8 0 13.3± 1.8
s2 Hip Offset 96.4± 1.0 0 3.6± 1.0
s3 Knee Range of Motion 91.0± 1.7 0 9.1± 1.7
s4 Knee Offset 100.0± 0.0 0 0
s5 Speed 71.1± 2.8 0 29.0± 2.8
s6 Orthosis Speed 33.3± 3.7 3.5± 1.6 63.2± 3.8
s7 Bodyweight Support 55.6± 3.8 0 44.5± 3.8

Overall accuracy 80.7± 1.0 0.3± 0.1 19.0± 1.0

Binary ratings (good or bad) S = 2

sk Setting pkC1 in % pkC2 in % pkC3 in %

No Adaptation 76.8± 3.7 - 23.2± 3.7
s1 Hip Range of Motion 88.6± 1.7 0 11.4± 1.7
s2 Hip Offset 95.6± 1.1 0 4.4± 1.1
s3 Knee Range of Motion 90.0± 2.0 0 10.0± 2.0
s4 Knee Offset 100.0± 0.0 0 0
s5 Speed 71.3± 2.9 0 28.7± 2.9
s6 Orthosis Speed 32.1± 3.8 2.9± 1.4 65.0± 3.9
s7 Bodyweight Support 53.9± 3.9 0 46.2± 3.9

Overall accuracy 80.6± 1.1 0.2± 0.1 19.2± 1.0

Remark 7. The same evaluation using exclusively kinematic features (x2,
x3, x4, x8, x9, x10 in Table P3-3) yields slightly different results with overall
pC1 = 79.1% ± 1.0%, pC2 = 0.2% ± 0.1%, and pC3 = 20.6% ± 1.0% for
binary ratings. A purely kinematic feature vector might be important when
working with impaired patients, where power/torque features might be an
indication of individual impairments rather than a characterization of a
physiological gait.
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5.2 Discussion

The rewards predicted with the reward model trained with three ratings
(two classification boundaries at 1.5 and 2.5) match the true ratings very
closely. The reward model trained with binary ratings (one classification
boundary at 2.5) is able to distinguish good from bad gait patterns con-
fidently with an overall classification accuracy of more than 90%. The
steady-state model shows an average error of 5%. As we will show in Sec-
tion 6, this accuracy suffices for the considered application. For example,
the expected error of 3.07% of s5 translates into an error in treadmill speed
of 0.075m/s and the expected error of 5.78% of s1 translates into an error in
hip range of motion of 2.08◦, which is less than one input setting step-size,
cf., Table P3-1. Even though another model may increase accuracy, it may
come at the expense of increased complexity in the computation. Our lin-
ear model only requires matrix-vector multiplication, which can easily be
implemented on the controller of the Lokomat and is chosen as a suitable
compromise of simplicity and accuracy.
The evaluation of both components, the reward model and the steady-

state model, in simulation allow us to conclude that they provide suitable
models for the considered application. For the overall algorithm, Case 1 is
known to result in improved physiology of the gait cycle. Case 3, however,
does not imply that the suggested adaptation will not lead to an improved
gait cycle as there may be multiple different input adaptations that lead
to a physiological gait (not only sex). In these cases, we do not know if the
suggested adaptation would have led to an improvement in gait without
closed-loop testing. Hence, the probabilities 80.7% and 80.6% of Case 1
for the two reward models can be interpreted as a lower bound for the
overall improvement. The relatively low standard deviation for all settings
indicates that the learning is robust against variation in the training data.
The use of binary ratings eases the data collection and has been shown to
perform similarly well. Therefore, we proceed with closed-loop testing of
the algorithm using a reward model trained with binary ratings.

6 Experimental Results - Closed-Loop Testing

The proposed algorithm was implemented as a recommendation system on
the Lokomat for closed-loop evaluation. We implemented the algorithm
using the reward model trained with binary ratings (good and bad) of the
gait cycle. It is important to note, that no data from the respective test
person was used for training of the reward or the steady-state model.
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6.1 Experiment Setup

We conducted experiments with ten nondisabled subjects and ten different
sets of initial non-physiological gait cycles (test scenarios). Table P3-6 de-
scribes the ten test scenarios and outlines input adaptations that therapists
are expected to make (according to the heuristic guidelines). Scenario 1
through 8 are very common observations of a patient’s gait cycle on the
Lokomat. Scenario 9 and 10 are combinations of the more common flaws
and are included to challenge the algorithm with more complex scenarios.

Table P3-6. Test Scenarios of Experiment

Scenario: Observations Therapists’ heuristic rules (expectation)

1: Limited foot clearance, Increase knee range of motion
foot dropping (s3 ↑)

2: Short steps Increase hip range of motion, speed
(s1 ↑, s5 ↑)

3: Foot dragging Decrease speed, increase orthosis speed
(s5 ↓, s6 ↑)

4: Large steps, Decrease hip range of motion, hip offset
late heel strike (s1 ↓, s2 ↓)

5: Short steps, Increase hip range of motion, hip offset
hip extension (s1 ↑, s2 ↑)

6: Bouncing Decrease speed, bodyweight support
(s5 ↓, s7 ↓)

7: Foot slipping Decrease knee range of motion,
orthosis speed (s3 ↓, s6 ↓)

8: Knee buckling Increase knee range of motion,
bodyweight support (s3 ↑ ,s7 ↑)

9: Large steps, Decrease hip range of motion, increase hip
early heel strike offset, increase speed (s1 ↓, s2 ↑, s5 ↑)

10: Large steps, late heel Decrease hip range of motion, hip offset,
strike, foot slipping knee range of motion, orthosis speed

(s1 ↓, s2 ↓, s3 ↓, s6 ↓)

The selected scenarios cover the most common observations of the gait
cycle of a passive subject (without muscle activity) on the Lokomat and,
therefore, are expected to adequately evaluate the proposed algorithm ex-
perimentally (with nondisabled subjects). The initial input settings to
achieve non-physiological gait patterns (scenarios and observations in Ta-
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ble P3-6) were chosen manually and purposefully by experienced therapists
individually for each subject until the respective observation was present.
The guidance force was set to 100% for all trials, i.e., the subjects were
walked by the Lokomat. The treadmill speed was varied between 1.4km/h
and 2.3km/h.
We conducted 63 experimental trials with the proposed algorithm in

closed-loop with the ten nondisabled subjects, where each subject under-
went at least five trials. The difference in the number of experimental
trials is due to each subject’s availability. However, the test scenarios were
chosen so that each scenario was tested comparably often. Similarly to the
data collection, the subjects were instructed to be as passive as possible.
Two therapists assessed the input adaptations suggested by the algorithm
and rated whether the gait was physiological. The therapists implemented
the input adaptations until the algorithm indicated that a physiological
gait cycle had been reached. Additionally, the therapists indicated when
they thought that a physiological gait had been reached and the algorithm
should be stopped.

6.2 Results

Fig. P3-7 illustrates eight representative trials with the first subject. It
contains four types of information and is separated by therapist in columns
and by test scenario in rows:

i) The gait cycle rating rgait (y-axis), calculated as the sum of the indi-
vidual phase ratings rgait = rHS + rMS + rTO + rSW, over the number
of input adaptations (x-axis);

ii) the applied input adaptations and their direction, e.g., s1 ↑ represents
an increase of Setting 1 by one unit;

iii) a statement from the therapists about the algorithm’s suggested in-
put adaptation, i.e., agreement with the suggestion as check mark
X, disagreement as cross 7, and uncertainty about the suggestion as
question mark ?; and

iv) the reaching of a physiological gait judged by the therapist with
square markers � (for the usage as recommendation system) and by
the algorithm with diamond markers � (for the usage as automatic
adaptation system).

In all eight illustrated experiments, the algorithm provides a reliable,
although not monotonic, improvement in the physiology of the gait. The
input adaptations suggested by the algorithm led to a physiological gait for
both the usage as recommendation system (square marker) and automatic
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Scenario 1: Limited foot clearance, foot dropping
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Scenario 2: Short steps
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Scenario 9: Large steps, early heel strike
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Figure P3-7. Experimental evaluation of the closed-loop recommendation
system. Averaged for the eight experiments, a physiological
gait was reached after 6.0 input adaptations (until square
marker). The diamond marker indicates that the algorithm
assessed the gait as physiological (stopping criterion).

117



Paper P3. Using Human Ratings for Feedback Control

Scenario 10: Large steps, late heel strike, foot slipping
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Figure P3-7. (Continued)

adaptation system (diamond marker) in less than 10 adaptations with an
overall rating of greater than or equal to 11, where 12 is the maximum
possible rating. The input adaptations during the test of Scenario 1 with
both therapists (first row) are similar to the heuristic guidelines in Ta-
ble P3-6, i.e., an increase in the knee range of motion (s3 ↑). The input
adaptations for Scenario 2 (second row) are different from the heuristic
guidelines. Here, the algorithm converges to a kinematically different but
physiological gait that is achieved through a slower treadmill speed and
input settings that are adjusted accordingly. For Scenario 9 and 10 (third
and fourth row), the algorithm achieved a physiological gait through adap-
tations that are similar to the heuristic guidelines. In all illustrated cases,
the algorithm converges to a physiological gait.
Table P3-7 summarizes all 63 experimental trials with ten subjects. On

average, after a proposed input adaptation, the gait cycle improved in
63% and did not degrade in 93% of adaptations. The latter percentage
is important as sometimes, changing an input setting by only one unit
is too small to make a noticeable change in the gait cycle and a couple
of consecutive adaptations are necessary, e.g., for the orthosis speed (s6).
Most importantly, a physiological gait cycle was reached for all trials within
6.0 adaptations per trial (APT) on average for all subjects combined, and
between 3.8 and 7.4 for each individual subject.

6.3 Discussion

In general, the algorithm reached a physiological gait cycle within very few
adaptations. This is achieved as the proposed algorithm reasons about the
gait cycle using the reward model in a higher dimensional feature space
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Table P3-7. Summary of all Experimental Trials

Physiology of gait
Subject (body type) Trials APT improved not degraded
1 (193cm, 93kg, male) 8 6.0 65% 92%
2 (195cm, 100kg, male) 5 3.8 89% 100%
3 (163cm, 53kg, female) 6 6.8 68% 98%
4 (175cm, 85kg, female) 5 4.8 58% 92%
5 (172cm, 68kg, female) 9 4.9 57% 89%
6 (190cm, 85kg, male) 5 7.4 54% 97%
7 (167cm, 85kg, male) 6 7.2 60% 93%
8 (180cm, 75kg, male) 5 7.0 60% 83%
9 (167cm, 64kg, female) 7 5.7 65% 97%
10 (161cm, 48kg, female) 7 6.9 71% 92%
Overall 63 6.0 63% 93%

rather than the space of input settings. As a result, the controller does
not rely on trial and error search and, therefore, does not require to be
tuned individually for each patient, which makes the approach more ef-
ficient, e.g., compared to classical reinforcement learning methods. The
majority of times, the therapists agreed with the suggestions from the al-
gorithm, i.e., the suggested adaptations were conform with the heuristic
tuning guidelines and their experience. Consequently, the resulting gait cy-
cle was mostly kinematically similar to the one that the therapists would
have chosen. In some notable instances, the therapists disagreed or were
uncertain about the proposition and were surprised by the improvement in
the gait cycle, e.g., Row 1, Therapist 1, Adaptation 6; Row 2, Therapist 1,
Adaptation 3; or Row 4, Therapist 2, Adaptation 4 in Fig. P3-7. These
instances are examples of situations where the algorithm chooses input
adaptations, which were unknown to the therapists. In these cases, the re-
sulting gait cycle was sometimes kinematically different from the heuristic
guidelines, e.g., a gait with slower treadmill speed. Table P3-7 shows that
the algorithm is able to cope with various body types with similar results
for all individuals.
It is worth noting that the differences between similar scenarios with two

different therapists in Fig. P3-7 and the same initial input settings do not
necessarily lead to the same adjustment of input settings. This observation
can be explained as the physiology of the gait does not only depend on the
chosen input settings but also on the hardware setup, e.g., the tightness of
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the straps, which differs slightly between therapists. However, even though
the hardware was set up slightly differently by the two therapists, the algo-
rithm managed to find input settings that walk the subject physiologically,
indicating certain robustness to slight variations in the hardware.

7 Conclusion and Future Work

This paper has derived a supervised learning-based method utilizing human
ratings for learning parameters of a feedback controller. The approach was
applied to the Lokomat robotic gait trainer with the goal of automatically
adjusting the input settings to reach a physiological gait cycle by encapsu-
lating the therapists’ expertise in a reward model. Feedback control was
enabled by this reward model and a steady-state model, which allows for
converting desired changes in the gait into input adaptations. Experiments
with human subjects showed that the therapists’ expertise in the form of
ratings of four gait phases provides sufficient information to discriminate
between physiological and non-physiological gait cycles. Furthermore, the
provided adaptations led to an improvement of the gait cycle towards a
physiological one within fewer than ten adaptations. The physiological
gait cycle was partly reached by changes in input settings that domain
experts would not have chosen themselves, suggesting that the proposed
method might also be capable of generalizing from ratings and proposing
improved settings for unseen scenarios. This observation remains to be
confirmed with more data in future work.
Future work involves the data collection, evaluation, and validation of the

proposed method with impaired patients. This will include the assessment
of asymmetric gait adaptations for the right and left legs, which can readily
be achieved by considering one feature vector for each leg. Further, physical
limitations and/or constraints in the patients’ movements could be assessed
online using sensor measurements of the Lokomat and considered for the
selection of input settings.
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Abstract: This paper presents a method for inverse learn-
ing of a control objective defined in terms of requirements and
their joint probability distribution from data. The probabil-
ity distribution characterizes tolerated deviations from the de-
terministic requirements and is learned using maximum likeli-
hood estimation from data. Further, this paper introduces both
parametrized requirements for motion planning in autonomous
driving applications and methods for the estimation of their
parameters from driving data. Both the parametrized require-
ments and their joint probability distributions are estimated
using a posterior distribution such that the control objective
is personalized from a prior as driver data are accumulated.
Finally, three variants of the learning method are presented
that vary in computational complexity and data storage re-
quirements. Key advantages of the proposed inverse learning
method are a relatively low computational complexity, a need
for a limited amount of data, and that the data do not have to
be segmented into specific maneuvers, which makes the method
easily implementable. Learning results using data of five human
drivers in a simulation environment suggest that the proposed
model for human-conscious driving along with the proposed
learning method enable a more natural and personalized driv-
ing style of autonomous vehicles for their human passengers.
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1 Introduction

Humans cognitive abilities to operate a dynamical system are often difficult
to match by an autonomous control design. One reason is that it is diffi-
cult to analytically model human knowledge and desires or to incorporate
human intent into a control objective. Autonomous driving is one example
where humans’ capabilities of real-time decision making and trading-off
various objectives are hard to achieve by pure model-based control ap-
proaches [1], [2]. Calibrating a control objective to achieve human-like
behavior of a system as complex as an autonomous vehicle can be a chal-
lenging, time-consuming, and expensive task. On the other hand, a purely
data-driven approach may require a large amount of data that cover all
driving conditions, which is again hard and expensive to gather. As such,
the best option appears to be a sensible synthesis of model-based and data-
driven approaches using the former to define models and objective classes
based on well-established problem knowledge, and the latter to define their
relative importance based on drivers’ behaviors. Inverse learning methods
offer an attractive design paradigm to systematically calibrate a control
law or control objective of a model-based approach using data.
The motivation for this work is to automate the calibration of au-

tonomous vehicles to achieve a more natural and personalized driving style
for the individual human passenger, while retaining safety and behavioral
guarantees of model-based motion-planning algorithms. The desire to per-
sonalize autonomous vehicles originates from the fact that the feeling of
comfort and cautiousness in traffic varies between individual human pas-
sengers. In this paper, we define a driving style as the individual prefer-
ences in operating a vehicle as a trade-off between potentially conflicting
objectives, such as the time to reach the destination, comfort, and cau-
tiousness. Related definitions are presented in [3], [4], and a thorough
review of driving styles related to road safety is presented in [5]. In the
context of this paper, we aim at finding the motion-planner parameter tun-
ing that minimizes—in some appropriate sense—the difference between the
behavior of the autonomously driven and the manually driven vehicle with
respect to some key performance indicators, which we refer to as driving
requirements.

2 Key Contributions

In this paper, we propose a method to learn a control objective, which
consists of parametrized deterministic requirements and a probability dis-
tribution. The deterministic requirements represent goals that a dynamical
system aims to satisfy, whereas the probability distribution represents tol-
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erated deviations from the requirements accounting for uncertainties and
noise, or that the requirements may not be perfectly achieved. The con-
sidered control objective for decision-making has been proposed in [6], [7],
where a particle filter extracts the motion plan for autonomous driving
from given requirements and their joint probability distribution. This pa-
per considers the inverse problem, where motion plans are generated by a
different actor, e.g., a human, who demonstrates how to operate the dy-
namical system. In the context of the motion-planning application, a hu-
man driver demonstrates their preferred driving style by taking full control
of the vehicle, which will be possible for autonomous vehicles with auton-
omy levels until at least SAE Level 4 [8]. Indeed, the learning approach is
aimed at improving the experience of riding the autonomous vehicle, while
the correct system operation is guaranteed before this calibration step by
the motion-planning algorithm.
This paper extends our initial investigation [9] with the following: It

i) incorporates a prior for the motion planner’s parameters in order to
gradually personalize the driving style as data are accumulated; ii) details
the algorithm for estimating the parameters of the control objective; and
iii) proposes and analyzes three variants of the learning method that vary
in computational complexity and storage requirements.
More specifically, we propose a parametrized requirement function to

be used for personalized motion planning, along with methods to learn
its parameters, where we use four requirements: to stay close to the cen-
terline, to track a nominal velocity, to limit the longitudinal and lateral
accelerations for comfort, and to maintain a safety distance from obsta-
cle vehicles. Hence, we personalize the motion planner with respect to
these four requirements but additional requirements can be added, simi-
larly. Further, we propose a regularized likelihood maximization method
to estimate the probability distribution from demonstrated motion plans,
which we model to be the result of an estimation problem in a Kalman-
filter framework. The regularized likelihood maximization method can be
interpreted as maximum a posteriori estimation, where the prior is given
by a common belief and a structural belief. The common belief is used to
incorporate commonly used parameters and the structural belief is used
to favor structurally beneficial parameters for the motion planner. Sim-
ulations with five human drivers suggest that both the probability dis-
tribution and the parameters of the requirement function are individual,
thereby allowing for tailoring the motion planner to individual preferences.
Although we validate the proposed learning method using the particle fil-
ter algorithm in [7], the method is generally applicable to calibrate control
strategies having a well-defined requirement function, which is the case for
most optimization-based control strategies.
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The first key advantage of the proposed method is the low computational
complexity, where we propose three variants making the method adjustable
to the available hardware. For example, one variant only requires a few
parameters to be updated recursively and its computational complexity
is independent of the data size. The second key advantage is that our
method is not maneuver based, i.e., the data need not be segmented prior
to learning. These two key results make the algorithm easily implementable
on hardware suitable for automotive applications.

Gray-box learning philosophy

While a pure end-to-end learning approach results in a black-box algorithm
that is difficult to assess and verify, a purely model-based approach may
be easier to assess and verify but is difficult to calibrate for achieving a
personalized driving style. Here, we pursue a gray-box learning approach
and calibrate the model-based motion-planner in [7] using data, i.e., mo-
tion plans generated by human drivers. In this way, the overall driving
behavior is guaranteed to have the general properties and guarantees of
the motion planner [7], including collision avoidance and specific behav-
iors in safety-critical decisions. Yet, among the admissible motion plans,
the ones that are closer to the driver’s natural behavior and that enhance
passenger comfort are chosen. Thus, our objective is not to imitate the hu-
man’s individual driving style but to use the motion plans demonstrated
by the individual driver to calibrate the parameters of the motion planner
such that the autonomous vehicle behavior is as close as possible—in an
appropriate sense—to that of the human driver. Since we learn the param-
eters of a given algorithm, rather than the algorithm itself as in black-box
learning, the autonomous vehicle behavior will still satisfy the invariant
motion-planner constraints, e.g., the safety constraints. As a consequence,
the calibrated motion planner will try to be as close as possible to the driver
behavior, within the space of admissible, i.e., safe, behaviors. In particular,
the resulting motion planner will not imitate negative behaviors such as
unsafe maneuvers or violations of the rules of the road, e.g., exceeding the
speed limit. Due to the more limited scope of learning, a reduced amount
of data is sufficient for the learning algorithm to operate, since we are learn-
ing parameters, rather than the entire algorithm. Fig. P4-1 illustrates the
core components of the approach, i.e., the controller, the data generation,
the learning algorithm, the validation of the estimated parameters, and the
motion planner.

132



3 Qualitative Comparison with Related Work

Motion Planner

§ XI

Validation

§ X

Gray-box Learning

Summary:  § VIII

Demonstrations

§ IX

Controller Model

Probability Dist.

§ V

Requirements

§ VII-A

data

controller 
structure

estimated 
parameters

Calibration of  
Probability Dist.

§ VI

Calibration of  
Requirements

§ VII-B

0 2 4 6 8
0

2

4

6

8

Lat. acc. in [m/s2]

L
on

g.
ac

c.
in

[m
/s

2
]

-1 0 1

-1

0

1

-1 0 1

-1

0

1

Figure P4-1. Core components, their connections in the learning proce-
dure, and their allocation in the paper. The data provided
by human drivers are used to calibrate the parameters of
the controller. Due to the gray-box learning approach, the
estimated parameters are interpretable and thus, can be val-
idated prior to their employment in the motion planner.

3 Qualitative Comparison with Related Work

Some recent research directions present interesting relations with the tech-
niques proposed here and are worth some discussions. Recent reviews
provide additional background on learning objectives from demonstrations
[10], [11].

3.1 Inverse Optimal Control (IOC)

IOC methods model observed data to be the result of an optimal con-
trol problem [12]–[23] and often aim at transferring human expertise to
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an autonomous system, e.g., for humanoid locomotion [14], [15], identify-
ing human movements [16]–[18], or robot manipulation tasks [19]. Typi-
cally, IOC methods such as [18], [19] use the Karush-Kuhn-Tucker (KKT)
conditions and assume a deterministic control objective and the resulting
control actions are deterministic. Under this assumption, the performance
may deteriorate in the presence of imperfect information such as noisy or
suboptimal data. Some notable exceptions are [20], where a bi-level op-
timization approach is proposed to address imperfect data; [21], where a
risk-metric model is introduced to circumvent risk-neutral, deterministic
objective functions; [22], where policies are constructed for scenarios with
multiple future outcomes; and [23], where the concept of active learning is
incorporated into the risk-sensitive framework in [21] enabling an agent to
query demonstrations from an expert.

Distinction from IOC

The systematic difference between our method and IOC [12]–[23] lies in the
stochasticity of the control objective, which models decision-making ex-
plicitly as nondeterministic and suboptimal. In the context of autonomous
driving, this model is especially relevant due to the presence of uncer-
tainty in the environment, modeling errors, and sensing and localization
errors. The advantage of KKT-based inverse learning paradigms is the
consideration of operational constraints, which also facilitates the learn-
ing of constraints, e.g., in [18], [24]. However, these methods require the
data to be segmented into specific maneuvers in which the assumptions
on the data—expressed by the KKT conditions—are satisfied. Automatic
segmentation of demonstrations into maneuvers or subtasks is addressed,
e.g., in [25]–[27], and the reader is referred to [10] for a detailed discus-
sion. In contrast, for our method, the data need not be segmented into
maneuvers prior to learning. On the other hand, while the motion planner
is subject to constraints, they are not explicitly considered in the learn-
ing procedure. However, for the motion-planning application, this does
not pose an issue as operational constraints neither should be changed by
the learning algorithm to ensure safety, e.g., the road boundary, nor are
actually reached in normal driving conditions, e.g., the peak lateral and
longitudinal accelerations of the autonomous vehicle.

3.2 Inverse Reinforcement Learning (IRL)

IRL methods [28]–[37] also learn an objective function from demonstra-
tions and model data to be the result of probabilistic decision-making in
a Markov decision process. IRL typically considers a finite state and ac-
tion space and can be formulated either as a model-based or a model-free
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approach, depending on prior knowledge. In model-based IRL, which is
the closest to the approach considered here, the transition probabilities
between states are assumed to be known. A notable parallel development
to our work using maximum entropy IRL with a finite state and action
space is [37], where reward functions are tuned based on human driving
data. In order to overcome the limitation of finite discrete actions, [37]
uses high-resolution sampling of time-continuous actions leading to a high-
dimensional state-space representation.

Distinction from IRL

The main difference between the proposed method and IRL [28]–[37] is
in the formulation of the control problem using a continuous state space
in a Kalman filter framework rather than a Markov decision process with
a potentially finite state and action space. This difference in the control
problem yields a systematic difference in the corresponding inverse prob-
lem. For example, [37] uses a high-dimensional state space representation
to make IRL applicable to learning driving behaviors, whereas we choose
a low-dimensional, continuous state space. Furthermore, the amount of
data often tends to be proportional to the size of the space, and hence
high-dimensional state spaces may require a considerable amount of time
for the learning process to succeed.

3.3 Imitation Learning & Supervised Learning

Further related—but conceptually different—approaches are to learn poli-
cies rather than an objective function [38], [39], which is often referred to
as imitation learning, or to use labeled data in order to learn an objec-
tive function, e.g., using supervised learning [40]–[42]. Notably, [40] uses
semi-supervised learning with a similar motivation, where drivers are clas-
sified into aggressive and normal driving styles based on a few labeled data
points.

Distinction from imitation learning & supervised learning

Compared to policy-based imitation learning methods [38], [39], which tend
to replicate the demonstrated motion plans, we learn parameters of an al-
gorithm to obtain the closest behavior among the allowed ones. Therefore,
we are more constrained in the solution but need less data and have prop-
erties that are invariant through the learning process, which we can use
to enforce safe behaviors while learning. Compared to supervised learning
methods [40]–[42], we do not require labeled data in order to learn a control
objective. On the other hand, inverse learning methods that use unlabeled
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data, such as IOC, IRL, and our method, require the assumption that the
data represent desirable behavior.

4 Notation & Preliminaries

p(x0:T |y) := p(x0,x1, ...,xT |y) denotes the conditional probability density
function (PDF) of xk ∈ Rn at time-steps k = 0, ..., T , conditioned on y.
Given mean vector µ and covariance matrix Σ, N (µ,Σ) and p(x|µ,Σ)
stand for the Gaussian distribution and PDF, respectively, with

p(x|µ,Σ) =
1√

(2π)n|Σ|
exp

(
− 1

2
(x− µ)T Σ−1 (x− µ)

)
.

The notation x ∼ N (µ,Σ) means x sampled from N (µ,Σ), the expected
value of x is E[x], and ∝ reads proportional to. For a matrix Z ∈ Rn×m,
zij = (Z)ij is the element in the ith row and jth column and vec is the
vectorization operator with vec(Z) = [z11...zn1, z12...zn2, ..., z1m...znm]T.
D = diag(x1, ...xn) is a diagonal matrix with dii = xi. We define Y =
setmaxnorm (X ,M) and Y = setminnorm (X ,M) as operators that return
the set Y containing the M largest/smallest elements in the set X with
respect to a given norm; x = med(X ) and y = max(X ) as the median and
the maximum value of the scalar elements in X ; and ‖x‖Σ = xTΣx.

Gradient of a PDF

We use Einstein’s summation convention [43] for conciseness, e.g., for A ∈
Rn1×n3 , B ∈ Rn1×n2 , C ∈ Rn2×n3 , A = BC can be expressed as

(A)ab = (B)az (C)zb ⇔ (A)ab =

n2∑
z=1

(B)az (C)zb .

Let Σ ∈ Rn×n be a function of Y ∈ Rm×m and p(x|0,Σ) be a Gaussian
PDF. Then,(

∂ log p(x|0,Σ)

∂Y

)
ab

=

(
∂ log p(x|0,Σ)

∂Σ−1

)
zy

(
∂Σ−1

∂Y

)
zyab

and, using xTΣ−1x = trace(Σ−1xxT),

∂ log p(x|0,Σ)

∂Σ−1 =
∂( 1

2
log |Σ−1| − 1

2
trace(Σ−1xxT))

∂Σ−1

=
1

2
Σ− 1

2
xxT,
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cf., (57) and (101) in [44]. For xk ∼ N (0,Σk) with k = 1, ..., T and
time-varying Σk,(

∂ log
∏T
k=1 p(xk|0,Σk)

∂Y

)
ab

=

T∑
k=1

(
∂ log p(xk|0,Σk)

∂Y

)
ab

=

T∑
k=1

(
1

2
Σk − 1

2
xkx

T
k

)
zy

(
∂Σ−1

k

∂Y

)
zyab

. (P4-1)

Let Σ̂T = 1
T

∑T
k=1 xkx

T
k be the sample covariance. If Σk = Σ (time-

invariant) for all k, (P4-1) simplifies to

T

2

(
Σ− Σ̂T

)
zy

(
∂Σ−1

∂Y

)
zyab

. (P4-2)

5 Problem Statement

We consider discrete-time system dynamics of the form

xk = f (xk−1) + g (xk−1)uk, (P4-3)

where f and g are in general nonlinear functions, xk ∈ Rnx is the state
at time k, and uk ∈ Rnu denotes the input applied from discrete time-
step k − 1 to k. In the context of autonomous driving, (P4-3) represents
the motion model of the vehicle. Note that we deviate from the standard
literature by using uk with index k instead of k − 1 in (P4-3) to ease
notation in the following. The behavior of (P4-3) is modeled with respect
to requirements yk ∈ Rny with

yk = hθ(xk,uk) + vk, (P4-4)

where we call hθ the requirement function and vk is the slack, with yk =
hθ(xk,uk) if all requirements are obeyed perfectly. Based on our definition
in (P4-3), the requirements are a function of the current control uk and
the predicted state achieved by applying that control, xk. This allows us
to quantitatively model several key performance indicators as a control
objective.

5.1 Motion Planner & Modeling Assumptions

The requirement function hθ is modeled as deterministic with potentially
unknown parameters θ. On the other hand, the tolerated deviations from
the requirements, represented by the slack vk, are modeled as probabilis-
tic and, therefore inflict a probability distribution upon the requirements.
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Using the probability distribution and the requirement function, the mo-
tion planner considered in [7] constructs the state trajectory PDF given
the requirements—i.e., p(x0:T |y0:T ) with yk in (P4-4) from time k = 0 to
k = T—and extracts the state trajectory from the PDF. The extracted
state trajectory is then used as motion plan. In this context, the motion-
planning problem is formulated as a statistical estimation problem, in
which the requirements yk in (P4-4) are treated as sensor measurements
and uk in (P4-3) is the input (process) disturbance. We model the input
disturbance in (P4-3) as Gaussian distributed uk ∼ N (0,Q) and the slack
in (P4-4) as vk ∼ N (0,R).

Control inputs & motion plan

In order to find the control inputs that result from this model, we use inde-
pendence of the random variables to write the joint probability recursively,

p (x0:T |y0:T ) ∝
T∏
k=1

p (xk|yk,xk−1) (P4-5)

and, at the first order, hθ(xk,uk) ≈ Hkxk + Dkuk with Hk =
∂hθ(x,uk)/∂x|x=x̂k

, Dk = ∂hθ(x̂k,u)/∂u|u=ûk
, Gk = g(xk−1),

p (xk|yk,xk−1) ≈ N
(
x̂k,GkΣkG

T
k

)
, (P4-6a)

where

x̂k = f(xk−1) +Gkûk (P4-6b)
ûk = Kk (yk − hθ(f (xk−1) ,0)) (P4-6c)

Kk = Q (HkGk +Dk)T Γ−1
k (P4-6d)

Γk = (HkGk +Dk)Q (HkGk +Dk)T +R (P4-6e)
Σk = (I −Kk(HkGk +Dk))Q. (P4-6f)

Eq. (P4-6) is derived using the conditional Gaussian distribution of uk
and vk and is similar to a measurement update of an extended Kalman
filter, where x̂k is the optimal state estimate, Kk is the optimal Kalman
gain, Γk is the innovation covariance, and Σk is the estimate covariance.
The resulting motion plan—i.e., the assumption on the data—is obtained

from (P4-6),

x0:T with xk ∼ N
(
x̂k,GkΣkG

T
k

)
, (P4-7)
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where the control inputs are

uk = Kk (yk − hθ(f (xk−1) ,0)) + σk (P4-8)

with the gain Kk in (P4-6d) and σk ∼ N (0,Σk) with Σk in (P4-6f). The
resulting motion plan and the control inputs are therefore entirely specified
by the covariance matrices Q and R along with yk and hθ.

Remark 1. In contrast to (P4-8), in [7], a particle filter extracts the
motion plans from (P4-5), where the control inputs become

uNk = ûk +

∑N
i=1 wk,iσk,i∑N
i=1 wk,i

with σk,i ∼ N (0,Σk) and weights wk,i of the N particles computed as

wk,i = ‖yk − h (f(xk−1) + g(xk−1)(ûk + σk,i))‖Γ−1
k
.

For N → ∞, uNk yields asymptotically the optimal (deterministic) mo-
tion planner, i.e., uNk → arg maxuk p(xk|yk,xk−1). Although the optimal
motion planner would be desirable for autonomous systems, it is in gen-
eral prohibitive due to the limited amount of computational resources on
automotive micro-controllers [45]. Furthermore, it is an ill-suited model
for learning from (human) data, which naturally are subject to noise and
other sources of suboptimalities. The benefits of the model in (P4-8)—i.e.,
uk ∼ N (ûk,Σk)—are that nondeterministic decision-making is considered
explicitly and its Gaussian distribution facilitates computationally tractable
maximum likelihood estimation, which can be implemented on computa-
tional platforms suitable for automotive applications.

5.2 Conceptual Idea & Problem Definition

In this paper, we learn the probability distribution of the requirement
function, defined by Q and R, as well as the parameters θ. For human
passengers who have not demonstrated their individual preferred driving
style, the motion planner uses common covariance matrices Qc and Rc

along with common parameters θc. Personalization is achieved through
adapting the parameters θ and the covariance matrices Q and R, where
θc, Qc, and Rc are used as a prior. This conceptual idea is stated formally
with the following two problems.

Problem 1. Given motion model (P4-3), the requirement func-
tion (P4-4) with known parameters θ, how motion plans are gener-
ated (P4-7), (P4-8), and a set D of human driven vehicle data D =
{(x0,y0), . . . , (xT ,yT )}, determine Q, R in (P4-8) that (at least locally)
maximize p(Q,R|Qc,Rc,x0:T ,y0:T ).
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Figure P4-2. Illustration of two driver profiles and their probability distri-
bution. Left: Probability distribution resulting from Qc,Rc,
and parameters θc. Right: Probability distribution from a
personalized motion planner. The personalized motion plan-
ner is likely to overtake the obstacle vehicle during the turn
(low probability of trailing the obstacle vehicle), whereas the
motion planner with the common parameters is more likely to
stay behind the obstacle vehicle (low probability of changing
lanes).

Problem 2. Given motion model (P4-3), the parametric requirement
function (P4-4), the assumption on the motion plans (P4-7), (P4-8), and
the data D, determine θ maximizing p(θ|θc,x0:T ,y0:T ).

Problem 1 and Problem 2 are addressed in Section 6 and Section 7,
respectively. Section 8 summarizes the learning procedure and presents
three variants of the proposed method and their hardware requirements.
Fig. P4-2 illustrates the concept of state trajectory PDFs and how decision-
making can differ between humans. It displays the probability distributions
p(x0:T |y0:T ) for two realizations of parameters in a traffic scenario with one
moving obstacle vehicle, where the color map indicates initial conditions
that are more or less likely.

6 Estimation of Covariance Matrices

In this section, we present our method for estimating the covariance ma-
trices Q and R given the requirement function hθ and data generated as
in (P4-8).
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6.1 Optimization Problem Setup

We estimate the covariance matrices from the distribution

p(Q,R|Qc,Rc,x0:T ,y0:T )

∝ p(x0:T ,y0:T |Q,R,Qc,Rc)p(Q,R|Qc,Rc),
(P4-9)

where p(x0:T ,y0:T |Q,R,Qc,Rc) = p(x0:T ,y0:T |Q,R) is the likelihood of
the observations and p(Q,R|Qc,Rc) is a prior distribution. The two dis-
tributions are further specified in the following. In (P4-9) and what follows,
x0:T refers to observations of closed-loop driving and differs from the open-
loop motion planner in Section 5.1 being generated by the inputs in (P4-8)
rather than by uk ∼ N (0,Q).

Likelihood p(x0:T ,y0:T |Q,R)

Consider the system dynamics (P4-3) and the measurement (requirement)
equation (P4-4). If the control inputs are as in (P4-8), then

p(x0:T ,y0:T |Q,R) =

T∏
k=1

p(uk|0,Q)p(vk|0,R)
p(wk|0,R)

p(ek|0,Γk)
(P4-10)

with ek = yk − h(f(xk−1),0), wk = ek − Jkuk, and Jk = HkGk +Dk,
which is formally shown in Theorem 1. The reformulation in (P4-10) is
essential for the efficiency of the likelihood maximization algorithm detailed
in Section 6.2.

Theorem 1. Consider (P4-3) and let p(x0,y0) = 1. If vk ∼ N (0,R) in
(P4-4) and uk as in (P4-8) with Kk as in (P4-6d) and σk ∼ N (0,Σk),
then (P4-10) holds.

Proof. The joint probability on the left hand side of (P4-10) is equal to the
product of the probabilities of all random variables (Markov property),

p(x0:T ,y0:T |Q,R) =

T∏
k=1

p(uk|ûk,Σk)p(vk|0,R). (P4-11)

Reformulating (P4-11) using Lemma 1 shows (P4-10).

Lemma 1. Let uk as in (P4-8) and ûk = Kkek. Then,

p(uk|ûk,Σk) = p(uk|0,Q)
p(wk|0,R)

p(ek|0,Γk)
.
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Proof. We need to show that (i):

‖uk − ûk‖Σ−1
k

= ‖uk‖Q−1 + ‖wk‖R−1 − ‖ek‖Γ−1
k

and (ii): |Σk| = |Q| |R||Γk| .
The identity (i) can be shown by using KT

kΣ
−1
k Kk = R−1 − Γ−1

k and
Σ−1
k Kk = JT

kR
−1 and (ii) follows from:

|Σk| = |Q||Inu −KkJk| = |Q||Inu −QJT
kΓ
−1
k Jk|

= |Q||Iny − JkQJT
kΓ
−1
k |,

where the last equality is Sylvester’s determinant identity [46]. Finally,

|Iny − JkQJT
kΓ
−1
k | = |Γk − JkQJT

k||Γ−1
k | = |R||Γ−1

k |

shows (ii).

Corollary 1. Let the data be generated by purely stochastic control in-
puts uk = σk. Then, the sample covariances Q = 1/T

∑T
k=1 uku

T
k

and R = 1/T
∑T
k=1 vkv

T
k are the maximum likelihood solutions to

maxQ,R p(x0:T ,y0:T |Q,R).

Proof. This follows directly from the Markov property with ûk = 0 and
Σk = Q, for which the sample covariance is the maximum likelihood esti-
mator [47].

Remark 2. Let xk ∈ Rnx with xk ∼ N (0,Σ) for k = 1, ..., T . The proba-
bility that the sample covariance Σ̂T = 1

T

∑T
k=1 xkx

T
k confidently estimates

Σ is

p
(
‖Σ− Σ̂T ‖2 ≤ ε‖Σ‖2

)
≥ 1− δ, if T ≥ 3n2

x

εδ

for any ε > 0 and δ ∈ (0, 1) [48], [49]. This confidence bound for the
sample covariance holds for purely stochastic control inputs as shown in
Corollary 1. For control inputs as in (P4-8), a convergence analysis is
more challenging and omitted here as the resulting distribution in (P4-10)
is not Gaussian.
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Prior belief p(Q,R|Qc,Rc)

We use the notion of a prior belief to incorporate both a common belief
and a structural belief. The common belief defines deviations from the
common covariance matrices Qc and Rc, whereas the structural belief fa-
vors structurally beneficial covariance matrices. We model p(Q,R|Qc,Rc)
as a Gaussian distribution,

p
(
tc (Q,R)

∣∣0, σ2
cI
)
p
(
ts (Q,R)

∣∣0, σ2
sI
)
, (P4-12)

where the functions tc and ts along with the variances σ2
c and σ2

s are used
for the common belief and the structural belief. In this context, σ2

c and σ2
s

trade off prior belief and the likelihood of the observations.

Logarithmic likelihood maximization

Overall, we estimate Q and R by maximizing the log-likelihood,

max
Q,R

log (p(x0:T ,y0:T |Q,R)p(Q,R|Qc,Rc)) (P4-13a)

s.t. Q ∈ CQ,R ∈ CR, (P4-13b)

where CQ, CR can be used to enforce constraints on Q,R, e.g., Q = QT �
0,R = RT � 0. We optimize (P4-13) with the projected gradient method
outlined in Section 6.2.

6.2 Optimization Algorithm: Projected Gradient Descent

Let ξi = [vec(Qi)T vec(Ri)T]T as the vectorized representation of the co-
variance matrices at iteration i of the optimization algorithm. Further,
let

c(ξi) = log (p(x0:T ,y0:T |Q,R)p(Q,R|Qc,Rc)) (P4-14)

be the log-likelihood as in (P4-13a). Algorithm P4-1 summarizes the es-
timation procedure for Q and R. We initialize Q = Qc and R = Rc

(Line 1). At each iteration, we compute the gradient with respect to Q
and R (Line 3), denoted dQ and dR, compute the step size l (Line 4–
6), and project the updated matrices (Line 7) onto the constraint set in
(P4-13b) (Line 8).
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Gradient computation

The gradient of the prior belief log p(Q,R|Qc,Rc) in (P4-14) depends
on the functions tc and ts in (P4-12). For computing the gradients of
log p(x0:T ,y0:T |Q,R) with respect to Q and R, we use (P4-10),

log p(x0:T ,y0:T |Q,R) =

T∑
k=1

log p(uk|0,Q) +

T∑
k=1

log p(vk|0,R)

+

T∑
k=1

log p(wk|0,R)−
T∑
k=1

log p(ek|0,Γk).

(P4-15)

The gradient of the first three terms in (P4-15) is computationally cheap to
evaluate as it does not scale with the time duration of the collected data T ,
cf., (P4-2). The computational complexity of the last term scales linearly
with T with O(T (n4

y(n2
y + n2

u))), cf., (P4-1), as the covariance matrix Γk
is time-varying.

Selection of step-size

The step-size l does not affect the optimal solution but the convergence
rate of the learning algorithm and is sometimes referred to as the learning
rate in the literature [50]. We select the step-size by backtracking line
search [51], where the idea is to reduce the step-size from an initial value
l until a strict improvement is achieved (Line 4–6). The approach can be
implemented efficiently for the considered application as c(ξi) in (P4-14)
is relatively cheap to evaluate. The step-size for the next iteration i+ 1 is
initialized adaptively as in Line 9. The rationale behind this initialization
is that the magnitude of the gradient does not change too abruptly between
iterations i and i+ 1.

Projection

The projection is used to enforce Q ∈ CQ,R ∈ CR. We enforce the con-
straint of positive definite covariance matrices using the spectral decompo-
sition of a matrix X ∈ Rn×n as in [52], [53],

X = V diag(λ1, ..., λn)V T,

where V comprises the eigenvectors ofX and λi are its n eigenvalues. The
projection of X onto the cone of positive definite matrices S+

n , denoted as
proj

S+
n

(X), is

proj
S+
n

(X) = V diag(max(ελ, λ1), ...,max(ελ, λn))V T
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with a small ελ > 0 to ensure strict positive definiteness. The computa-
tional complexity of the spectral decomposition is O(n3), which is feasible
for the considered problem dimension since it applies to Q and R, and
not to the leaning data. Additional constraints, which are specific to the
application can also be included as it will be shown in Section 10.1.

Algorithm P4-1 Estimation of Q, R

1: Q0 = Qc, R0 = Rc, l = 1, i = 0
2: while l ≥ ε . ε = 10−8 in our case
3: dQ, dR← getGrad
4: while c(ξi)− c(ξi + l∇ξc(ξi)) > − l

2
|∇ξc(ξi)|2

5: l← γl . γ = 0.7 in our case
6: end while
7: Q = Qi + l · dQ; R = Ri + l · dR
8: Qi+1,Ri+1 ←project(Q,R)
9: l← l/γnα , i← i+ 1 . nα = 3 in our case
10: end while

7 Requirements for Autonomous Driving and their
Personalization

The requirements for the motion-planning application are

• to follow the centerline of a target lane,

• to maintain a nominal velocity,

• to limit longitudinal and lateral acceleration, and

• to maintain a safety distance from surrounding obstacles.

The requirements yk in (P4-4) at time k as are formalized as

yk =


0

vnom

0
0

 , hθ(xk,uk) =


hl(pX,k, pY,k)

vx,k
hcθ(ax,k, ay,k)
hoθ(dk, vx,k)

 ,
where hl(pX , pY ) denotes the squared distance from the centerline at ve-
hicle position pX , pY , vnom and vx are the nominal and current velocity,
respectively, hcθ(ax, ay) is the passenger comfort requirement with longitu-
dinal acceleration ax and lateral acceleration ay acting on the vehicle, and
hoθ(d, vx) is the obstacle avoidance requirement with separation distance d
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between ego vehicle (EV) and the obstacle vehicles (OVs). As both the
centerline and the velocity tracking requirements are physical quantities,
they are modeled as invariant and only their relative importance is learned.
However, both the passenger comfort and obstacle avoidance requirements
are expected to structurally vary between drivers and are introduced next.

7.1 Individual Requirements

Passenger comfort requirement

We model the passenger comfort requirement as a penalty for longitudinal
and lateral accelerations, as well as their coupling. The magnitude of
accelerations and their coupling are well known to relate to the individual
driving style [54], where performance drivers may achieve simultaneous
longitudinal and lateral acceleration, and more cautious drivers tend to do
either one or the other. The passenger comfort requirement is formalized
as

hcθ(ax, ay) = ā · cθ(ax, ay)− c0
c1 − c0 , (P4-16)

with c1 = (
√

(ā2 + ε)
nc

+
√
ε
nc)

1
nc , c0 = (2

√
ε
nc)

1
nc , and

cθ(ax, ay) =
(√

(a2
x + ε)

nc
+
√

((s · ay)2 + ε)
nc
) 1
nc

and a small ε > 0. The parameter s defines a unilateral scaling—i.e., for s 6=
1, the comfort requirement is not commutative hcθ(ax, ay) 6= hcθ(ay, ax)—
and c1, c0 are normalization constants ensuring that hcθ(0, 0) = 0 and
hcθ(ā, 0) = hcθ(0, ā/s) = ā. The exponent nc shapes the level sets of (P4-16)
such that, for higher nc, the level sets are more circular, see the left plot in
Fig. P4-3. For ε = 0, s = 1, (P4-16) is the nc-(pseudo)norm for [ax ay]T.
Here, we introduce ε > 0 (and c1, c0 as a consequence) for two reasons:
First, hcθ(ax, ay) becomes differentiable with respect to its inputs ax, ay
for all nc. Second, the penalty for combined longitudinal and lateral ac-
celerations is reduced for smaller values, i.e., the level set is more circular
around the origin, see the right plot in Fig. P4-3.

Obstacle avoidance requirement

The obstacle avoidance requirement is modeled as a piecewise linear func-
tion

hoθ(d, vx) =

{
1
ts

(dmin + tsvx − d) if dmin + tsvx ≥ d
0 else,

(P4-17)
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Figure P4-3. Left: Level sets hc = 1 with varying nc, s = 1, and ε = 0.
Right: Varying level sets hc with nc = 1

2
, s = 1, and ε = 0.01.

where dmin is the minimum distance to be kept from the OVs and tsvx is
the traveled distance of the EV within the safety time ts at velocity vx
and considers that the safety distance from the OVs is velocity dependent.
The scaling 1/ts is introduced to obtain a comparable magnitude of hoθ
for different ts, which is important for estimating Q,R due to the prior
p(Q,R|Qc,Rc). Lateral obstacle constraints are considered through the
motion planner as discussed in [7].

7.2 Estimation of Requirement Parameters

We estimate the personalized requirement parameters

θ =
[
s nc dmin ts

]T
from the distribution p(θ|θc,x0:T ,y0:T ), which we model as
p(θ|θp, I)p(θ|θc, σ2

θI), with the common parameters θc = [sc ncc d
c
min t

c
s]
T,

the personal parameters θp = [sp npc d
p
min t

p
s ]

T estimated from x0:T ,y0:T ,
and the variance σ2

θ . Then,

θ = arg max
θ̃

p(θ̃|θp, I)p(θ̃|θc, σ2
θI) (P4-18a)

=
σ2
θ

σ2
θ + 1

θp +
1

σ2
θ + 1

θc. (P4-18b)

Next, we present algorithms for estimating θp from data of human driving.
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Estimation of passenger comfort requirement

The estimation of the parameters npc and sp is achieved by Algorithm P4-2
and described next. Let

A =

{[
ax,0
ay,0

]
, ...,

[
ax,T
ay,T

]}
Ac = {ax,0, ..., ax,T , ay,0, ..., ay,T }
Ax = {ax,0, ..., ax,T } , Ay = {ay,0, ..., ay,T } .

Estimation of sp

We compute the unilateral scaling parameter sp as the ratio between lon-
gitudinal and lateral accelerations, each represented by the median as a
measure of central tendency. We use the median, rather than the mean,
as a robust estimator in the presence of outliers. More specifically, sp

results from the median of the M largest longitudinal accelerations and
divided by the median of the M largest lateral accelerations (Line 1 in
Algorithm P4-2).

Estimation of npc

In order to estimate npc , we first estimate amax denoting the value of the
level set of the largest accelerations. We compute amax as the median of
theM largest elements in absolute value of the set defined by Ax∪ (s ·Ay),
where s·Ay = {s·ay0 , ..., s·ayT } (Line 2). Then, npc is obtained by estimat-
ing the shape of the level set amax using the passenger comfort requirement
as (pseudo)norm. Thereby, we compute a set with a strong coupling of lon-
gitudinal and lateral accelerations using a small nc,0, denoted F0. Finally,
the exponent npc is increased iteratively until the median comfort level in
F0 is greater than or equal to amax (Line 5–9).

Estimation of obstacle avoidance requirement

We use a system identification-like approach similar to [55] to estimate the
parameters dpmin and tps , as described in Algorithm P4-3 and explained next.
The intuitive idea is that the observed data originate from either of two
models: driving with or without traffic. Considering the piecewise linear
hoθ in (P4-17), we want the switch between the two models to coincide
with dpmin = d − tpsvx, where dpmin < d − tpsvx indicates traffic-free and
dpmin > d− tpsvx is traffic-affected driving.
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Algorithm P4-2 Estimation of npc , sp given ε

1: sp = med(A?x)/med(A?y) with A?x = setmax|·| (Ax,M), A?y =
setmax|·| (Ay,M)

2: amax = med(A?c), A?c = setmax|·| (Ax ∪ (s · Ay),M)
3: Choose smallest candidate exponent nc,0.
4: F0 = setmaxhc (A,M) using nc,0 and set npc = nc,0
5: do
6: Compute comfort levels C0 of elements in F0 with npc
7: δ̄c0 = med(C0)
8: npc ← npc + δnc. . δnc = 0.01 in our case
9: while δ̄c0 ≥ amax

Estimation of dpmin

We estimate dpmin as the maximum value of the M smallest observed dis-
tances with D = {d0, ..., dT } (Line 1 in Algorithm P4-3). In other words,
dpmin is designed as the Mth smallest observed distance, which is a more
robust and conservative estimator than, e.g., the smallest distance.

Estimation of tps

Let

hrθ(x,u) =
[
hl(pX , pY ) vx hcθ(ax, ay)

]T (P4-19a)

Hr
k =

∂hrθ(x, ûk)

∂x

∣∣∣
x=x̂k

, Dr
k =

∂hrθ(x̂k,u)

∂u

∣∣∣
u=ûk

(P4-19b)

vrk =
[
0 vnom 0

]T − hrθ(xk,uk) (P4-19c)

erk =
[
0 vnom 0

]T − hrθ(f(xk−1),0), (P4-19d)

where r denotes reduced (by the obstacle avoidance requirement). If the
parameters of hcθ are known (Section 7.2), we can use Algorithm P4-1
to estimate Qr and Rr using (P4-19) for traffic-free driving (Line 2 in
Algorithm P4-3). Further, in (P4-8), letKk = KTF

k +KTA
k , whereKTF

k =
Kr
kT is the gain matrix in the absence of traffic (traffic-free) with T =

[I3 03×1],

Kr
k = QrJrk

T
(
JrkQ

rJrk
T +Rr

)−1

, Jrk = Hr
kGk +Dr

k,

and KTA
k is the residual gain matrix (traffic-affected). This decomposition

of Kk in (P4-8) yields

σk = uk −KTF
k ek ∼ N

(
KTA
k ek,Σk

)
.
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Hence, in the absence of traffic KTA
k ek = 0, σk = uk −KTF

k ek is sampled
from a distribution with zero mean and, in the presence of trafficKTA

k ek 6=
0, uk −KTF

k ek is sampled from a distribution with mean KTA
k ek.

We use this change in mean for estimating tps with

tps = arg min
t̃
p
s ,T ,ai

∑
k∈T

Ik +
∑
k/∈T

Jk (P4-20a)

with Ik = ‖uk −Kr
ke
r
k‖22, Jk = ‖uk −Kr

ke
r
k − p(dk, vx,k)‖22, and

T = {i | dpmin + t̃psvx,i ≤ di}, (P4-20b)

where p(d, vx) =
∑1
i=0 ai

(
dpmin + t̃psvx − d

)i with the coefficients ai ∈ Rnu
is used to approximate the nonzero mean. Note that (P4-20) is a combina-
torial problem, however, for a fixed tps , it reduces to a convex least squares
problem in ai. We solve (P4-20) by enumerating tps in ∆tinc increments
(Line 3–6).

Algorithm P4-3 Estimation of dpmin, t
p
s

1: dpmin = max(D?) with D? = setmin|·| (D,M)
2: Get Qr,Rr with Algorithm 1 for traffic-free driving
3: for all tps ∈ [0s ts,max] in ∆tinc increments
4: Compute T in (P4-20b)
5: Solve (P4-20) with fixed tps and T for ai
6: end for . ts,max = 10s, ∆tinc = 0.01s in our case
7: Choose tps with smallest cost (P4-20a)

8 Overall Algorithm, Variants, and Computational
Requirements

In this section, we summarize the overall inverse learning algorithm, where
Problem 1 and Problem 2 as stated in Section 5 were addressed as follows:

Result 1. Algorithm P4-1 solves Problem 1.

Result 2. Eq. (P4-18) using θp estimated with Algorithm P4-2 and Algo-
rithm P4-3 solves Problem 2.

Furthermore, we present three variants for the practical implementation
of the proposed inverse learning method in this section. The three variants
have different computational complexities and data storage requirements,
as well as model assumptions and approximations. Variant I is the unmod-
ified algorithm as presented in Section 6 and Section 7. Variant II uses an
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Table P4-1. Variants of Algorithm

Data Storage Computational Complexity

Variant I O(TnD) O(T (n4
y(n2

y + n2
u)))

Variant II O(TnD) O(n4
y(n2

y + n2
u))

Variant III O(3n2
y + n2

u) O(n4
y(n2

y + n2
u))

approximation of the time-varying covariance Γk as time-invariant Γ. Vari-
ant III uses the same approximation Γk ≈ Γ and, additionally, models the
parameters of the requirement function as constant θ = θc. Table P4-1
specifies the expected data storage and computational complexity for the
three variants.

Variant I

The implementation of Variant I requires the storage of data that scale
linearly with T , where nD in Table P4-1 is the number of numerical values
to be stored at each time-step. For the considered application, not all data
need to be stored, e.g., the road data and both the EV’s and an OV’s
positions are sufficiently represented by the centerline tracking error and
separation distance d between the EV and the OV. The computational
complexity is linear in T , see Section 6.2. Algorithm P4-4 outlines the
estimation procedure for the parameters Q, R, and θ.

Variant II

The implementation of Variant II has the same storage requirements as
Variant I. However, Variant II has lower computational complexity due to
approximating Γk ≈ Γ = (HG+D)Q(HG+D)T +R with some constant
H, G, and D. Algorithm P4-4 outlines the estimation procedure, where
Line 2 and 4 are considerably less computationally demanding.

Variant III

In addition to approximating Γk ≈ Γ, in Variant III we model the re-
quirement function parameters as constant θ = θc, i.e., the requirement
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function is not personalized. Then, the sample covariance matrices

ÛT =
1

T

T∑
k=1

uku
T
k, V̂ T =

1

T

T∑
k=1

vkv
T
k,

Ŵ T =
1

T

T∑
k=1

wkw
T
k, ÊT =

1

T

T∑
k=1

eke
T
k

define a sufficient statistic for the distribution in (P4-10), i.e., the data can
be compressed into the sample covariance matrices without losing infor-
mation. As a result, the data size to be stored is independent of T as the
sample covariance matrices can be updated recursively, e.g.,

ÛT =
1

T
uTu

T
T +

T − 1

T
ÛT−1.

For Variant III, the covariance matricesQ andR are estimated as in Line 4
in Algorithm P4-4 using hθc . In this case, the closed-loop behavior is still
personalized but only through Q, R.

Algorithm P4-4 Overall estimation procedure for Q,R,θ

1: Get s, nc in (P4-18) using sp, npc estimated with Alg. 2
2: Get QTF,RTF using Alg. 1 with hrθ
3: Get dmin, ts in (P4-18) using dpmin, t

p
s estimated with Alg. 3

4: Get Q,R using Alg. 1 with hθ

9 Simulation Setup with Human Driver

We carried out simulations with human participants who controlled a ve-
hicle in CarSim using the torque-feedback Thrustmaster T300RS gaming
steering wheel with a MATLAB interface, see Fig. P4-4. We constructed a
two-lane oval circuit with two straight segments of 200 m connected by two
180◦ turns with radius 53.6 m at the centerline of the right lane, resulting
in (2 · 200 + 2π · 53.6) m length. Both lanes were 3.6 m in width. The
ego vehicle and the obstacle vehicles drove anti-clockwise. Each test driver
completed the following:

Task 0

The driver familiarized themself with the driving simulator and was pre-
pared for Task 1 and Task 2. No data were recorded during this task.
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Figure P4-4. Simulation setup for learning from data of human driver.

Table P4-2. Obstacle Vehicles’ Initial Positions & Velocities

Vehicle ID 1 2 3 4 5 6 7
Initial Position [m] 100 300 500 600 350 550 600
Lane right right right right left left left
Velocity [km/h] 19.8 19.8 19.8 19.8 16.2 16.2 16.2

Task 1 (15 min recorded)

The driver was instructed to stay in the right lane and that the nominal
velocity is 50 km/h. This task did not involve OVs.

Task 2 (15 min recorded)

The driver was allowed to use both lanes and the nominal velocity was
again 50 km/h. We added 7 OVs, as specified in Table P4-2, where the
initial position is the distance along the track and the start at 0 m is the
beginning of a straight segment and is the initial position of the EV. The
OVs drove slowly to increase the number of following and overtake actions
the driver will demonstrate.
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10 Learning Results & Hardware Requirements

Five human drivers participated in the study. Four of them were normal
drivers and one (Driver 3) had professional test driving training, and aimed
at exercising a performance driving style. The driving frequency and ex-
perience of the five participants are stated in Table P4-3. We present the
parameter estimation results in this section and the behavior of the motion
planner that uses such parameters in Section 11.

10.1 Design Choices

We consider the kinematic single track vehicle model [56]

ẋ =


ṗX
ṗY
ψ̇
v̇x
δ̇

 =


vx cos(ψ + β)/ cos(β)
vx sin(ψ + β)/ cos(β)

vx tan(δ)/L
u1

u2


represented in discrete time with the sampling period Ts = 0.5 s, where
pX and pY mark the EV’s position in the world frame, ψ is the heading
(yaw) angle, vx is the longitudinal velocity, δ is the steering angle of the
front wheel, L = lf + lr is the wheel base, and β = arctan(lr tan(δ)/L) is
the kinematic body-slip angle. Accelerations are computed as ax = v̇x and
ay = vxψ̇. The inputs u1 and u2 are the longitudinal acceleration and the
steering rate.

Estimation of requirement function parameters

We choose the variance over the common parameters as σ2
θ = (T/T1/2)2

such that θ → θp for T → ∞, θ = 0.5θp + 0.5θc for T1/2 = T , and
∂θ/∂T |T=0 = 0, i.e., not transitioning too quickly from θc. We choose
T1/2 = 5 · 60/Ts, i.e., T1/2 = T corresponds to five minutes of driving.
Further, we choose M = round(0.01N) for estimating θp and design the
passenger comfort requirement with ā = 5 and ε = 0.01.

Constraints CQ, CR
We require Q to be diagonal because, if Q had nonzero off-diagonal ele-
ments, the longitudinal acceleration and steering rate would more likely be
coupled. For instance, if q12 > 0 (E[u1u2] > 0), accelerating (v̇x,k = u1 >
0) would imply a preference on steering to the right (δ̇ = u2 > 0), which
is unnatural. Further, we impose Q = QT � ελ · I and R = RT � ελ · I
with ελ = 10−3 and model the centerline tracking as independent of the
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other requirements with r12 = r13 = r14 = 0 to avoid oscillations, e.g., of
the velocity with the centerline tracking error (E[(vnom− vx)(0−hl)] = 0).

Prior (structural belief)

We design the structural belief to accommodate particle-filter algorithms,
which we use to solve the motion-planning problem. In this context, the
signal-to-noise ratio ‖JQJT‖/‖R‖ with J = HG+D is to be chosen close
to one [57]. We choose ts(Q,R) = vec(JQJT −R) and σ2

s = 1
T

with G =
g(x?), H = ∂h(x,0)/∂x|x=x? , and D = ∂h(x?,u)/∂u|u=0, where x

?

denotes a nominal state where all requirements are fulfilled (vx = 50km/h,
δ = 0).

Prior (common belief)

We choose σ2
c = σ2

θ and tc(Q,R) = [vec(Q−Qc)T vec(R−Rc)T]T. Then,

p
(
tc(Q,R)|0, σ2

cI
)

=
∏
∀ij

p
(
qij |qcij , σ2

c

)∏
∀ij

p
(
rij |rcij , σ2

c

)
defines a Gaussian distribution over each element of Qc,Rc. The common
parameters are chosen as the estimate of Variant III using all data from
the five drivers combined,

Qc = diag(16.1, 0.0016) (P4-21a)

Rc =


0.105 0 0 0

16.2 −4.10 −14.7
5.02 4.38

17.4

 (P4-21b)

θc =
[
s nc dmin ts

]T
=
[
1 1 8 5

]T
. (P4-21c)

10.2 Estimation Results

Personalizing parameters over time (0 min – 15 min of driving)

First, we analyze the gradual personalization of both the requirement func-
tion parameters and the covariance matrices as data are collected over time
using the three variants proposed in Section 8. Fig. P4-5 shows the tran-
sition of the parameters θ and Q,R from the initial common parameters
θc and Qc,Rc (y-axis) for Task 1 (traffic-free scenario), over time (x-axis).
The variances σ2

θ , σ
2
c , and σ2

s are chosen such that the parameters do not
transition too quickly from the common ones, but also that the personal-
ization does not require too much training time, which can best be seen
for Driver 3. The first observation is that the parameters estimated with
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Variant I and Variant II do not deviate much. This suggests that the ap-
proximation Γk ≈ Γ of Variant II is acceptable for the motion-planning
application. For Variant III, the parameters of the requirement function
are kept constant θ = θc and, as a result, the covariance matrices deviate
between Variant II and Variant III, most noticeable for R33 (E[(0− ho)2])
and R23 (E[(vnom − vx)(0− ho)]).

Personalized parameters (30 min of driving)

Table P4-3 specifies the covariance matrices Q, R and the parameters
s, nc of the passenger comfort requirement as well as dmin, ts of the obsta-
cle avoidance requirement for the five drivers, estimated with Variant II. It
also shows scatter plots of accelerations (absolute values) demonstrated by
the five drivers. All demonstrated accelerations of each driver are displayed
in gray. The level set hcθ(ax, ay) = amax is displayed as black line, where s
is estimated using the green data points (median of largest longitudinal di-
vided by the largest lateral accelerations) and nc is such that the median of
the black data points is amax. The scatter plots show that Driver 3’s driv-
ing style yields high lateral accelerations with amax/s = 7.32 m/s2 relative
to Driver 1, 2, 4, and 5 with amax/s = 2.68 m/s2, 1.45 m/s2, 2.79 m/s2,
and 3.41 m/s2, respectively. It indicates that, in general, Driver 1 and
Driver 4 exhibit similar accelerations, whereas Driver 2 and Driver 5 avoid
larger accelerations. Driver 2 is the most conservative keeping a minimum
distance to OVs of 13.6 m, compared to dmin < 9 m for the other drivers,
and reacting to OVs at ts = 7.00 s. Driver 3 is the least conservative with
dmin = 5.89 m and ts = 3.21 s. The covariance matrices can be inter-
preted as follows: Low values represent a low tolerance of violating the
respective requirement, e.g., r22 = 1.63 of Driver 3 versus r22 > 10 for all
other drivers indicates that Driver 3 is more reluctant to deviate from the
nominal velocity. Further, low off-diagonal values relative to their diagonal
counterparts represent little coupling of the respective two requirements,
e.g., r23 = −0.725 of Driver 3 indicates that Driver 3 is not as likely to
reduce their velocity for the sake of reducing lateral accelerations on the
vehicle. An important off-diagonal element is r24, which represents the
covariance of the velocity and obstacle avoidance requirement. For r24 < 0
(E[(vnom − vx)(0 − ho)] < 0), the driver is more likely to reduce the ve-
locity when encountering traffic on the target lane. Similarly, for r34 > 0
(E[(0 − hc)(0 − ho)] > 0), the driver is more likely to sacrifice comfort in
traffic.
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Figure P4-5. Parameter estimated as data are collected over time with
Variant I (diamond symbols), Variant II (solid lines), and
Variant III (dashed lines) for five drivers. The parameters
θ,Q,R are obtained by solving Algorithm P4-4 using differ-
ent amount of data from time 0min through time t (x-axis).
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Table P4-3. Estimated Parameters & Acceleration Scatter Plots

Driver 1

0 2 4 6 8
0

2

4

6

8

Lat. acc. in [m/s2]

L
on

g.
ac
c.

in
[m

/s
2
]Occasional driver

Q = diag(13.6, 0.0017)

R =


0.085 0 0 0

13.1 −6.39 −11.4

6.68 5.29

14.3


s = 2.71, nc = 0.95

dmin = 7.32 m, ts = 4.10 s

Driver 2

0 2 4 6 8
0

2

4

6

8

Lat. acc. in [m/s2]

L
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g.
ac
c.

in
[m

/s
2
]Occasional driver

Q = diag(30.3, 0.0009)

R =


0.055 0 0 0

27.0 −5.31 −24.9

2.69 3.94

28.8


s = 3.17, nc = 0.89

dmin = 13.6 m, ts = 7.00 s

Driver 3
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Lat. acc. in [m/s2]
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in
[m

/s
2
]Experienced driver with professional training

Q = diag(1.37, 0.0032)

R =


0.257 0 0 0

1.63 −0.725 −0.214

10.1 0.0856

1.54


s = 0.65, nc = 0.9

dmin = 5.89 m, ts = 3.21 s
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Table P4-3. (Continued)

Driver 4
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Lat. acc. in [m/s2]
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]Everyday standard driver, naturally cautious

Q = diag(19.5, 0.0013)

R =


0.066 0 0 0

19.0 −5.22 −17.5

3.87 3.78

20.0


s = 1.92, nc = 0.86

dmin = 8.52 m, ts = 5.87 s

Driver 5

0 2 4 6 8
0
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Lat. acc. in [m/s2]

L
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g.
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c.

in
[m

/s
2
]Occasional driver with professional training

Q = diag(23.7, 0.0010)

R =


0.083 0 0 0

23.7 −4.06 −21.9

1.79 2.95

25.3


s = 0.9, nc = 0.81

dmin = 6.42 m, ts = 6.35 s

10.3 Hardware Requirements & Computational Cost

Table P4-4 shows the hardware requirements for the three variants. The
data storage requirements of the algorithms using mex functions created
with MATLAB are 982 kB for Variant I and Variant II, and 307 kB for
Variant III. Storing the data of 30 min driving requires 1440 kB for Vari-
ant I and Variant II, however, Variant III requires only a few parameters
that can be updated online (recursively). On average, Variant I requires
408 s, Variant II requires around 3 s, and Variant III requires less than 0.5 s,
using MATLAB with the hardware configuration: 3.1 GHz Intel Core i7,
16 GB 1867 MHz DDR3, and Intel Iris Graphics 6100 1536 MB.
Variant I and Variant II yield very similar parameters for the motion-

planning application, see Fig. P4-5. As Variant II is comparably cheap, we
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Table P4-4. Hardware Requirements for the considered Application

Data Storage CPU Time
Algorithm 30 min Driving

Variant I 982 kB 1440 kB 408 s
Variant II 982 kB 1440 kB 3.63 s
Variant III 307 kB 0.44 kB 0.356 s

favor Variant II over Variant I and employ only Variant II and Variant III
in the following.

11 Personalized Motion Planning

We use the particle-filter algorithm in [7] with the proposed (personal-
ized) requirement function and estimated covariance matrices for valida-
tion, where we refer to the motion planner trained with the data obtained
from Driver x as Planner x, and Planner C refers to the motion planner
using the common parameters in (P4-21). In what follows, we show results
of planners obtained by specific combinations of variants and drivers to
make the features of the method more evident.

11.1 Results

Fig. P4-6 and Fig. P4-7 show the trajectories of driving without OVs
(Task 1) as mean and standard deviation over all laps of Driver 1–5 and
Planner 1–5. Fig. P4-6 compares the autonomous motion planners trained
with Variant II and Variant III and Fig. P4-7 shows the planners for differ-
ent durations of training with Variant II. The figures display the velocity,
the distance to the centerline ∆CL, and the lateral acceleration over the
track position from 0 to 50% of the track, where the first segment refers to
the straight and the second segment is the 180◦ turn.

Personalized planners (30 min of driving)

Consider first Planner 1–5 trained with Variant II and all available data
(dashed black)—i.e., 30 min of driving—for a comparison with their re-
spective drivers (solid black). It can be seen that the velocity and the
lateral acceleration of the drivers and their respective planners match rel-
atively closely with some notable exceptions. Driver 1, 3, 4 exceeded the
nominal velocity of 50 km/h on average on the straight segment. The path
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Figure P4-6. Comparison of Variant II and Variant III. The velocity, cen-
terline tracking error, and lateral acceleration are displayed
as functions of the track position for Driver x (solid black),
Planner C (dashdotted purple), Variant II (dashed black),
and Variant III (dashed blue).

planner avoids almost always exceeding the nominal velocity by design as
it is easier to fulfill the other requirements using a lower velocity, which
is desirable for autonomous driving from a safety perspective. Planner 5
matches the lateral accelerations of Driver 5 relatively closely. Driver 5
appears to be suboptimal in many directions: The driver did not reach the
nominal velocity on the straight segment and has a large error for track-
ing the centerline. Thus, despite the learning, the path planner decides
not to imitate these negative behaviors, and it only follows the one that
makes physical sense, i.e., the reduced lateral acceleration. Further, the
planners track the centerline more closely than the drivers, which is due to
the optimization of the requirements.

Comparison of Variant II and Variant III

Fig. P4-6 shows a comparison between Variant II and Variant III for
Driver 1 and Driver 2, who tend to avoid higher lateral accelerations
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Figure P4-7. Personalizing planners over time. The velocity, centerline
tracking error, and lateral acceleration are displayed as func-
tions of the track position for Driver x (solid), Planner C
(dashdotted purple), Variant II with 5 min of driving data
(dashed yellow), Variant II with 10 min of driving data
(dashed magenta), and Variant II with 30 min of driving data
(dashed black).

compared to longitudinal accelerations (s > 2 in (P4-16)). The plan-
ners trained with Variant II with personalized requirement function match
the experiments very closely for both drivers. The planners trained with
Variant III capture the individual driving behavior, too, but deviate from
their respective drivers slightly more. For example, Driver 2 avoids larger
lateral accelerations with |ay| ≈ 1 m/s2 during turns, which the Planner 2
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trained with Variant II matches closely. Also, Variant III avoids the higher
lateral accelerations of the motion planner with the common parameters
(|ay| ≈ 1.8 m/s2) to maintain lateral accelerations with |ay| ≈ 1.3 m/s2

during the turn. For Driver 3–5 (not displayed), the difference between
Variant II and Variant III is less significant, which is due to the parame-
ters s and nc being closer to one.

Personalizing planners over time (0 min – 30 min)

Fig. P4-7 shows the planners’ trajectories for different training durations.
It displays the trajectories with 0 min of training (common parameters),
5 min, 10 min, and all available data with 30 min. The gradual person-
alization can best be seen for Planner 3 with velocities during the turn
of 36 km/h, 41 km/h, 48 km/h, and 49 km/h for the increasing training
durations. For Driver 1 and Driver 2 (not displayed), the gradual person-
alization of the motion planners is similar as for the displayed drivers.

Planners in obstacle situation (Variant II)

Next, we consider a motion-planning scenario where both lanes are initially
blocked by two slow OVs, velocities 30 km/h and 25 km/h on the right and
left lane, respectively. Approaching the blockage, the planner must slow
down and wait for the opportunity to overtake. Fig. P4-8 illustrates the
resulting trajectories of Planner 1–3 as well as for the planner with the
common parameters (P4-21). It displays the EV’s velocity, the minimum
distance to the other vehicles in the target lane, and a snapshot of the path,
where the positions of the two OVs are frozen at the time of lane-change
decision. It shows that Planner 2 is the most conservative starting to
decelerate early (vx < 35 km/h) and keeping the largest distance from the
OVs (d > 40 m and d > 15 m on the right and left lane, respectively). Also,
Planner 2’s lane-change trajectory shows the smallest curvature, which is
expected from its lower tolerance for lateral accelerations, and is consistent
with Driver 2 being the most cautious of the test subjects. Planner 3 is
the least conservative, decelerating later than the others (see velocity and
distance for t < −30 s) and its trajectory exhibits the highest curvature,
which is consistent with Driver 3’s performance driving style.

Generalization to other city-driving scenarios (Variant II)

Due to combining data-based—i.e., learning—and model-based—i.e.,
particle-filter motion planning—approaches, the planners generalize well
to scenarios different from the training track. For example, the motion
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Figure P4-8. Path planning in traffic. Top left: Velocity profiles. Bottom
left: Distance from OVs in target lane. Right: Lane-change
trajectory with OVs frozen at time of decision, where the
OVs’ positions for Planner x are marked with x stripes.

planners are able to execute turns with different radii and adjust their ve-
locities accordingly, even though the training data only cover turns with
one radius. In order to show the proposed method’s generalization prop-
erties, we consider circular tracks with different radii. Table P4-5 reports
the mean of the velocities of Planner C and 1–5 on the circular track. It
shows that all planners decrease their velocities with decreasing radius,
which appears natural for human drivers. Specifically, Planner 2 and 5,
which generally avoid higher lateral accelerations, slow down the most.

11.2 Discussion

The motion planners trained with both Variant II and Variant III achieve a
personalized driving style. Variant II offers the advantage of increased per-
sonalization compared to Variant III, however, Variant III is an attractive
solution as the hardware requirements are very limited. Due to combining
data-based design and model-based algorithm, the motion planners exhibit
similarities as well as individual components.
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Table P4-5. Circular Track - Averaged Velocities

Radius 500 m 100 m 50 m 25 m
Planner C 46.4 km/h 41.0 km/h 35.6 km/h 28.3 km/h
Planner 1 46.0 km h 36.4 km/h 29.7 km/h 23.2 km/h
Planner 2 40.0 km h 26.0 km/h 19.4 km/h 13.8 km/h
Planner 3 49.7 km/h 49.3 km/h 49.0 km/h 48.2 km/h
Planner 4 44.6 km h 34.5 km/h 27.7 km/h 20.8 km/h
Planner 5 44.3 km h 34.1 km/h 27.5 km/h 20.7 km/h

Similarities of planners & deviation from drivers

The similarities of the planners and deviations from their respective drivers
are mainly caused by reasons related to increased safety and fulfillment of
requirements. The fulfillment of requirements results in consistency of the
planners, which can be seen for instance by the low variance of the planners
and the constant velocities during the turn in Fig. P4-6 and Fig. P4-7.
Further, the motion planners avoid to exceed the nominal velocity and
achieve a relatively small centerline tracking error. These are examples
where the planners are not implemented to imitate the driving style of the
human entirely, but to achieve a more natural and personalized driving
style.

Individuality of planners

In the traffic-free driving scenario in Fig. P4-7, the individuality of the
planners can be best identified in the velocity profile and its resulting lateral
acceleration. Planner 1, 2, 4, and 5 trained with Variant II take the turn
at 34 km/h, 25 km/h, 29 km/h, and 29 km/h with lateral accelerations of
1.8 m/s2, 1.0 m/s2, 1.3 m/s2, and 1.3 m/s2, which matches their respective
drivers’ velocities very closely. Planner 3 turns at a slightly higher velocity
than Driver 3 in the experiments, however, due to the optimization in
the planning algorithm, the velocity is more constant during the turn and
hence Planner 3 exhibits lower lateral accelerations than Driver 3, thereby
fulfilling both requirements more closely. Also, the traffic-affected scenario
in Fig. P4-8 shows highly individual components. Planner 3’s velocity
is monotonically increasing during the overtake maneuver, which means
that longitudinal accelerations continue even during steering operation, as
Driver 3 is comfortable with combined longitudinal-lateral accelerations.
Planner C, 1, and 2 exhibit a brief drop in velocity for time > 0 s. This drop
appears at the peak curvature of the path when the EV turns right to align
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with the left lane and is caused by the tolerance for lateral accelerations.

Expected limitation of estimated parameters

For significantly different driving scenarios, both the drivers and the plan-
ners may behave differently. For instance, in high-speed freeway driving,
lane-change maneuvers may be slower (higher r11) and/or velocities more
constant (smaller r22). This might prompt mode-dependent parameter sets
for each planner, which will be addressed in future work.

12 Conclusion

This paper presented an inverse learning method to calibrate/personalize
autonomous vehicles from data of human driving. It proposed a determin-
istic requirement function with a priori unknown parameters and an algo-
rithm for their estimation. Further, it presented a likelihood maximization
method to estimate the probability distribution defining tolerated devia-
tions from the requirements. Three variants of the proposed inverse learn-
ing algorithm were presented that vary in computational complexity and
storage requirements, as well as their level of approximation, making the
inverse learning method adjustable to the available hardware. Simulations
with five drivers showed that the estimates are different for each individ-
ual, thus resulting in the motion planner generating different motions that,
while satisfying the intrinsic properties of the planning algorithm, had a
behavior similar to the corresponding drivers.
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