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Abstract

For many years, computing systems rely on guaranteed numerical
precision of each step in complex computations. Moore’s law sustains
exponential improvements in the semiconductor industry over several
decades for building computing infrastructure, from tiny Internet-of-
Things nodes, over personal smartphones, laptops or workstations, up
to large high performance computing (HPC) computing server centers.
With the paradigm of the ”power wall”, achievable improvements
start to saturate. To that end, the concept of transprecision com-
puting emerged, where existing over-conservative ”precis” computing
assumptions are relaxed and replaced with more flexible and efficient
policies to gain performance.

Unfortunately, it is non-straight forward to adopt and integrate
general transprecision concepts into the variety of today’s computing
infrastructure. The main challenge consists of leveraging domain-
specific knowledge and provide full solutions covering from physical
foundations over circuit-level up through the full software stack to the
application level.

This work focuses on how transprecision concepts improve general
computing. We identify and elaborate the standard number repre-
sentations, especially the one defined in the IEEE 754 floating-point
standard, as the enabler of low precision computing. We developed
lightweight libraries that allow integrating transprecision concepts
into algorithms. Finally, we focus on building automatized workflows
for specific problems, where the solution space is enlarged by multiple
orders of magnitude due to the various configurations of low precision.
We demonstrate how heuristic optimization strategies applied on top
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of transprecision computing find near to optimal configurations of
approximated kernels in a short time.



Zusammenfassung

Seit vielen Jahren beruhen komplexen Berechnungen von Computer
Systemen auf garantierter numerischer Präzision in jedem Schritt. Das
Mooresche Gesetz (engl. Moore’s law) erhält exponentielles Wachstum
in der Halbleiterindustrie über mehrere Jahrzehnte aufrecht. Dadurch
wird ein kontinuierlicher Fortschritt von Computer Infrastruktur —
vom Internet der Dinge, Smartphones, Laptops, Arbeitsplatzrechnern,
bis hin zu Hochleistungsrechnern in Rechenzentren — erreicht. Das
Paradigma der Grenzen der Leistungsaufnahme (engl. power wall)
limitiert erreichbare Verbesserungen. Das Konzept von Transprecision
Computing lockert existierende und zu konservative Annahmen be-
züglich der Rechengenauigkeit. Stattdessen werden Annahmen durch
flexiblere und effizientere Richtlinien ersetzt um die Rechenleistung
zu verbessern.

Leider ist es nicht einfach Transprecision Konzepte direkt in die
Vielfalt der heutigen Computer Systeme zu integrieren. Die grösste
Herausforderung besteht darin, Gebiet spezifisches Wissen wirksam
einzusetzen, um eine komplette Lösung zu erreichen welche alle Aspek-
te — von physikalischen Grundlagen, Schaltungsdetails, Software, bis
hin zu Anwendungsgegebenheiten — berücksichtigt.

Diese Arbeit fokussiert wie durch Transprecision Konzepte all-
gemeine Berechnungen verbessert werden können. Wir identifizieren
und etablieren, dass die Standard Repräsentation von Zahlen, insbe-
sondre jene des IEEE 754 floating-point Standards, das Rechnen mit
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reduzierter Genauigkeit ermöglichen. Wir entwickeln schlanke Soft-
warebibliotheken welche die Integration von Transprecision Konzep-
te in Algorithmen ermöglichen. Schlussendlich bilden wir automati-
sierte Arbeitsabläufe für spezifische Problemstellungen welche auf-
grund der vielen Konfigurationen der einstellbaren Genauigkeit in ei-
nem, um mehrere Grössenordnungen erweiterten, Lösungsraum liegen.
Wir zeigen, wie heuristische Optimierungsstrategien — angewandt
auf Genauigkeits-Konfigurationen von Transprecision Berechnungen
— nahezu optimale Konfigurationen der approximierten Kernen in
kurzer Zeit liefern.
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Chapter 1

Introduction

Driven by Moore’s law, technology scaling has consistently supported
energy-aware computing over the last decades [1]. However, physical
brick walls such as heat removal and signal propagation delays limit
the system operating frequency. Figure 1.1 shows the number of
transistors for central processing units (CPUs), graphical processing
units (GPUs), and field programmable gate arrays (FPGAs) depen-
dent on the year of introduction1. Impressively, the scaling follows
a steady exponential growth that has been maintained over the past
four decades. In contrast, Figure 1.2 shows the operating frequency
that starts to saturate2. Until the turn of the millennium, the fre-
quency of ancient computing devices improved exponentially. More
recent systems exceed an operation frequency of 1GHz but nowadays
common systems typically operated at a frequency around 2GHz and
4GHz.

The quest for performance and energy efficiency remains. Various
ways of parallelism (i.e., multicore, single instruction multiple data
(SIMD)/Vector, single instruction multiple threads (SIMT)), special-
ized application-specific integrated circuit (ASIC) accelerators, and
FPGA implementations are developed to meet the requirements.

1Available at https://en.wikipedia.org/wiki/Transistor_count (Accessed
November 2019)

2Available at https://en.wikipedia.org/wiki/Microprocessor_chronology
(Accessed November 2019)

1

https://en.wikipedia.org/wiki/Transistor_count
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Figure 1.1: Moore’s law. The number of transistors present in
integrated chips grows exponentially over time. The same observation
holds for regular processors, GPUs and FPGAs.

Orthogonal to such approaches, transprecision computing consid-
ers the number representation as an additional degree of freedom to
gain efficiency from more compact floating-point formats. Transpreci-
sion computing improves systems due to reducing the number repre-
sentation and the related arithmetic. Simultaneously, transprecision
computing systems ensure the quality of the final results.

In this work, we elaborate on how transprecision concepts affect
general computing applications. We provide promising results on
three applications based on our developed transprecision concepts in-
cluding search algorithms and reduced precision libraries. We demon-
strate that PageRank [2], an iterative algorithm, can replace a major-
ity of computations into compact floating-point representation, while
still converging to the same quality of the final result as the baseline.
bidirectional LSTM (BLSTM) [3] profits from compact floating-point
formats with negligible impacts on the final accuracy. The Gauss-
Legendre quadrature (GLQ) implements a typical routine used in
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Figure 1.2: The system clock scaled well before the millennium.
Nowadays, the system frequency saturates around 2GHz and 4GHz
due to physical limitations and economical limitations.

scientific computing. Even without degenerating results, reduced pre-
cision can be used during intermediate representations.

Materializing a vision by developing components of a new com-
puting paradigm is an exciting and challenging task. The true value
of transprecision computing is achievable when multiple parties col-
laborate by independently developing products that follow the new
paradigm. We expect that the expertise and efforts from various
contributors multiply the success of the transprecision computing.
However, the initial steps bring several engineering and research chal-
lenges before new approaches become mainstream. We formulate long
and short term goals of transprecision computing.

In the long-term, transprecision computing exploits approximation
in both hardware and software to boost energy efficiency [4]. Moore’s
law drives the semiconductor industry for general-purpose processors
independently from traditional software development. In contrast,
transprecision computing relies on a thigh coupling between hardware
and software to further improve the energy efficiency of the final
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application or systems. The rapidly developing research area known as
approximate computing [5–7] pursues the same goals. Malossi et al. [4]
envision that transprecision computing progresses the state-of-the-art
along several axes:

1. It controls approximation in space and time (when
and where) at a fine grain through multiple hardware
and software feedback control loops.

2. It does not imply reduced precision at the applica-
tion level, even though it is also possible to exploit
application-level softening of precision requirements
for extra benefits.

3. It takes inspiration from nature by defining comput-
ing architectures that operate with a smooth and
wide range of precision vs. cost trade-off curve.

The key short term goals that we address in this thesis are:

1. Formulate and define the concepts of transprecision computing;

2. Demonstrate the success of reduced precision for various com-
puting domains;

3. Improve aspects of generality, scalability, and simplicity to apply
the concepts;

4. Elaborate detailed considerations of transprecision computing
in the domain of deep learning.

Progressing the paradigm of transprecision computing consists of
achieving high-level goals. In Section 1.4 we outline the structure of
the thesis by explaining how the content contributes to reaching the
meta goals.

In the next section, we present a dedicated introduction to deep
learning. We decided to highlight that topic due to the following
reasons. First, domain knowledge is assumed to better understand
the contributions in Chapter 6 and Chapter 8. Second, even by
considering regular arithmetic only, we achieved an outstanding con-
tribution Chapter 8 by developing a constrains neural network search.
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Table 1.1: Key components of a supervised machine learning work-
flow.

T : Task D: Dataset A: Algorithm M: Model

Classification
Segmentation
Object detection
Forecasting
[...]

Images
Videos
Audio
Text
Tabular data
Time series
[...]

ML algorithm
DL algorithm
Transfer learning
Few-shot learning
[...]

Building blocks
DNN topology
Parameters
Preprocessing
[...]

Third, to better understand the scaling and generality properties of
transprecision computing it is as important to ensure that concepts are
applied and evaluated with the latest state-of-the-art as the developing
of the concept itself. The fast pace and ongoing progress in deep
learning favor the development of modular and reusable transprecision
computing components.

1.1 Trends in deep learning
Deep learning is considered one of the most promising solutions for
solving machine learning problems. At the time of writing, a search
with the keyword "deep learning" returns over four and a half million
publications on Google Scholar, out of which a substantial part of
10% are published within the current year. The extensive literature,
the numerous deep learning (DL) competitions, and available open-
source resources further demonstrate the wide interest in the topic.
This introduction covers the full deep learning era to justify in which
environment contributions of this thesis are embedded. We focus on
supervised learning problems that are based on a labeled dataset that
provides ground truth.

Table 1.1 states the key elements that compose a machine learning
workflow and lists common choices for each element. T denotes a deep
learning task on an input dataset D, by running an algorithm A and
resulting in a trained modelM. The dataset is a collection of paired
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input x and output y samples D := (x, y) and the model M is a
mapping from the input to the output spaceM : x→ y optimized to
solve the given task T . Supervised ML algorithms learn relations in
the annotated dataset between the raw input data and the assigned
labels. Non neural network ML approaches include linear classifiers
[8], K-nearest neighbors (KNN), [9], support vector machines (SVM)
[10], Random Forests [11], and similar methods. DL approaches are
the subset of ML approaches that consist of neural networks.

Over the last years, two key enablers have driven the success of
deep learning. First, the availability of large scale datasets with known
ground truth [12–20] enables supervised learning for complex tasks
such as face recognition [12, 13], action recognition [14, 15] or video
classification [19–21]. Second, the availability of increased computa-
tional performance in today’s computing systems typically achieved
with GPUs enables to train large scale models. Figure 1.3 states
launch year and performance of Nvidia Tesla products, Nvidia’s prod-
uct line that is tailored to serve the high-performance computing mar-
ket domain for general-purpose GPU computing. The Tesla product
line is missing some of the traditional graphics peripherals in favor
of using the full chip area for computing. Such GPU device configu-
rations are widely used in large scale data centers, cloud computing
environments, supercomputers, or research cluster settings. Figure 1.3
highlights three products, the K80, P100, and V100 GPUs that were
used to perform GPU related workloads presented in this thesis. The
historical analysis shows, that GPU hardware followed a constant
improvement over the past decade. The S870 GPU, the best available
option that was available back in 2007 when the Tesla product line
started, achieves a single-precision performance of 1.38 TFLOPS. Ten
years later, in 2017, the V100 GPU was launched that is able to deliver
14.03 TFLOPS amounting to a 10× improvement in performance over
a decade.

At the same time, deep learning research has evolved rapidly.
Motivated by improved results and success, researchers extended the
focus in specialized subdomains of deep learning. Deep learning meth-
ods rely on the availability of a full ecosystem including hardware,
a deep learning framework, and the core work of the data scientist
achieving solutions for specific tasks. The common interest of different
stockholders, such as industries working on applications powered by
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Figure 1.3: GPU performance of the NVIDIA Tesla series.

deep learning, hardware designers, manufacturers, and traditional
research fuels the motivation and drives the current progress in the
field into various directions. We look at current and historical results
achieved on the CIFAR10 dataset [22] to provide an overview of the
trend that is happening in the field of deep learning. CIFAR10 is
an instance of an image classification problem with 10 classes. The
dataset provides 50,000 training samples and marks 10,000 samples
for testing. We measure the progress based on 63 publications. Fig-
ure 1.4 states the achieved Top1 accuracy on CIFAR10 and the year of
publication. The per-year-mean Top1 accuracy increased from 80.5%
to 98.5% from 2011 till 2019. In other words, the quality increased
by about two percentage points per year. By definition, the accuracy
cannot exceed 100% which builds a natural upper bound and causes
accuracy to saturate. Due to the short interval on which state-of-the-
art remains, development and research become challenging since any
performed comparisons are likely to get outdated in a short time. In
the next sections, we outline research subdomains of deep learning
and we highlight the scope to which we have extensively studied
transprecision computing concepts.



8 CHAPTER 1. INTRODUCTION

2011 2012 2013 2014 2015 2016 2017 2018 2019

Year of publication

75

80

85

90

95

100

T
op

1
ac

cu
ra

cy
on

C
IF

A
R

10
[%

]

Figure 1.4: Top1 accuracy achieved of 63 reference methods on
CIFAR10. Developers and researchers constantly improved results
over one decade.

1.2 Research directions in deep learning
The main development steps through which a data scientist works to
implement deep learning solutions are:

1. Data acquisition and collection,

2. Data annotation and cleaning (Labour intense step),

3. Model definition (Performance critical decision),

4. Algorithm definition (Performance critical decision),

5. Model training (Resource and time-consuming step),

6. Model evaluation (including hyper parameter optimization),

7. Repeat and refine steps.
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Step 1 to Step 2 are related to obtaining a large dataset. Step 1
deals with how data is captured including information about sensor
resolution and exposure times. Collection deals with how multiple
samples are obtained, i.e., how many different sources are used and
how data was merged. Step 2 deals with annotating and cleaning the
data. In many cases, researchers can access a full dataset that has been
collected, cleaned, annotated and is provided to the public, such as
the CIFAR10 dataset [22]. Depending on the use-case specific settings,
annotating and cleaning the data is a labor-intense process. In this
thesis, we assume that the annotated dataset is available and we focus
on the active side of deep learning. In the following, we summarize key
research subdomains that are all related to the common deep learning
workflow.

The core machine learning part consists of designing a model in
Step 3, selecting an algorithm in Step 4 and training the model on
the given data in Step 5. Final results are evaluated and optimized
in Step 6. Typically, depending on the results, parts of this workflow
are fine-tuned and repeated to improve results. The following sections
summarise research areas that affect the pipeline at different stages.

Model design

Model design solves the problem of designing or selecting a convo-
lutional neural network architecture that defines a parametric func-
tion that maps inputs to outputs. The field evolves and manual
designed network architectures improved results over the past years.
For example, first success with convolutional neural networks was
achieved with VGG [23] that follows a simple pattern of a sequence of
convolutional layers. Later, ResNets [24] were introduced, which use
residual connections inside the topology that enables to train deeper
neural networks that are more accurate. More recent architectures,
such as Inception [25], dual-path networks (DPN) [26], or DenseNets
[27] follow all more complex design patterns with high fan-out and
fan-in branching occurring in the network graph. Different networks
introduced novel design patterns for different purposes, for example,
MobileNet [28] was designed to reduce memory usage and execution
time. MobileNet achieves that by factorizing traditional 3× 3 convo-
lutions into a depthwise and 1×1 pointwise convolution that improves
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computational cost of about 8 to 9 times and empirically demonstrates
to achieve good accuracies. Over time, smaller changes in the network
structure were proposed and heavily used, such as different activation
functions, global-max pooling operations, and regularization opera-
tions that are coupled with the training algorithm such as dropout
and batch normalization layers.

Neural architecture search (NAS)

Since defining a good model is non-trivial early results of automated
neural architecture search (NAS) were motivated to potentially dis-
covers better models [29–35]. However, traditional approaches require
a vast amount of computing resources or cause excessive execution
times due to the full training of candidate networks [36]. Follow-
up work optimizes the required search time by shortening or avoid-
ing expensive candidate network training times [37–39]. However,
due to the success of manual designed topologies that are developed
independently, architecture searches face the common challenge of
defining the search space. Method evaluations are criticized since
even for experienced researchers it becomes difficult to understand if
performance improvements are achieved due to the search algorithm
within a given space or due to extensions of the space [40]. The
latest developments are going in the direction to adapt the search
algorithm and its setup to optimize for a specific task, for example
to speed-up the inference time of a neural network running on a
smartphone [41,42].

Learning algorithms

The predominant learning algorithms for neural networks are (vari-
ants of) stochastic gradient descent. Implementations thereof rely
on computing the derivative of the loss with respect to the trainable
parameters such that they can be updated to minimize the error.
Research deals with how to initialize weights and how to add reg-
ularization to the learning [43]. Optimizers such as Adadelta [44],
Adagrad [45], Adam, or AdaMax [46] improve learning behaviour by
adapting learning rates and using different variants of weight updates.
Different researchers looked into 2nd order methods and applied them
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in the context of image classification, such as the Tonga [47] algorithm.
However, traditional 2nd order methods, such as Newton’s method or
the Conjugate gradient method require to compute the inverse Hessian
and the additional complexity causes larger memory requirements and
intractable computational burdens [48]. Overall, surprisingly many
research papers use the vanilla stochastic gradient descent (SGD)
implementation with a learning rate schedule to achieve the most
accurate results even though it is recommended to use and adaptive
method for fast convergence [49].

Hyperparameter optimization

Hyperparameter optimization (HPO) deals with the problem of opti-
mizing non-trainable parametric values that are used throughout the
deep learning workflow. Early work in the field considered selecting
the correct network topology as HPO problem, however, we think
that it is worth to separately study the NAS problem since the high
interest and dedicated solutions targeting that problem explicitly as
explained before. However, even if the network architecture is fixed,
there are many settings a data scientist has to decide without a
clear answer to what works best can be given upfront. For example,
the training algorithm as previously explained can be considered as
a categorical choice for an HPO algorithm. More typical settings
that could be exposed to an HPO algorithm included the learning
rate, optimizer specific settings, learning rate scheduling strategies,
settings for preprocessing, and data augmentation policies. Simple
HPO algorithms operate as Grid or Random search [50]. Bayesian op-
timization [51,52] tries to first test configurations in unknown domains
that are likely to provide good results. Hyperband optimization [53]
improves time costs to solution quality by balancing the amount of
tried configurations versus the time spend to test one configuration
by reducing the number of alive configurations during training and
removing bad candidates early in the process. HPO might improve
model performance but is limited by the choice on what parametric
values it is applied and it consumes a large number of resources for a
single optimization task.



12 CHAPTER 1. INTRODUCTION

Data augmentation

Data augmentation aims to extend the training dataset by modifying
existing samples to improve the model generalization performance.
Standard techniques include on-the-fly applied image transformations
such as random flips, random crops, color-, brightness-, sharpness-
adaptions, blurring, adding noise, stretching, and rotating images.
Different methods account for dealing with unbalanced datasets. Ma-
jority class under-sampling, Minority class over-sampling, or using
generative adversarial networks (GANs) to synthesize augmented data
are among the common solutions to tackle class unbalances [54]. Some
datasets are provided with a fixed resolution (for example CIFAR10
[22] is provided with 32× 32 pixels) and others are not. In the latter
case, using resizing and cropping combinations to obtain the resolution
that is feed into the neural network provides additional degrees of
freedom on what scale the deep learning model is operated.

Domain adaption

Domain adaption deals with questions around multiple datasets and
multiple deep learning workflows. The term transfer learning [55]
refers to research problems related to take insights from experiments
or results obtained on a source dataset DS over to a new target
dataset DT . Reusing a model trained on the source dataset on the
target dataset by initializing the weights or by freezing layers and only
fine-tuning a few dense layers at the tail of the network potentially
provides three advantages against a from scratch trained model: first,
the warm-start provides already more accurate results, second, during
training the models follows a learning curve that outperforms the
baseline, and third, the model potentially saturates at a higher accu-
racy. Especially, for smaller datasets, freezing layers that have learned
to extract useful features avoids over-fitting and helps to improve
the generalization error on the target dataset. In a similar context,
few-shot classification [56], the problem of learning to generalize to
unseen classes during training from a few annotated samples, has
gained popularity to account for the fact large annotated datasets
from domain-specific problems are not available, or time-consuming
and expensive to gather.
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Optimizing for speed

State-of-the-art neural networks (NNs) for image classification typi-
cally have 10-200 million parameters and require 10-25 billion arith-
metic operations to perform inference for a single image [57]. Such
deep networks achieve high classification accuracies, but also require
long training times [58]. While the race to improve accuracy on chal-
lenges such as the imagenet - large scale visual recognition challenge
(ILSVRC) [59] drives the community to develop ever more complex
models, this trend is likely to continue with the increasing availability
of video-based datasets. For these NNs to remain economically viable,
it is important to keep the computational effort in mind to reduce the
costs involved when building practical systems for large-scale infer-
ence, such as energy and infrastructure expenditures [60]. Research
directions aiming to improve time-to-solution or to outperform a base-
line in at least one key cost factor, such as energy to solution, are
manifold. For example, model parallelism and distributed training
deal with the question of how to extend algorithms on multi compute
resources. Additional, there is a heavy industrial interest in how
to build specialized hardware for deep learning, from ASIC design,
FPGA based solutions up to providing and extending machine learn-
ing solutions of existing general-purpose computing systems.

ML ecosystems

ML research is performed at the top of the iceberg of a full software
and hardware stack. The problem of consideration implies a relying
underlying environment that implements and runs standard function-
ality. Common deep learning frameworks include TensorFlow [61],
PyTorch [62], Chainer [63], MXNet [64] among many more. All
of them implement common standard functionality, such as defining
neural networks, setting up optimizers and training models with a
variety of algorithms and they support GPU acceleration for all core
functionality. Since deep learning research, especially work in the
subdomain of the NAS problem, includes to run many training runs,
the availability of multi-node resources equipped with a queueing,
scheduling, and managing system is required. Many Cloud providers
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offer to rent customized hardware with pre-installed software that is
tailored to serve the need of the deep learning market.

1.3 Contributions
The key contributions of this thesis are summarized below:

• Providing an abstraction of transprecision computing.

We formalize transprecision computing and related problems, in-
cluding characterization, configuration search, and design space
exploration. We focus on the key notation of quality versus
performance trade-offs.

• Designing, benchmarking, and implementing a reduced
precision library.

We contributed the core quantization routines that emulate the
low-level behavior of reduced floating-point formats. We verified
the behavior of floatx by exhaustive tests that compare floatx
half implementations against third party implementations.

• Integrating transprecision into PyTorch.

We discussed the integration of reduced precision into PyTorch
[62], a commonly used deep learning framework. We provide
analytical and empirical arguments that compare intrinsic and
extrinsic emulation approaches. We implemented several utility
functions that help to traverse, insert, and modify computa-
tional graphs to produce all results presented in this work.

• Producing error-resilience results for reference models.

We claim the generality of transprecision computing. We sup-
port that argument by running numerical experiments on 30
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well-established behavior. In accordance with reported error-
resilience of deep learning models, our experiments confirm the
general applicability of transprecision computing.

• A constraint NAS algorithm for the IoT.

We contributed narrow-space NAS synthesized models that meet
constraints. With a simple device-specific calibration approach
we are able to generate models meeting inference time require-
ment on low-cost internet of things (IoT) devices. Our search
enables to produce customized models with limited budget dur-
ing the synthesis and a resource limited IoT device.

• A large-scale reduced precision study for IoT.

We used our NAS approach to fully train over 3,000 baseline
models. Applying transprecision computing to the full set of
models enables to get global insight. We observed that in terms
of weight memory footprint versus accuracy, transprecision out-
performs regular models with a wide margin.

• Discussing and developing practical aspects around trans-
precision computing.

We contribute research and engineering efforts into developing
transprecision computing and related practical aspects. We
provide heuristic approaches to study the configuration problem
that enhances the search speed significantly. Additionally, we
ensured that our implementation of the quantization operation
integrated into PyTorch [62] executes on the GPU. Joining those
efforts allows performing more experiments in a shorter time.
Short evaluation cycles are a key factor to apply the discussed
concepts in practice on novel problems.
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Figure 1.5: Thesis structure.

1.4 Thesis structure
Figure 1.5 shows an overview of the structure of the thesis. Chapter 2
starts the thesis by summarizing some of the existing benchmarks and
their use. We identify representative candidates from three different
computing domains to cover the variability of applications that occur
in general-purpose computing. Section 2.1.1, Section 2.1.2, and Sec-
tion 2.1.3, present PageRank, BLSTM, and GLQ as examples of Big-
Data, deep learning, and Scientific computing. Selecting applications
from three different domains contributes towards the generality claim
of transprecision computing as stated in Item 3 and realizes the goal
defined in Item 2. We use those applications throughout the thesis to
demonstrate high-level considerations of transprecision computing.
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Chapter 3 summarizes established approximate computing approaches.
We identified the most promising technique in Section 3.2 and we
apply it to applications in Section 3.3. We identified common chal-
lenges among such approaches, such as strict data dependency and
the notion of application quality. We observe that the definition
of acceptable quality gets a major role to reveal the potential for
performance improvements. Additionally, we observe that inherently
existing hyper-parameters already provide a competitive way to trade-
off quality versus performance in many cases.

Chapter 4 defines the concepts of transprecision computing and
focuses on the goal stated in Item 1. We discuss number repre-
sentations in Section 4.1 and define transprecision computing on a
conceptual level in Section 4.2.1. We focus on the notation of quality
and performance depending on a transprecision configuration space.
The abstraction leaves room for future systems to be exploited with
the same mentality, while we already provide answers to related en-
gineering problems. We define the configuration space design, the
characterization, and the configuration optimization as reusable meta
problems.

Chapter 5 designs and implements a C++ library that allows
emulating reduced floating-point formats. We explain design choices
of floatx in Section 5.1.2. Section 5.1.2 provides low-level implementa-
tions details and Section 5.1.8 discusses the scaling and performance
of the library. Section 5.2 uses floatx to provide in-depth numerical
studies of the three applications.

Chapter 6 deals with the integration of floatx into PyTorch [62],
a commonly used deep learning framework. We discuss emulation as-
pects and conditions for which a fast and efficient numerical emulation
is achievable in Section 6. We demonstrate scaling and generality of
numerical evaluations by defining 30 well-established reference image
classification models in Section 6.2.1 and we report numerical results
in Section 6.2.2. The advances reported are specific for the domain
of deep learning, covering the goal stated in Item 4. The concept of
transprecision demonstrates to be model agnostic and follows similar
behaviors for different reference models, henceforth, that supports the
claimed generality of transprecision computing requested in Item 3.

Chapter 7 and Chapter 8 focuses on automatization and optimiza-
tion of workflows. Section 7.2 introduces specific search heuristics to
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efficiently find good enough transprecision configurations in reason-
able time. Our proposed algorithms demonstrate in Section 7.4 how
the search times are significantly reduced. Those insights build the
fundament of simplification to quickly apply transprecision computing
to new problems as requested in Item 3.

In Chapter 8 we develop a constrained neural network architecture
search tailored for the Internet-of-Things. Even in the regular domain
of using full 32-bit precision our approach is novel and outperforms
alternatives. Additionally, the search involves the training of over
3,000 models that enable a large-scale exploration of reduced precision
computing. To the best of our knowledge, we are the first that
demonstrate the excellent behavior of models operating with reduced
precision. Even when opportunity costs are considered in the compar-
ison, that involves synthesizing models operating with full precision,
the reduced precision models provide a better overall trade-off.

Chapter 9 concludes the thesis. We summarize the main findings
in Section 9.1 and we provide an outlook on future work in Section 9.2

The extra Chapter A in the appendix discusses a system design
of a video classification system. We evaluate three state-of-the-art
neural-network-based approaches for large-scale video classification,
where the computational efficiency of the inference step is of particular
importance due to the ever-increasing amount of data throughput for
video streams. Our evaluation focuses on finding good efficiency vs.
accuracy tradeoffs by evaluating different network configurations and
parametrizations.
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Chapter 2

Benchmarking today’s
systems

Benchmarks get developed reliably measure applications, systems,
software, and hardware components. Well-established benchmarks
such as Whetstone [74] and Dhrystone [75] measure and compare
early computing systems. Those benchmarks are synthetic, which
means that they execute a random instruction-mix that follows the
distribution of instructions caused by real applications. Whetstone
is designed for benchmarking floating-point performance, Dhrystone
benchmarks integer arithmetic.

The standard performance evaluation corporation (SPEC)1 main-
tains and releases various benchmark suites. They cover domains
including cloud service, CPU performance, workstation performance,
E-mail server operation, and Java client/server applications. In con-
trast to synthetic benchmarks, the SPEC benchmarks [76] perform
useful payload computations. The setup validates results generated
during measurement. Recent versions of the SPEC, such as the SPEC
CPU 20172, includes 43 tasks to cover a wide variety of applications
and use-cases. Different benchmarks, such as the linear algebra pack-
age (LINPACK) benchmark [77], assess floating-point performance

1Available at https://www.spec.org/ (October 2019)
2Available at https://www.spec.org/cpu2017 (October 2019)
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by solving a system of linear equations. The LINPACK benchmark
attracts attention since its use of ranking supercomputers, published
as the Top5003. Its simplicity and the easy adaptation to new sys-
tems explains the success of the LINPACK benchmark. However,
the LINPACK benchmark has several limitations, such as the regular
memory access patterns do not fully stress the caching and memory
subsystems. Additionally, relying on benchmarking one application
involves the risk that systems are engineered to over-tune the bench-
mark metrics. Instead, benchmarks should assess the behavior of real
applications for which systems are built.

Similar to the Top500, the Green5004 ranks today’s supercomput-
ers based on energy efficiency [78]. The high performance conjugate
gradient (HPCG)5 benchmark [79] was introduced to overcome some
of the limitations of LINPACK. HPCG performs Conjugate Gradient
iterations as core operations for measuring performance. The occur-
ring sparsity patterns ensure that non-trivial memory patterns stress
the memory subsystem. The authors claim that HPCG performs more
meaningful computations that are better correlated with workload
distributions appearing in real-world applications.

2.1 Benchmarks for transprecision com-
puting

Approximation computing (see Chapter 3) and transprecision com-
puting (see Chapter 4) rely on two characteristics; performance and
quality of the results. To benchmark and quantify such systems, it
is essential to measure both. Traditional benchmarks aim to mea-
sure the performance of different computing systems. We required
benchmarks, that additionally report the quality of results. Even
though the newer benchmarks all include result validation procedures,
their purpose is to cross-check the full workflow. In contrast, we
need a way to measure the output quality of systems that are built
with the intent of changing the working precision. Benchmarking

3Available at https://www.top500.org/ (October 2019)
4Available at http://www.green500.org/ (December 2019)
5Available at http://www.hpcg-benchmark.org/ (October 2019)

https://www.top500.org/
http://www.green500.org/
http://www.hpcg-benchmark.org/
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transprecision systems is challenging since it covers interacting aspects
from software, hardware, and compiler stack at multiple granular-
ity levels. Well-written benchmarks target to disentangle influences
stemming from different components such as hardware, software, and
compilers. Traditional benchmarks are distributed as plain source
code, whereas the required tooling, such as the compilation, is left
to the target system. That way, those benchmarks use fixed code
and minimal compilation requirements to benchmark the hardware
systems. In contrast, transprecision benchmarks focus to assess ap-
plications and kernels directly. They should characterize the effect of
reduced precision and identify reduced precision operation without or
with only minor quality degeneration. Benchmarking should strive
for a top-down approach including end-to-end behaviors that help to
understand the collaborative operation of multiple components.

To demonstrate the concept of transprecision computing, high-
level application scalability studies assess the generality and error
resilience of applications. Insights and conclusions should be collected
before triggering the engineering and designing of customized hard-
ware implementations. From that perspective, the first key question is
how much precision reductions do applications allow without harming
quality. Addressing the precision-based quality characterization is
novel when compared against traditional performance benchmarks.
Methodologically, the simplest approach is building an end-to-end
system and to measure quality and performance thereon. However, de-
signing a full transprecision system including hardware, programming
languages and compilers is out of the scope of this thesis. Instead, we
split the evaluation process into two modular and decoupled concep-
tual steps. First, we use emulation to judge the quality of solutions
independent of the performance. Second, we use proxy metrics to
estimate the performance. That approach allows postponing the full
development of transprecision hardware. Still, it provides a strong
methodology to systematically assess transprecision concepts. The
modular approach allows to focus on specific components and to reuse
invested engineering time. This key insight motivates us to write a
reduced precision floating-point library as explained in Chapter 5.

Since understanding numerical effects includes application knowl-
edge, we discuss transprecision on three kernels. We selected rep-
resentative candidates from three different domains that compute
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results with domain-specific meanings. Section 2.1.1, Section 2.1.2,
and Section 2.1.3, present PageRank, BLSTM, and GLQ as examples
of Big-Data, deep learning, and Scientific computing.

2.1.1 PageRank
PageRank [2] is one of the early building blocks used in web search
engines and enabled the success of Google [80]. The idea behind
PageRank is that the citation graph of web pages intuitively defines
the importance of web pages. Serving web queries had become an
integral part for professional and private users, including different
domains such as research, industry and private use. The IEEE in-
ternational conference on data minin (ICDM) selected PageRank in
December 2006 among the top-ten data mining algorithms [81]. The
fact that Google annually handled more than two trillion queries (the
measurement was performed in 2016)6 impressively demonstrates the
relevance of large-scale ranking systems.

PageRank iteratively computes the node score given the topology
of a directed graph as the sparse adjacency matrix of size n× n with
z nonzeros. PageRank is known to be numerical stable [82]. Sparsity-
aware implementations (n < z < n2) reach a time complexity of
O(Iz) and the memory complexity is O(z), where I denotes the input
data dependent number of iterations till convergence. PageRank is
memory-bound since each iteration accesses z matrix entries while
performing constant work O(1) per entry. PageRank is improved with
a RAM aware implementation [83] or by changing the algorithm to
a graph aggregation technique [84]. Algebraic methods enhance the
convergence rate [85].

Algorithm 1 implements PageRank. Line 2 initializes the iteration
vector of length n with an uniform distribution where we used that
notation e = [1, 1, 1, ..., 1]. The main loop of PageRank iterates until
convergence. The iteration vector p is updated in line 5 where a
damping factor d ∈ (0, 1] is used to stabilize the convergence. Conver-
gence is reached when the iteration vector remains. The final result is
normalized distribution that ranks nodes according importance. The

6Available at https://searchengineland.com/google-now-handles-2-999-
trillion-searches-per-year-250247 (November 2019)

https://searchengineland.com/google-now-handles-2-999-trillion-searches-per-year-250247
https://searchengineland.com/google-now-handles-2-999-trillion-searches-per-year-250247


2.1. BENCHMARKS FOR TRANSPRECISION COMPUTING 25

number of iterations of PageRank depend on the input data A, the
damping factor d, and stopping threshold ε.

Algorithm 1 PageRank
1: procedure PageRank(A, d, ε) . Graph is stored in n× n
2: p0 ← e/n sparse and normalized adjacency matrix A
3: k ← 1
4: repeat
5: pk ← (1− d)e + dATpk−1
6: k ← k + 1
7: until ‖pk − pk−1‖1 < ε
8: return pk . resulting ranking
9: end procedure

2.1.2 BLSTM
BLSTM stands for Bidirectional Long Short-Term Memory and refers
to topology structures that are used for classifying sequential data. In
our context, we refer with BLSTM to the use-case that implements a
specific BLSTM topology for solving the optical character recognition
(OCR) of old German text (Fraktur) [86]. The use-case with the origi-
nal reference C-implementation is provided by Rybalkin and Wehn [3]
who implemented the first field-programmable gate array (FGPA) ac-
celeration of BLSTM. OCR converts handwritten or printed images of
text automatically into machine-encoded text. OCR has applications
in various field, first, it acts as data entry of business documents,
such as recognizing passports, invoices, bank statements, and receipts.
Second, OCR is used in automatic number plate detection systems [87]
to identify cars, for example, to provide restricted access to parking
lots. Third, OCR helps to ingest information in computer systems in
a searchable form by recognizing the text of scanned books [88].

Deep learning models raised to the most successful methods of
solving such tasks [89]. Long-short-term memorys (LSTMs) [90] en-
able the handling of sequential data, occurring in video classification
(see Section A), language learning, audio processing, and optical char-
acter recognition. The Bidirectional variant for OCR [91] is improved
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by a forward backward algorithm, known as connectionist temporal
classification (CTC) [92]. CTC is capable of recognizing text lines
without requiring any pre-segmentation.

The BLSTM kernel solves the optical character recognition OCR
problem on the old German text [3]. Algorithm 2 states the recurrent
equations of an LSTM cell [90] that resembles a finite state machine
(FSM). The � operator denotes element-wise multiplication and σ, h,
and g denote element-wise applied activation functions. The logistic
sigmoid function is used for σ and the hyperbolic tangent for h andg.
Input, forget and output gates control the data flow by either passing
or attenuating corresponding values. The gates themselves depend on
the current input xt, the last computed output yt−1, and the last state
ct−1 and the current state in case of the output gate. In line 5 the main
recurrence updates ct based on the previous state ct−1, the currently
processed input zt and the input gate activations it and forget gate
activations f t. The final output yt is based on the processed state ct
and the output gate activations ot, see line 7.

Algorithm 2 LSTM cell update
. Trainable parameters of the LSTM cell:
- Weight matrices: Wz, Wi, Wf , Wo, Rz, Ri, Rf , and Ro

- Bias vectors: bz, bi, bf , and bo
- Peephole selection vectors: pi, pf , and po

. Inputs of the LSTM cell:
- Input vector at time step t is xt
- Internal state of previous time step ct−1

- Output of previous time step yt−1

1: procedure LSTMCellUpdate(xt, ct−1,yt−1)
2: zt ← g(Wzxt + Rzyt−1 + bz) . block input
3: it ← σ(Wixt + Riyt−1 + pi � ct−1 + bi) . input gate
4: f t ← σ(Wfxt + Rfyt−1 + pf � ct−1 + bf ) . forget gate
5: ct ← zt � it + ct−1 � f t . internal state update
6: ot ← σ(Woxt + Royt−1 + po � ct−1 + bo) . output gate
7: yt ← h(ct)� ot . block output
8: return ct, yt . return current state and output
9: end procedure
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Algorithm 3 implements BLSTM. It accepts as input a variable-
length sequence of fixed-sized dimensions of vectors, such as the pixel
values of the column-wise split input image. First, the LSTM cells
are instantiated by loading their internal parameters as used in Al-
gorithm 2. BLSTM performs a forward and backward pass through
the two LSTM cells over the scanned input image. Finally, the CTC
merges independent partial sequenced in the final output. CTC first
concatenates the two sequences and applies a dense layer to compute
the logits, see Line 14. Second, the softmax is applied to produce
the normalized probabilities and the index of the maximum entry
is identified. Third, each index corresponds to a character of the
alphabet A, and Line 16 maps indices to characters.

Algorithm 3 BLSTM
1: procedure BLSTM(x1,x2,x3, ...,xn)
2: cellFW ← InitFWLSTMCell() . Load model
3: cellBW ← InitBWLSTMCell()
4: WCTC , A ← Init()
. Forward pass over sequence

5: c, y0
FW ← 0

6: for t← 1, n do
7: ytFW , c← cellFW .LSTMCellUpdate(xt, c,yt−1

FW )
8: end for
. Backward pass over sequence

9: c, yn+1
BW ← 0

10: for t← 1, n do
11: yn+1−t

BW , c← cellBW .LSTMCellUpdate(xn+1−t, c,yn+2−t
BW )

12: end for
. CTC pass over sequence

13: for t← 1, n do
14: lt ←WCTC [ytFW ; ytBW ] . compute logits
15: jt ← arg maxj softmax(lt) . maximize index
16: αt ← A(jt) . map index to character
17: end for
18: return α1, α2, α3, ..., αn . return character sequence
19: end procedure
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In our evaluation setting, the pre-trained BLSTM model infers
3,401 images of text fragments. Samples have a fixed height of 25 pix-
els and a variable width between 64 and 732 pixels with a mean value
of 520.5 pixels and a standard deviation of 100.7 pixels. The BLSTM
achieves a Levenshtein distance [93] based accuracy of 98.2337%.

2.1.3 GLQ
Finite element methods (FEMs) provide numerical solutions to the
problem of partial differential equations occurring in various applica-
tions [94]. FEM applications include magnetic potential modeling [95],
heat transfer [96], fluid flow [97], or structural analysis [98]. Those
methods build an integral part of industrial engineering. Simulations
allow providing insights into problems where the analytic solution
does not exist. Finite element methods rely on numerical integration.
The GLQ solves the 1D numerical integration problem [99–101]. GLQ
extends to the 2D case and can be limited to triangular integration
regions [102], which occur as the typical use-case in FEM kernels. In
this work, we focus on the 1D GLQ kernel to isolate a relevant part
of FEM simulations that cover various applications.

GLQ solves a numerical integration over an arbitrary integrable
function. It approximates the integral by a weighted sum of function-
evaluations at a set of discrete points. The basic GLQ rule is formu-
lated over the domain [−1, 1] and given as follows:∫ 1

−1
f(x)dx ≈

n∑
i=1

wif(xi), (2.1)

where the weights wi and positions xi are precomputed. xi is the i-th
root of the associated Legendre Polynomial Pn(x) and wi is defined
through:

wi = 2
(1− x2

i )(P ′n(xi)2) . (2.2)

With a change of variable, the rule extends to work on arbitrary
integral domains [a, b]. Alternatively, the arbitrary domain integral
can be segmented into multiple smaller intervals. Independent GLQ
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computations are applied to shifted versions of the original function.
We based our reference code on a freely available implementation7.

We use the six Genz functions [103] for evaluation of the quality
of the GLQ implementation. First, Genz functions are analytically
integrable such that the closed-form of the result exists. Second, they
provide several levels of difficulty such as smooth, less-smooth, con-
tinuous, and discontinuous functions. Those use-cases cover typical
issues with numerical integration routines. Third, Genz functions
are well-established and they are designed for evaluating quadrature
procedures [103]. The Genz functions are defined as follows:

f1(x) = cos
(

2πui +
n∑
i=1

aixi

)

f2(x) =
n∏
i=1

(
a−2
i + (xi − ui)2)

)−1

f3(x) =
(

1 +
n∑
i=1

aixi

)−(n+1)

f4(x) = exp
(
−

n∑
i=1

a2
i (xi − ui)2

)

f5(x) = exp
(
−

n∑
i=1

ai |xi − ui)|
)

f6(x) =
{

0 if x1 > u1 of x2 > u2

exp (
∑n
i=1 aixi) else

(2.3)

where the parameters a, u, and input x are vectors of dimension n.

2.2 Summary and conclusion
The most important findings of this chapter are the following:

7Available at http://www.holoborodko.com/pavel/numerical-methods/
numerical-integration/l (November 2019)

http://www.holoborodko.com/pavel/numerical-methods/numerical-integration/l
http://www.holoborodko.com/pavel/numerical-methods/numerical-integration/l
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• We discussed existing benchmarks, such as Whetstone [74] and
Dhrystone [75]. They are traditional synthetic benchmarks that
measure floating-point and integer arithmetic performance. The
SPEC benchmarks [76] consist of suites of kernels that were
designed to provide workloads that occur in practical applica-
tions. The linpack benchmark [77] solves a linear system of
equations. Due its simplicity and the freedom of fine-tuning
source code, it is widely used to rank high-performance systems.
However, due to the continuous memory access patterns the
benchmark got criticized. The HPCG benchmark [79] solves
a sparse Conjugate Gradient iterations that causes non-trivial
memory access patterns. HPCG has been proposed as replace-
ment for linpack. HPCG stresses more the memory subsystem
and henceforth, better measures the performance that matter
for real applications.

• Traditional benchmarks measure the performance of a comput-
ing system. To study transprecision concepts we focus on appli-
cations an their algorithms. Additional to performance, appli-
cation specific quality is required to be assessed. We suggest to
asses three kernels in detail: PageRank, BLSTM, and GLQ.

• PageRank. PageRank is memory-bound and iteratively com-
putes the node score given the topology of a directed graph
as sparse adjacency matrix. It become popular for ranking
web-pages by using hyperlink information.

• BLSTM. BLSTM solves the OCR problem for old German text
(Fraktur).

• GLQ. The GLQ numerically computes the integral over a func-
tion. GLQ is inherently approximative by nature, even when
running with full precision, the quality of the integration routine
depends on the number of support points.



Chapter 3

Approximate computing

Approximate computing refers to techniques that trade-off achieved
quality against the effort spent to obtain results [5–7, 104]. Poten-
tially, inaccurate results are achieved and approximation techniques
are suggested to be applied to applications where approximate results
are acceptable. However, due to the growing performance demand of
applications, approximate computing offers a promising option that
is orthogonal to the traditional advances in technology. Approximate
computing techniques are effective at various levels.

First, approximate circuits study hardware design trade-offs. Sim-
ple circuits predict the output of traditionally slow operating paths to
reduce the clock frequency below worst-case propagation paths [105].
Pruned adders are designed to shorten long carry-chains with minimal
statistical effects on results [106,107].

Second, approximate storage considers trade-offs obtained for mem-
ory systems. For example, reducing the number of programming
pulses improves the write performance of solid-state memories [108].
Similarly, reducing refresh rates of dynamic random access memorys
(DRAMs) lowers the standby power consumption of those memories
if a small number of failures is allowed [109].

Third, software level approximation changes algorithmic behavior
to achieve quality versus performance trade-offs. For example, loop
perforation reduces the computation workload by skipping some iter-
ations [110]. Memoization stores the results of function calls for later

31
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reuse with identical function inputs. Approximate computing results
rely on the fact that one pre-computed result is used for approximating
the result of similar input values. Henceforth, the time that would be
required to evaluate the function is omitted [111]. Using multiple
inexact program versions provides a choice to trade-off quality versus
performance [112].

Fourth, approximate systems apply approximation concepts to
various components at the same time. For example, a smart cam-
era system used simultaneously approximation techniques at sensing,
memory system and computational level to significantly reduced con-
sumed energy [113].

In this chapter, we provide the insight that the simpler approx-
imation techniques are, the easier they integrate into applications.
Additionally, the same ideas apply to platforms such as GPU, FPGA,
or ASIC implementations. Using the correct datatype or loop per-
foration requires little modification to the source. In principle, the
generality allows those techniques to be applied to any application.
However, in some cases, the degeneration of the approximate result
might be so large that it produces unacceptable results.

We observed that many applications inherently depend on input
parameters that provide a tuning knob between quality and execu-
tion speed. For example, the stopping criterion used in iterative
refinements, the number of epochs in a deep learning training, or
the number of intervals and the order of the polynomial used in GLQ
provide parameters that control the achieved quality. Control loop
related parameters are already present in the baseline implementation.
Henceforth, tuning the quality trade-off point cannot be attributed to
a specific approximation technique. Still, changing the control loop
related operation point of the baseline represents an effective and
attractive way to obtain Pareto optimal solutions. Those first-order
effects provide alternative solutions for comparing approximation re-
sults.

We conclude that the choice of numerical representation constructs
an effective and general approach. We formalize the concept of trans-
precision computing in Chapter 4 where we provide an overview of
numerical formats in Section 4.1. We identify reduced precision as
root-cause for transprecision systems as explained in Section 4.2.2.
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3.1 Approximate computing techniques

3.1.1 The use of datatypes
Choosing suitable datatypes for computations improves program exe-
cution time. For example, Yeh et al. [114] evaluated the effect of a hier-
archical floating-point unit for physical simulations. They concluded
that significant improvements are achievable through three reasons:
First, quantizing data in reduced representations increases the amount
of fast-executing trivial operations. Second, coarser quantized data
improves the operation of memoization techniques and in the case of
narrow formats, look-up tables outperform the alternative implemen-
tations. Third, smaller and faster floating-point units (FPUs) can
serve reduced precision computations.

Tian et al. [115] approximate the memory access by using reduced
precision. They demonstrate energy savings with a negligible impact
on the quality of clustering algorithms.

Floating-point and integer data cover the predominate binary rep-
resentations of numeric values. In most cases, the former results in
using the IEEE 754 64-bit double or 32-bit float standard [116]. Com-
pared with integer arithmetic, floating-point representations provide
a high dynamic range. Knowing the upper bounds of integer data
allow values to fit into smaller datatypes. However, determining the
effect of reducing floating-point width is non-trivial since the precision
and the dynamic range are simultaneously affected. Most systems
(partially) support integers of widths 8, 16, 32, or 64 bits by densely
packing values together to reduce memory footprints and transmis-
sion costs. Some systems provide vectorized instructions to support
the most common arithmetic operations. In contrast, floating-point
arithmetic is either not supported for efficiency reasons (for example,
on some microprocessors) or it follows the strict 32-bit or 64-bit IEEE
754 standard on most CPU based systems. Recent GPU hardware
supports the IEEE 754 16-bit half datatype and demonstrates how
improved floating-point computations scale to the mass market.

However, due to additional programming effort and due to the
exponential growth of the configuration space, developers normally
avoid writing mixed-precision variants of their applications. Instead,
they rely on the 32-bit or 64-bit IEEE 754 floating-point standard.
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The conservative policy omits potential gains that are invoked with
the half format. Choosing number formats in applications is a general
approach that applies to almost all kernels operating with numerical
values.

3.1.2 Loop perforation
Loop perforation reduces the total workload of a kernel by executing
a subset of iterations of a loop. Perforating source code provides
different results when comparing against the original baseline. Thus,
loop perforation reduces computation time at the cost of changing
the quality of the result. For applications where computations are
error-resilient to some degree, loop perforation produces a family of
optimal trade-offs. Following the classification by Sidiroglou-Douskos
et al. [110], we distinguish between critical and tunable loops. Critical
loops must be left unmodified since any change causes unacceptable
behavior of the code, such as crashing the application. Tunable loops
instead offer the potential for perforation. Typically, basic compute
patterns that work well with loop perforation are summations, min,
max, argmin and argmax patterns [117, 118]. The literature provides
examples of those with the probabilistic guarantee that the approxi-
mated result is likely to be close to the original result [110, 117, 118].
Loop perforation demonstrated success with the following five global
computational patterns [110]:

• search space enumeration,

• search metric,

• Monte-Carlo simulation,

• Iterative improvement,

• Data structure update.

Notation and definition

Without loss of generality, loops are assumed to be in canonical form.
They start counting at zero, incrementing by one, and repeat the
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loop n times. Henceforth, the canonical loop in the baseline has the
following form: for(i=0; i<n; i++){...}}.

Loop perforation modifies the canonical loop as follows: for(i=0;
i<n; i+=s){...}, where s denotes the stride factor that controls the
skipping. We define the perforation rate r as the expected percentage
of skipped loop iterations r = 1 − 1/s. For loops where the body is
independent of the iteration count, the estimated time is proportional
to 1/s. In cases of independent nested loops, an overall multiplica-
tive gain is achieved for the innermost body fragment. Since loop
perforation changes the output, it is important to assess the quality.

Control loops in baseline algorithms

We observe that many applications consist of loops that we classify
as control loops. The number of iterations is either controlled by
a hyper-parameter or dependent on the data. PageRank consists
of a residual controlled main loop that acts as a data-dependent
control loop. GLQ consists of two nested hyper-parameter controlled
loops. One loop iterates the subintervals, the second depends on the
polynomial order used to approximate the integral. Control loops
inherently affect quality and performance. Henceforth, they offer a
direct trade-off. We argue, that instead of applying loop perforation
to control loops, they should be independently studied. First, since
control loops exist in baseline algorithms, understanding their effect
is part of the configuration study of kernels. Second, we think that it
is unfair to attribute gains obtained by tuning control loops to loop
perforation. Third, in some cases, it does not make sense to apply loop
perforation. For example, data-dependent termination conditioned
loops, are unable to profit from skipping iterations. In other cases, it
is better to limit the total number of iterations, rather than skipping
iterations. For example, instead of using a GLQ run of order n with
a stride factor of s = 2, it is more natural to use the GLQ of order
n/2 without skipping iterations.

Often, users do not fine-tune control loop related parameters.
They rely on default, proposed by others, or conservative values.
However, control loops provide a very effective way of generating
competitive solutions. First, no additional modifications are required
and, second, performance gains are achieved on any hardware. We
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think that it is essential to study control loops jointly with other
approximation techniques due to their advantages. Tuning control
loops builds a trivial alternative solution against which approximation
techniques must outperform to demonstrate success. In other words,
approximations obtained with control loops act as opportunity costs.

3.1.3 Task skipping and memoization
Task skipping and memoization approximation techniques skip mem-
ory access, subsample the input or avoid computation of several tasks.
These methods rely on the fact that some applications operate on
large data chunks that obey a similar statistic. Henceforth, sub-
sampling the input might provide an acceptable quality at better
performance. Similarly, stencil-based approximation techniques avoid
reading neighboring cells in an image-processing algorithm and reuse
a close value instead. Those techniques succeed since in images over
75% of neighboring pixels differ by less than 10% (Figure 5 in [119]).
Task skipping and memoization techniques have successfully demon-
strated an average speedup of 2.7×. Quality metrics on a GPU
for error-resilient, data-parallel applications are guaranteed to have
degenerations less of than 10% [119]. The authors have identified
six relevant data-parallel patterns that are suitable candidates for
approximation:

• Map: a function applied independently to elements of an array.

• Scatter/Gather: like map, but generates non-homogenous mem-
ory access patterns.

• Reduction: combines elements of an array to a single output.

• Scan: associative function applied to an input array generating
an output array where the result at the n-th position depends
on the intermediate state of position (n− 1).

• Stencil: a function that is applied to a neighborhood of elements.

• Partition: like stencils, but partitions are present where outputs
can be computed independently for partitioned inputs.
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In the same study [119], four different approximation techniques
were proposed for the six patterns:

• Memoization with lookup tables (Map, Scatter/Gather): in-
stead of evaluating functions, an offline computed lookup table
stores results for an application relevant range.

• Subsampling input (Reduction): applies the reduction to a sub-
set of the input data like loop perforation.

• Scan: applies partial scans and omits the computation of several
partial scan operations.

• Memory access skipping (Stencil and Partition): based on the
assumption that neighboring elements have the same value and
the multi-memory reads can be approximated by fewer memory
accesses.

3.1.4 Using multiple inexact program versions
For some applications, alternative implementations exist. Each im-
plementation provides a different trade-off in terms of quality and
performance. The Pareto optimal choices are suitable candidates for
serving the needs of users. For example, based on user requirements
and system status the run time selects the most suited kernel. In this
way, it is possible to switch to low-quality when a mobile device is
operating in low-power mode to extend the battery lifetime.

The identification of the best operating point becomes a run-time
optimization problem. For example, Samadi et al. [112] implemented
a framework that operates in two phases. First, in a calibration phase
data is collected to map quality of service to kernel compositions.
Second, the calibration data is used to select—at runtime—the best
operation point statistically satisfying target quality requests. The
authors propose to recalibrate during regular operation to account for
statistical changes occurring in the data. The additional required time
is small and allows the technique to be more robust. Similarly, Baek
and Chilimbi [120] approximate functions and loops. They suggest
a framework that calibrates and operates alternative solutions that
provide statistical quality guarantees.
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The offline characterizations and run-time optimization concepts
are orthogonal to the approximate techniques applied for a single
kernel. They become interesting for larger applications where alterna-
tives of composed modules are evaluated. However, they rely on estab-
lished approximation techniques used within the kernels. Henceforth,
they do not provide new concepts of basic approximation techniques.

3.1.5 Stochastic computing
Stochastic Computing represents numbers as probabilities on random
bitstreams [121]. The unconventional approach allows building low-
complexity hardware that results in low-cost implementations and
low power requirements. Since computations in stochastic computing
rely on random bitstreams, solutions are inherently error-resilient.
However, the are not deterministic. Results are either fully correct
or distorted by different quality levels. Caused by the randomness,
all possible outputs are obtained with certain probabilities. To un-
derstand stochastic computing systems, they are required to be char-
acterized by the probability density function over the output quality.
Stochastic computing systems are based on three blocks:

• Binary-to-stochastic: stochastic number generator (SNG).

• Computation unit: very low complexity single gate implemen-
tations.

• Stochastic-to-binary: back conversion to traditional binary num-
ber with counters.

Stochastic number generators produce randomized bitstreams that
represent processed values in the form of the probability that the value
one is occurring within the bitstream. The design of stochastic num-
ber generators includes studying full applications since correlations
between number generators might affect or degenerate results. Sur-
prisingly, although not using true randomness, pseudorandom number
generators have been demonstrated to work well. They are tradition-
ally based on linear feedback shift register (LFSR) [122] implemen-
tations. Reproducibility, efficient implementations, and stochastic
properties to ensure integrity required in crypto applications triggered
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extensive research around LFSR generators [123] and variants of al-
ternative hardware friendly random number implementations [124].

Arithmetic operations with stochastic bitstreams operate at low
costs. For example, multiplication simplifies to an AND-gate that
merges two bitstreams that result in a bitstream that represents the
product. Stochastic computing requires normalized values in the
interval [0, 1] to map to probabilities. Since adding two numbers
results in a larger range, special add-operations are defined that scale
the result by a factor of two. This procedure ensures the closeness
of the addition operation. Stochastic computing supports elementary
operations such as addition, subtraction, and multiplication. Addi-
tionally, it has been applied to division and square roots. General-
purpose stochastic computing progressed by demonstrating that any
given function can be evaluated. This is achieved by approximating
a Bernstein polynomial [125] where the coefficients and evaluations of
the polynomial are performed with stochastic computing.

Resulting bitstreams require conversion blocks to translate the
result back into the traditional binary representation of the num-
ber. Simple circuitry achieves that functionality by implementing a
counter. Counting is a way to get a statistical estimate of the expected
value that conveys the represented value.

The inherently stochastic behavior of stochastic computing pro-
vides error tolerance but generates results following a characteristic
probability density function over all possible results. Consequently,
the output is correct only with a given probability or it might be
approximate. In traditional binary representations (fixed-point or
floating-point representations, see Section 4.1) the positions of bit-flip
errors affect the error of the result, e.g., changing the most significant
bit has a larger impact than changing the least significant bit. In con-
trast, bit flips altering stochastic computing bitstreams cause homoge-
neous error effects and are not position-dependent. By construction,
stochastic computing systems tolerate a few bit-flip errors with only
negligible effects on the output. The core arithmetic that implements
the computing circuitry has constant complexity, independent of the
bitstream length. Since the stream length affects probabilities, more
accurate results are achieved when using longer sequences. However,
this effect tends to grow exponentially for increased precision require-
ments leading to large execution times.



40 CHAPTER 3. APPROXIMATE COMPUTING

Table 3.1: Overview of approximation techniques. We classify meth-
ods according being deterministic, if supported on current software
and hardware, and ranked overall including expected applicability and
performance gains.

Method DT 1 LP 2 TSM 3 IPV 4 SC 5
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PageRank X 1 2 itr. - - X - - X - -
BLSTM X 0 6 sum X - X - - X ∼ ∼
GLQ X 2 0 - - - X - - X - -

1Using data types 2Loop perforation 3Task skipping and memoization
4multiple inexact program versions 5stochastic computing
*** very good
** good
* moderate

3.2 Applying approximate computing

Approximate computing techniques follow the same spirit to server
different use-cases. However, there are major differences. Some tech-
niques are applied at the algorithm level, others require an exotic
hardware setup. Moreover, all methodologies rely on the statistic of
the input data. Variations of data, different applications, and the
benchmarking setup hinder a direct and fair comparison. Quality
metrics are application-specific and a user acceptable quality might be
differently defined.

Table 3.1 presents an overview of all methods that are explained
in detail below. We rank the methods based on how easily they
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are supported in current software and hardware environments. Loop
perforation is simple and applicable at algorithmic level and hence-
forth improves performance on all systems. Depending on the native
support of data types and software implementation success of TSM
and IPV, those approximate techniques are supported on current
systems. However, stochastic computing is not supported at all and
always includes customized hardware designs.

We rate the methods based on the overall applicability, general-
ity, expected quality degenerations, and expected performance gains.
We think framework based approaches such as TSM and IPV are
successful on larger systems composed of many elementary kernels.
However, they do not help in designing of fundamental approximation
techniques for specific elementary kernels. Loop perforation is general,
however, it substantially degenerates quality in some cases. Correctly
using data types is adequate in most cases. Mixed precision approx-
imation techniques rise their importance as more formats become
natively supported on new hardware.

The use of datatypes

Choosing number formats in applications is a general approach that
applies to all applications operating with numbers. However, we omit
a numerical analysis at this stage, since we study common formats,
such as IEEE 754 half, float, and double, in Chapter 5. The common
formats are considered as a corner case of the introduced reduced
precision formats.

Loop perforation

Loop perforation is applicable in general contexts. We identify that
core loops of PageRank and GLQ are control loops depending on input
configurations. GLQ has no remaining loops left. PageRank has two
tunable loops left that iterate over the matrix-multiplication. BLSTM
has six loops that stem from linear operations of the kernel.

Task skipping and memoization

The identified data parallel patterns [119] inside the kernels follow
the summation-and-reduction pattern that is common to applications
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relying on linear algebra. Patterns, such as stencil, scatter, or gather
operations do not occur in the considered three kernels. In some
cases, applying loop perforation is equivalent to identifying the typical
pattern and applying task skipping. For example, studying loop
perforation in summation-and-reductions occurring in dot products
covers the task skipping approaches. We identified the map pattern
occurring in BLSTM for activation function evaluations including
sigmoid and trigonometric functions. Lookup table-based designs are
applicable, however, we do not expect relevant overall performance
gains since they only constitute a small part of the total workload.

Using multiple inexact program versions

The approaches described in Section 3.1.4 apply to larger systems
composed of modular kernels. Since PageRank and GLQ are closed
components, a further decomposition does not allow the proposed
methods to be apply. BLSTM can be forced to be decomposed into
three parts, computations performing the forward, backward, and
CTC operations. Still, there are no further gains expected as approxi-
mation levels are already studied with loop perforation that considers
all loops.

Stochastic Computing

Stochastic computing requires two aspects that limit this approxima-
tion technique. First, the underlying application needs to be demon-
strated to be error-resilient and suitable for stochastic computing.
Second, stochastic computing requires the development of substantial
parts of specialized hardware. Those two aspects make stochastic
computing interesting for specific use-cases but they are not suitable
for general-purpose computing.

Stochastic computing demonstrated the following success. It re-
duced the complexity of an FPGA implementation that controls an
induction motor [126]. In addition, it improves low density parity
checks (LDPCs) [127, 128]. The widespread applicability of error-
correcting codes in WiFi communications justifies the development of
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customized hardware in this case. A narrow research branch special-
ized stochastic computing for neural networks. Back in 1993, gate-
level simulations solved an optical character recognition problem [129].
Low-level technical improvements are discussed in detail [130] and led
to solutions in 2001 [131] that used a two-layered network. Compared
to a floating-point reference, the model yielded quality results within
10 percent while it achieved an order of magnitude improvement in
terms of required clock cycles. In 2016 stochastic computing was
applied to the MNIST dataset [132] with accuracy degenerations lower
than one percent [133]. Even though these results are promising, we
are not aware of recent work that applies stochastic computing on
today’s, state-of-the-art networks that range in the order of hundreds
of layers and are exercised on more complex classification tasks.

3.3 Selected results on benchmarks
We present the results of assessing control loops and of applying loop
perforation to the tunable loops of the three applications.

3.3.1 PageRank
The outer loop of PageRank is a control loop that iterates until
convergence. The inner loops perform matrix-vector product like
updates. The middle loop iterates over independent matrix rows
and the innermost loop iterates over compressed sparse row (CSR)
encoded sparse row entries. Due to the presence of the outer control
loop, the approximation of inner loops changes the behavior of the
outer loop. If the inner approximation degenerates results above some
level, the outer control loop never meets its target and the kernel gets
stuck in an infinite loop. In such cases, applying loop perforation does
not work at all.

Control loop

The choice of the stopping criterion ε affects the number of iterations
of the control loop. The total performance is directly proportional
to the iteration loop count. Figure 3.1 shows the total number of
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Figure 3.1: Influence of stopping criterion on number of iterations.
Different problem instances obey different convergence speeds but all
of them can similarly profit from relaxing the required error residual.

iterations. The number of iterations depends on the stopping criterion
ε and the convergence speed obtained on a specific input. Changing ε
by one order of magnitude causes the iteration count to change by a
constant. Figure 3.2 shows how stricter relative stopping criteria ε lead
to improved results measured as absolute L2 norm of the difference
between current iterations and the full precision converged reference
result. To better assess the quality of the result relevant to users,
Figure 3.3 shows the quality in terms of correctly ranked positions of
nodes. After a minor part of the iterations, results start to stabilize
and there is no need to further iterate since the ranking is no longer
affected. By tuning the operation point we achieve speed-ups in the
order of 4× at less than 1% point accuracy loss on the easy datasets.
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Figure 3.2: Influence of stopping criterion on achieved quality
measured as L2 norm of the difference against the converged result. In
all cases, the relative residual is reduced proportionally to the absolute
residual measured against a full precision implementation.

Tunable loops

First, we observed that applying loop perforation to the sum pattern
in the innermost loop does not work. By construction of the problem
and the observation that the iteration vector is a valid probability
distribution, all involved values are positive. Henceforth, skipping
entries cause the approximated sum to be smaller than the correct
one. Introducing approximations that strongly biases results in one
direction causes the kernel to fail to converge.

Applying loop perforation to the middle loop works if the following
two criteria are met. First, since skipped iterations avoid dot product
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Figure 3.3: Influence of stopping criterion on achieved quality
measured as percentage of ranks that equivalent as in the converged
reference.

operations, we ensure to approximate the missing value with the value
of the previous iteration. Second, we ensured different offsets in the
approximated loops for subsequent control loop iterations. The latter
point prevents generating a strictly equivalent data access pattern,
that would converge to the wrong result. If convergence is reached,
skipping row updates and replacing missing values with previous re-
sults becomes an error-free operation.

We run PageRank with conservative settings that impose a stop-
ping criterion of ε = 10−14. We evaluate the algorithm on two
synthetic datasets and one dataset extracted from real data. We
used a random Bernoulli distribution with parameters p1 = 0.01 and
p2 = 0.001 to generate sparse input graphs in the synthetic case.
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Figure 3.4: Total number of control loop iterations of PageRank. The
stronger loop perforation is applied, the more additional control loop
iterations are triggered.

Since loop perforation of the middle loop causes approximations of
intermediate results the outer quality control loop converges slower.
However, the outer quality control loop ensures achieving the same
strict error reductions as in the baseline. That way, the outer control
loops recover—at the cost of performance—precision that is lost due
to applying loop perforation in the middle loop. Figure 3.4 shows
the increased number of iterations of the control loop for the easy,
hard, and real datasets. Depending on the specific input instances,
we observe high fluctuations in the iteration counts. In all cases,
applying loop perforation causes the control loop to iterate longer.

To assess if applying loop perforation is beneficial, we measure
the total workload. Overall performance is improved if the loop
perforation overcompensates the slow convergence. Loop perforation
with stride factor s performs s less workload in the PageRank body.
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Figure 3.5: Total workload for PageRank when applying loop per-
foration. The local gains are large enough to overcompensate the
additional control loop iterations and lead to a total reduction of the
workload.

Overall, the reduction is strong enough to successfully overcompensate
the additional control iterations. Figure 3.5 shows the total workload
against the reference for the easy, hard and real dataset. Average
gains of 35%, 25%, and 58% are achieved in terms of overall FLOP
reductions without degenerating results.

3.3.2 BLSTM
We applied loop perforation to nested loops in the time relevant parts
of the BLSTM kernel. Three loops occur when the LSTM forward
and the backward pass is evaluated. The outermost loop iterates over
columns of an input image, the middle iterates over the number of
neurons related to the current computation and the innermost loop
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Figure 3.6: Effect on quality of BLSTM when applying loop perfo-
ration. Results quickly degenerate. Only loop L4 can be perforated
without significant degenerations.

performs a dot product operation aggregating temporary results to
a single neuron. The three loops, L1, L2 and L3 are perforated
with strides factors ranging from one to ten. Similarly, in the CTC
step, three nested loop iterations occur over image columns (L4),
the number of classes (L5), and related summations of dot product
operations (L6). Figure 3.6 shows accuracy results when running the
benchmark with different loop perforation stride factors in the range
[1, 10]. In all experiments, only one loop was perforated at once, the
other loops were operated as in the baseline (e.g., with the stride equal
to one). Perforating loops causes in most cases significant accuracy
drops. Accuracies below 90% are not acceptable in this benchmark.
Only L4 obeys a smoother behavior, the obtained accuracy is 98.07%
and 95.97% for strides two and three that are close to the reference
accuracy of 98.23%. Since L4 is the outermost loop of three loops, the
total workload of the merging block is reduced by the loop perforation
stride. However, the merging block is a smaller fragment of the total
benchmark that contributes in total 18.6% to the overall workload of
the full kernel. Since the loop perforation of L4 does not reduce the
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Figure 3.7: Effect of control parametersNI andNO on the final quality
of GLQ results. Depicted are the mean of the absolute error obtained
for ten runs for each of the six Genz functions. The discontinuity
challenges integration routines for function 6.
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heavier computation block related to the LSTM, the total performance
gains are limited. Indeed, we measured a reduced run time of 4% and
5.7% of the full benchmark when running L4 with a stride of two and
three.

3.3.3 GLQ
GLQ does not have tunable loops but consists of two nested control
loops. The outer loop splits the original interval into NI partial
intervals and the inner loop evaluates the quadrature by using a
fixed number of support points NO. The choice of parameters NI
and NO strongly affects the quality of the result and determines the
running time that is of complexity O(NINO). Figure 3.7 shows the
quality obtained when sweeping independently both parameters. The
quality is measured as absolute error expressed as base-ten logarithm
over the average obtained when running with ten uniform sampled
function parameter instances. For Genz functions 1 to 4, low orders
and few interval decompositions reach machine precision error floors
of about 15 to 16 digits. For example, for Genz test function 1,
the configuration NI = 2 and NO = 8 achieves machine precision
five orders of magnitude faster than a conservative configuration of
NI = NO = 1024. More challenging functions, such as non-smooth
functions (Genz function 5) or functions with discontinuities (Genz
function 6) require higher-orders and a finer splitting to improve
quality. Computing with the conservative configuration of NI =
NO = 1024 and full 64-bit double precision the final results are up to
13 and 6 decimal digits precise for Genz function 5 and 6, respectively.

3.4 Summary and conclusion
The most important findings of this chapter are the following:

• Approximate computing techniques cover a broad range of sys-
tems, different granularity levels, and various applications. Mixed
precision approaches benefit from using the smallest format that
serves the needs of applications. Loop perforation improves per-
formance by skipping iterations. Since that technique applied
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to algorithms, no special hardware features are required. That
makes loop perforation as generally applicable in different soft-
ware stacks and deployable on various systems. Task skipping
and memoization gain by subsampling or avoid triggering com-
putations. Instead, they reuse a precomputed value of a similar
input value. Using multiple inexact program versions provides
interesting trade-offs for larger systems. However, this tech-
nique relies on the availability of alternative implementations
for modular building blocks. Stochastic computing performs
operations by using randomized bitstreams. Efficient low-cost
implementations demonstrated success for specific tasks. How-
ever, stochastic computing involves customized hardware design
which limits the generality and scalability of the approach.

• We evaluated the applicability of the five approximation tech-
niques for PageRank, BLSTM, and GLQ. First, we observed
that methods that are developed for larger systems, such as
using multiple inexact program versions, do not provide insights
on how to design the internals of elementary kernels. Second,
some methods operate well for specific patterns but they might
not occur in the performance-critical sections of kernels. That
turns some methods limited to specific cases such as neighbor-
hood approximation in stencil computations. We conclude that
mixed-precision computing and loop perforation are simple, but
the most general approaches.

• Since loop perforation is the most promising approximation tech-
nique, we reimplemented and evaluated it on the three ker-
nels. In PageRank, loop iteration reductions in the inner loops
cause longer iterations of the outer control loop. We empirically
demonstrated that the reduction effect is strong than the ad-
ditionally triggered loops such that loop perforation is applied
with success. However, in some cases, such as BLSTM, loop
perforation strongly degenerates results such that they turn the
output useless.

• We identified that control loops often rely on externally pro-
vided hyper-parameters that control the operation point of the
algorithm. The operation point strongly affects the quality and
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performance of algorithms. Therefore, exploiting the hyper-
parameter setting allows providing competitive solutions as a
trade-off between quality and performance.





Chapter 4

Core transprecision
concepts

In this chapter, we develop the core concepts of transprecision com-
puting. Section 4.1 explains standard and less common representation
of numerical values in a computer system. Section 4.2 abstracts a
computing system to allow for a formal definition of transprecision
computing. Within the last subsections, current design methodolo-
gies and existing solutions are identified to follow the transprecision
paradigm.

4.1 Number formats
Standard number representations include fixed-point and standard
floating-point representations [134]. Fixed-point representations have
a long history in FPGA and ASIC design due to the simple avail-
ability of integer arithmetic inside digital signal processors (DSPs) or
highly optimized designs for elementary arithmetic operations. Still,
mapping general purpose applications to work with a limited dynamic
range is non-trivial and requires careful considerations of the design
space. In contrast, to serve the seamless design flow of complex appli-
cations in various fields, the majority of general-purpose computing
processors implement the IEEE 754 floating-point standard [116] and

55
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provide hardware support for elementary arithmetic operations for the
32-bit and 64-bit float and double-precision data types. Additional to
the standard number formats, research elaborates more exotic choices
of number representations such as the logarithmic number system
(LNS). Even though related work addresses the design effects on algo-
rithms [135], and implementation details of functional units [136,137],
they are practically not available in the mass production portfolio of
today’s available processors.

4.1.1 Fixed-point
We denote with Qunsignedn,f the unsigned and with Qsignedn,f the signed
fix-point data type with a bit-width n and f fractional bits. A binary
word consisting of bits xn−1xn−2...x2x1x0 of length n represents the
following value:

vunsigned = 1
2f

n−1∑
i=0

2ixi, (4.1)

for the unsigned representation, and the same bit pattern is inter-
preted as:

vsigned = 1
2f

(
−2n−1xn−1 +

n−2∑
i=0

2ixi

)
, (4.2)

for signed representations. In both cases, the precision is given
by ∆ = 1

2f that defines the shortest difference between the closest
representable values which is equivalently spaced over the full range.
The range for unsigned and signed representations amounts to:

vunsigned ∈
[
0, 2n−f − 1

2f

]
vsigned ∈

[
−2n−f−1, 2n−f−1 − 1

2f

]
.

(4.3)

Signed representations use the two’s complement to map the upper
half of the unsigned representations to the negative range by adding
a constant value of −2n−1. Since the presence of the most significant
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bit xn−1 determines the sign of the number, it is often called the
signed bit. Signed representations expose roughly half of the range
of unsigned representations in terms of absolute values for a fixed
bit-width, or they require an additional bit to cover the same range
of positive values.

The fixed-point arithmetic follows the standard integer arithmetic
if the position of the decimal point of inputs and outputs is matched.
That allows to reuse the same hardware components as for regular
integer arithmetic that can be understood as corner case of fixed-point
arithmetic with f = 0. By correctly considering input and output
formats addition, subtraction, and multiplication can be performed
without error, by adding one bit (for a potential carry) and by adding
the input and output bit-widths in the case of multiplication. For
example, a 16-bit multiplier takes two 16-bit inputs and produces a
32-bit output, can perform any operation of the form Q16,f1 +Q16,f2 =
Q32,f1+f2 . The availability of optimized pre-designed computing com-
ponents promotes fixed-point formats as preferred candidates to im-
plement unrolled data paths in FGPA or ASIC designs.

4.1.2 IEEE 754 floating-point
We denote with Tw,t the IEEE 754 conform numeric representation
of a floating-point value, consisting of w exponent bits and t trailing
significand bits. A value v is represented by a sign s, an exponent e
and the significand m as follows:

vfloat = (−1)s · 2e ·m. (4.4)

The exponent e is stored as an integer represented with w bits
and the significand m is stored as Qut,t as fixed-point number con-
taining only fractional bits. The IEEE 754 standard [116] defines
five basic formats, three binary formats and two decimal formats that
are based on radix two and ten respectively. The three basic binary
floating-point formats include single, double, and quad precision, are
mapped to 32-bit, 64-bit and 128-bit representations. Most hardware
natively supports the basic single and double formats. The larger quad
formats are rarely supported on hardware and most applications fully
rely either on the intrinsic double precision or completely switch to
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Table 4.1: IEEE 754 floating-point configurations.

Name Formula half float double
binary16 binary32 binary64
(T5,10) (T8,23) (T11,52)

emax 2w−1 − 1 15 127 1023
emin 1− emax -14 -126 -1022
∆min 2−t 9.8 · 10−4 1.2 · 10−7 2.2 · 10−16

∆norm
max 2−∆min 1.99902 1.99999988 1.999[...]

∆sub.
max 1−∆min 0.99902 0.99999988 0.999[...]

Largest 2emax ∗∆norm
max 6.6 · 104 3.4 · 1038 1.8 · 10308

Smallest, norm. 2emin 6.1 · 10−5 1.2 · 10−38 2.2 · 10−308

Largest, sub. 2emin ∗∆sub.
max 6.1 · 10−5 1.2 · 10−38 2.2 · 10−308

Smallest, sub. 2emin ∗∆min 6.0 · 10−8 1.4 · 10−45 5.0 · 10−324

numerical software libraries (that might be very slow) but in contrast
support arbitrary length number representations. Even though the
16-bit half representation is not considered a basic format, it was
introduced in the 2008 revision of the IEEE 754 standard [116]. Since
recent GPUs provide full support for that described data type, we
consider the binary16, binary32, and binary64 as the standard formats
and we refer to the latter two with the used C/C++ keywords float
and double. Table 4.1 summarizes the parametrizations and maximum
absolute positive values of the standard IEEE 754 formats. Note,
that the representations are fully symmetrical for negative values and
are represented by setting a leading sign-bit such that the storage
width amounts to 1 + w + t bits. The IEEE 754 standard [116]
further defines special cases (not a number (NaN), Inf) and rounding
behavior of arithmetic operations. Typical implementations follow a
round-to-nearest with a ties-to-even rounding policy that is used as
standard throughout this work.

In contrast to fixed-point, typical floating-point hardware units
[138–140] are complex and operate in three stages: a) they equalize
the input numbers based on the exponents, b) they performing the
core operation, and c) they re-normalizing the output if required.
In contrast to fixed-point formats, the operations are not exact, due
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to the quantization that occurs in the final rounding step where the
internal mantissa is shortened to the output significand width.

4.1.3 Logarithmic number system (LNS)
A LNS represents numbers similar as the floating-point standard but
without mantissa. The number only consists of an exponent e;

vLNS = (−1)s · 2e. (4.5)

The exponent is represented in the Qsignedn,f fix-point format with
a dominant fractional part to obtain a finer granularity over the
representable range. Special cases, such as NaN, Inf, and Zero are
encoded with specific bit patterns. Table 4.2 summarizes the maxi-
mum positive values that cover similar ranges as for their standard
floating-point equivalent types. We denote the LNS format by Ln,f
where the parameters n and f denote the bit-width and the number
of fractional bits used in the underlying fixed-point exponent repre-
sentation. The LNS has gain research attraction already in the 1970’s
by the observation that some operators massively simplify through
the setup of the number system [141, 142]. For example, integer
addition, integer subtraction, and bitshift operations can compute
multiplications, divisions, and square-roots of LNS numbers: Let
v1 = (−1)s1 · 2e1 and v2 = (−1)s2 · 2e2 denote the LNS representation
of two values v1 and v2. Then, Equation (4.6) shows how operations
map to the underling representation. Modified arithmetic logic unit
(ALU)’s with special-case handling allow power, area-efficient, and
fast implementations of those operations.

v1 · v2 = (−1)s1+s2 · 2e1+e2

v1/v2 = (−1)s1+s2 · 2e1−e2√
|v1| = (2e1)0.5 = 20.5e1

(4.6)

In contrast, addition and subtraction involves the evaluation of
non-linear functions as follows:

v3 = v1 ± v2

e3 = max(e1, e2) + log2(1± 2−|e1−e2|).
(4.7)



60 CHAPTER 4. CORE TRANSPRECISION CONCEPTS

Table 4.2: LNS configurations similar to half and float data types.

Name Formula 16-bit 32-bit
L15,10 L31,23 )

emax 2n−f−1 − 1
2f 16− 2−10 128− 2−23

emin −2n−f−1 + 1
2f −16 + 2−10 −128 + 2−23

Largest 2emax 6.5 · 104 3.4 · 1038

Smallest 2emin 1.5 · 10−5 2.9 · 10−39

LNS research focuses on the two non-linear functions F+(r) =
log2(1 + 2−r) and F−(r) = log2(1−2−r) with r = |e1 − e2| that build
the core operation of addition and subtraction units. All hardware
implementations are based on lookup and interpolation methods [135].
Since F−(r) has a singularity for r → 0, critical intervals of r close
to zero are decomposed with so called cotransformations into func-
tions that are simpler to approximate [143–145]. Authors of early
papers concluded that 12-bit width LNS addition/subtraction units
are infeasible to the exponential requirements of the lookup tables.
Recent implementations demonstrated the feasibility of 32-bit LNS
units that deliver roughly the same dynamic range and precision
as the IEEE 754 32-bit float implementations [71, 146]. However,
due to the exponential scaling of lookup tables for higher precisions,
64-bit LNS formats are infeasible to be designed in a competitive
manner compared against the traditional IEEE 754 64-bit double
implementations.

4.2 The transprecision system view
Before we discuss transprecision methodologies, we firstly define an
abstract definition of an arbitrary computing system. We require a
general, yet simple enough, description to classify existing work and to
address complex interacting tasks that cover all aspects from physical
foundations up to algorithmic implementations. To define an abstract
computing system, we first provide a list of aims we want to cover with
the abstraction.
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• The abstraction should be general to cover any existing com-
puting system.

• The abstraction should be extensible to cover new computing
systems.

• The abstraction should be used to define and explain the method-
ologies of transprecision computing.

• The abstraction should allow deriving methodologies needed for
transprecision computing.

We define three key concepts, components, interfaces, and actions:
Component. Identifies parts of a computing system. Compo-

nents can be encapsulated or replicated. Components express struc-
ture and help to identify the granularity level of considerations.

Interface. Identifies relations among components by defining
expected inputs and outputs.

Action. Explains events that occur. Actions might be triggered
by other actions, receive input, and create output.

The three concepts are defined in a sufficiently general fashion
such that terms component, interface, and action can refer to both
software and hardware.

Definition 1 (Abstract Computing System). We define an abstract
computing system consisting of two particular components: a) a de-
scriptive component and b) a physical component where relations are
defined through interfaces. Actions define the purpose of the system.
Synonyms: Personal computer, microcontrollers, serves, dedicated sys-
tems including ASICs and FPGAs.
Typical: IBM Power8/9, NVIDIA GPU K80, P100, V100.

The above definition splits a computing system into two specific
parts that we assume are always present, a descriptive part that
defines or implements actions and a physical system that can process
information and solve a task. This notation fits classical computing
systems, FPGA workflows, and ASIC designs.

Classical computing system. Physical components define the
traditional hardware, including the processor, the cache memory hi-
erarchy, the DRAM, hard drive, and peripherals. Descriptive compo-
nents are defined through the classic software parts that define the
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behavior of the classical computing system, including the operating
system, software libraries, and specific implementations.

FPGA. Physical components refer to the specific board or sub-
components, such as cells, DSPs, or specific circuits. Descriptive parts
refer to hardware description language (HDL) abstractions that define
the behavior of the board once configured.

ASIC. Physical components refer to the manufactured integrated
circuits and subcomponents thereof and descriptive parts, similar as
for FPGAs refer to source files that describe the hardware.

To further abstract a computing system, we use the key concepts
of micro, macro, and system levels to distinguish different granularity
considerations of a system. The terms micro, macro, and system
relate to different components depending on the focus of consider-
ation. For example, to study a compiler, the terms micro, macro,
and system-level refer to assembly code, single-line statements, and
function routines respectively. However, in a large software project,
the same terms refer to function routines, libraries, and applications.

Definition 2 (Matching work into the abstraction). To understand
novel work, we match it against the definition of a computing system
and identify three concepts:
a) Structure: by identifying (1) components, (2) interfaces, and (3)
actions.
b) Granularity: by ranking components into: (1) micro, (2) macro,
and (3) system levels.
c) Importance: by classifying components into: (1) core components,
(2) tooling components, and (3) side components.

Definition 2 builds a guideline on how related work can be classi-
fied. Structure and granularity define the scope of the work. Addition-
ally, components are classified according to their importance. Core
components define the focus of the work, tooling components refer
to components that were used during development, but their internal
operation is out of the scope. Side components note components that
are inherently assumed to be present but out of the focus of the work.
For illustration, in a classical software project the core component
refers to the source code, tooling components refer to the compiler and
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the profiler, and the side component refers to the used hardware. In
contrast, the core component of a classic ASIC design is the hardware
design of a unit. Tooling includes the full stack of specialized software
products to perform compilation, estimation, place and route, and
validation of designs. Side components of an ASIC work reefers to
units present in the final system that are not part of the current
design considerations.

The abstract view enables us to quickly characterize existing work
by identifying the structure, the granularity, and the importance of
descriptive and physical components. The abstraction is general and
extendable, as required by the first two statements at the beginning of
this section. We use the conceptual idea to introduce transprecision
computing and related methodologies in the next section.

4.2.1 Transprecision concepts
To demonstrate transprecision computing as a general concept that
improves the next generation of computing systems, we establish key
conceptual metrics. They assess different solutions of computing sys-
tems to solve a given task. We define quality and performance as
follows:

Definition 3 (Quality). Quantifies a measurable, reproducible, suc-
cess of a solution obtained with a computing system to a given task.
The quality is solely a property of the obtained result.
Synonyms: Accuracy, Algorithmic-Performance, Result-Performance.
Antonyms: Result-costs, Residual, Error.
Typical: Top-k accuracy, L1 or L2 residual error.

Definition 4 (Performance). Quantifies a measurable, reproducible,
amount of work accomplished by a computing system to achieve any
solution to a given task. The performance is solely a property of the
system and how it behaves to obtain a solution.
Synonyms: Execution speed, throughput, bandwidth.
Antonyms: Low latency, short time, low complexity, low power.
Typical: Runtime measurements, Energy-to-solution measurements.

The provided definitions allow the output to be quantitatively
assessed independently from the process that generated the output.
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In some literature, the terms quality and performance are defined
differently to express the same statements. To avoid disambiguation,
consider the statement [...] algorithm A outperforms algorithm B in
all cases [...]. If the statement is in the context that the produced re-
sults of A are better than results produced with B, it refers to quality.
However, if the statement means that A finishes about x times faster
than B, it refers to performance that characterizes the process that
produced the result. With the definition of quality and performance
we are able to state the following transprecision computing definition:

Definition 5 (Transprecision Computing). A transprecision com-
puting systems is a computing system characterized through quality,
performance, and trade-offs there-on S := (Q,P,RP,Q). The configu-
ration space Θ defines transprecision root-cause settings and the trans-
precision system is defined through a quality characterization Q(.) :
Θ → R, θ 7→ q, a performance characterization P (.) : Θ → R, θ 7→ p
and the trade-off thereon RP,Q : Θ → R2, θ 7→ (p, q)θ for p = P (θ)
and q = Q(θ).

A transprecision system based on the configuration space Θ is a
family of systems that are based on the transprecision specific setting
θ that affects both, the quality of the results it produces and the
performance of the process that produces the results.

A transprecision system is a parametrizable family of systems.
Specific settings θ in the transprecision configuration space Θ affect
both, the quality and performance of the final solution. The char-
acterization functions Q and P map the configuration θ onto scalar
quality and performance metrics. Trade-offs TP,Q between quality
and performance are obtained by stating those for an operating point
specific θ ∈ Θ setting. The root-cause is the effect that causes different
configurations to impact quality and performance. We define a trans-
precision system general including various effects that act as root-
causes. The generality causes some of the defined concepts to overlap
with established approximate computing approaches. Henceforth, we
define a list of features that distinguish a system as trans-precise:

• The configuration space Θ is non-trivial.

• Either, the quality or performance characterization functions (P
and Q) are non-trivial.
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• Either, the evaluation of the quality or performance characteri-
zation function span multiple granularity levels of a computing
system.

• Either, the main effects of the quality and the performance char-
acterization are caused by different components of a computing
system.

The first criterion excludes cases, where for example only two
algorithms are compared such as comparing a reference with an ap-
proximative formulation. The 2nd and 3rd criterion are satisfied if the
root-cause effect propagates non-trivially through different granularity
levels of a computing system. For example, adjusting the precision of
a variable meets those requirements. Micro effects introduce a scalar
quantization error, macro effects cause software library routines to
produce different numerical results, and system effects impact the
final application quality. The 4th criterion highlights that effects on
the quality and precision of a system propagate through different
components of a computing system. For example, loop perforation
satisfies the first three criteria. However, it fails on the fourth criterion
since performance gains and quality degenerations are caused inside
the same component, namely, in the software component that defines
the loop under consideration. In contrast, using reduced precision
typically affects quality through the software-stack while performance
is gained through the hardware-stack.

Next, we define common tasks related to transprecision systems:
Configuration space design Defines the transprecision config-

uration space Θ. Especially, if the root-cause impacts on micro level,
typical configurations at system level are composed of many configu-
rations, defining large configuration spaces.

Characterization Evaluates quality and performance for differ-
ent configurations. Depending on the root-cause, the analysis is per-
formed analytically, by estimation, with statistical models, or by em-
pirically emulating the transprecision system.

Configuration optimization Deals with finding best configura-
tions θ ∈ Θ. The following equation states the optimal preforming
solution for a given quality constraint,
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θopt1 = arg max
θ∈Θ

P (θ) s.t. Q(θ) ≥ qref −∆q, (4.8)

where the quality constraint is expressed as maximal allowed de-
generation ∆q from a known reference solution qref . Similarly, the
following equation states the optimal quality solution that achieves a
fixed speed-up η:

θopt2 = arg max
θ∈Θ

Q(θ) s.t. P (θ) ≤ ηpref . (4.9)

A common task for transprecision systems is to find the Pareto-
optimal frontier [147] of configurations between quality versus perfor-
mance trade-offs. A configuration θ1 dominates another configuration
θ2 if, and only if, is better in both aspects, the quality and performance
delivered by that solution. We denote that θ1 is the preferred solution
by Tp,q(θ1) � Tp,q(θ2). Formally, the Pareto optimal frontier is given
as a set of all configurations for which no better configuration exists:

Θopt = {θ ∈ Θ : {θ∗ ∈ Θ : Tp,q(θ∗) � Tp,q(θ)} = ∅} . (4.10)

4.2.2 Reduced precision as root-cause
Definition 5 defines transprecision computing as a system that per-
forms tasks with a configuration dependent quality and performance.
However, the root-causes that affect quality and performance are not
specified in the abstraction to cover cases that obey the same philoso-
phy. Well suited root-causes for transprecision computing satisfy the
following criteria:

• Are applicable at different components of a computing system;

• Have the potential for performance gains;

• Allow defining clear interfaces between components for modular
developments;

• Allow to well-define and to search configuration spaces;
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• Allow to automatize the finding of good configurations.

The number format representations and their arithmetic deliver a
well suited transprecision root-cause to enhance computing systems.
We formalize the idea of reduced precision by assuming a number
representation and arithmetic denoted as data type T parametrizable
with parameters θ. Integrating reduced precision into applications
and hardware causes the following chained effects:

First, quality is affected by the numeric representation and how
variations propagate through an application. We denote quality char-
acterizations caused by reduced precision as the numerical behavior of
an application. The numerical behavior directly propagates through
algorithmic granularity levels. On the micro-level, different data types
cause quantization effects such as differently representing scalar val-
ues. On the macro-level, micro effects are applied to larger data
chunks or chains of arithmetic computations. They accumulate and
propagate quantization effects through a system.

Second, reducing the precision allows operating the hardware with
higher performance, as it has to perform less work per data item.
We assume that the reduced precision type T has a smaller bit-width
representation than the data type used in the original implementation.
The reduction has several implications and allows improving multiple
hardware components. First, if the hardware supports transprecision
computing features, performance gains are directly measurable. How-
ever, in some cases, only a subset of all potential configurations might
be supported on hardware. That restriction might limit performance
gains that would be achievable with finer granularity considerations.
For example, most traditional computing cores include floating-point
support for 32-bit and 64-bit IEEE 754 number representations. Re-
cently, especially in GPUs, the IEEE 754 half type with a bit-width
of 16-bits is natively supported and extends the granularity level
of available precisions. Second, the feasibility of better perform-
ing hardware is well-motivated. For example, four-way vectorization
similarly extends the instruction set leading to performance gain as
when moving from a single 32-bit format to a two-way vectorized
operation of 16-bit representations. Additionally, bandwidth-limited,
contiguous memory accesses scale proportionally to the transferred
data volume. Reductions in data-types translate to reduce the overall
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data volume. The critical target for developers is to demonstrate that
the application delivers the required quality with reduced precision
computations.

Reducing precision implements transprecision concepts in a modu-
lar way. Defining the reduced precision representations and arithmetic
operations, the transprecision root-cause is specified and quantified.
The scalar-level definition of the data type and elementary opera-
tions build the modular micro-level abstraction of reduced precision
computing. Software libraries extend and emulate the numeric be-
havior on macro and system-level of applications. The scalar-level
abstractions of number format representations act as specifications
for designing reduced precision units in FPGAs or ASICs.

The availability of a few primitives of non-standard data types al-
lows analyzing complex numerical behavior on application-level with-
out direct concerns of HW implementations. The common use of
reduced precision emulation libraries implies the transprecision con-
figuration space Θ. Emulations allow to empirically evaluate the
quality of applications Q(θ). Analyzing numerical behaviour powers
the development and optimization of specific problem instances.

4.2.3 Transprecision computing in current solutions
Due to the general formulation of transprecision computing, we discuss
to what extent it overlaps with existing products or implementations.
Additionally, we highlight the key features that we envision for trans-
precision computing covering the next decade. First, we observe the
following:

Observation 1 (FPGAs and ASICs). Well engineered FPGA and
ASIC designs follow the concept of transprecision computing.

A typical hardware design flow includes transprecision concepts at
different stages: a) at gate-level synthesis, b) by categorical design
choices, c) at register-transfer level (RTL) data path design.

First, we understand the synthesis of gate-level netlists from HDL
abstractions as a corner case of transprecision computing. Proficient
commercial tools, such as the Synopsis Design Compiler1, are highly

1Available at https://www.synopsys.com/implementation-and-signoff/rtl-
synthesis-test.html (November 2019)

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test.html
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specialized to automatize this process. The configuration space Θ as in
our transprecision formulation maps to the space of options and flags
that can be passed to the synthesis process. The standard analysis
of hardware designs states costs in terms of silicon area against the
worst-case propagation delay. The concept of the so-called AT-plots
maps to transprecision concepts by identifying the area and delay
as two orthogonal performance metrics Parea(θ) and Pdelay(θ). Since
valid synthesized implementations obey a defined behavior, the quality
is fixed. Results produced by the circuit are equivalent.

Second, designs include the opportunity for categorical choices of
subcomponents or architectural choices of functional units. For exam-
ple, using alternative Design Ware components affects performance
metrics, e.g., choosing an 8-bit ripple-carry adder versus an 8-bit
carry-lookahead adder. Quality and performance are affected when
using different adders variants, e.g., a 10-bit adder instead of an 8-bit
adder. High-level architectural choices, for example, sequential oper-
ation or binary-tree like reductions might impact quality as well. For
example, quantization caused by rounding leads to non-commutative
behavior of summations.

Third, data-path design involves defining the bit-widths of com-
putational units and related registers that directly impact the qual-
ity and performance. Designs that rely on look-up table s (LUTs)
highly profit from slim input address spaces due to the exponential
area scaling. The choices for the LUT design affects the quality and
performance of the final solution.

Hardware designs provide highly-performant implementations, very
tiny designs, and low-power operation. Those solutions are obtained
by investments including long development time, human expert knowl-
edge, and engineering, licensing, and manufacturing expenses. Driven
by those factors, engineers take decisions to develop and achieve rea-
sonable solutions. Depending on the effort spent to make design space
elaborations including numerical aspects, such implementations follow
the transprecision computing paradigm.

However, most designs rely on expert knowledge to make reason-
able assumptions. They are missing the systematic elaboration of
the numerical configuration space with functions describing effects
on quality and performance. Moreover, most design questions are
considered for specific circuits, which impedes to generalize and reuse
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similar considerations for new problems. In our vision, transprecision
computing scales as a general concept that deploys efficiently to new
settings.

Observation 2 (Vision of transprecision (TP)). Transprecision com-
puting aims to co-design hardware and software for general-purpose
systems. The provided solutions share the flexibility known from general-
purpose computing but aim to deliver solutions that obey performance
gains known from ASIC development.

In this chapter, we have defined and abstracted the paradigm of
transprecision computing. The definition is as general such it covers
aspects from physics, hardware design, up to the regular system and
application development. The long term vision includes a view that
delivers a computing system as easy-to-use as known from software
development. At the same time, transprecision computing delivers
performance superior to today’s available hardware. In contrast to
regular programming, the achieved performance gains stem from qual-
ity versus precision considerations that affect multiple software and
hardware components. Those effects materialize with performance
improvements that are similarly known from FPGA or ASIC design
flows. Since the full extent of this vision is out of the scope of this the-
sis, we focus on the core components. To that end, Chapter 5 presents
the implementation of a reduced precision library, followed with the
application level integration of deep learning use-cases presented in
Chapter 7.

4.3 Summary and conclusion
The most important findings of this chapter are the following:

• We present the two predominant number representations, the
two’s complement fixed-point representation, and the IEEE 754
floating-point standard. We highlight the importance of the
availability of high dynamic range computations that justify the
use of floating-point formats. We summarized the LNS as an
alternative to the IEEE 754 standard that delivers similar dy-
namic ranges and precision levels up to 32-bit implementations.
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Research around LNS focuses on the implementation of units for
addition and subtraction that are inherently based on lookup
and interpolation methods.

• We define a computing system consisting of descriptive and phys-
ical components. Further, we define a transprecision computing
system as a configurable system that produces results with mea-
surable performance and they achieve a measurable quality. We
identify the concept of reduced precision in numeric represen-
tations as root-cause for transprecision computing. Developing
and evaluating a transprecision system involves the following
steps:

1. Identify the transprecision root-cause.
2. Abstract impact of root-cause on application quality.
3. Abstract impact of root-cause on processing performance.
4. Evaluate the transprecision system by implementing, emu-

lating, or estimating core components.
5. Define and solve specific goals. (Design configuration space,

use configuration search algorithms, solve for specific qual-
ity constraints).

• We observe that the concept of transprecision computing is
already applied with success for certain FPGA or ASIC de-
sign flows that include systematic numerical considerations to
improve performance. We envision that future general-purpose
systems can profit from similar considerations.





Chapter 5

Emulating numerical
behavior of applications

The conventional IEEE 754 single- and double-precision floating-point
formats dominate current hardware architectures where a few recent
GPUs extend full support for arithmetic operations to the IEEE 754
half format. The discussion in Section 4.2.2 suggests revealing the hid-
den benefits of customized FPUs that operate with non-conventional
formats at a reduced precision. In particular, such considerations
are especially important in applications that justify the development
of ASICs of FPGA designs. However, since traditional software is
written for classic processors, most of the existing code performs
numeric computations with natively supported data types only. While
engineering work for ASIC and FPGA designs includes numerical
studies, they are mostly performed in application-specific settings for
conventional fixed-point formats that are directly supported on the
system for which they are developed. To demonstrate the generality,
feasibility, and scalability of transprecision computing, it becomes
necessary to allow for an simple software integration. Numerical
behavior of non-conventional reduced precision number formats is
required to be studied at the application level. To that end, we present
a flexible C++ emulation framework, named floatx, to investigate
the effect of reduced-precision floating-point formats in numerical

73
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applications. Here, reduced or low precision refers to a data type
that does not have more significant or exponent bits than IEEE 754
double precision-format.

5.1 The floatx library
5.1.1 Related work
Many software packages exist that allow operating numeric compu-
tations with non-native floating-point precision. Among these, the
GNU’s not unix!; free software (GNU) multiple precision floating-
point reliably (MPFR) [148] library1 is a de-facto standard for arbi-
trary higher than regular precision, used for example in gcc. Similarly
to GNU MPFR many other floating-point emulation tools (see, e.g.,
the survey in https://www.mpfr.org/) provide software support for
extended precision and, therefore, serve a different purpose. In the
following review, we target floating-point emulation tools that focus
on reduced floating-point precision.

INTerval LABoratory (INTLAB) [149] is a Matlab package that
offers the fl-numbers, a concept similar to floatx. Fl-numbers have at
most 26 significand bits (including the implied one); the maximal ex-
ponent range is [−241, 242] (both lower than that in floatx numbers);
and global variables exist that control the numbers of significand and
exponent bits in effect2. That last trait makes INTLAB slightly less
flexible than floatx, where the precision is a property of the data itself.

The Sipe [150] C library3 is a header-only tool for experimenting
with floating-point algorithms and very low precision. It supports
the correctly-rounded basic arithmetic operations, except divisions
and square roots, but with fused-multiply-adds (FMAs). Compared
with floatx, it stores the number’s value either in a native backend
floating-point type or as a pair of two integers (for the non-normalized
significand and the exponent parts, respectively), while the precision
is a property of an operation on the data.

1Available at http://www.mpfr.org/ (version 4.0.1, February 2018)
2Available at http://www.ti3.tuhh.de/intlab/demos/html/dfl.html (Ac-

cessed September 2019)
3Available at http://www.vinc17.net/research/sipe/ (Accessed September

2019)

https://www.mpfr.org/
http://www.mpfr.org/
http://www.ti3.tuhh.de/intlab/demos/html/dfl.html
http://www.vinc17.net/research/sipe/
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Precimonious [151] is a program analysis tool based on low level
virtual machine (LLVM) that analyses floating-point program vari-
ables in an attempt to lower their precision. This tool recommends
the smallest data type for each variable that produces an accurate
enough answer for a representative set of program inputs.

Universal numbers (UNUMs) and their new versions, posits, [152]
are variable-size alternatives to the IEEE 754 formats. The floatx
library also provides variable-size formats but those are based in the
IEEE 754 standard and the number of bits is fixed prior to any com-
putations. In contrast, the unum formats cloud grow automatically if
required by the computation. Furthermore, there is no easy mapping
between the unum and IEEE 754 formats.

Berkeley’s SoftFloat [153] is a library that provides a floating
point IEEE 754 implementation using only integer operations. This
implementation is limited to the standard types plus the legacy 80-bit
format from Intel/Motorola. In contrast, floatx uses the floating-point
hardware to greatly reduce code size with respect to SoftFloat as well
as to support any format smaller than the underlying base format.
Also, floatx leverages C++ overloaded operators to ease integration
in existing programs.

FlexFloat [154] is a C software library enhanced with C++ wrap-
pers that enables exploration of numerical effects by tuning both
precision and dynamic range of program variables. The purpose of
FlexFloat is, therefore, very similar to that of our floatx. Nonethe-
less, as we discuss in the following section, floatx presents several
programming advantages, due to the adoption of C++ as the backend
framework language, that are difficult to attain with a solution based
on C.

5.1.2 Interface and design goals

The floatx library was developed to simplify the transition from ex-
isting code to reduced precision. To that end, it is designed to follow
an intuitive and easy-to-use interface whenever possible and it imple-
ments the core functionality of emulating reduced precision floating-
point formats that are coherent with the IEEE 754 standard. The
library is designed around the following goals:
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• The floatx types should be an extension of the standard bi-
nary floating-point types (float and double), and their interface
should be equivalent to them. This means that, for any two
floatx objects, a and b, the following expressions/operations
should offer the expected semantics, as in the case of float and
double:

a+ b, a/b, ...

a < b, a >= b, ...

a = b, a+ = b, ...

• The floatx types should also be interoperable with built-in nu-
meric types (signed and unsigned integers, built-in floating-point
types) — the expressions above should be valid even if a and
b are different floatx types, or if one of them is a built-in type.
This implies that floatx types should support a set of implicit
conversions compatible with standard numeric promotions and
numeric conversions of built-in types.

• The size of a floatx object should never be larger than the size of
a double. This simplifies the porting of existing codes to operate
on top of floatx, as it is then possible to embed a floatx value
into the storage space originally used for a double. This ensures
that parts of the code which just move or read data, but perform
no floating-point operations, do not have to be modified.

Listing 5.1 provides a small example that demonstrates the fea-
tures and interface of floatx.

Lines 1, 2, and 7 show how floatx numbers can be constructed
from built-in types (floating-point numbers and integers) and read
from C++ streams. Lines 8 and 9 show how these objects are used
to perform basic arithmetic and relational operations. Lines 10-13
demonstrate the interoperability between different floatx and built-in
types. The comments on the right specify the return type of the
operation. Note, that T == U, where T and U are types, is used to
convey that these two types are the same, i.e., that std::is_same<T,
U>::value evaluates to true. Lines 8 and 11-13 also show that floatx
types can be implicitly converted to other floatx types or built-in
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1 flx::floatx<7, 12> a = 1.2; // 7 exponent bits , 12 sign. bits
2 flx::floatx<7, 12> b = 3; // 7 exponent bits , 12 sign. bits
3 flx::floatx<10, 9> c; // 10 exponent bits , 9 sign. bits
4 float d = 3.2;
5 double e = 5.2;
6
7 std :: cin >> c;
8 c = a + b; // decltype (a + b) == floatx <7, 12>
9 bool t = a < b;

10 a += c;
11 d = a / c; // decltype (a / c) == floatx <10 , 12>
12 e = c - d; // decltype (c - d) == floatx <10 , 23>
13 c = a * e; // decltype (a * e) == floatx <11 , 52>
14 std :: cout << c;

Listing 5.1: Sample code using floatx.

types. Finally, line 14 shows how floatx types can be written to an
output stream.

5.1.3 The choice of C++
Given the restrictions imposed by the design goals stated at the be-
ginning of this section, the language of choice needs to support a
powerful data type system, which enables programmers to define their
own types and operators on those types. Besides, the language has
to support some sort of type arithmetic, which is general enough to
specify numeric promotion and implicit conversion rules for custom
types. Furthermore, the design goal of supporting custom types that
are almost as precise as double and fit then into the same storage
space as double, means that custom types are not allowed to incur any
memory overhead. The information about the precision of the type
cannot be maintained as additional data and has to become a part of
the type itself. These requirements discard C as a possible candidate.
In contrast, C++ programming language supports both user-defined
types and operator overloading, and the abstractions built in C++
do not impose any memory overhead. C++ templates provide an
easy means to incorporate precision information into the type as
well as to define arbitrary conversion rules using this information.
The latter is possible since C++ templates (are believed to) form a
Turing-complete language [155], evaluated during compilation. Addi-
tionally, most C++ compilers are capable of inlining function calls and
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optimizing output expressions that can be evaluated at compile-time,
which improves the performance of floatx types.

Applications using C and Fortran 77 can be ported to C++ (and
thus, integrated with floatx) with a reasonable programming effort.
Since C++ maintains a good level of compatibility with C, applica-
tions written in the latter language can usually be compiled as C++
applications with minimal modifications. Fortran 77 applications (un-
like more modern Fortran variants) can be translated into C using
the tool f2c and then compiled with a C++ compiler. In Section 6
we detail how we integrate floatx behind PyTorch [62] to provide the
functionality in a Python-based deep learning framework to ease the
integration in any deep learning model.

5.1.4 The floatx class template
To achieve the third design goal specified in the introduction of this
section, and to satisfy the first and second goals, different precisions
in floatx are implemented as distinct specializations of the floatx class
template. The number of exponent and significand bits used in the
format are encoded into the type via integral template parameters.

The floatx library uses a hardware-supported floating-point type
as backend, which in turn is used to store the data, simplify the imple-
mentation, and improve the performance of arithmetic and relational
operations. The binary representation of any floatx value is equivalent
to the rounded and (whenever possible) normalized representation
of the same value in the backend type. Note that the set of all
representable values in a backend floating-point type TwB ,tB , with wB
significand bits and tB exponent bits, is a superset of all representable
values in any floating-point type with w ≤ wB significand bits and
t ≤ tB exponent bits. Thus, TwB ,tB can be used as back end for any
floatx type that is, at most, as precise as TwB ,tB . There are advantages
and disadvantages of this approach.

On the positive side, a comparison of two floatx values amounts to
a comparison of the underlying backend values, which yields a consid-
erable performance benefit. The textual output is likewise straightfor-
ward. Additionally, all arithmetic operations are performed on those
backend values. The result is then rounded following the precision
of the floatx type and again stored (exactly) in the backend type.
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Round to p:
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Figure 5.1: Effect of double rounding might cause different results.
Left: directly rounding to a precision of p mantissa bits truncates
due the 0 at position p + 1. Right: double rounding causes twice an
addition due a carry-bit in the intermediate representation.

Values such as ± inf or NaN are directly stored in the backend type
without any conversion. For efficiency, floating-point status flags are
not supported by floatx. Also, floatx multiplication and addition are
not fused in the current implementation, as this optimization is rarely
worth the extra template meta programming effort.

All arithmetic operations are performed in the back-end type, us-
ing the corresponding machine’s floating-point arithmetic instruction.
The result of any operation is inevitably rounded back to that type,
using the machine’s rounding mode in effect (usually round-to-nearest,
ties-to-even), before it is rounded again to the target floatx type, what
is called double rounding [156,157]

Double rounding could fail when the first step results in a value
that is just at the same distance from two values in the reduced
precision. In the following discussion X stands for an arbitrary bit and
arrows indicated roundings. Figure 5.1 shows one example of double
rounding when the bit addition carries up to the last bit before the
reduced significand.

An additional example of double rounding failure is when the
original value is close to the middle point in high precision as depicted
in Figure 5.2. In this case, at least one bit after q + 1 must be set
in the original value. The same situation arises if the last bits after
q in the original value are exactly 10...0. In both examples the error
using the double rounded value is |x−Qp (Qq(x))| ≤ ∆p + ∆q, which
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Figure 5.2: Effect of double rounding might cause different results.
Left: directly rounding to a precision of p mantissa bits rounds up
due to the non-zero tail of the high-precision value. Right: double
rounding causes twice a truncation since the non-zero part is lost in
the first rounding step.

is approximately the expected error for a significand of p bits, that
is ∆p, when p � q. This should be the typical case for floatx as,
in most cases, we expect the user is interested in formats that are
smaller than single precision. Formats close to double precision (more
than 44 significand bits) are not quite as interesting because they will
provide much lower benefits from the hardware point of view.

The correct result without double rounding can be obtained by
exploiting only backend arithmetic [158]. Also, the iterative correction
proposed in [159] could be used for any elementary mathematical
function. The floatx library does not employ either approach because
both have a large overhead not worth the extra accuracy. Another
way to avoid double rounding is to employ round-to-odd [160]. This
rounding mode is very efficient and without bias, but the maximum
error is the same as with truncation, and twice as large as for round-to-
nearest. The floatx library does not implement round-to-odd because
it is not in the IEEE 754 standard. The rounding routine currently
integrated into floatx has a limitation in that it only supports double
as the backend type, and only the round to nearest, ties to even
rounding mode. A more general rounding routine with support for
different rounding modes and backend types is planned in the future.
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1 template <int exp_bits , int sig_bits , typename backend_float = double >
2 class floatx {
3 private :
4 backend_float data;
5 };

Listing 5.2: Basic structure of floatx.

Listing 5.2 shows the outline of the floatx class template and
demonstrates how the desired binary representation is achieved. List-
ing 5.3 is a verbatim copy of floatx’s top-level rounding routine, which
demonstrates the steps required to transform a value of the backend
type into a value of floatx type.

The rounding process constructs the new value by converting the
exponent and mantissa from the original value (the sign is unchanged).
No conversion is required for Infinity and NaN values, nor if the floatx
type is configured with the same parameters as the backend type. The
first step in the rounding process is to extract the bits for the mantissa,
exponent, and sign using bitwise operations. This process is more
complicated for the exponent because of the bias. Next, each part of
the number is fitted into the target format. If the exponent is too
small, the number will be denormalized; if it is too large, the result
will be Infinity. The mantissa is rounded to the nearest value and
corrected if it is too large. Finally, the rounded value is constructed
from the original sign and the revised mantissa and exponent.

5.1.5 Operations on floatx objects
As already noted in Section 5.1.4, all operations on floatx values are
trivially implemented in terms of operations on the backend data type
and the rounding routine. In consequence:

• Comparing two floatx values is equivalent to comparing their
representations in the backend type.

• Any arithmetic operation on two floatx values is equivalent (up
to problems with double rounding) to the equivalent arithmetic
operation on their backend representations, followed by a round-
ing of the result.
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1 backend_float enforce_rounding ( backend_float value ) noexcept {
2 const auto exp_bits = get_exp_bits (self ());
3 const auto sig_bits = get_sig_bits (self ());
4
5 if ( exp_bits == float_traits < backend_float >:: exp_bits &&
6 sig_bits == float_traits < backend_float >:: sig_bits )
7 return value ;
8
9 bits_type bits = reinterpret_as_bits ( value );

10 auto sig = (bits & backend_sig_mask ) >> backend_sig_pos ;
11 auto raw_exp = bits & backend_exp_mask ;
12 const auto sgn = bits & backend_sgn_mask ;
13
14 int exp = ( raw_exp >> backend_exp_pos ) - backend_bias ;
15 const int emax = (1 << ( exp_bits - 1)) - 1;
16 const int emin = 1 - emax;
17
18 if (! is_nan_or_inf (bits))
19 {
20 if ( is_small (exp , emin))
21 convert_subnormal_mantissa_and_exp (bits , sig_bits , emin , exp ,

sig , raw_exp );
22 else
23 sig = round_nearest (sig , backend_sig_bits - sig_bits );
24 if ( significand_is_out_of_range (sig))
25 fix_too_large_mantissa (sig_bits , exp , sig , raw_exp );
26 if ( exponent_is_out_of_range (exp , emax))
27 bits = assemble_inf_number (sgn);
28 else
29 bits = assemble_regular_number (sgn , sig , raw_exp );
30 }
31 return reinterpret_bits_as < backend_float >( bits);
32 }

Listing 5.3: Main floatx rounding routine.

• Printing a floatx value to a stream is equivalent to printing its
backend representation.

• Reading a floatx value from a stream is equivalent to reading it
as a backend value and rounding the result.

• Converting a numeric type into a floatx type is equivalent to
converting it into the backend type and rounding the result.

• Converting a floatx type into a numeric type is equivalent to
converting its backend representation into that numeric type.

• Converting between two floatx types is equivalent to re-rounding
the backend representation.

As a result, the non-trivial part of floatx remains hidden in the im-
plementation, exposing an intuitive interface to the user which makes
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floatx (semantics) behave as expected and supports a flat learning
curve.

Creating floatx objects and casting between floatx objects (as well
as between built-in and other floatx objects) should be as easy as
creating and casting between built-in objects. To attain this, floatx
defines a set of converting constructors for creating floatx objects and
casting to floatx objects, as well as a set of conversion operators for
casting from floatx objects to built-in types.

To support arithmetic and relational operations using the same
syntax as that of built-in types, the library provides a complete set
of arithmetic and relational operator overloads for floatx numbers.
In addition, stream input and output operator overloads are also
provided to simplify writing and reading floatx objects to and from
C++ streams.

Supporting interoperability between distinct types (i.e., accom-
modating operations involving operands of different types) is more
difficult. This requires extending the standard numeric promotion
and conversion rules to include floatx numbers. The C++ definition
of these rules relies on the concept of a common type, a rigorous defini-
tion of which, including the set of implicit conversions and promotions,
can be found in the C++ standard [161].

In short, the common type for two floating-point types F and G
is the more precise of the two, and the common type of an integral
type I and a floating-point type F is the floating-point type F . All
binary operations are performed by first converting both operands to
their common type, and then performing the operation with converted
values. The result of the operation is of the common type. In addition,
if the integer being converted is out of the representation range of
the common type (this can happen when converting a large integer
to a low-precision floating-point type), the result of the operation is
unspecified. Applying specifically these rules to floatx is impossible,
since there are pairs of floatx types such that neither of them can be
considered as more precise (e.g., floatx<7, 9> and floatx<10, 6>).
Thus, floatx has to extend these rules in a way which does not modify
their definition for standard types, while maintaining the desirable
properties of those types for floatx’s emulated types. Some of the
properties that we consider crucial are the following:



84 CHAPTER 5. EMULATING NUMERICAL BEHAVIOR

• The common type of two operands of the same type T is the
type T itself; that is, common_type(T, T ) = T .

• For any two floating-point types R and S, and objects of those
types a and b, respectively, consider the statement c = a +
b; (equivalently, any basic arithmetic operation). If c is of
type T the final result stored in c is equivalent (up to effects
of double rounding) to the infinitely-precise result of a + b,
properly-rounded to type T .

• For any two floating-point types R and S, common_type(R,S)
is the smallest type which has at least as many exponent and
significand bits as both R and S. To remove ambiguities with
the standard specification of a common type, floatx uses the
following definition.

Definition 6 (Common type for floatx). Let eS and eT denote the
number of bits reserved for the biased representation of the exponent
in the floating-point types S and T , and let mS and mT stand for the
number of bits in the significand (mantissa) of the same types. For two
floating-point types, S and T , floatx defines common_type(S, T ) as a
type with max eS , eT bits reserved for the exponent and maxmS ,mT

bits for the significand. For a floating-point type S and an integral
type I, common_type(S, I) = S.

Note that this definition satisfies all of the above mentioned de-
sirable properties and keeps the original semantics of a common type
unchanged for the built-in types. Since the floatx definition extends
the original C++ definition, floatx only needs to implement the ex-
tensions for operations where at least one of the operands is of a type
provided by floatx. This is done by providing more general operator
overloads that can take any operands, as long as at least one of them
is a floatx-provided type, and then convert them into their common
type.

The common type is determined at compile-time, using a combi-
nation of meta-programming techniques including: trait classes for
built-in and floatx-provided types, substitution failure is not an error
(SFINAE) [161], and the std::enable_if standard C++ utility. For
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1 template <typename backend_float = double , typename metadata_type =
unsigned int >

2 class floatxr {
3 private :
4 backed_float data;
5 metadata_type exp_bits ;
6 metadata_type sig_bits ;
7 };

Listing 5.4: Basic structure of floatxr.

implementation details, refer to the floatx source code4. The common
type resulting from such an overload is always a floatx-provided type
with the significand and exponent bits set to the values specified as in
Definition 6. The backend type is set to the common type of backend
types of the operands (if one of the operands is a built-in type T , its
backend type is considered to also be T ).

5.1.6 The floatxr class template
One downside of floatx is that the range and the precision of a type
need to be known at compile time. Since the goal of floatx is to
ease and accelerate the experimentation with low precision, this limit
can sometimes be too restrictive. There are applications (e.g., Jacobi
linear solvers [162]) for which it is interesting to start with low preci-
sion and increase the number of bits in small steps as the algorithm
progresses. In this case, having a different type for each step will make
the actual implementation very complex. Besides that, the intent to
evaluate an algorithm with all significand sizes between S1 and S2,
and return the optimal one is difficult to express, as it would either
require the user to recompile the code for each size or use template
meta-programming to write the compile-time equivalent of a loop. For
this reason, we introduce another class template, floatxr, which allows
the user to set the precision at runtime. Listing 5.4 displays the data
layout of this type.

Specifying the precision at runtime comes at the cost of an in-
creased memory footprint, and as such, floatxr does not fulfill the third

4Available at https://github.com/oprecomp/FloatX (Accessed, September
2019)

https://github.com/oprecomp/FloatX
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design goal specified at the beginning of this section. However, floatxr
and floatx can be implemented to use the same code base, so there is
only one rounding routine and one set of operators to maintain (and
the compiler just optimizes the same generic function templates more
efficiently when instantiating them for floatx than for floatxr). Also,
floatxr types support the same operations and conversions as floatx
types, and interoperate with floatx and built-in types. As stated in the
following definition, the latter requires a minor revision of the common
type, since the precision of floatxr is not known at compile-time.

Definition 7 (Common type for floatxr). For two types S and T:

• If at least one of S and T is a floatxr type, their common type is
a floatxr type whose backend type is the common type of S and
T’s backend types.

• Otherwise, the common type is deduced as specified in Defini-
tion 6.

5.1.7 Notes on concurrency
Floatx variables maintain no state (i.e., there are no routines for
setting or global variables holding the current working precision, since
this is either a property of the types involved in an operation and/or a
property of the data). The rounding operation itself also depends only
on the backend and the destination types’ properties. An important
advantage of the stateless floatx compared with stateful floatxr, is
that the framework can be safely used from many concurrent threads
of execution, in a sense that no arithmetic or relational operation
on floatx variables involves accessing any other non-constant data.
The threads in question can either be operating system threads on a
CPU or CUDA threads on a GPU. It should also be noted that the
rounding operation and the functions employed in floatx consist of
the same code in both the CPU and the GPU cases, up to certain
integer compiler intrinsics and the necessary CUDA device function
attributes. Since changing the precision of a floatxr variable at run-
time requires modifying its two metadata components and re-rounding
the value in the backend component, neither read nor write access to
the variable from another thread should be allowed while the operation
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is in progress. In general, there are no special guarantees of atomicity
for any floatx type or operation. For example, an assignment of a
floatx variable b to a involves: creating a temporary floatx with the
backend value set to the one of b, re-rounding of that value in-place,
and finally replacing a’s backend component with the temporary’s
(up to any compiler optimizations that might be applied). The users
should, therefore, rely on standard mutual exclusion primitives to
avoid data races during the concurrent access to floatx variables of
any type.

5.1.8 Advanced properties and performance of floatx
An additional advantage of the stateless floatx is that the memory
size and the alignment requirements are both identical to those of
the backend type. Thus, in certain read-only scenarios, an array of
floatx variables can be directly passed, with just a pointer typecast,
to a routine expecting an array of the backend type. A use case
might be a pretty-printer routine, or a writer routine for a custom
file format, possibly written in a different language. The easiest
way to compute the mathematical functions for floatx is to obtain
the result using the backend function, and round the result into a
target floatx type. Of course, that could sporadically introduce results
which are not correctly rounded, due to double rounding, where the
routine itself is expected to be correctly rounded (e.g., sqrt). When
representing a native floating-point type as a floatx type (in particular,
floatx<11,52> represents double, and floatx<8,23> is equivalent to
float), the final rounding operation is unnecessary (no-op) when that
machine’s type is equivalent to the backend one, or can otherwise
be simplified by employing two native data type conversions. In
both cases, the simplification can be triggered at compile time. The
former case yields arithmetic performance close or equivalent (zero-
overhead achieved by code inlining) to using the native backend type
directly, including the possibility of automatic vectorization and other
optimizations not generally applicable to floatx types. The latter case
has not yet been implemented.

Overhead. It is evident from the control flow in Listing 5.3 that
the complexity of rounding depends on the value being rounded as
well as on the type constraints. Therefore, the performance of the
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code is inherently dependent on the data itself. For example, the
rounding operation from Listing 5.3, fully optimized and inlined after
an addition a + b, with the variables declared as floatx<7,12> a
and floatx<10,9> b, requires around 80 assembly instructions on an
Intel Haswell architecture with the gcc 7.2.1 C++ compiler. However,
not all of those instructions are executed in each rounding operation,
due to possibly different code paths taken in each case. Furthermore,
the alternative code paths make code vectorization almost impossible.
Our next experiments provide an evaluation of the practical overhead
introduced by floatx when using non-native data types, using the
routines for the legacy5 basic linear algebra subprograms (BLAS)-1
dot product (DOT) and BLAS-2 general matrix matrix multiplication
(GEMM) converted to C++ and integrated with floatx. The testing
machine for all performance experiments presented in this section
(except when the target is a GPU) was an Intel Xeon E5-2630 v3
(Haswell) system, running at 2.40 GHz, with the gcc 7.3.0 C++
compiler and a 64-bit GNU/Linux.

Table 5.1 summarizes the performance of the DOT and GEMM
operation for various data types. The two input vectors to the DOT
kernel are of length n = 109 filled with pseudo-random elements in
[−1, 1]. The GEMM kernel performs C = 2AB − C with input
matrices of order n = 3000 and leads to a total of 2n3 + O(n2)
floating-point operations. We observe that all floatx types exhibit
a similar (but not the same) performance hit compared with the
backend type, except when equivalent to it and the optimization
described above is in effect. However, when the exponent range is the
same as one of the backend types (11 bits for double), the rounding
procedure from Listing 5.3 is faster than in the other cases. The
measurements confirm that the complexity of the rounding operation
varies with the data type of the parameters as well as with the data
values themselves.

5Available at http://www.netlib.org/blas (Accessed September 2019)

http://www.netlib.org/blas
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Table 5.1: Runtime performance in MFLOP/s for DOT BLAS-1 and
GEMM BLAS-3 operations with various floatx and native types.

Type T5,10 T10,13 T11,44 T8,23 float T11,52 double

DOT 128.8 127.7 149.4 132.6 1999.1 1714.8 1715.2
GEMM 125.1 125.7 149.8 128.4 5751.0 2316.8 2652.0

5.2 Numerical analysis of applications

5.2.1 PageRank

The memory-bound PageRank [2] iteratively computes the node score
given the topology of a directed graph as sparse adjacency matrix of
size n × n with z non-zeros as detailed in Section 2.1.1. Due to the
iterative nature of the algorithm and its known numerical stability
[82] it becomes the preferred candidate for computations based on
reduced precision floating-point formats. Sparsity-aware implementa-
tions (n < z < n2) reach a time complexity of O(Iz) and the memory
complexity is O(z), where I denotes the input dependent number of
iterations till convergence. PageRank is memory-bound since each
iteration accesses z matrix entries while performing constant work
O(1) per entry.

In this section, we demonstrate two features of transprecision com-
puting: First, we empirically demonstrate that the numerical behavior
of the algorithm converges with the same number of iterations and
reduces the residual to the same quality level as the reference imple-
mentation. Second, we estimate the potential gains by using reduced
precision over the baseline.

We aim to use a fixed precision Twi,ti for all operations (loading,
storing, and arithmetic computations) in the i-th iteration to reduce
the bottleneck bandwidth. Memory access improves by bit-width
reductions of the loaded data. Such an approach leads to a faster
execution of a single iteration if the underlying hardware supports
transprecision. However, due to computing with reduced precision,
intermediate results change due to quantization effects. It is non-
trivial how errors propagate through the computations. Additionally,
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PageRank’s iteration count is controlled with a data-dependent resid-
ual. If quantization effects cause the algorithm to stay longer inside
the iteration loop, potential execution performance gains per iteration
might get quickly lost.

An excursion on forward error bounds

Even though we can analytically compute upper error bounds caused
by quantization and propagation effects, we show how they quickly
diverge such that they do not provide results of practical interest.
For example, for a matrix-vector multiplication of matrix size n × n
and vector dimension n, the output of each values is produced by a
sum of the dot product of length n. Since the matrix is sparse, only
nrow ∈ [0, n] non-zero entries contribute to the summation. We denote
with x̂ and â the exact, scalar values of the iteration vector and the
system matrix. We refer to the normal, and henceforth, quantized
values, with x and a respectively. We define δx and δa as the absolute
quantization error of one scalar, i.e., x = x̂ + δx and a = â + δa. ∆x

and ∆a refer to the maximal, per-scalar, quantization error. For each
scalar multiplication we have the following error propagation,

x · a = (x̂+ δx) · (â+ δa) = x̂ · â+ x̂δa + δxâ+ δxδa. (5.1)

Using the per-scalar quantization error bounds δx ≤ ∆x, δa ≤ ∆a,
and without loss of generality, we know that in PageRank the iteration
vectors and the system matrix is normalized such that we can ensure
that x ≤ 1 and a ≤ 1 holds, we obtain the following per-product error
bound:

|x · y − x̂ · ŷ| ≤ ∆x + ∆a + ∆x∆a. (5.2)

Equation (5.2) holds per each scalar multiplication. Even without
assuming additional errors due to the summation, adds up linearly in
the length of the dot product nrow. The iterative nature of PageRank
causes the errors to propagate such that we upper bound errors per-
value with the following recursion,

∆x[i+ 1] ≤ nrow (∆x[i] + ∆a + ∆x[i]∆a) , (5.3)
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where ∆x[i] denotes the iteration error bound for the i-th iteration.
Note, since the system matrix A is constant, the error bound ∆a

does not grow. Explicitly, the given upper error bound grows at least
exponentially in the number of iterations,

∆x[i] ≥ (nrow)i ∆x[0], (5.4)

if we assume ∆a = 0 to simply resolve the recursion. Even if we just
assume a toy example with at most nrow = 10 entries per row and
we only iterate for 10 iterations, and we operate with floating-point
32-bit precision, which results in ∆x[0] := 2−24, we would achieve an
upper bound of ∆10

x = 1010 · 2−24 = 596.05. Since we expect the
final result to be normalized and we need the values to be enough
distinguishable to not change the sorted ranking, upper error bounds
require to be at least four to five orders of magnitude smaller to be of
practical interest. This consideration highlights the importance of the
methodology, to use floatx instead, to study the numerical behavior
of reduced precision on PageRank.

Transprecision design for PageRank

PageRank is numerical stable [82]. That causes, even in the presence
of numerical perturbations, the algorithm to converge in all practical
test-cases. Those conditions allow that the algorithm works with any
precision level and converges to machine precision imposed by the
numerical representation.

To that end, we adaptively increase the precision during subse-
quent iterations. Since precision changes cost n casts for the iteration
vector and z casts for the adjacency matrix, we aim to lower the
number of precision adaptions. Henceforth, we fix the number of
precision changes such that Ti+1 = Ti holds for most consecutive iter-
ations, where Ti denotes the data type used in the i-th iteration. If we
choose a constant set of working precisions with a limited cardinality,
the total casting overhead amounts to a complexity of O(z) which is
small compared to the full algorithm complexity O(I ∗ z).

The critical question that is required to be studied, is how to
adapt the precision and if overall performance gains are achievable.
In other words, the number of iterations achieved in practice with
reduced precision computing requires to compete with the baseline.



92 CHAPTER 5. EMULATING NUMERICAL BEHAVIOR

Table 5.2: Impact of Tw,t on iteration count for PageRank by using
the GPU supported data types.

Data Ref #Itr. T5,10/8,23/11,52 Cost Saving

Synth1 24.3 31.1 3.0–17.1–11.0 20.3 16.4%
Synth2 148.6 150.4 10.7–66.8–72.8 108.9 26.7%
Real 251.8 251.6 19.3–77.8–154.5 198.2 21.3%

Table 5.3: Impact of Tw,t on iteration count for PageRank by using 8
data types that are aligned to 8-bit each.

Data #Itr. T4,3/5,10/6,17/7,24/8,31/9,38/10,45/11,52 Cost Saving

Synth1 51.5 1.0–7.1–6.4–12.9–9.9–11.2–2.0–1.0 28.1 -15.7%
Synth2 157.8 1.0–12.6–36.5–33.2–29.7–31.5–12.3–1.0 87.5 36.8%
Real 252.8 1.0–19.9–50.5–28.7–31.7–31.9–20.3–68.7 168.6 33.0%

The baseline PageRank stops whenever the relative residual error ξi =
‖pi−1 − pi‖1 is reduced below a given threshold ε. To automatically
switch precision, we monitor the convergence rate ξi−1/ξi and we
increase the working precision whenever the convergence rate ξi−1/ξi
is slower than a given threshold ρ. The iteration vector p is re-
normalized after precision changes to recover distortions of the in-
variant caused by the previous (inexact) representation. Our changes
allow replacing major parts of computation into lower precision while
still achieving the same (strict) precision requirement ε as the baseline.

Table 5.4: Measured GPU kernel performance for dense PageRank
iterations using floating-point types half, float, and double.

Opt. Speedup half : 4× float: 2× double: 1×

Measured Speedup 3.44× 1.91× 1× (Reference)
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Transprecision results for PageRank

Table 5.2 shows average iteration counts for the baseline and GPU
supported types, whereas Table 5.3 states results when running with
eight formats. Linear interpolation between half and double deter-
mines the configuration of w and t used in the 8-bit aligned interme-
diate formats. We run on two synthetic datasets (the existence of link
pairs is i.i.d. Bernoulli p1 = 0.01 and p2 = 0.001 distributed) and
real graphs extracted from the web [163]. Even in the baseline, input
dependent convergence causes different average iteration counts. Ex-
tra iterations caused by precision control adaptation and quantization
caused perturbations in the data, explain slightly increased iteration
counts for the transprecision versions. Costs and improvements are
estimated based on linear bit-width reduction gains per iteration.
For GPU type restricted execution gains of 20% are realistic, where
higher gains are achieved for slower converging instances. Using a
finer granularity for intermediate formats helps to improve gains (from
21.3% to 33% for real data) where major workloads in formats between
float and double occur. Table 5.4 presents measured GPU per iteration
timings obtained for implementations based on half types and com-
pute unified device architecture (CUDA) provided intrinsic functions
supporting that type. Measurements come close to postulated optimal
gain factors.

5.2.2 BLSTM
BLSTM is an instance of a deep learning model trained to perform
the task of optical character recognition as explained in Section 2.1.2.
With this example we demonstrate how transprecision computing
applies at three conceptually different levels: First, the model pa-
rameters can be compressed to reduce the overall memory footprint,
second, the model input can be provided with reduced precision, and
third, the actual arithmetic computations are performed with reduced
precisions.

Transprecision design for BLSTM

Matrix-vector operations dominate the BLSTM [3]. The BLSTM
updates two LSTM cells in a forward and backward pass, merges
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results with a dense layer and finally predicts with a softmax output
layer. Even though LSTMs are evaluated in a recurrent fashion,
they are fed with new inputs at each iteration and we consider them
as fully loop unfolded, plain feed-forward based computations. In
contrast to PageRank, artifacts caused by numerical errors due to
quantization might potentially propagate through the output and
cause wrong results. However, the known error resilience of deep
learning methods [3, 164] allows recovering from imprecision caused
by numerical representations. Addressing the granularity of the num-
ber format exploration, we decided to study the following aspects
of inputs, weights, and computation separately. For the arithmetic
computations, we considered the following assumptions: First, all
weights belonging to a chunk of data should have the same data
type and second, the output data type of a module has to match
the input data type of the next module. Since the LSTM cell passes
values recursively through the same module, the stated assumptions
resolve in basically using one precision for dealing with input/outputs
of LSTM cells. Since BLSTM consists of two independent LSTM
cells responsible for the forward and backward computations only,
we decided to use data type precision levels homogenous among all
LSTM cells. The dense layer that merges LSTM outputs used different
internal precisions for computations that are performed independent
of the operation of the LSTM cells. Since parameters for the merging
dense layer consist of less than 5% of model parameters, we decided
to assign the same precision as used for the majority of all parameters
stemming from LSTM cells.

Transprecision results for BLSTM

The first experiment executes all parts, including the model param-
eters, the inputs, and all intermediate computations, with a global
reduced precision data type Tw,t. Figure 5.3 shows the final achieved
accuracy when performing a full grid search among all global configu-
rations Tw,t by using a variable bit-width to encode exponents with w
and the mantissa with t bits. The full grid search reveals a sharp tran-
sition between good and bad operation. Since the original BLSTM is
designed to run with IEEE 754 32-bit float values, increasing range or
precision above T8,23 does not alter the result and explains the plateau
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Figure 5.3: Top1 accuracy of BLSTM when operating with type Tw,t.
The baseline runs with T8,23 which explains part of the plateau at
around 98% accuracy. BLSTM operates close-to-perfect with further
reduced formats.

between T8,23 and T11,52. Interestingly, configurations with less than
32-bit wide data types do almost not exhibit a smooth transition in
performance, however, a sharp transition to a full-fail of the algorithm
is present. We identify T6,6 as an optimal global configuration that
operates well. T6,6 is considerably narrower than T8,23 (float) used to
execute the baseline.

Table 5.5 presents accuracies obtained for selected operation points.
Operating with a 16-bit format coded as T8,7 [165] outperforms the
T5,10 (half ) format. Individually reducing input encoding for weights
(W) and image (I) down to T3,1 has a marginal effect on the result.
Since simultaneously using T3,1 for weights and images reduces accu-
racy, we used T4,1 that enables decent accuracy. Profiling shows that
multiply-accumulate (MAC) operations from dot products contribute
more than 80% of all executed operations. We suggest to use T5,1
arithmetic for multiplication and a T5,10 arithmetic for accumulation.
The last configuration shows that replacing the remaining parts with
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narrow formats allows us to compute with an average bit-width of
12.2 bit and still getting an accuracy of about 98%.

5.2.3 GLQ
The GLQ numerically computes the integral over a function. Due
to the inherent approximative nature, even when running with full
precision, the quality of the integration routine is improved when
splitting the integration domain into more intervals or when employing
a higher-order polygon during the GLQ routine.

Transprecision design for GLQ

The GLQ kernel offers different options to introduce reduced precision
data types. Since our evaluation is based on the Genz functions
[103] for which we can compute the analytical solution to evaluate
numerical quality, we do not want to over-tune the solutions for those

Table 5.5: Impact of reduced precision on BLSTM Top1 accuracy:
Reference results, global scans, input quantization effects and pro-
posed configurations.

Setting Weights Img.1 Operations Accuracy
Ref [3] T8,23 T8,23 100% in T8,23 98.2337%
Ref [3], Fig. 6 16-bit fixed See [3] IV-C 97.9794%
Ref [3], Fig. 6 5-bit fixed See [3] IV-C 97.5821%
T5,10 (half ) T5,10 T5,10 100% in T5,10 21.4392%
T6,6, see Figure 5.3 T6,6 T6,6 100% in T6,6 98.0536%
T8,7, see [165] T8,7 T8,7 100% in T8,7 98.1890%
Quantized W T3,1 T8,23 100% in T8,23 98.0692%
Quantized I T8,23 T3,1 100% in T8,23 98.1181%
Quantized W&I T3,1 T3,1 100% in T8,23 96.7730%
Quantized W&I T4,1 T4,1 100% in T8,23 98.1660%
Modified MAC T4,1 T4,1 40.7% in T5,2 98.1905%
(Average Width: 40.7% in T5,10
15.7-bit) 18.6% in T8,23
Proposed T4,1 T4,1 40.7% in T5,2 97.9969%
(Average Width: 40.7% in T5,10
12.2-bit) 18.6% in T6,6

1data type applied to the input images
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Table 5.6: Errors of GLQ for IEEE 754 standard formats and the
16Alt format.

Genz function double T11,52 float T8,23 half T5,10 16Alt T8,7

1 7.0e-16 2.6e-07 1.0e-02 1.5e-01
2 3.3e-16 1.5e-07 1.5e-02 1.3e-01
3 4.3e-16 2.6e-07 1.5e-02 1.8e-01
4 4.6e-16 4.1e-07 2.0e-02 1.1e-01
5 5.2e-14 1.6e-07 2.1e-02 2.5e-01
6 4.2e-07 4.8e-07 8.1e-03 1.0e-01

specific functions. That is the reason we have decided to use one
single data type throughout, including all coefficients for the GLQ, all
input function parameters, the function input argument, the output
of each function evaluation, all internal variables used to perform the
summation and splitting of interval borders, and the final result. Since
GLQ computes a numerical integration and we know the analytical
solutions in the test setup, we characterize the normal numerical
behavior of the GLQ kernel based on primary parameters, such as
the order of the GLQ kernel and the number of subintervals the
original domain is split into. We argue that if the transprecision can
deliver results of similar quality as in the case of floating-point that
has an error inherently present due to the approximate nature of the
integration, we can say that both solutions achieve similar quality.
In other words, the reduced precision result is required to be close
to the—analytically computed—exact value and not the full precision
computed GLQ approximated value.

Transprecision results for GLQ

In contrast to PageRank and BLSTM, we can test the quality of the
GLQ routine with test functions that are constructed such that the
solution is given by an analytical expression. Since we know the exact
solution, we do not compare reduced precision data types against the
full precision code variant, but we rather compare all obtained results
of the GLQ routine against the exact solution. Two parameters of
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Figure 5.4: Global effect on GLQ when using reduced precision of
data type Tw,t. Shown are the mean of the absolute error obtained
for ten runs fore each of the six Genz functions. Gray colors indicate
infinity or NaN results in at least one test case. GLQ does not rely
on large dynamic ranges, results stabilize when using four or more
exponent bits.
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the GLQ kernel affect the performance and quality trade-off in our
setting, the number of intervals NI the integration domain is split
into and the number of support point used in the core GLQ routine
NO. Since the GLQ kernel is implemented with two nested control
loops that perform work proportional to the defined parameters, the
total time complexity is of order O(NINO).

We evaluate the numerical effects of transprecision computing for
the conservative configuration of control parametersNI = NO = 1024.
Table 5.6 states the obtained errors for the IEEE 754 formats and
the proposed 16Alt format [154]. Errors are measured against the
analytical solution as absolute error expressed as base-ten logarithm
over the average obtained when running with ten uniform sampled
function parameter instances. The discontinuity in Genz Function 6
causes to challenge the GLQ routine and final precision is limited by
how the intervals are split relative to the position of the discontinuity,
which explains the worse result when compared to the other Genz test
functions for the double precision case. However, computing with float
32-bit the machine precision is of about 6 decimal digits and achieved
in all test cases. Note, that the challenging Genz function 6 performs
similar to the other functions. In the GLQ kernel, the IEEE 754 half is
outperforming the 16Alt format because the internal routines do not
require an extended dynamic range, henceforth the reduced number
of mantissa bits of 16Alt compared against half cause to harm the
results.

Figure 5.4 shows the global behavior of the result when employing
all computations with a specific format. As observed in Table 5.6,
the discontinuity of Genz test function 6 is limiting the final accuracy
independent of the precise choice of the number format. Grey colored
fields indicate that at least one of the produced computation either
triggered an overflow to infinity or a NaN. Very small formats tend to
behave that way, independent of the function used to test the behavior
of the GLQ routine. Again, Genz test function 6 causes the strictest
test case. As postulated, increasing the number of exponent bits
increases the dynamic range and covers more case of the computations
to be in the valid range. In the GLQ kernel, increasing the exponent
beyond four bits does increase the precision of the result. Increasing
the number of mantissa bits increases the obtained accuracy and that
holds over the full range of exponent encodings. Note, as corner case,
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even when the exponent is one single bit increasing the mantissa
enlarges the dynamic range due to subnormal encoded represented
numbers, which recovers from infinities and NaNs in some cases.

5.3 Summary and conclusion
In the first part of this chapter, we design and implement floatx to
emulate reduced precision floating-point arithmetic and data types.
Floatx features the following:

• Programming interface. Floatx is easy-to-use and minimally-
intrusive to facilitate an incremental transformation of numeri-
cal applications.

• Performance. Floatx relies on hardware-supported floating-
point types in the backend to preserve efficiency. Furthermore,
it incurs no storage overhead by maintaining the size of the
emulated datatype shorter than (or equal to) that of the back-
end datatype.

• Expected semantics. The arithmetic in floatx adheres to the
round-to-nearest, ties-to-even rule in the standard IEEE 754
whenever feasible, and the interoperability of variables follows
the data type casting convention in C++.

In the second part of the chapter, we apply numerical evaluations
with floatx to showcase transprecision computing. We achieved the
following results:

• PageRank. The iterative nature of the kernel allows to adap-
tively change the precision as the algorithm converges towards
the result. We demonstrate that the residual can be reduced
to the same quality level without increasing the total number
of iterations. That way, with linear bit-width models, we ex-
pect above 30% performance gain achieved with transprecision
computing without quality loss in the final result.

• BLSTM. Even though neural network based approaches poten-
tially propagate errors towards the output and might degenerate
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the accuracy of the model, their inherent error resilience allows
for coarse-grained quantization with only minor degenerations
in the final quality. In the case of BLSTM, computing with an
average of 12.2-bit achieves similar to 32-bit reference precision.
Different causes of quantization error can be tuned indepen-
dently, we demonstrate how we can compress the input weights
down to 6-bits achieving similar as the reference accuracy.

• GLQ. The numerical nature of the GLQ kernel causes different
approximation errors even in the reference when computing with
full double 64-bit precision depending on the parametric settings.
Our transprecision analysis demonstrates a smooth error behav-
ior. Since most intermediate results are normalized, as few as 4
exponent bits are enough to compute results of reference quality.

In this chapter, we developed the floatx library to perform nu-
merical studies on applications. The improvements on three kernels
empirical demonstrate the success of transprecision computing by
achieving accurate results with reduced bit-widths. The floatx library
is self-contained and decouples complexity away from the applications
under considerations. The modular approach allows reusing floatx
and enables numerical studies in any application. We judge our find-
ings as a strong indication that similar improvements are achievable
for iterative solvers, stencil-based computations, weather, physic, or
mechanical simulations among many more. A detailed numerical
study opens the opportunity to identify too conservative segments
of algorithms or applications. Those insights help to map current
applications on systems that are supporting multiple precision levels
with controlled quality. Additionally, fine-grained emulations allow to
further improve the next generation of computing systems.

In the next chapter, we extend the results for the domain of deep
learning to focus on scalability, easy-to-use, and generalization of
transprecision computing.





Chapter 6

Floatx for deep learning

In Chapter 6 we presented floatx, a C++ header-only library that
allows elaborating reduced precision formats. In this section, we
explain concepts and technical details on how we integrate floatx into
PyTorch, a common deep learning framework. The main purpose
of the integration of floatx into PyTorch [62] is to enable numerical
experimentation. Flexibility, re-usability, and modularity of code are
import design considerations since deep learning is a fast-moving field
such that similar experiments and considerations should be able to
be repeated on a novel and by third-party defined networks. At that
point, we anticipate that the natural error resilience of neural networks
allows the trimming of numerical representations. We are interested
in understanding numerical behavior and the mapping between used
number formats and achieved accuracy of specific models. This section
provides modular building blocks that are further used in the next
chapter to draw conclusions on how trade-offs achieved with transpre-
cision compare against strong baseline methods that are achieved by
solving the NAS problem for specific constraints. Integrating floatx
into deep learning enables experimentations to demonstrate and to
seek opportunities including model weight compression, activation
compression to reduced transfer times, and to experiment with the
numerical behavior of specialized computing devices featuring reduced
precision.

103
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6.1 Integrating TP into deep learning
Before discussing the internals of the integration of floatx, we define
what aspects matter to apply transprecision computing. Table 6.1
defines the key aspects with options that conceptionally characterize
how a reduced precision solution is operating. We define three use
cases of transprecision computing.

• First, the case TP at inference introduces transprecision at in-
ference for a trained model to achieve better execution perfor-
mance.

• Second, the case Training accounting for TP at inference modi-
fies the training routine to account for precision changes and to
optimize the model accounting on how transprecision computing
affects intermediate results.

• Third, the case TP at training performs the full training with
reduced precision in order to accelerate the training routine
itself.

Transprecision computing occurs in two modes, extrinsic and in-
trinsic. Similar to reference work [166], we define extrinsic quan-
tization as applying it to full tensors at input and output level of
operations. Namely, this includes weight compression and activation
map compression. Intrinsic quantization refers to the situation where
it is applied after each scalar operation of a specific kernel imple-
mentation. Extrinsic quantization is simple, modular, and efficiently
exploitable by implementing the quantization operator and reusing the
existing framework operations. An intrinsic implementation, however,
requires to reimplement the low-level kernels to have full control over
all arithmetic precision aspects. Finally, the available hardware at
runtime determines if the considered transprecision computations are
emulated or natively run. In this section, we focus on integrating
floatx as emulation into code that runs on traditional hardware with-
out reduced precision support.

We define a model as directed acyclic graph (DAG) asM = (V,E)
where V is the set of nodes defining the kernels and E is the set
of edges that defines the flow of tensor data between kernels. Each
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Table 6.1: Concepts to integrate TP into deep learning

Aspect Variants Description

case TP at in-
ference

TP features are used when the model is deployed
during inference. How the original model is
trained is not irrelevant, it might be provided by
a third-party, or trained with regular arithmetic.

Training
accounting
for TP

TP features are integrated to affect the forward
computations of the compute graph. However,
the training routine accounts for the reduced
precision. Requires a specialized training routine.

TP at
training

TP features are integrated the forward and back-
ward nodes of the compute graph to accelerate the
training.

mode extrinsic Quantization at tensor level of input and output
of kernels. Reuses natively implemented kernels
at full precision.

intrinsic Emulates quantization at all arithmetic levels.
Requires to reimplement kernels to have full pre-
cision control of internal arithmetic operations.

runtime emulated TP behaviour is not supported on current HW.
The emulation evaluates numerical aspects of the
reduced precision proposal.

real HW HW supports TP features and achieves measur-
able execution performance gains.

vertex v ∈ V defines a kernel operation that is characterized by a
list of inputs, internal trainable weights, and an output. Typical
kernels are element-wise activation functions, elementary operations
(such as addition, subtraction, element-wise multiplication, ...), dense
layers (resulting in matrix multiply between input and weights), and
convolutional layers, reshaping, shuffling, indexing, cropping, merg-
ing, and stacking operations among more specialized kernels used in
recent models. Next, we define the quantization operator Qw,t(.) as
element-wise casting values to a reduced precision type Tw,t with
w exponent bits and t mantissa bits. The quantization operator
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Table 6.2: Introducing TP into the inference compute graph.

Weight TP-mode Impl.1 Description

Weight com-
pression

extrinsic Qs,t Compresses the memory consump-
tions of trainable parameters.

Activation
compression

extrinsic Qs,t Compresses the dataflow between
kernels. Allows to reduce local
transfer times, improves cache ef-
ficiency, shortens communication
times in distributed systems.

TP
arithmetic

intrinsic,
extrinsic

Qs,t,
spe-
cific

All benefits as above and gains
due customized low precision arith-
metic.

1Implementation requirements. Qs,t states that the parameterized quantiza-
tion serves that case.

is applied to data in the natively stored format and the output is
returned in the native format, namely in the floating-point 32-bit
standard format. Table 6.2 shows the available options to modify
the compute graph of a model in order to achieve transprecision
variants thereof. Transprecision applies at three levels, by compressing
weights, by compressing activations, and by changing the arithmetic
in computing units. The extrinsic approach, with the implementation
of Qw,t(.), covers the first two use cases. However, the third use case
requires a closer look at the requirements of the numerical evaluation
framework. To keep the design simple and clean, extrinsic evaluations
are modular and lead to efficiently running emulations. However,
they might not fully adequately emulate the final bit-true behavior
of the target system. The only way to enforce deterministic and
bit-true emulations is to rewrite the kernels with customized code.
Since that involves to write, debug and maintain a large amount of
code and adds computational overheads, we favor emulations that are
performed with the extrinsic approach. In the following, we study
conditions that guarantee that the intrinsic and extrinsic approach
deliver the bit-true equivalent result.
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6.1.1 Arithmetic free and elementary kernels
We define the operation internal DAG as input to output scalar level
dependency graph of a specific implementation of a kernel. We refer
to the internal chain length as the number of arithmetic operations
that occur on the longest input-to-output path. We claim equivalence
of the intrinsic and extrinsic approach if, and only if, the internal
chain length is zero or one. Into the class of zero internal chain length
operations fall kernels that do not perform arithmetic operations on
the data, typical instances are reshaping, concatenation and shuf-
fling operations. Unity chain length kernels do not rely on internal
intermediate results, henceforth the extrinsic quantization provides
enough control over precision, typical instances are all element-wise
operations. In contrast, the key kernel operations such as convolution
and dense layers have an internal chain length that is larger than one,
leading to intermediate results where precision can not be controlled
with an extrinsic approach. On those operations, sequence ordering
and double-rounding effects might cause different results between in-
trinsic and extrinsic approaches.

6.1.2 High precision accumulator assumption
To study and discuss the difference between the intrinsic and extrinsic
approach we perform the full analysis on the dot product kernel. We
define the dot-product of two one-dimensional tensors w and x of
length n as follows:

DOT(w,x) =
n∑
i=0

wi · xi. (6.1)

Using the extrinsic approach with customized precision data types
for weights, input, and output (named as TW , TIN , and TOUT , re-
spectively) leads to the following:

QO(DOT(QW (w), QI(x))) = QO

(
n∑
i=0

QW (wi) ·QI(xi)
)
. (6.2)

In (6.2) the summation is stemming from the existing kernel and
is performed in the native full precision format. In contrast, using the



108 CHAPTER 6. FLOATX FOR DEEP LEARNING

intrinsic approach full control of all computing aspects are left to the
developer. Equations (6.3), (6.4), and (6.5) define a fully specified
transprecision implementation with an intermediate precision of TU
used as multiplier output and an accumulation precision of TV used
in the summation:

∀i ∈ [1, n] : ti = QU (QW (wi) ·QIN (xi)) , (6.3)

SUM_TP(t1, ..., tn) = QV (... (QV (t1 + t2) + t3) + ...+ tn) , (6.4)

DOT_TP(w,x) = QO (SUM_TP(t1, t2, t3, ..., tn)) . (6.5)

Equations (6.3) to (6.5) are equivalent to the extrinsic approach,
if the intermediate results TU and TV are at full precision T8,23, and
the summation sequence in Equation (6.2) matches the ordering in
Equation (6.4). To guarantee deterministic and bit-true equivalence
among the emulation and the potential real operation on the tar-
get device, low-level implementation details such as the summation
order has to be fixed since floating-point arithmetic does not obey
associativity laws due to double rounding effects. Note, that even
when requiring intermediate values at full precision, all multipliers
can be optimized since they operate with reduced precision inputs.
In some implementations, it is affordable to assume the presence of
a full precision accumulation unit. With full precision accumulation
and the same sequence order as in the baseline, the intrinsic emulation
approach delivers the equivalent results as the extrinsic implementa-
tion. However, we favour the extrinsic over the intrinsic evaluation
due to its implementation simplicity and efficiency of evaluation.

Even though the dot-product kernel is rarely used on its own, we
argue that the same fundamental considerations generalize to more
kernels, especially including dense layers and convolutional layers.
First, we know that the matrix-vector or the matrix-matrix operation
can be written as independent scalar products of input rows and
columns. This argumentation allows to directly apply the numerical
discussions from above. The traditional dense (or sometimes called
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linear) layer is implemented as y := xWT + b which has an optional
additive bias term. The above discussion applies by extending the
summation with the bias term.

Similar considerations apply to convolutional layers. In a direct
implementation, each scalar value of the output map is obtained as
a summation over the product of filter coefficients multiplied by the
actual input values. Moving the filtering masks to different positions
results in independent computations that follow the same pattern.
Note, that typical parameters of a 2D convolutional filter, such as
applying different strides, padding, dilation, or even grouping factors
affect how input-pixels are selected but the underling computations
remain as the sum-of-products pattern.

The high precision accumulator assumption adequately covers the
case where vectorized instructions extend an instruction set of a general-
purpose processing unit. For example, 4- or 2-way reduced precision
vectorized inputs fit into a single 32-bit data word. Supporting an
additional scalar full-precision accumulation is enough to efficiently
implement dense and convolutional layers.

6.1.3 The intrinsic versus extrinsic approach
Even though the intrinsic and the extrinsic approaches are fundamen-
tally different, we legitimate that the extrinsic behaviour is enough
to understand the fundamental numerics of deep learning models.
To that end, we provide an example to understand theoretical error
bounds and the statistical influence of quantization errors.

R = x1 + x2 + x3 + ...+ xn

Rextrinsic = QI(x1) +QI(x2) + ...+QI(xn)
Rintrinsic = QA (...QA (QA(QI(x1)) +QI(x2)) + ...+QI(xn))

r = QO(R)
rextrinsic = QO(Rextrinsic)
rintrinsic = QO(Rintrinsic)

(6.6)

In the provided example we compute the sum R over n different
values xi for i ∈ [0, n]. We assume three levels of precision QI , QO,
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and QA that define the data types used for the input, output, and
the accumulation respectively. R, Rextrinsic, and Rintrinsic denote
the exact result, the extrinsic, and the intrinsic intermediate result
in full and accumulation precision. The final results r, rextrinsic, and
rintrinsic are obtained after quantization of the intermediate results
into the final output representation. We define the quantization error
of a value x as δ := x−Q(x). We obtain the maximum quantization
type-dependent error ∆ := maxx∈R |x−Q(x)| by maximizing δ over
the worst occurring combination. Each quantization error has an
upper bound |δ| ≤ ∆. ∆I , ∆O, and ∆A state the input, output,
and accumulation quantization error bounds. If we assume that all
double-rounding effects occur to the worst possible extent, then we
obtain trivial upper bounds on the errors:

|R− r| < ∆O,

|R− rextrinsic| < n∆I + ∆O,

|R− rintrinsic| < n(∆I + ∆A) + ∆O.

(6.7)

The error bounds in (6.7) demonstrate that the effects of the
output representation are one complexity class lower than the effects
stemming from the input or accumulation precision. Since at some
point layers are evaluated in sequence, we assume to use the same
data types for input and output, assuming that ∆I = ∆O holds. We
conclude that the extrinsic approach is dominated by the input quan-
tization level and in the order of O(n∆I) and the extrinsic approach is
in the order of O(n(∆I +∆A)). Assuming full precision accumulation
as in Section 6.1.2 we achieve ∆A = 0 or at least ∆A << ∆I and the
intrinsic and extrinsic error bounds coincide.

The error formulation of the intrinsic approach demonstrates that
adding guard bits to increase the precision of the accumulation helps
to reduce error to a level where it is solely determined by the input
error that is already reflected with the extrinsic approach. Since
adding one additional bit to the mantissa field halves the maximal
quantization error, the total error is dominated by O(n∆I(1+1/(2g)))
where we express the accumulation quantization error relative to the
input quantization error ∆A := ∆I/(2g) where g denotes the addi-
tional number of guard bits used additional to the input data type.
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More important, even if we do not use any additional guard bits
(∆I = ∆A) we can upper bound the error of the intrinsic approach to
be as twice as large as the error of the extrinsic approach:

∆I < ∆I

(
1 + 1

2g

)
≤ ∆̂I := 2∆I . (6.8)

We realize that twice the original error is equivalent to performing
the original extrinsic numerical study using one bit less in the mantissa
bit field. We conclude that if we understand the numerical behavior
for a full grid search of input quantization levels that scale exponen-
tially in the number of mantissa bits ∆I ∝ 2t we encapsulate the error
bounds of the intrinsic case between to anchor results obtained at the
finest resolution of the extrinsic analysis. This statement motivates
us and other researches to perform the error analysis in a modular,
simple, and compute efficient way.

We are fully aware of the limitations of the above considerations.
First, the error bounds grow linear in the chain length causing an
error bound growth belong all limits of practical interest, especially
if we consider tiny formats where the initial quantization error is
already large. In contrast, the very same argument favors extensive
empirical numeric experiments to understand the effects of introduced
quantization at the application level. Second, even if we understand
the growth of the error bound real achieved quantization errors are
more optimistic since they might cancel each other.

To complete the comparison between intrinsic and extrinsic quan-
tization, we add a synthetic generated experiment that validates our
thinking. To that end, we randomly sample n = 10 values and
evaluate all variants of (6.6). For each result, we explicitly evaluate
obtained absolute errors as given in (6.7). We repeat the experi-
ment 10, 000 times to estimate the probability density function of
the achieved errors. As inputs, we decided to use independent and
identically distributed samples following a normal Gaussian distri-
bution. Figure 6.1 shows the input and output distributions. In
our experiments, we used QI = QO = QA the same quantization
steps based on the types T3,5 and T3,4 where the latter is one bit less
accurate in the mantissa bit-width. Figure 6.2 shows the probability
density function of the achieved errors for both cases. As expected,
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Figure 6.1: Input and output distribution of values. The input is
randomly generated by drawing 10’000 samples i.i.d. following a
normal distribution.

the error behavior is degraded as more double-rounding occurs when
comparing effects from output quantization, extrinsic, and intrinsic
approaches. Comparing the top and bottom of Figure 6.2, we observe
that adding one additional bit inside the representations improves
error patterns by a factor of two. As claimed in (6.8) the upper
bound of the error for the intrinsic approach with zero guard bits is
equivalent to the extrinsic approach with a ∆I twice as large as it’s
original value, in other words, using a data type with one bit less
in its mantissa representation. Even though the relations in (6.8)
affect the upper bounds, the empirical obtained results depicted in
Figure 6.3 demonstrate that the error patterns coincide such that
the relation is well maintained including all double-rounding effects
measured on data without relying on potentially too over pessimistic
upper bounds. This inside suggests using extrinsic evaluations to
understand the numerical behavior of deep learning models.
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Figure 6.2: Distribution of absolute errors of the intrinsic, extrinsic,
and output quantization approach using the same quantization levels
QI = QO = QA, left for the data type T3,5 and right for the data type
T3,4 with one bit less precision in the mantissa field width.
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Figure 6.3: The error distribution of the intrinsic approach with
input quantization and accumulation quantization of data type T3,5
coincides with the extrinsic quantization approach of a one bit less
precise evaluation of type T3,4.

6.2 Numerical analysis of deep learning
models

This section presents the strengths of transprecision computing by
demonstrating that a) the concepts are general, b) can be easily
integrated into new models, and c) the concepts are scalable. Even
though we have demonstrated in Section 5.2.2 that reduced precision
representations achieve good results, initial results were obtained by
manually introducing the concepts into a reference C implementation
of a deep learning model. Even though that intrinsic consideration
allowed an in-depth study with full control of low-level details, it still
requires manual working steps. In this section, we aim to demon-
strate the generality of transprecision computing by applying it to
many well-established reference models. We directly operate on the
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Table 6.3: Established reference network architectures.

Family Variant max batch size Instances
ResNet 18, 34, 50, 101, 152 1024-128 5
PreActResNet 18, 34, 50, 101, 152 1024-128 5
ResNeXt29 2x64d, 4x64d, 32x4d 256-64 3
DenseNet 121, 161, 169, 201 256-128 4
LeNet - 1024 1
GoogLeNet - 256 1
MobileNet - 1024 1
MobileNetv2 - 512 1
PNASNet Type A, Type B 1024, 512 2
DPN 26, 92 512, 128 2
SENet18 - 1024 1
VGG 11, 13, 16, 19 1024 4
Total 30

computational graph to avoid for new models to manually write or
extend crucial sections of the source code. The pragmatic decision
suggests using the extrinsic evaluation policy to avoid writing low-level
intrinsic code. To that end, we wrote a utility source code that
traverses any computational graph and introduces a parameterized
input quantization step for each input of all kernels of the model. We
decide to simultaneously study the weight and activation compression
of 30 well-established reference models.

6.2.1 Reference models
We decided to use a predefined list of 30 well-established network
architectures and report achieved accuracies on CIFAR10. Table 6.3
summarizes the network models we consider as established reference
models. Most of them are provided with family-specific and topology
related hyper-parameters, such as, for example, visual geometry group
(VGG) or ResNets where the parameter refers to the total amount of
layers and controls the overall complexity of the model. Figure 6.4
shows averaged normalized execution times for one batch of size 128
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Figure 6.4: Average timings per batch of size 128 for training and
testing of reference models. Timings span from 30ms up to 480ms
per training batch.
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images for training and testing. Timings are obtained with PyTorch
version 0.4.1 and by running on an IBM Power8 equipped with a
P100 GPU. Timings are measured in a realistic setting, e.g., including
occurring overheads of loading and transferring data between CPU
and GPU and kernel lunch overheads. Training times of one batch
include operations caused by backpropagation and the weight update,
while testing times refer to the elapsed time the model required to
perform a batched forward inference. The fastest model considered is
LeNet that trains within 30ms per batch which is 16 times faster than
ResNeXt29-4x64d that takes about 480ms per training batch.

6.2.2 Numerical analysis
In this study, we explore the global effect of the number format where
one single data type is applied to the entire model. We evaluated a
full grid search over 184 floatx configurations for all model topologies.
Each configuration corresponds to the reduced precision data type of
format Tw,t consisting of w ∈ [1, 8] exponent bits and t ∈ [1, 23] man-
tissa bits. Globally applying the same precision configuration enables
us to explore the full solution space with a brute-force approach. The
knowledge of the full behavior allows to directly answer optimization
problems optimally. Details on how to extend and to accelerate the
configuration search is further detailed in Chapter 7.

We evaluated all transprecision configurations, on all models, on
all 10,000 validation samples of the CIFAR10 image classification
dataset. We addressed three questions: Firstly, given a relative quality
constraint, what is the best quantization configuration that reduces
the bit-width subject to satisfying quality? Secondly, what is the
obtained accuracy for a set of configurations of interest? Thirdly, what
is the optimal choice of splitting exponent and mantissa bit-widths for
a fixed word size of 16 and 8-bits?

Figure 6.5 shows the trade-off between the number format bit-
width and the obtained accuracies. Optimal configurations are se-
lected from the full grid search based on satisfying the quality con-
straint q(Tw,t) ≥ Q where the requested quality Q is defined relative
to the obtained accuracy of the full precision model operating with
IEEE 754 32-bit formats as Q := Qfloat−∆Q. In this section, quality
is measured as Top1 accuracy which corresponds to the total amount
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Figure 6.5: Quality versus number format cost in terms of bit-width
of the considered reference models. We state the relative accuracy
comparing the quantized models against the floating-point 32-bit
reference model. Most of the obtained results fall between 8 and
16-bit. On one side, without degenerating accuracy, widths can be
compressed with a factor of 2. On the other side, using number
formats below 8-bit causes models to fail.

of correctly classified images out the 10,000 validation samples. The
results demonstrate that findings generalize well among the variation
of network topologies. The strictest constraint of zero-quality-loss—
that requires to classifying all out of the 10,000 samples as in the full
precision case—is satisfied by reduced transprecision formats. The
weaker the constraints, the more aggressive reductions are achievable.
Table 6.4 shows best, average, and the worst widths required for
different quality constraints for all reference models. On average
12.4-bits are enough to obtain fully accurate results. The bit-width
can be further reduced to 8.8 and 8.1-bit if one, and up to five per-
centage points of quality reductions are allowed. Figure 6.6 shows the



6.2. NUMERICAL ANALYSIS OF MODELS 119

1
2

3
4

5
6

7
8

L
en

g
th

o
f

ex
p

o
n

en
t

fi
el

d
w

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 3 2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 2 6 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) ∆Q = 0.000%

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 4 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 2 6 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) ∆Q < 0.01%

1
2

3
4

5
6

7
8

L
en

g
th

o
f

ex
p

o
n

en
t

fi
el

d
w

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 9 3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(c) ∆Q < 0.1%

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0143 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(d) ∆Q < 1%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Length of significand field t

1
2

3
4

5
6

7
8

L
en

g
th

o
f

ex
p

o
n

en
t

fi
el

d
w

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0129 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(e) ∆Q < 2%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Length of significand field t

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0195 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(f) ∆Q < 5%

Figure 6.6: Data type configurations for different quality constraints
of the considered reference models. Too low and too high exponent
field widths are not required. Allowing for larger quality margins
against the reference allows to further reduce the mantissa field.
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Table 6.4: Statistic of required bit-widths to achieve a given
accuracy of the established reference models.

∆Q = 0% < 0.01% < 0.1% < 1% < 2% < 5%

best 10 10 9 8 8 7
average 12.375 12.125 10.844 8.781 8.531 8.094
worst 16 16 15 12 12 12

configurations of the optimal number formats for the different quality
constraints. All results are achieved with a medium-sized exponent
field in the range of 4 to 6-bit. The mantissa width ranges between
5 and 10-bit to achieve equivalent results as in the reference. That
range is reduced down to 1 to 6-bits if quality degenerations up to 5%
points are allowed.

To complete our analysis, we evaluate accuracies for fixed formats
that are of particular interest. We optimize the trade-off between
exponent and mantissa bits for a fixed word width. We consider
the IEEE 754 half format since it is supported on several comput-
ing systems, including recent GPUs. Additionally, we consider an
alternative encoding of a 16-bit wide format that uses 8 exponent bits
to encode the same dynamic range as the 32-bit standard float type
and a specific instance of a mini-float 8-bit wide format. The interest
of those configurations is motivated by the fact that 8-bit and 16-bit
allow directly for four- and two-way vectorization. Data fits into 32-bit
words and the parallel ultra-low-power (PULP) platform supports
those formats with hardware units and specialized instruction set
extensions.

Figure 6.7 shows the accuracy loss against the floating-point 32-bit
reference for the three selected formats of all networks. On average,
the IEEE 754 half format leads to an accuracy degeneration of 0.006
percentage points and the 16alt lowers the accuracy by 0.028 per-
centage points. The half format works better in most of the cases.
The reason behind that observation is that in almost all cases 4 or 5
bit are enough to cover the required dynamic range of the weights
and internal activations. The additional extended dynamic range
of the 16alt format does not help to improve results. However, in
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(b) Data type T8,7
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(c) Data type T5,2
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(d) Overall
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Figure 6.7: Performance of selected formats, IEEE 754 half, 16alt,
a the mini 8-bit format T5,2 measured against the accuracy of the
float 32-bit reference. Negative numbers indicated that (due noise) a
better performance of the quantized models. The first three figures
depict results per network architecture, the last figure summarizes the
results.

contrast, the additional three mantissa bits of half improve results.
To study trade-offs between exponent and mantissa, we evaluated all
fixed bit-width combinations up to 8 exponent bits. Figure 6.8 shows
results measured as average accuracy loss compared against the full
precision reference. Reduced dynamic range causes the model to fail
with highly degenerated results. In contrast, a too-large exponent
extends the dynamic range beyond the space that is required during
computation causing a lower quality due to a reduced mantissa field.
That study reveals, that the IEEE 754 half standard width 5 exponent
and 10 mantissa bits is close to optimal and achieves a regret of
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(a) 16-bit data types
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(b) 8-bit data types
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Figure 6.8: Performance of (a) 16-bit and (b) 8-bit formats measured
against the accuracy of the float 32-bit reference. Computations with
formats of four or less exponent bits cause high degenerations. Large
exponent widths correspond to smaller mantissa widths which slightly
degenerate quality once the format spans the dynamic range.

0.006%. That result is outperformed by T6,9 which yields a regret
of 0.004%. Considering 8-bit formats, the optimal choice is T5,2 that
yields a regret of 5.5%, however, that value is mostly determined by
one single outlier, the median is 2.3% point. In this respect, the data
type T5,2 supports the argument that mini float8 formats should have
5 exponent bits. This agrees with the design choice for mini-float8
implementations supported on the PULP system. The layout of T5,2
is motivated by the fact the number of exponent bits cover the same
dynamic range as in the IEEE 754 half type.

6.3 Summary and conclusion

The most important findings of this chapter are the following:



6.3. SUMMARY AND CONCLUSION 123

• Deep learning is a fast-evolving field causing various interesting
research and engineering subfields. We decided to focus on pixel-
data for the problem of image and video classification. Working
with pixel data provides a challenging use case with high di-
mensional input spaces and large volumes of data. Over the
past decade, GPU peak performance increased from 1TFLOPs
to well above 10 TFLOPs while the accuracy on CIFAR10 moved
from 80% to above 98%. Within the last three years, the average
cited accuracy on CIFAR10 was improved by 1.3% point per
year.

• In Section 6 we integrate floatx into PyTorch to power trans-
precision computing analysis and evaluation on model level. We
discuss and relate intrinsic and extrinsic emulation approaches
and conclude that the intrinsic approach is much fast to compute
and emulates well-enough the numerical behavior with simpler
source code. We evaluated a list of over 30 well-established
reference models and support the finding that deep learning
models are error-resilient and well-suited candidates for trans-
precision computing. We evaluated all configurations of floatx
number formats and conclude that number representations can
be compressed by 4× within a less than 5% point quality de-
generation. Even in the strictest case of achieving a zero-loss
solution, the number representations can still be compressed by
2.6× on average.

Within this work we focused on pixel-data, however, we state that
the developed concepts and results are general and we do not see
conceptual limiting factors that would hinder future work to apply
the develop principles to a broader context of different deep learning
use-cases including different data, such as audio, text, or use case-
specific data, or different tasks such as object recognition, regression,
or forecasting. We hope that the error resilience property is further
exploited and integrated into more domains.





Chapter 7

Optimization for
transprecision
configurations

In the previous chapters, we discussed the fundamental concepts of
transprecision computing which allow trade-offs between quality and
performance of applications. Several aspects, such as benchmarking,
using floatx to emulate numerical effects, and integrating floatx into
PyTorch [62] was investigated. Moreover, we demonstrated the scaling
of the concepts on various deep learning models. In presented cases,
the cardinality of the configuration space Θ was limited such that
it was affordable to evaluate all operational points of interest. We
used case-specific assumptions to simplify optimization problems. We
arrived with small enough, finite-lists of alternatives that make the op-
timization problem (4.8) trivial. However, large configuration spaces
are essential for the success of transprecision computing. Transpreci-
sion computing must demonstrate the usefulness at a broad spectrum
including scalability, affordability, and successful; inspections of non-
trivial configuration spaces. Two main aspects are essential to achieve
success: (1) transprecision computing must be easy-to-apply and (2)
it must be fast-to-deploy.

125
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Transprecision related and first-order system parameters have a
joint influence on quality and performance characteristics. Simulta-
neously understanding both allows judging the value of opportunity
costs by comparing transprecision variants with different system con-
figurations. In that context, the key-aspects easy-to-consume and
fast-to-deploy need to demonstrate success in the broad field of alter-
native solutions. We discuss how to limit the combinatorial grow of
the search space cardinality with effective strategies in Section 7.1.
Section 7.2 proposes heuristic search techniques to quickly solve the
configuration problem. We present in-depth results on a reference
problem in Section 7.3 and we extend the search to over 30 established
models in Section 7.4.

7.1 Searching transprecision configurations
We consider the case where a traditional computer program that is
composed of n variables x1, x2, x3, ..., xn which are represented by
data types T 1, T 2, T 3, ..., Tn. In traditional computing, where no
mixed data types are used, all types are equivalent. For example
T 1, T 2, T 3, ..., Tn = T5,23 are all of type IEEE 754 32-bit floating-
point. However, when using the concept of transprecision comput-
ing, various data types might be used instead. The choice of which
datatype should be used per variable, naturally leads to a configu-
ration search problem. Considering targeting current hardware, that
only implements a small set of data types, simplifies the search prob-
lem. Assuming the availability of a transprecision system that sup-
ports various data types of fine granularity, the number of choices
grows and the optimization becomes a challenging and time-consuming
problem. The number of valid configurations of an optimization prob-
lem grows exponentially in the number of considered variables, leading
to a substantial search space even when considering a reasonable
number of variables.

In this section we consider the transprecision search problem for
floatx as introduced in Section 5. We study reduced precision types
Tw,t for w ∈ [1, 8] and t ∈ [1, 23] that consider the search problem up
to the standard float 32-bit representation. The bit-level granularity
leads to a total of 184 (8 · 23) options as a choice of type for each of
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the n variables. Finally, we formulate the search problem as finding
the best transprecision configuration θ∗ ∈ Θ meeting performance
or quality constraints as in (4.8) and (4.9). Since there only exist
a finite set of precision configurations, a brute force approach solves
the optimization problem. However, the amount of configurations
evaluates to 184n and renders such an approach intractable, even
for small numbers of n. For example, for n = 10 variables, the
search space cardinality exceeds 4.5 · 1022. In this context, we study
systematic methodologies to reduce the search effort by defining more
traceable problem instances that still provide application insights.

Global search

The global search imposes the assumption that all data types used
in a program are equivalent to a single global type: Tglobal = T 1 =
T 2 = T 3 = ... = Tn. This approach reduces the space to the case of
n = 1 and renders a full grid search manageable. Even though the
global datatype assumption sounds very restrictive, there are several
arguments that motivate such an approach. First, the global search
provides insights into the error resilience of applications. For example,
global search results can act as lower bound to subsequent searches
performed at finer granularity. Second, there is no need of performing
casts between different data types. Casting between different formats
might require a change to the underlying memory footprint or to
spend computing time to perform the required operations. In that
case, potential gains due to reduced precision must be large enough
to amortize required cast overheads. Third, in FPGA or ASIC designs
one global format ensures full design freedom for resource sharing.

Sensitivity analysis

The sensitivity analysis formulates a search problem by elaborating
the effect of reduced precision of each variable in the system indepen-
dently of the others. To that end, the type T i of the i-th variable is
swept through the full grid while all other variables are kept at full
precision type, e.g., T j = T5,23 for j 6= i. The sensitivity analysis
costs one full gird evaluation (e.g., evaluating 184 configurations) for
one single variable and is repeated n times for each variable, leading
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to a total amount of 184 · n evaluations. The linear dependence on
the number of variables makes this approach scalable. The sensitivity
analysis provides an easily interpretable result that can be used to
identify precision bottlenecks.

Grouping

Alternatively, grouping variables together into sets reduces the num-
ber of configurations in the solution space. One data type is ap-
plied to all variables in the group. Generally, we define g groups
G1, G2, G3, ..., Gg that contain the variables belonging to the defined
group Gi := i1, i2, i3, ..., ik. By definition, groups are disjoint Gi ∩
Gj = ∅ for i 6= j and the union covers all variables G1∪G2∪ ...∪Gg =
1, 2, 3, ..., n. The group configuration itself is a required input and
the choice might be influenced by reasonable side constraints. For
example, for a program of medium size, it makes sense to group
together variables that belong to the same code fragment. For each
group, only one dedicated data type is assumed T i1 = T i2 ... = T ik

that is shared among all variables of this group. Such a consideration
leads do reductions whenever g < n and reduces the search space
cardinality from 184n to 184g.

7.2 Search heuristics
In this section we study the effects of using heuristics that allow the
further shortening of the evaluation time. A full grid search over one
variable is of cost O(number of TP configurations) · O(evaluation
effort per configuration). We define heuristic searches for finding
good—but not guaranteed to be optimal—transprecision configura-
tions with much less effort. As introduced in Section 4.2.1 we denote
the final application quality as Q. We formulate the assumption that
an increase in Q stems from a wider number representation, either a
larger exponent field or a more precise represented mantissa:

Q(Tw1,t1) ≤ Q(Tw2,t2) if w2 ≥ w1 and t2 ≥ t1. (7.1)
If we know a priori that (7.1) holds, it directly enables efficient

implementations. For example, exponent and mantissa field-widths
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can be searched with binary search. However, we know from prior
micro-benchmarks that inequalities do not strictly hold in all cases.
Depending on the application, different quantization-based noise pat-
terns occur and lead to local anomalies. We propose several search
heuristics and evaluate their performances in a controlled setting.

Smart region search pattern with early exit

Instead of computing the full grid followed by selecting the best candi-
date, it is more efficient to evaluate configurations of small data types
first. This enables an early exit, since when the quality constraint
Q(Tw,t) > Qtarget is met, we can assure that the data type Tw,t is
optimal. Since by construction, all smaller data types have already
been searched for and do not meet the quality constraint. The worst-
case execution time is the same as performing the regular full grid
search. However, the early success of finding candidates enables a
reduction in the average search time. The search sequence is simple:
according to the minimization target P (Tw,t) = 1 + w + t, short
bit-width formats are preferred. Among configurations with the same
bit-width, we prefer the transprecision configuration with the larger
exponent. This search construction leads to a diagonal based pattern
in the configuration matrix. The resulting search sequence is T1,1,
T2,1, T1,2, T3,1, T2,2, T1,3, ..., T8,23. Additionally, to the diagonal
search pattern, the same idea can be applied to search any regions of
interest efficiently. Let us assume that an arbitrary region of interest
is given and defined as a Boolean mask over the configuration matrix.
In that case, the same diagonal search pattern can be applied with the
minor modification that for each configuration a check is performed
if it belongs to the region of interest or not. Only valid marked
configurations are required to be evaluated. This variant of the smart
region search pattern with an early exit is relevant as sub-step in the
coarse-to-fine heuristic described in Section 7.2

Parallel exponent/mantissa binary search

Modifying the bit-widths of exponent and mantissa results in several
effects. In both cases, we expect that an increase in bit-width leads to
a monotonic increase in quality. Changing the mantissa is equivalent
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to modifying the precision of local computations. Its impact is well un-
derstood for relevant problem classes and is for example covered with
perturbation theory for linear operations. Changing the exponent
limits the range of representable values, the effect is highly non-linear
and typically leads to a breakdown of the computation if internal
under- or overflows occur. However, predicting the full application
behaviour is challenging since effects depend on input data and the
application-specific chains along which errors propagate. Changing
exponent and mantissa configurations simultaneously depends on the
above as well as on cross effects of the joint interactions. To that
end, we can split the quality assumptions into exponent and mantissa
related formulations:

Q(Tw1,t) ≤ Q(Tw2,t) if w2 ≥ w1 and t constant (7.2)

Q(Tw,t1) ≤ Q(Tw,t2) if w fix and t2 ≥ t1 (7.3)

The separated assumptions are weaker than the joint assumption
since they are not required to make any assumptions about cross-
effects of simultaneous changes on exponent and mantissa widths.
Both formulations lead directly to efficient implementations that we
name parallel exponent binary search and parallel mantissa binary
search. In the first case, we perform for each t ∈ [1, 23] an independent
binary search that operates over the exponent range. Similarly, in the
second we operate independent binary searches over the mantissa for
all fixed values w ∈ [1, 8] of the exponent. In terms of performance,
the parallel exponent binary search is of order O(log2(8)∗23) and the
parallel mantissa binary search is of order O(8 ∗ log2(23)). This way,
the later provides a better computing performance and in the case of
a monotonic behaviour of the quality based on the mantissa should
also algorithmically work better than a search based on the exponent.

Two-stage search

To further reduce the number of evaluations, we propose algorithms
that reduce the evaluation effort simultaneously for exponent and
mantissa. To that end, we suggest a two-stage approach where we
apply two binary searches in sequence, where the latter is started
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over a column or row found by the first search. The two-stage search
operates as follows:

• Input: pivot for the first search,

• Step 1: run a binary search at the pivot index,

• Step 2: run the second binary search, starting with results
obtained from step 1.

Two-stage searches are more aggressive in reducing the number of
evaluations and are henceforth expected to return slightly suboptimal
results. However, for rapid evaluation, such an approach renders
useful. For example, many applications obey a typical error pattern
with distinct behaviors for mantissa and exponent where sharp tran-
sitions between high and low quality are especially present based on
the exponent length. Within these two regions, smoother transitions
or noise based on the mantissa changes might be observed. BLSTM
is one benchmark we presented in previous deliverables that follows
such an error pattern. In such cases, typical pass-fail regions build
rectangular shaped regions. Therefore, it is enough to first search
for the transition on the boarder of the search space and then search
towards the inner region of the search space. We formulated the search
algorithm in a way that a pivot row or column is defined where the
first search is performed and the second search follows based on the
results of the first search. We consider the pivot row to be either
at the boarder (low or high) or in the middle. Even though we are
fully aware that different input configurations lead to different results,
we evaluate all six configurations and we discuss in which direction
results tend to be biased in the result section.

Coarse versus fine search with adaptive evaluation effort

In Section 7.2 we studied the effect of heuristics that reduced the
number of configuration evaluations. Those considerations assume a
constant time effort for evaluating one configuration. In some appli-
cations, however, an approximation of the quality can be computed
faster. For example, assessing the quality of machine learning algo-
rithms requires to compute the accuracy by feeding test data through
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a model. In that case, using a subset of samples reduces the evaluation
effort for one transprecision configuration. Evaluating models in a
controlled environment includes computing quality numbers with the
full amount of provided samples. To that end, subsampling the test set
is not adequate. However, in the configuration search case, we know
that we potentially asses hundreds of configurations whereas only the
last configuration is required to be evaluated with the full effort. Prior
decisions can be based on approximated quality estimates. Following
this method, we formulate the fast version of the evaluation routine
and build the search configuration heuristic around it. For evaluating
subsets of data define the following:

• Number of samples

• Sample selection procedure

• Quality metric computation based on splits

The evaluation effort depends linearly on the number of samples.
However, there are two limitations identified. First, sample sizes
smaller than the typical batch-size do not scale any more. Second,
the number of samples in the subset should at least cover all existing
classes.

Next, we assume general selection where samples are random uni-
formly selected among all samples in the test set. Since the ap-
proximated quality metric contains distortions caused by the random
selection, we estimate confidence intervals. To that end, we split the
subset into k equally sized splits to compute mean and variance over
the computed coarse-grained metrics. More formally, we compute the
pair (µ, σ) based on the evaluation configuration (s, k) where s denotes
the total number of samples in the subset and k denotes the number
of splits.

Coarse-to-fine search:

• Step 1: perform a coarse full grid search with effort (scoarse, kcourse).

• Step 2: filter configurations into {good, undecided, bad}.

• Step 3: perform a 1st fine search in the {good or undecided}
region.
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• Step 4: if more effort is desired, perform a 2nd fine search the
undecided or good region.

The reason for using heuristics is to rule out with little effort unus-
able configurations while keeping the most promising configurations.
In the first step, the full grid is scanned with low effort. In the second
step, the algorithm decides what happens with a configuration that
produced a result (µ, σ) according to the following rule:

f(µ, σ) =


good if µ−max (αgoodσ, εgood) ≥ τ
undecided else
bad if µ+ max (αbadσ, εbad) ≤ τ

(7.4)

The filtering detects good and bad configurations easily and en-
ables to focus on the undecided candidates. Four parameters char-
acterize the filtering step. The factors αgood and αbad define noise
levels relative to the standard deviation. If the mean of the ap-
proximated quality level sufficiently exceeds or undershoots the limit,
the configuration is either considered good or bad. The parameters
εgood and εbad specify minimal noise levels around the mean that
have to be respected. In steps 3 and 4 the classified configurations
are further inspected by using the smart region search pattern with
early exit as described in Section 7.2. Two parameters define the
exact behaviors, one defines which of the good or undecided classified
configurations should be considered in the first fine search and the
second flag defines if the remaining class should be search for as well or
if it should be skipped. Filtering parameters affect the classification,
the triggered search effort, and the result quality. We observed that
two configurations are appropriate. First, to optimize search perfor-
mance, we directly search the good candidates and skip the undecided
candidates. Since good candidates passed a coarse quality check, the
chances are high that the first considered best configuration will satisfy
the constraint in the fine-grained evaluation. That way, the algorithm
quickly terminates after a few fine-grained evaluations. Second, for
better-tuned results, undecided configurations are explored first. The
heuristic terminates with success, if a candidate that respects the
quality constraint is found. However, since it is not known how likely
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it is to actually find a valid configuration, the search might be forced
to evaluate all undecided configurations without success. This effect
increases the average runtime of this variant of the heuristic search.
To overcome a fail, it pays-off triggering the 2nd fine search over
the remaining good configurations to quickly find a good alternative
candidate.

7.3 Results on reference problem instance
We demonstrate the proposed heuristic algorithms on image classifica-
tion with ResNet18 [24] on CIFAR10 [22]. We solve the global search
problem, where quantization is applied to all model parameters and to
all intermediate activation functions passed between operations. We
quantize models a posteriori without retraining.
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Figure 7.1: Full grid search results where all valid floatx configurations
are exhaustively evaluated on the reference problem instance (floatx
quantized ResNet18 on CIFAR10). Fail/pass regions are sharply
separated and increasing exponent or mantissa field width improves
the accuracy.
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Table 7.1: Selected operation points for different quality
levels on the reference problem instance.

∆Q Q1
target Optimal format Bit-width Accuracy

0.000% 93.58% (4, 10) 15 93.58%
0.01% 93.57% (4, 8) 13 93.57%
0.1% 93.48% (4, 6) 11 93.52%
1% 92.58% (4, 3) 8 93.04%
2% 91.58% (4, 3) 8 93.04%
5% 88.58% (4, 3) 8 93.04%
10% 83.58% (4, 2) 7 84.87%

1 Qtarget is computed as Qfloat −∆Q.

Figure 7.1 shows the obtained quality for an exhaustive grid search
over the 184 configurations. Similarly, as in previously reported results
(for example BLSTM, see Section 5.2.2), we identify a clear pass/fail
region. The floating-point 32-bit accuracy of the model is Qfloat =
93.58%. If we request a quality of Q = 93.00% the optimal number
format is T4,3 with an accuracy of 93.04%. Table 7.1 shows different
operation points. We illustrate the proposed variants of heuristics
by solving the reference problem instance with a requested quality of
Q = 93.0% in the next sections.

Smart region search pattern with early exit

The smart region search algorithm guarantees to yield the optimal
result but is required to search the full grid in the worst-case. The
algorithm follows a diagonal search pattern that prefers small formats
over larger formats. It terminates directly whenever a configuration is
found that meets the quality constraint Q(Tw,t) ≥ Qtarget. Figure 7.2
illustrates the situation for the reference problem instance. In this
case, 18 evaluations were enough to find the optimal configuration
T4,3.



136 CHAPTER 7. OPTIMIZATION FOR TRANSPRECISION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Length of significand field t

1
2

3
4

5
6

7
8

L
en

gt
h

of
ex

p
on

en
t

fi
el

d
w

10 10 10 10 10

10 10 10 10

10 10 10

8.7 85 93

84 92

84

15

30

45

60

75

90

A
cc

u
ra

cy
[%

]

Figure 7.2: Illustrative run of the smart search on the reference
problem. The region is searched following a diagonal pattern
from the left-bottom corner and quickly terminates at the optimal
configuration.

Parallel exponent/mantissa binary search

Figure 7.3 shows the search patterns for the parallel binary search on
the reference problem. The on the left Subfigure the binary search is
performed on the exponent, on the right Subfigure on the Mantissa.
In both cases, the heuristic approach is able to find the global optimal
solution. Working with the binary search in exponent direction leads
to a total of 69 evaluation calls. However, applying binary search in
mantissa direction enables higher performance gains since the loga-
rithmic scaling is applied to the larger factor. In total 33 evaluations
are necessary to converge to the same result in this case. Parallel
exponent and mantissa binary searches reduce the search effort by
2.6×, and 5.5×, respectively.
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Figure 7.3: Illustrative run of the parallel exponent/mantissa binary
search. Both searches found the optimal solution.

Two-stage search

Figure 7.4 shows the search patterns for the two-stage binary search
on the reference problem. In this specific example, choosing the pivot
element too small is problematic since in that case the first search
passes over large amounts of the failed region of the configurations
and does not provide useful hints of where good configurations can
be found. The second search is therefore triggered at the worst-case
assumption of the first search (i.e., largest exponent or mantissa). In
both cases, configurations that strictly satisfy the quality constraint
are still found, however with a suboptimal transprecision configuration
that consists of larger than optimal bit-width. Using a medium or
large pivot as initialization performs equally well and converges in this
problem instance to the same solution. In the case of first searching
the exponent, too optimistic values of for the exponent fields (e = 3)
are founded first and henceforth the second search leads to a subop-
timal solution. In the case of first searching the mantissa followed by
searching the exponent afterward leads to the global optimal solution
in this problem instance. In this case, 7 configurations are triggered
for evaluation leading to an over 26× speedup in the search.

Coarse versus fine search with adaptive evaluation

We characterize the effect of reduced effort evaluations by repeating
the full grid search on subsets of the test set. We selected a subset size
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Figure 7.4: Illustrative runs of the two stage searches. The first search
is performed in exponent (left) and mantissa (right) directions. The
pivot is low, medium, and high for the tree rows of figures.
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of 1%, 10%, and 100% of the total number of samples. Each subset
if further split into k = 5 splits to evaluate k independent accuracy
results. Those results are merged together by computing the mean
and standard deviation. Figure 7.5 shows the achieved results. Even
using a very small subset of 1% size, the overall character of fail/pass
regions are preserved. However, the accuracy of the subset might over
or underestimate the real accuracy. The standard deviations indicate
how the uncertainness is reduced when enlarging the sample size, the
standard deviation achieves values of about 2%, 1.3%, and converges
at around 0.5% points.

Based on that observation, we decide to parametrize the coarse to
fine algorithm with two configurations:

• Default: (s = 100, k = 5), αgood/bad = 1, εgood/bad = 1

• Conservative: (s = 100, k = 5), αgood/bad = 3, εgood/bad = 5

We decide to use s = 100 samples to perform the coarse search,
a decision that allows to evaluating CIFAR10’s validation set 100×
faster than the regular evaluation mode where all 10,000 samples are
considered. As a default setting, we suggest to filter based on one
standard deviation and to enforce at least one percentage point of
error guard band. In contrast, to be a bit more conservative, we
suggest to use a 3σ filter threshold and to enforce at least five percent
point of error guard band.

Figure 7.6 shows the filtering masks for default (left) and conser-
vative (right) settings, where the following encoding is used 1: good,
0 undecided, -1 bad. In both cases, the bad performing region can be
safely detected. However, since the requested search quality is close
to any good performing network, it is more likely that the requested
quality level is inside the error bounds of the estimated accuracy. That
causes the conservative setting to classify all configurations towards
the left top side as undecided. In both cases, the lower two plots show
aggregated results, when the first and second search are triggered
on the undecided and the good candidates for the default (left )and
conservative (right) choice of the search parameters. Only three and
six full-effort evaluations are required to converge to the optimal global
solution in this case.
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Figure 7.5: Illustrative characterization of reduced effort evaluation.
Top-down the figures correspond to an effort of 1%, 10%, and 100%,
where left figures show the mean and right figures show the standard
deviation over accuracy estimates obtained over five splits.
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Figure 7.6: Illustrative run of coarse to fine heuristic. Top: filter mask
for default (left) and conservative (right) settings. Bottom: triggered
fine search evaluations based on the two filtering masks.

7.4 Heuristic search performance
Since the search performance depends directly on the data, we eval-
uate it over a representative set of problems. To that end, we used
the thirty well established reference models presented in Section 6.2.1
for which we have performed a global exhaustive search, such that
all optimal results are known. Since each model has a specific best
performance, we define the requested search quality relative to it. We
measure performance and quality by averaging results over the set of
reference models.

Smart region search pattern with early exit

Table 7.2 states achieved performance gains of the heuristic compared
against the exhaustive search. The smart search guarantees to find the



142 CHAPTER 7. OPTIMIZATION FOR TRANSPRECISION

Table 7.2: Performance of the smart region search pattern
with early exit. The heuristic delivers optimal configurations
up to 10× faster.

∆Q Qtarget Avg. Avg. Avg. Search
(Qfloat −∆Q) Q(θ∗) P (θ∗) calls speedup

0% 92.341% 92.355% 12.5 51.8 3.5×
0.01% 92.331% 92.351% 12.2 49.9 3.7×
0.1% 92.241% 92.288% 10.9 39.5 4.7×
1% 91.341% 91.807% 8.8 23.3 7.9×
2% 90.341% 91.351% 8.5 21.2 8.7×
5% 87.341% 89.935% 8.1 18.3 10.1×

optimal configuration as already presented in Table 6.4. Henceforth,
the average obtained accuracy is greater or equal to the requested
quality. Since the search is performed from small to large formats
the average search time is longer for higher requested accuracies. On
average, between 20 to 50 calls are required to find a configuration
that satisfies the constraint. Henceforth, the smart search finished
between 10× and 3.5× faster than the full grid search without loss in
quality.

Parallel exponent/mantissa binary search

Table 7.3 states results for the exponent/mantissa binary search heuris-
tic. Sometimes, noise causes wrong decisions of the binary search that
lead to suboptimal solutions. We measure the quality of the heuristic
by compute the absolute quality difference ∆q = Q(θ∗)−Q(θref ) and
absolute cost difference ∆p = P (θ∗) − P (θref ) between the obtained
solution θ∗ of the heuristic compared against the global optimal solu-
tion θref . Accuracies are almost the same in all cases. For less strict
quality requirements ≥ 1% the found results are equal to the optimal
solution in all cases. For strict quality requirements, heuristically
found results might differ from the optimal solution. However, still
the vast majority (at least 16 out all cases) the exact optimal solution
is found. For suboptimal results, the required quality constraint is
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Table 7.3: Performance of the parallel binary search heuristic.

Dir. Req. Avg. Avg. Result classification Avg. speedup

∆Q ∆q ∆p = +1 ≥ 2 ≥ 5 calls

M
an

tis
sa

0% 0.000 1.06 16 2 13 0 34.6 5.3×
0.01% -0.001 0.77 18 3 10 0 34.3 5.4×
0.1% 0.000 0.10 29 0 2 0 35.8 5.1×

1% 0.000 0.00 31 0 0 0 33.7 5.5×
2% 0.000 0.00 31 0 0 0 34.9 5.3×
5% 0.000 0.00 31 0 0 0 36.4 5.1×

E
xp

on
en
t

0% -0.001 0.16 28 1 2 0 69.0 2.7×
0.01% -0.001 0.16 28 2 1 0 69.0 2.7×
0.1% 0.000 0.00 31 0 0 0 69.0 2.7×

1% 0.000 0.00 31 0 0 0 70.4 2.6×
2% 0.000 0.00 31 0 0 0 72.1 2.6×
5% 0.000 0.00 31 0 0 0 73.1 2.5×

strictly met in all cases due to the formulation of the algorithm.
However, the average bit-width is increased by up to 1.06-bit. The
runtime is constant and does not depend on the requested quality.
The search over the wider mantissa outperforms the alternative that
searches over the exponent. The average speed-up in the former case
amounts to 5.3×.

Two-stage search

Table 7.4 states the results for all six configurations for direction and
pivot. The search is defined that it finds in all cases a solution that
strictly satisfies the user given quality constraint. Comparing the
obtained accuracy with the value of the global optimal solution shows
that in all relevant cases the results are very similar and differences
are below 0.1%. In one case (Mantissa, low) the difference is more
than 1.5% point. However, in that case, a more accurate solution was
found at the cost of additional 19-bits on average. Choosing the pivot
value as low is problematic. Since in most cases results break through
a degenerated exponent or mantissa representation, the first search
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Table 7.4: Performance of the two-stage binary search heuristic.
D
ir
.

P
iv
. Req. Avg. Avg. Result classification Avg. speed-

∆Q ∆q ∆p = +1 ≥ 2 ≥ 5 calls up

M
an

ti
ss
a

lo
w

0% -0.015 15.2 0 0 0 31 7.0 26.3×
0.01% -0.011 15.5 0 0 0 31 7.0 26.3×
0.1% 0.053 16.7 0 0 0 31 7.0 26.3×

1% 0.448 18.6 0 0 0 31 7.1 25.9×
2% 0.617 18.7 0 0 0 31 7.2 25.5×
5% 1.531 19.0 0 0 0 31 7.3 25.2×

M
an

ti
ss
a

m
id

0% -0.001 2.5 14 1 11 5 7.5 24.6×
0.01% -0.002 1.5 16 3 10 2 7.4 25.0×
0.1% 0.007 0.8 25 1 4 1 7.7 23.9×

1% 0.000 0.0 31 0 0 0 7.1 25.8×
2% 0.000 0.0 31 0 0 0 7.5 24.7×
5% 0.122 0.0 30 1 0 0 7.8 23.6×

M
an

ti
ss
a

hi
gh

0% -0.004 2.1 13 1 13 4 7.5 24.6×
0.01% -0.004 1.3 14 3 13 1 7.4 24.8×
0.1% 0.002 0.4 22 3 6 0 7.7 23.9×

1% 0.045 0.1 29 2 0 0 7.2 25.6×
2% -0.040 0.0 30 0 1 0 7.5 24.6×
5% 0.000 0.0 31 0 0 0 7.8 23.6×

E
xp

on
en
t

lo
w

0% -0.003 5.4 0 0 27 4 7.5 24.6×
0.01% 0.001 4.7 0 0 30 1 7.4 24.8×
0.1% 0.010 3.6 0 0 31 0 7.7 23.9×

1% 0.113 3.5 0 0 31 0 7.2 25.6×
2% -0.008 3.2 0 0 31 0 7.5 24.6×
5% 0.279 3.1 1 0 30 0 7.8 23.6×

E
xp

on
en
t

m
id

0% -0.003 2.9 8 0 19 4 7.5 24.7×
0.01% -0.004 2.4 8 1 19 3 7.3 25.4×
0.1% 0.004 1.8 8 1 20 2 7.7 23.9×

1% 0.111 2.5 9 0 15 7 7.7 23.9×
2% 0.077 3.0 6 1 12 12 7.8 23.7×
5% 0.036 3.0 6 2 8 15 8.0 23.0×

E
xp

on
en
t

hi
gh

0% -0.005 3.8 6 1 12 12 7.5 24.4×
0.01% -0.004 2.8 6 1 18 6 7.4 25.0×
0.1% 0.004 1.9 8 1 19 3 7.7 23.9×

1% 0.111 2.6 9 0 15 7 7.7 23.8×
2% 0.031 3.2 6 1 11 13 7.8 23.6×
5% 0.036 3.0 6 2 8 15 8.0 23.0×
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Table 7.5: Performance of the coarse-to-fine heuristic.

C
on

fig
.

Se
t Req. Avg. Avg. Result classification Avg. speed-

∆Q ∆q ∆p = +1 ≥ 2 ≥ 5 calls up

D
ef
au

lt

go
od

0% -0.162 -0.3 22 0 6 3 13.2 14.0×
0.01% -0.154 -0.2 22 0 7 2 12.5 14.7×
0.1% -0.134 0.1 24 0 7 0 8.4 21.9×

1% 0.049 0.1 26 5 0 0 2.0 90.5×
2% 0.208 0.3 23 6 2 0 1.4 132.7×
5% 0.541 0.2 24 6 1 0 1.1 167.8×

D
ef
au

lt

un
de
ci
de
d

0% -1.006 1.6 17 2 7 5 15.5 11.9×
0.01% -1.006 1.6 17 4 5 5 14.2 12.9×
0.1% -0.978 2.2 15 5 7 4 11.0 16.7×

1% -1.205 3.0 9 4 15 3 7.3 25.1×
2% -2.734 2.4 11 2 15 3 5.4 34.4×
5% -3.917 2.6 8 5 13 5 4.2 43.9×

D
ef
au

lt

un
de
ci
de
d+

go
od 0% 0.000 0.0 31 0 0 0 21.6 8.5×

0.01% 0.000 0.0 31 0 0 0 20.3 9.1×
0.1% 0.000 0.0 31 0 0 0 13.5 13.6×

1% 0.000 0.0 31 0 0 0 4.7 39.3×
2% 0.000 0.0 31 0 0 0 3.7 49.6×
5% 0.000 0.0 31 0 0 0 2.6 71.3×

C
on

se
rv
at
iv
e

go
od

0% -0.081 -0.1 29 0 2 0 22.9 8.0×
0.01% -0.081 -0.1 29 0 2 0 21.5 8.6×
0.1% -0.077 0.0 29 1 1 0 15.0 12.3×

1% -0.026 0.2 27 2 2 0 5.8 31.9×
2% 0.013 0.3 26 3 2 0 4.4 41.9×
5% 1.045 0.5 17 10 4 0 1.8 103.7×

C
on

se
rv
at
iv
e

un
de
ci
de
d

0% 0.000 0.0 31 0 0 0 24.0 7.7×
0.01% 0.000 0.0 31 0 0 0 22.5 8.2×
0.1% 0.000 0.0 31 0 0 0 15.6 11.8×

1% 0.000 0.0 31 0 0 0 5.9 31.3×
2% -0.050 0.0 30 1 0 0 4.7 38.8×
5% 0.176 0.2 23 6 2 0 3.6 50.9×

C
on

se
rv
at
iv
e

un
de
ci
de
d+

go
od 0% 0.000 0.0 31 0 0 0 24.1 7.6×

0.01% 0.000 0.0 31 0 0 0 22.7 8.1×
0.1% 0.000 0.0 31 0 0 0 15.8 11.7×

1% 0.000 0.0 31 0 0 0 6.0 30.7×
2% 0.000 0.0 31 0 0 0 4.8 38.0×
5% 0.000 0.0 31 0 0 0 3.4 54.8×
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hits towards the largest mantissa or exponent. The second converges
but ends with a too large representation. On average, if the mantissa
is searched first, the process is likely to end up with a maximum
of 23-bit selection for the mantissa which is over 15-bits more than
the average optimal representation. Similar findings hold for the
exponent, however, since the exponent representation saturates at
8-bit, on average over 3-bits more than optimal are returned. For the
remaining cases, it is more beneficial to first search the mantissa and
then the exponent representation rather than the other way around.
The best working settings are (Mantissa, high) where on average
2.1-bits more than the optimal solution are spent to guarantee the
quality constraint. The runtime is constant and leads to a speedup of
about 25×.

Coarse versus fine search with adaptive evaluation

Table 7.5 shows the obtained results for the coarse-to-fine heuristic for
the default and conservative set of parameters. The heuristic works
reasonably well with default parameters and simply considering the
good candidates for moderate quality constraints of ≥ 1%. In this
case, the course step filters configurations such that in the remaining
part only up to two configurations are considered for the final decision.
Those results all exceed quality requirements and only cause cost over-
heads of up to 0.3-bits on average. For stricter quality requirements
< 1% the heuristic might pre-select small sets of configurations that
unfortunately do not contain a configuration that meets the quality
constraint. In this case, the best result is returned which violates
the quality constraint. Operating the algorithm in this domain is
not recommended since the result is not guaranteed to contain a
quality satisfying configuration, nor is the likelihood large enough
that one might satisfy the user. Changing the filtering settings from
default to conservative classifies more configurations into undecided
candidates. This effect improves the results but slows the algorithm
down. However, still, in 2 out of 31 cases quality constraints are
violated. In contrast, operating the algorithm that all remaining
undecided and good candidates are considered resolves all problems
for the conservative and even for the default settings. However, that
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way many additional configurations are required to be examined at
full precision leading to a higher average evaluation cost.

7.5 Summary and conclusion

Table 7.6: Overview of properties and key results of transprecision
search heuristics.

Heuristic Quality Optimum Constant Avg. Speed-
constraint guarantee runtime bit-width up
guarantee increase

Exhaustive YES YES YES 0-bit ref.

Smart search YES YES NO 0-bit > 5.3×
Parallel search1 YES NO YES 1.06-bit > 5.3×
Two-stage2 YES NO YES 2.1-bit > 24.6×
Coarse-to-fine3 NO NO NO 0-bit > 8.5×
1 mantissa direction 2 mantissa direction with high pivot 3 default settings,
with searching undecided and good classified configurations

In this chapter we demonstrated the following: We identified the
importance of heuristics to quickly find good and optimal transpreci-
sion configurations faster. We studied three heuristics that reduce the
number of required evaluations and one heuristic, the coarse-to-fine
heuristic, that reduced the effort during evaluation of the quality.
We evaluated the four heuristics on a representative set of tuning
tasks of deep learning models where the optimal solution is known
as summarized in Table 7.6. All of the considered heuristics have
operating points where they outperform the others in at least one
aspect. Relaxing required properties leads to much faster execution
times. The coarse-to-fine search is an interesting heuristic that does
not give any guarantees but still achieves optimal results in all of the
considered cases at a decent speed.





Chapter 8

Optimization for IoT
devices with given
constraints

Many industrial workflows rely on automation and optimization. The
higher the degree of automation, the simpler the elaboration and
design of even more complex solutions. Fully automated pipelines
that accept customized configurations easily express an optimization
problem, where even-better solutions are found by using better con-
figurations. If such configuration spaces are small enough, exhaustive
evaluations directly lead to the global optimal solution. However, in
relevant cases, configurations spaces might be large. They scale expo-
nentially in the number of tunable hyper-parameters. Such optimiza-
tions turn out to be either computational infeasible, or at least ques-
tionable if the obtained improvements would be worth the invested
computing costs. In such settings, by considering only the feedback
of a small set of considered hyper-parameters, search heuristics find
good enough configurations in affordable time.

The term auto machine learning, in short autoML, refers to sit-
uations where automation and optimizations are applied to an end-
to-end machine learning workflows. Parameters of different stages
are considered to optimize the solution. That includes settings from
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data augmentation, model definition, and the learning algorithm itself,
as outlined in Section 1.1. AutoML enhances solutions at the cost
of extra computing time and succeeds when working with new data
where little insights are known a priori.

Designing an economically viable artificial intelligence system has
become a formidable challenge in view of the increasing number of
published methods, data, models, newly available deep-learning frame-
works as well as the hype surrounding special-purpose hardware ac-
celerators as they become commercially available. The availability
of large-scale datasets with known ground truths [22, 59, 132, 167–
175] and the widespread commercial availability of computational
performance—usually achieved with graphic-processing units (GPUs)—
has driven the current growth of and strong interest in deep learning
and the emergence of related new businesses. Smart homes [176],
smart grids [177] and smart cities [178] trigger a natural demand
for the Internet of Things (IoT), which are products designed to be
low in cost and feature low energy consumption and fast reaction
times due to the inherent constraints given by final applications that
typically demand autonomy with long battery lifetimes or fast real-
time operation. Experts estimate that there will be some 30 billion
IoT devices in use by 2020 [179], many of which serve applications
that benefit from artificial intelligence deployment.

In this context, we propose an automatic way to design deep-
learning models that satisfy user-defined constraints specifically tai-
lored to match typical IoT requirements, such as inference latency
bounds. Additionally, our approach is designed in a modular manner
that allows future adaptations and specialization for novel network
topology extensions to different IoT devices and lower precision con-
texts.

This chapter is organized as follows. Section 8.1 describes related
work, Section 8.1 introduces the core design procedures, Section 8.2.4
details and merges a full synthesis workflow, Section 8.3 presents and
discusses the obtained results, and Section 8.4 concludes our findings.
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8.1 Related work for network architecture
search

Automated architecture search has the potential to discover better
models [29–35, 40]. However, traditional approaches require a vast
amount of computing resources or cause excessive execution times due
to the full training of candidate networks [36]. Early stopping based on
learning-curve predictors [37] or transferring learned wights shortens
run-times [38]. A method called train-less accuracy predictor for archi-
tecture search (TAPAS) demonstrates how to generalize architecture
search results to new data without having to train during the search
process [39]. Architecture searches face the common challenge of
defining the search space. Historically, new networks were developed
independently by expert knowledge that outperforms previously found
networks generated by architectural searches. In such cases, very
expensive reconsiderations led to follow-up work to account correctly
for a richer search space [180, 181]. Recent progress in the field,
such as MnasNet [41] and FBNet [42], tailor the search by optimizing
a multi-objective function including inference time on smartphones.
MnasNet trains a controller that adjusts to more optimal sample
models in terms of multi-objectivity. FBNet trains a supernet by a
differentiable neural architecture search (DNAS) in a single step and
claims to be 420× faster by avoiding additional model training steps.
In contrast to solving a joint optimization problem in one step, our
proposed union of narrow-space searches takes a modular approach
that separates the search process of finding architectures that strictly
satisfy constraints from the training of candidate networks. That way,
we can analyze 10,000 architectures with no training cost and select
only a small subset of suitable candidates for training.

Compression, quantization and pruning techniques reduce heavy
computational needs based on the inherent error resilience of deep
neural networks [182]. Mobile nets [28] or low-rank expansions [183]
change the topology into layers that require fewer weights and reduce
workloads. Quantization studies the effect of using reduced precision
floating-point or fixed-point formats [166, 184], whereas compression
attempts to reduce the binary footprint of activation and weight maps
[185]. Pruning approaches avoid computation by enforcing sparsity
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Figure 8.1: Left: Three-layer architecture. Middle: Default configu-
ration of search space with restricted sampling laws. Right: Statistics
of number of parameters obtained by sampling up to one million
networks from the base configuration space and 1000 networks from
the restricted sampling laws.

[186]. We extensively use the developed integration of floatx into
PyTorch as detailed in Section 6, to assess data format-specific aspects
of networks. The novelty of our work is that we jointly evaluate
network topologies in combination with reduced precision.

8.2 Narrow-space architecture search
It is challenging to define a space S that produces enough variation
and simultaneously reduces the probability of sampling suboptimal
networks. We propose narrow-space architecture searches, where re-
sults are obtained by aggregating n independent searches S =

⋃n
i=1 Si.

As a good search space should satisfy Sr ⊂ S, where Sr = {M1, ...,Mn}
is a set of reference models, we construct S by designing narrow spaces
that obey Mi ∈ Si in order to guarantee Sr ⊂ S. Instead of consid-
ering one large space, we have specialized search spaces that produce
simple sequence structures with residual bypass operations (ResNets
[24]) to even high fan-out and convergent structures such as they occur
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Table 8.1: Search spaces induced from established reference models

Space Reference model Params Ops Accuracy
Ours1 Ref2

S1 DenseNet121 [27] 7.0M 898.1M 94.13% 95.04%
S2 MobileNetV2 [189] 2.3M 94.6M 92.94% 94.43%
S3 GoogLeNet [25] 6.2M 1.5G 93.55% -
S4 PNASNetA [190] 135.5K 29.2M 83.85% -
S5 ResNeXt29_32x4d [191] 4.8M 779.6M 93.46% 94.73%
1 reproduced results with our training limited to 100 epochs
2 reference results of third-party implementation [192] with high-effort
training of 350 epochs

in the Inception module [187] or DenseNets [188]. Aggregation allows
results to be extended easily with a tailored narrow-space search for
new reference architectures. Next, we define a set of distribution law
configurations L1(Si), ..., Lk(Si) that allow samples to be drawn in a
biased way such that models satisfy the properties of interest. Fig-
ure 8.1 illustrates the advantages over a uniform distribution among
valid networks. Consider a space of three-layer networks with allowed
variations in kernel shapes in {1, 3, 5, 7} and output channels in [1, 128]
leading to |S| = 46 ∗ 1283 = 8.6 ∗ 109 network configurations.

Figure 8.1 shows the statistics for up to 106 samples compared
with sampling only 1000 samples using restricted samplers L1, L2 and
L3. Restricted random laws efficiently generate networks of interest,
in contrast to a uniform sampler that fails to deliver high sampling
densities in certain regions. For example, only 132 out of 106 networks
have fewer than 1000 parameters.

8.2.1 Narrow-space and sampling law definition
We define each narrow-space architecture search and its sampling laws
according to the following design goals: First, only valid models are
generated with a topology that resembles and includes the original
model. Second, the main model-specific parameters are varied, and
efficient models are obtained mainly by lowering channel widths in
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Table 8.2: Architecture search space definition S1 with
different sampling laws for DenseNets.

Law Cardinality DenseNets parameters
ni, i ∈ {1, 2, 3, 4} g∗ r∗∗

L0 3.3 · 109 [1, 32] [1− 32] [0.0, 1.0]
L1 2.0 · 106 [1, 8] [1− 8] [0.2, 0.8]
L2 6.3 · 107 [1, 16] [1− 16] [0.2, 0.8]
L3 1.0 · 109 [1, 32] [1− 32] [0.5, 0.8]
∗ g is the growth rate, ∗∗ r is the reduction rate

convolutional layers and reducing the number of topological replica-
tions. Third, all random laws are defined following a uniform distri-
bution over available options, where the lower and upper limits were
used as a way to bias the models to span several orders of magnitude
targeting the range of parameters and flop counts relevant for IoT
applications.

Table 8.1 lists the five search spaces used in this work that are
based on established models. Typical models consist of 2M up to
7M of parameters and cause workloads from 94.6 million up to 1.5
billion floating-point operationss (FLOPs) and are too large for fast
implementations on a targeted IoT device. DenseNets [27] exists in
common variants, 121, 161, 169, and 201 and we used the smallest
variant (DenseNet121) as starting point. We reproduced the accuracy
for all architectures by running our training procedure as detailed in
Section 8.2.6 where we used an upper limit of 100 epochs and compare
it with the claimed reference accuracy from the source from where we
obtained the architecture implementation in PyTorch [62]. The latter
values are slightly higher but they are obtained with a high effort
training that runs for a fixed amount of 350 epochs. Additionally,
the later source does not state the mean and variance of the training
process neither is it completely clear if the values are obtained in a one-
shot training or if the best values have been selected after repeating
the training process several times. In contrast, we decided to follow
a pragmatic but efficient approach of evaluating each architecture
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Table 8.3: Architecture search space definition S2 with different sampling
laws for MobileNets.

Law Cardinality MobileNets parameters, i ∈ [1, 7]

fin ei fi ni si fout

L0 5.2 · 1034 [1, 128] [1, 8] [1, 256] [1, 4] [1, 2] [1, 1280]
L1 3.6 · 1033 [16, 128] [1, 6] [16, 256] [1, 4] [1, 2] [128, 1280]
L2 2.0 · 1028 [16, 64] [1, 4] [16, 128] [1, 3] [1, 2] [128, 512]
L3 3.1 · 1021 [16, 32] [1, 2] [16, 64] [1, 2] [1, 2] [128, 256]
L4 4.0 · 1019 [16, 32] [1, 2] [4, 32] [1, 2] [1, 2] [64, 128]
L5 1.4 · 1015 [16, 32] [1, 2] [2, 8] [1, 2] [1, 2] [16, 64]
L6 4.3 · 1013 [4, 8] [1, 2] [2, 8] [1, 2] [1, 2] [12, 16]

only once and to limit training effort to an affordable value of 100
epochs. This decision is motivated by the fact that we want the
same training procedure to be applied to over 3,000 models. Training
evaluations with high-effort would cause 3.5× more computational
costs and repeating experiments to deliver statistics would at least
require a repetition factor of 5×. Both aspects together cause a 17.5×
increase in computation cost. In our opinion, if we are willing to pay
such an increase, it would be more interesting to use an affordable
approach and invest the additional budget into investigating more
architectures. The increased effort would allow investigating over
50,000 network architectures. Next, we define the sampling laws
and parameters used to manually enforce smaller variants of networks
within the defined spaces.

DenseNets [27] consists of four stages, each repeating DenseNet
unique blocks. We identified the stage-specific number of repetitions,
the growth rate and the reduction factor as relevant hyper-parameters
that we modify. Table 8.2 specifies the sampling laws. In this case, we
decided to clip the repetition factor at 32 which additionally includes
the configuration of DenseNet161. The normalized reduction factor is
sampled with a step size of 0.01.
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Table 8.5: Architecture search space definition S4 with
different sampling laws for PNASNet-A.

Law Cardinality PNASNet-A parameters, i ∈ {1, 2, 3}
ni f1 d2 d3

L0 3.5 · 106 [1, 12] [1, 128] [1, 4] [1, 4]
L1 3.1 · 106 [1, 12] [16, 128] [1, 4] [1, 4]
L2 2.3 · 105 [1, 8] [16, 64] [1, 3] [1, 3]
L3 9.7 · 102 [1, 3] [8, 16] [1, 2] [1, 2]

Set f2 := f1 · d2 and f3 := f2 · d3.

MobileNetsV2 [189] consists of seven stages, each repeating Mo-
bileNetsV2 unique blocks. Each block is configured with four parame-
ters, input number of channels, output number of channels, expansion
factor, and a stride factor. To generate valid configurations, we define
the first input channel number separately, since the subsequent input
shape follows directly from the previous block configuration. Addi-
tionally, we restrict the stride factor per stage to either be one or two
and we further require to sample exactly three twos and four ones. The
reason for this choice is due to the stride parameter directly influences
the spatial shape of tensors and the limitation ensures fixed downsam-
pling over three steps from 32×32 to 4×4. Additionally, the existing
intermediate last convolutional layer is separately parametrized and is
used as in the original reference model as a transition layer between the
last block and the final linear classifier. Table 8.3 states the sampling
law definitions.

GoogLeNet [25] is composed of the characteristic Inception mod-
ule, which is defined through seven intermediate channel depths. The
full network is grouped into three stages, first a convolutional pre-
layer, second, and third a max-pooling separates sequences that are
built from two, five, and two Inception modules. Table 8.4 defines the
sampling laws. We choose parameter specific upper bounds oriented
on the reference implementation.

PNASNet-A [190] consists of three stages that are build by repeat-
ing cell-A type of blocks. The stages are separated by downsampling
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Table 8.6: Architecture search space definition S5
with different sampling laws for ResNeXt.

Law Cardinality ResNeXt parameters, i ∈ [1, 3]
ni fi ci

L0 9.5 · 1014 [1, 3] [1, 64] [1, 512]
L1 2.1 · 1010 [1, 3] [4, 64] [1, 512/fi]
L2 2.4 · 108 [1, 3] [4, 32] [1, 128/fi]
L3 1.5 · 105 [1, 2] [4, 8] [1, 32/fi]

layers that are implemented as cell instances with a stride of two.
Table 8.5 defines the sampling laws that affect the number of block
repetitions and the number of channels used in the block, where f2
and f3 are relatively defined to the output shape of previous stages.

ResNeXt [191] is the improvement over the typical ResNet [24]
structure. It consists of a three-stage architecture where each stage
repeats the bottleneck block ni times, for i ∈ {1, 2, 3}. The block
consists of the typical residual connection and follows a bottleneck
design where grouped convolutions are used to reduce the kernel size.
We define in the search space with the bottleneck base width fi and
the cardinality ci. However, the total channel size that is invoked
during the grouped convolution operation is of width fi · ci. Since we
want to limit the product fi ·ci but we also require it to be devisable by
either fi and ci we decided to randomly sample the later and restrict
the cardinality upper bound to be lhigh/fi, where lhigh denotes the
upper product limit and fi is dependent on the current sampling of
the base depth. Table 8.6 summaries the defined random laws.

8.2.2 Precision analysis
Precision analysis evaluates model accuracies for models having re-
duced precision representations. Following general methodology, we
perform precision analyses on the backend device that has different ex-
ecution capabilities than current or future targeted IoT devices. This
methodology enforces emulated computation throughout the analysis
to assess accuracy independent of the target hardware. Low precision
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can be applied to model parameters, to the computations performed
by the models and to the activation maps that are passed between
operators. Here we follow the extrinsic quantization approach [166],
where we enforce a precision caused by the reduced type Tw,t of storage
width 1+w+t to be applied to all model parameters and all activation
maps that are passed between operations. Our analysis follows the
IEEE 754 standard [116], which defines storage encoding, special cases
(NaN, Inf), and rounding behavior of floating-point data. A sign s, an
exponent e and the significandm represent a number v = (−1)s ·2e ·m,
where the exponent field width w and the trailing significant field
width t limit dynamic range and precision. Types T5,10 and T8,23
correspond to standard formats half and float. Our experiments are
based on a PyTorch [62] integration of the GPU quantization kernel
based on the high-performance floatx library [193], which implements
the type Tw,t. The development effort of Section 6 enables a fast
precision analysis that allows us to evaluate more than 3,000 models
with a full grid search of 184 types (w ∈ [1, 8], t ∈ [1, 23]) of the entire
validation data.

8.2.3 Performance characterization on hardware
To evaluate model execution performance on the IoT target device,
we perform a calibration to assess the execution speed of the models
of interest. Despite many choices of deep-learning frameworks, ways
of optimizing code depending on compilation or software version and
even several hardware platforms that accelerate deep learning models,
we formulate the performance characterization in a general manner
and as decoupled as possible from the topology architecture search
and the precision analysis to facilitate subsequent extensions. Per-
formance measurements on the IoT device are affected by explicit
and implicit settings. We demonstrate our search algorithm with
performance measurements featuring the fewest assumptions and re-
quirements regarding runtime. To that end, we selected Raspberry-Pi
3(B+) as a representative low-cost IoT device. It features a Broadcom
BCM2837B0, quad-core ARMv8 Cortex-A53 running at 1.4 GHz.
The board is equipped with 1 GB LPDDR2 memory [194]. The
Raspberry-Pi 3(B+) belongs to the general-purpose device category
that is shipped with peripherals (WiFi, local area network (LAN),
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Bluetooth, and universal serial bus (USB), high definition multimedia
interface (HDMI)) and a full operating system (Raspbian, a Linux
distribution). It is available for about $35 [195].

In the following, we justify the choice of using the Raspberry-Pi
3(B+) as representative IoT device. First, it should be mentioned
that there is a current emerging trend in industry and research that
pushes to improve hardware for artificial intelligence (AI) by either
improving performance, reducing power consumption or providing
better trade-offs in terms of power/performance ratios or hardware
cost versus the on-device supported features. In terms of thinking
through IoT driven business cases, the fact that new hardware appears
requires to benchmark and rethink on what HW product a certain
IoT application should be built. We are aware of the existence of
tens of ASIC or FPGA solutions that might be selected for business
legitimated reasons as a target edge inference system.

We think that the crucial factors for a successful IoT deployment
strategy cover the following points with an importance that is appli-
cation specific:

• reliability;

• user/developer friendly software ecosystem;

• modular integration or extensions of different functionality;

• typical IoT support;

• cost efficient system.

We decided that in this work we focus on the algorithm. However,
since we are aware of many choices and good reasons for a certain HW
solution, we developed our approach such that the main functionality
is decoupled from the actual HW implementation. Especially, pop-
ulating a database with the current results that are obtained with
expensive training for obtaining the model accuracy, can easily be
reused later on for any hardware platform by just implementing the
inference and timing measurement setup in order to obtain the new
HW calibration information. In this work, we focus on the most
general use-case that causes the least amount of requirements for
the underlying hardware. That way, we identified the Raspberry-Pi
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Figure 8.2: High correlations between the size of networks and the
computational workload required for a single inference. Both metrics
are analytical properties of the network architectures and are known
at design and construction time of the model.

3(B+) as general purpose quad-core architecture as a suitable IoT
device candidate. The Raspberry-Pi proves its marketability by the
fact that it has been shipped over 25 million times by February 2019
[196]. Even though there are competing products that are specially
tailored for AI deployment, the choice of selecting a general-purpose
platform equipped with a Linux operating system comes with obvious
advantages, such that it enables to reuse established software and
solutions can be easily extended to any needs. In contrast to dedicated
AI accelerators that are shipped as USB dongles, potentially required
features such as Ethernet, WiFi, SDCard slot, or USB ports are
already included in the Raspberry-Pi 3(B+). Even though we are
aware that a general purpose architecture cannot compete in some
performance metrics with a dedicated AI product, we argue that
our work is especially insightful since we cover the more challenging
case on optimizing for a performance limited device. In our view,
it is plausible enough to argue that a more performant device will
automatically deliver better results. We aim to support various HW
platforms with different deployment flows in future work.
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Figure 8.3: Runtime-dependent latency measured as function of
network size (left) and network workload (right). The latency is
best correlated with the workload when accounting for different search
space-specific characteristics.

Next, we describe the deployment flow for the Raspberry-Pi 3(B+).
Even though our back-end algorithms, as well as our training rou-
tine, is implemented in PyTorch, we still aim to remove the back-
end dependency in order to be open and to ease later migration to
new target platforms, frameworks, and ecosystems. To that end,
we decided to export all models according to the open neural net-
work exchange (ONNX) format [197]. We decided to use caffe2 as
target device runtime for the exported ONNX models. We build
the caffe2 framework directly from a full source compilation with all
default parameters on the Raspberry-Pi 3(B+) and we ensured that
the produced code is using the ARMs NEON library [198] for fast
computation. We wrote a light script to import the produce ONNX
models and we trigger a sequence of inferences for a single image. In
our work, all timing results have been obtained by averaging wall clock
times over ten repetitions. We used a batch size of one to minimize
latency and internal memory requirements. The latency study covers
many relevant use cases, for example the classification of sporadically
arriving data within a short time to prolong battery lifetime or frame
processing a video stream, where the classification must be completed
before the next frame arrives.

For each model, we consider two analytical properties, the number
of trainable parameters and the workload measured as the number of
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Figure 8.4: Manual and automatic workflow. First, sampling laws are
defined to generate models of interest. Second, models are calibrated
to check latency on the IoT device, even if they are not yet trained.
Third, models are trained to achieve accuracy. As training is the most
expensive task, it is essential to limit the number of trained models
to candidates of interest only.

floating-point operations required for inference. The calibration step
relates analytical properties with execution performance and allows
us to separate runtime metrics. Figure 8.2 shows high correlations
between the number of parameters and the workload. Figure 8.3 shows
that using either of the analytical property of the model allows to
predict the latency on the Raspberry-Pi 3(B+) device. Workload and
parameters follow a similar scaling over five orders of magnitude with
homogeneous variations. The dynamic range of the latency spans
more than two orders of magnitude with higher variations for larger
models. However, owing to the compute-bound nature of the kernels,
the workload is a better indicator of latency time than the number of
parameters.

8.2.4 Fast cognitive design algorithms

In this section, we leverage the architecture search, the precision
analysis, and the hardware calibration steps to synthesize case-specific
solutions that satisfy given constraints. We address two tasks: First,
the constraint search solves for the model that best satisfies given
constraints. Second, the Pareto front elaboration provides insights



164 CHAPTER 8. OPTIMIZATION FOR IOT DEVICES

into tradeoffs over the entire solution space. The two tasks are re-
lated. Solving the first task on a grid of constraints provides solutions
to the second task, whereas filtering the latter based on the given
constraints yields the former. Both tasks are solved by manually and
automatically by defining the sampling law configurations on the same
set of narrow-search spaces as shown in Figure 8.4. In the manual
task, collected statistics of analytical network properties provide quick
feedback to adapt the settings to cover the range of interest. For a
fair comparison of the manual and automatic workflows, we assume
throughout our experiments that the expert has no further feedback
knowledge about model accuracy. Additionally, network runtime per-
formance metrics can be measured on the target device or estimated
from calibration measurements. Next, depending on the task type,
either a few candidate networks that satisfy constraints or a full wave
of networks are selected for training. Large-scale training takes the
most time—as each training job is of complexity O(ntrainCmodelE)—
proportional to the amount of training data, model complexity and
the number of epochs for which the model is trained.

We designed a genetic and clustering-based algorithm to autom-
atize the design of sampling laws. We define the valid space with
a list of variables with absolute minimal and maximal ratings. A
sampling law L(Si) is defined as an ordered set of uniform sampling
laws L = (Ux[lx, hx], ...) with lower and upper limits lx and hx per
variable x. The genetic algorithm automatically learns the search
space-specific sampling law limits [lx, hx]. The cost function is defined
in a two-step approach. First, the statistic (µm, σm) := Enm(L) is esti-
mated by computing means and standard deviations over the metricm
extracted from the n generated topologies. Second, cost is computed
as c((µm, σm), (τ1, τ2)) := |µm − σm − τ1| + |µm + σm − τ2| in order
that the high density range of the estimated distribution coincides
with a given interval (τ1, τ2). We avoided definitions based on single-
sided constraints such as µ < τ because such formulations might
be satisfied trivially (using the smallest network) or by undesirable
laws having wide or narrow variations. We used the tournament
selection variant of genetic algorithms [199] and defined mutations by
randomly adapting the sampling law of hyper-parameters lx and hx.
We used an initial population of ninit = 100 and ran the algorithm
for nsteps = 900 steps while using neval = 10 samples to estimate
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mean and standard deviations per configuration. This way, one search
considers (ninit + nsteps) ∗ neval = 10, 000 networks. As the final
population might contain different sampling laws of similar quality,
we performed spectral clustering [200] to find k = 10 clusters with
similar sampling laws. We assembled a list of the most different top-k
laws by taking the best-fit law per cluster.

To elaborate the entire search space with a Pareto optimal front,
we split each decade into three intervals [τ, 2τ, 5τ, 10τ ] and define a
grid for τ = 103, 104, 105, 106 spanning five orders of magnitude. We
ran the genetic search algorithm several times by setting the target
bounds (τ1, τ2) in a sliding-window manner over consecutive values
from the defined grid. Finally, we accumulated results from twelve
genetic searches, each of which found ten sampling laws, where we
sampled each law nval = 100 times to obtain the statistic of 12, 000
network architectures per narrow-space search.

8.2.5 Statistical properties of generated networks
For the defined search spaces and sampling laws, we collected statistics
over 1,000 networks that are presented in Figure 8.6. We targeted
to cover the full domain in [103, 107]. Some search spaces, such as
S1, S4, and S5 are quickly covered with three simple configurations.
Other search spaces, such as S2 and S3, lead to narrower distributions
where we decided to add three additional sampling laws to cover the
lower domain. Even though the manual search covers the region of
interest nicely, human expertise is required to define the parameters
of the laws L1 to L6 correctly. The right-hand side of Figure 8.6
shows statistics obtained when networks are obtained by uniformly
sampling each parameter in its full domain (according to the law L0)
and when they are obtained with automatically generated sampling
laws that are adjusted with our proposed genetic algorithm. The
naive sampling approach in the entire search space produces a narrow
distribution and is strongly skewed towards larger networks. The
base law of the original definition has a high impact on where the
actual mass of the distribution concentrates. The mass densities are
around 106 parameters for S1 and S2. S3 and S4 have the center
of mass above 107 parameters which cause difficulties for the genetic
algorithm to converge towards the low end of the domain. In contrast,
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the genetic algorithm equalizes the distribution and provides samples
that cover much higher dynamic ranges, extending the scale especially
for smaller networks without manually restricting the architecture.
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Figure 8.6: Statistic over manual (left) and automatic generated
(right) networks for all search spaces S1 up to S5. By manually
designing the sampling law, a human expert can reasonably adjust and
focus the distribution into regions of interest, either close to a target
constraint and in a general way to cover five orders of magnitude.

8.2.6 Training setup
We conducted all training experiments in a controlled environment
where we trained from scratch for each candidate architecture. We
used PyTorch version 0.4.1 as development framework and run on IBM
Power8 or Power9 nodes equipped with either P100 or V100 GPUs.
We used standard on-the-fly data augmentation during training that
pads images with 4 pixels and randomly crops the image to 32 ×
32 pixels, apply horizontal flipping with a probability of 0.5 and
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finally normalizes pixel values to zero mean and unit variance. During
testing, the original 32 × 32 images are directly normalized and feed
into the models. For training, we used stochastic gradient descent
with a batch size of 128 samples configured with an initial learning
rate of 0.01, a momentum of 0.9, and a weight decay factor of 5 ·10−4.
We used a fixed scheduling schema where the learning rate is divided
by a factor of 10 at epoch 40 and 70 and we limit training to stop at
100 epochs.

8.3 Results

To study our algorithm, we ran full design-space explorations on
the well-established CIFAR10 [22] classification task and compared
our results with those obtained with established reference models.
Figure 8.7 shows the tradeoff between model size and accuracy, in-
cluding manually and automatically generated results of the aggregate
search spaces. The Pareto optimal front follows a smooth curve that
saturates towards the best accuracy obtainable for large models. The
number of parameters is logarithmic and the accuracy scales linearly.
Even very small models with fewer than 1000 parameters can achieve
accuracies of greater than 45%. The accuracy increase per decade of
added parameters is on the order of 30%, 15%, 3% and < 2% points
and then decreases very quickly. This effect allows us to construct
models having several orders of magnitude fewer parameters. It also
provides economically interesting solutions for IoT devices that are
powerful enough to process data in real time. We compare our results
with three sources of reference models: (a) traditional reference mod-
els, (b) ProbeNets [201] that are designed to be small and fast and (c)
models designed to run on the PULP platform [202]. Traditional
models include 30 reference topologies including variants of VGG
[23], ResNets [203], GoogleNet [25], MobileNets [189] dual-path nets
(DPNs) [26] and DenseNets [27], where most of them (28/30) exceed
1 M parameters. ProbeNets were originally introduced to characterize
the classification difficulty and are considerably smaller by design
[201]. They act as reference points for manually designed networks
that cover the relevant lower tail in terms of parameters. In the
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Figure 8.7: Results of our architecture search compared with reference
models. Each dot represents a model according to its size and the
obtained accuracy on the CIFAR10 validation set. Our search finds
results over five orders of magnitude and, in particular, finds various
models that are much smaller than out-of-the box models. In the
restricted IoT domain, our search delivers models that outperform
the reference with a wide margin for fixed constraints.

IoT-relevant domain (<10 M parameters), our search outperforms all
the listed reference models.

The top three fronts in Figure 8.7 show the results of our precision
analysis. For each trained model, we evaluated the effect of running
models with all configurations of type Tw,t and plot the Pareto-optimal
front. We considered three cases: (1) running all models with half-
precision, (2) running all models with the type T43 , which is the best
choice for types that are 8-bits long, and (3) running each model with
its individual best tradeoff type Tw,t. We demonstrate empirically
that reduced precision pushes the Pareto optimal front. Under a given
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Figure 8.8: Left: Zoomed view of direct comparison; manual and auto-
matic searches perform equally well. Middle: Manual and automatic
search results. In the manual case, clusters are visible, whereas the
automatic search sampled in a more homogeneous manner. Right:
Results for one narrow-space search with marked clusters matching
Figure 8.6.

memory constraint, accuracy improves by more than 7% points for
half and by another 1% points or more for the model individual format.

Figure 8.8 shows details of manual and automatic searches, both of
which yield very similar results. The right-hand graphs show results
obtained for one narrow-space search, where manually defined sam-
pling laws led to clusters. The automatic search covered a similar
range homogeneously. Figure 8.9 shows inference times when the
same set of models is executed on a Raspberry Pi 3(B+). Similarly,
providing additional latency time for small models results in dominant
accuracy gains, however, large models only slightly improve accuracy
even when using more complex models that require long evaluation
times.

Figure 8.10 demonstrates the scalability of our approach. We
applied our search for three constraints τ = 103, 104, 105 on thirteen
datasets [201], where we spent a training effort of ten architectures
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per dataset and constraint. The lines connect the best per constraint
and dataset performing architectures.
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8.4 Summary and conclusion
In this chapter we studied the synthesis of deep neural networks
that are eligible candidates to run efficiently on IoT devices. We
propose a narrow-space search approach that leverages knowledge
quickly from existing architectures and that is modular enough to be
adapted to new design patterns. Manually and automatically designed
sampling laws allow various models to be generated having sufficiently
numerous parameters to cover multiple orders of magnitude. We
demonstrate that reduced precision improves top-1 accuracy by over
8% points for constraint weight memory in the IoT-relevant domain.
A strong correlation between model size and latency enables us to
create small enough models that provide superior inference response
latencies below 10 ms on an edge device costing only about $35.





Chapter 9

Conclusions

In this thesis, we have proposed the concept of transprecision com-
puting as the new computing paradigm. Driven by Moors law, the
computer industry is constantly following technology-based improve-
ments. However, physical limitations, such as thermal dissipation,
saturates economical viable operating frequencies and henceforth, the
performance of computing systems. SIMD parallelism and multi-
core systems exploit parallelism to sustain the rising quest for better
performance. In contrast to those approaches—that certainly remain
and simultaneously evolve future computing systems—transprecision
computing aims to reduce precision without quality degeneration to
improve performance. We observed that approximate computing tech-
niques followed the same spirit with great success in specific domains.
Transprecision computing pursues the visionary goal of being ap-
plicable in general-purpose computing systems in various situations.
System-level considerations include the simultaneous co-development
of algorithms, software, and hardware. Performing these at once has
been successfully demonstrated for specific tasks the justify ASIC
development. However, those systems do not follow general concepts
that apply to general-purpose computing. To that end, the devel-
oped transprecision computing concepts disentangle considerations in
a modular way. First, target applications or systems are required

175
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to be specified with expectations on quality and performance. Sec-
ond, algorithm development and numeric evaluations lead to case-
specific, domain-specific, or even general insights. To support ade-
quate evaluations, we introduced a reduced precision library—floatx—
in Chapter 5. Improved emulation speed and integrating floatx in
PyTorch [62] opens the doors for large-scale elaborations. We address
related problems, such as using heuristics to efficiently find good
transprecision configurations in large search spaces. Additionally,
often missing in related work, we assess the value of opportunity costs.
To that end, transprecision computing needs to outperform alterna-
tives. In Chapter 7 of the thesis we performed a large-scale neural
network architecture search for regular and transprecision models.
We conclude that transprecision concepts are scalable, fast and easy
to obtain, such that they outperform all regular choices.

9.1 Summary of main results
The abstraction of transprecision computing.

We defined the concept of transprecision computing in Chapter 4 as a
system that is based on configurable precisions that produces results
with a measurable performance at a measurable quality. The quality
characterizationQ(θ) and the performance characterization P (θ) asses
precision related system settings. Understanding the user’s require-
ments in connection with a full system characterization allows the de-
livery of an optimized solution. The more relaxed quality requirements
are, the larger the optimization potential. The stricter the quality
requirements, the smaller are performance gains. In the worst case,
one is forced to conclude that the original baseline application was
already the optimal solution. However, we successfully demonstrated
that transprecision computing achieves performance gains without
quality degenerations at all. For example, PageRank iterations it-
eratively correct quantization errors performed in early iterations,
see Section 5.2.1. Deep learning models classify all samples as in
the baseline, even though much smaller data types were used for all
the stored weight parameters, see Section 6.2.2. Even in scientific
computations, such as in GLQ, knowing that the core routine operates
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with limited dynamic range allows reduction of the exponent encoding
with no effect on the final quality, see Section 5.2.3.

Approximate computing techniques are case-specific.

We summarized established approximate computing techniques, in-
cluding loop perforation, task skipping, memoization, and stochastic
computing in Chapter 3. We concluded that stochastic computing
relies on many key building blocks that are manually designed and
mapped to low-level hardware implementations. The fundamental
requirement of substantial fractions of customized hardware hinders
stochastic computing to become a major general-purpose technique.
Additionally, the stochastic nature turns debugging, implementing,
and integration of the technique in existing algorithms or frameworks
difficult. Additionally, emulations run slowly since they are forced to
collect a large number of statistics to provide reliable conclusions. The
stated reasons explain the success of the technique on specific problem
instances but also highlight the challenges that one needs to overcome
to make stochastic computing a serious candidate for general-purpose
comping.

We observed similar limiting factors that turn related work inter-
esting but limited to specifically considered cases. Some techniques,
such as using multiple inexact rely on the availability of alternative
implementations for modular building blocks. They do not contribute
to implementing elementary kernels.

Evaluations of approximate computing techniques are often not
directly comparable since they act on different input data, or results
are obtained at different operation points, for example with quality
degeneration of less than 10%-points. Those settings limit the in-
sights on how methods would perform on new data occurring in novel
algorithms or applications.

Numerical emulation is the key to assess quality.

To follow a modular and general approach, transprecision requires the
evaluation of the final quality depending on transprecision settings.
Using emulation allows the addressing of numerical results before
developing full hardware systems. To allow for high flexibility, we
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defined floatx, a minimally intrusive C++ header-only library that
emulates reduced precision as explained in detail in Section 5.1. The
high-performance implementation allows the scaling of numerical ex-
periments. We applied the library directly to BLSTM in Section 5.2.2
where the reference is provided as plain C model. Section 6 integrates
floatx into PyTorch [62] to provide modular support of numerical
evaluations inside a well-established deep learning framework. The
integration of floatx into PyTorch powered the subsequent studies.
Additionally, the modular approach allows reusing the numerical li-
braries on new use-cases involving different data and different models.

Deep learning models are error-resilient.

In our thesis, we reproduced the evidence that deep learning models
are inherently error-resilient. Prior work demonstrates the error-
resilience of deep learning in various aspects. For example, Hill et
al. [184] performed a design study that compares reduced fixed-point
representations with reduced floating-point representations. They
conclude that the extended dynamic range of reduced floating-point
representations outperforms fixed-point representations of the same
width. FPGA designs, such as the original implementation of BLSTM
[182], include in-depth numerical results and operate with small fixed-
point implementations causing only minor quality degenerations. Var-
ious numerical libraries have been proposed and applied to deep learn-
ing instances [166]. Other prior work, such as Xnor-net [204] follows
a drastic approach of collapsing multiplications to binary operations.
The corner-case of binary number representations indicates the error-
resilience of deep neural networks.

We contribute to state-of-the-art in three ways. First, related work
is limited in the setting used to evaluate reduced precision. To that
end, we evaluated 30 well-established networks in Section 6.2.2, to
provide general insights that are consistent among models. Second,
our numerical study includes full-grid elaborations that provide in-
sights into numerical behavior. Numerical studies at that detail-level
are easy to interpret and reveal the true break-down behavior of
models, as presented in Figure 5.3 for BLSTM. That information
allows judging guard-bands for specific operation points that provide
insights into model robustness. Third, we provide comparisons with
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opportunity costs. To that end, we answer the question of what
happens if we would differently construct smaller, and henceforth
less accurate models. Section 8.3 presents that for a given quality
constraint transprecision models outperform models that are alterna-
tively obtained by performing a NAS for the same constraints running
with regular 32-bit floating-point formats.

Transprecision computing for algorithms.

We introduced PageRank, BLSTM, and GLQ as representative appli-
cations of Big-Data, deep learning, and scientific computing domain in
Section 2.1. We used floatx to provided extensive numerical results in
Section 5.2.1. We observed that in all three cases, the external setting
matters for evaluations. All three algorithms are data-dependent and
the specific problem instances affect metrics. Additionally, hyper-
parameters of control loop provide excellent tuning opportunities as
explained in Section 3.3.

Allowing for minor quality degenerations allows for higher perfor-
mance improvements. For example, allowing PageRank to stop at
moderate residual error reduces the number of iterations until conver-
gence, see Section 5.2.1. Additionally, it increases the fraction of the
number of reduced precision iterations of the remaining iterations.
This positively affects overall performance. Similarly, allowing for
minor degenerations allows operating BLSTM and GLQ computations
with further reductions in number representations.

Most state-of-art of approximate computing evaluations rely on
minor quality degenerations to provide performance improvements. In
contrast, we demonstrated, that transprecision computing is capable
of delivering zero-quality loss results at conservative operation points
of applications. First, the iterative nature of PageRank allows re-
covering quantization errors obtained at previous iterations. Second,
BLSTM profits from the traditional error-resilience of deep learning,
see Section 5.2.2. Third, GLQ uses a limited dynamic range in its
computations which allows computing with a reduced exponent field
to deliver the same quality, see Section 5.2.3.
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The practical impact of transprecision computing.

Three practical aspects lead to the success of transprecision comput-
ing in general-purpose computing. First, it must be simple enough
to generalize to relevant use-cases. Second, it must be effective to
remove computational bottlenecks. Third, the process of integration,
evaluation, and optimization must be fast enough.

We have demonstrated the concept on three specific applications
in Section 5.2.1. For the domain of deep learning, we have extended
results to 30 established reference models in Section 6.2.2. Addition-
ally, in Section 8.3, we applied transprecision to over 3,000 models. All
cases deliver consistent numerical results. We conclude that reduced
precision is general enough to exploit the error-resilience of various
deep learning models.

Transprecision results are effective. For example, in deep learn-
ing, even in the strictest case of achieving a zero-loss solution, the
number representations can be compressed by 2.6× on average as
demonstrated in Section 6.2.2.

Transprecision results are obtained by testing various configura-
tions and finding the optimal settings. Since configurations spaces
are large, the optimization of the configuration becomes a time-critical
task. We contribute on four fronts in accelerating the configuration
search. First, the developed floatx library is performance-critical for
emulations. The floatx library is lightweight, follows a slim memory
footprint, and is performant as explained in Section 5.1.8. Second,
floatx compiles on GPUs enabling a simple and performant integration
in PyTorch [62] to evaluate models. Third, on the algorithmic-level,
we explained why it is beneficial to use the extrinsic over the intrin-
sic emulation approach. We compared worst-case error bounds and
provide empirical results that support our findings as presented in
Section 6.1.3. Fourth, we demonstrated in Chapter 7 that heuristics
replace full searches and still provide good results. Our contributions
enable to perform a single configuration search for one deep learning
model within seconds.
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9.2 Outlook and future work
We introduced the concept of transprecision computing and we see
multiple extensions for future work.

Numerical libraries

In this work, we presented the common number representations. We
implemented floatx, a reduced precision library for IEEE 754 [116]
conform representations. We followed a modular approach to use
floatx as component-wise integration in PyTorch [62] and various
applications. However, we see the potential of alternative represen-
tations that should be explored similarly in future work. For exam-
ple, the LNS as introduced in Section 4.1.3 provides different repre-
sentations that can cover similar dynamic ranges and precisions as
traditional floating-point realizations. Hardware units that imple-
ment 32-bit float equivalent LNS implementations exist [71]. Critical
components consist of look-up tables and interpolation approaches.
Hardware units of those performance-critical parts excellently scale
with smaller representations due to the exponential dependence of
LUTs on the input address space. Additionally, having multiple nu-
merical libraries that emulate different representations allows finding
commonalities among them. We expect that the numerical behavior
of LNS follows similar error patterns as measured with floatx since
reduced representation obeys similar dynamic ranges and precision
levels. Exploiting correlations among results obtained with differ-
ent number systems allows reusing numerical behavior observed with
floatx.

Extending the concept to new domains

We posed the question of how future general-purpose computing sys-
tems could be improved. We delivered empirical evidence that trans-
precision computing brings the key aspect to succeed in that task. We
demonstrated the concept by studying three applications stemming
from three domains. We extended our insights and generalized and
scaled statements for deep learning. Joining multiple aspects, such as
the integration of floatx in PyTorch [62], scaling numerical studies in
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the number of models, and the number of datasets is domain-specific
efforts. Additionally, the development of a constraint NAS is an
autoML-specific contribution of our work. Nevertheless, understand-
ing research advances in a domain are important to understand alter-
natives. They act as an opportunity-cost measure to better judge the
success of transprecision computing. We think to raise transprecision
computing to the next level, the most promising strategy is to apply it
to closed domains. For example, we think that weather simulations fit
that case due to the following. First, numerical weather simulations
based on consortium for small-scale modelling (COSMO) [205, 206]
follow iterative patterns where the numeric behavior can be exploited.
Second, variations in measured data and the awareness of stochastic
behavior in the domain allow interpreting numerical behavior caused
by transprecision computing. Due to the noise awareness, the quality
of the global behavior of the model can be judged without strict
requirements on the arithmetic of partial results. We expect that
this design freedom reveals error-resilience at many stages. Third,
weather simulations are relevant for many applications such as pollen
forecast [207], local wind gust prediction [208], or assessing wind power
predictions [209], among many more.

Software tools

In this work, we have demonstrated all the fundamental steps required
to build and profit from an effective transprecision computing system.
We covered numerical emulation, at low-level, at mid-level, and at the
application-level to assess the quality of configurations. We see many
opportunities for building software tools around that use-case that
simplifies the overall workflow. To demonstrate the practical value,
the integration of transprecision computing in existing applications
must be easy and quick. We envision an integrated development
environment (IDE) with a graphical user interface (GUI) to provide
flexibility. The main feature should include loading reference code,
annotating variables and routines and automatically characterizing
numerical behavior. Due to the dependency on input data, managing
data such as loading, modifying, merging, and computing overall
statistics becomes a central part of simplifying numerical experiments.
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The basics in the form of the logic of the main functionality are already
fully covered in this thesis.





Appendix A

Use case: Efficient video
classification

Video classification solves the problem of mapping a video clip rep-
resented as a sequence of frame-based pixel data to a single label.
Video classification poses a challenging task due to the following two
reasons: first, the amount of data involved is very large, and second,
the classification system has to learn and deal with temporal and
spatial aspects of the underlying data. The total workload caused by
a classifier varies due to different design choices of composing methods
to a full classification system. We evaluate three state-of-the-art
neural-network-based approaches for large-scale video classification,
where the computational efficiency of the inference step is of particular
importance due to the ever-increasing amount of data throughput for
video streams. Our evaluation focuses on finding good efficiency vs.
accuracy tradeoffs by evaluating different network configurations and
parametrizations. In particular, we investigate the use of different
temporal subsampling strategies and show that they can be used to
effectively trade computational workload against classification accu-
racy. Using a subset of the YouTube-8M dataset, we demonstrate
that workload reductions in the order of 10×, 50× and 100× can
be achieved with accuracy reductions of only 1.3%, 6.2% and 10.8%,
respectively. Our results show that temporal subsampling is a simple
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and generic approach that behaves consistently over the considered
classification pipelines and which does not require retraining of the
underlying networks.

A.1 Related work
Traditional video classification approaches [210–212] based on global
video descriptors have demonstrated success on a variety of datasets.
First, interest points are localized and visual features are locally ex-
tracted, then the information is compressed to a constant length global
descriptor. Second, a standard classifier (e.g., SVM) predicts the final
class. However, such approaches often involve the tedious design of
hand-crafted features.

Recent methods improve by adopting a data-driven approach where
also the features are learned. Naturally, video classification builds
the 3D extension of image classification and henceforth, 3D exten-
sions of traditional convolutional NNs (convolutional neural networks
(CNNs)) are explored [213, 214]. However, this approach does not
scale well to long videos and has thus only been applied to short
video clips with a length in the order of seconds. Ng et al. [21]
show that different feature pooling architectures employing LSTM
[215] are better suited to video classification. However, end-to-end
training approaches become infeasible for very large datasets as the
YouTube-8M. It contains 50 years of video footage, and even trivial
sequential processing of the individual frames becomes a demanding
task. Finding good NN configurations is non-trivial due to manual
tuning and many learning and validation cycles, which may take
weeks or even months. E.g., assuming that a single GPU allows
processing at a rate of ∼4.3 fps1, one pass through the 5.8M training
videos of YouTube-8M with an average of 230 frames/video requires
around 9.8 years. Renting a cloud infrastructure with multiple GPUs
allows to cut the total amount of time but the required costs are
in the order of 75 000 $2. The estimated cost of complete end-to-
end training with the full dataset and a typical amount of 100-1000

1Based on the time required for one forward/backward pass for GoogLeNet
using Nervana Systems’ neon library on an Nvidia GeForce Titan X (GPU) (GTX)
Titan X (Maxwell) GPU https://github.com/soumith/convnet-benchmarks.

https://github.com/soumith/convnet-benchmarks
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learning epochs is therefore around 7.5M$-75M$, which is infeasible
for most institutions. To this end, the baseline methods published
together with the YouTube-8M dataset split the classification problem
into two steps. First, frames are mapped to feature vectors with a
lower dimension using a state-of-the-art image classification network
(Inception-v3). Second, the classification is performed on the feature
vectors. This approach has the advantage that pure data-driven
learning is still possible and computational costs remain tractable.

Fast inference methods, such as Low-Rank Expansions [216] reach
speedups < 5× at accuracy drops < 1%. XNOR-Nets [204] gain 58×
in speed at 12.5% accuracy reduction on ImageNet. Even though we
solve the more complex problem of video classification, our approach is
on par with Low-Rank Expansions and outperforms the XNOR-Nets
trade-off.

A.2 Practical video classification systems
Our approach targets a large-scale machine learning system based
on the two-step approach introduced together with the YouTube-
8M dataset. For practical scalability reasons, we avoid end-to-end
learning approaches since the raw videos of that dataset amount to
a data volume of ∼ 1Petabyte. We evaluate two-step approaches
where frame feature vectors are obtained by first extracting features
using a CNN trained on an image classification task (without the
final classification layer), before applying principle component analysis
(PCA) to reduce the dimensionality to 1024 per frame and feature
vector. These feature vectors are then used for video classification in a
second step. Such a decomposition of the classification problem allows
a practical intermediate representation of the video and the handling
of the training of two separate subproblems. The vectors have been
precomputed using the Inception-v3 CNN and are available as part of
the YouTube dataset, which is convenient from a practical viewpoint
as it enables us to perform evaluations without having to evaluate the
complete CNN.

In our evaluation, we consider three classification pipelines:
2Based on a 650 $/month rent for a high-end GPU https://aws.amazon.com/

ec2/instance-types/p2/.

https://aws.amazon.com/ec2/instance-types/p2/
https://aws.amazon.com/ec2/instance-types/p2/
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Figure A.1: Overview of the three video classification approaches.
First, an inference with the Inception-v3 network (d) produces frame
level feature vectors. Second, GVD (a), FBC (b) and LSTM (c) are
applied to classify the video. Frames i are skipped if the corresponding
decision vector entries xi are 0. This is illustrated with red crosses for
a regular temporal subsampling of 2×.

a. Feature vector aggregation [20], that produces a global video
descriptor (global video descriptor (GVD)) which is then
classified using a fully-connected neural network (FCNN).

b. Frame-based classification (frame based classification (FBC))
[20] with an FCNN, followed by an aggregation of the classifica-
tion results.

c. A long short-term memory (LSTM) architecture [21] processes
the complete vector sequence of the video.
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The three classification system variants are illustrated in Fig. A.1,
and only differ in the way the 1024 dimensional feature vectors are
processed, as explained in the following.

A.2.1 Global video descriptor (GVD)
As noted by the authors of YouTube-8M [20], GVD exhibits three
advantages: fixed-length vectors allow to apply standard learning, the
amount of data involved in learning is reduced by the average length
of the video (230×), and the approach is generic. As a baseline,
we compute the video average feature vector µ as mean over the
feature sequence. Since the provided feature vectors are already nor-
malized, no further normalization is required and the resulting GVD
µ is fed directly into an FCNN for final classification. The chosen
network configurations for this evaluation are listed in Table A.1.
The FCNN has 1024 input dimensions, followed by two dense layers
that end in H1 and H2 neurons, each using ReLU activations which
are defined element-wise as x 7→ max(0, x). The third, final layer
outputs a softmax-normalized prediction for each class obtained by
x 7→ ex/‖ex‖1.

A.2.2 Frame based classification (FBC)
This approach maps each per-frame feature vector to a video class
prediction, and all predictions of a video sequence are then aggregated
to form the final classification. Learning of the FCNN is achieved
by using the global label of a particular video sequence as the local
ground-truth label for all frames in that video. The final classification
is obtained either by average or max-voting aggregation of the per-
frame results. We observed that averaging consistently outperforms a
max-voting aggregation and thus use the averaging scheme henceforth.

A.2.3 Long short-term memory (LSTM)
LSTM cells [215] are used to implement a recurrent neural network
(RNN) [217], that enables learning of high-level concepts from the
temporal information of the input sequence. Long-update chains in
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Table A.1: Hyper-parameter configurations and caused workloads
in terms of million MAC operations per building block. FCNN
configurations are used in both, the GVD and FBC pipelines.

FCNN k=0 1 2 3 4 5 6 7
H1 4096 4096 1024 512 256 128 64 32
H2 1024 4096 1024 512 256 128 64 32
CFCNN 8.4 21 2.1 0.8 0.33 0.15 0.07 0.03
LSTM k=0 1 2 3 4 5 6 7
H 32 64 128 512 1024 32 64 128
S 1 1 1 1 1 2 2 2
CLSTM 0.02 0.05 0.16 2.21 8.62 0.03 0.09 0.32
LSTM k=8 9 10 11 12 13 14
H 512 1024 32 64 128 512 1024
S 2 2 5 5 5 5 5
CLSTM 4.42 17.2 0.08 0.23 0.79 11.0 43.0

RNN architectures may cause vanishing or exploding gradient prob-
lems [218]. LSTMs can mitigate that problem by having an inter-
nal state storing long temporal information, whereas the rest of the
structure (input, output and forget gates) is modeled to capture local
(short-term) effects. Table A.1 lists the hyper-parameter choice used
in our evaluations. H denotes the dimensionality of the involved
hidden state and S is the amount of stacked LSTM-cell chains over
the full sequence. The LSTM configuration k = 13 corresponds to the
proposed configuration from [21] and k = 9 refers to the configuration
used in [20].
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A.3 Computational complexity
The number of MAC operations reliably estimates the inference time
for a wide class of CNNs [219]. Hence, we state the workload for one
video inference as:

CGVD = L/r · (CInception + d1) + CFCNNk
,

CFBC = L/r · (CInception + CFCNNk
+ d2) ,

CLSTM = L/r · (CInception + CLSTMk
+ d2) ,

(A.1)

where L refers to the length of the video sequence, d1 = 1024 is the
dimension of the used feature vectors, d2 = 20 the number of classes,
CInception = 4.8 · 109 the workload to compute the feature vectors,
CFCNNk

and CLSTMk
the FCNN configurations according Table A.1,

S the number of stacked layers and r the temporal subsampling factor
that will be introduced in more detail in the next section. Due to the
involved orders of magnitude, we have that CInception � CFCNNk

,
CInception � CLSTMk

and CInception � d1,2. Therefore, we observe
that CGVD ≈ CFBC ≈ CLSTM ≈ L/r · CInception.

A.4 Temporal subsampling
More than 99% of the inference workload is caused by the first frame-
level feature extraction step, irrespective of the actual classifier chosen.
It is, therefore, crucial to introduce optimizations leading to fewer
computations in the first step.

There are two common approaches to achieve this. First, a more
efficient network architecture than Inception-v3 could be sought by
exploring different network topologies, parametrizations and quanti-
zations such as in [204]. Second, a more efficient CNN evaluation
engine could be built by employing specialized hardware [220]. While
the first approach requires several long training and validation cycles,
the second approach requires custom hardware design which is a time-
consuming task.

In this chapter, we explore a third approach, where temporal
subsampling is used to significantly reduce the amount of CNN eval-
uations in the first step. Note that this is orthogonal to the other
two approaches and does not involve any expensive training iterations
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Figure A.2: Estimated probability density φ(fr) that a single frame
alone is sufficient to correctly classify the complete video sequence.
Prior-based subsampling improves accuracy by using φ(fr) to bias
sampling points to frames that are beneficial for classification.

of the large CNN in the first step. In this chapter, we use the full
length of the videos to train the three architectures described in
Sec. A.2, and introduce temporal subsampling during inference to save
computational complexity. Reducing the workload of the inference
step is especially critical in large-scale datacenter applications where
video footage is being uploaded at an ever-increasing rate3. We define
a decision function d(.) that outputs a Boolean vector x ∈ {0, 1}L
determining whether a given frame at index i in the video sequence
is processed (xi = 1) or skipped (xi = 0). A skipped frame allows us
to save a full CNN evaluation in the first step, and the computational
workload decreases linearly with the amount of skipped frames.

Subsampling Strategies

We consider two different instances of d termed regular subsampling
and prior-based subsampling, as described below. Regular subsampling
dreg(L, r) reduces the total amount of frames L by a fixed factor r in
a uniform manner and has the advantage that it can be applied at
almost no cost. Prior-based subsampling leverages the observation

3For example, several hundred video hours are uploaded to YouTube every
minute https://fortunelords.com/youtube-statistics/.

https://fortunelords.com/youtube-statistics/
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Table A.2: Dataset used for video classification.

Original Training set Validation set
Number of classes 4 800 20 20
Videos per class 2229† 500 100
Total videos 8 264 650 10 000 2000
Average video length 229.6 227.8 228.2
Number of frames 1.9 · 109 2 277 717 456 427
Feature data volume ∼ 1PB ∼ 9GB ∼ 2GB

† Average value, videos/entity ∈ [120, 539 926] [20].

that the sampling positions of the selected frames have a significant
impact on the overall classification outcome.

We consider the conditional probability p(f sufficient|fr) given the
relative frame position fr ∈ [0, 1] that a single frame f is sufficient
to correctly classify the full video sequence. We empirically esti-
mate φ(fr) = Interpolate(Histogram(f is sufficient)) as interpolated
aggregation of normalized histograms where correct classification re-
sults from Section A.2.2 are binned according fr. Figure A.2 shows
that frames taken from the middle of the video sequences are more
likely to lead to correct classification outcomes. This is probably due
to the fact that most videos contain lead-in and lead-out portions.
The prior-based subsampling strategy dprior(L, r, φ) introduces this
a-priory knowledge by randomly drawing bL/rc frame positions from
a distribution that is obtained by scaling φ(fr) to match the sequence
length L.

A.5 Evaluation and results
Section A.5 gives more details on the employed dataset, Section A.5
and Section A.5 explain the training procedure and Section A.6 finally
states the comparison of achieved accuracy versus workload tradeoffs.

Subset of YouTube-8M

To shorten the development cycle and make the evaluation practi-
cable, we constructed a subset of the YouTube-8M dataset, a multi-
labeled dataset with an average 1.8 of entity labels per video. We
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filter out all multi-labeled videos to create a single label problem. Ta-
ble A.2 states our choice, we assumed as practical resource constraint
a data volume limit that fits on a single GPU (Nvidia GeForce GTX
Titan X, 12GB random access memory (RAM)). Our subset allows
hyper-parameter tuning and multiple repetitions of the full training
to state the variance caused due to the random NN initialization in a
reasonable time. Note that this runtime reduction approach is suitable
in our case since we are not interested in maximizing the absolute clas-
sification accuracy, but in the relative accuracy degradation behaviour
due to temporal subsampling. The feature vectors provided in the
YouTube dataset have been sampled at a rate of 1Hz (one vector per
second of video) and the subsampling factor r used in this paper is
relative to that rate.

FCNN Training

We used the Adam optimizer [221] to train the FCNNs by minimizing
the average of the cross-entropy with a learning rate of 10−4. Note
that both the GVD and FBC pipelines employ the same FCNN con-
figurations listed in Table A.1. A batch size of 200 input samples
is employed, and the initialization of the weights is achieved using
random normal distributed values with a standard deviation of 0.1.
The bias values are initialized with a constant offset of 0.1 to break
the symmetry. Before the start of each epoch, all input samples are
shuffled with a uniform distribution over all possible permutations of
the input samples. Training is run for 100 epochs.

LSTM Training

Similar to [20], we unrolled the LSTM for 60 iterations and trained
on sequences of 60 consecutive frames at a random offset within the
video for 380 epochs. The loss function weighs all individual frame
losses with increasing values starting from 1/N for the first frame, up
to 1 for the last frame in order to enhance learning and classification
performance as in [20, 21]. Predictions are computed by considering
the full-length video. During training, we used a dropout factor of
0.5.
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Figure A.3: Comparison of accuracy achieved with best configurations
of GVD, FBC and LSTM approach as function of subsampling.

A.6 Results and discussion
In all experiments, the subsampling factor has been swept over the
range 1× to 100×. The accuracy is measured as Topk rate with k = 1,
i.e., the number of correct classified videos relative to all classified
videos.

Figure A.3 compares the accuracy behavior of the three approaches
depending on regular subsampling. We explain the stronger decay in
the case of the LSTM approach by the fact that LSTM was explicitly
trained to learn temporal information which is partially destroyed
by subsampling. Still, the best configurations remain ordered as a
function of subsampling.

Figure A.4 shows the obtained classification accuracy versus com-
putational workload for the GVD (a), FBC (b) and LSTM (c) ap-
proaches using regular subsampling. Even though different NNs and
different classification systems are considered, the characteristic caused
by subsampling is consistent which demonstrates the generality of
the approach. In the range where r ≤ 5 the accuracy degradation
is negligible. For larger r factors, subsampling gradually decreases
the classification accuracy. Interestingly, FBC seems to be more
robust against subsampling than the other two approaches. The
best LSTM and GVD configurations lose around 8% of classification
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accuracy from r = 50× to r = 100×, whereas FBC only loses 5%.
Figure A.4 d), e) and f) show the additional accuracy improvements
(in terms of percentage differences) achieved when employing prior-
based subsampling instead of regular subsampling. Positive values
are in favor of prior-based subsampling. Noise levels appear more
pronounced due to the zoomed-in view. Leveraging prior knowledge
in aggressively subsampled regions allows to improve the accuracy of
around 2% for the GVD and FBC approaches, and around 4% for the
LSTM at negligible extra cost.

A.7 Summary and conclusion
We considered three video classification approaches that employ a
two-step classification procedure and presented accuracy and com-
putational complexity results for various NN configurations. Our
evaluations show that, while the LSTM-based pipeline outperforms
a simple GVD approach, similar classification accuracies as achieved
by the LSTM approach can be reached by aggregating FBC results.
The FBC method has the advantage that it is considerably easier to
train than an LSTM approach.

Further, we note that most of the computational burden stems
from the first step involving the evaluation of a large CNN, and
investigate temporal subsampling as a simple yet effective way to
trade computational complexity against classification accuracy. We
introduce two different subsampling strategies and show that sig-
nificant workload reductions in the order of 10× can be achieved
with negligible impact on classification accuracy. Larger workload
reductions up to 100× are possible, leading to accuracy degradations
in the order of 10% for the best NN configurations.

Temporal subsampling is a simple and generic approach that does
not require retraining of large CNNs, and which behaves consistently
over the considered classification pipelines. It is straightforward to
implement, and therefore well suited for static or dynamic load balanc-
ing and cost optimization in large-scale, industrial video classification
systems.
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Figure A.4: Comparison of accuracy versus workload tradeoffs
achieved with regular subsampling for different configurations for the
a) GVD b) FBC and c) LSTM approach. For each approach, a
selection of representative curves is shown, comprising the best, the
worst, and two in-between configurations from Table A.1. Temporal
subsampling allows us to effectively trade computational workload
against classification accuracy, thereby generating a wide range of
Pareto optimal operating points. Improvements due to prior-based
subsamplig over regular subsampling are quantified in d-f) for the three
approaches.
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Notation and acronyms

Symbols

A matrix
a vector
a,A scalars
N set of natural numbers
Z set of integer numbers
R set of real numbers
Rn set of real n vectors
Rn×m set of real n×m matrices
T machine learning task
D machine learning dataset
DS source dataset
DT target dataset
A machine learning algorithm
M machine learning model
Qn,f fixed-point representation of n-bits with f fractional bits
Qunsignedn,f unsigned fixed-point representation
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Qsignedn,f signed fixed-point representation
Tw,t IEEE 754 floating-point representation of w exponent bits

and t significand bits
Ln,f LNS floating-point representation of n-bits with f frac-

tional bits
q quality (represented as scalar)
p performance (represented as scalar)
Θ configuration space
θ a specific configuration θ ∈ Θ
θopt the optimal configuration
θ∗ a good configuration
(p, q)θ performance p and quality q for configuration θ

Operators

ai i-th entry of vector a
ai i-th column of matrix A
Ai i-th row of matrix A
Ai,j entry of the i-th row and j-th column of matrix A
(·)T matrix transposition
| · | absolute value
d·e ceil: smallest integer value equal to or larger as argument
b·c floor: largest integer value equal to or smaller as argument
‖ · ‖1 `1-norm, i.e.,

∑n
i |xi| for x ∈ Rn

‖ · ‖ `2-norm or Euclidean norm, i.e.,
√∑n

i |xi|2 for x ∈ Rn

‖ · ‖∞ `∞-norm, i.e.,
∑n
i max{|xi|} for x ∈ Rn

< less than
≤ less or equal than
� much less than
> greater than
≥ greater or equal than
� much greater than
� Pareto dominant over (i.e., better in all aspects)
f(·) scalar function
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f ′(·) first derivative of f
f ′′(·) second derivative of f
exp(·) natural exponential function
log2 base-2 logarithm
log10 base-10 logarithm∑

summation∏
product sequence∫
integration

O(·) big-O, asymptotic complexity bound
P (·) Characterization of performance
Q(·) Characterization of quality
RP,Q(·) Characterization of trade-off between performance versus

quality
i++ single step increment, i← i+ 1
i+=s increment and assign, i← i+ s

Acronyms

AI artificial intelligence
ALU arithmetic logic unit
ASIC application-specific integrated circuit

BLAS basic linear algebra subprograms
BLSTM bidirectional LSTM
BN batch normalization
BW backward

CNN convolutional neural network
COSMO consortium for small-scale modelling
CPU central processing unit
CSR compressed sparse row
CTC connectionist temporal classification
CUDA compute unified device architecture
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DAG directed acyclic graph
DL deep learning
DNAS differentiable neural architecture search
DNN deep neural network
DOT dot product
DPN dual-path networks
DRAM dynamic random access memory
DSP digital signal processor
DT data types

FBC frame based classification
FCNN fully-connected neural network
FEM finite element method
FGPA field-programmable gate array
floatx reduced precision floating-point library
FLOP floating-point operations
FMA fused-multiply-add
FPGA field programmable gate array
FPU floating-point unit
FSM finite state machine
FW forward

GAN generative adversarial network
GEMM general matrix matrix multiplication
GLQ Gauss-Legendre quadrature
GNU GNU’s not unix!; free software
GPU graphical processing unit
GTX GeForce Titan X (GPU)
GUI graphical user interface
GVD global video descriptor

HDL hardware description language
HDMI high definition multimedia interface
HPC high performance computing
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HPCG high performance conjugate gradient
HPO hyperparameter optimization
HW hardware

ICDM international conference on data minin
IDE integrated development environment
ILSVRC imagenet - large scale visual recognition challenge
INTLAB INTerval LABoratory
IoT internet of things
IPV inexact program version

KNN K-nearest neighbors

LAN local area network
LDPC low density parity check
LFSR linear feedback shift register
LINPACK linear algebra package
LLVM low level virtual machine
LNS logarithmic number system
LP loop perforation
LSTM long-short-term memory
LUT look-up table

MAC multiply-accumulate
ML machine learning
MNIST modified national institute of standards and technology
MPFR multiple precision floating-point reliably

NaN not a number
NAS neural architecture search
NN neural network

OCR optical character recognition
ONNX open neural network exchange
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PCA principle component analysis
PULP parallel ultra-low-power

RAM random access memory
RNN recurrent neural network
RTL register-transfer level

SC stochastic computing
SFINAE substitution failure is not an error
SGD stochastic gradient descent
SIMD single instruction multiple data
SIMT single instruction multiple threads
SNG stochastic number generator
SPEC standard performance evaluation corporation
SVM support vector machines
SW software

TAPAS train-less accuracy predictor for architecture search
TP transprecision
TSM task skipping and memoization

UNUM universal number
USB universal serial bus

VGG visual geometry group
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