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Impact of bicycle traffic on the Macroscopic Fundamental Diagram: 

Some empirical findings in Shanghai 

 

ABSTRACT 

 

Interactions between bicycles and cars have attracted increasing attention during the recent years. 

This paper aims to investigate the impact of bicycle traffic on the macroscopic fundamental 

diagrams (MFDs) for urban car traffic. Based on the empirical data, we develop a Bicycle 

Congestion Index (BCI)-based functional form of MFD relating network bicycle flow and car 

flow reductions. A link-based method is also proposed to estimate the MFD, considering the 
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spilling behaviors of bicycles at the link level. The results indicate that the effect of bicycle traffic 

on car MFD varies with different traffic conditions and network features. Compared with car-

only roads, it is more efficient to increase network car flow by installing physically separated 

facilities and reducing the number of spilling bicycles. To this end, various traffic management 

strategies may be applied in the city of Shanghai, such as lifting the ban of cyclists on the central 

city area, building physically connected facilities to existing segments, and enforcing stricter 

operational regulations and management on bicycle traffic. 

 

Keywords: Macroscopic Fundamental Diagram (MFD); car-bicycle interaction; bicycle traffic; 

network level; spilling behavior 

 

 

 

 

1 Introduction 

Urban street networks are typically shared by different travel modes, including cars, 

buses, bicycles, and pedestrians, which interact with each other and compete for limited 

road space, as well as public financial subsidies (Sun and Elefteriadou, 2014; Nian et al., 

2019). Usually, cyclists can ride on the exclusive bicycle facility if there is one. However, 

in many cases, bicycles would frequently conflict with car traffic and slow down car 

speeds. For example, a case study in Nanjing, China revealed that bicycles were prone to 

spill into car lanes for segments with on-street parking (Chen et al., 2017). Another case 

study in Nanjing and Ningbo, China found that bicycles would travel outside the bicycle 

lane to keep desired speeds if the bicycle volume was large (Gang et al., 2016). The 

interference of bicycles also cannot be avoided when cars and bicycles share the same 

road segments without separation facilities between the two traffic streams. For example, 

for car-bicycle shared roads in China (Chen and Wang, 2016) and cycling streets in The 

Netherlands (Wierbor et al., 2020), cars need to slow down or even match the speeds of 

bicycles when bicycles are present on these roads. Understanding these car-bicycle 

interactions is important for both safety and accessibility purpose.  

The impact of bicycle traffic on car traffic has been explored from different 

perspectives, mainly including road safety (Duan et al., 2017; Lawrence et al., 2018; 

Schepers et al., 2011) , travel behavior (Piatkowski et al., 2017; Silvano et al., 2016), and 
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traffic flow characteristics (Allen et al., 1998; Vasic and Ruskin, 2012; Chen et al., 2014; 

Luo et al., 2015; Chen and Wang, 2016; Gang et al., 2016; Chen et al., 2017; Chen et al., 

2018; Wierbos et al. 2020). Plenty of studies have investigated the multimodal traffic 

flow characteristics at the intersection level or link level based on the cellular automata 

(CA) model. For example, Vasic and Ruskin (2012) proposed a car-bicycle model for 

both link level and intersections using the CA model. Luo et al. (2015) simulated the 

heterogeneous flow using the CA model and discussed the impact of spilling behavior of 

bicycle on car traffic at the link level. Gang et al. (2016) investigated the dispersion 

phenomenon of bicycle traffic at signalized intersections based on the CA model. Chen 

and Wang (2016) proposed the CA model to investigate the impact of bicycle traffic on 

car speeds along the roadside. Chen et al. (2017) simulated the lane-changing behavior of 

cyclists on segments with on-street parking and identified the conflicts between car and 

bicycles based on the CA model. Some recent studies used analytic methods to investigate 

traffic dynamics of car and bicycle traffic. For example, Yuan et al. (2019) and Wierbos 

et al. (2020) proposed the macroscopic flow models for mixed bicycle-car traffic and the 

models were validated by traffic simulations. Nevertheless, these existing methods have 

limitations in empirically evaluating the multimodal planning and schemes at the network 

level. More empirical data-driven methods are needed to quantify the car-bicycle 

interactions and evaluate the bicycle-related schemes. For instance, to mitigate bicycle-

car conflicts, Shanghai has enforced a traffic separation scheme and started to restrict 

bicycles on certain major roads in the central city area (Xin, 1996), which raises some 

controversy. As bicycle traffic is prohibited in the car-only roads, cyclists need to 

dismount and walk with their bicycles or make a detour to avoid these roads. According 

to Zacharias (2002), both car and bicycle volume declined significantly after 

implementing the separation schemes. It is crucial to understand multi-modal interactions 

and quantify the impact of such separation schemes on the network traffic performance. 

This study evaluates the impact of bicycle traffic on network car traffic performance 

based on a network-wide traffic modelling approach, named macroscopic fundamental 

diagram (MFD). MFD is a reproducible curve that relates traffic production and 

accumulation within a network, which was  proposed by Daganzo (2007) and Geroliminis 

and Daganzo (2007). Compared with traditional forecasting methods, the basic idea of 

the MFD is to shift the modelling emphasis from microscopic predictions to macroscopic 

monitoring and control (Daganzo, 2007). Practically, the MFD can be estimated without 

full knowledges of the dynamic traffic assignment and accurate prediction of driver 
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behavior. By monitoring the state of MFD continuously, traffic managers can understand 

whether the network system is in a desired accessibility level (Geroliminis and Daganzo, 

2008). The existence of MFD was first verified by computer simulation (Geroliminis and 

Daganzo, 2007) and then examined empirically by Geroliminis and Daganzo (2008). So 

far, empirical MFDs have been observed in many cities. For example, Chinese cities, 

including Shanghai (Huang et al., 2018a), Shenzhen (Ji et al., 2014), and Changsha 

(Beibei et al., 2016), and Zurich, Switzerland (Ambühl et al., 2017) have observed 

empirical MFDs in urban networks. Recently, Loder et al. (2019) investigated the 

relationship between network features and critical accumulations based on MFDs from 

more than 40 cities. To consider bi-modal interaction within car-bus networks, Zheng and 

Geroliminis (2013), Geroliminis et al. (2014), and Loder et al. (2017) extended the single-

modal MFD to bi-modal MFD model, known as three-dimensional macroscopic 

fundamental diagram (3D-MFD). Using simulation methods, the 3D-MFD has been 

applied to road space distribution (Zheng and Geroliminis, 2013; Wei and Sun, 2018), 

parking pricing (Zheng and Geroliminis, 2016), and perimeter flow control (Ampuntolas 

et al., 2017; Ding et al., 2017). The empirical 3D-MFD model assists to understand 

multimodal interactions at an aggregated level, which has also been verified with 

empirical data in Zurich (Loder et al., 2017) and in a large-scale network in Shenzhen, 

China (Fu et al., 2018).  

Although the idea of MFD is mode-abstract and could be applied to multi-modal 

urban networks (Daganzo, 2007), empirical MFDs so far have only considered 

pedestrians (Hoogendoorn et al., 2010; Taherifar et al., 2019) and motorized traffic, e.g., 

car and bus. The impact of bicycle traffic on MFD has received little attention in the 

literatures. The possible reasons include: (1) lacking of the fundamental basis of bicycle 

behavior; (2) lacking of the bicycle flow-related sensor data; (3) difficulty simulating 

cyclists’ behavior; and (4) scarcity of the congested bicycle traffic data at the network 

level. With the emergence of innovative mobility services during the last few years, such 

as dockless bicycle-sharing, a tremendous amount of bicycle data are available, which 

may be combined with vehicle data to explore the interactions between bicycle and car 

traffic. This paper aims to explore the impact of bicycle traffic on car flow at the network 

level. More specifically, three tasks were included as follows: (1) quantifying car-bicycle 

interactions; (2) analyzing the relationship between bicycle-related facilities and car 

MFD; (3) quantifying the impact of bicycle flow on car MFD under various network 

features. Based on the results of MFD in this study, we can understand: (1) whether the 
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traffic performance of the study network is at a desired level; (2) the potential of 

improving the network flow by reducing car-bicycle interactions; (3) how to adjust the 

existing bicycle facilities and traffic schemes to effectively improve the network 

performance. 

The remainder of the paper is structured as follows: Section 2 presents the research 

area and empirical data used in this study. In Section 3, a data-driven method and a link-

based method are proposed to quantify the effect of bicycle traffic on car MFD. In Section 

4, results from the data-driven method and the link-based method are provided and 

compared. Finally, conclusions and findings are discussed in Section 5. 

2 Research Area and Data 

2.1 Research area 

The inner central area of Shanghai, with a scale around 80 km2, was chosen as the subject 

area (see Figure 1), including 177 secondary roads and 110 arterial roads. Residential 

roads and urban expressways were not considered. Note that a certain number of roads 

within the area are operated as car-only facilities, with the layout shown as “Car-only 

Road” in Figure 1. 

 
Figure 1. The study network in Shanghai (Source: OpenStreetMap) 

2.2 Data 

This section presents the empirical dataset used in the study, including taxi floating car 

data (FCD), loop detector data (LDD), GPS data from dockless sharing bicycles, and 

video data. 
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2.2.1 Car data 

Sequential trajectories of floating car data (FCD) from Shanghai Qiang-Sheng Taxi 

Company were obtained from 13,475 taxis from Aug. 1 to 31, 2016. Each record contains 

taxi_ID, date, measurement_time, longitude, latitude, speed (km/h), and operational 

status (1 for vacant / 0 for occupied). The daily dataset has over one hundred million 

records in 10-second intervals (more than 10 GB). The data cleaning process is consistent 

with other studies (Huang et al., 2018b; Huang et al., 2018c; Sun and Ding, 2019). In 

Shanghai, the speed limits for most arterial roads and expressways are set from 60km/h 

to 100 km/h, as a result the records with the speed higher than 120 km/h were considered 

as outliers, and removed. 

Loop detector data (LDD) was collected from 326 loop detectors by Shanghai traffic 

authorities, which are mainly installed on highways or ramps for traffic control purposes. 

The LDD dataset contains attributes including location (e.g., from one ramp to the other), 

road type (highway, on-ramp, or off-ramp), direction, hourly flow, and daily flow. 

2.2.2 Bicycle Data 

Bicycle data was obtained from Mobike Technology Company, one of the largest bicycle-

sharing companies in China. As presented by Zhang and Mi (2018), Mobike receives 

about 20 million orders per day, accounting for nearly 60% market share of bicycle 

sharing. The dataset contains more than 1,000,000 bicycle-sharing orders in Shanghai 

from Aug. 1 to 31, 2016. Each record contains order_ID, bicycle_ID, user_ID, date, 

start_time, start_location, end_time, end_location, and trajectory points. Since each raw 

trajectory point 𝑘𝑠 (1 < 𝑠 ≤ 𝑛) is not ordered and has no time stamps, the order of bicycle 

trajectories {�̂�1, �̂�2,…,�̂�𝑛} was estimated by calculating and comparing relative distance 

between start_location �̂�1 and end_location �̂�𝑛. For each trip 𝑢, the average speed �̅�𝑢 was 

estimated by dividing the sum of adjacent distances 𝑑𝑠,𝑠+1 by travel time 𝑇𝑢: 

�̅�𝑢 =
∑ 𝑑𝑠,𝑠+1
𝑛−1
𝑠=1

𝑇𝑢
                                                        (1) 

where 𝑑𝑠,𝑠+1  is the Euclidean distance between two adjacent trajectory points �̂�𝑠  and 

�̂�𝑠+1; 𝑇𝑢 is the travel duration between start_time and end_time for trip 𝑢. To estimate 

the travel distance and average speed for each trip 𝑢, the trajectory points out of the study 

network (e.g., residential roads) were also included.  
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The filtering criteria was carefully selected based on the quantile-based criteria (Park 

et al., 2003). Records with average speeds less than 5 km/h and higher than 25 km/h (close 

to the 5th percentile and 95th percentile of the overall travel speeds), or those with travel 

distance less than 500 meters, or more than 10 km (close to the 5th percentile and 95th 

percentile of the overall travel distance), were removed from the dataset. 

2.2.3 Video Data 

To validate the results from massive trajectories for car and bicycle traffic, we collected 

the traffic video data from ten selected segments (five physically separated segments and 

five non-physically separated segments) in Shanghai as in the previous study (Sun and 

Elefteriadou, 2010). Road and traffic flow information, such as separation type, green 

time/cycle length, car flow, bicycle flow, and number of spilling bicycles can be extracted 

from the video data. For each segment, we collect 2-hour video for peak hours (17:00 - 

19:00) and 2-hour video for non-peak hours (13:00 - 15:00). 

3 Methodology 

This section focuses on the macroscopic traffic models for car-bicycle heterogeneous 

traffic. We first develop the data-driven method to empirically investigate the inference 

effect of bicycle traffic on car MFD. Then, the link-based method is built to explain and 

validate the effect of spilling bicycles on car traffic under various traffic conditions and 

road facilities. 

3.1 Data-driven method  

3.1.1 Stratified re-sampling method for MFD estimation 

Previous studies have proved that spatial heterogeneity of traffic demand can cause flow 

reductions and make the shape of MFDs more scattered, such as Geroliminis and Sun 

(2011), Gayah and Daganzo (2011), Knoop et al. (2015), Xie et al. (2016), and Kim and 

Yeo (2017). Since this study mainly focuses on the effect of bicycle traffic and bicycle-

related facilities on the shape of car MFDs, to reduce the influence of inhomogeneity of 

car demand, the stratified re-sampling method, is used for MFD estimation. As mentioned 

in Ambühl et al. (2018) and Loder et al. (2019), the upper-bound MFDs estimated from 

the re-sampling method describe the boundary of car traffic state and are relatively 

independent of car demand. The re-sampling method also effectively determines network 
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capacity and critical density, even if no distinct congested branch is observed (Ambühl et 

al., 2018).  

In this study, to further investigate the impact of bicycle traffic on car MFD, we 

extend the re-sampling method to a stratified re-sampling method, which is illustrated in 

Figure 2. First, the study network is stratified into different sub-networks Ni. Each sub-

network contains |𝑁𝑖| links with different facility types, such as number of lanes, road 

type, and separation type, which may assist to control the effect of these facility types 

when investigating the relationship between bicycle traffic and car MFD. Then, by 

following Ambühl et al. (2018), |𝑁𝑖Ω𝑗| links are randomly drawn from each sub-network 

𝑁𝑖 without replacement and are combined into a sampled sub-network 𝑁𝑖Ω𝑗  (𝑁𝑖Ω𝑗 ⊂ 𝑁𝑖), 

where the ratio of |𝑁𝑖Ω𝑗|/|𝑁𝑖| denotes the given network share, such as 20%, 40%, 60%, 

and 80%. This process is repeated Ω𝑗 times by re-selecting another |𝑁𝑖Ω𝑗| links. For each 

subset of the original sub-network 𝑁𝑖Ω𝑗 , various empirical MFDs and corresponding 

network features may be obtained based on the empirical data. Finally, empirical MFDs 

from each sampled sub-network 𝑁𝑖Ω𝑗  can be combined for different research purposes. 

For example, to compare the network performance among different sub-networks, 

empirical MFDs from sampled sub-networks 𝑁𝑖Ω𝑗  can be combined into a re-sampled 

MFD for each sub-network Ni (see Section 4.1.1). To control the effect of network 

features and compare the effect of bicycle flow on car MFD for the total network N, these 

re-sampled MFDs can be further combined into a total re-sampled MFD (see Section 

4.1.2). As mentioned in Ambühl et al. (2018), we can identify the stable upper-bound 

MFD from the re-sampled MFD or the total re-sampled MFD. Since road attributes for 

each sub-network are more homogeneous, the upper-bound MFDs in this study should 

have less heterogeneity-related flow reductions than the un-stratified network applied in 

Ambühl et al. (2018).  
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Figure 2. The stratified re-sampling method 

Using the FCD of taxi trajectories, the empirical MFD for each sampled sub-network 

𝑁𝑖Ω𝑗  is estimated based on Edie’s generalized traffic definition (Ambühl and Menendez, 

2016; Edie, 1963). The total distance, 𝑑𝐹𝐶𝐷𝑡𝑜𝑡 , and the total travel time, 𝑡𝐹𝐶𝐷𝑡𝑜𝑡 , spend in the 

network during a 10-minute interval, are used to estimate the MFD: 

�̂�𝐹𝐶𝐷 =
𝑑𝐹𝐶𝐷
𝑡𝑜𝑡

𝐿𝑇10�̂�
                                                         (2) 

�̂�𝐹𝐶𝐷 =
𝑡𝐹𝐶𝐷
𝑡𝑜𝑡

𝐿𝑇10�̂�
                                                        (3) 

where �̂�𝐹𝐶𝐷 is the network flow estimated by FCD; �̂�𝐹𝐶𝐷 is the network density estimated 

by FCD; L represents the length of total network, 𝑇10 represents a 10-minute time slice, 

and �̂� represents taxi probe penetration rate. 

Taxi probe penetration rate �̂� is determined by combining the FCD and LDD for the 

same time slice. For each road segment i, loop detectors measure the link traffic flow 𝑞𝑖 

for each hour, which are then weighed by segment length li to calculate the network flow 

�̂�𝐿𝐷𝐷: 

�̂�𝐿𝐷𝐷 =
∑ 𝑞𝑖𝑙𝑖𝑖

∑ 𝑙𝑖𝑖
                                                       (4)  

Since the network flow �̂�𝐿𝐷𝐷 can also be expressed by the average of network flow 

�̂�𝐹𝐶𝐷 estimated by FCD: �̂�𝐿𝐷𝐷 = �̂�𝐹𝐶𝐷, the taxi penetration rate can then be estimated as: 

�̂� =
𝑑𝐹𝐶𝐷
𝑡𝑜𝑡

𝑇10∑ 𝑞𝑖𝑙𝑖𝑖
                                                       (5) 
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Note that the LDD used in this study are mainly installed on highways or ramps, the 

estimated taxi penetration rate, denoted as �̂�𝐻, is mainly suitable for the highway network 

instead of the surface road network. According to the 5th Shanghai Comprehensive Traffic 

Survey (2015), the average travel distance for each operational taxi trip is about 7.1 km, 

while for a regular car, it is about 14.5 km. Different travel distance may lead to other 

route preferences, which may result in varying taxi penetration rates between highways 

and surface roads. Therefore, the taxi penetration rate for surface roads, denoted as �̂�𝑆, 

should be further modified from the estimated taxi penetration rate for highways (�̂�𝐻). 

Details of modifying the taxi penetration rate can be found in Appendix 1. 

3.1.2 BCI-based functional form for MFD 

The first objective of this study is to identify whether the shape of car MFD will be 

affected by bicycle flow. Since the existing bicycle-sharing dataset has limitations in 

representing the total bicycle flow without information about the service penetration rate, 

the widely accepted V/C ratio (HCM2010, 2010) is not used to reflect the level of 

facilities service for the bicycle network. To this end, a Bicycle Congestion Index (BCI), 

defined as the relative volume of shared bicycles, is proposed to represent the relative 

bicycle flow characteristic for the target network. The value of BCI is calculated by 

normalizing the network volume of shared bicycles 𝑄𝑠ℎ𝑎𝑟𝑒𝑑−𝑏𝑖𝑐𝑦𝑐𝑙𝑒 into 0 to 1: 

𝐵𝐶𝐼 =
𝑄𝑠ℎ𝑎𝑟𝑒𝑑−𝑏𝑖𝑐𝑦𝑐𝑙𝑒

𝑄𝑠ℎ𝑎𝑟𝑒𝑑−𝑏𝑖𝑐𝑦𝑐𝑙𝑒
99𝑡ℎ                                                   (6) 

To avoid outliers, the 99th percentile of the shared bicycle volume 𝑄𝑠ℎ𝑎𝑟𝑒𝑑−𝑏𝑖𝑐𝑦𝑐𝑙𝑒99𝑡ℎ  is used 

to present the maximum shared bicycle volume for the target network.  

To quantify the impact of bicycle flow on car MFDs, a functional form may be 

proposed to capture the dynamics of car flow reduction due to bicycle traffic. Currently, 

most empirical MFD studies choose exponential-family or polynomial functions as the 

functional form of network flow-density relations. However, parameters of these methods 

do not have a strong physical meaning to explain the flow reduction of MFDs. Recently, 

Ambühl et al. (2020) proposed a new functional form of MFD to quantify the level of 

flow reduction, which was based on the smooth approximation of an upper bound of 

technologically feasible traffic states. The method measures the difference between 

observed traffic states and the trapezoidal MFD, which gives the values of potential to 

improve the existing network performance. This study uses the 𝜆 − 𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙 MFD 
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function to investigate the relationship between bicycle traffic and flow reductions of car 

MFD, as follows: 

𝑞𝑐(𝑘𝑐, 𝐵𝐶𝐼) = −𝜆(𝐵𝐶𝐼)ln(exp(−
𝜇𝑓,𝑐𝑘𝑐

𝜆(𝐵𝐶𝐼)
) + exp(

−𝑄𝑐

𝜆(𝐵𝐶𝐼)
) +  exp(

−(𝜅𝑐−𝑘𝑐)𝑤𝑐

𝜆(𝐵𝐶𝐼)
))        (7) 

where, 𝑞𝑐 is the network car flow; 𝑘𝑐 is the network car density; 𝜆(𝐵𝐶𝐼) determines how 

far the observations of MFD lie beneath the trapezoidal MFD, which is assumed to be 

related to 𝐵𝐶𝐼  in this study; 𝜇𝑓,𝑐  is the free flow speed (car); 𝑄𝑐  is the intersection 

capacity (car); 𝜅𝑐 is the jam density (car); and 𝑤𝑐 is the backward wave speed (car). 

Technical parameters for trapezoidal MFD (𝜇𝑓,𝑐, 𝑄𝑐, 𝜅𝑐, and 𝑤𝑐) are estimated by 

empirical data or given by the local transportation authority. We estimate the free flow 

speed 𝑢𝑓,𝑐 by using the 85th percentile of network taxi speeds for non-rush hours. The 

intersection capacity 𝑄𝑐  is calculated based on the equation given by Daganzo and 

Geroliminis (2008). The average ratio of green time/cycle length is given by Wang et al. 

(2014). The jam density 𝜅𝑐 is estimated by the average vehicle length. Here, we assume 

that the average vehicle length in Shanghai is similar to London and Marseille, where the 

value of 𝜅𝑐 is given by Ambühl et al. (2020). The backward wave speed 𝑤𝑐 is provided 

by the local transportation authority. Technical parameters used in this paper are 

summarized as: 𝑢𝑓,𝑐 =5.460 m/s; 𝑤𝑐=1.614 m/s; 𝜅𝑐=0.150 veh/m; 𝑄𝑐=0.175 veh/s. To 

obtain MFDs with different values of the 𝐵𝐶𝐼, we estimate Eq. (7) using the non-linear 

quantile regression method, which allows to approximate the conditional quantiles of a 

response variable distribution. To avoid outliers’ influence, we apply this method to 

estimate the upper-bound MFD (the 97.5th quantile). The pseudo-R2 for the quantile 

regression estimation was calculated based on Koenker and Machado (1999).  

3.2 Link-based method  

To validate and explain the results of the data-driven method, this section proposed a link-

based method that incorporating car-bicycle interactions at the disaggregated level. 

3.2.1 Spilling behavior of bicycles 

As bicycles are prone to spill into car lanes and hinder car traffic, the number of spilling 

bicycles is used to reflect car-bicycle conflicts for various traffic conditions and road 

facilities. In this study, bicycle facilities are classified into three categories according to 

the separation type between car and bicycle traffic (HCM2010, 2010): 
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 Bicycle lane: A portion of a roadway designated by striping, signing and 

pavement markings for preferential or exclusive use of bicycles.  

 Bicycle path: A bicycle facility physically separated from motorized traffic by an 

open space or barrier, either within the highway right‐ of‐ way or within an 

independent right‐ of‐ way.  

 Shared road: A facility where bicycles share a travel lane with motorized vehicular 

traffic.  

 Car-only roads are different from road segments with bicycle paths. Both car and 

bicycle traffic are allowed to use road segments with bicycle paths, while car-only roads 

are restricted for bicycle traffic, where cyclists should dismount and walk with the 

bicycles on sidewalks or make a detour.  

In this study, spilling behavior of bicycles is modelled based on type of bicycle 

facilities and traffic conditions for both car and bicycle traffic. For segments with bicycle 

path or bicycle lane, according to the observations from video data, cyclists may spill into 

car lanes through the separation markings or gaps of disconnected separation facilities 

(e.g., the entrance of underground parking/companies/shopping malls) and hinder car 

traffic if the bicycle volume is large. Therefore, the number of spilling bicycles 𝑞𝑠𝑝𝑖𝑙𝑙,𝑖 is 

modelled based on the saturation level of bicycle facilities and the average car density 

during the 10-minute slice. For car-bicycle shared roads, the interference of bicycles 

cannot be avoided when cars passing bicycles. The number of spilling bicycles 𝑞𝑠𝑝𝑖𝑙𝑙,𝑖 is 

expressed as bicycle volume directly. For car-only roads, a small number of cyclists may 

spill into car lanes illegally if the local traffic laws and traffic management are not strict 

enough. The number of spilling bicycles for car-only roads is modelled based on network 

bicycle flow 𝑞𝑏 and the percentage of cyclists violating the bicycle restricted rule 𝛿. To 

sum up, the number of spilling bicycles per hour 𝑞𝑠𝑝𝑖𝑙𝑙,𝑖 is modelled for segments with 

different bicycle facilities 𝐿𝑏,𝑖 as follows: 

𝑞𝑠𝑝𝑖𝑙𝑙,𝑖 =

{
 
 

 
 𝑞𝑏,𝑖 ∗ 𝑁𝑏,𝑖 ∗ 𝑃𝑠𝑝𝑖𝑙𝑙,𝑖(𝑘𝑐,𝑖, 𝑞𝑏,𝑖/𝐶𝑏,𝑖, 𝑠𝑖)|𝑠𝑖=1 𝑖𝑓 𝐿𝑏,𝑖 𝑖𝑠 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑡ℎ

𝑞𝑏,𝑖 ∗ 𝑁𝑏,𝑖 ∗ 𝑃𝑠𝑝𝑖𝑙𝑙,𝑖(𝑘𝑐,𝑖, 𝑞𝑏,𝑖/𝐶𝑏,𝑖, 𝑠𝑖)|𝑠𝑖=0 𝑖𝑓 𝐿𝑏,𝑖 𝑖𝑠 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 𝑙𝑎𝑛𝑒

𝑞𝑏,𝑖 𝑖𝑓 𝐿𝑏,𝑖 𝑖𝑠 𝑠ℎ𝑎𝑟𝑒𝑑 𝑟𝑜𝑎𝑑

𝑞𝑏 ∗ 𝛿 𝑖𝑓 𝐿𝑏,𝑖 𝑖𝑠 𝑐𝑎𝑟_𝑜𝑛𝑙𝑦 𝑟𝑜𝑎𝑑

   (8) 

where 𝑞𝑠𝑝𝑖𝑙𝑙,𝑖 is the number of spilling bicycles per hour for segment 𝑖; 𝑞𝑏,𝑖 is the average 

bicycle volume for segment 𝑖 (per lane); 𝑁𝑏,𝑖 is the number of non-motorized lanes for 
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bicycle facility 𝐿𝑏,𝑖; 𝑃𝑠𝑝𝑖𝑙𝑙,𝑖 is the percentage of spilling bicycles for bicycle facility 𝐿𝑏,𝑖; 

𝑘𝑐,𝑖 is the average car density for segment 𝑖; 𝐶𝑏,𝑖 is the capacity of bicycle facility 𝐿𝑏,𝑖; 𝑠𝑖 

is a dummy variable: 𝑠𝑖=1 for segments with bicycle path, 𝑠𝑖=0 for segments with bicycle 

lane; 𝑞𝑏 is the average bicycle network volume; 𝛿 is the percentage of cyclists violating 

the bicycle restricted rule.  

To simplify the model, the percentage of spilling bicycles 𝑃𝑠𝑝𝑖𝑙𝑙,𝑖  under the 

conditions of car density 𝑘𝑐,𝑖, bicycle level of service (𝑞𝑏,𝑖/𝐶𝑏,𝑖), and separation type 𝑠𝑖 is 

modelled using the linear regression model in this study: 

𝑃𝑠𝑝𝑖𝑙𝑙,𝑖(𝑘𝑐,𝑖, 𝑞𝑏,𝑖/𝐶𝑏,𝑖, 𝑠𝑖) = 𝛽0 + 𝛽1𝑘𝑐,𝑖 + 𝛽2𝑞𝑏,𝑖/𝐶𝑏,𝑖 + 𝛽3𝑠𝑖                      (9) 

where 𝛽0, 𝛽1, 𝛽2 and 𝛽3 are coefficients to be estimated from the empirical data. 

3.2.2 Spilling-based functional form for MFD 

The interference effect of spilling bicycles on the fundamental diagram (FD) for car 

traffic is modelled based on the macroscopic flow model for mixed bicycle-car traffic 

(Wierbos et al., 2020). Similar to Luo et al. (2015), we assume that interactions between 

cars and bicycles are mainly for right-most car lanes. If the car lane 𝐿𝑐,𝑖 is not the right-

most lane, the Greenshields’ linear model is adopted to model the car density 𝑘𝑐,𝑖 and the 

car speed 𝑣𝑐,𝑖. If the car lane 𝐿𝑐,𝑖 is the right-most lane, similar to Wierbos et al. (2020), 

the interference effect of bicycle on 𝐿𝑐,𝑖 can be divided into friction interference and block 

interference based on the average space  𝑠𝑠𝑝𝑖𝑙𝑙,𝑖  between two spilling bicycles. The 

average space 𝑠𝑠𝑝𝑖𝑙𝑙,𝑖 can be estimated by dividing the average speed of spilling bicycles 

𝑣𝑠𝑝𝑖𝑙𝑙,𝑖  by the number of spilling bicycles per hour 𝑞𝑠𝑝𝑖𝑙𝑙,𝑖 : 𝑠𝑠𝑝𝑖𝑙𝑙,𝑖 = 1/𝑘𝑠𝑝𝑖𝑙𝑙,𝑖 =

𝑣𝑠𝑝𝑖𝑙𝑙,𝑖/𝑞𝑠𝑝𝑖𝑙𝑙,𝑖 . According to Wierbos et al. (2020), if the space between two spilling 

bicycles is sufficient on the right-most car lane (𝑠𝑠𝑝𝑖𝑙𝑙,𝑖 > 𝛼), cars are more likely to 

overtake the spilling bicycles and the interference is mainly friction interference. If the 

space between two spilling bicycles is not large enough (𝑠𝑠𝑝𝑖𝑙𝑙,𝑖 ≤ 𝛼), the interference 

becomes mainly block interference and cars need to match bicycles’ speed. The 

expressions of car speed 𝑣𝑐,𝑖𝐿  on different lanes 𝐿𝑐,𝑖 for segment 𝑖 are given as follows: 

𝑣𝑐,𝑖
𝐿 = {

𝑣𝑓,𝑖(1 − 𝑘𝑐,𝑖/𝑘𝑗,𝑖)                           𝑖𝑓 𝐿𝑐,𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑖𝑔ℎ𝑡 − 𝑚𝑜𝑠𝑡 𝑙𝑎𝑛𝑒               

𝑣𝑓,𝑖(1 − 𝑘𝑐,𝑖/𝑘𝑗,𝑖) ∗ 𝜂(𝑠𝑠𝑝𝑖𝑙𝑙,𝑖)     𝑖𝑓 𝐿𝑐,𝑖 𝑖𝑠 𝑟𝑖𝑔ℎ𝑡 − 𝑚𝑜𝑠𝑡 𝑙𝑎𝑛𝑒,   𝑠𝑠𝑝𝑖𝑙𝑙,𝑖 > 𝛼

min(𝑣𝑠𝑝𝑖𝑙𝑙,𝑖,  𝑣𝑓,𝑖(1 − 𝑘𝑐,𝑖/𝑘𝑗,𝑖)) 𝑖𝑓 𝐿𝑐,𝑖 𝑖𝑠 𝑟𝑖𝑔ℎ𝑡 − 𝑚𝑜𝑠𝑡 𝑙𝑎𝑛𝑒,   𝑠𝑠𝑝𝑖𝑙𝑙,𝑖 ≤ 𝛼

 (10) 
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where 𝑣𝑓,𝑖 and 𝑘𝑗,𝑖 are the free flow speed and the jam density for segment 𝑖; the values 

of 𝑣𝑓,𝑖  and 𝑘𝑗,𝑖  are empirically estimated for segment  𝑖  with a particular road 

type; 𝜂(𝑠𝑠𝑝𝑖𝑙𝑙,𝑖) is the speed adjustment parameter for free flow speed of car due to the 

bicycle friction interference; 𝛼 is the threshold between friction interference and block 

interference; 𝑣𝑠𝑝𝑖𝑙𝑙,𝑖 is the average speed of spilling bicycles. 

Based on the speed-density relations for car traffic (Eq.10), the space-mean 

speed 𝑣𝑐,𝑖 for segment 𝑖 can be estimated as the average speed of each car lane. For given 

values of link density 𝑘𝑐,𝑖 for each segments, the link traffic flow 𝑞𝑐,𝑖 can be calculated 

as: 𝑞𝑐,𝑖 = 𝑘𝑐,𝑖 ∗ 𝑣𝑐,𝑖. Following Geroliminis and Daganzo (2008), for a given network, 

the network car flow 𝑞𝑐 and network car density 𝑘𝑐 can then be estimated by the length-

weighted means of link flow and link density: 𝑞𝑐 = ∑ 𝑞𝑐,𝑖𝑙𝑖/∑ 𝑙𝑖𝑖𝑖  ; 𝑘𝑐 = ∑ 𝑘𝑐,𝑖𝑙𝑖/∑ 𝑙𝑖𝑖𝑖  

. 

4 Results 

In this section, we first compare the estimated MFDs for different road facilities using the 

data-driven method and the link-based method. Then, the effect of bicycle flow on car 

MFDs under different traffic conditions and road facilities are further investigated based 

on the two methods, respectively. 

4.1 Data-driven method 

Based on the stratified re-sampling method, we stratify the network into different sub-

networks according to the segment features (e.g., road type, number of lanes, and 

separation type) and estimate the upper-bound MFD for each sub-network. The results of 

upper-bound MFD can be compared to investigate the effect of various road facilities and 

bicycle flow on car MFD. Then, we investigate the relationship between bicycle flow and 

car flow reductions based on the BCI-based functional form for car MFD. 

4.1.1 Effect of road facilities 

To compare re-sampled MFDs for different road types, the entire network is stratified 

into five sub-networks according to the road type and the number of car lanes of each 

segment: arterial roads with 2-4 lanes, with 5-6 lanes and with 7-10 lanes, secondary 

roads with 2-4 lanes and with 5-6 lanes. As mentioned in Ambühl et al. (2018), low 

network share (e.g., 20%) can increase the level of accuracy to estimate the critical points 
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of MFD. In this section, the network share |𝑁𝑖Ω𝑗|/|𝑁𝑖| is set to 20% and the number of 

draws Ω𝑗 for each sub-network is set to 500 times. In other words, for each sampled sub-

networks 𝑁𝑖Ω𝑗 , we randomly select 20% links without replacement from the sub-network 

Ni and estimate the network flow and density. This process is repeated 500 times by re-

selecting another 20% links each time. Then, for each sub-network Ni, we identify stable 

upper-bound MFDs by combining empirical MFDs of each sampled sub-network 𝑁𝑖Ω𝑗  

and using the median of the top 50 flow values per density bin as the upper-bound flow. 

The capacity of each upper-bound MFD is determined by the 99th percentile of the 

network flow and the critical density is the average density corresponding to the capacity. 

Similarly, to compare re-sampled MFDs for different separation types, the total 

network is stratified into six sub-networks according to the separation type and number 

of car lanes of each segment: car-only roads with 2-4 lanes and with 5-6 lanes; non-

physically separated roads (segments with bicycle lane and shared lane) with 2-4 lanes 

and with 5-6 lanes; and physically separated roads (segments with bicycle path) with 2-4 

lanes and with 5-6 lanes. Since the sample of shared lanes is not sufficient (10 segments 

within the network), we combine bicycle lanes and shared lanes (same bicycle capacity) 

and compare the results with other bicycle facilities. The network share |𝑁𝑖Ω𝑗|/|𝑁𝑖| is set 

to 20% and the number of draws Ω𝑗 is set to 500 times for each sub-network. 

The results of upper-bound MFD for different sub-networks are shown in Figure 

3(a) and Figure 3(b). Since the congested branch for each upper-bound MFD is distinct, 

we can easily identify capacity and critical density for each sub-network (see Table 1). It 

is found that arterial roads with 7-10 lanes and secondary roads with 5-6 lanes have larger 

capacity reduction than other networks. Networks permitted for bicycle traffic have 

distinctly lower capacities compared to car-only networks. For the same density bin, 

networks with bicycle path have substantially higher car flow than networks without 

physically separated facilities.  
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(a)  

(b) 
Figure 3. Relationship between facility type and upper-bound car MFDs: (a) road type 

with different number of lanes; (b) separation type with different number of lanes. 

Table 1. Capacity (𝑄𝑚𝑎𝑥) and critical density (𝐾𝑐𝑟𝑖) for each sub-network 
Road type/Separation type # of car lanes 𝑸𝒎𝒂𝒙(veh/h-lane) 𝑲𝒄𝒓𝒊(veh/km-lane) 

Arterial road 2 - 4 603.0 39.5 
Arterial road 5 - 6 580.8 48.0 
Arterial road 7 - 10 398.4 28.5 

Secondary road 2 - 4 525.2 43.5 
Secondary road 5 - 6 436.3 34.0 
Car-only road 2 - 4 610.5 55.5 
Car-only road 5 - 6 614.8 55.8 

Non-physically separated road 2 - 4 399.4 29.5 
Non-physically separated road 5 - 6 369.8 29.5 

Physically separated roads 2 - 4 521.2 41.0 
Physically separated roads 5 - 6 424.7 26.5 

 

It should be noted that the effect of separation type was not controlled in Figure 3(a) 

and the effect of road type was not controlled in Figure 3(b). For example, sub-network 

with car-only roads consists of 25% arterials (speed limit: 50-60 km/h) and 75% 

secondary roads (speed limit: 30-40 km/h). The sub-network with bicycle path and non-

physically separated roads includes 59.2% and 21.1% arterial roads, respectively. 

Different proportions of road type for each sub-network may lead to bias when comparing 

the shapes of MFD. The effect of road and separation types were controlled in Section 

4.2.2 when applying the link-based method.  

4.1.2 Relationship between bicycle flow and MFD 

By using the stratified re-sampling method, we compare network density-flow 

relationship and network density-speed relationship while controlling for the bicycle flow 
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(BCI). To control the effect of car lanes, the general partition of network is based on the 

number of car lanes. The total network is divided into three sub-networks according to 

the number of car lanes. The first sub-network includes 143 segments (|𝑁1| = 143); the 

number of car lanes for each segment is two to four (two directions). The second sub-

network has 101 segments (|𝑁2| = 101) with five to six lanes (two directions). The third 

sub-network has 43 segments (|𝑁3| = 43). Each segment has more than, or equal to, 

seven lanes (two directions). The network share |𝑁𝑖Ω𝑗|/|𝑁𝑖| is set to 20%. Different from 

Section 4.1.1, the number of draws Ω𝑗 in this section is determined by the number of links 

for each sub-network: Ω𝑗 = [
|𝑁𝑖|

|𝑁|
Ω], where |𝑁𝑖| is the number of links for sub-network 

𝑁𝑖; |𝑁| is the number of links within the total network (|𝑁| =287); Ω is the total number 

of draws (Ω = 500 times). Then, empirical car MFDs and bicycle volume are estimated 

for each sampled sub-network 𝑁𝑖Ω𝑗 . By combining results of each sampled sub-network, 

different combinations of bicycle flow (BCI), network features, and corresponding upper-

bound MFDs (total re-sampled MFD) can be obtained.  

We first compare the upper-bound MFDs for different groups of BCIs (see Figures 

4(a) and 4(b)). It turns out that the bicycle flow has a negative impact on car MFDs. High 

BCI reduces network car capacity substantially and slows cars. Figures 4(c) and 4(d) 

compare the variance of network car flow and the variance of car speed with various 

network car density. High values of variance for network car flow are found in the high 

network car density branch and high values of variance for car speed are found in the low 

network car density branch. To compare the significance of upper-bound MFDs for 

different BCIs, sign tests and t-tests for paired sample (same network density) are carried 

out. The results of sign tests show that differences of MFD among each group of BCI are 

statistically significant at the 99% level of significance (p < 0.01). The results of paired 

t-test show that except for the insignificant difference of BCI (0.0-0.2) and BCI (0.2-0.4) 

(p = 0.74), the differences of MFD among other groups of BCI are significant at the 99% 

level (p < 0.01). Since more than 70% segments within the network are physically 

separated or car-only, the results are expected when the difference of MFDs for traffic 

conditions with the low bicycle volume and high car density are not significant.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Car MFDs for various BCIs: (a) network density-flow relation; (b) network 
density-speed relation; (c) network density-variance of flow relation; (d) network density-
variance of speed relation. 
 

The results of Figure 4 are also confirmed by Figures 5(a) and 5(b), the contour plots 

of BCI and network car density. Figure 5(a) presents the critical density of cars for 

different values of BCI. The maximum network flow occurs when the network density is 

around 45 veh/km-lane and the BCI is approximately 0.3. As the empirical data are used, 

the correlation between bicycle demand and car demand may account for the reason that 

the maximum network flow value occurs when the bicycle flow is non-zero. The network 

car speed decreases as car density and BCI increases, which is in line with car-bicycle 

conflicts at the link level (Chen et al., 2018). 
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(a) 

 

  
(b) 

Figure 5. (a) Contour plot of network car flow; (b) Contour plot of network car speed 

4.1.3 Relationship between bicycle flow and car flow reduction 

Based on the BCI-based functional form for MFD (Eq. 7), the level of network car flow 

reduction (𝜆) can be estimated for different BCIs. In this section, the evolution of 𝜆 with 

respect to bicycle flow (BCI) under different network features is investigated, with the 

value of 𝜆 estimated in each BCI interval from corresponding car density and flow. The 

partition of network is consistent with Section 4.1.2 and the non-linear quantile regression 

method (the 97.5th quantile) is applied to estimate 𝜆 for the same shape parameters of 

trapezoidal MFD.  

The estimation results of 𝜆 for different BCIs and the sensitivity of results to the 

network share are shown in Table 1. Values of 𝜆 for each group are between 0.03 to 0.07, 

which is reasonable according to Ambühl et al. (2020). Similar to the results in Figure 4, 

the value of 𝜆 is highly related to BCI, indicating that high bicycle flow may lead to large 

flow reductions in the MFD. Pseudo-R2 values of 0.85-0.95 (close to 1) indicate a decent 

model fit for different BCIs and network shares. The corresponding estimated 𝜆 −

𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙 MFDs for different values of BCI are shown in Figure A2, where the level 

of flow reduction for MFDs with different BCIs is observed. 

Table 2.  Estimation results of λ for different BCIs. 
Network share BCI 𝝀 t value p pseudo-R2 N 

20% 

0.0 – 0.2 0.033 245.478 <0.001 0.901  505,932  
0.2 – 0.4 0.041 447.777 <0.001 0.895  376,038  
0.4 – 0.6 0.048 509.341 <0.001 0.858  155,352  
0.6 – 0.8 0.054 431.923 <0.001 0.862  59,994  
0.8 – 1.0 0.056 238.702 <0.001 0.862  24,576  



 
20 

40% 

0.0 – 0.2 0.035 312.826 <0.001 0.907  456,960  
0.2 – 0.4 0.044 726.049 <0.001 0.905  392,700  
0.4 – 0.6 0.049 653.767 <0.001 0.861  173,424  
0.6 – 0.8 0.058 642.822 <0.001 0.863  69,288  
0.8 – 1.0 0.062 546.240 <0.001 0.860  30,288  

60% 

0.0 – 0.2 0.035 259.024 <0.001 0.909  446,016  
0.2 – 0.4 0.044 696.753 <0.001 0.906  390,540  
0.4 – 0.6 0.049 789.326 <0.001 0.862  181,656  
0.6 – 0.8 0.060 779.456 <0.001 0.864  72,444  
0.8 – 1.0 0.065 796.774 <0.001 0.859  32,004  

80% 

0.0 – 0.2 0.036 299.599 <0.001 0.908  476,022  
0.2 – 0.4 0.045 851.112 <0.001 0.907  367,686  
0.4 – 0.6 0.050 831.540 <0.001 0.861  179,346  
0.6 – 0.8 0.061 1,106.305 <0.001 0.869  69,282  
0.8 – 1.0 0.067 844.047 <0.001 0.852  30,324  

 

Since the variations of 𝜆 for different BCIs can be used as a measure of car flow 

reduction, to further investigate the relationship between network bicycle flow (BCI) and 

car flow reduction, the values of 𝜆  are estimated in each BCI interval (0.01) from 

corresponding car density and flow. The relationship between BCI and 𝜆 for different 

network shares (20%, 40%, 60%, 80%) are shown in Figure 6(a). Similar to the results in 

Table 2, the values of 𝜆 with low network shares is slightly smaller than the values with 

high network shares for the same level of BCI, because road combinations with 

homogeneous traffic and less capacity reduction can be identified easily for smaller 

sampled sub-networks. The results also confirm that the growth of BCI can significantly 

increase the value of 𝜆, indicating that the car infrastructure is increasingly inefficiently 

used due to bicycle traffic interference. When BCI is large enough (around 0.75), the 

values of 𝜆  become relatively stable, which is in line with Chen et al. (2018), who 

conclude that bicycle density impact on car delays becomes stable when bicycle density 

reaches a certain level. The trend of 𝜆  is similar for different network shares; the 

following analysis uses the 20% network share. 
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(a) 

 
 (b) 

Figure 6. Evolution of 𝜆 with respect to BCI and (a) network share; (b) number of 
lanes. 

We now assess the effect of number of car lanes (2-4 lanes; 5-6 lanes; and 7-10 

lanes) on the relationship between BCI and 𝜆, which is shown in Figure 6(b). As BCI 

increases, 𝜆 for the 2-4 lanes soars to approximately 0.06 when BCI is around 0.50. 

Meanwhile, value of 𝜆 for networks with larger number of lanes increases much more 

slowly for the same level of BCI. The results are in line with the assumptions for the link-

based method that bicycle traffic mainly affects cars on the right-most lanes and has little 

impact for wide segments.  

Figure 7 compares the relationship for different proportions of car-only roads within 

sub-network and car flow reductions (𝜆) under various values of BCI. Note that 25.6% is 

the average percentage of car-only roads for total sampled sub-networks; 16.4% and 

34.4% are the 25th and 75th percentiles, respectively. It is interesting to notice that the 

difference in 𝜆 between networks with few car-only roads and networks with a high 

percentage of car-only roads is not large (the average difference of 𝜆 between the 25th 

percentile and 75th percentile of car-only roads percentage is 0.0023). Networks with a 

high percentage of car-only roads have slightly smaller 𝜆 only when BCI is between 

around 0.3 to 0.7. When network bicycle flow is large enough (BCI larger than around 

0.7), restricting bicycles cannot increase the network car flow effectively.  
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Figure 7. Evolution of 𝜆 with respect to BCI and percentage of car-only roads. 

Figures 8(a) & 8(b) present the influence of separation type on the relationship 

between BCI and car flow reduction (𝜆). Figure 8(a) highlights the impact for different 

proportion of roads with physical separation (bicycle path); Figure 8(b) demonstrates the 

influence of different proportion of shared roads. As expected, high percentage of roads 

with physical separation (more than 66.5%, 75th percentile of total sampled sub-networks) 

have less flow reduction than networks with fewer physically separated roads. Similarly, 

higher percentages of shared roads (more than 7.8%, 75th percentile of total sampled sub-

networks) have more flow reductions than networks with more separation facilities. 

Average difference of 𝜆 between the 25th and 75th percentiles of physically separated 

roads is 0.0056 and the value is 0.0058 for shared roads. Compared to increasing car-only 

roads (the average difference of 𝜆 is 0.0023), it is more efficient to decrease the average 

value of 𝜆 by building more physical bicycle facilities, e.g., open space or barriers, and 

by reducing the percentage of shared roads in the network. As in previous results, when 

the bicycle flow is large enough, 𝜆 value becomes relatively stable and the difference in 

𝜆 between different shares of separation type is not substantial.  
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(a) 

 
(b) 

Figure 8. Evolution of 𝜆 for BCI and (a) percentage of bicycle path; (b) percentage of 
shared roads. 

4.2 Link-based method  

4.2.1 Estimation results 

The percentage of spilling behavior (Eq. 9) is estimated using the video data from ten 

selected segments in Shanghai (five road segments with bicycle path and five road 

segments with bicycle lane). Each variable is calculated for every 10-minute time slice. 

Based on the recommended value for capacity of bicycle facility in MOHURD (2012), 

the maximum capacity 𝐶𝑖,𝑚𝑎𝑥  for bicycle path and bicycle lane are set as 1,700 

bicycles/h-lane and 1,500 bicycles/h-lane. The average capacity 𝐶𝑖 during the 10-minute 

time slice is modified based on green time/cycle length for segment 𝑖: 𝐶𝑏,𝑖 = 𝐶𝑖,𝑚𝑎𝑥 ∗

𝐺𝑟𝑒𝑒𝑛/𝐶𝑦𝑐𝑙𝑒𝑖 . The estimation results are presented in Table 3. It is shown that car 

density 𝑘𝑐,𝑖 has a negative impact on the number of spilling bicycles (𝛽1 = −0.001; 𝑝 =

0.007); saturation level of bicycle facilities 𝑞𝑏,𝑖/𝐶𝑏,𝑖 has positive impact on the number 

of spilling bicycle (𝛽2 = 0.346; 𝑝 < 0.001); bicycle path (𝑠𝑖=1) has significantly lower 

percentage of spilling bicycles (𝛽3 = −0.101; 𝑝 = 0.004) than bicycle lane(𝑠𝑖=0). 

Table 3. Model estimates for percentage of spilling bicycles (N=238; R2=0.617) 
Coefficient Estimate S.E. t value p value 
𝛽0 (Intercept) 0.090 0.046 1.939 0.057  

𝛽1 (𝑘𝑐,𝑖) -0.001 0.001 -2.782 0.007  

𝛽2(𝑞𝑏,𝑖/𝐶𝑏,𝑖) 0.346 0.066 5.243 <0.001  

𝛽3(𝑠𝑖) -0.101 0.034 -2.965 0.004  

Note: 𝑠𝑖 is a dummy variable: 𝑠𝑖=1 for segments with bicycle path, 𝑠𝑖=0 for segments with bicycle 
lane.  
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The Greenshields’ linear models are empirically estimated based on FCD and LDD 

for road segments with different road types and number of lanes in Shanghai. To avoid 

the interference of bicycle, car-only roads and time periods with low network bicycle 

flow ( 𝐵𝐶𝐼 < 0.2 ) are selected to estimate the results. The estimation results of 

Greenshields’ linear models are shown in Table 3. 

Table 3. Estimation results of Greenshields’ linear model 
Road type Greenshields’ linear model 𝑹𝟐 

Arterial road (L2-4) 𝑣𝑐,𝑖 = 29.09 (1 − 𝑘𝑐,𝑖/102.95) 0.72 

Arterial road (L5-6) 𝑣𝑐,𝑖 = 23.91 (1 − 𝑘𝑐,𝑖/101.91) 0.51 

Arterial road (L7-10) 𝑣𝑐,𝑖 = 26.01 (1 − 𝑘𝑐,𝑖/74.88) 0.43 

Secondary road (L2-4) 𝑣𝑐,𝑖 = 20.45 (1 − 𝑘𝑐,𝑖/120.26) 0.69 

Secondary road (L5-6) 𝑣𝑐,𝑖 = 22.99 (1 − 𝑘𝑐,𝑖/ 91.94) 0.32 
Note: speed limits for arterials and secondary roads are set as 50-60 km/h and 30-40km/h, 
respectively. 

4.2.2 Effect of road facilities 

Assuming car traffic are evenly distributed over the network (𝑞𝑏,𝑖 = 𝑞𝑏), for each network 

with homogeneous road types and number of lanes, car MFDs without bicycle 

interference can be estimated based on the estimation results of Greenshields’ linear 

models, as shown in Figure 9. Compared with upper-bound MFDs without eliminating 

the impact of bicycle traffic, as shown in Figure 3(a), estimated MFDs in Figure 9 have 

similar shapes but less flow reductions for each network.  

 
Figure 9.  Relationship between road type, number of lanes, and estimated car MFDs. 
 

Based on the spilling-based functional form (Eqs. (8) - (10)), we further estimate car 

MFDs for networks with homogeneous bicycle facilities (bicycle path, bicycle lane, and 
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shared lane) and evenly distributed bicycle flow. To calculate the results, more 

assumptions and estimations are made: average speeds for spilling bicycles 𝑣𝑠𝑝𝑖𝑙𝑙,𝑖 for 

each segment are using the free flow speed for bicycles (85th percentile of bicycle travel 

speed); the value of speed adjustment 𝜂(𝑠𝑠𝑝𝑖𝑙𝑙,𝑖) is extracted from a simulation study that 

linking number of  spilling bicycles and reduction of free flow speed for car traffic (Luo 

et al., 2015); the threshold between friction interference and block interference is set as 

0.01 km, which is consistent with Wierbos et al.(2020); the percentage of violating the 

bicycle restricted rule 𝛿 is estimated by dividing violation records by total cycling records 

from bicycle-sharing data, and the value is set as a constant (1.8%). 

The results of estimated MFDs with different facility types (road type, separation 

type, and number of lane) and bicycle flow (200 bicycles/h-lane and 400 bicycles/h-lane) 

are shown in Figures 10(a) - (d). The shapes of MFDs are similar to Figure 3(b) and can 

well reflect the physical property of car-bicycle interactions: segments with bicycle paths 

have less flow reductions than segments with bicycle lanes and shared roads; the 

interference effect of bicycle flow more substantial for narrow segments (2-4 lanes for 

two directions) than wide segments (5-6 lanes for two directions), especially for 

conditions of low car density and high bicycle flow; the difference between car-only roads 

and segments with bicycle path is not substantial for conditions with high car density and 

low bicycle volume. 

 
(a)  

 
(b)  
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(c)  

 
(d)  

Figure 10. Estimated MFDs for different facility types and bicycle flow: (a) secondary 
road (200 bicycles/h-lane); (b) secondary road (400 bicycles/h-lane); (c) primary road 
(200 bicycles/h-lane); (d) primary road (400 bicycles/h-lane). 

4.2.3 Relationship between bicycle flow and car flow reduction   

Similar to Section 4.1.3, the relationship between bicycle flow and car flow reduction are 

further investigated using the 𝜆 − 𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙 MFD function. Since we have assumed the 

percentage of violating the bicycle restricted rule 𝛿  constant (1.8%) in the previous 

section, a sensitivity analysis is conducted to reveal how 𝛿 impacts the results of flow 

reduction. Five values of 𝛿 (0.1%, 1.0%, 1.8%, 5.0%, and 10.0%) are compared, which 

are shown in Figure 11(a). The evolutions of 𝜆 for various bicycle flow are consistent 

with Figures 6 to 8. The value of 𝜆 increases sharply when the bicycle flow is low and 

becomes steady when the bicycle flow is large. It is found that decreasing the value of 𝛿 

can improve the car flow substantially. Since the value of 𝛿 is dependent on the local 

traffic management and route preference of local cyclists, the average value of 𝜆 

decreases 0.0064 if the percentage of cyclists using car-only roads can be substantially 

reduced to 0.1% (now 1.8%) by implementing stricter traffic laws and traffic management 

on these car-only roads. It should be noted that a reduction of 𝛿 can also be expected if 

the ban of cyclists from major roads is lifted and more exclusive bicycle facilities are built 

in the central area. Cyclists would have safe and fast alternatives to breaking the restricted 

law. 

To reduce car-bicycle interactions and improve network car traffic, several schemes 

of adjusting existing bicycle facilities are proposed and compared. Since building car-

only roads have negative impacts on bicycle traffic (e.g., longer trip length, longer travel 
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time, more bicycle congestion), we only consider schemes that changing separation types 

for the existing facilities: 

Scheme 1: Keeping the percentage of each separation type unchanged. 

Scheme 2: Adding bicycle lanes to the existing shared roads. 

Scheme 3: Building physical separation facilities (bicycle path) to the existing 

shared roads. 

Scheme 4: Building physical separation facilities (bicycle path) to the existing 

bicycle lanes. 

Scheme 5: Building physical separation facilities (bicycle path) to the existing 

bicycle lanes and shared roads. 

The performance of different schemes is shown in Figure 11(b). It is indicated that 

adjusting the separation type (building bicycle lane or bicycle path) for the existing 

bicycle facilities can decrease car flow reductions substantially, especially for conditions 

with low bicycle flow (less than about 200 bicycles/h-lane), which is in line with Figure 

8(a) and Figures 10(a)-(b). However, as cyclists can spill into car lanes through the gaps 

of disconnected separation facilities (e.g., the entrance of underground parking/ 

companies/ shopping malls), the improvement of car traffic is not substantial when the 

bicycle flow is large. Compared to the results in Figure 11(a), for conditions with high 

bicycle volume, it is more effective to lift the ban of cyclists from major roads and 

implement stricter traffic management than only building disconnected bicycle facilities 

in the central area. 

 
(a) 

 
(b) 

Figure 11.  Evolution of 𝜆 for bicycle flow with (a) different violation percentage 𝛿; (b) 
different schemes of changing separation types. 



 
28 

 

5 Discussions and Conclusions  

This study empirically investigated the car-bicycle interactions at the network level. The 

impact of bicycle traffic on car MFD was evaluated based on multi-source traffic data, 

such as taxi FCD data, loop detector data, bicycle GPS data, and video data. The data-

driven method and the link-based method were conducted to investigate the impact of 

bicycle-related facilities and bicycle flow on the shapes of car MFD. It is found that the 

effect of traffic separation scheme in Shanghai (setting car-only roads) is limited for 

improving network traffic performance. When comparing the network flow reduction (𝜆) 

with London (𝜆 = 0.053) and Zurich (𝜆 = 0.038) (Ambühl et al., 2020), Shanghai has 

more flow reductions, especially for conditions with high bicycle volume. Many factors 

may affect the results of flow reductions, such as distribution of car demand, signal 

timing, impact of bus, and impact of non-motorized traffic. The results of this study can 

be used to improve the network performance by reducing car-bicycle interactions.  

Based on the empirical data, we found that the difference of car flow reduction 

among networks with various percentage of car-only roads is not large. If some road 

segments are car-only, other road segments within the same network would become more 

crowded for bicycles, which is prone to increase interactions between bicycle and car 

flow (Luo et al., 2015). Meanwhile, a small number of cyclists would illegally use car-

only roads, which reduces the car flow. Based on the link-based method, the network flow 

can increase substantially if the percentage of cyclists using car-only roads is reduced to 

0.1% (now 1.8%) by implementing stricter traffic laws and management on these car-

only roads. The results are consistence with Zacharias (2002), indicating that the total 

vehicle flow of 55 streets in Shanghai decreased by 24% after the implementation of the 

car-bicycle separation scheme. Compared with car-only roads, it is more efficient to 

increase car flow by building more physical bicycle facilities and reducing the percentage 

of shared roads within the network. If the bicycle facilities are not physically separated, 

many factors, such as on-street parking occupancy (HCM2010, 2010) and presence of 

stopped buses (Yang et al., 2009), would increase the spilling behaviors of bicycles and 

slow down car traffic. However, it should be noted that installing physically separated 

facilities is less effective for large bicycle volume (more than about 200 bicycles/h-lane). 

If the bicycle traffic is large enough, cyclists can spill into car lanes through the gaps of 

disconnected separation facilities (e.g., the entrance of underground 
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parking/companies/shopping malls) and hinder car traffic. For that case, it is more 

effective to reduce car-bicycle interactions by lifting the ban of cyclists and implementing 

stricter traffic management in the central area. 

Although the results of this study are promising, both the data-driven and the link-

based methods have limitations. As an empirical study on a rather large network (about 

80 km2), many important factors, such as facility factors (e.g., roadside parking and bus 

lanes), signal timing plans, difference of penetration rate among different areas, and 

impacts from other road users (e.g. bus, e-bikes, and pedestrians) are not controlled or 

included. For the data-driven method, the bicycle-sharing dataset used is insufficient to 

fully estimate density or volume of overall bicycle traffic. Due to the limited ranges of 

empirical car and bicycle data, the data-driven method may not adequately represent the 

distinct congested branch of the car MFD and conditions of high bicycle flow. The results 

of the data-driven method can be explained and validated by the link-based method. For 

the link-based method, the effect of road type, separation type, number of lanes, bicycle 

flow, and the percentage of cyclists violating the bicycle restricted rule can be controlled. 

The schemes of implementing stricter traffic management and adjusting separation types 

may be compared based on the link-based method. However, different from the data-

driven method, the link-based method is constructed based on several assumptions, which 

may simplify the physical property of the two traffic streams. Additionally, since the link-

level fundamental diagram are more scattered than MFD (Geroliminis and Daganzo, 

2007), the estimation results has relatively low goodness-of-fit and may lead to bias when 

becoming a network. 

Based on the method proposed in this study, we know whether the network 

performance is at the desired level and understand the potential of improving the network 

flow by reducing car-bicycle interactions. For the multimodal network in Shanghai, 

various strategies may be proposed. First, since setting car-only roads has limited 

improvement for network car flow and would largely reduce bicycle accessibility (e.g., 

shorter trips, lower travel times), it is recommended to lift the ban of cyclist from these 

streets. Secondly, building more physically separated facilities between car and bicycle 

traffic would increase network car flow substantially, especially when the network 

bicycle flow is not large. Moreover, since the percentage of cyclists violating the bicycle 

restricted rule in Shanghai is rather high (𝛿 = 1.8%), the network car flow can also be 

effectively improved by implementing stricter traffic laws and managements on bicycle 

traffic. A reduction of 𝛿 can also be expected if the ban of cyclists from major roads is 
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lifted and more exclusive bicycle facilities are built in the central area. The results of this 

study may also shed light on future 3D-MFD studies for the car-bicycle network. More 

dynamic multimodal traffic managements can be implemented based on the state of 3D-

MFD if the real-time field data of car and bicycle traffic are available. 
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APPENDIX 1 MODIFICATION OF TAXI PENETRATION RATE 

Spatial bias may exist when applying estimated penetration rate from the highway 

network �̂�𝐻 directly to surface roads �̂�𝑆. According to the 5th Shanghai Comprehensive 

Transport Survey (SURCTD, 2015), the average travel distance for each taxi trip is about 

7.1 km, while for a regular car, it is about 14.5 km. Different travel distance may lead to 

other route preferences, which may result in varying taxi penetration rates between 

highways and surface road networks. Consequently, route choice (elevated highway or 

surface road) for drivers with different travel distance distribution is expected to modify 

taxi penetration rate for surface roads. As regular drivers’ trajectories are not available in 

this study, some operational taxi trips were selected to represent regular drivers’ trips, 

defined as quasi-normal trips. The travel distance for these quasi-normal trips is assumed 

to obey the same type of travel distance distribution with taxi trips and the average travel 

distance for these quasi-normal trips is as same as regular drivers (14.5 km). The process 

of modifying the taxi penetration rate for surface road �̂�𝑆 is illustrated as follows: 

First, we need to select a suitable distance distribution for taxi trips and quasi-normal 

trips. The distance distribution for taxi trips is compared to the Weibull distribution, 

Lognormal distribution and Gamma distribution, respectively, with estimation results 

shown in Figure A1. From the Q-Q and P-P plots, Gamma distribution best captures 

distance distribution for taxi drivers. Moreover, AIC and BIC values of Gamma 

distribution are lower than those for the Weibull and lognormal distributions. 

Goodness-of-fit 
criteria 

Weibull 
distribution 

Lognormal 
distribution 

Gamma 
distribution 

AIC 633708.8 628886.0 628460.4 
BIC 633728.1 628905.3 628479.7 
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(a) Histogram and theoretical densities 

 
(b) Empirical and theoretical CDFs 

 
(c) Q-Q plot 

 
(d) P-P plot 

Figure A1 Fitting results of travel distance distribution (n=114,452 trips) 

Supposing that each trip distance x follows a Gamma distribution with shape 

parameter 𝑘 and rate parameter 𝜃, the probability density function of travel distance 𝑓(𝑥) 

can be described as: 

𝑓(𝑥) =
𝜃𝑘

𝛤(𝑘)
𝑥𝑘−1𝑒−𝑥𝜃, 𝑥 > 0                                       (11) 

where 𝛤(𝑘) is the Gamma function, defined as 𝛤(𝑘) = ∫ 𝑠𝑘−1𝑒−𝑠𝑑𝑠, 𝑘 > 0
∞

0
. Mean 

travel distance distribution can be then calculated as 𝔼(𝑥) = 𝑘/𝜃.  

For taxi drivers, the fitting results show that their travel distance distribution obeys 

the Gamma distribution with shape parameter 𝑘𝑇 = 2.8329 (𝑆. 𝐸. = 0.0162) and rate 

parameter 𝜃𝑇 = 0.3775 (𝑆. 𝐸. = 0.0024) . For regular drivers, we assume that travel 

distance distribution of regular drivers also obeys the Gamma distribution and has the 

same shape parameter as taxi drivers’ (𝑘𝑅 = 𝑘𝑇 = 2.8329). Since the average single 
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travel distance for regular drivers 𝔼(𝑥)𝑅 is 14.5 km (SURCTD, 2015), the rate parameter 

for regular drivers 𝜃𝑅 can be estimated as 𝜃𝑅 = 𝜃𝑇 ∙ 𝔼(𝑥)𝑇/𝔼(𝑥)𝑅 = 0.1953. 

To represent quasi-normal trips, we calculate the travel distance for each operational 

taxi trip and select operational taxi trips that obey Gamma distribution with shape 

parameter 𝑘𝑅 = 2.8329 and rate parameter 𝜃𝑅 = 0.1953. For example, if we want to 

draw N taxi trips to represent quasi-normal trips, we can determine the number of quasi-

normal trips for each distance group  as N*𝑓𝑅(𝑥), where 𝑓𝑅(𝑥) is the percentage of each 

distance group 𝑥  according to the estimated Gamma distribution for regular drivers. 

Then, operational taxi trips with corresponding distance 𝑥 are randomly selected to form 

each distance group. Note that unoccupied taxi trips are not included since these taxis 

prefer to use surface roads and would make a detour to hunt passengers, which cannot 

represent regular drivers well. Random seeds from 1 to 100 (one random seed for each 

distribution) are used to select 100 groups of taxi drivers and regular drivers that follow 

the corresponding distance distributions. Each group consists of 10,000 taxi trips and 

10,000 quasi-normal trips. Relationships between travel distance and proportion of length 

using elevated highways for both taxi trips 𝑃𝑇(𝑥)  and quasi-normal trips 𝑃𝑅(𝑥)  are 

estimated for each group. Finally, the total taxi travel distance on highways is estimated 

as 𝑑𝑇,𝐻𝑡𝑜𝑡 = ∑ 𝐷𝑇𝑓𝑇(𝑥)𝑃𝑇(𝑥)𝑥 , where 𝐷𝑇 is the daily taxi travel distance for all taxis from 

Qiangsheng Company (3,234,000 km), 𝑓𝑇(𝑥) is the percentage of each travel distance 𝑥. 

The total taxi travel distance on surface roads is estimated as 𝑑𝑇,𝑆𝑡𝑜𝑡 = ∑ 𝐷𝑇𝑓𝑇(𝑥)(1 −𝑥

𝑃𝑇(𝑥)). Similarly, for regular drivers, the total highway travel distance is estimated as 

𝑑𝑅,𝐻
𝑡𝑜𝑡 = ∑ 𝐷𝑅𝑓𝑅(𝑥)𝑃𝑅(𝑥)𝑥 , where 𝐷𝑅  is the daily travel distance for all regular drivers 

(97,150,000 km) (SURCTD, 2015), 𝑓𝑅(𝑥) is the percentage of each travel distance; the 

travel distance on surface roads is estimated as 𝑑𝑅,𝑆𝑡𝑜𝑡 = ∑ 𝐷𝑅𝑓𝑅(𝑥)(1 − 𝑃𝑅(𝑥))𝑥 .  
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According to Edie’s generalized traffic definition, the taxi penetration rate on 

highway �̂�𝐻 can be estimated as �̂�𝐻 = �̂�𝑇,𝐻/�̂�𝐻 = 𝑑𝑇,𝐻
𝑡𝑜𝑡 /(𝑑𝑇,𝐻

𝑡𝑜𝑡 + 𝑑𝑅,𝐻
𝑡𝑜𝑡 ), where �̂�𝑇,𝐻 is the 

taxi flow for highway; �̂�𝐻 is the total traffic flow for highway. The taxi penetration rate 

on surface road can be estimated as �̂�𝑆 = �̂�𝑇,𝑆/�̂�𝑆 = 𝑑𝑇,𝑆
𝑡𝑜𝑡/(𝑑𝑇,𝑆

𝑡𝑜𝑡 + 𝑑𝑅,𝑆
𝑡𝑜𝑡), where  �̂�𝑇,𝑆 is 

the taxi flow for surface road; �̂�𝑆 is the total traffic flow for surface road. The modification 

factor can thus be estimated by 𝛾 = �̂�𝐻/�̂�𝑆 from 100 groups of data. Estimation result for 

𝛾 is 0.5653 (S.E. = 0.0009, R2=0.9997).  

Based on the highway penetration rate �̂�𝐻  estimated by Eq. (5), the average taxi 

penetration rate for surface roads �̅�𝑆 is 3.65%. Based on field surveys from 40 selected 

arterial/secondary roads in Shanghai, Sun et al. (2018) demonstrated that the average taxi 

penetration rate on surface roads is approximately 12.9%, with no large differences across 

the zones and road types. However, the results of Sun et al. (2018) is based on all taxi 

companies  in Shanghai (about 49,788 vehicles) while the results of this study is merely 

based on taxis from Shanghai Qiang-Sheng Taxi Company, with about 13,475 vehicles. 

After modification for the overall number of taxis, the average surface road penetration 

rate (3.65%*49,788/13,475=13.5%) is very close to that in Sun et al. (2018) (12.9%). 
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APPENDIX 2 SUPPLEMENTAL FIGURES  

 
Figure A2 𝜆 − 𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙 MFDs for different network shares. 


