
ETH Library

Modelling and Verification of the
Timely Dataflow Progress Tracking
Protocol

Master Thesis

Author(s):
Decova, Sára

Publication date:
2020

Permanent link:
https://doi.org/10.3929/ethz-b-000444762

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000444762
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Master’s Thesis Nr. 285

Systems Group, Department of Computer Science, ETH Zurich

Modelling and Verification of the Timely Dataflow Progress Tracking Protocol

by

Sara Decova

Supervised by

Prof. Dr. Timothy Roscoe,
Andrea Lattuada,
Dr. Dmitriy Traytel

November 2019 – May 2020

Abstract

Timely Dataflow is a distributed, data-parallel, state-of-the-art dataflow
runtime. Its core coordination component, termed progress tracking,
provides dataflow operators with guarantees about pending and com-
pleted phases of computation. This allows asynchronous operators to
make safe time-based decisions on streams containing delayed and out-
of-order data.

The design and implementation of correct distributed protocols are
notoriously difficult and error-prone. However, the Timely Dataflow
progress tracking protocol has never been fully formalised despite its
distributed nature and the central role it plays in ensuring the system’s
correctness.

In this thesis, we extend the existing work of Abadi et al. [2, 1], which
only models the exchange of progress information between workers,
to a verified model of the complete coordination protocol. We deter-
mine the protocol’s main safety property and describe its mechanically
verified proof. This formalisation provides a clear interface for other
components of Timely Dataflow: most of the system interacts or de-
pend on coordination information. Furthermore, we believe that the
specification will prove helpful in integrating the protocol in new sys-
tems.

We introduce an executable version of the model of the Progress Track-
ing protocol and a comparative testing framework between the formal
model and the Rust implementation of Timely Dataflow to validate our
model and to ensure the correctness of the Rust implementation. The
framework is flexible enough to work with any valid Timely Dataflow
program, including iterative and hierarchical dataflows, and can be ex-
tended to arbitrary time and location types satisfying the assumptions
made by the model.

i

Acknowledgements

I would like to thank Prof. Timothy Roscoe for the opportunity to work
on this project in the ETH Systems group.

Secondly, I would like to express my deepest gratitude to Andrea Lat-
tuada and Dr. Dmitriy Traytel for offering me the opportunity to work
on the formalisation of the Timely Dataflow and for closely supervis-
ing every step towards the completion of this thesis. All findings pre-
sented in this thesis are the result of long hours of collaboration, count-
less inspiring conversations and their expert guidance. I am especially
grateful to Andrea Lattuada for sharing his detailed knowledge of the
Timely Dataflow and other stream-processing frameworks. I would
also like to thank Dmitriy Traytel for introducing me to the Isabelle
proof assistant and the addictive nature of theorem proving.

This work has been developed in collaboration with a fellow student
Matthias Brun who has significantly contributed to the formalisation
of the Progress Tracking protocol and has written the majority of the
mechanically verified proofs of its invariants. I am especially thankful
for his willingness to discuss proof strategies and his patience with me
while learning the secrets of Isabelle.

I would also like to thank Dr. David Cock who has taught the course on
Informal Methods at ETH and has introduced me to formal verification
in the first place.

ii

Contents

Contents iii

1 Introduction 1
1.1 Coordination in dataflow systems 1
1.2 Timely Dataflow and formal verification 2
1.3 Overview and main contributions 3

2 Background 5
2.1 Dataflow . 5

2.1.1 Progress tracking in Dataflow Systems 6
2.2 Timely Dataflow . 7

2.2.1 Summaries . 8
2.2.2 Capabilities . 8
2.2.3 Progress Tracking . 9

2.3 Modelling systems with finite automata 10
2.4 Existing Models of Timely Dataflow 10

2.4.1 Abadi and Isard’s Model of timely dataflow 11
2.4.2 Naiad Clock Protocol 13

2.5 Formal Verification . 13
2.5.1 Proof assistants . 14

3 Isabelle/HOL Syntax Overview 17
3.1 Types, terms and basic logic . 17
3.2 Function definitions and lemmas 18
3.3 Locales . 20

4 Propagation Algorithm: Model 23
4.1 Basic definitions . 23

4.1.1 Partial order on timestamps 23
4.1.2 Antichain . 24

iii

Contents

4.1.3 Signed multiset . 24
4.1.4 Infimum of signed multiset 24

4.2 Topology . 25
4.2.1 Assumptions on basic types 25
4.2.2 Assumptions on the graph topology 25

4.3 State . 26
4.4 The algorithm . 27

4.4.1 The next change multiplicity action 28
4.4.2 The next propagate action 30

4.5 Specification . 31
4.5.1 Propagation Rounds . 33

4.6 Chapter Summary . 33

5 Propagation Algorithm: Safety 35
5.1 Safety Property . 35
5.2 Informal proof of the safety property 37

5.2.1 Proof of the safety property 38
5.3 Chapter Summary . 40

6 Protocol 43
6.1 The Exchange algorithm . 43
6.2 Basic Types . 44
6.3 State . 45
6.4 The protocol . 46

6.4.1 The next performop action 46
6.4.2 The next send update action 46
6.4.3 The next recv update action 46
6.4.4 The next propagate action 48

6.5 Specification . 48
6.6 Chapter Summary . 49

7 Safety 51
7.1 Safety Property . 51
7.2 Informal proof of the safety property 52

7.2.1 Proof of the safety property 53
7.3 Chapter Summary . 54

8 Comparative Testing 55
8.1 Overview . 55
8.2 Logging . 56
8.3 Generation of Isabelle theory files 57
8.4 Executable Isabelle model . 59
8.5 Supported types . 61
8.6 Comparative testing . 62

iv

Contents

8.7 Retrospection on Isabelle for executable code 63
8.8 Chapter Summary . 65

9 Conclusion 67
9.1 Main contributions . 67
9.2 Ongoing work . 68
9.3 Future work . 69

A Example of a non-terminating propagation round 71

B Formal specification of the Exchange algorithm in Isabelle 75

Bibliography 79

v

Chapter 1

Introduction

A streaming dataflow system is characterised by the absence of a central
point of control. Instead, it consists of asynchronous components (operators)
each acting in response to the arrival of data, and the connections between
these components. As new data arrives, gets processed, and leaves these
operators, work can take place at multiple operators across the dataflow in
parallel. The flexibility of this setting brings large performance benefits. On
the other hand, it increases the complexity of the system, which becomes
responsible for providing coordination information to many asynchronous
actors.

1.1 Coordination in dataflow systems

To demonstrate the need for coordination, consider a window operator that
computes the number of people who have logged into their e-mail account
for every 5 minute interval. To associate data with different time intervals,
each data message carries a logical timestamp. However, due to network traf-
fic, communication delays or scheduling strategies, data is not guaranteed
to arrive at the operator in logical order or at a predictable time. In order for
the operator to produce correct output and reclaim any memory associated
with a certain 5-minute interval, the operator needs to know if all data for
a given 5-minute interval has been received or whether some of it has been
delayed.

In general, operators have to be able to reason locally about which phase
of computation has been completed for the sake of overall correctness and
efficiency. Commonly, dataflow systems achieve this by providing each
operator with a frontier - a lower bound on all timestamps an operator may
receive in future. The operators in turn communicate to the system the
lower bounds of timestamps they may yet produce as output. The goal of
the system’s coordination component is to continuously recompute correct

1

1. Introduction

frontiers for all operators from the sent and received messages as well as the
lower bounds provided by the operators.

A verified coordination component provides a sound basis for building cor-
rect operator code and dataflow programs. When we combine the guar-
antees of a verified coordination component with an assumption (or proof)
that the operator logic is sound we can ensure the correctness of complete
dataflow programs. To illustrate this, consider the window operator intro-
duced earlier. If we assume that the operator produces output for a certain
5-minute window only if its frontier has passed the associated time interval,
then a verified coordination component ensures that this operator will never
output premature, possibly inaccurate, results.

1.2 Timely Dataflow and formal verification

Our research is focused around an efficient, state-of-the-art, distributed,
data-parallel dataflow runtime, called Timely Dataflow [30] and its core
coordination component termed progress tracking. The Progress Tracking
protocol consists of two components:

1. Exchange: A distributed, conservative reference counter that keeps
track of outstanding logical timestamps in the system by modelling
the exchange of progress information between workers.

2. Propagation: A propagation algorithm that continuously recomputes
frontiers from the outstanding timestamps.

In practice, the protocol is implemented in the Rust [28] programming
language. Yet, only the first component - a distributed reference counter
- has been formally modelled and verified [2]. Due to the distributed
nature of the dataflow paradigm, it is more challenging to devise tests
and simulations that effectively catch corner cases potentially resulting in
obscure race conditions, deadlocks or livelocks.

Furthermore, we noticed that the protocol makes a series of assumptions
which are necessary for the protocol’s correctness but are not obvious. The
limited understanding of the protocol allows a developer to introduce un-
necessary new bugs into the system affecting the system’s overall correct-
ness. On the contrary, formalised protocol assumptions and safety proper-
ties allow the developer writing custom operator or dataflow code to reason
about its correctness and verify its implementation in a sound way.

Finally, we believe that a formal specification makes it easier to adopt the
Progress Tracking protocol to other frameworks.

2

1.3. Overview and main contributions

1.3 Overview and main contributions

In this thesis, we present a verified model of the Timely Dataflow Progress
Tracking protocol motivated by its fundamental role in Timely Dataflow’s
reliability and high performance. The main contributions of this work are:

• A formal specification of the protocol’s Propagation algorithm and its
safety property in the Isabelle proof assistant.

• An executable model of the Propagation algorithm in the Isabelle proof
assistant.

• A comparative testing framework between the Rust and the Isabelle
executable model of the Propagation algorithm.

• The identification and modelling of the assumptions on the Timely
Dataflow Progress Tracking protocol.

• A formal specification of the Timely Dataflow Progress Tracking pro-
tocol by combining our model of the Propagation algorithm with the
Naiad Clock protocol [2].

• A description of the mechanically-verified safety property of the Timely
Dataflow Progress Tracking protocol.

Concretely, the work is presented as follows:

• Chapter 2 gives an overview of the existing progress tracking practice
in stream processing frameworks and discusses the specific workings
of Timely Dataflow. Next, we summarise past contributions on formal-
isation of the Timely Dataflow model and discuss how our work builds
on existing research. Finally, we discuss formal verification, available
tools and argue for the choice of the Isabelle proof assistant.

• Chapter 3 gives an overview of the Isabelle/HOL syntax.

• Chapter 4 presents the formal specification of the Propagation algo-
rithm. Chapter 5 presents the safety property of the Propagation algo-
rithm and describes its mechanically verified proof.

• Chapter 6 presents the formal specification of the complete Timely
Dataflow Progress Tracking protocol in terms of the Exchange model
[2] and our Propagation algorithm model. Additionally, Chapter 7
states the main safety property of the Progress Tracking protocol and
describes its mechanically verified proof.

• Chapter 8 describes the comparative testing framework. We present
the executable model of the Propagation algorithm implemented with
the Isabelle proof assistant and explain how input to the model is
generated from the Timely Dataflow. Finally, we discuss how we

3

1. Introduction

validate the model and test the correctness of the Timely Dataflow
Rust implementation.

• Chapter 9 discusses ongoing and future work and presents our con-
clusions.

4

Chapter 2

Background and Related Work

This chapter gives an overview of the dataflow paradigm and the existing
progress tracking practices in stream processing frameworks. We continue
by describing the specific workings of Timely Dataflow. Furthermore, we
summarise past contributions to the formalisation of the Timely Dataflow
model and discuss how our work builds on the existing research. Finally,
we talk about formal verification, the available tools in formal verification
and argue the choice of the Isabelle proof assistant.

2.1 Dataflow

Dataflow [35] is a computational model and a software paradigm that ex-
presses a computation as a directed graph consisting of nodes representing
transformations, and directed edges representing communication channels
carrying data between pairs of nodes. An example of such a dataflow graph
is depicted in Figure 2.1. Whenever data arrives to a node along a channel,
the node processes it which may update its local state. The node may also
produce a sequence of new data which are sent along its outgoing edges.

f1 f2 f5

f3

f4

Figure 2.1: Example of a dataflow graph.

5

2. Background

The dataflow model is particularly well-suited for concurrent computations,
making it a popular choice for data-intensive computations on potentially
unbounded streams of unordered data. It has been used in diverse domains
ranging from signal processing [25] to data stream processing and analytics.
Examples of frameworks profiting from the concurrency opportunities of the
dataflow paradigm include Spark Streaming [40], Apache Flink [6], Apache
Storm [7] or Naiad [32].

In particular, Spark Streaming supports task parallelism which allows multi-
ple transformations to be carried out to disjoint parts of the data stream in
parallel. In addition, Naiad and Flink support pipeline parallelism with the
use of timestamping, discussed in more detail in later sections. In pipeline
parallelism, transformations that depend on each other (i.e., are part of the
same pipeline) can also be executed concurrently. Looking back at Figure
2.1, task parallelism lets us execute f1 concurrently with f4, while pipeline
parallelism allows us to execute f1 in parallel with any of f2, f3 or f5.

2.1.1 Progress tracking in Dataflow Systems

Recent dataflow systems [6, 32] mark data points with logical time (also
referred to as event time). Logical time refers to the time when the event
actually occurred, often even before the data arrives into the system. This is
in contrast with physical time which refers to the time observed locally. While
logical time determines the order in which events have happened, there is
no assumed relationship between the logical timestamps and the computer
clock at the time of execution.

Even in real-time processing systems, communication delays, scheduling
strategies and time spent processing will result in data being delayed and
delivered out of order. The general trend, however, is that as data arrives
at a particular node in the dataflow graph, the logical times generally
increase until eventually the arrival of old timestamps ceases. To ensure
that the nodes produce correct output associated with different times and
time intervals, the nodes need to know if all data items for a given time has
been delivered or if some of it has been delayed.

Stream processing frameworks employ various metrics [4, 39] to bound
this delay as a lower bound on future logical timestamps processed by
the node. The system’s coordination component interacts with nodes and
provides them with the lower bound on timestamps they may yet see as
input. In turn, the nodes communicate to the system the lower bounds
on timestamps they may yet produce as output. The system is responsible
for integrating this information with sent and received data messages to
continuously recompute correct lower bounds for all nodes.

6

2.2. Timely Dataflow

The following list presents several dataflow frameworks (excluding Timely
Dataflow) and shows their approach to dataflow progress tracking.

• Spark Streaming [40] models a computation as an acyclic graph with
no notion of logical time. Instead, each input to an operator is either
complete or incomplete. The system indicates to operators once all of
its inputs are complete and in turn, the operators communicate the
completion of their outputs.

• Google Dataflow [5] and Apache Flink [6] model a computation
as an acyclic graph. Unlike Spark Streaming, they stamp messages
with logical integer timestamps and use watermarking mechanism
to signal progress, as introduced in the MillWheel framework [4].
Watermarks are generated at, or directly after, source operators (nodes)
and passed to the dataflow. Each operator is tasked with forwarding
new watermarks in its output stream based on its internal logic. This
leads to watermark ”flowing” through the dataflow, notifying nodes
of ongoing progress.

• Naiad [32] models a computation as a potentially cyclic dataflow
graph. Each data mesage is stamped with a logical partially-ordered
timestamp. In Naiad, an operator can request notifications for a
specific timestamp. The system delivers a notification to the operator
once it is sure that no data bearing this or a lower timestamp will
arrive at the operator in future. Operators are themselves tasked with
maintaining their views of future timestamps.

2.2 Timely Dataflow

Timely Dataflow [30] is a Rust-based implementation of the dataflow model
proposed by Naiad [32]. Like Naiad, it associates each datum with a
partially-ordered timestamp, thereby enabling cycles in the dataflow graph.
Timely Dataflow achieves data-parallelism by instantiating multiple workers
with individual copies of the dataflow graph.

In terms of graph topology, a timely dataflow graph is described by a
collection of operators, that each have a number of target (input) and source
(output) ports. In our model, we refer to the set of all ports is by locations.
Source are connected to target ports via external edges. Inside each operator,
target and source ports are connected by internal edges. Each internal edge
carries a set of mutually incomparable summaries. Figure 2.2 presents an
example of a timely dataflow graph.

In practise, Timely Dataflow supports nested dataflows such that an opera-
tor can be in itself a dataflow graph. For the purposes of this thesis we will

7

2. Background

{0}

{1}

trg trgtrg

trgsrc

src src src

Branch Map

Feedback

Concat

{0} {0}

{0}

{0}

srctrg

Figure 2.2: Example of timely dataflow graph. Source ports are marked as src, and target ports
as trg. Solid arrows represent external edges while dashed ones represent internal connections.
Each internal connection has an associated set of integer summaries.

ignore sub-graphs as they were not incorporated into our model and thus
only add unnecessary complexity to our discussions.

2.2.1 Summaries

A summary describes an increment to a timestamp. It guarantees a minimal
increment along the connection from a target to a source port: i.e., by how
much the operator promises to increment each timestamp that flows through
this connection.

Most operators have internal connections with summary of zero, which
simply indicates that certain target and source port are connected. On the
other hand, the Feedback operator has one target port t and one source port
s, and it guarantees that it will increment any timestamp that flows along
it by at least one. Therefore, if a datum with timestamp 3 flows along this
connection, it must emerge at the source port with timestamp at least 4.

Summaries become crucial in iterative dataflows. They allow operators to
make progress while a part of the data is cycling through a loop an indefinite
number of times.

2.2.2 Capabilities

Timely Dataflow capabilities (also referred to as pointstamps by Naiad [32])
give their owners the ability to create messages with certain timestamps at
certain locations. They can be dropped, downgraded, or even generate new
capabilities.

Concretely, a capability is a location-timestamp pair (loc,t), which gives its
owner the ability to produce messages or create new capabilities (loc’,t’) such
that (loc,t) could result in (loc’,t’). We say that a capability (loc,t) could-result-in
a capability (loc’,t’) if there exists a path from loc to loc’ such that adding all

8

2.2. Timely Dataflow

summaries along the path to the timestamp t results in a timestamp smaller
or equal to t’.

Capabilities are the only means of creating messages. As a result, the set
of all capabilities in the system determines the set of future timestamps at
all locations. To bound the future timestamps arriving at a specific location
Timely Dataflow uses the notion of frontiers.

To demonstrate the effect of capabilities on location frontiers, consider the
dataflow graph in Figure 2.2. Assume that there exists a capability at the
source port of the Concat operator with timestamp 5. Moreover, assume
there are no other capabilities in the system. Figure 2.3 shows the best-
approximated frontiers at all ports. For example, frontiers at source and target
ports of operators Branch and Map are 5, because all summaries along the
shortest paths are zero. On the other hand, the frontier of the Feedback’s
source port is 6, since any message with timestamp 5 produced at the source
port of Concat must be incremented by at least one before it arrives at the
port.

{0}

{1}

[] [5][5]

[5][6]

[5] [5] [5]

Branch Map

Feedback

Concat

{0} {0}

{0}

{0}

[5][6]

Figure 2.3: Frontiers. Each port in the graph shows an associated best-approximated frontier,
given a single capability at the source port of operator Contact with timestamp 5.

At the beginning of the dataflow computation, each location is initialised
with a set of capabilities bearing the minimal ”zero” timestamp. As the
computation progresses, locations generate new capabilities, downgrade
existing capabilities or drop old capabilities. These are the events that drive
computation progress.

2.2.3 Progress Tracking

The goal of the Timely Dataflow Progress Tracking protocol is to recompute
locations’ frontiers in response to newly created, dropped and downgraded
capabilities.

The algorithm computes location frontiers in two phases as stated in the In-
troduction. In the Exchange phase, all workers exchange progress messages

9

2. Background

with information about the changes to capabilities they hold. This way, each
worker obtains a conservative view of all active capabilities in the system.
Secondly, during the Propagation phase, each worker recomputes each loca-
tion’s frontier from its own view of system’s capabilities.

Unlike Flink, which continually asks operators if their output contains cer-
tain timestamps, or Naiad, making operators explicitly request notifications
about completed progress phases, this approach minimises the interaction
between the system and the operators while still allowing the user to define
fine-grained time-based behaviour.

2.3 Modelling systems with finite automata

A finite automaton (or a finite state machine) describes a system as a set
of states and the transitions (or actions) between those states. The state
of the system is determined by the values of the state variables. Actions
are expressed as next-state relations describing the conditions on and the
changes to the state variables.

As an example, consider the finite state machine in Figure 2.4 describing
the eating habits of a person living exclusively on apples. It consists of
fours states, each defined by the values of two state variables, namely apples
(describing how many apples the person has) and a Boolean flag hungry.
The finite state machines defines three actions:

• Buying an apple (red) increasing the number of apples a person has by
one.

• Eating an apple (green) decreasing the number of apples a person has
by one. This action is conditioned on the person begin hungry and
having at least one apple.

• Getting hungry (blue) flipping the hungry flag to false. This action is
conditioned on the person being not hungry in the first place.

Finite automata provide an exhaustive and mathematically sound way of
modelling and analysing systems. We use a TLA-style state-machine model
[22] to formally specify the Progress Tracking protocol. A similar approach
has been taken by the existing models of Timely Dataflow introduced in the
next section.

2.4 Existing Models of Timely Dataflow

Despite the more formal Naiad model, the development and presentation of
Timely Dataflow has been relatively informal, documented partially in code
[30], an online book [37] and blog posts [29]. Due to the vast range of ap-
plications of Timely Dataflow striving for low-latency and high-throughput

10

2.4. Existing Models of Timely Dataflow

hungry
apples	>	0

hungry
apples	=	0

¬hungry
apples	>	0

¬hungry
apples	=	0

Figure 2.4: Example of a finite state machine.

data-parallel computations, there has been previous work in formalising the
Timely Dataflow model.

In this section, we focus on the prior art. Firstly, we discuss the ”Timely
Dataflow: A Model” [1] by Abadi and Isard which aims to provide a general
rigorous definition of timely dataflow. Secondly, we review the Naiad Clock
Protocol [2], a formally specified and verified model of the Exchange phase
of the Timely Dataflow Progress Tracking protocol. In both cases we discuss
how the work relates to our objective of modelling Timely Progress Tracking
protocol.

2.4.1 Abadi and Isard’s Model of timely dataflow

The goal of Aabadi and Isard’s model was to provide a ”general rigorous
definition of timely dataflow” [1] based on the original Naiad dataflow
model. It models the computation as an arbitrary - possibly cyclic - graph
with nodes representing ports, internal edges and external edges. The nodes
receive and output messages, receive notifications and produce notification
requests. A node that requests a notification asks to be notified when it has
received all messages for a given logical time. The model associates each
message and notification with a logical timestamp.

The model draws conclusions about the timely dataflow in terms of point-
stamps, the could-result-in relation, and a list of allowed actions.

Pointstamps

A pointstamp is a timestamp-location pair (t,x) which tells us that a message
with timestamp t is currently at location x (port, external or internal edge).

11

2. Background

Could-result-in relation

We say that pointstamp (x, t) could-result-in pointstamp (x’, t’) if a message
at location x and time t may lead to a message at location x’ and time t’.
Note that our definition of could-result-in relation from Section 2.2.1 satisfies
this condition. This relation is transitive and anti-symmetric. Moreover, this
relation imposes a partial ordering on the set of pointstamps.

Actions

There are four possible actions the algorithm can take at any point. Note
that each node in the graph has an associated queue of incoming messages.

1. A message or a notification is enqueued at a source node.

2. A message or a notification is dequeued at a sink node.

3. A node dequeues a message. In turn it can enqueue a set of messages
at any of the outgoing neighbouring nodes, and produce notification
requests.

4. A node receives a notification. In turn it consumes an outstanding no-
tification request and produces new messages or notification requests.

Naturally, the model imposes further restrictions on the actions, such as
what messages can appear at the source nodes or what constitutes produc-
ing a valid message and notification request.

Finally, combining the notion of pointstamps, could-result-in relation and
the list of allowed actions, this work leads to a series of informal proofs of
models’ properties. One of its main results is the proof of the monotonicity
of pointstamps. It states that if a pointstamp p and all pointstamps smaller
or equal to p are not present in the system, they will not be introduced again
by further actions.

Our work relates to this model in three ways. First, we refine the could-
result-in relation in terms of timely dataflow graph topology and internal
summaries. While the could-result-in relation is powerful enough to give
strong guarantees about the system, it is unclear how one designs an effi-
cient coordination protocol at this level of abstraction.

Secondly, we omit notifications and notification requests as they are no
longer a part of Timely Dataflow. Instead, all nodes passively receive infor-
mation about future timestamps through frontiers and can decide whether to
use the information if their internal logic depends on it. Furthermore, while
the above model does not explain how the system produces notifications,
our model describes how the system computes correct frontiers.

Finally, we relax the conditions on receiving a message by a node. This
model is too restrictive in a sense that a new message can only be produced

12

2.5. Formal Verification

as response to consumed messages. Moreover, the model states that the
timestamp of the consumed message and a timestamp of a produced mes-
sage in each step must satisfy could-result-in relation. This is, once again, not
representative of Timely Dataflow.

In conclusion, while Abadi and Isard present a neat and powerful model,
it has diverged from the Timely Dataflow implementation, imposes a too
high level of abstraction to be easily applied and does not describe how
notification (or frontiers) are computed by the system. We believe that our
model addresses all of these issues.

2.4.2 Naiad Clock Protocol

The Naiad Clock Protocol is a distributed, conservative reference counter
that keeps track of outstanding capabilities in the system by modelling the
exchange of progress information between workers. It guarantees that each
worker holds a safe approximation of the active capabilities in the system at
any point during a dataflow computation.

This protocol models the Exchange phase of Timely Dataflow Progress Track-
ing protocol. Our work complements this model by inferring location fron-
tiers at each worker from the approximated views of system’s capabilities
computed by the Naiad Clock Protocol. Moreover, by combining this pro-
tocol with our model of the Propagation algorithm, we obtain a complete
model of the Timely Dataflow Progress Tracking protocol.

Given that this protocol is a core component of the Progress Tracking pro-
tocol modelled in this thesis, we describe it in greater detail later in Section
6.1.

2.5 Formal Verification

Due to the growing scale of present-day software and hardware systems
and the complexity of interactions between the systems’ components, it has
become increasingly more challenging to sufficiently exercise these interac-
tions by a set of tests or simulations. Indeed, the last few decades have seen
some alarming software and hardware failures. Gaining in popularity af-
ter the famous Pentinum bug [13], formal verification methods have set to
tackle this problem.

Formal verification is a form of static analysis involving the construction of
rigorous mathematical models of the systems to prove their correctness. In
general, creating such a model improves the programmer’s understanding
of the system while detecting bugs early on in the design cycle. Moreover,
incremental changes to the design often require minimal changes to the
proofs, allowing for a safer and faster long-term maintenance.

13

2. Background

Over the years, we have witnessed a number of breakthroughs in formal
mechanical verification of real-life systems. These systems include verified
compilers [26, 21], the verified seL4 microkernel [20], the verified distributed
system IronFleet [17], or the Roissy airport shuttle wayside control unit [8]
generated from a formal model. These systems have significant roles outside
of the research context. For instance, CompCert is a commercial product
while seL4 microkernel is used, among others, in medicine, aerospace,
autonomous aviation, and defence [36].

2.5.1 Proof assistants

Proof assistants are software tools that prove statement about formal struc-
tures using deductions rules (e.g.: resolution, induction, etc.). While a for-
mal proof can be easily checked by computers, constructing such a proof
is nontrivial. A proof assistant therefore interacts with a programmer who
guides it in the search of a formal proof.

We list some of the most popular interactive theorem provers:

• ACL2 [3] is a highly automated proof assistant used predominantly in
hardware verification. It only uses first-order logic making it challeng-
ing to describe more complex systems.

• Coq [11] is a generic purpose proof assistant with a very expressive
type system making it popular in areas of computer science [26] and
mathematics [14, 15]. It provides code extraction of programs in
OCaml [33] and Haskell [16] directly from Coq functions or Coq proofs
and specification.

• Isabelle [18] is a generic purpose, higher-order-logic (HOL) theorem
prover implemented in Standard ML. It provides high degree of proof
automation and a relatively modern user interface. Compared to Coq,
it has a more restricted logic that does not support dependent types.

• TLAPS [38] is a proof system for the TLA+ [22] formal specification
language particularly useful for describing concurrent and distributed
systems. Proofs are described in declarative style. TLAPS works by
transforming a proof into individual proof obligations and sending
them to backend provers such as Isabelle or Zenon [10]. TLAPS has
been used to prove correctness of the Pastry Distributed Hash Table
[27] or Byzantine Paxos [23].

• Dafny [12] is a programming language and an automated program
verification system with built-in specification constructs such as func-
tion pre-conditions, post-conditions, loop variant and loop invariants.
It is based around the concept of dynamic frames [19]. This approach
attempts to prove program correctness of individual program parts

14

2.5. Formal Verification

locally and from that imply the correctness of the full program. Addi-
tionally, Dafny is also capable of produce .NET executable.

• Lean [24] is one of the newer proof assistants developed by Microsoft
Research. It offers a very expressive type system and good automation.
However, due to its young age, its library is limited and in the early
stages of development.

We picked Isabelle as our proof assistant choice due to its expressiveness,
level of automation, and our familiarity with the tool.

15

Chapter 3

Isabelle/HOL Syntax Overview

In this chapter, we give an overview of the Isabelle/HOL syntax that will be
used throughout the thesis.

3.1 Types, terms and basic logic

The syntax of Isabelle/HOL resembles that of a functional programming
language. In terms of types, it supports:

• Basic types: bool, int, nat, . . .

• Type variables: ’a, ’b, ’loc, . . .

• Function types denoted by⇒: nat⇒ nat, ’a⇒ ’b⇒ ’c . . .

• Type constructors: list, set, zmultiset, etc. The type constructors are
written postfix such that nat set is a type of sets of elements in N and
’a list is a type of lists of elements in type ’a.

Terms can be formed as:

• Variables

• Constants

• Function applications, for example f x or plus x y, . . .

• Lambda abstractions, examples of which are the identity function
λx. x, or the addition on two elements λx y. x + y.

All terms in Isabelle must be well-typed. Isabelle tries to automatically infer
these types using type inference. However, due to overloaded functions, terms
must be occasionally explicitly annotated by the user. For this purpose, we
write t::τ to mean that the term t is of type τ.

17

3. Isabelle/HOL Syntax Overview

Terms of type bool are called formulas. Isabelle uses basic logic constructs for
Boolean and logical expressions such as ∨, ∧, =, 6=, ¬ or−→. Quantifiers are
denoted by ∃ and ∀. Additionally, Figure 3.1 lists functions and constructs
used throughout the thesis.

3.2 Function definitions and lemmas

The definition command provides a way of defining a non-recursive function
without pattern-matching. The following function definition computes the
square of any natural number.

definition sq :: nat ⇒ nat where

sq x ≡ x ∗ x

In turn, the fun command provides a convenient way of defining functions
that do make use of pattern matching or recursion. A simple example is
the sum list function computing the sum of all elements in a list of natural
numbers.

fun sum_list :: nat list ⇒ nat where

sum_list [] = 0

| sum_list (x#xs) = x + (sum_list xs)

When using the fun command, Isabelle tries to solve all the necessary proof
obligations automatically. In the case of recursion, this involves the proof of
termination. In the case of pattern matching, Isabelle tries to prove that the
list of provided patterns is exhaustive and in some cases non-overlapping. If
any of these proofs fails, the definition is rejected. This can either mean that
the definition is faulty, or that the default proof procedures are insufficient
to complete the proofs. If the user believes the latter to be the case, they can
define the function using a function command rather than fun and prove all
obligations manually.

function sum_list :: nat list ⇒ nat where

sum_list [] = 0

| sum_list (x#xs) = x + (sum_list xs)

by (auto, meson neq_Nil_conv)

(* Proof of termination of the function sum_list *)

termination sum_list

apply (relation measures [λxs. length xs])

using wf_measures apply blast

by (auto simp add: not_less)

The lemma command consists of a lemma name, a statement we wish to prove
and an associated proof as shown below. When the proof is completed,

18

3.2. Function definitions and lemmas

(* LISTS *)

[] (* an empty list *)

hd L (* head of list L *)

tl L (* tail of list L *)

L ! n (* nth element of list L *)

L1 @ L2 (* concatenation of lists L1 and L2 *)

x # L (* L appended with element x at front *)

(* STREAMS *)

shd S (* head of stream S *)

stl S (* tail of stream S *)

holds P S (* True iff predicate P holds for the head of stream S *)

alw ϕ S (* True iff predicate ϕ holds for all suffixes of stream S *)

(ϕ aand ψ) S (* True iff predicates ϕ and ψ hold for stream S *)

(* ZMULTISETS *)

{}z (* an empty zmultiset *)

zcount Z x (* the multiplicity of x in Z, can be negative *)

x ∈z Z (* True iff x has a non-zero multiplicity in Z *)

set_zmset Z (* a set containing all elements of Z

with non-zero multiplicity in Z *)

(* RECORD TYPES *)

record point = (* Definition of a point record type. *)

Xcoord :: int (* Records of type point have two fields named *)

Ycoord :: int (* Xcoord and Ycoord both of type int *)

L Xcoord = 10, Ycoord = 5 M::point (* A constant of type point *)

Xcoord p (* The value of field Xcoord in point p *)

p L Xcoord = -81 M (* A functional update operation on records.

This term returns a constant of type point with Xcoord

set to -81 and values of other fields copied from p *)

(* BASIC CONSTRUCTS *)

if P then t1 else t2 (* standard if-statement *)

case t of case1 ⇒ t1 (* standard case-statement *)

| . . .
| casen ⇒ tn

let x = a in t (* local assignment *)

SOME x . P x (* an arbitrary x satisfying predicate P *)

THE x . P x (* the unique x satisfying predicate P *)

type_synonym date = (nat × nat) (* A type alias called date *)

datatype colour = Red | Green | Blue (* An numeration type with three elements *)

Figure 3.1: Useful constructs and operations.

19

3. Isabelle/HOL Syntax Overview

Isabelle associates the name of the lemma with the statement which can
now be used in the proofs that follow.

lemma sum_list_concat :

sum_list xs + sum_list ys = sum_list (xs@ys)

apply (induction xs)

apply simp

by simp

3.3 Locales

In Isabelle, the locales are a module system which allows us to reason from
axioms locally in a sound way. A locale defines a context containing a set of
fixed parameters and assumptions. Inside the locale, we can make definitions
and prove theorems based on these parameters and assumptions.

The following code snippet shows a specification of a locale defining partial
order. It contains one parameter le (also written infix v), the binary predi-
cate declared using the fixes keyword. The locale also contains three assump-
tions defined in terms of the le predicate describing the three properties of
partial order: reflexivity, antisymmetry, and transitivity. The assumptions
are declared using the assumes keyword.

locale partial_order =

fixes le :: 'a ⇒ 'a ⇒ bool (infixl v 50)

assumes refl: x v x

and antisym: [[x v y; y v x]] =⇒ x = y

and trans: [[x v y; y v z]] =⇒ x v z

The locales can be further extended by introducing more parameters and as-
sumptions. For example, we can define a new locale total order by extending
the partial order with an assumption that any two elements are comparable
with respect to le:

locale total_order = partial_order +

assumes comp: x v y ∨ y v x

Moreover, concrete examples can be proved to be valid instances of a locale.
For example, we can instantiate the partial order locale with the total order
on integers:

interpretation int: partial_order (≤) :: int ⇒ int ⇒ bool

by unfold_locales auto

In summary, locales provide a sound way of reasoning locally about ax-
iomatic theories and are highly suitable for formalisation of abstract math-

20

3.3. Locales

ematical concept and hierarchical structures. The code snippets in this sub-
section were taken from the Tutorial to Locales and Locale Interpretation [9].

21

Chapter 4

Propagation Algorithm: Model

This chapter presents the formal specification of the Timely Dataflow progr-
ess tracking protocol’s Propagation algorithm. This algorithm aims to com-
pute location frontiers from a worker’s approximated view of system’s ca-
pabilities.

We start by introducing basic concepts and definitions used in the formalisa-
tion. Next, we model the graph topology and list the necessary assumptions
on the graph. Finally, we present the model of the Propagation algorithm
which consists of the computation state and the set of allowed actions.

4.1 Basic definitions

The Propagation algorithm is parametrised by three type variables:

• ’loc: the location type,
• ’t: the timestamp type, and
• ’sum: the summary type.

4.1.1 Partial order on timestamps

We define partial order as a binary relation that satisfies reflexivity (each
timestamps is comparable to itself), antisymmetry (no two different times-
tamps precede each other), and transitivity (if a first element precedes a
second element, and, in turn, that element precedes a third element, then
the first element precedes the third element).

For example, (int64, int64) is a valid timestamp type with following partial
order:

(a1, b1) ≤ (a2, b2) ⇐⇒ a1 ≤ a2∧ b1 ≤ b2. (4.1)

23

4. Propagation Algorithm: Model

4.1.2 Antichain

Having to deal with partially ordered timestamps causes some complica-
tions. For instance, given a set of timestamps, there can be multiple minimal
or maximal (mutually incomparable) elements in the set. To reason about
partially ordered elements we use a standard mathematical concept of an
antichain.

Definition 4.1 A subset A ⊆ S is an antichain in S if every pair of different
elements in A is incomparable. We define {}A to be the empty antichain and
x ∈A A to denote that x is a member of antichain A.

As an example, let S = {(1, 2), (2, 3), (4, 1), (3, 1)} be a set of tuples with the
partial order defined by Equation (4.1). Then subsets A = {(1, 2), (3, 1)} and
B = {(2, 3), (3, 1)} are both antichains in S.

4.1.3 Signed multiset

In later sections, we will see that the state of the computation is expressed in
terms of signed multisets (zmultiset in Isabelle). In a signed multiset, every
element has an associated positive or negative multiplicity. The domain of
a signed multiset S (i.e., the set of elements with non-zero multiplicity in S)
must be finite.

To effectively talk about signed multisets, we describe concrete signed mul-
tisets using a set of element-multiplicity pairs. For example, S = {(2,+2),
(3,+1), (5,−10)} is a signed multiset of integers with two copies of 2, one
copy of 3, and minus ten copies of 5. All other integers have implied multi-
plicity 0 in S.

We define {}z to be the empty signed multiset and x ∈z S to denote that x
has a non-zero multiplicity in S.

4.1.4 Infimum of signed multiset

Next, we define the infimum (or greatest lower bound) as a function over a
signed multiset S returning all minimal incomparable elements in S with
multiplicity 1.

Definition 4.2 infimum(S) is an antichain in S consisting of elements of S that are
either smaller or incomparable to any other element in S. Formally,

infimum(S) = {x | x ∈ S ∧ @y ∈ S . y < x)}

Definition 4.3 zmset infimum(S) is signed multiset consisting of elements of infi-
mum(S) with multiplicity +1. Formally,

zmset infimum(S) = {(x,+1) | x ∈ infimum(S)}

24

4.2. Topology

4.2 Dataflow graph topology

The dataflow topology locale describes the timely dataflow computation graph
and contains two fixed parameters: results in and summary.

The results in relation describes how timestamps are incremented with sum-
maries. The summary function defines the edges of the dataflow graph. Con-
cretely, it associates every ordered pair of locations with a set of weights – an
antichain ’sum type. An empty antichain implies there is no edge between
the two locations.

locale dataflow_topology =

fixes results_in :: 't ⇒ 'sum ⇒ 't
and summary :: 'loc ⇒ 'loc ⇒ 'sum antichain

...

4.2.1 Assumptions on basic types

In addition, we impose a few restrictions on ’loc, ’t and ’sum type:

• The set of locations ’loc is enumerable and finite. The finitness is
required to show termination of the Propagation algorithm.

• Sets ’t and ’sum are partially ordered. We will use < and ≤ as the
partial order operations.

• The set of summaries ’sum is an additive monoid. In other words, there
is a binary function (+) on ’sum that is associative, with an identity
element 0 in ’sum.

4.2.2 Assumptions on the graph topology

Having defined the basic types and the set of relations on them, we present
a list of necessary assumption on the dataflow graph topology.

...

assumes results_in_zero: results_in t 0 = t

and results_in_mono: t1 ≤ t2

−→ results_in t1 s ≤ results_in t2 s

s1 ≤ s2

−→ results_in t s1 ≤ results_in t s2

and followed_by_mono: (s1::'sum) ≤ s2 ∧ s3 ≤ s4

−→ s1 + s3 ≤ s2 + s4

and followed_by_summary: results_in (results_in t s1) s2

= results_in t (s1 + s2)

25

4. Propagation Algorithm: Model

and summary_self: summary loc loc = {}A

and summary_cycle: path loc loc p ∧ p 6= []

∧ s = sum_path_weights p

−→ t < result_in t s.

...

The assumption results in zero states that adding a zero-summary to a times-
tamp has no effect on the timestamp. The assumption results in mono states
that the relation is monotone in both of its arguments.

Similarly, followed by mono requires that the addition on summaries is mono-
tone in both arguments. The assumption followed by summary claims that
applying two summaries one after another to a timestamp results in the
same timestamp as if we start by adding the two summaries and only then
apply them to the timestamp.

The last two assumptions talk about cycles in the graph. The first assump-
tion, summary self, is self-explanatory, requiring no loops (self-cycles). The
second assumption, summary cycle, claims that every cycle has to increment
a timestamp. Concretely, it states, that if p is a non-empty path from loc to
loc, and s is the accumulated summary along the path p (computed by the
function sum path weights) then applying s to any timestamp t always leads
to an increased timestamp.

4.3 State

The state of the algorithm is defined by a configuration record. It describes a
single worker’s view of the system’s capabilities and the effect they carry on
the location frontiers. The configuration record is specified using three state
variables: pointstamps, implications, and worklist.

record (overloaded) ('loc, 't) configuration =

pointstamps :: 'loc ⇒ 't zmultiset (* local view of the caps *)

implications :: 'loc ⇒ 't zmultiset (* implications of the caps *)

worklist :: 'loc ⇒ 't zmultiset (* not-yet-applied updates *)

The configuration pointstamps c is a worker’s view of the system’s capa-
bilities. For any timestamp t, (pointstamps c loc) approximates the number
of capabilities (loc, t) in the system in configuration c. This multiset does
not provide the true representation of the system because capabilities are
dropped or created independently by all workers. Each worker is eventu-
ally notified of ongoing changes, but in the meantime the worker’s view of
system’s capabilities may be delayed.

The configuration implications c is a worker’s view of possible future capabil-
ities computed from the worker’s view of present capabilities - pointstamps

26

4.4. The algorithm

c. In particular, for any location loc, a timestamp t with strictly positive mul-
tiplicity in implications c loc suggests that there exists a capability (loc′, t′)
such that (loc′, t′) could-result-in (loc, t).

The variable worklist c loc stores local (temporary) changes that should be
applied to (implications c loc).

The implications are the output of the protocol because they provide locations
with frontiers. What we want is for all possible future timestamps to be
reflected in implications. Clearly, in practice, implications cannot store an
infinite set of timestamps. However, what we can do is to store a valid
lower-bound. In fact, we can define a frontier of location loc in configuration
c as the infimum (implications c loc).

4.4 The algorithm

This section starts with an informal description of the Propagation algorithm
to build some intuition into how the algorithm works while the following
subsections give formal definitions of the algorithm actions.

We know that each worker holds capabilities which allow it to produce data
with certain timestamps at certain locations. Additionally, every location is
aware of its frontier - a lower bound of possible future timestamp that may
yet arrive at the location as a result of system’s capabilities. The frontiers are
recorded by implications.

As the computation progresses, smaller timestamps cease to arrive while
higher timestamps emerge. In other words, locations drop and receive new
capabilities. The goal of the algorithm is to repeatedly update implications
for all locations given a list of changes to the system’s capabilities.

To demonstrate the approach of the algorithm, consider a newly created
capability (loc,t). We start by updating implications at location loc. A ”mes-
sage” about the timestamp t then starts its journey from location loc, passing
along the edges of the graph and being transformed by corresponding sum-
maries. Every time it arrives at some location loc’, the location takes this
recomputed timestamp into consideration and updates its own implications.
The timestamp then continues along the outgoing edges. In the end, the
implications at every location should contain a valid lower bound of future
timestamps. What is more, the new implications may contain a more accurate
lower bounds than those before the start of the propagation.

In reality, we do not send actual messages along the graph’s edges. Instead,
the system which is aware of the graph topology, performs this graph
traversal and updates implications accordingly. The algorithm does so using
two actions:

27

4. Propagation Algorithm: Model

1. next change multiplicity

2. next propagate

Formally, actions are next-state relations describing how the computation
state changes in each step that the algorithm takes. As a result, an action
is expressed as a function of two configuration states - the original configu-
ration c0 and the next-state configuration c1 - and in some cases additional
arguments. The function returns True if the two configurations satisfy the
next-state relation specified by the action.

The actions can be carried out in any order, as long as all the conditions on
the actions are satisfied. The next two sections present a formal specification
of both action and discuss them in detail.

4.4.1 The next change multiplicity action

definition next_change_multiplicity :: ('loc, 't) configuration

⇒ ('loc, 't) configuration

⇒ 'loc ⇒ 't ⇒ int ⇒ bool where

next_change_multiplicity c0 c1 loc t n =

unchanged implications c0 c1 ∧
n 6= 0 ∧
(∃t'. t' ∈A infimum (implications c0 loc) ∧ t' ≤ t) ∧

- < add n copies of t to pointstamps c0 loc >

(∀loc'. pointstamps c1 loc' = (

if loc' = loc

then update_zmultiset (pointstamps c0 loc') t n

else pointstamps c0 loc')
- < add changes of pointstamps infimum into worklist >

(∀loc'. worklist c1 loc' =

worklist c0 loc' +

infimum_changes (pointstamps c1 loc') (pointstamps c0 loc'))

Figure 4.1: Formal specification of the next change multiplicity action.

The next change multiplicity action takes five arguments: the original config-
uration c0, the next-state configuration c1, a location loc, a timestamp t and
an integer n. The formal specification of the action is presented in Figure
4.1.

In this action, the worker records information about n created or destroyed
(loc, t) capabilities. A positive n implies that capabilities were created while a
negative n suggest that capabilities were destroyed. The change is recorded

28

4.4. The algorithm

by adding n copies of timestamp t to pointstamps c0 loc. Next, worklist c0 loc
is updated with the changes to infimum (pointstamps c0 loc).

Consider the example in Figure 4.2a showing a single location loc in the
original configuration c0 (left) and next-state configuration c1 (right). The
action (arrow) removes one copy of timestamp 3 from pointstamps at location
loc. This change has no effect on infimum (pointstamps c0 loc), which remains
at 2. Thus, the worklist also does not change.

Now, consider the second example in Figure 4.2b. The only difference
from the previous example is that the action acts on timestamp 2 instead
of timestamp 3. We can see the action remove one copy of timestamp 2 from
pointstamps at location loc. This time, however, infimum (pointstamps c1 loc)
increases to 3. As a consequence, the worklist is updated with the changes
to infimum (pointstamps c1 loc).

loc

pointstamps:		{(2,	+1),
															(3,	+1)}
implications:	{(2,	+1)}
worklist:					{}

loc

pointstamps:		{(2,	+1)}
implications:	{(2,	+1)}
worklist:					{}

c0 c1

next_change_multiplicity

c0	c1	loc	3	(-1)

(a) Without an affect on the worklist.

loc

pointstamps:		{(2,	+1),
															(3,	+1)}
implications:	{(2,	+1)}
worklist:					{}

loc

pointstamps:		{(3,	+1)}

implications:	{(2,	+1)}
worklist:					{(2,	-1),
															(3,	+1)}

c0 c1

next_change_multiplicity

c0	c1	loc	2	(-1)

(b) With an affect on the worklist.

Figure 4.2: A demonstration of the next change multiplicity action with different effects on the
worklist.

Lastly, this action has to satisfy two requirements. First, n cannot be zero,
since it would have no effect on the configuration state, letting us repeatedly
perform this action without making any progress.

29

4. Propagation Algorithm: Model

Secondly, the timestamp of the created or destroyed capabilities cannot be
smaller than all elements of (implications c0 loc). Remember that implica-
tions store information about which timestamps the location mat still see
in future. Removing this condition would allow us to create or destroy ca-
pabilities with timestamps that the location considers to be ”expired”. The
condition is thus necessary for the algorithm’s correctness.

4.4.2 The next propagate action

definition next_propagate :: ('loc, 't) configuration

⇒ ('loc, 't) configuration

⇒ 'loc ⇒ 't ⇒ bool where

next_propagate c0 c1 loc t =

unchanged pointstamps c0 c1 ∧
t ∈z worklist c0 loc ∧
(∀t' loc'. t' ∈z worklist c0 loc' −→ t' ≮ t) ∧

- < add all copies of t in worklist c0 loc to implications c0 loc >

(∀loc'. implications c1 loc' = (

if loc' = loc

then implications c0 loc' +

(filter_zmset (λt'. t' = t)(worklist c0 loc))

else implications c0 loc')
- < 1. Remove all copies of t from worklist c0 loc >

- < 2. Add changes of implications infimum to worklists at all out-

going locations taking into account summaries along the edges. >

(∀loc'. worklist c1 loc' =

if loc' = loc

then (filter_zmset (λt'. t' 6= t)(worklist c0 loc'))
else worklist c0 loc' +

after_summary

(infimum_changes

(implications c1 loc) (implications c0 loc))

(summary loc loc')))

Figure 4.3: Formal specification of the next propagate action.

The next propagate action takes four arguments: the original configuration
c0, the next-state configuration c1, a location loc and a timestamp t. The
formal specification of the action is presented in Figure 4.3.

In this action, all copies of timestamp t in worklist c0 loc are moved to impli-
cations c0 loc. Then, the worklists at all outgoing locations are updated with
changes to infimum (implications c0 loc). Since edges connecting locations

30

4.5. Specification

carry summaries, the timestamps are incremented with edge summaries be-
fore they are added to the worklist.

Once again, we try to demonstrate the action with a use of a simple example.
The first example in Figure 4.4a shows three connected locations loc1, loc2
and loc3, their original configuration state c0 (left) and their next-state
configuration c1 (right). All copies of timestamp 2 at location loc1 are moved
from worklist c0 loc1 to implications c1 loc1. The action does not change
infimum (implications c0 loc1). Therefore, worklists at locations other than
loc1 remain the same.

In the second example in Figure 4.4b, the action moves all copies of times-
tamp 2 at loc1 from worklist c0 loc1 to implications c1 loc1, this time causing
a change to infimum (implications c0 loc1). We can see that the worklist at
neighbouring outgoing locations is modified with these changes and that
they satisfy the increments enforced by edge summaries.

The action must satisfy two requirements. First, timestamp t at location loc
must have a non-zero, otherwise the action would have no effect on the state.

Secondly, t must be a smallest such timestamp in worklist. This condition
may not be obvious and we have to build some intuition into why it is
at all necessary. The next propagate action broadcasts information about
new capability implications to neighbouring locations. Those locations can
in turn broadcast this information further along the graph edges. Since
the graph can contain cycles, it is possible that the information will travel
along the edges indefinitely. Always picking the smallest timestamp ensures
that positive and negative entries in the worklist eventually cancel out and
consequently prevents this endless loop from happening.

Appendix A shows an example of a graph state, in which next propagate
step always picks a largest timestamp instead of a smallest, and the state
never converges. We have implemented the same scenario in the Rust
implementation of Timely Dataflow and got identical results.

4.5 Specification

Finally, the specification of the Propagation algorithm, formalised in Figure
4.5, is defined in terms of an initial configuration Init and next-state relation
Next. A complete specification Spec is an infinite stream of configurations
starting with Init, and satisfying the Next relation for every pair of consecu-
tive configurations.

In the initial configuration Init, the implications at all locations are empty,
thus, the locations are not yet aware of their frontiers. The configuration may
however contain pointstamps, termed default pointstamps, as long as they are
reflected in the worklist.

31

4. Propagation Algorithm: Model

loc1

pointstamps:		{}
implications:	{(2,+1),
															(4,+1)}
worklist:					{(2,+1)}

c0 c1

next_propagate

c0	c1	loc1	2

loc2 loc3

pointstamps:		{}
implications:	{(2,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(5,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(2,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(5,+1)}
worklist:					{}

{3}{0}

loc1

loc2 loc3

{3}{0}

pointstamps:		{}
implications:	{(2,+2),
															(4,+1)}
worklist:					{}

(a) Without an affect on the worklists of neighbouring locations.

loc1

pointstamps:		{}
implications:	{(2,+1),
															(4,+1)}
worklist:					{(2,-1)}

pointstamps:		{}
implications:	{(4,+1)}

worklist:					{}

c0 c1

next_propagate

c0	c1	loc1	2

loc2 loc3

pointstamps:		{}
implications:	{(2,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(5,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(2,+1)}
worklist:					{(2,-1),
															(4,+1)}

pointstamps:		{}
implications:	{(5,+1)}
worklist:					{(5,-1),
															(7,+1)}

{3}{0}

loc1

loc2 loc3

{3}{0}

(b) With an affect on the worklists of neighbouring locations.

Figure 4.4: A demonstration of the next propagate action with different effects on the worklists
of neighbouring locations.

32

4.6. Chapter Summary

definition Init where

Init c ≡ ∀loc.
implications c loc = {}z ∧
worklist c loc = zmset_infimum (pointstamps c loc)

definition Next :: ('loc, 't :: order) configuration stream

⇒ bool where

Next s ≡ (

let c0 = shd s;
c1 = shd (stl s)

in

∃loc t n. next_change_multiplicity c0 c1 loc t n ∨
∃loc t. next_propagate c0 c1 loc t

)

definition Spec :: ('loc, 't) configuration stream

⇒ bool where

Spec ≡ holds Init aand alw Next

Figure 4.5: The algorithm specification.

In practice, Timely Dataflow initialises the default pointstamps at all locations
with a signed multiset {(0,+m)} where m is the number of workers in the
system.

4.5.1 Propagation Rounds

The definition of Spec does not impose any ordering on actions. However, in
practice, this ordering is not arbitrary. Instead, Timely Dataflow preforms a
sequence of next propagate actions in a batch until worklists at all locations are
empty. We call such a sequence of next propagate actions a propagation round.
Completing a propagation round guarantees that all changes to system’s
capabilities are reflected in all frontiers. The details on how this guarantee
is enforced are shown in Chapter 5 when we discuss the algorithm’s safety
property.

4.6 Chapter Summary

We have introduced a formal model of the Timely Dataflow Propagation
algorithm the goal of which is to continuously re-compute locations’ fron-
tiers from a local view of the system’s capabilities. The model represents
computation as a sequence of configurations consisting of pointstamps - the
local view of system’s capabilities, implications - the implications of the view

33

4. Propagation Algorithm: Model

of system’s capabilities and worklist - the temporary progress updates. The
stream evolves with respect to two next-state relations: next change multiplic-
ity and next propagate.

Additionally, the model of the Propagation algorithm is constrained by
a set of assumptions on the basic data-types and the dataflow topology.
The purpose of these assumptions is to prove the safety property of the
Propagation algorithm as well as the safety property of the overall Timely
Dataflow Progress Tracking protocol. We have put great effort into making
our model general by minimising the number of constraints.

34

Chapter 5

Propagation Algorithm: Safety

This chapter presents the main safety property of the Propagation algorithm
presented in Chapter 4 and gives the proof overview of the safety property.

5.1 Safety Property

The Propagation algorithm aims to compute location frontiers from a worker’s
approximated view of system’s capabilities. Each frontier represents a lower-
bound of possible future timestamps arriving at a given location. Each loca-
tion can use its frontier to reason about which phases of computation have
passed and which are still in progress allowing it to produce correct output
for the individual phases.

The safety property of the Propagation algorithm is defined in Figure 5.1. It
states that for every known capability (loc1, t1), if this capability could result
in (loc2, t2), then the frontier at location loc2 is not ahead of t2.

It is important to note that the safety property is not an invariant of the
Propagation algorithm. Indeed, the spec implies safe lemma in Figure 5.1
claims the safety property is satisfied for those configurations in s whose
worklist is empty at all locations. We know that the worklists become empty
at the end of a propagation round.

It is indeed possible that while the Propagation algorithm processes worklist
items, it temporarily advances implications past valid frontiers. As a result,
the operator should not make time-depended decisions such as creating
new messages or draining its state before the Propagation algorithm clears
all worklists.

The safety property is defined in terms of could result in relation. We say that
a capability (loc1, t1) could result in (loc2, t2) if and only if there exists a path
from loc1 to loc2 such that applying the accumulated path summary s along
the path to t1 does not exceed t2.

35

5. Propagation Algorithm: Safety

definition supported_by where

supported_by t S ≡ ∃t'. t' ∈A infimum S ∧ t' ≤ t

definition safe :: ('loc, 't) configuration ⇒ bool where

safe c ≡ ∀loc1 loc2 t1 t2.

zcount (pointstamps c loc1) t1 > 0

∧ could_result_in (loc1, t1) (loc2, t2)

−→ supported_by t2 (implications c loc2)

lemma spec_implies_safe:

assumes Spec s

shows alw (holds (λc. ∀loc. worklist c loc = {}z −→ safe c)) s

Figure 5.1: Safety property of the Propagation algorithm

definition could_result_in :: ('loc × 't) ⇒ ('loc × 't) ⇒ bool where

could_result_in (loc1,t1) (loc2,t2) ≡ ∃s.
s ∈A (path_summaries loc1 loc2) ∧ results_in t1 s ≤ t2

Example 5.1 To visualise how the frontiers and the could result in relation, con-
sider the simple dataflow graph below with a single capability cap = (L1, 1)1. We
will reason about frontiers per location:

L1 L3

L2

{3}

{2} {2}

cap	(L1,1)

L1: There exists a unique path from L1 to L1, namely the empty path, with an
accumulated path summary 0. Thus, given the definition of could result in
relation, the capability cap could result in (L1, t) where t ≥ 1. Finally, the
frontier at L1 is at most {1}.

L2: Similarly, there exists a unique path from L1 to L2 with path summary 2.
Thus, the capability cap could result in (L2, t) where t ≥ 3 and the frontier at
L2 is at most {3}.

L3: There are two paths form L1 to L3, an upper path with path summary 4 and
a lower path with path summary 3. Since we try to compute the lower-bound

1In this example, we use integer timestamps and integer addition as the additive relation
on summaries and the operation results in.

36

5.2. Informal proof of the safety property

of future timestamps at location L3 only the smaller summary matters. Thus,
cap could result in (L3, t) where t ≥ 4 and the frontier at L3 is at most {4}.

5.2 Informal proof of the safety property

The proof of the safety property relies on two propositions, the proofs of
which are omitted.

Definition 5.2 union frontier c loc =

∑loc′
[

after summary
(
infimum (implications c loc’)

)
(summary loc’ loc)

]
The union frontier is the union of all frontiers at incoming locations of loc,
incremented by summaries along the edges to loc. We could say that union
frontier computes the implications, or the effect, that the frontiers one level
upstream of loc have on the location loc.

The first protocol property describes the relationship between the worklist,
pointstamps and implications at some location loc, and its union frontier.

Proposition 5.3 Fix a configuration c from the computation s satisfying Spec s.
Then, the union of the implications and the worklist at location loc is the same as
the union of the pointstamps infimum and the union frontier at location loc.

implications c loc + worklist c loc =

zmset infimum (pointstamps c loc) + union frontier c loc

While this may not be obvious at the first sight, the property is intuitive. Re-
member that the implications and the worklist at location loc store information
about the timestamps that may arrive at location loc in future. The equality
claims, that a timestamp t can be present in the implications or worklist at
location loc for one of two reasons. First reason is that there exists a capabil-
ity with timestamp t at location loc and consequently, t ∈z pointstamps c loc.
The second reason is that one of the incoming locations of loc knows about
a capability upstream that could result in (loc, t) and must have notified loc
about it. Hence, t is reflected in the union frontier of location loc.

The second property of the model talks about the existence of prefix-optimal
paths.

Definition 5.4 A path from location loc1 to location loc2 with a path summary s
is optimal if and only if there is no other path from loc1 to loc2 with path summary
s’ such that s′ < s. In other words, s is a smallest path summary from loc1 to loc2.

Definition 5.5 A path p from location loc1 to location loc2 is prefix-optimal if
and only if every prefix p′ of the path p from location loc1 is optimal.

37

5. Propagation Algorithm: Safety

Proposition 5.6 If there exists a path from loc1 to loc2 with a path summary s,
then there exists a prefix-optimal path from loc1 to loc2 with path summary s′ ≤ s.

While this statement is obvious for integer timestamps and integer sum-
maries, it is highly non-trivial for the general setting we consider. Indeed,
the proof of the Proposition 5.6 took up majority of our time in proving the
model’s safety property.

5.2.1 Proof of the safety property

Theorem 5.7 Fix a configuration c from the computation s satisfying Spec s. Then,

∀ loc . worklist c loc = {}z −→ safe c

Proof Figure 5.1 defines safe in therms of all pairs of capabilities (loc1, t1)
and (loc2, t2), such that t1 has a strictly positive multiplicity in pointstamps
c loc1 and (loc1, t1) could result in (loc2, t2). A configuration is safe if t2 is
supported by implications at location loc2 in configuration c for all such pairs
of capabilities.

We prove the above theorem for an arbitrary pair of such capabilities by
induction on the length of a prefix-optimal path from loc1 to loc2. The length
is defined in terms of the number of edges in the path.

Base case

In the base case, p has length 0 so loc1 = loc2. Then, from the assump-
tion of the Theorem 5.7 and the assumptions on the pair of capabilities
(loc1, t1), (loc2, t2) we have:

∀loc . worklist c loc = {}z (5.1)
∧ zcount (poinstatmps c loc2) t1 > 0 (5.2)
∧ t1 ≤ t2 (5.3)

From the assumption 5.2 and the definition of infimum, we get:

∃t′. t′ ≤ t1 ∧ t′ ∈A infimum (pointstamps c loc2) (5.4)

Note that the worklist at all locations including loc2 is empty and all times-
tamps in the union frontier have non-negative multiplicity. Then, by the

38

5.2. Informal proof of the safety property

Proposition 5.3 we get:

zcount (implications c loc2) t′ > 0
infimum def.
=⇒ ∃t′′. t′′ ≤ t′ ∧ t′′ ∈A infimum (implications c loc2)

equation (5.4)
=⇒ ∃t′′. t′′ ≤ t1 ∧ t′′ ∈A infimum (implications c loc2)

equation (5.3)
=⇒ ∃t′′. t′′ ≤ t2 ∧ t′′ ∈A infimum (implications c loc2)

supported by def.
=⇒ supported by t2 (implications loc2)

Inductive case

∀loc . worklist c loc = {}z

∧ zcount (pointstamps c loc1) t1 > 0
∧ (loc1, t1) could-result-in (loc2, t2)

∧ ∃p . prefix optimal p loc1 loc2 ∧ path length p ≤ n
−→ supported by t2 (implications c loc2)

(5.5)

The inductive hypothesis in the equation (5.5) states, that while the worklist
at all locations is empty, if an existing capability (loc1, t1) could result in a
capability (loc2, t2), and there exists a prefix-optimal path p from loc1 to loc2
no longer than n, then timestamp t2 must be supported by the frontier at
location loc2. Specifically, there must exists a timestamp t′ ≤ t2, such that
t′ ∈A infimum (implications c loc2).

Assume that for a pair of capabilties (loc1, t1) and (loc2, t2) we have:

∀loc . worklist c loc = {}z

∧ zcount (pointstamps c loc1) t1 > 0
∧ (loc1, t1) could-result-in (loc2, t2)

∧ ∃p . prefix-optimal p loc1 loc2 ∧ length p = n + 1

(5.6)

Let s be the path summary along path p, then from the definition of could
result in

t2 ≥ results in t1 s (5.7)

Now, obtain a new path p* by removing the last edge from path p. Figure
5.2 helps visualise this scenario. Let s∗ be the path summary of p∗ and s→
be the summary along the edge from loc∗ to loc2. Then we get:

s = s∗ + s→ (5.8)

Combining the above equation with equation (5.7), we get:

t2 ≥ results in t1 (s∗ + s→)
followed by summary assum.

=⇒ t2 ≥ results in (results in t1 s∗) s→
(5.9)

39

5. Propagation Algorithm: Safety

loc1 locx loc2

p*

p

Figure 5.2: Proof of the safety property: visualisation of the inductive case.

Therefore, we can obtain a timestamp t∗, such that

t∗ = results in t1 s∗

∧ (loc1, t1) could-result-in (loc∗, t∗)
∧ t2 ≥ results in t∗s→

(5.10)

Since p is prefix-optimal, so must be its prefix p’. Moreover, we know that p∗

has length n. Then, by the inductive hypothesis we get:

supported by t∗ (implications c loc∗) (5.11)
supported by def.

=⇒ ∃t′ . t′ ≤ t∗ ∧ t′ ∈A infimum (implications c loc∗) (5.12)
union frontier def.

=⇒ zcount (union frontier c loc2) (t′ + s→) > 0 (5.13)

Finally, since the worklist is empty at all locations, and zmset infimum is
always positive, Proposition 5.3 tells us that

zcount (implications loc2) (t′ + s→) > 0
infimum def.
=⇒ ∃t′′. t′′ ≤ t′ + s→ ∧ t′′ ∈A infimum (implications c loc2)

equation (5.12)
=⇒ ∃t′′. t′′ ≤ t∗ + s→ ∧ t′′ ∈A infimum (implications c loc2)

equation (5.10)
=⇒ ∃t′′. t′′ ≤ t2 ∧ t′′ ∈A infimum (implications c loc2)

supported by def.
=⇒ supported by t2 (implications loc2) �

5.3 Chapter Summary

In this chapter, we have defined the safety property of the Timely Dataflow
Propagation algorithm. Specifically, a worker in a configuration c is defined
to be safe if each location’s frontier is a lower bound for all possible future
timestamps arriving at that location given the worker’s approximated view
of system’s capabilities.

40

5.3. Chapter Summary

Finally, we have given an overview of a formal proof of the safety property.
In particular, we have shown that the algorithm reaches a safe state after
each propagation round, in other words, when all worklists become empty.
While the induction argument is quite straightforward, we have found the
proof of the existence of the prefix-optimal paths to be highly non-trivial and
have since then constructed a more concise proof of the safety property that
does not rely on this assumption. However, we believe that if we assume
the existence of the prefix-optimal paths, the proof presented in this chapter
is easier to follow.

41

Chapter 6

Timely Dataflow Progress Tracking
protocol

This chapter presents the formal specification of the complete Timely Data-
flow Progress Tracking protocol. Our model combines the models of the
Propagation algorithm specified in Chapter 4 and the Exchange algorithm
(also know as Naiad Clock Protocol) originally introduced by Abadi et
al. [2]. We begin the chapter with a short overview of the Exchange
algorithm. Then we continue with the introduction of basic types used in
the formalisation. Finally, we present the model by defining its state, the set
of actions and the initial state.

6.1 The Exchange algorithm

The Exchange algorithm, also called the Naiad Clock Protocol [2], is a
conservative reference counter that keeps track of outstanding capabilities in
the system. It describes how the capabilities are dropped and created by the
workers and how the information about these new and dropped capabilities
is exchanged between them.

We build on an existing translation of the Naiad Clock Protocol model and
proofs to Isabelle/HOL. The formal specification of the protocol can be
found in Appendix B.

The state of the Exchange algorithm is defined in terms of four state vari-
ables as shown in Figure 6.1:

• nrec – the true view of system’s capabilities.

• glob p – a conservative view of system’s capabilities at worker p.

• msg p q – a message queue from worker p to worker q with information
about created and dropped capabilities at worker p.

43

6. Protocol

• tmp p – a local (temporary) change to capabilities at worker p that has
not yet been broadcasted to other workers.

record ('p, 't) configuration =

nrec :: ('loc × 't) zmultiset

temp :: 'p ⇒ ('loc × 't) zmultiset

msg :: 'p ⇒ 'p ⇒ ('loc × 't) zmultiset list

glob :: 'p ⇒ ('loc × 't) zmultiset

Figure 6.1: The state of the Exchange algorithm model.

The Exchange algorithm also defines three transitions.

• Exchange.next performop c0 c1 p ∆m ∆p

In this action, worker p performs an operation that creates capabilities
∆p and destroys capabilities ∆m. These changes are recorded in nrec
c1 – the true view of all system’s capabilities – and temp c1 p – the
temporary changes to capabilities made by worker p.

• Exchange.next send update c0 c1 p tt

In this action, worker p selects a set of capabilities tt and broadcasts
all local changes to these capabilities, recorded by temp c0 p. A worker
p broadcasts the information by removing the local changes from temp
c1 p and enqueuing them on all messages queues from worker p.

• Exchange.next recv update c0 c1 p q

In this action, worker p selects a worker q and processes the oldest
update on the message queue msg c0 p q. The worker dequeues the
message and uses its information to update glob c0 p – its local view of
system’s capabilities.

Finally, the formal specification of the Exchange algorithm guarantees that
for all configurations c the value of glob c p always holds a conservative
view of system’s capabilities nrec c. In other worded, a worker’s local view
of system’s capabilities is never ahead of the global view of the system’s
capabilities.

6.2 Basic Types

The Progress Tracking protocol is parametrised by five type variables:

• ’loc - the location type,

• ’t - the timestamp type,

• (′loc× ′t) - the pointstamp type,

44

6.3. State

• ’sum - the summary type, and

• ’p - the worker type

In addition to the constraints of the Propagation algorithm model, we re-
quire the set of workers ’p to be finite. Moreover, the Exchange algorithm
calls for a partial order on the set of pointstamps (′loc× ′t) . We use the
could result in partial order for this purpose.

definition (≤) :: ('loc × 't) ⇒ ('loc × 't) ⇒ bool where

(≤) x y = could_result_in x y

definition (<) :: ('loc × 't) ⇒ ('loc × 't) ⇒ bool where

(<) x y = x ≤ y ∧ x 6= y

6.3 State

The state of the computation is specified in terms of the Exchange model
and the Propagation model. The Exchange model describes how the in-
formation about created and destroyed system’s capabilities is exchanged
between the workers. On the other hand, the Propagation model describes
how each worker infers the location frontiers from this exchanged progress
information.

record ('p, 't, 'loc) configuration =

c_exchange :: ('p, ('loc × 't)) Exchange.configuration

c_propagate :: 'p ⇒ ('loc, 't) Propagate.configuration

init :: p ⇒ bool

type_synonym ('p, 't, 'loc) computation =

('p, 't, 'loc) configuration stream

The configuration c exchange c is the state of the progress-exchange between
all workers introduced earlier in the chapter. It describes the workers’
queued progress updates and the workers’ approximated view of system’s
capabilities. The Exchange.configuration is defined in terms of the set of
workers ’p, and the set of pointstamps (′loc×′ t).

The configuration c propagate c p is the state of the propagation at worker
p. Since all the workers carry out the Propagation algorithm independently
using their local view of the computation, we define the propagation state
per-worker. Each Propagate.configuration is defined in terms of the set of
locations ’loc and the set of timestamps ’t.

The Boolean flag init p determines whether the initialisation phase at worker
p has been completed. The init flags are initialised with False and get flipped

45

6. Protocol

after the first propagation round as discussed in upcoming sections. In
Chapter 7, we show that the worker that has completed the initialisation
phase, thus has init flag set to True, will always maintain safe location
frontiers.

We further define computation as a stream of configurations.

6.4 The protocol

The Timely Dataflow Progress Tracking protocol combines all actions of the
Exchange and Propagation algorithm into four global actions:

1. next performop

2. next send update

3. next recv update

4. next propagate

The actions can be once again carried out in any order, as long as all the
conditions on the actions are satisfied.

The following subsections present a formal specification of each action
and discuss them in detail. Each action is expressed as a function of
two configuration states - the original configuration c0 and the next-state
configuration c1 - and additional arguments.

6.4.1 The next performop action

In the next performop action, the worker p performs an operation that con-
sumes and produces some number of capabilities as defined by the Exchange
algorithm. The values of c propagate and init do not change while the value
of c exchange changes according to the Exchange.next performop. Figure 6.2
gives the formal specification of the next performop action.

6.4.2 The next send update action

In the next send update action, the worker p sends messages to all workers
(including itself) carrying local progress updates as defined by the Exchange
algorithm. The values of c propagate and init remain the same while c ex-
change changes according to Exchange.next send update. The formal specifi-
cation of the action is presented in Figure 6.3.

6.4.3 The next recv update action

In the next recv update action, the worker q chooses a worker p and receives
the oldest message on the message queue from p to q, where the message

46

6.4. The protocol

definition next_performop :: ('p, 't, 'loc) configuration

⇒ ('p, 't, 'loc) configuration

⇒ 'p
⇒ ('loc × 't) multiset

⇒ ('p × ('loc × 't)) multiset

⇒ bool where

next_performop c0 c1 p ∆m ∆p =

Exchange.next_performop (c_exchange c0) (c_exchange c1) p ∆m ∆p ∧
unchanged c_propagate c0 c1 ∧
unchanged init c0 c1

Figure 6.2: Formal specification of the next performop action.

definition next_send_update :: ('p, 't, 'loc) configuration

⇒ ('p, 't, 'loc) configuration

⇒ 'p ⇒ ('loc × 't) set ⇒ bool where

next_send_update c0 c1 p tt =

Exchange.next_send_update (c_exchange c0) (c_exchange c1) p tt ∧
unchanged c_propagate c0 c1 ∧
unchanged init c0 c1

Figure 6.3: Formal specification of the next send update action.

is a signed multiset of pointstamps. Worker q uses the message to update
its local view of the system’s capabilities. The formal specification of the
next recv update action is shown if Figure 6.4.

This action has affect on the c propagate and the c exchange configuration
since both of them record the worker’s approximated view of the system’s
capabilities.

The change to the c exchange configuration is modelled by the Exchange.next -
recv update action.

The change to the c propagate configuration is however more complicated.
The c propagate configuration of worker q records the worker’s view of
system’s capabilities in the pointstamps record as explained in Chapter 4.
The Propagation model lets us modify this record using the Propagate.next -
change multiplicity action. However, this action can be only applied to a
single location-timestamp pair, as opposed to a signed multiset of such pairs.
As a result, we express the change to the c propagate configuration as a series
of Propagate.next change multiplicity actions.

47

6. Protocol

definition next_recv_update :: ('p, 't, 'loc) configuration

⇒ ('p, 't, 'loc) configuration

⇒ 'p ⇒ 'p ⇒ bool where

next_recv_update c0 c1 p q =

Exchange.next_recv_update (c_exchange c0) (c_exchange c1) p q ∧
unchanged init c0 c1 ∧
(let message = hd (msg (c_exchange c0) p q)

in

c_propagate c1 p' = (

if p' = q then change_multiplicity_all (c_propagate c0 p') message

else c_propagate c0 p')

definition change_multiplicity_all where

change_multiplicity_all c ∆ =

(let f = (λ(loc, t) c . THE c'.
Propagate.next_change_multiplicity

c c' loc t (zcount ∆ (loc,t)))

in

Finite_Set.fold f c0 (set_zmset ∆))

Figure 6.4: Formal specification of the next recv update action.

6.4.4 The next propagate action

The next propagate action preforms one complete propagation round at a
worker p and sets the init flag at worker p to True, stating that the worker has
by now completed the initialisation phase. A propagation round is defined
by sequence of Propagate.next propagate actions on a single worker termi-
nated by an empty worklist.The state of other workers remains unchanged,
and so does the c exchange state. Figure 6.5 gives the formal specification of
the next propagate action.

6.5 Specification

Finally, the specification of the Timely Dataflow Progress Tracking protocol
is defined in terms of an initial configuration Init and a next-state relation
Next. A complete specification Spec is a computation (i.e., a configuration
stream) starting with configuration Init, and satisfying the Next relation for
every pair of consecutive configurations. The formal specification is shown
in Figure 6.6.

In the initialisation configuration Init, the init flag is set to False for every
worker, implying that the workers have not yet completed the initialisation
phase. Furthermore, c exchange c and c propagate c must satisfy the require-

48

6.6. Chapter Summary

definition next_propagate :: ('p, 't, 'loc) configuration

⇒ ('p, 't, 'loc) configuration

⇒ 'p ⇒ bool where

next_propagate c0 c1 p =

unchanged c_exchange c0 c1 ∧
Some (c_propagate c1 p') = (

if p' = p then Some (propagate_all (c_propagate c0 p'))
else c_propagate c0 p') ∧

init c1 = (init c0)(p := True)

definition propagate_all :: ('t, 'l) Propagate.configuration

⇒ ('t, 'l) Propagate.configuration option

where

propagate_all c0 =

while_option

(λc. ∃loc. (c_worklist c loc) 6= {}z)

(λc. SOME c'. ∃loc t. Propagate.next_propagate c c' loc t)

c0

Figure 6.5: Formal specification of the next propagate action.

ments on the initial configurations in their respective models. This allows
us to take advantage of the models’ safety properties and invariants.

Finally, Init imposes a relationship between pointstamps (c propagate c p) and
glob (c exchange c) p. Both of these fields store the view of the system’s capa-
bilities at the worker p in their respective models. The initial configuration
Init thus requires that they are equivalent.

6.6 Chapter Summary

We have introduced a formal model of the Timely Dataflow Progress Track-
ing protocol the goal of which is to continuously re-compute location’s fron-
tiers from the true set of system’s capabilities. Our model combines the
model of the Propagation algorithm introduced in Chapter 4 with the model
of the Exchange algorithm (also known as the Naiad Clock Protocol [1]).

The model defines a computation as a stream of configurations consisting of
per-worker Propagate.configurations and a single Exchange.configuration. The
computation evolves with respect to four next-state actions: next performop,
next send update, next recv update and next propagate. We have given a formal
definition of each of these actions.

49

6. Protocol

definition Init where

Init c =

Exchange.Init (c_exchange c) ∧
(∀p . c_init c p = False ∧

Propagate.Init (c_propagate c p)) ∧
(∀p loc t . zcount (pointstamps (c_propagate c p) loc) t =

zcount (glob (c_exchange c) p) (loc, t))

definition Next :: ('loc, 't :: order) configuration stream

⇒ bool where

Next s ≡ (

let c0 = shd s;
c1 = shd (stl s)

in

∃p ∆m ∆p . next_performop c0 c1 p ∆m ∆p ∨
∃p tt . next_send_update c0 c1 p tt ∨
∃p q . next_recv_update c0 c2 p q ∨
∃p . next_propagate c0 c1 p

)

definition Spec :: ('loc, 't :: order) computation ⇒ bool where

Spec ≡ holds Init aand alw Next

Figure 6.6: The complete specification of the Progress Tracking protocol.

50

Chapter 7

Safety

This chapter states the main safety property of the Timely Dataflow Progress
Tracking protocol, a set of additional protocol invariants, and gives an
informal proof of the main safety property.

7.1 Safety Property

The Progress Tracking protocol aims to continuously re-compute location
frontiers as the lower-bound of possible future timestamps arriving at a given
location. As mentioned before, conservative frontiers are critical for the
correctness of the computation. They provide locations with information
about which phases of computation have passed and which ones are still
in progress. The locations thus know when it is safe to output results and
reclaim any memory associated with a certain time interval.

The set of future timestamps is determined by the active capabilities and
the could-result-in relation. The set of active capabilities is tracked by the
nrec field of the Exchange protocol. The safety property of the Timely
Dataflow Progress Tracking protocol formally describes the relationship
between location frontiers and the set of system’s capabilities nrec.

The safety property defined in Figure 7.1 is very similar to the local safety
property described in Chapter 5. It states that for every system’s capability
(loc1, t1), if this capability could result in (loc2, t2), then the frontier at location
loc2 computed by any worker is not ahead of t2.

Intuitively, the safety property guarantees that the frontiers at all locations at
all workers reflect the full set of system’s capabilities. Any new capability
that can be generated from the current set of system’s capabilities cannot be
smaller than the frontier of a location it refers to.

The spec implies safe lemma states that in any configuration c in the compu-
tation s satisfying the specification Spec, all initialised workers are in a safe

51

7. Safety

definition safe :: ('p, 't, 'loc) configuration ⇒ bool where

safe c p ≡ ∀loc1 loc2 t1 t2.

zcount (nrec (c_exchange c)) (loc1, t1) > 0

∧ could_results_in (loc1, t1) (loc2, t2)

−→ supported_by t2 (implications (c_prop c p) loc2)

lemma spec_implies_safe:

assumes Spec s

shows alw (holds (λc. ∀p. init c p −→ safe c p)) s

Figure 7.1: Safety property of the Timely Dataflow Progress Tracking protocol.

state.

7.2 Informal proof of the safety property

The proof of the safety property relies on three propositions, the proofs of
which are omitted.

Proposition 7.1 Fix a configuration c from the computation s satisfying Spec s.
Then, every initialised worker p is in a safe configuration with respect to its local
view of the system’s cpabilties recorded by pointstamps. Formally,

c init c p −→ Propagate.safe (c propagate c p)

A worker’s local safety property is defined in Chapter 5 and describes a
worker as locally safe if the frontiers at all locations reflect the approximated
view of system’s capabilities recorded by pointstamps (c prop c). The above
proposition claims that a worker p is locally safe if it has been initialised
(i.e., completed at least one propagation round).

Definition 7.2 Let S be a signed multiset of pointstamps. Then S is nonpositive
up to x, if and only if all pointstamps smaller or equal to x have a non-positive
multiplicity in S. Formally,

nonpos upto S x←→
(
∀y . y ≤ x ←→ zcount S y ≤ 0

)
Proposition 7.3 Fix a configuration c from the computation s satisfying Spec s.
Then, if glob (c exchange c) p — the approximated view of system’s capabilities at
worker p — is nonpositive upto a pointstamp x, then so is nrec (c exchange c).
Formally,

nonpos upto (glob (c exchange c) p) x −→ nonpos upto (nrec (c exchange c)) x

52

7.2. Informal proof of the safety property

The Proposition 7.3 is a stronger version of the InvGlobVacantUptoImplies-
Nrec – a Naiad Clock Protocol invariant [2] stating that the worker’s ap-
proximated view of system capabilities glob c p is a conservative view of
system’s capabilities nrec c. In particular, it states that if glob (c exchange c)
p is nonpositive upto some pointstamp x, then there are no active system’s
capabilities that could result in x.

Proposition 7.4 Fix a configuration c from the computation s satisfying Spec s.
Then, for all workers p, locations loc and timestamps t we have:

zcount (pointstamps (c propagate c p) loc) t =
zcount (glob (c exchange c) p) (loc, t)

The Proposition 7.4 describes the correspondence between the Propagation
model and the Exchange model. It states that pointstamps (c prop c p) are
equivalent to glob (c exchange c) p with the only distinction that the former is
defined in terms of timestamps and the latter one in terms of pointstamps.

7.2.1 Proof of the safety property

Lemma 7.5 Fix a configuration c from the computation s satisfying Spec s. Then,
if a pointstamp x has a strictly positive multiplicity in (nrec (c exchange c)) then, at
any worker p, there exists a pointstamp y ≤ x with a strictly positive multiplicity
in (glob (c exchange c) p). Formally,

zcount (nrec (c exchange c)) x > 0
−→ ∃ y . y ≤ x ∧ zcount (glob (c exchange c) p) y > 0

Proof

zcount (nrec (c exchange c)) x > 0
nonpos upto def.

=⇒ ¬nonpos upto (nrec (c exchange c)) x
Proposition (7.3)

=⇒ ¬nonpos upto (glob (c exchange c) p) x
nonpos upto def.

=⇒ ∃y. y ≤ x ∧ zcount (glob (c exchange c) p) y > 0
�

Theorem 7.6 Fix a configuration c from the computation s satisfying Spec s. Then,
a worker that has completed the initialisation phase is in the safe state with respect
to all system’s capabilities.

init c p −→ safe c p

53

7. Safety

Proof Figure 7.1 defines safe in terms of all pairs of capabilities (loc1, t1)
and (loc2, t2) such that (loc1, t1) has a strictly positive multiplicity in nrec
and (loc1, t1) could result in (loc2, t2). Then, a configuration is safe if for every
initialised worker p, t2 is supported by implications at location loc2.

We prove the above theorem for an arbitrary initialised worker p and pair
of such capabilities (loc1, t1) and (loc2, t2):

init c p
∧ zcount (nrec (c exchange c)) (loc1, t1) > 0
∧ (loc1, t1) ≤ (loc2, t2)

(7.1)

From equation 7.1, we get:

zcount (nrec (c exchange c)) (loc1, t1) > 0 (7.2)
Lemma (7.5)
=⇒ ∃(loc0, t0) . (loc0, t0) ≤ (loc1, t1) ∧

zcount (glob (c exchange c) p) (loc0, t0) > 0
(7.3)

Propositon (7.4)
=⇒ ∃(loc0, t0) . (loc0, t0) ≤ (loc1, t1) ∧

zcount (pointstamps (c propagate c p) loc0) t0) > 0
(7.4)

From Theorem 7.6 assume that the worker p is initialised. Then, by Proposi-
tion 7.1, worker p is locally safe. Furthermore, from the transitive property
of partial order on pointstamps, we get that (loc0, t0) ≤ (loc2, t2). Finally,
the definition of local safety and Equation 7.4 yields:

supported by
(
implications (c propagate c p) loc2

)
t2. �

7.3 Chapter Summary

In this chapter, we have defined the safety property of the Timely Dataflow
Progress Tracking protocol and given an informal proof of this safety prop-
erty. The configuration is said to be in a safe state if for all workers, a lo-
cation’s frontier holds a valid lower-bound of all possible future timestamps
arriving at that location. The set of possible future timestamps is deter-
mined by all the system’s capabilities, recorded by the nrec field, and the
could-result-in relation.

At the time of writing, we have a partial formal proof of the above theo-
rem. The missing piece is showing that Spec s implies Proposition 7.1 and
Proposition 7.3.

54

Chapter 8

Comparative Testing of the Timely
Dataflow Propagation algorithm

In this chapter, we describe our approach of comparing the existing Rust-
based implementation of the Timely Dataflow with the new specification
and invariants to check the validity of the Propagation model and to test the
correctness of the implementation. For the sake of conciseness, in this chap-
ter, we will use Timely dataflow to refer to the Rust-based implementation of
the Timely Dataflow model.

8.1 Overview

The framework compares the location frontiers computed by Timely dataflow
with those computed by the formal model at the end of each propagation
round for an arbitrary dataflow graph and input stream of data. The
framework consists of multiple components shown in Figure 8.1.

First, an arbitrary dataflow program is executed in Timely dataflow, produc-
ing an output log-file. By arbitrary, we mean any program that can al-
ready be implemented in Timely dataflow, including hierarchical dataflows.
A hierarchical dataflow contains operators which are in themselves dataflow
graphs. We call each individual dataflow graph a scope.

The output log-file contains information about the dataflow graph topology,
all created and dropped capabilities, and points at which workers initiate
propagation rounds. The log-file is in turn processed by a Propagation
executable, a wrapper around the Propagation component of Timely dataflow,
also implemented in Rust. The executable parses the file, and for each scope-
worker combination, it runs the Propagation algorithm of Timely dataflow
in isolation. Finally, the executable generates a pair of Isabelle theory
files for each scope-worker pair. These theory files record location frontiers

55

8. Comparative Testing

Timely	Dataflow
(Rust)

Propagation
(Rust)

Test
(Isabelle)

Propagation
(Isabelle)

example.rs log

log loglog
Input.thy

log
Front.thy

Figure 8.1: Comparative testing framework of the Propagation algorithm

computed by Timely dataflow, and other information necessary to execute the
Propagation algorithm in Isabelle.

Furthermore, we have implemented a generic executable version of the
Propagation algorithm in Isabelle and shown that it is a refinement of the
formal model presented in Chapter 4.

Finally, for every scope-worker pair, the framework executes the Propagation
algorithm in Isabelle and compares the location frontiers computed by the
two implementations, yielding a Success or Fail if any of the computed fron-
tiers do not match. In the following subsections we discuss each component
in more detail and eventually summarise our experience with code extrac-
tion from Isabelle.

8.2 Timely dataflow logging

This section is concerned with the output log-file generation. The first pur-
pose of the log-file is to be able to reconstruct any dataflow graph topol-
ogy, and must thus contain information about the operators, the channels
between them, the internal operator connections, and their associated sum-
maries. Secondly, to execute identical runs of the Propagation algorithm
in Rust and Isabelle, the output file must record any dropped and created
capabilities and the beginning of each propagation round.

Fortunately, Timely dataflow has an extendable logging infrastructure already
supporting a set of useful loggers. The logger we found particularly useful
for our purposes is the TimelyLogger recording amongst others the following
two events: OperatesEvent marking the creation of an operator and Chan-
nelsEvent recording the creation of a channel between a source and a target
port.

56

8.3. Generation of Isabelle theory files

To record all necessary data about the graph topology, we have extended
the Operates event with a record of the operator’s internal summaries, and
added a new ScopeEvent which determines the summary and timestamp
type implemented by a given scope (e.g., usize, i64, etc.).

Finally, we have implemented a new logger called PropagationLogger to
record events driving the propagation algorithm. The PropagationLogger logs
three types of events:

• UpdateSourceEvent recording created or destroyed capabilities at a given
source port, for a given scope and worker.

• UpdateTargetEvent recording created or destroyed capabilities at a given
target port, for a givens cope and worker.

• StartPropagationEvent marking the beginning of a propagation round
for a given scope and worker.

With respect to the formal model of the Propagation algorithm, the first two
events correspond to a Propagate.next change multiplicity action.

The third event marks the start of a propagation round for a given scope and
worker. You may notice that we do not record every single propagation step
modelled by the Propagation algorithm. Instead, Timely dataflow and our
executable Isabelle implementation are tasked with inferring a sequence of
steps that satisfy the next propagate relation leading to an empty worklist. It is
completely possible that each of the two implementations will choose a valid
yet different sequence from each other. However, we have also shown that
any valid sequence of next propagate actions resulting in an empty worklist
always computes the same location frontiers. As we are only interested in
the state of location frontiers at the end of a propagation round, recording
the start of a propagation round at this point is sufficient.

8.3 Generation of Isabelle theory files

This section is concerned with a Rust-based Propagation executable, that
executes the propagation algorithm inside Timely dataflow in isolation from
the parsed log file, and generates valid Isabelle theory files.

The input log-file is initially parsed using Rust’s serde json library to deter-
mine the number of workers, the list of existing scopes and their correspond-
ing timestamp and summary types. The executable then instantiates one
PropagationMocker1 for each scope-worker pair. Each PropagationMocker

parses the log-file once again, picking up the graph topology and the list of

1In the code we refer to this by TrackerMocker to adhere to the naming conventions of
Timely Dataflow Rust implementation.

57

8. Comparative Testing

actions relevant to the given scope. Subsequently, each PropagationMocker

reconstructs the dataflow graph topology of the scope, and executes the
propagation algorithm from the list of recorded actions.

We say that the propagation is run in isolation because the operators are
completely inactive while the algorithm is running. The operators neither
send and receive messages, nor create and destroy capabilities, nor keep
any internal state. Instead, capability changes are deduced from the list
of logged actions, bypassing the interactions between the system and the
operators.

At the end of these isolated propagation runs, each PropagationMocker

produces two Isabelle theory files: Input.thy and Frontiers.thy.

Input.thy

The Input.thy file acts as an ”input” for the executable Isabelle implementa-
tion of the Propagation algorithm. It starts by instantiating the timestamp
and summary types. The following example shows the case when both
summary and timestamps are of type N.

type_synonym t = nat

type_synonym sum = nat

Next, the file contains the description of the graph topology defined by the
summary function (see Section 4.2) and the set of default capabilities for every
location. Finally, the file records a list of actions driving the propagation
algorithm, termed trace. The code snippet below shows the start of such
trace defined in terms of locations (op× port pairs) and the set of timestamps
t. The PR entries mark the start of a propagation round while the CM entries
mark created (positive) or destroyed (negative) capabilities.

definition trace :: (op × port, t) Action list where

trace = [

(PR),

(CM (Op 0, src 0) 0 1), (* one created capability with timestamp 0 *)

(PR),

(CM (Op 1, src 0) 0 -1), (* one dropped capability with timestamp 0 *)

(CM (Op 5, trg 0) 3 1), (* one created capability with timestamp 3 *)

(PR),

...

]

Frontiers.thy

The Frontiers.thy file contains a single function definition called rust frontier
which describes the state of frontiers at all locations at the end of each

58

8.4. Executable Isabelle model

propagation round. The value of rust frontiers at round n corresponds to
the n’th PR entry in the definition of the trace in the corresponding Input.thy
file.

8.4 Executable Isabelle model of the Propagation algo-
rithm

The Isabelle model of the Propagation algorithm presented in Chapter 4 is
descriptive, defined in terms of two next-state relations. For any pair of
configurations, the model tells us if either of the relations is satisfied by the
two configurations.

However, to execute the Propagation algorithm with Isabelle we need a
prescriptive implementation of the model that tells us how to compute a
new configuration from an old configuration. We have implemented such
an executable version of our model, called take step, shown in Figure 8.2.
Just as in the original model, the take step function can preform one of two
actions, specified by the Action argument:

datatype ('loc :: enum, 't) Action =

CM 'loc 't int | (* CM loc t n -> add n (loc, t) capabilities *)

PR (* PR -> perform one propagation step *)

In the CM case, the function creates or removes n copies of timestamp t at
location loc.

In the PR case, the function actively finds a smallest timestamp in worklist
given the less t argument defining the total order on the set of timestamps
’t. This total order is not part of the model, but is merely used to resolve the
non-determinism of choosing a smallest value from the set of partially or-
dered timestamps. Subsequently, the function propagates information about
the timestamp to neighbouring workers in the same way next propagate ac-
tion does.

It is helpful to note that a large difference between the executable Isabelle
implementation in Figure 8.2 and the formal specification in Chapter 4
comes from the use of universal quantifiers. While the universal quantifiers
are often helpful to intuitively describe the workings of a protocol, they
are not naturally executable. As a result, we omitted these quantifiers and
replaced them with executable constructs. Finally, we have formally proved
that our executable Isabelle implementation satisfies the formal specification
of the model from Chapter 4.

59

8. Comparative Testing

fun take_step :: ('t ⇒ 't ⇒ bool)

⇒ ('loc :: {linorder, enum} , 't) Action

⇒ ('loc, 't) configuration

⇒ ('loc, 't) configuration where

take_step _ (CM loc t delta) c =

(let pointstamps_old = pointstamps c loc;
pointstamps_new = (pointstamps c)(loc :=

(update_zmultiset (pointstamps c loc) t delta))

in

c L pointstamps := pointstamps_new,

(* update worklist with changes to pointstamps-infimum

at location loc *)

worklist := worklist c (loc :=

worklist c loc +

(infimum_change pointstamps_old (pointstamps_new loc)))

M)
| take_step t_less PR c =

(let (t, loc) = mymin t_less (t_loc_pairs c;
implications_old = implications c loc;
(* update implications at location loc with worklist entries

corresponding to location loc and a smallest timestamp t *)

implications_new = (implications c) (loc :=

implications c loc +

(filter_zmset (λt'. t' = t)(worklist c loc)));
(* remove all copies of timestamp t from worklist at location loc *)

worklist_removed_loc = (c_worklist c) (loc :=

(filter_zmset (λt'. t' 6= t)(worklist c loc)))

in

c L
(* Add any propagated implications to teh final worklist *)

c_worklist := λ loc'.
(worklist_removed_loc loc' +

after_summary

(infimum_changes (implications_old) (implications_new loc))

(summary loc loc')),
implications := implications_new

M)

Figure 8.2: Executable Isabelle implementation of the Propagation model

60

8.5. Supported types

8.5 Supported types

The take step function is generic, with types classes constrained by the same
set of requirements as the original model. In particular, the set of locations
’loc must be enumerable, while the set of timestamp ’t must satisfy partial
order, and the set of summaries ’sum is an additive monoid.

When we try to evaluate the function in Isabelle using specific type instan-
tiation, we must make sure that the types satisfy the above requirements.
Of course, many existing Isabelle types already do so. For example, the set
of natural numbers under addition is an additive monoid and at the same
time implements the partial order type class. However, many Timely dataflow
programs contain more complex types, including lists or products. As a re-
sult, we define a series of additional types and shown that they satisfy the
necessary properties.

In particular, we have defined the following types to describe locations:

• op - an operator type

typedef op = {0.. MAX_OP}

...

lift_definition Op :: int ⇒ op

...

e.g.: Op 6

• pnum - a port number type

typedef pnum = {0.. MAX_PNUM}

...

lift_definition Pnum :: int ⇒ pnum

...

e.g.: Pnum 0

• port

datatype port = Src pnum | Trg pnum

e.g.: Src (Pnum 0) which abbreviates to (src 0) or
Trg (Pnum 10) abbreviated to (trg 10)

• loc = (op × port) - a location type
e.g.: (Op 0, src 0), (Op 10, src 5)

We have shown all these types to be enumerable, and endowed them with
linear order.

For the set of timestamps and summaries, we support the product type
in addition to the basic Isabelle types which already satisfy the necessary

61

8. Comparative Testing

requirements (e.g., the set of natural numbers nat). Addition on a product
type is defined as a component-wise addition, while the partial order is
defined by the Equation 4.1.

8.6 Comparative testing

In this section, we describe how the generated Isabelle theory files and
the executable Isabelle implementation of the Propagation algorithm come
together to carry out the comparison test.

First, we construct an initial state satisfying the initial configuration of the
Propagation model from the default capabilities supplied in the Input.thy file
as shown in Figure 8.3.

definition initial_state where

initial_state ≡ L c_worklist = (λloc . infimum (default_capabilities loc)),

c_pointstamps = default_capabilities,

c_implications = (λloc . {}z) M

lemma Propagate.Init initial_state

...

Figure 8.3: The definition of the initial state of the computation and a lemma stating that this
state satisfies the conditions set on the initial state by the Propagation algorithm.

Next, we run the program by recursively apply the take step function to
the initial state given the trace of actions supplied in the Input.thy file. The
implementation of the run is shown in Figure 8.4. For every CM entry, we
take a single CM step. However, for each PR entry, we repeatedly take
PR steps until we reach an empty worklist at all locations, or we exceed a
predefined upper bound on the number of allowed propagation iterations.

Why is the upper bound necessary? Isabelle asks for every function defini-
tion to be terminating (see Section 3.2). At the time of writing, we have not
formally proved that the Propagation model guarantees termination of an
arbitrary propagation round but strongly believe it to be true. Imposing an
upper bound on the number of PR steps taken in a single propagation round
allows us to execute this function with Isabelle bypassing the actual proof
of termination. We have set this maximum sufficiently high (one million
iterations) to prevent our comparative testing framework from producing
unnecessary false negatives.

The run function outputs a list of configurations called configs. Each of these
configurations corresponds to the state of the algorithm at the end of one
propagation round.

62

8.7. Retrospection on Isabelle for executable code

The last step left is to compare the location frontiers computed by the run
function (stored by configs) with frontiers computed by Timely dataflow and
recorded in the Frontiers.thy file. The test returns either a positive or a
negative value, describing if the location frontiers computed by the two
implementations are equivalent.

We have tested our framework on all example programs already included
in the Timely dataflow repository as well as a set of additional programs
specifically designed for iterative dataflows, hierarchical dataflows, out-of-
order execution, and a range of partially ordered timestamp and summary
types. We have found no deviations between the frontiers computed by
Timely dataflow and those computed by our model.

definition MAX_TRIES:: nat where MAX_TRIES = 1000000

function run :: nat

⇒ nat

⇒ (op × port, sum) configuration

⇒ (op × port, sum) configuration list where

run prop_it step_it c = (

if MAX_TRIES < prop_it then [] else

if length trace ≤ step_it then [] else

(let step = trace ! step_it in

case step of

PR ⇒ (

if (worklist_is_empty c)

then c # (run 0 (step_it + 1) c)

else (run (prop_it + 1) step_it (take_step step c)))

| _ ⇒ run 0 (step_it + 1) (take_step step c)))

Figure 8.4: The definition of a recursive function run which performs a complete propagation
algorithm from a set of actions and produces a list of configurations, one configuration for each
completed propagation round.

8.7 Retrospection on Isabelle for executable code

Isabelle/HOL offers a code generator facility which allows the user to turn
a certain class of HOL (higher-order-logic) specifications into corresponding
executable code in the programming languages such as SML [31], OCaml
[33], Haskell [16] and Scala [34]. Isabelle achieves code generation with a
concept of shallow embedding which identifies logical entities like constants,
types, or classes with concrete entities in the target language such as SML
or Haskell. Isabelle guarantees partial correctness of the executable code. In
practice, this means that if f x terminates and evaluates to y then f x = y is
provable in Isabelle.

63

8. Comparative Testing

Code Generation

Isabelle was not designed for the sole purpose of code generation and it is
in fact more expressive than the above-mentioned programming languages.
For example, Isabelle allows us to define a quantified expression over infinite
sets, something that cannot be naturally executable.

One of the ways to deal with such situations is to locally derive an executable
specification and show that it refines the associated non-executable one.
These code equations then override the original code definitions upon code
generation.

This process is called program refinement and it lets a user separate code
generation from the original HOL formalisation. The user is allowed to
implement any executable version of the original specification as long as
it is shown to satisfy the original specification. On the other hand, code
generation thus becomes more involved and time consuming.

In our implementation of the executable model, we had to define a number
of code equations for creating and manipulating sets and antichains, whose
code equations contain quantifiers. While quantifiers have an associated
code equations, they only refine finite and enumerable type classes which
the generic timestamp and pointstamp types are not instances of. Unfortu-
nately, if a constraint on a type class set by a code equation is not satisfied,
Isabelle’s error message does not provide details about where in the execu-
tion stack the problem occurred but instead raises a generic Wellsortedness
error. As a result, we have spent a large part of implementation tracking
down the missing executable parts.

Verbosity

The second issue we came across is the verbosity of defining new data-
types and proving they are instances of existing type classes, such as the
enum class or the finite class. While all of our type definitions were simple
and the proofs quite trivial, the (unoptimised) file which contains the type
definitions of the operator and port types and necessary proofs is almost 200
lines long excluding white-space.

Parsing input

In our current implementation of the comparative testing framework, we
generate a series of Isabelle theory files to ”pass” the details of dataflow
programs to the Isabelle executable. Originally, we tried to by-pass this step
by generating a well-typed input to Isabelle directly. While this approach
would be more efficient, it is naturally more complex and lacks a good
documentation.

64

8.8. Chapter Summary

Since performance was not our priority, we have decided to implement a
Rust-based parser described in the previous sections which auto-generates
valid Isabelle theories. We have found it particularly simple to implement
and maintain while our model and the executable Isabelle implementation
continued to change.

8.8 Chapter Summary

In summary, we have implemented a comparative testing framework which
compares location frontiers computed by Timely dataflow – the Rust-based
implementation of Timely Dataflow – with the location frontiers computed
by the formally specified model. The framework consists of multiple com-
ponents in addition to the Timely dataflow. Firstly, a Rust-based executable
that performs the Propagation algorithm in isolation and generates a series
of Isabelle theory files. Secondly, an executable Isabelle implementation of
the formally specified Propagation model, and finally, an Isabelle program
that performs the comparison of the frontiers computed by the two imple-
mentations.

We have made our framework flexible enough to work with valid Timely
dataflow program. The framework was tested on the full set of example
programs included in the Timely dataflow repository as well as a set of ad-
ditional programs specifically designed for iterative dataflows, hierarchical
dataflows, out-of-order execution, and a range of partially ordered times-
tamp and summary types. We have found no deviations between the loca-
tions frontier computed by the Timely dataflow and those computed by the
formal model.

While this approach cannot guarantee the correctness of the Timely dataflow
implementation, it strongly suggests that Timely dataflow indeed computes
correct location frontiers and that our formal model of the Propagation
algorithm is valid.

Finally, this framework allows users to check the correctness of their running
Timely dataflow programs in retrospect. As long as the the program has the
two necessary loggers enabled, a user noticing strange results can simply
re-run the Propagation algorithm inside the framework to determine if the
strange behaviour is caused by incorrectly computed location frontiers.

65

Chapter 9

Conclusion

In this chapter, we summarise our contributions, give an overview of the
ongoing work and propose ways in which this work can be be further
extended.

9.1 Main contributions

This thesis set out to model the core coordination component of Timely
Dataflow termed the Progress Tracking protocol. We have identified two com-
ponents of the protocol: an exchange algorithm and a propagation algorithm.
The exchange algorithm, also known as the Naiad Clock Protocol, has been
formerly formalised and verified by Abadi et al. [2].

Moreover, we have combined the individual models of the exchange and the
propagation algorithm and presented a formal specification of the complete
Progress Tracking protocol. We have identified the necessary assumptions
that the protocol makes on the types and the structure of the dataflow graph.
Furthermore, we have defined the protocol’s main safety property and given
an overview of its mechanically verified proof.

To test the validity of our model and of the existing Rust-based implementa-
tion, we have implemented an executable Isabelle specification of the propa-
gation algorithm and a comparative testing framework using a combination of
Rust and Isabelle. The framework is flexible enough to work with any valid
Timely Dataflow program, including iterative and hierarchical dataflows,
and can be extended to arbitrary timestamp, summary and location types.

A formally verified model of the Timely Dataflow Progress Tracking proto-
col provides a clearer abstraction for other components of Timely Dataflow
that interact or depend on its progress tracking component. Furthermore,
we believe that the specification will prove helpful in integrating the proto-

67

9. Conclusion

col in new systems. In particular, there has been recent interest in porting
parts of the protocol to FPGAs.

9.2 Ongoing work

In this section, we discuss the ongoing work in extending the exchange
algorithm. We have by now incorporated these changes into the model and
are currently proving that the invariants of the original model continue to
hold.

Relaxing the exchange algorithm

The model of the exchange algorithm imposes a set of constraints on how the
workers create and drop capabilities. Note that Abadi refers to these by
pointstamps. Having re-implemented and applied the mode of the exchange
algorithm into our model of the Progress Tracking protocol, we have found
these constraints to be too limiting and unfaithful to the implementation of
Timely Dataflow.

Concretely, the exchange algorithm specifies that a worker can create a new
pointstamps x if and only if it also drops a capability y, such that y < x.
However, in Timely Dataflow, operators are allowed to mint new capabilities
from the capabilities they own without the need to destroy some.

Removing dependencies on a global state in the exchange algorithm

Secondly, the exchange algorithm specifies that a worker can drop capabilities
owned by any other worker, as long as each capability is dropped at most
once. This is achieved by modelling the true global state of all system’s
capabilities called nrec. The workers make their decisions based on the value
of nrec and directly modify it whenever they create or destroy capabilities.

Of course, in practice, workers do not have access to such a global state.
Therefore, we propose that each worker models the set of its own capabilities
and uses this information when dropping existing capabilities.

Proofs of the invariants of the Progress Tracking protocol

It remains to show that our model of the Timely Dataflow Progress Track-
ing protocol is a refined model of the propagation algorithm and the exchange
algorithm. This proof is necessary to show the Progress Tracking protocol
preserves the invariants guaranteed by both of the algorithms. While we
have described a mechanically verified proof of the protocol’s main safety
property in Chapter 7, this proof assumes that the invariants of the propa-
gation and exchange protocol are satisfied. The final proof of the protocol’s
main safety property is thus incomplete at the time of writing.

68

9.3. Future work

9.3 Future work

In this section, we discuss the challenges lying ahead.

Support for hierarchical dataflows

Timely Dataflow supports hierarchical dataflows in which each operator can
itself be a dataflow graph, also called a scope. This approach provides a
level of abstraction by hiding details that the outer dataflow graph does not
need to know. In terms of the Progress Tracking protocol, this model can
yield large performance benefits since all propagation rounds are carried
out inside smaller scopes as opposed to one large and complex dataflow
graph.

Extending our model to support hierarchical dataflows would involve mod-
elling the exchange of progress information between outer and inner scopes.

Extending the executable Isabelle implementation

At the moment, the executable Isabelle implementation performs the prop-
agation algorithm only. The natural next step would be to implement the
exchange of propagation information between workers and the complete
Progress Tracking protocol.

We have postponed this work due to the fact that we are currently extend-
ing the model of the exchange algorithm, which the implementation of the
executable Progress Tracking protocol in Isabelle relies on.

69

Appendix A

Example of a non-terminating
propagation round

In this example, all timestamps and summaries are natural numbers. The
addition natural numbers implements the result in relationship and the
addition on the summary type.

Figure A.1 depicts an intermediate state of a dataflow computation. The
dataflow graph consists of four locations loc1 to loc4 connected in a cycle.
The edges of the graph carry summaries. The edge from loc3 to loc4 is the
only one with a non-zero summary ensuring that the cycle always increases
a timestamp passing through it.

{0}

loc4 {1} loc3

{0}

loc2loc1 {0}

pointstamps:		{}
implications:	{(3,	+1)}
worklist:					{}

pointstamps:		{}
implications:	{(3,	+1)}
worklist:					{}

pointstamps:		{(2,+1)}
implications:	{(2,+1),(3,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(3,	+1)}
worklist:					{}

Figure A.1: An intermediate state of a dataflow computation.

In this intermediate state, the system is aware of one capability – (loc3, 2).
This capability is recorded in pointstamps at location loc3, reflected in the
locations’ implications and by extension their frontiers.

Next, the algorithm carries out a next change multiplicity action removing
the capability from the pointstamps. The change is recorded in the worklist at

71

A. Example of a non-terminating propagation round

location loc3 as shown in Figure A.2.

{0}

loc4 {1} loc3

{0}

loc2loc1 {0}

pointstamps:		{}
implications:	{(2,+1),(3,-1)}
worklist:					{(2,-1)}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{}

Figure A.2: The state after action next change multiplicity loc3 2 (-1).

Now, we start a propagation round always picking a largest timestamp.

The first action is deterministic as there is exactly one entry across all
the worklists, namely timestamp 2 at location loc3. We perform a next -
propagate action by applying this entry to the implications at location loc3
and propagating the changes to implications infimum to outgoing location
loc4 as shown in Figure A.3a.

At this point, the worklist contains two items, a timestamp 3 and a timestamp
4 at location loc4. Remembering to always pick a largest timestamp, we
perform a next propagate loc4 4 action leading to the state in Figure A.3b.
After the action, the worklist contains only one element. The next next -
propagate action thus leads to the state in Figure A.3c.

We continue in a similar fashion always propagating a larger timestamp first.
We see that as we progress throughout the cycle, the infimum of implications
at all locations increases from 3 to 4. This is the first sign that something
is going wrong. Clearly, by removing the only capability in the system,
the propagation round should ensure that the implications should gradually
become empty, instead of increase.

Indeed, as we complete a full cycle and the implications get propagated back
to location loc4 as shown in Figure A.3f, we reach the state almost identical
to one in Figure A.3a, only with all timestamps increased by one.

In conclusion, in this example, a propagation algorithm choosing a largest
timestamp instead of a smallest one never manages to clear the implications
and instead continues to increase the implications indefinitely.

72

{0}

loc4 {1} loc3

{0}

loc2loc1 {0}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{(3,-1),(4+1)}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{}

(a) next propagate loc3 2

{0}

loc4 {1} loc3

{0}

loc2loc1 {0}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(3,+1),(4+1)}
worklist:					{(3,-1)}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{}

(b) next propagate loc4 4

{0}

loc4 {1} loc3

{0}

loc2loc1 {0}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{(3,-1),(4,+1)}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(4,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{}

(c) next propagate loc4 3

{0}

loc4 {1} loc3

{0}

loc2loc1 {0}

pointstamps:		{}
implications:	{(4,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{(3,-1),(4,+1)}

pointstamps:		{}
implications:	{(4,+1)}
worklist:					{}

(d) next propagate loc1 4
next propagate loc1 3

{0}

loc4 {1} loc3

{0}

loc2loc1 {0}

pointstamps:		{}
implications:	{(4,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(3,+1)}
worklist:					{(3,-1),(4+1)}

pointstamps:		{}
implications:	{(4,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(4,+1)}
worklist:					{}

(e) next propagate loc2 4
next propagate loc2 3

{0}

loc4 {1} loc3

{0}

loc2loc1 {0}

pointstamps:		{}
implications:	{(4,+1)}
worklist:					{(4,-1),(5,+1)}

pointstamps:		{}
implications:	{(4,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(4,+1)}
worklist:					{}

pointstamps:		{}
implications:	{(4,+1)}
worklist:					{}

(f) next propagate loc3 4
next propagate loc3 3

Figure A.3: Demonstration of an incomplete non-terminating propagation round.

73

Appendix B

Formal specification of the Exchange
algorithm in Isabelle

The Exchange algorithm is parametrised by two type variables:

• ’p: the set of workers,
• ’t: the set of pointstamps.

State

record ('p, 't) configuration =

nrec :: 't zmultiset

temp :: 'p ⇒ 't zmultiset

msg :: 'p ⇒ 'p ⇒ 't zmultiset list

glob :: 'p ⇒ 't zmultiset

The algoirhtm

definition next_performop :: ('p, 't) configuration

⇒ ('p, 't) configuration

⇒ 'p
⇒ 't multiset

⇒ 't multiset

⇒ bool where

next_performop c0 c1 p ∆m ∆p ≡
(let ∆ = ∆p − ∆m

in

∀t . (count ∆m t) ≤ zcount (nrec c0) t ∧
upright ∆ ∧
nrec c1 = nrec c0 + (∆) ∧
temp c1 = (temp c0)(p := temp c0 p + (zmset_of ∆)) ∧
unchnaged msg c0 c1 ∧
unchnaged glob c0 c1)

75

B. Formal specification of the Exchange algorithm in Isabelle

definition next_send_update :: ('p, 't) configuration

⇒ ('p, 't) configuration

⇒ 'p
⇒ 't set

⇒ bool where

next_send_update c0 c1 p tt ≡
(let update = {#t ∈z temp c0 p . t ∈ tt#}
in

update 6= 0 ∧
upright (temp c0 p - udpate) ∧
temp c1 = (temp c0)(p := temp c0 p - update) ∧
msg c1 = (λp' q. if p' = p then msg c0 p q @ [update]

else msg c0 p' q) ∧
unchanged nrec c0 c1 ∧
unchanged glob c0 c1)

definition next_recvupd :: ('p, 't) configuration

⇒ ('p, 't) configuration

⇒ 'p
⇒ 'p
⇒ bool where

next_recvupd c0 c1 p q ≡
(let κ = hd (c_msg c0 p q)

in

msg c0 p q 6= [] ∧
unchanged nrec c0 c1 ∧
unchanged temp c0 c1 ∧
msg c1 = (λp' q' = if p' = p ∧ q' = q then tl (msg c0 p' q')

else msg c0 p' q') ∧
glob c1 = (glob c0)(q := glob c0 q + κ))

Initial configuration and full specification

(* Initial configuration *)

definition Init :: ('p, 't) configuration

⇒ bool where

Init c ≡
∀p. temp c p = {}z ∧
∀p1 p2. msg c p1 p2 = [] ∧
∀t. 0 ≤ zcount (nrec c) t ∧
∀p. glob c p = nrec c

(* The Next-state relation *)

76

definition Next where

Next s ≡ (

let c0 = shd s;
c1 = shd (stl s)

in

∃p ∆m ∆p . next_performop c0 c1 p ∆m ∆p ∨
∃p tt . next_send_update c0 c1 p tt ∨
∃p q . next_recv_update c0 c2 p q

)

type_synonym ('p, 't) computation = ('p, 't) configuration stream

(* The algorithm specification *)

definition Spec :: ('p, 't) computation ⇒ bool where

Spec s ≡ holds Init s ∧ alw Next s

77

Bibliography

[1] Martı́n Abadi and Michael Isard. Timely dataflow: A model. In Formal
Techniques for Distributed Objects, Components, and Systems, pages 131–
145. Springer International Publishing, 2015.

[2] Martı́n Abadi, Frank McSherry, Derek G. Murray, and Thomas L.
Rodeheffer. Formal Analysis of a Distributed Algorithm for Track-
ing Progress. In Formal Techniques for Distributed Systems, pages 5–19.
Springer Berlin Heidelberg, 2013.

[3] ACL2 Version 8.3. http://www.cs.utexas.edu/users/moore/acl2.
Accessed: 2020-04-16.

[4] T. Akidau, A. Balikov, K. Bekiroğlu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam
Whittle. MillWheel: Fault-Tolerant Stream Processing at Internet Scale.
Proceedings of the VLDB Endowment, 6(11):1033–1044, August 2013.

[5] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, and Sam Whittle. The dataflow
model. Proceedings of the VLDB Endowment, 8(12):1792–1803, August
2015.

[6] Apache Flink. https://flink.apache.org. Accessed: 2020-04-16.

[7] Apache Storm. https://storm.apache.org. Accessed: 2020-04-16.

[8] Frédéric Badeau and Arnaud Amelot. Using b as a high level program-
ming language in an industrial project: Roissy VAL. In ZB 2005: Formal
Specification and Development in Z and B, pages 334–354. Springer Berlin
Heidelberg, 2005.

79

http://www.cs.utexas.edu/users/moore/acl2
https://flink.apache.org
https://storm.apache.org

Bibliography

[9] Clemens Ballarin. Tutorial to locales and locale interpretation, 2010.

[10] Richard Bonichon, David Delahaye, and Damien Doligez. Zenon: An
Extensible Automated Theorem Prover Producing Checkable Proofs,
Oct 2007.

[11] The Coq Proof Assistant. https://coq.inria.fr/. Accessed: 2020-04-
16.

[12] Dafny: A Language and Program Verifier for Functional Correctness.
https://www.microsoft.com/en-us/research/project/dafny-a-

language-and-program-verifier-for-functional-correctness/.
Accessed: 2020-04-22.

[13] Alan Edelman. The Mathematics of the Pentium Division Bug. SIAM
Review, 39:54–67, 1997.

[14] Georges Gonthier. The four colour theorem: Engineering of a formal
proof. In Computer Mathematics, pages 333–333. Springer Berlin Heidel-
berg, 2008.

[15] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Rus-
sell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey
Solovyev, Enrico Tassi, and Laurent Théry. A machine-checked proof of
the odd order theorem. In Interactive Theorem Proving, pages 163–179.
Springer Berlin Heidelberg, 2013.

[16] Haskell language. https://www.haskell.org/. Accessed: 2020-04-16.

[17] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. IronFleet.
In Proceedings of the 25th Symposium on Operating Systems Principles -
SOSP’15. ACM Press, 2015.

[18] Isabelle. http://isabelle.in.tum.de. Accessed: 2020-04-16.

[19] Ioannis T. Kassios. Dynamic Frames: Support for Framing, Dependen-
cies and Sharing Without Restrictions, Aug 2006.

[20] Gerwin Klein, Michael Norrish, Thomas Sewell, Harvey Tuch, Simon
Winwood, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, and Rafal
Kolanski. seL4. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles - SOSP’09. ACM Press, 2009.

80

https://coq.inria.fr/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://www.haskell.org/
http://isabelle.in.tum.de

Bibliography

[21] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott
Owens. CakeML. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages - POPL’14. ACM Press,
2014.

[22] Leslie Lamport. Specifying systems: the TLA+ language and tools for
hardware and software engineers. Addison-Wesley, 2003.

[23] Leslie Lamport. Byzantizing Paxos by Refinement, Sep 2011.

[24] LEAN. https://leanprover.github.io. Accessed: 2020-04-16.

[25] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[26] Xavier Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, July 2009.

[27] Tianxiang Lu, Stephan Merz, and Christoph Weidenbach. Towards
Verification of the Pastry Protocol Using TLA+, 2011.

[28] Nicholas D. Matsakis and Felix S. Klock. The rust language. ACM
SIGAda Ada Letters, 34(3):103–104, November 2014.

[29] Frank McSherry. Github blog. https://github.com/frankmcsherry/

blog. Accessed: 2020-04-16.

[30] Frank McSherry. Timely Dataflow. https://github.com/

TimelyDataflow/timely-dataflow. Accessed: 2020-04-16.

[31] Robin Milner, Mads Tofte, and David Macqueen. The Definition of
Standard ML. MIT Press, Cambridge, MA, USA, 1997.

[32] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martı́n Abadi. Naiad. In Proceedings of the Twenty-Fourth
{ACM} Symposium on Operating Systems Principles SOSP’13. ACM Press,
2013.

[33] OCaml. https://ocaml.org. Accessed: 2020-04-16.

[34] Martin Odersky, Stéphane Micheloud, Nikolay Mihaylov, Michel
Schinz, Erik Stenman, Matthias Zenger, and et al. An overview of the
scala programming language, 2004.

[35] James E. Rumbaugh. A parallel asynchronous computer architecture
for data flow programs” mit ph, 1975.

81

https://leanprover.github.io
https://github.com/frankmcsherry/blog
https://github.com/frankmcsherry/blog
https://github.com/TimelyDataflow/timely-dataflow
https://github.com/TimelyDataflow/timely-dataflow
https://ocaml.org

Bibliography

[36] About seL4. https://sel4.systems/About/home.pml. Accessed: 2020-
04-16.

[37] Timely Dataflow book. https://timelydataflow.github.io/timely-
dataflow. Accessed: 2020-04-16.

[38] The tlaps project. https://tla.msr-inria.inria.fr/tlaps/content/
Home.html. Accessed: 2020-04-22.

[39] P.A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting punctuation
semantics in continuous data streams. IEEE Transactions on Knowledge
and Data Engineering, 15(3):555–568, May 2003.

[40] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: Fault-Tolerant Streaming
Computation at Scale. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles - SOSP’13. ACM Press, 2013.

82

https://sel4.systems/About/home.pml
https://timelydataflow.github.io/timely-dataflow
https://timelydataflow.github.io/timely-dataflow
https://tla.msr-inria.inria.fr/tlaps/content/Home.html
https://tla.msr-inria.inria.fr/tlaps/content/Home.html

