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Abstract On-site robotic construction not only has the po-
tential to enable architectural assemblies that exceed the size
and complexity practical with laboratory-based prefabrica-
tion methods, but also offers the opportunity to leverage
context-specific, locally-sourced materials that are inexpen-
sive, abundant, and low in embodied energy. We introduce a
process for constructing dry stone walls in situ, facilitated by
a customized autonomous hydraulic excavator. Cabin mounted
LiDAR sensors provide for terrain mapping, stone localiza-
tion and digitization, and a planning algorithm determines
the placement position of each stone. As the properties of
the materials are unknown at the beginning of construction,
and because error propagation can hinder the efficacy of
pre-planned assemblies with non-uniform components, the
structure is planned on-the-fly: the desired position of each
stone is computed immediately before it is placed, and any
settling or unexpected deviations are accounted for. We present
the first result of this geometric- and motion-planning pro-
cess: a 3-meter tall wall composed of 40 stones with an av-
erage weight of 760 kg.

Keywords On Site Robotics · Dry Stone Walls · Adaptive
Assembly

Ryan Luke Johns
E-mail: johns@arch.ethz.ch

Martin Wermelinger
E-mail: martiwer@mavt.ethz.ch

1Gramazio Kohler Research
2Robotic Systems Lab
3Vision for Robotics Lab
ETH Zurich, Switzerland

1 Introduction

Computational planning and fabrication tools have the po-
tential to greatly increase the sustainability of architectural
construction, allowing for the use of abundantly available
natural and reclaimed materials that are currently too com-
plex or time-intensive for cost-effective widespread appli-
cation. As compared to many common building materials,
minimally-processed rock and locally-recycled demolition
debris have extremely low embodied energy (Morel et al.
2001; Alcorn 2003), but also have the potential to express
site-specific materiality, revive regional vernacular building
methods, and exhibit new forms of “cultural performance”
(Oesterle 2009).

This chapter presents an integrated system for construct-
ing double-faced dry stone walls in situ using a customized
autonomous mobile hydraulic excavator. We outline a pro-
cess for mapping the environment, and localizing and digi-
tizing irregular stones. Using this digitized information, we
algorithmically determine the position and orientation of stones
to align with a designer-indicated goal surface, and con-
duct grasp- and motion-planning for collision-free place-
ment. We demonstrate the applicability of our method by
constructing a 3 m tall wall with a total length of 5 m out of
40 stones with masses between 230-1548 kg.

2 Related Work

A number of recent projects in the domain of architectural
digital fabrication have made use of nonstandard input ma-
terials combined with robotic construction. Such projects
have played a substantial role in re-establishing computa-
tional design and fabrication as a practice that can not only
materialize digital complexity, but that can understand and
adapt to the existing complexity of the material world. Johns
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Fig. 1 Stone wall constructed with autonomous hydraulic excavator.

and Anderson (2018) provide an overview of recent projects
in this general domain, while a number of notable projects
deal more specifically with irregular stone-based assembly:
“Smart Scrap” uses automotive digitization tools to inven-
tory partially-dressed limestone for facade planning (de Boer
et al. 2007), while “Cyclopean Cannibalism” revives ancient
polygonal masonry methods through robotic stone-cutting
(Clifford, McGee, and Muhonen 2018). The latter fits parallel-
faced polygonal elements within the constraints of demoli-
tion concrete and stone offcuts, using 73% of the stock ma-
terial (selected from a larger set) after dressing. In compar-
ison, the work presented in this chapter makes use of 100%
of each stone object, and uses every stone in the available
set.

Towards the assembly of such raw materials, the geo-
metric nesting of unmodified parts has been explored in two-
dimensions with simulated annealing (Lambert and Kennedy
2012). Others have demonstrated the potential of shape de-
scriptors for matching 3D shapes to existing geometries for
the generation of 3D collages without constraints of fabri-
cability (Gal et al. 2007), or for the reassembly of fractured
objects without structural constraints (Huang et al. 2006).

The demonstrators presented by Furrer et al. (2017) and
Liu, Choi, and Napp (2019) both perform dry stacking of un-
modified stones, making use of stationary robotic manipula-
tors and RGB-D scanners for the localization of pre-scanned
stones. Both projects consider structural stability using a
physics simulator and evaluate a cost function to determine

the validity of each potential pose. The former is focused
on the construction of vertical stacks, while the latter can
build one-layer thick walls of up to four courses with a 40 %
success rate in an open loop fashion (without accounting for
the settling of placed stones). In this work, we overcome
the design limitations of such 1- and 2- dimensional struc-
tures, presenting a planner capable of building a multiple-
layer-thick structure following an arbitrarily specified target
geometry. Stones are scanned in-situ on the fly, and the as-
built wall is monitored in order to refine the placed-stone
poses before the planner is executed again.

Several projects have been developed which demonstrate
the potential of large-scale autonomous construction with
on-site robotics. Generally combining mobile platforms with
conventional industrial robots, these compound setups have
been predominantly demonstrated with standardized build-
ing components (Dörfler et al. 2016) or industrially pro-
duced chemical products (Keating et al. 2014). Recent re-
search has demonstrated the potential of robotic systems to
construct auxiliary structures in order to achieve and main-
tain navigability in previously unknown or untraversable ter-
rain, but these experiments have only been demonstrated
at a small scale, and do not make use of naturally occur-
ring found construction materials (like stones), but instead
use compliant bags (Saboia, Thangavelu, and Napp 2019)
or polyurethane foam (Fujisawa et al. 2015) to homogenize
the irregularities in their environment.
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Fig. 2 Setup Diagram:
A) Available stones
B) Constructed wall
C) Search space
D) Rim path with keypoints
E) Grid map
F) Gripped stone
G) LiDAR sensors
H) GNSS antennas
I) Network antenna
J) HEAP platform with axes in-
dicated
K) Reference scale and payload
comparison with human and in-
dustrial robot.

3 Methodology

3.1 Platform

The stone wall was created using HEAP (Hydraulic Excava-
tor for an Autonomous Purpose), a highly customized Menzi
Muck M545 12t walking excavator that was developed for

autonomous applications and advanced teleoperation (Fig-
ure 2J). The fully-mobile 23-axis excavator is capable of
lifting objects to a height of 9 meters, and can freely manip-
ulate items weighing up to 3,000 kg. Adaptable to complex
terrain, the machine is equipped with force-controllable hy-
draulic cylinders that allow for control of ground interaction
forces, and cabin- and chassis-mounted Inertial Measure-
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ment Units (IMUs) that track machine orientation. Global
cabin localization is achieved by a Leica iCON iXE3 with
two Global Navigation Satellite System (GNSS) antennas
and a receiver (Figure 2H). Real-time kinematic (RTK) cor-
rections for the GNSS signals are received over the network
from permanently installed base stations for improved accu-
racy. Draw wire encoders are used to measure the position
and velocity of the hydraulic arm- and grapple-cylinders.

For exteroceptive sensing (scanning of the environment,
available stones, and in-progress structure), two Velodyne
Puck VLP-16 LiDAR scanners are placed at the front edge
of the cabin’s roof to provide 3D scans. The LiDARs are
mounted orthogonally to each other, such that scan points
accumulate both while driving the robot around and while
pivoting the cabin (Figure 2G). For a more detailed descrip-
tion of the system’s sensors and actuators, we refer the reader
to (Jud et al. 2019).

All software components of the project are written in
C++, and the Robot Operating System (ROS) is used to
transfer data over the network between the different soft-
ware nodes distributed on several computers. The ROS mas-
ter, managing the connection between processes, is located
on the on-board computer of HEAP.

3.2 Stone Localization & Scanning

To reconstruct and localize the stones in the surroundings
of the excavator, we use the LiDARs mounted on the cabin
roof (Figure 2G). Before the construction process begins, the
available stones are loosely distributed on the terrain (Fig-
ure 3). This facilitates the detection of single stone instances
by first segmenting the ground plane from the LiDAR map,
and subsequently performing euclidean clustering on the re-
maining point cloud to distinguish the single objects. These
point clusters are used to compute an initial grasp configu-
ration on the not yet reconstructed stone segments. Once a
given stone is picked up using this relatively low-resolution
data, a high resolution scan of the full stone is completed
while it is held in the gripper. In the following sections, we
describe this stone reconstruction process, the LiDAR-based
scene mapping, and the object pose refinement based on the
reconstruction and scene map information.

Reconstruction For the 3D reconstruction, the end effector
is spun with a continuous velocity in front of the LiDAR
sensors while holding the stone. With the known geometry
of the gripper, we filter out points that belong to the end-
effector while accumulating points on the stone. The com-
plete contour of the stone is recorded by concatenating mul-
tiple point clouds from different viewing angles, and apply-
ing Poisson surface reconstruction (Kazhdan, Bolitho, and
Hoppe 2006) to generate the surface mesh from the point
cloud data.

Fig. 3 Initial state of stones, loosely distributed on the terrain. LiDAR
mapping and RANSAC ground segmentation allows for initial detec-
tion and grasping for refined scanning in the gripper.

LiDAR-based Scene Mapping A precise map of the excava-
tor’s complete surrounding (including the as-built structure)
is necessary for planning grasp configurations and arm mo-
tions, and for facilitating the decision of where and how to
position stones. However, simple accumulation of single Li-
DAR scans is very temporally and spatially limited, as pre-
cise knowledge of the sensor’s motion is necessary (and er-
ror accumulation leads to drift over time). To create a con-
sistent map over large time- and motion- intervals, we use
LaserSLAM (Dubé et al. 2017), a laser-based graph SLAM
that considers the odometry constraints provided by the ex-
cavator’s state estimation, fusing GNSS measurements with
the IMUs, and scan-matching constraints provided by regis-
tering a new scan pair using the Iterative Closest Point (ICP)
algorithm with a map consisting of the previous scans. Self-
see points of the excavator’s arm or legs in the LiDAR scans
are filtered to get a 3D point cloud, built locally around the
current robot location, without being corrupted by its mov-
ing parts (Figure 7A).

ICP Refinement Being able to refine the pose of an already
reconstructed stone in the environment (Figure 7B) or in the
gripper is an essential capability, as the stone might settle
during placement or shift as it is being picked up. For this
pose refinement, we first sample a point cloud on the re-
constructed mesh of the stone. Using an ICP step, this point
cloud is registered to the scene map (if the stone is placed
in the environment), or to the accumulated gripper cloud (if
it is grasped by the excavator). To improve the localization,
we first segment the ground plane in the vicinity of the stone
using RANSAC-based 3D plane fitting. Additional filtering
is necessary, however, as stones might be cluttered and par-
tially occluded, especially if they are constituents of the in-
progress wall. Therefore, the scene map is further segmented
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using Euclidean Clustering, and segments belonging to al-
ready refined stones or segments too far from the assumed
pose are removed before the ICP step. This allows for the
reliable pose refinement of objects even if they are partially
occluded by the built structure. If the initial orientation of
the stone is unknown (e.g. after it has been overturned), the
ICP step is performed for multiple initial orientations and
the refined transformation with the highest ICP-score is se-
lected.

3.3 Geometric Planning

The iterative selection, positioning and orienting of each stone
is determined by a geometric planning software that attempts
to construct a double-faced-wall bounded vertically by any
user-specified mesh target surface, and below by the LiDAR-
scanned elevation map of the existing terrain. Given any
number of available stones, the software determines the pre-
ferred placement from the available solutions, and the se-
lected stone and the desired transformation are further pro-
cessed for grasp-planning and physical positioning. Rather
than pre-planning the entire wall, the software computes so-
lutions on the fly, stone-by-stone. This is done for two rea-
sons:

First, for sufficiently large constructions, it is imprac-
tical to pre-scan, sort, and store hundreds or thousands of
stones when the required space and complexity can instead
be minimized if they are salvaged, unearthed, or delivered
on-demand, as needed. Computing solutions on the fly al-
lows for a more adaptive construction that is not held up if
one pre-planned stone goes missing.

Second, the absolute-rigidity of stone makes for signif-
icant error propagation that would result in undesirable de-
viation from the desired geometry, and higher probability
of structural collapse in turn. Any minute difference in the
scanned geometry can cause unexpected collisions or set-
tling during placement, and the current setup allows for these
changes to be automatically accounted-for in the next solu-
tion.

Finding a suitable position of even one stone in a rela-
tively small area can be a computationally heavy problem,
and the irregular nature of the stones and substrate geom-
etry make it generally difficult to apply stochastic solvers
or continuous optimization methods. The software should
generally find a valid solution in less time than it takes for
the excavator to physically locate, grasp, and place a stone,
such that the finding of solutions does not significantly de-
ter progress (at present, the solver takes approximately one
minute per stone on a laptop running Ubuntu 18.04 with an
Intel i7-8750H 4.1 GHz Processor and 16GB RAM).

Much like the algorithm presented by Liu, Choi, and
Napp (2019), we make use of a number of heuristics de-
rived from conventional stone masonry techniques to reduce

the size of the solution space. However, our approach dif-
fers significantly in the specification and sequencing of these
heuristics: we use both the geometric properties of the stones
and the constraints of the designer-specified goal surface
to inform an algorithm that begins with fast computational
checks, and increases in complexity as the solution space is
substantially reduced.

For any given stone placement, the following high level
goals are established: determine a structurally stable solu-
tion that minimizes the volume directly under the stone in
question (Figure 4A) and also minimizes the volume be-
tween the exposed stone face and the designated geometry
of the wall surface (Figure 4B). To achieve these objectives,
we implement the following subroutines:

Stone Attributes At all times, the software holds an inven-
tory of stones that have been scanned. Upon receipt of new
information from the scanning node, the stone mesh is im-
mediately cleaned by removing any degenerate faces and
disjoint remnants that might remain from the Poisson re-
construction. The mass properties are computed using the
method described by Bacher et al. (2014), and each stone
is repositioned such that its centroid is at the origin, and
its principal axes (computed using PCA on the mesh ver-
tices) are aligned with the global frame. An iterative imple-
mentation of the Variational Shape Approximation method
(Cohen-Steiner, Alliez, and Desbrun 2004) is used to de-
termine approximate partitioned face-surfaces on the stones
given an allowable normal deviation per clustered region
of mesh triangles. From these partitioned regions, a face-
adjacency matrix is generated, stone edges and edge mid-
points are identified, and the mean weighted normal of each
region is used to represent the normal direction of each par-
titioned face-surface (Figure 4C).

Search Space A volumetric search space (Figure 2C) is de-
fined as the region bounded by the designated outer wall
surfaces on all sides and above, and bounded below by the
ground and the upper surface of the in-progress wall. While
this upper surface is in reality generally composed of many
disjointed stones, it is approximated as a single continu-
ous surface using a simulated LiDAR scanner on the known
mesh data of the ground and placed stones, and meshed us-
ing Poisson reconstruction. Thus, both the empty ground
and the upper bounds of a half-built wall are treated simi-
larly as the foundation for the next stone. The intersection
between this reconstructed “ground” surface and the target
wall-face surfaces defines the rim path, which we identify as
the upper perimeter edge of the structure at any given state
(the contour where the top surface of the as-built structure
intersects with the vertical goal wall-surfaces)(Figure 2D).

An even sampling along the rim path serves as a one-
dimensional list of possible placement positions, and this list
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Fig. 4 Stone solver goals and methods. A) Minimize volume under stone, B) Minimize volume between stone face and goal surface, C) Compute
faces and edges, D) Sample along rim path, E) Compute descriptors at edge midpoints F) Descriptors at rim path points. G-H) Two possible
orientations for each partial match I) Stability and upper normal direction factors.

is further reduced to only include lower points within a given
distance of identified keypoints (Figure 2D) along this path:
keypoints are defined as any point along the rim path that
lies either between two stones, where one stone meets the
ground, or at the corners or ends of designated structure.
This filtering process ensures that the wall is generally built
up evenly, and reduces the likelihood of running joints that
weaken the bonding of the wall.

Fit Estimation Given the known edge-midpoints, edge di-
rections, and face-normal-vectors on the stones, and the nor-
mal vectors of the goal-wall surface at each point on the rim
path, it is trivial to determine the transformations necessary
to place any specified stone on this path—such that a given
stone edge is tangent to the rim path, and the stone face is
aligned with the wall surface. While each combination of
path-point and stone-edge could be sampled (Figure 4D),
this still represents a substantially large solution-space if the
wall is long and there are multiple known stones in the avail-

able inventory. Just as a stone-mason would likely only try
placing stones that look like they will fit (instead of brute
force sampling every possible position), we first check if a
stone is geometrically similar to the region in question us-
ing rotationally invariant shape descriptors before attempt-
ing any more involved processing (Figures 4E-F, 5). Specifi-
cally, we use the FPFH descriptor (Rusu, Blodow, and Beetz
2009) at each edge midpoint and at each rim path vertex
coupled with a k-nearest-neighbor (KNN) search to find the
k-closest geometric matches at each included point on the
rim path (k≈10). In this demonstrator, the KNN search typ-
ically reduced over a million possible combinations of stone
edges with rim path points to some thousands. Because of
the rotationally invariant nature of such shape descriptors,
each match must consider both possible orientations of an
edge with the rim path (Figures 4G, 4H).

Stability Heuristics Prior to running any involved physics
simulations, we remove potential candidates that are likely
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Fig. 5 Elevation detail of constructed wall. Rotationally invariant
shape descriptors allow for a tight fit by initially matching available
stone surfaces to corresponding negative geometry of the wall.

unstable, or likely to reduce future stability, informed by
guidance from stone masonry literature. In dry stone walls,
it is generally advised to not place stones in such an ori-
entation that their thinnest dimension defines the depth into
the wall—thus acting as a thin veneer that is more likely to
fall away from the wall (Environmental Action Foundation
2019). We generalize this requirement as needing to meet a
minimum ratio between the horizontal (d) and vertical (h)
distance measured between the specified point on the rim
path and the stone centroid (Figure 4I):

d/h > 0.5 (1)

As the construction process uses a double-faced method,
the structure benefits from having an inward slope at the top
of each placed stone—such that any settling is minimized
and supported by stones on the opposing side of the wall
(Vivian 1976).1 For each intended position, we take an even
sampling of the exposed stone surface using a raycasting
method, and compute the mean top-exposed surface normal
(n̂) from the stone normal direction at each hit point. We
then verify that n̂ is pointing into the wall and that the stone
surface is not excessively steep by

êy · n̂ >= 0 and êz · n̂ > 0.7, (2)

1 Note that this inward slope differs from the inward slope employed
by Liu, Choi, and Napp (2019): in our use and in the masonry literature,
the inward slope is a sectional property of a double faced wall. Liu et
al. use it to mean a lowered center of mass between the end stones of a
given bond, as observed across the front elevation (thereby creating a
sagging bond in a single-layered structure).

where êy is the unitized inward-facing surface normal of the
target wall surface projected onto the horizontal plane, and
êz is a unit vector pointing against the direction of gravity
(Figure 4I).

ICP Refinement Once the pool of potential matches has been
reduced by the aforementioned heuristics, each candidate
is refined using ICP to better align it with the surrounding
stones and goal wall surface.

Physics Following ICP refinement, the remaining solutions
are sorted by their ICP score, and (if specified) reduced to a
preset maximum number of solutions. These are then simu-
lated for stability with the Bullet physics engine (Coumans
2015), and solutions that do not reach equilibrium within a
fixed simulated-world-time period or within a distance moved
are ruled out.

Scoring The remaining stones after the physics simulation
step are sorted using the combined parameters from figure
4A and B, where the gap volume is calculated with a raycast-
ing technique measuring the displacement of hits measured
from local plan- and elevation- projection planes with and
without the placed stone (and considering the known stone
volume). The best match is then sent for physical placement.
A provided Imgui interface (Cornut 2005) allows for alter-
native high-scoring solutions to be selected manually, if de-
sired.

The geometric planning software makes extensive use of
libigl (Jacobson, Panozzo, et al. 2018) for mesh processing,
PCL for point cloud operations (Rusu and Cousins 2011),
and openframeworks (Lieberman et al. 2005) for visuals (Fig-
ure 6).

3.4 Grasp and Placement Execution

The goal of the grasp pose planning is to find viable grasp-
ing configurations that allow the excavator to pick a desired
stone and place it at the planned location without collisions
with the existing wall (Figure 7E). A grasp configuration is
defined as 6-DoF pose of the excavator’s gripper, where con-
tact with the desired stone can be performed. In order to find
a viable grasp configuration that respects the collision con-
straints, we sample a large amount of grasp hypotheses on
the stone of interest in the map point cloud. Those grasp hy-
potheses are validated for collisions by intersecting a poly-
hedral gripper model with the map cloud and searching for
inliers. Note that both the grasp configuration and the cor-
responding placement configuration must be verified to be
without collisions (Figure 7D/F). Due to occlusions, the map
point cloud may contain holes that can result in undetected
collisions. To prevent these situations, the map point cloud
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Fig. 6 Screen capture of ge-
ometric planning software. A)
Imgui Interface, B) Active en-
vironment with search space,
solutions, and placed stones,
C) Available scanned stones in
inventory, D) Selected Stone
Viewer with VSA faces.

Fig. 7 Grasp planning and
placement of a stone to its
desired location (red). (A)
Collision and localization point
cloud, (B) Stones localized in
point cloud, (C) Spline motion
trajectory, (D, Green) Colli-
sion free grasp hypotheses, (F,
Red) Grasp hypotheses with
collisions, (E) Selected grasp
configuration, (G) The collision
point cloud is augmented with
point clouds of already localized
stones.

is augmented with point clouds generated from the meshes
of already localized objects (Figure 7G). After ruling out
colliding configurations, the remaining grasp poses are eval-
uated for force closure, and scored by task specific criteria
(alignment to ground, grasp encompassment, and distance
to stone CoM) to obtain the final grasp.

A motion planner is used to generate a spline trajectory
for reaching the desired grasp pose and for moving from
the grasp pose to the placement pose (Figure 7C). The ap-
proach direction during placement is chosen by ray-casting
to provide the largest margin to obstacles. Figure 7 shows
the spline trajectory (C, blue) for moving the grasped stone
from the ground to its desired placement pose (E, red). Each

time a stone is grasped or released, its pose with respect to
the map or end-effector is updated with an ICP refinement
step using its previous location as initial guess (Section 3.2).

4 Experiment

The localization, scanning, geometric- and motion- and plan-
ning routines developed in this work were used to construct
a large-scale (3 m high and 5 m long) test wall using 40
available gneiss stones2 with an average mass of 757 kg

2 Gneiss is a locally abundant metamorphic rock often used for ar-
chitectural applications, landscape construction, and retaining walls.
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Fig. 8 Digital model of con-
structed wall with goal surfaces
and indicated distance between
placed stones and one target sur-
face.

Fig. 9 Side elevation of constructed wall conveying double-faced
structure and near-vertical orientation.

(range: 230-1584 kg). To our knowledge, it represents both

the greatest height and number of components of any ma-
sonry structure autonomously constructed from irregular stones.
It is essential to note, however, that such qualifications are
heavily influenced by the geometry of the available material,
and one might much more easily construct a many-bonded
wall with ashlar-like stones. Despite the relatively large size
of the available stones,3 the outer face of the as-built struc-
ture was measured to be generally within 10 centimeters of
the intended target surface (Figure 8). Figure 9 shows the
side elevation of the completed structure, and the front ele-
vation can be seen in Figure 1.

While the geometric planner allows for solutions to be
found with any number of stones in the inventory, it pre-
dictably finds better correspondences if there are more stones
to choose from (at the computational expense of an increased
search space). For a much larger construction, one would
likely scan and build in batches, keeping tens of digitized
stones in the inventory, and refilling it when no solution can
be found within some tolerance requirements. For this ex-
periment there was a fixed number of available stones (40),
and they were each scanned and added to the digital inven-
tory before the construction of wall commenced. This accel-
erated construction, and provided a wide variety of stones
for the initial planning steps. The planning and execution
were performed sequentially, meaning that after each place-
ment the stone pose was refined and updated in the geomet-
ric planning before initiating the next update step. Figure 10

3 These are classified as ‘medium-coarse boulders’ on the modified
Udden–Wentworth grain-size scale (Blair and McPherson 1999).
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shows intermediate steps of the wall construction with two
and twenty placed stones.

Fig. 10 Wall construction in progress with two (above) and twenty
(below) placed stones out of the 40 used in this experiment.

5 Improvements

A number of improvements are intended which will provide
increased process robustness and allow for additional design
constraints to influence the solver. While this initial proto-
type was imagined as a section of a longer wall (Figures 11,
12), future developments will resolve the particularities of
terminating details at wall ends and corners: the use of alter-
nating stretchers and headers with returned faces that both
strengthen the structure and clearly define the arris (edge
where surfaces meet) (Cramb 1992).

One major limitation of the setup at present is that we
have not yet implemented the autonomous flipping of stones.
On the occasion that placement solutions are found which
cannot be grasped in the current stone position, an alert is
generated that conveys the need for manual intervention:
the stone must be flipped manually before the autonomous
setup will relocalize the stone and continue construction.

The drawback of using LiDARs for reconstruction and ICP
refinement is the need to always move the sensor to accumu-
late scans into the complete 3D model: this is time consum-
ing, and renders the current sensors ill-equipped for dynamic
tracking during stone flipping. This task will be made more
feasible with the imminent integration of additional sensors,
including RGB cameras. By texturing the reconstruction of
the stones (Waechter, Moehrle, and Goesele 2014) it is pos-
sible to extract visual features that can be used for recog-
nizing a stone instance or tracking its motion (Marchand,
Uchiyama, and Spindler 2016). This will not only better fa-
cilitate dynamic tasks such as flipping, but could also be
considered as a component in the design process. Provided
that a structure contained enough stones to make a pattern
legible, it would be possible to incorporate variable distri-
butions of color, scale, or surface shapes to meet additional
design goals beyond the global shape of the wall.

Whereas we currently rely on physics simulation for sta-
bility assessment, in future work we will consider structural
validation by physically probing the as-built construction.
The excavator – equipped with pressure sensors and an addi-
tional force-torque sensor – would serve as both a construc-
tion tool and testing device, using applied loads to verify the
stability of the structure and measure deformations.

6 Discussion

This research demonstrates a robotically-enabled process for
creating structures from a wide range of input and target ge-
ometries: allowing digital design goals to be integrated with
existing ancient construction methods for double-faced free-
standing dry stone walls built from unprocessed or minimally-
processed natural stone. In contrast to cut stone (and even
more so to concrete), these exhibit extremely low embodied
energy because there is minimal transportation required4,
and because they do not require energy-intensive cutting or
post-processing. While the embodied energy of stone con-
struction varies regionally, post-processing (sawing, etc.) is
a major contributor to the overall environmental impact of
masonry architecture: despite an increase in the thickness of
the built structure when compared to cut stone, building with
raw stone can be environmentally advantageous (D. Ioan-
nidou, Zerbi, and Habert 2014).

Rather than modifying individual stones, this method fo-
cuses on cleanly fitting the exposed surfaces of stones along
the outer two faces of a given wall section, while tolerat-
ing necessary gaps between stones within the hidden space
of the poché. Even in a well-constructed dry stone wall,
these gaps can account for 20-40% of the constructed vol-
ume (Villemus 2004; Mundell 2009), and are essential in

4 For this experiment, the raw stones were delivered by truck from
a quarry located 40 km from the test field.



Autonomous Dry Stone 11

Fig. 11 In progress wall with
overlay of potential extension of
structure, generated by allowing
the solver to continue with addi-
tional digital stone models.

Fig. 12 Constructed wall with figure (left) for scale and indicated potential extensions.

enabling the use of completely irregular and indeterminate
source materials: a dry stone wall is thus “defined by the
spaces between the stones as much as it is by the stones
themselves” (Snow 2008). While such gaps can be filled in
with smaller ‘chinking’ stones (Vivian 1976) or with mortar,
they can also be left as supplemental habitats for flora and
fauna to thrive (Witschi 2019).

Dry stone construction has diminished in popularity in
the last century, despite the environmental, economic, and
aesthetic advantages of building with inexpensive, local, and
natural materials: increasing labor costs combined with com-
paratively inexpensive and simple-to-install mass manufac-
tured building components have rendered irregular stone con-
struction infeasible in many situations (Bätzing 2019; Dimi-
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tra Ioannidou et al. 2018). By synthesizing knowledge from
manual dry stone masonry handbooks (Vivian 1976; Cramb
1992; Environmental Action Foundation 2019) together with
new methods of computational design and robotic construc-
tion, this work aspires to reactivate irregular stone construc-
tion while enabling new modes of design expression and
large-scale fabrication.

7 Conclusion

In this chapter, we introduce a platform and algorithm for the
autonomous construction of large scale dry stone walls in
situ, with the aid of a customized robotic excavator—addressing
the challenge of using unprocessed and locally available con-
struction material. The addition of a high-payload, fully-
mobile platform has greatly expanded the ‘machinic mor-
phospace’ (Menges 2013) of robotic construction tools on
site, allowing us in turn to better navigate the constrained
‘material morphospace’ of complex and nonstandard found
objects (Johns and Foley 2014). The process has potential
to greatly reduce the embodied energy of architectural con-
struction in specific contexts, and can be extended to work
with a range of source materials, including reclaimed demo-
lition debris. By realizing a double-faced wall on an archi-
tectural scale, we demonstrate the applicability of automated
stone masonry for future construction processes.
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