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O vercoming metabolic transitions is a

key determinant of microbial fit-

ness. Some of the most challenging

transitions are encountered when microbes

are shifted from rapid, often partly fermenta-

tive glycolytic to slower, fully respiratory

gluconeogenic growth with lag phases that

can last many hours without detectable

biomass production. Our groups have recently

worked extensively to understand the mystery

how such long lag phases emerge and why

they cannot be easily overcome by bacteria.

Our independent studies Kotte et al (2014)

and Basan et al (2020) appear at first glance

somewhat contradictory, because we observed

very different phenomenologies, regarding

population-level heterogeneity and also the

extent of observed lag times. While Kotte

et al (2014) found distinct subpopulations of

cells, with some cells that grew immediately

and others that never resumed growth,

Basan et al (2020) found a unimodal distri-

bution of single cell lag times and the vast

majority of cells eventually resumed growth.

The resulting lag times from Kotte et al

(2014) were also much longer than those

observed in Basan et al (2020).

These differences are largely the result of

different experimental protocols for perform-

ing the metabolic shifts. In Basan et al

(2020), bacteria were washed twice on a fil-

ter with warmed post-shift medium and then

gently resuspended with a pipette in warmed

medium, a procedures accomplished in 2–

3 min. Thus, cells were instantaneously

exposed to the new substrate and lag phases

were only a few hours, closely resembling

the apparent phases of no growth during the

diauxic shifts in batch experiments (Erickson

et al, 2017; Basan et al, 2020). In contrast,

the protocol of Kotte et al (2014) included

several rounds of centrifugation and wash-

ing with ice-cold, substrate-free medium.

The entire procedure took about 20 min and

likely exposed the bacteria to starvation and

cold stress. Perhaps not surprisingly, the proto-

col by Kotte et al (2014) resulted in much

longer lag times and a different phenomenol-

ogy. Hence, as illustrated in Fig 1, cells in the

two experiments started their adaptation from

very different initial physiological conditions.

While the “Basan” cells presumably had to

mainly reverse their glycolytic flux, the “Kotte”

cells likely faced additional challenges that

might include a more severe drop in energy

supply and additional adaptations of their

proteome during the washing phase.

Independent of the physiological starting

point, cells in both experiments had to over-

come the problem of depletion of key glyco-

lytic metabolites that result from the sudden

flux reversal when switching from glycolytic

to gluconeogenic growth. This imposes a

trade-off between rapid growth and

adaptability that was also observed in Kotte

et al (2014), caused by sequential flux limita-

tion in gluconeogenesis (Basan et al, 2020).

Imposing additional stress during the transi-

tion phase can drive the population into

subpopulation heterogeneity, which can be

observed as an increased length of the lag

phase (Kotte et al, 2014). Thus, rather than

contradicting each other, our studies offer a

complementary picture of the physiological

adaptation from glycolytic to gluconeogenic

growth.

Beyond the specific case of understanding

the challenges of the diauxic shift, our results

highlight the critical importance of the

precise environmental conditions prior to

introducing any physiological change or start-

ing a measurement. Seemingly small dif-

ferences such as placing cells on ice, washing

in nutrient-free buffer, or length of the proce-

dure can rapidly alter the physiological state

of the culture and/or its population structure.

Precise reporting of these seemingly trivial

procedures is therefore mandatory and must

be taken into account when comparing data

from different sources.
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Figure 1. Schematic of phenotypic states and relevant molecular challenges for the diauxic shift from growth on glucose to acetate of Escherichia coli.
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This piece discusses how the different observations of two independent studies (Kotte et al, 2014; Basan et al, 2020), regarding
population-level heterogeneity and lag times during diauxic shift, can be largely explained by different experimental protocols.
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