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Purpose: In precision radiotherapy, the intrafractional motion causes substantial uncertainty. Tradi-
tionally, the target volume is expanded to cover the tumor in all positions. Alternative approaches are
gating and adaptive tracking, which require a time delay as small as possible between the actual
tumor motion and the reaction to effectively compensate the motion. Current treatment machines
often exhibit large time delays. Prediction filters offer a promising means to mitigate these time
delays by predicting the future respiratory motion.
Methods: A total of 18 prediction filters were implemented and their hyperparameters optimized for
various time delays and noise levels. A set of 93 traces were standardized to a sampling frequency of
25 Hz and smoothed using the Fourier transform with a 3 Hz cutoff frequency. The hyperparameter
optimization was carried out with ten traces, and the optimal hyperparameters were evaluated on the
remaining 83 traces.
Results: For smooth traces, the wavelet least mean squares prediction filter and the linear filter
reached normalized root mean square errors of below 0.05 for time delays of 160 and 480 ms,
respectively. For noisy signals, the performance of the prediction filters deteriorated and led to simi-
lar results.
Conclusions: Linear methods for prediction filters are sufficient for respiratory motion signals.
Reducing the measurement noise generally improves the performance of the prediction filters investi-
gated in this study, even during breathing irregularities. © 2019 American Association of Physicists
in Medicine [https://doi.org/10.1002/mp.13929]
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Abbreviations
ANFIS adaptive neuro-fuzzy interference system
enRMS normalized root mean square error
ERLS extended recursive least squares
IMM interacting multiple model
KDE kernel density estimation
KFCA kalman filter constant acceleration
KFCV kalman filter constant velocity
LCMEKF local circular model extended Kalman filter
LF linear filter
LOESS local regression
LR linear regression

MULIN multistep linear
NERLS nonlinearly extended recursive least squares
NLMS normalized least mean squares
NN neural network
RLS recursive least squares
RVM relevance vector machines
SNR signal-to-noise ratio
SVR support vector regression
TAKENS takens prediction filter
WLMS wavelet least mean squares
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1. INTRODUCTION

Modern radiation therapy techniques can focus the ionizing
radiation precisely on the tumor volume. However, motion
causes substantial uncertainty during treatment delivery, for
instance due to respiration. It was reported that the peak-to-
peak motion amplitudes of lung and liver tumors can amount
to up to 38 mm1 and 34 mm,2 respectively. If this motion is
not adequately considered, the effectiveness of the treatment
can be considerably reduced.3

The established approach to account for intrafractional
motion is to expand the target volume such that the tumor is
guaranteed to be covered in all positions. This approach
assures the accurate radiation dose coverage of the tumor, but
it increases the irradiation dose to the healthy tissue sur-
rounding the tumor. Several approaches were proposed to
overcome the uncertainty due to intrafractional motion,4

which aim at reducing the dose to healthy tissue while ensur-
ing the full dose coverage of the tumor. During gated treat-
ment, the motion of the tumor is observed and the radiation
beam is only switched on if the tumor is in a specific posi-
tion.4 With the CyberKnife5 or the Vero6 system, the tumor
motion is continuously compensated by moving the beam,
while with multi-leaf collimator (MLC) tracking,7 the beam
is modified according to the patient movement. During couch
tracking, the patient is moved with the robotic couch8 to com-
pensate the tumor motion.

These proposed approaches require fast action of the sys-
tems involved to be effective at reducing the uncertainty due
to intrafractional motion. For example, gated treatments
require short reaction times to switch off the beam. If this
reaction time is long, the tumor leaves the irradiated volume
before the beam is off, which leads to an unnecessary expo-
sure of healthy tissue and a lack of dose to the tumor. Track-
ing approaches with a continuous compensation of the tumor
motion require the systems involved to move synchronized to
the tumor. In that case, not only the reaction times but also
the limited dynamics of the systems become important. The
limited dynamics (e.g., mass inertia) cause the systems to lag
behind the tumor motion. As a consequence, the reaction
times and the time lags are large sources of errors in tumor
motion compensation. We refer to the sum of reaction time
and time lag as time delay.

One option to mitigate this source of errors is to improve
the systems such that they have faster reaction times and fas-
ter dynamics to reduce the time delays. However, this
approach requires a large investment because it involves hard-
ware changes. Another option is to compensate for the time
delay by exploiting the patterns of the tumor motion to pre-
dict the motion ahead. In this approach, an algorithm, often
called prediction filter, takes the measured signal of the tumor
motion as an input, and outputs a prediction of the signal.
The subsequent compensatory motion of the systems reacting
to the new signal thus matches the actual tumor motion. Such
prediction filters only require software modifications.

A large number of prediction filters are presented in litera-
ture. A wide variety of techniques for prediction filters have

been proposed, including Kalman filters, autoregressive mov-
ing average models, wavelet decomposition, fuzzy logic mod-
els, neural nets, support vector regression, nonlinear
dynamics identification, and combinations thereof.9,10 Predic-
tion filters have also been compared to each other: The sup-
port vector regression approach was compared to the neural
network approach11 and found to be superior. A larger com-
parison was carried out with seven prediction filters,12 in
which not only linear regression methods but also nonlinear
methods such as support vector regression were compared.
The support vector regression approach was found to be
superior to all other evaluated techniques. In a further study,13

six prediction filters were compared, and the wavelet least
mean squares prediction filter was found to provide the low-
est prediction error. In other work,14 linear regression meth-
ods were compared to nonlinear methods such as neural
networks and support vector regression. Neural networks were
found to perform best. In the work of Murphy and Dieterich,15

linear regression methods were compared to the neural network
approach, and the neural network was found to be superior. Fur-
thermore, the effect of smoothing the respiratory traces before
applying two different prediction filters was investigated.16

Smoothing was found to improve the performance of the pre-
diction filters. The estimation of the performance of the predic-
tion filter before applying them to a patient’s respiratory motion
was investigated as well.17 The approach was to find character-
istic features of the traces and then correlate the features with
the prediction filter’s performance.

The comparisons of all prediction filters presented in the
literature are limited in the number of prediction filters inves-
tigated and additionally, in the number of respiratory motion
traces applied. In the presented study, we implemented 18
prediction filters and optimized their hyperparameters regard-
ing respiratory motion traces, varying time delays and noise
levels. Hyperparameters are parameters of the training proce-
dure itself, which identifies the normal parameters’ values.
The normal parameters are then used for the prediction. The
prediction filters were evaluated on a set of 93 one-dimen-
sional traces with two time delays and three noise levels. The
aim of this study is the performance comparison of these 18
different prediction filters under different noise levels and
time delays. For every given noise level, time delay, and pre-
diction filter, the hyperparameters were optimized with the
same optimization algorithm on the same set of real patient
data and evaluated on a different set of real patient data to
avoid overfitting. The results of the prediction filters were
analyzed with focus on the effect of noise level variation
using real patient data. To the best of our knowledge, this
study presents the largest comparison of prediction filters in
the literature.

2. METHODS AND MATERIALS

2.A. Respiratory motion data

The respiratory motion traces were collected from record-
ings during CyberKnife treatments.18 Some of the traces
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exhibited long periods of invalid measurements (marker not
detected) and thus were excluded. The remaining traces con-
tained short periods of invalid samples; therefore, every trace
was resampled at a sampling rate of 25 Hz via spline interpo-
lation. For investigating noise level variation, smooth traces
were first constructed by filtering the original traces via Four-
ier transform, such that only frequencies below 3 Hz were
contained in the smoothed traces. Each smoothed trace was
then corrupted with added Gaussian noise, with signal-to-
noise ratios (SNR) of 30 and 20 dB, respectively, see Fig. 1.
Consequently, the noise variation in this study had three
levels: smooth, SNR of 30 dB, and SNR of 20 dB. In total,
93 different respiratory motion traces were included, where
the recording durations ranged from 675.44 s to 7883.64 s
(median 4364.04 s). The mean respiration period, mean
amplitude, and mean speed of the traces are shown in Fig. 2.
Significant drift occurs in 28 of 93 traces, where a significant
drift was defined as a change in baseline of more than 5 mm
over a duration of 100 s. Sudden large motion (defined as an
amplitude excursion of more than twice the amplitude of the
three previous respiratory cycles) occurred in 67 of the 93
traces. Time delays of four (160 ms) and 12 (480 ms) time
steps were investigated based on findings by Hoogeman
et al.5 and Cho et al.19 The range of respiratory frequencies
varied from 0.16 to 0.40 Hz with a median of 0.27 Hz. The
implemented code for the described procedure is available in
the supplementary material.

2.B. Prediction filters

In the following, all of the 18 prediction filters that were
investigated are presented. The prediction filters were
selected to represent a wide range of approaches that were
previously published. The algorithms were implemented fol-
lowing the respective publications. However, in our imple-
mentations, learning is continuous, that is, the samples used
for training of the prediction filters’ parameters were updated
at every time step by adding the current and discarding the
oldest time sample. In general, the prediction filters were

retrained at every time step, exceptions due to computational
challenges are stated in the following short descriptions of
the prediction filters:

1. The adaptive neuro-fuzzy interference system
(ANFIS) prediction filter is a combination of a neural
network with fuzzy logic.20 For this prediction filter,
the Fuzzy Logic Toolbox (The MathWorks Inc.,
Natick, MA, USA) was used. At every time step, the
ANFIS predicted the value based on the past values.
To reduce computation time, the training of the
ANFIS was carried out at every tenth time step.

2. The local regression (LOESS) prediction filter utilizes
polynomial regression using past values of the trace,
but only those that are similar (Euclidean distances
below a threshold) to the current values.21

3. The normalized least mean squares (NLMS) predic-
tion filter uses a linear combination of past values,
where the weights are updated at every time step.22

4. The wavelet least mean squares (WLMS) prediction
filter decomposes first the signal into signal bands
and then applies the least mean squares algorithm to
each band separately. The results are then summed
up.23

5. The interacting multiple model (IMM) prediction fil-
ter combines two Kalman filters, the first one with a
constant-velocity model and the second one with a
constant-acceleration model.24

6. The multistep linear (MULIN) prediction filter pre-
dicts using a procedure similar to a Taylor expansion
around the current time step.25

7. The support vector regression (SVR) prediction filter
uses the SVR method, which allows for some non-
penalizing deviations between the resultant function
and the data26. Here, the input data are the time
indices and the output data consisting of the trace val-
ues corresponding to the time indices.

8. The goal of the kernel density estimation (KDE) pre-
diction filter is to estimate a probability distribution
using past values and, consequently, to predict the
trace using the current values and the probability dis-
tribution.27

9. The local circular model extended Kalman filter
(LCMEKF) prediction filter uses a Kalman filter with
a model that generates circular dynamics.28

10. The recursive least squares (RLS) prediction filter
works similar as the NLMS prediction filter but it dif-
fers in the way the weights are updated.29

11. The extended recursive least squares (ERLS) predic-
tion filter is essentially the same as the RLS prediction
filter, but includes a parameter which allows to tune
the prediction filter to the measurement noise.30

12. The Takens (TAKENS) prediction filter is based on
the Takens Reconstruction Theorem for nonlinear
dynamics. Essentially, it compares the current values
to past values and takes the closest past values to pre-
dict the respiratory motion.30

FIG. 1. Qualitative visualization of a standardized trace with the varying sig-
nal-to-noise ratios (SNRs). For each SNR, the trace is depicted in an offset to
allow an easy visual comparison. The Gaussian noise was added after the res-
piratory motion traces were resampled to 25 Hz and smoothed using a Four-
ier transform with a cutoff frequency of 3 Hz.
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13. The nonlinearly extended recursive least squares
(NERLS) prediction filter combines the ERLS predic-
tion filter with the TAKENS prediction filter. The
ERLS predicts the trace, but simultaneously, its pre-
diction errors are recorded. These are predicted by
TAKENS and the predicted error is used to correct
the ERLS prediction.30

14. The Kalman filter constant acceleration (KFCA) pre-
diction filter uses a Kalman filter with a constant
acceleration model.30

15. The Kalman filter constant velocity (KFCV) predic-
tion filter uses a Kalman filter with a constant velocity
model.30

16. The relevance vector machine (RVM) prediction filter
uses the RVM algorithm, which is based on a sparse
Bayesian learning framework.31 The RVM prediction
filter evaluates at every time step but trains in every
tenth time step only.

17. The neural network (NN) prediction filter trains the
NN using a sliding window of past values and uses the
current values to predict the future values of the
trace.32 The NN evaluates in every time step but trains
in every tenth time step only to reduce computation
time.

18. The linear filter (LF) prediction filter uses the past
values to compute a linear regression which is then
used with the current values to predict the future
value.

The implementations of the prediction filters in MATLAB
(The MathWorks Inc., Natick, MA, USA) are available in the
supplementary material “Optimal Hyperparameters” and via
the digital object identifier https://doi.org/10.5905/ethz-1007-
232.

2.C. Prediction filter hyperparameter optimization

The prediction filters have various hyperparameters, which
influence their performance to predict the respiratory motion.
The performance of a prediction filter for a given trace was
defined as follows: First, the root mean square (RMS) of the
differences between the original signal xorig and the predic-
tion filter output signal xpred was computed. Second, the
RMS of the differences between the original signal xorig and

the delayed signal xdelayed (delayed output of sensor) was
computed. Finally, the ratio of these two values was assessed,
which is denoted the normalized root mean square error
enRMS. The enRMS was chosen because it is dimensionless and
independent of the amplitude of motion traces. It directly
indicates how the prediction filter’s performance compares to
not using a prediction filter. An enRMS equal to 1 corresponds
to no improvement, while an enRMS equal to 0 indicates per-
fect prediction. An enRMS above 1 indicates that using the pre-
diction filter is actually worse than not using it. Because most
prediction filters require a certain time to fully initialize, only
the time after icutoff was taken into account for computing
enRMS. Here, the first 20 s of each trace were ignored, corre-
sponding to a icutoff ¼ 500 steps. The variable N represents
the length of the trace.

enRMS ¼ eRMS xorig; xpred
� �

eRMS xorig; xdelayed
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
i[ icutoff

xorig ið Þ � xpred ið Þ� �2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
i[ icutoff xorig ið Þ � xdelayed ið Þ� �2q

We applied Bayesian optimization for the hyperparameter
selection, implemented via the “bayesopt” function in the
MATLAB Statistics and Machine Learning Toolbox (The
MathWorks Inc., Natick, MA, USA), because it can handle
continuous and discrete variables. The hyperparameters of
each prediction filter were optimized with a subset of ten
traces of the respiratory motion dataset introduced above.
This subset was selected randomly exactly once for the entire
study and substantially smaller than the full set to reduce the
high computational effort required by the optimization algo-
rithm and some by some prediction filters. The objective of
the optimization algorithm was to minimize the median
enRMS of the ten traces in the optimization subset. The opti-
mization method used was the Bayesian Optimization33 algo-
rithm, which is widely used for the optimization of the
hyperparameters of machine learning algorithms.

However, the optimal hyperparameters found were then
evaluated on the validation subset, which consisted of the full
set without the optimization subset. This entire procedure of
optimizing the prediction filters’ hyperparameters and evalu-
ating them was carried out for six scenarios. This number of
scenarios results from the three different noise levels and the

FIG. 2. Characteristics of respiratory motion traces. Left panel shows the distribution of the mean period of each trace. The center panel shows the distribution of
the mean amplitude of each trace. The right panel shows the distribution of the mean speed of each trace.
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two different time delays investigated in this study. The code
for the optimization and the evaluation is available in the sup-
plementary materials.

3. RESULTS

3.A. Performance of the prediction filter

The enRMS of all the prediction filters are shown as box
plots in Fig. 3 (time delay = 160 ms corresponding to 4 time
steps) and in Fig. 4 (time delay = 480 ms corresponding to
12 time steps). Additional results are presented in the supple-
mentary materials. For both time delays, the first, second,
and third panels show the performance for signals without
noise, with an SNR ratio of 30 dB, and an SNR of 20 dB,
respectively. Generally, smaller time delays and higher SNRs
were beneficial for the performance of the prediction filters.
Especially in the scenario of no noise, the WLMS and the LF
prediction filter showed very small enRMS values for both time
delay scenarios. But when noise was added, the results of
these two prediction filters were closer to those of other pre-
diction filters.

The prediction filters that reached the lowest median
enRMS are shown in Table I for all scenarios of SNR and
time delays. The best prediction filter for each scenario was
determined as the one with the lowest median enRMS. The pre-
diction filters with enRMS results comparable to the best one
were determined by using non-inferiority tests34 (one-sided
Wilcoxon sign rank test with a tolerance value of 0.05). A
prediction filter was non-inferior (or comparable) if its results
were significantly below the best prediction filter’s results
plus a tolerance value of 0.05. This tolerance value is smaller
than the interquartile ranges of the prediction filters’ enRMS

results in the noisy scenarios.

4. DISCUSSION

Tracking and compensating the motion of tumors can
potentially reduce treatment margins and consequently
reduce negative side effects. However, an effective tracking
approach requires very small time delays from detecting the
motion of the tumor to compensating the motion. The devices
and approaches most commonly used in radiotherapy (motion
sensor, signal processing, compensating motion) exhibit sev-
eral time delays, which sum up to a large overall time delay.
However, respiratory motion often has a regular pattern,
which can be exploited by an algorithm that takes the past
values of the motion signal to predict the signal ahead. Such
algorithms are commonly denoted prediction filters.

Numerous prediction filters were proposed and investi-
gated. In this paper, we compared 18 prediction filters on 93
respiratory motion traces with two time delays as well as
three noise levels for each trace. The respiratory motion
traces were standardized to a sampling frequency of 25 Hz
and filtered with a cutoff frequency of 3 Hz. The hyperpa-
rameters of these prediction filters were optimized with a
subset of ten traces. The prediction filters with the optimized

hyperparameters were then applied to the remaining 83 sub-
set traces.

Generally, the enRMS value increases when the SNR
decreases, which is in line with the results by Ernst et al.,16

who showed that smoothing the traces decreases the predic-
tion errors. Prediction filters essentially extrapolate the signal,
and extrapolation is very sensitive to noise. However, one
would expect that increasing the time delay also increases the
enRMS, but the results showed a mixed behavior among the
prediction filters. For example, the enRMS value of the WLMS
does not increase at all when the time delay is increased for
smooth traces, but it does increase for noisy traces. The sensi-
tivity of the WLMS to the time delay depends on the SNR.
The KDE and the TAKENS show opposite behaviors of the
enRMS, which decreased when the time delay was increased.
This might be explained by the formula of the enRMS that cor-
responds to a ratio of two root mean square errors. A decrease
of the enRMS cannot only be achieved with a decrease of the
numerator, but also with an increase of the denominator. An
increase of the time delay increases the value of the denomi-
nator. For the KDE and the TAKENS, the denominator’s
value increases more than the numerator’s value as the time
delay increases. This characteristic might make these predic-
tion filters superior over the other prediction filters for longer
time delays than those investigated here.

FIG. 3. Box plots of the performance (as measured by enRMS) of all optimized
prediction filters for a time delay of 160 ms applied to the validation set of
respiratory traces. The prediction filters are listed at the bottom and the
abbreviations stated in the list of abbreviations. The first, second, and third
panels show the performance for signals without noise, with a signal-to-noise
(SNR) ratio of 30 dB and an SNR of 20 dB, respectively. The data points
above an enRMS value of 1.5 are omitted. They are available in the supplemen-
tary material.
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The variance of the enRMS values in Figs. 3 and 4 for each
prediction filter shows that the performance of the prediction
filters is patient specific. In the scenario of smooth traces, the
variance differs substantially among the prediction filters,
whereas for noisy traces, the variances are more similar and
increased for all prediction filters. Furthermore, the perfor-
mance of a prediction filter depends more on the specific res-
piratory motion trace as the SNR decreases. The distributions
of the enRMS values also show a large number of outliers,

which may indicate that there are always some traces, but not
necessarily identical ones that are difficult for a given predic-
tion filter.

There are several prediction filters, which showed remark-
ably low enRMS values in the scenario of smooth traces, espe-
cially the WLMS and the LF. Interestingly, these are both
linear techniques. This observation indicates that linear meth-
ods are sufficient to describe respiratory motion and that non-
linear approaches are not necessarily needed.

The large influence of the SNR points toward several pos-
sibilities to improve the performance of motion compensa-
tion. The sensor that measures the respiratory motion could
be designed such as to achieve minimal noise. Another
approach could be to include low-pass filters, which decrease
the noise of the measured signal. However, a low-pass filter
further increases the time delay, which would have to be com-
pensated by the prediction filter in addition to the actual time
delay.

The variation of the performance of a prediction filter over
the various traces may indicate that for a given trace, an opti-
mal prediction filter can be selected by considering the trace’s
characteristic features, which was investigated by Ernst
et al.17 However, selecting a prediction algorithm for a given
respiration pattern could be done with the algorithms them-
selves, because the prediction filters implemented here
require only a few milliseconds for a time step to predict (see
supplementary materials). Therefore, a patient’s respiratory
pattern could be recorded in advance and then the prediction
filters could be tested on the respective recording. A 1-min
recording tested with the LF would take roughly 2 s of com-
putation time on a personal computer. Therefore, the predic-
tion filters’ results themselves can be used to select the best
prediction filter for the patient.

Ernst and Schweikard12 compared various prediction fil-
ters: The NLMS, RLS, WLMS, and MULIN prediction fil-
ters were investigated for a real respiratory motion signal
including noise and a time delay of 150 ms. Their NLMS
achieved an enRMS value of 0.95, which is in the range of the
enRMS value for a time delay of 160 ms and an SNR of 20 dB
shown in our study. The WLMS and the MULIN prediction
filters of our study achieved lower median enRMS values
(WLMS: 0.41, MULIN: 0.51 at 30 dB and 160 ms) than their
WLMS and MULIN with 0.63 and 0.64, respectively. Our
results are consistent with their results, but our results cover
a larger variety of respiratory motion traces and prediction
filters.

In more recent work by Ernst et al.,13 the MULIN, nLMS,
RLS, wLMS, EKF, and SVRpred were compared to each
other. Their results for a time delay of 154 ms and our results
for an SNR of 30 dB and a time delay of 160 ms are similar,
except for the RLS. It reached a lower enRMS than the RLS
results of our study. Their MULIN has a mean enRMS of 0.61,
while our results showed a median of 0.53. However, the
MULIN’s variance is asymmetric toward higher values,
therefore, the mean is expected to be higher than the median.
Their wLMS showed the lowest enRMS of 0.56, while our
WLMS with an enRMS of 0.43 is comparable to the NN, see

FIG. 4. Box plots of the performance (as measured by enRMS) of all optimized
prediction filters for a time delay of 480 ms applied to the validation set of
respiratory traces. The prediction filters are listed at the bottom and the
abbreviations stated in the list of abbreviations. The first, second, and third
panels show the performance for signals without noise, with a signal-to-noise
(SNR) ratio of 30 dB, and an SNR of 20 dB, respectively. Data points above
an enRMS value of 1.5 are omitted. They are available in the supplementary
material.

TABLE I. Prediction filters with the lowest median as well as prediction filters
whose results are significantly non-inferior (one-sided Wilcoxon sign rank
test with a tolerance value of 0.05).

SNR
Time

delay (ms)

Lowest
median

enRMS (�)

Prediction
filter with

lowest median
enRMS

Non-inferior
prediction filters

No noise 160 <0.01 WLMS LF

30 dB 160 0.38 NN LF, WLMS

20 dB 160 0.66 NN LF

No noise 480 <0.01 WLMS LF, NN

30 dB 480 0.56 LF KDE, NERLS,
TAKENS

20 dB 480 0.61 NERLS –
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Table I. The differences between their and our results may
arise from the different time delays and noise conditions.

The KDE, LR (similar to LF), and NN prediction filters
were investigated by Krauss et al.14 for time delays of 200,
400, and 600 ms, with resulting enRMS of 0.49, 0.54, 0.63,
respectively. Their KDE prediction filter achieved substantially
smaller enRMS values for time delays of 200 ms than the KDE
achieved for 160 ms of our study with median enRMS close to
1.00. The difference decreases with longer time delays of
above 400 ms, because at 480 ms, the KDE achieves median
enRMS around 0.5. Their LR and NN prediction filters tend to
reach lower enRMS values than their KDE, which also holds
for our NN and LF prediction filters. Both in their work and
our study, the LR has a median enRMS value around 0.5 for a
time delay of 400 ms (their work) or our LF at 480 ms and
30 dB (our study). In this case, our results are mostly consis-
tent except for the KDE for short time delays. This discrep-
ancy may result from differences in the hyperparameter
selection of the KDE prediction filter. The optimization algo-
rithm used here does not guarantee that the global optimum
was reached and can only search in a bounded range of values
for the hyperparameters. Therefore, some of the prediction fil-
ters’ performance results might not actually show their full
potential. This could be mitigated by repeating the optimiza-
tion with random starting hyperparameters and checking
whether the optimal hyperparameters reach a bound.

An important performance criterion of a prediction filter is
its behavior during breathing irregularities, which can result,
that is, in baseline shifts, amplitude changes, or frequency
changes. Examples of the behavior of all prediction filters for
sudden baseline shifts and frequency changes are shown in
the supplementary material “Supplement_Additional_Results”
in the section “Breathing irregularities.” Interestingly, the
WLMS manages these irregularities with almost impercepti-
ble errors in the no noise scenario. But it can also be
observed that noisy traces decrease the performance of the
WLMS during breathing irregularities. Therefore, smoothing
the traces may improve the handling of irregularities.

The respiratory traces were standardized by Fourier trans-
form and by removing all frequency components above 3 Hz.
The resulting traces may not entirely correspond to the actual
respiratory motion as it might contain frequencies above
3 Hz that are not present due to measurement noise. The
magnitude of the added noise was defined by the SNR
approach, where signals with smaller amplitudes have a smal-
ler noise magnitude. This approach does not cover cases, in
which the traces have different motion amplitudes but identi-
cal noise magnitudes. Furthermore, sensors also vary in their
sampling frequencies. Here, only a sampling frequency of
25 Hz was considered.

5. CONCLUSIONS

For the dataset employed and using our implementations,
we found that the best prediction filter was the linear filter.
Reducing the measurement noise generally improves the per-
formance of the prediction filters investigated in this study,

even during breathing irregularities. This finding highlights
the relevance of future research on prediction filters toward
increasing robustness against measurement noise and on
motion measurement devices with minimal noise.
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