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Abstract: Fast and reliable detection of bacterial pathogens in clinical samples, contaminated food
products, and water supplies can drastically improve clinical outcomes and reduce the socio-economic
impact of disease. As natural predators of bacteria, bacteriophages (phages) have evolved to bind
their hosts with unparalleled specificity and to rapidly deliver and replicate their viral genome.
Not surprisingly, phages and phage-encoded proteins have been used to develop a vast repertoire of
diagnostic assays, many of which outperform conventional culture-based and molecular detection
methods. While intact phages or phage-encoded affinity proteins can be used to capture bacteria,
most phage-inspired detection systems harness viral genome delivery and amplification: to this
end, suitable phages are genetically reprogrammed to deliver heterologous reporter genes, whose
activity is typically detected through enzymatic substrate conversion to indicate the presence of a
viable host cell. Infection with such engineered reporter phages typically leads to a rapid burst of
reporter protein production that enables highly sensitive detection. In this review, we highlight recent
advances in infection-based detection methods, present guidelines for reporter phage construction,
outline technical aspects of reporter phage engineering, and discuss some of the advantages and
pitfalls of phage-based pathogen detection. Recent improvements in reporter phage construction and
engineering further substantiate the potential of these highly evolved nanomachines as rapid and
inexpensive detection systems to replace or complement traditional diagnostic approaches.

Keywords: bacteriophage; reporter phage; genetic engineering; luciferase; CRISPR-Cas editing;
bacterial detection

1. Introduction

The development of quick and reliable methods for pathogen detection and identification is
critical to improve the prevention and treatment of bacterial diseases in various fields from food
production to health care. While culture-based detection remains the gold standard for detection and
identification of bacterial pathogens, it can be time and labor intensive, typically requiring more than 48
h to allow selective bacterial growth to ensure reliable detection [1,2]. Within the clinic, early microbial
identification is important for ensuring patients receive optimal antibiotic treatment. Approximately
30–50% of patients receive ineffective antibiotic therapy because physicians must treat immediately
with first-line, broad-spectrum antibiotics until the results of culture-based detection are available [3].
For example, blood culture assays require 48 to 72 h to complete [4], with fastidious organisms such
as Bacillus species and HACEK (Haemophilus species, Aggregatibacter species, Cardiobacterium hominis,
Eikenella corrodens, and Kingella species) organisms requiring several days to produce a conclusive
result [5]. This not only affects patient survival due to the prescription of inappropriate antibiotics [6,7]
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but the misuse of antibiotics is a direct contributor to the global spread of antimicrobial resistant
bacteria [8–11].

The increasing scale of production and global distribution of food goods, especially fresh fruit,
vegetables and ready-to-eat products, makes quick and accurate microbial detection essential for
ensuring circulation of high-quality and safe foods. Again, conventional culture-based methods are
incommensurate with the quick turnaround time required by food producers today [12]. For example,
ISO 11290-1:2017 guidelines for culture-based Listeria monocytogenes detection recommends a minimum
of 24 h for colony formation on chromogenic agar, with an additional 24 h for slow-growing bacteria
and an additional 96 h to enable complete morphological identification of colonies (e.g., phospholipase
activity) [13]. As such, food products requiring test results prior to their release (positive release) are
placed in temporary quarantine, which costs money and affects product half-life. Nevertheless, food
products can still arrive on supermarket shelves without satisfactory microbial assessment, leading
to costly product recalls as well as the spread of life-threatening foodborne disease outbreaks [14].
In Europe alone, over 23 million annual illnesses and 5000 deaths are associated with the consumption of
contaminated food products [15]; in 2018, EU member states reported 5146 foodborne outbreaks, mostly
from Salmonella-contaminated produce [16]. To meet the demands from the clinic and food producers
for improved bacterial detection, a multitude of rapid diagnostic systems have been established that
attempt to circumvent the need for extensive selective culturing.

While culture-based methods remain the mainstay diagnostic, clinical testing is becoming
increasingly reliant on culture-independent diagnostic tests (CIDTs) such as nucleic acid amplification
or ELISA-based antigen detection [17–19], as well as matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF-MS) and whole-genome sequencing (WGS) for detection
of bacteria [20,21]. The advantage of these approaches is the potential for automation, making them
reproducible and easy to use while also allowing sensitive detection of non-culturable organisms and
polymicrobial infections (multiplex detection). However, the specificity of these approaches can be
affected by detection of closely related, non-target species generating false-positive results [22,23].
Furthermore, nucleic acid-based methods lack the ability to differentiate between DNA from viable
and dead bacterial cells, meaning they can assess microbial viability retrospectively, i.e., changes
in nucleic acid levels over a given timeframe; however, they are incapable of determining viability
within discrete samples, making identification of only viable (and potentially infections) bacteria
extremely challenging. The adoption of CIDTs, WGS and MALDI-TOF-MS by the food industry is also
a significantly bigger challenge than clinical samples due to the lower levels of bacterial contaminants
typically present and the greater variability in product matrices where heterogeneous levels of fats,
proteins and debris can impede bacterial detection. A robust and sensitive alternative is to implement
phage-based diagnostics.

Bacteriophages (phages) are environmentally ubiquitous viruses that infect specific bacterial
hosts. The ability of phages to target and kill bacteria down to the species or even strain level,
has led to the resurgence of interest over the last decade in their use as therapeutics (i.e., phage
therapy) against antibiotic resistant bacterial infections [24–26]. Phages are also used as biocontrol
agents to tackle foodborne bacteria such as Listeria and Salmonella [27]. Phages have evolved highly
efficient mechanisms to attach to bacteria under various harsh environments that provide a clear
advantage over other affinity-based system for bacterial recognition in complex sample matrices.
The ability of phage particles to bind with high affinity and specificity to their target bacteria has led
to their use as affinity molecules instead of other bio-probes such as antibodies in biosensor-based
assays [28–30] and for bacterial enrichment and detection when conjugated to magnetic nanobeads [31]
(Figure 1A). A drawback of using whole-phage particles exclusively as affinity molecules is their
relatively large size and (unless they are inactivated) their basal lytic activity that may destroy target
bacteria before downstream detection can be completed. The alternative to whole-phage bio-probes is
to use phage proteins that confer host binding (Figure 1B,C). For example, cell wall-binding domains
(CBDs) of phage endolysins have been successfully used for detecting various Gram-positive bacteria,
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e.g., Listeria [32,33], Bacillus cereus [34], and Clostridium tyrobutyricum [35]. Phages recognize their
bacterial hosts using specialized receptor-binding proteins (RBPs), identified as tail fibers and tailspikes,
which initiate the attachment of the phage to specific receptors on the bacterial cell wall [36,37].
Various RBP-based detection assays have been developed for detecting Salmonella [38,39], Shigella [40],
and Pseudomonas aeruginosa [41]. By combining Listeria-specific CBDs and RBPs, a glycotyping system
was also recently developed for discerning different Listeria serovars [42]. In addition to using the
ability of phages or phage proteins to bind a distinct host range of bacteria, many research groups have
developed highly efficient reporter phage systems that exploit the rapid infection, DNA replication,
and phage production kinetics within infected target cells (Figure 1D–G). This can be achieved by simply
monitoring an increase in phage titer (Section 2), or by quantifying the production of phage-encoded
heterologous proteins such as fluorescent proteins, luciferases, or other enzymatic reporters (Section 5).
This review focuses on the design principles that govern the engineering of heterologous reporters
into phages (Section 3) and how these phages can be used to detect a wide variety of clinically and
industrially important bacterial pathogens.
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Figure 1. Overview of phage-based pathogen detection. Capture-based detection: The limited host ranges
of phages towards a given genus, species or subspecies of bacteria make them ideal candidates for
development into detection bio-probes. (A) The high binding affinity of whole-phage particles has
led to their use as bio-probes in biosensors [28–30], or by conjugation with radioactive tracers [43]
fluorophores [44], magnetic nanoparticles [31,45] or a combination of both [46] to label and enrich
bacteria for detection. (B) Host specificity of phages is mediated by specialized receptor-binding
proteins (RBPs) that provide equivalent binding capabilities as whole phages, but at a fraction of
the size. Recently, RBPs have been applied in biosensors [47], ELISA-based assays [38,40], and for
glycotyping Salmonella [39] and Listeria [32]. (C) Alternatively, cell wall-binding domains (CBDs) of
phage endolysins have proven highly effective at detecting Gram-positive pathogens. CBDs have
recently been used to detect B. cereus using biosensors [34] lateral flow assays [48] and magnetic
enrichment-based detection [49]. In addition, Listeria-targeting CBDs were used to glycotype and
identify Listeria serovars [42] and Clostridium tyrobutyricum-targeting CBDs have been employed for
spore detection during cheese spoilage [35,50]. Infection-based detection: Infection of a bacterial host
by lytic phage leads to rapid progeny phage production and ensuing cell lysis. (D) Released progeny
phages [51,52] or bacterial cell content (e.g., ATP, DNA, RNA and bacterial proteins) provide excellent
markers for downstream detection of the original bacterial host [53–55]. Alternatively, genetically
engineered phages encoding reporters such as fluorescent proteins (E) [56–58], luciferases (F) [59–62]
or hydrolyzing enzymes (e.g., β-galactosidase) (G) [63,64] are used.
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These phages express the reporter proteins during host infection to produce an amplifying fluorescent
or bioluminescent signal upon the addition of a substrate. The rapid and sensitive nature of reporter
phage-based systems has made them ideal tools for detecting low levels of viable, contaminating
bacteria in many matrices, including foods, water and clinical samples.

2. Phage Amplification-Based Detection

After successful host cell adsorption, a phage typically injects its genome and internal proteins
into the bacterium and manipulates host metabolic processes to begin production of progeny phages,
which are subsequently released upon host cell lysis. The number of progeny phages produced
and the time required (latent period) can vary greatly between different phages and the hosts they
encounter. For instance, coliphage T4 produces 150–200 progeny phage per infected cell within 25 min
under optimal laboratory conditions [65]; however, under environmental and unfavorable conditions,
phage amplification (i.e., burst size and latent period) can be affected [66]. Nevertheless, phage
amplification can occur quickly within a contaminated sample to generate a large number of progeny
particles. An increase in phage numbers indicates the presence of a susceptible host within the sample.
The change in phage titer can be determined by traditional plaque assays using suitable indicator
strains [52,67,68], by physical detection of the phage particles using ELISA-based assays [69], or as
discussed below, by measuring the increase in phage nucleic acid content. Sensitivity of these assays
can be improved by capturing and enriching the progeny phage particles [70] by using lateral flow
assays [71–74] or (magnetic) bead-based enrichment. For example, antibody-conjugated beads were
used to isolate amplified MS2 phages from solution for detection of Escherichia coli [75]. In addition to
detecting whole-phage particles, real-time PCR methods have also been developed for detecting the
increase in phage DNA generated during infection [55,68,76]. For instance, Griffiths and colleagues
coupled capture of pathogenic E. coli and Salmonella Newport from food samples by phage coated
paper dipsticks with qPCR-mediated detection of progeny phage DNA [55]. Phage RNA has also been
used as a biomarker. For instance, surrogate marker loci in engineered mycobacteriophages [77,78] or
simply the phage’s natural RNA [54] have both been detected using qPCR methods. Methods that
are based on reverse transcription of phage RNA can offer enhanced sensitivity and are less prone to
false-positive results than DNA amplification-based detection systems [79].

In addition to progeny phage detection, cell lysis releases an abundance of cellular content that
can be used as diagnostic markers. For instance, ATP is easily detectable after release from cells using
a bioluminescence reaction with firefly luciferase [80]. This kind of bioluminescence-based sensing of
ATP released from cells after infection with phage K enabled detection of Stapylococcus spp. in fluid
from orthopedic artificial joints [53]. Other methods have visualized the change in redox reactions by
Salmonella enterica Typhi and Paratyphi after phage infection [81], or measured the release of eDNA
from phage infected E. coli [82]. Table 1 provides a detailed overview of phage amplification-based
detection assays for bacterial pathogens. A downside of most phage amplification-based assays is
the requirement for completion of the phage lytic cycle to allow the release of biomarkers or progeny
phages for detection. In contrast, many reporter phage-based systems do not require cell lysis or
completion of the phage infection cycle to detect infected cells. Host adsorption and phage genome
injection followed by reporter gene expression is generally sufficient to produce a detectable signal,
allowing reporter phages to circumvent the gamut of intracellular phage defense mechanisms that can
inhibit various stages of the phage infection cycle [83,84].
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Table 1. Phage amplification-based detection assays published since 2016.

Phage Target Readout Application,
Sample Application, Assay DETL * DETT * Reference

Phage K Staphylococcus spp. bioluminescence prosthetic joint
sonicate fluid (SF)

detection within SF of infected
prosthetic joints using an ATP
bioluminescence assay

103 CFU/mL 4 h [53]

T7 Escherichia coli fluorescence
microscopy food, various visualization of eDNA release

after phage induced lysis 10 CFU/mL 8 h [82]

MS2 Escherichia coli immunoassay laboratory
phage amplification coupled,
bead-based sandwich-type
immunoassay

102 CFU 3 h [75]

A511 Listeria monocytogenes immunoassay,
SERS-LFI laboratory

antibody-conjugated SERS
nanoparticles as
quantifiable reporter

5 × 104 CFU/mL 8 h [73]

Phage K Staphylococcus aureus MALDI-MS laboratory
detection of Staphylococcus
aureus and antibiotic
susceptibility testing

n/a n/a [85]

Phage 10 S. Typhimurium optical,
absorbance

animal rectal
swabs

absence of bacterial growth as
indicator for phage activity 103 CFU/mL 30 h [86]

DN1, UP2,
UP5 S. Typhi and Paratyphi optical,

colorimetric laboratory

absence or delay of color
change as indicator for phage
activity, differentiation
between serovars

10 CFU/mL 6 h [81]

T7 E. coli colorimetry laboratory

detection based on the
enzyme-induced silver
deposition on gold nanorods
detected by LSPR

104 CFU/mL n/a [87]

ST560Ø Salmonella typhi plaques laboratory, water
detection of viable but
non-culturable (VBNC) state
Salmonella typhi after starvation

n/a n/a [52]

PA phage Pseudomonas aeruginosa plaques laboratory, water

detection of VBNC state
P. aeruginosa after water
disinfection by
photocatalytic treatment

n/a n/a [67]

D29
Mycobacterium avium
subsp. paratuberculosis
(MAP)

plaques, PCR whole blood
bacteriophage
amplification-based detection
from PBMCs, end-point PCR

n/a n/a [51]
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Table 1. Cont.

Phage Target Readout Application,
Sample Application, Assay DETL * DETT * Reference

D29 Mycobacterium bovis DNA
amplification blood phage amplification

coupled RPA 10 CFU/mL 48 h [68]

rV5, AG2A Escherichia coli qRT-PCR food, various
capture by paper dipstick and
PMMD of E. coli and Salmonella
in spinach and ground beef

10 CFU/mL 8 h [55]

CGG4-1 Salmonella Newport qRT-PCR food, chicken
broth

paper dipstick-mediated
capture and PMMD of E. coli
and Salmonella

50 CFU/mL 8 h [55]

Tb, Fz, Wb,
S708, Bk Brucella abortus qRT-PCR laboratory,

simulated blood PMMD of Brucella abortus 1 CFU/mL 72 h [76]

Phage K Staphylococcus aureus qRT-PCR (RNA) laboratory
PMMD and antibiotic
susceptibility testing of
Staphylococcus aureus

102 CFU 3–5 h [54]

Phage Gamma Bacillus antracis qRT-PCR (RNA) laboratory
PMMD and antibiotic
susceptibility testing of
Bacillus anthracis

n/a n/a [54]

n/a, not available; DETL, detection limit, DETT; overall detection time; PMMD, phage-mediated molecular detection; RPA, recombinase polymerase amplification; * DETL and DETT are
reported for individual assays as they were derived or provided from the source articles.
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3. Design Rules for Reporter Phage Engineering

Compared to measuring phage amplification or released cell content, reporter proteins can be
overexpressed within the bacterial host using strong promoters to produce an intense and amplified
signal for instant detection upon substrate addition, providing a more sensitive diagnostic assay than
relying on phage lysis alone. As detailed in Table 2, an abundance of reporter phage systems have been
developed in the last four years using different engineering platforms and reporter genes. As important
as the choice of engineering technique seems to be, the question of how to design the reporter phage is
of paramount importance. Four principles for engineering an effective reporter phage are:

1. The phage has to be able to infect or transduce the reporter gene into the target bacteria. Therefore,
phages capable of infecting a broad spectrum of representative strains for the target pathogen
should be used.

2. Both the reporter gene and the method of detection have to be suitable for the target bacteria,
expected microbial content, and the sampling environment. Inclusion of a pre-enrichment step
is highly recommended when low bacterial numbers are expected in the sample, for instance,
the zero tolerance policy for common food pathogens (e.g., Salmonella, Campylobacter and E. coli)
necessitates a pre-enrichment of food samples to ensure bacterial amplification to a minimal
threshold for detection. In addition, as food components can affect fluorescence-based detection
or physically block biosensors, detection from complex matrices should be coupled with an initial
capture and enrichment step, e.g., bead-based magnetic separation.

3. Identify a suitable region within the phage genome that allows for integration of a heterologous
reporter gene without disrupting infectivity. Furthermore, lysogenic phages can be modified
to become strictly lytic by targeted deletion of genes involved in prophage integration and
maintenance. The removal of such genes makes room for additional payloads within space-limited
phage genomes. For example, Kim et al. 2017 deleted whole regions unrelated to phage infectivity,
such as the integrase (int), adenine methylase (am), O-acetyltransferase (oac), and anti-immunity
protein (aip) genes and replaced them with the luxCDABE operon [88]. In Listeria phages A500
and A006, the lysogeny control module was removed, rendering the phages strictly lytic (Meile et
al. 2020). DS6A-derived mycobacteriophages Φ2GFP12 and Φ2GFP13 were created by replacing
two independent regions including the integrase gene or mazG with the L5 promoter driven
mVenus reporter cassette [58]. In the E. coli phages IP008BK and IP052BK, the non-essential small
outer capsid gene soc was replaced with the cytochrome c peroxidase gene ccp [89].

4. Reporter gene expression should be tuned to ensure sufficient production and subsequent signal
generation for detection. For instance, a heterologous strong promoter can be used or the reporter
gene can be inserted into a region controlled by a strong endogenous promoter (e.g., structural
genes). For instance, expression of NanoLuc from an early promoter controlling the anti-CRISPR
locus of Listeria phage A006 provided rapid protein production and early detection during the
latent period [90]. Still, many reporter genes are inserted downstream of the strongly expressed
but rather late endogenous promoters of the major capsid gene [62,91] the endolysin gene [62], or
the tail spike protein [88]. Some examples of recently used constitutive exogenous promoters
are PL(L5) for mycobacteria [58,92–94], and PrplU [95] and phi10 T7 [96] for E. coli. In addition,
the N-terminal leader sequence pelB was added to increase soluble heterologous gene expression
and direct translated reporter proteins to the periplasmic space ([97–99]).

In addition, various reporter proteins do not require cell lysis or completion of the phage
infection cycle to produce a signal. Genome injection and potentially some degree of DNA
replication is therefore sufficient [58,62]. In fact, an intact phage genome may not even be required:
non-replicative phage particles carrying a luciferase-containing plasmid (fittingly named Smarticles™
(Roche/Geneweave, Los Gatos, CA, USA)) simply transduce the luciferase gene into the target bacteria
for detection [100]; however, this approach does remove the possibility of signal amplification from
secondary phage infections.
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Table 2. Reporter phage-based detection assays published since 2016.

Phage Target Readout Reporter Application,
Sample Application, Assay DETL * DETT * Lifestyle Cloning Strategy Reference

phiV10lux E. coli bioluminescence LuxA, LuxB, food, various detection of E. coli
O157:H7 13 CFU/ml 6 h virulent

(engineered)
homologous
recombination (HR) [88]

HK620 E. coli bioluminescence LuxA, LuxB, environmental,
water detection in tap water 104 CFU/mL 1.5 h temperate recombineering [95]

HK97 E. coli bioluminescence LuxA, LuxB, laboratory detection of E. coli n/d n/d temperate recombineering [95]

Wβ::luxAB-2 Bacillus
anthracis bioluminescence LuxA, LuxB,

(spcR)
environmental,
soil

detection of B. anthracis
spores in soil 104 CFU/g 6 h temperate HR [101]

Wβ::luxAB-2 B. anthracis bioluminescence LuxA, LuxB,
(spcR)

environmental,
water

detection of B. anthracis
spores in pond, lake and
brackish water

10–100
CFU/mL 8–12 h temperate HR [61]

Y2 Erwinia
amylovora bioluminescence LuxAB environmental,

plant material
detection and biocontrol
of E. amylovora

4 × 103

CFU/mL
1 h virulent HR [91]

A511::nluc Listeria spp. bioluminescence Nluc food, various detection of Listeria
in food 1 CFU/25 g 24 h virulent HR + CRISPR-Cas

counter selection [62]

A006::nluc
∆LCR Listeria spp. bioluminescence Nluc laboratory detection and serovar

differentiation 1 CFU/mL 3 h virulent
(engineered)

L-form-assisted
reactivation [62]

A500::luc
∆LCR Listeria spp. bioluminescence Nluc, RLuc,

GLuc, LuxAB laboratory
detection and serovar
differentiation of L.
monocytogenes

2–100 CFU/mL 3 h virulent
(engineered)

in vitro, synthetic
assembly and
L-form rebooting

[62]

ΦV10 E. coli bioluminescence Nluc food, beef
detection of E. coli
O157:H7 from
ground beef

5 CFU/40 mL 9 h temperate Recombineering [102]

K1E E. coli bioluminescence Nluc medical, blood
detection of E. coli in
blood after acoustic
separation

5 CFU † n/d virulent
in vitro, synthetic
assembly and
reactivation in E. coli

[103]

NRGp5 (T7) E. coli bioluminescence NLuc-CBM water detection of E. coli 20 CFU/100
mL 5 h virulent blunt cloning using

T7 Select [104]

NRGp6 (T7) E. coli bioluminescence
NLuc-CBM2a
(cellulose
binding)

laboratory detection of E. coli 5 × 102

CFU/mL
n/d virulent

in vitro synthetic
assembly and
reactivation in E. coli

[99]

NRGp4 (T7) E. coli bioluminescence NLuc-CBM2a environmental,
water

detection of E. coli in
drinking water based on
binding of reporter to
cellulose filter

1 CFU/100 mL 10 h virulent direct cloning using
T7Select [60]
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Table 2. Cont.

Phage Target Readout Reporter Application,
Sample Application, Assay DETL * DETT * Lifestyle Cloning Strategy Reference

T7NLC E. coli bioluminescence NLuc-CBM2a environmental,
water

detection of E. coli in
water based on binding of
reporter to crystalline
cellulose

<10 CFU/mL 3 h virulent direct cloning using
T7Select [98]

T7NLC
(Hinkley et al.
2018, Analyst)

E. coli bioluminescence NLuc-CBM2a food, cheese spatial detection of E. coli
on cheese surface 24–55 CFU/8 g 24 h virulent direct cloning using

T7Select [105]

T7ALP E. coli colorimetry
Alkaline
phosphatase
(ALP)

environmental,
water

detection of E. coli in river
water by phage
amplification-based
lateral flow assay

100 CFU/100
mL 9 h virulent direct cloning using

T7Select [106]

T7ALP* E. coli colorimetry
ALP * (phoA
D153G/D330N)
(T3 gp1.2)

laboratory detection of E. coli 1× 105

CFU/mL
16 h virulent HR + CRISPR-Cas

counter selection [107]

NRGp2 (T7) E. coli colorimetry

ALP-CBM2a:
(CBM with
specificity for
cellulose)

environmental,
water

detection of E. coli in
water based on binding a
cellulose filter

1 CFU/100 mL 10 h virulent direct cloning using
T7Select [60]

NRGp2 (T7) E. coli colorimetry

ALP-Cex: (Cex,
exoglucanase
CBM with
specificity for
cellulose)

environmental,
water

detection of E. coli in
water based on binding of
reporter to magnetic
cellulose

103 CFU/100
mL

8 h virulent direct cloning using
T7Select [97]

T7LacZ E. coli colorimetry β-galactosidase
(LacZ operon)

food,
environmental,
water

detection of E. coli in milk,
orange juice and water 102 CFU/mL 8 h virulent direct cloning using

T7Select [64]

T7LacZ E. coli colorimetry β-galactosidase
(LacZ operon) laboratory

detection and antibiotic
resistance profiling of
E. coli

10 CFU/mL 7 h virulent direct cloning using
T7Select [63]

PP01ccp E. coli colorimetry
Cytochrome c
peroxidase
(CCP)

food, various

detection of E. coli in
lettuce, mustard greens,
coriander, soybean
sprouts

2 CFU/g 16.5 h virulent homologous
recombination [108]

IP008BK and
IP052BK E. coli colorimetry CCP food, various detection of E. coli in

lettuce, mustard greens
102 CFU/25 g
(=4 CFU/g)

16.5 h n/a homologous
recombination [89]
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Table 2. Cont.

Phage Target Readout Reporter Application,
Sample Application, Assay DETL * DETT * Lifestyle Cloning Strategy Reference

T7LacZ E. coli electrochemistry β-galactosidase
(LacZ operon)

environmental,
water, food,

detection of E. coli in
water, apple juice and
skim milk based on
β-galactosidase
hydrolysis of PAPG to
PAP

102 CFU/mL 7 h virulent direct cloning using
T7Select [109]

NRGp7 (T7) E. coli electrochemistry
ALP-GBP:
gold-binding
peptide fusion

environmental,
water

detection of E. coli in
drinking water 1 CFU/100 mL 12 h virulent direct cloning using

T7Select [110]

mCherrybombϕ
(TM4-derived)

Mycobacterium
spp. fluorescence mCherrybomb

RFP
medical,
sputum

detection of M.
tuberculosis and
phenotypic rifampicin
resistance in sputum
samples

20 CFU †
3–5 days
(126 h)

temperate,
temperature
sensitive

phasmids [111]

mCherrybombϕ
(TM4-derived)

Mycobacterium
spp. fluorescence mCherrybomb

RFP laboratory activity testing of
anti-tuberculosis drugs n/a n/a

temperate,
temperature
sensitive

phasmids [112]

Φ2GFP10
(TM4-derived)

Mycobacterium
spp. fluorescence mVenus GFP medical,

sputum

detection of
low-frequency
drug-resistant
subpopulations of M.
tuberculosis

1 CFU/100,000
CFU 2 days

temperate,
temperature
sensitive

phasmids [94]

Φ2GFP10
(TM4-derived)

Mycobacterium
spp. fluorescence mVenus GFP laboratory

drug susceptibility
testing of clinical M.
tuberculosis isolates

n/a 2–3 days
temperate,
temperature
sensitive

phasmids [93]

Φ2GFP12
(DS6A-derived)

M.
tuberculosis fluorescence mVenus GFP laboratory detection of M.

tuberculosis n/a n/a virulent
(engineered) phasmids [58]

Φ2DRMs
(TM4 derived)

Mycobacterium
spp. fluorescence mVenus GFP,

tdTomato RFP
medical,
sputum

detection and
quantitation of persister
M. tuberculosis cells

n/d 12 h temperate phasmids [92]

T7TEV E. coli fluorescence
Tobacco etch
virus (TEV)
protease

laboratory detection of E. coli 104 CFU/mL 3.5 h virulent direct cloning using
T7Select [113]
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Table 2. Cont.

Phage Target Readout Reporter Application,
Sample Application, Assay DETL * DETT * Lifestyle Cloning Strategy Reference

T7ALP E. coli fluorescence ALP food, various

coconut water or apple
juice by fluorescent
precipitated substrate for
ALP coupled
fluorescence imaging

100 CFU/g 6 h virulent direct cloning
using T7Select [114]

T7MBP E. coli fluorescence Maltose-binding
protein (MBP) laboratory

detection of E. coli
by phage
amplification-based LFA

103 CFU/mL 7 h virulent direct cloning
using T7Select [106]

PP01-TC E. coli fluorescence Tetracysteine tag food, apple juice

detection in artificially
contaminated apple juice
by fluorescent labelling of
tetracysteine tag fused to
capsids of progeny phage

1 CFU/mL 3 h virulent HR [115]

n/d, not determined; n/a, not applicable, DETL detection limit, DETT; overall detection time; †, reaction volume not stated; CFU per well of 96-well plate; HR, homologous recombination;
CBM, carbohydrate-binding module; ALP, alkaline phosphatase; CCP, cytochrome c peroxidase; * DETL and DETT are reported for individual assays as they were derived or provided
from the source articles.
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4. Engineering Platforms Available for Reporter Phage Generation

Current approaches for engineering of phages can be assigned to three categories: (i) direct
cloning; (ii) homologous recombination with or without CRISPR-Cas counter selection; and (iii) whole
genome activation, a.k.a. “rebooting”.

4.1. Direct Cloning

Phages can be cloned using phage vectors (phasmids or phagemids), which are plasmids with an
additional origin of replication and packaging sequence originating from a phage. This approach is quick
and efficient due to the ability to insert genes using standard cloning procedures (e.g., restriction enzyme
digestions and insertion into multiple cloning sites) and phasmids can be simply propagated as plasmids
or lytically as phages. However, the application is currently limited to mycobacteriophages [116,117]
and Gram-negative targeting phages, such as lambda, M13 and T7 [118–120]. Recently published
fluoromycobateriophages described in Table 2 were engineered using phasmids following the same
strategy: TM4 shuttle phasmids are cloned in vitro to contain the desired reporter gene (e.g., GFP or
RFP), and the phasmid DNA is then packaged into phage λ particles for amplification in an intermediate
E. coli host before transformation into a fast growing M. smegmatis strain mc2155 to produce the final
infectious virions [56,57] (Figure 2A). A major limitation of using this system is the relatively small
packaging capacity of the lambda phage capsid (~53 kb), meaning larger genomes are unsuitable for
phasmid construction, especially for simultaneous insertion of reporter genes [121].

An alternative direct cloning platform used by Nugen and colleagues is the T7Select® system
(Novagen, Gauteng, South Africa), originally designed as a phage-display vector, which is capable
of displaying peptides and large protein antigens (up to 1200 amino acids) on the capsid [122].
By incorporating a stop codon downstream of the reporter cassette, heterologous reporter proteins are
released instead of being displayed [96] (Figure 2B). This system was used to create various T7-based
systems for detecting E. coli in water and food [60,97,98,105,106]. Not only is a commercial kit available
for T7 phage engineering (i.e., T7Select® (Novagen)), but as a model phage it has a genome suitable
for insertion of heterologous genes and a well-characterized host range, making it an ideal phage for
reporter phage-based assay development as can be observed by its frequent use over the last four years
(Table 2).
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Figure 2. Overview of engineering strategies for reporter phage generation. (A) Heterogeneous reporter
genes can be inserted into dual function shuttle phasmids capable of plasmid replication in E. coli
and phage replication in a target host, e.g., Mycobacterium spp. (B) Reporter genes can also be directly
inserted into phage genomes, e.g., T7Select®(Novagen). (C)



Viruses 2020, 12, 944 14 of 25

Homologous recombination (and recombineering with bacteriophage-encoded homologous
recombination systems, such as the coliphage λ Red system) involves the swapping of a reporter
gene containing homology arms featured on an editing plasmid with the homologous region located
within a phage genome. Homologous recombination can be combined with CRISPR-Cas counter
selection to facilitate the removal of wild-type phages to improve identification of recombinant phages.
(D) PCR products of a phage genome and a reporter gene insert are transformed alongside a linearized
yeast replicon fragment from a yeast artificial chromosome (YAC) into yeast cells. The phage genome
is assembled in the YAC vector by gap-repair cloning. YAC–phage DNA is extracted and directly
transformed into the host bacterium leading to the production of recombinant phages. (E) A synthetic
genome can be in vitro assembled (e.g., using Gibson assembly) from PCR fragments featuring a
reporter gene insert. The synthetic genome can be transformed into L-form bacteria leading to genome
activation and the release of viable phage for subsequent propagation on the phage host.

4.2. Homologous Recombination Combined with CRISPR-Cas Selection

Phage engineering strategies based on homologous recombination make use of editing plasmids
carrying the desired genome modifications flanked by homology regions. When host cells harboring
editing plasmids are infected with wild-type phage, double homologous recombination can occur
during replication of the phage genome, leading to the production of wild-type and recombinant
phages (Figure 2C). Due to low recombination rates (10−10–10−4), screening can be extremely laborious
and typically requires a suitable selection marker, such as antibiotic resistance in lysogens, a change
in host range [118], or plaque morphology [91]. As an example, the temperate, Bacillus anthracis
phage Wβ::luxAB-2 was generated using spectinomycin resistance transduction as the selection marker.
The phage carried Vibrio harveyi luxAB and the spectinomycin resistance (spc) cassette under the
control of an optimized promoter (LuxAB-2) in a non-essential region of the genome that generated
bioluminescence and provided spectinomycin resistance to the lysogen [101,123]. In the absence of
selection markers, low recombination frequencies can be increased using the lambda red homologous
recombination-mediated genetic engineering (recombineering) system [124–126], which is commonly
used for modifying E. coli and Salmonella targeting phages such as the reporter phage ΦV10 for detecting
Shiga toxin producing E. coli O157:H7 [102]. The system originates from phage lambda but can be
expressed from the bacterial chromosome or a separate plasmid, making it widely applicable for
engineering other phages (reviewed in detail by [127]).

Homologous recombination-based methods can be coupled with CRISPR-Cas systems to facilitate
enrichment of recombinant phages by sequence-specific counter selection of wild-type phage genomes
(Figure 2C). [128–130]. This approach has been developed for engineering Gram-negative and
Gram-positive targeting phages. For instance, Jackson et al. 2016 employed the E. coli type I-E
CRISPR-Cas system [128,131] to create a T7 based reporter phage carrying an alkaline phosphatase for
colorimetric detection of E. coli [107]. Similarly, a Listeria ivanovii type II-A CRISPR-Cas system [132] was
used for the modification of lytic Listeria phage A511 to create two variants of A511::nluc that transduce
bioluminescence into Listeria spp. for detection [62]. While the use of CRISPR-Cas counter selection can
greatly improve recombinant phage identification, a current bottleneck is the lack of well-characterized
and programmable CRISPR-Cas systems that can be used for reporter phage engineering in different
bacterial hosts.

4.3. Synthetic Genome Rebooting

Synthetic genome rebooting involves assembling a complete genome from individual PCR
fragments (or synthesized DNA) for subsequent transformation into a surrogate bacterial host for
phage production. One approach is to transform the genome fragments together with a yeast artificial
chromosome (YAC) into Saccaromyces cervisiae featuring an efficient gap repair system to produce
a full phage genome cloned into a replicative yeast plasmid [133,134] (Figure 2D). The assembled
YAC–phage DNA is extracted and subsequently transformed into a bacterial host for virion production.
By switching the tail fiber genes between synthetic T7-like phage genomes, this method could redirect
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phage host range between E. coli, Klebsiella and Yersinia hosts [134]. Recently, this approach was used
to engineer E. coli phage λ-mKate, a lysogenic phage featuring a red fluorescent reporter to observe
prophage induction in bacterial host cells within phagocytes [135]. A major restriction to this approach
is the requirement to transform a bacterial production strain with the assembled genome phages.
While this is possible for some Gram-negative bacteria, it can be challenging to transfer such large viral
genomes across the thick wall of Gram-positive cells. To overcome this limitation for Gram-positive
targeting phage engineering, a phage engineering method using a strain of L-form Listeria for rebooting
of synthetic phage genomes was recently developed [136] (Figure 2E). L-forms are wall-deficient
bacteria that retain metabolic activity and the ability of cell division [137–139]. Induction of L-forms
occurs by prolonged subcultivation under selective pressure of cell wall targeting antibiotics in a
medium that provides osmoprotective conditions, preventing the wall-deficient cells from hypotonic
lysis. Using L-forms as surrogate hosts for the reactivation of synthetic, in vitro assembled genomes
provides many advantages: multiple modifications can be achieved in a single step and no cloning of
potentially toxic phage genes is required. Low-efficiency homologous recombination and subsequent
screening can be avoided because only correctly assembled genomes and viable recombinant phages
are isolated using this technology. While native phage genomes of different sizes and structures can
easily be rebooted in L-forms [140], the current limitation of this approach is the assembly of large (>100
kb) genomes in vitro, using approaches such as Gibson assembly of multiple genetic fragments [141].

5. Overview of Reporter Phage Systems

5.1. Bioluminescence-Based Detection

The phenomenon of bioluminescence is found across a wide diversity of life including bacteria,
fungi, insects and a variety of marine organisms [142]. Light (photon) emission occurs when a
substrate is oxidized by a member of a class of enzymes called luciferases. Due to highly sensitive
signal detection and ease of use, luciferase reporter phages have found broad application for bacterial
detection. The ideal luciferase leads to bright and sustained light emission with low background.
Preferably, the luciferase should be structurally stable in different environmental conditions. We recently
compared the performance of several isogenic reporter phages encoding for different luciferases.
Bacterial, cnidarian and crustacean luciferase coding sequences derived from Vibrio harveyi (luxAB),
Gaussia princeps (gluc), Renilla reniformis (rluc) and Oplophorus gracilirostris (nluc) were inserted into
the Listeria phage A500. The light-emitting properties of the NLuc reporter phage (A500::nluc ∆LCR)
were clearly superior, indicated by a 100-fold larger increase in luminescence values compared to other
reporters. Overall, the assay using the NLuc luciferase was highly sensitive and able to directly detect
as few as three L. monocytogenes cells [62]. Nluc is an engineered luciferase (19 kDa) that produces a
glow-type bioluminescent signal upon addition of its substrate (furimazine; signal half-life > 2 h) [143]
and is widely used in reporter phage assays as detailed in Table 2. The first published reporter phage
encoding NLuc is E. coli phage ΦV10 for detecting E. coli O157:H7 [102]. Another recent example is the
broad host-range, nluc-containing Myovirus A511 (A511::nlucCPS) that detects a single L. monocytogenes
cell in 25 g of various artificially contaminated food samples within less than 24 h. In addition to
A511::nlucCPS-mediated detection, other nluc Listeria phages can be used for serovar differentiation of
food isolates [62]. Furthermore, Dow et al. 2018 used acoustic separation and microfluidics to separate
bacteria from blood cells and then employed the NLuc-reporter phage K1E for detection of E. coli [103].
A set of T7-based phages encoding a NLuc-carbohydrate-binding module fusion protein (NLuc-CBM)
were evaluated for detection of E. coli in water and food samples [60,98,104,105]. One specific assay
used cellulose-coated beads to concentrate and purify NLuc-CBM after its production from infected
E. coli cells, enabling more sensitive detection down to 1 CFU/100 mL drinking water within 10 h [60].

The luxCDABE operon encodes for the luciferase (LuxA and LuxB) and the enzymes that produce
its substrate (Lux C, D and E). Typically, only luxA and luxB are inserted into reporter phages and its
substrate, a fatty aldehyde, is applied exogenously to the reaction solution [59]. Introducing a complete
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luxCDABE operon creates a substrate-independent reporter system; however, the relatively large size
(approximately 6 kb) of the operon complicates phage engineering. Nevertheless, temperate E. coli
phages HK620 and HK97 that use different packaging systems both proved functional upon integration
of the complete luxCDABE operon and were used to detect E. coli in solution [95]. Similarly, ΦV10lux
was engineered to contain the full operon for detection of enterohemorrhagic E. coli O157:H7 in food.
In order to make room for the luxCDABE operon on the genome of this phage, non-essential regions
were removed, which additionally converted the phage to a strictly lytic lifestyle. The operon itself was
integrated behind the tailspike gene and expression driven from the endogenous phage promoter [88].

5.2. Colorimetry-Based Detection

Colorimetric signals arise from the result of enzymatic substrate conversion that can be visually
interpreted. Beta-galactosidase (β-gal) is a glycoside hydrolase (lacZ) encoded in the lac operon
of E. coli. T7 phages have been engineered to carry the lacZ gene, leading to β-gal expression
during phage infection [63,64,87]. Upon release from the cell, the enzyme hydrolyses a colorimetric
substrate for visual detection. For example, phage T7LacZ, in combination with chlorophenol
red-β-d-galactopyranoside (CPRG) as a substrate for β-gal, was employed for antibiotic resistance
profiling [63] and for detecting E. coli in food samples [64]. Similarly, T7 phages encoding alkaline
phosphatase enabled detection of E. coli by hydrolysis of the substrate p-nitrophenyl phosphate
(pNPP) to p-nitrophenol (pNP) [97,107] or upon reaction with nitro-blue tetrazolium chloride NBT and
5-bromo-4-chloro-3′-indolyphosphate p-toluidine salt (BCIP) [60,106]. The alkaline phosphatase could
be functionalized with a cellulose-specific carbohydrate-binding module (CBM) from Cellulomonas
fimi and consequently captured on magnetic cellulose [97] or cellulose filters [60] for detection.
The latter enabled detection of 1 CFU/100 mL of E. coli in drinking water. Furthermore, detection of
enterohemorrhagic E. coli in fresh produce was recently achieved using the cytochrome c peroxidase
gene ccp as a reporter in recombinant phages PP01ccp [108], IP008BK and IP052BK [89] Bacterial
detection using this system is based on the oxidation of cytochrome c and associated shift in absorbance
at 550 nm after release of the reporter enzyme from the cells. Overall, colorimetric assays are
straightforward and cost effective, but are limited greatly by the composition of the sample matrix,
for instance, colored solutions can interfere with the visual readout and the pH can have a significant
effect on substrate conversion [63]. Capture and detection approaches are therefore advisable when
using colorimetric reporters.

5.3. Electrochemistry-Based Detection

Electrochemical biosensors are relatively simple and cost-effective while remaining sensitive
and specific. Usually, electrochemical measurements are based on the detection of electroactive
species and thus are not influenced by turbidity or color of the samples. Modulation of electrical
properties is a result of redox reactions occurring among analytes. In addition to the use of phages
as physical bio-probes in biosensors (reviewed in [144]), reporter proteins produced during phage
infection can be used as the analyte for detection. T7-based reporter phages featuring the LacZ
operon produced β-galactosidase (β-gal) that is released upon cell lysis. Enzymatic activity is
detected by measuring the level of 4-aminophenol (PAP) produced upon hydrolysis of the substrate
4-aminophenyl-β-d-galactopyranoside (PAPG) byβ-gal. The electroactive PAP product is subsequently
monitored by amperometry (detection of ions in solution) [109]. Immobilization of biomarkers on
the surface of electrodes can also serve to increase the sensitivity of electrochemical biosensors.
Wang et al. engineered a T7-based reporter phage featuring a gold-binding peptide fused to an alkaline
phosphatase (GBPs-ALP) that is released during cell lysis and binds directly to the gold biosensor
surface. The activity of GBPs-ALP-coated electrodes was subsequently measured electrochemically
using linear sweep voltammetry (LSV), which enabled detection of 105 CFU/mL in drinking water
after 2 h [110].
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5.4. Fluorescence-Based Detection

The majority of fluorescence-based reporter phage assays developed in the last four
years involve the detection of Mycobacterium and drug susceptibility testing (DST). Engineered
fluoromycobacteriophages are combined with the drug of interest and the clinical isolates.
Phage-mediated fluorescence only occurs in drug-resistant bacteria, which is detected by fluorescence
microscopy or flow cytometry [94,112]. Due to its broad host range against several Mycobacterium
species, the majority of recently employed fluoromycobacteriophages are derivatives of the temperate
phage TM4 [145,146]. Additionally, these fluoromycobacteriophages are thermosensitive, thus they
do not lyse their host cells at 37 ◦C. Thermosensitivity of the fluorophages ensures the survival and
thus detection of drug-resistant hosts during DST. Recently, the TM4-derived phage Φ2GFP10 was
used to detect low-frequency drug-resistant subpopulations of M. tuberculosis in vitro and in sputum
from a South African TB patient [94] a second-generation fluoromycobacteriophage with optimized
expression of a mCherrybomb gene in mycobacteria with improved fluorescent signal allowed shorter
time to detection of M. tuberculosis [112]. mCherrybomb-Φ proved useful in a microscopy-based
approach for detection of Mycobacterium spp. and determination of rifampicin resistance directly from
Brazilian TB patient sputum within days. This phage was further used for evaluation of phage based
DST and discrimination between M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria
(NTM) strains [111]. Other fluorescence-based assays for the detection of E. coli relied on the detection
of the reporter with antibodies [106,115] or have been using a fluorescent substrate for the alkaline
phosphatase reporter [114].

6. Future Perspective

Reporter phage-based assays combine host-specific binding with rapid intracellular phage
multiplication and gene expression to provide highly sensitive detection. Nevertheless, the major
limitations to practical reporter phage application are food matrix effects and the restricted host ranges
of many phages that is intrinsically linked to phage resistance. The first limitation can be circumvented
by coupling detection to specific capture of the target bacterium or the amplified reporter protein.
Restricted host range and phage resistance are mechanistically interconnected and caused either by a
lack of phage adsorption/receptor engagement or by the presence of intracellular defense mechanisms
within individual strains. In therapeutic settings, this limitation is often circumvented by using multiple
phages with complementary host ranges (the “phage cocktail”). With faster engineering protocols
at hand, the cocktail approach could also be adopted in future reporter phage studies. In addition,
synthetic biology and phage genome engineering may offer more targeted strategies to tune a limited
number of well-characterized phage backbones towards the specific needs of each reporter phage
application. This could be achieved by reprogramming the phage binding range through targeted RBP
or baseplate engineering. Several recent studies suggest that redirecting and tuning host specificity is a
viable option, at least for Sipho- and Podoviridae [134,147,148]. Counteracting intracellular defenses
through phage engineering could be another viable strategy to expand the detection range of reporter
phages. For example, RM systems can be counteracted through specific methylation within the
phage production strains or CRISPR-Cas systems could potentially be inactivated via phage-mediated
delivery of anti-CRISPR proteins. Due to the large variety and complexity of intracellular defenses,
this strategy may be even more challenging and requires a detailed understanding of the underlying
mechanisms. Despite these limitations, many reporter phage candidates already perform exceptionally
well and will continue to offer an inexpensive and rapid alternative to culture-based and molecular
diagnostics, which will be further improved through genetic engineering.
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