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Summary 

Wheat (Triticum aestivum, L.) is the most extensively grown staple food crop in the world. It 

delivers one fifth of the human dietary calorie and protein intake, which highlights its outstanding 

importance for global food security. However, farm-level yields have recently stagnated in some 

major wheat producing regions, probably as a result of increasingly adverse environmental 

conditions during key developmental stages. As a consequence of global climate change, weather 

extremes such as heat and drought are predicted to occur with increasing frequency and severity. 

Wheat breeders are therefore confronted with the difficult task to improve yield and quality under 

rapidly changing climatic conditions.  

Recent genotyping technology is now providing access to detailed genomic information for large 

numbers of genotypes. Furthermore, reference sequences of the bread wheat genome have 

recently become available. These developments are expected to boost our understanding of the 

molecular basis of key agronomic traits and accelerate genetic gain. Yet, under field conditions, 

the performance of a crop is not only determined by its genotype, but also by the environment 

and the interactions between the genotype and the environment (G×E). The primary breeding 

target traits in wheat, grain yield (GY) and grain protein concentration (GPC), are complex traits. 

They are determined by various processes occurring throughout the growth cycle. The G×E is 

particularly pronounced for such complex traits, as unpredictable interactions can critically affect 

crop performance at any growth stage. This hampers selection, as genotype rankings change 

across environments. A detailed understanding of the physiological basis of G×E enables a more 

targeted selection based on less complex and more predictable traits. A ‘physiological breeding’ 

strategy thus aims at maximizing the number of favorable traits enhancing growth and 

performance throughout the growing season and contributing to final yield. 

One such potentially favorable trait is the so-called ‘stay-green’ trait, which consists in a 

prolonged maintenance of green leaf area during the grain filling phase (i.e. delayed senescence). 

Stay-green extends the period of CO2 assimilation, which may favor grain filling. However, stay-

green can have different genetic and physiological bases. Accordingly, its effects on GY and GPC 

vary depending on the genetic and environmental context in which it arises.  

Recently, advances in sensors and carrier systems have paved the road to high throughput 

measurements of plant or canopy characteristics under field conditions. However, many of these 

sensor-based approaches to field phenotyping have not yet been thoroughly validated in a 

breeding context. This is a challenging task because subtle differences among genotypes need to 

be detected. In addition, genotypes display contrasting morphology, phenology and canopy 

structure which strongly affects sensor measurements.  

The overall aim of this thesis was the development of non-invasive high throughput phenotyping 

techniques to quantify green leaf area dynamics during the grain filling phase of wheat. Such 

methods will facilitate large scale screenings of breeding populations in contrasting environments. 

This is expected to facilitate the identification of determinants of stay-green and contribute to an 

improved understanding of its effects on GY and GPC. We further aimed to achieve detection 
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and quantification of an important foliar disease, Septoria tritici blotch (STB), and to distinguish 

it from physiological senescence, using high throughput methods. This is expected to benefit 

resistance breeding and improve the understanding of the relationship between green leaf area 

dynamics and GY and GPC. Finally, we aimed to further characterize the stay-green phase with 

respect to its functionality. For this, field experiments were carried out in three consecutive years 

in the ETH field phenotyping platform, using a set of ~330 registered wheat cultivars.  

In a first study, we scored stay-green and senescence dynamics visually and measured canopy 

spectral reflectance throughout grain filling. Visual scorings and spectral reflectance 

measurements were then compared to identify spectral features best representing visually 

observed senescence dynamics. We found the three-band plant senescence reflectance index 

(PSRI) to best approximate visual scorings across genotypes and years. Our results also suggested 

that cheaper sensors with a lower spectral resolution may be used without a significant loss of 

information. This will facilitate the transfer of the developed concepts to unmanned aerial 

vehicles, providing the necessary throughput for large-scale screenings of breeding nurseries.  

We noted a strong environment specificity in relationships between spectral reflectance and visual 

scorings across three years. In particular, the wet season of 2016 differed strongly from the drier 

seasons of 2017 and 2018. In 2016, there was a major epidemic of STB despite intense control 

measures. STB causes necrotic foliar lesions, which are easily confounded with physiological 

senescence. We hypothesized that the environment specificity of relationships were due to the 

presence of STB, and that such differences should be exploitable to detect and quantify STB and 

delineate STB from physiological senescence. We tested this hypothesis in a separate experiment, 

using artificial inoculations. Our results demonstrated the feasibility of STB detection and 

quantification as well as delineation from physiological senescence. Our approach compared well 

with previous reports in terms of precision and offers increased robustness in the presence of 

genotypic diversity and environmental variability.  

In a third experiment, we aimed to characterize stay-green more accurately, combining 

assessments of green leaf area dynamics with canopy temperature (CT) measurements. CT is 

affected by transpiration rates and water use, and may therefore be linked to photosynthetic rates 

and assimilation. We were able to derive repeatable temporal trends in CT during the stay-green 

phase. We found independent temporal trends for greenness indicators and CT and observed 

genotypic differences in these trends. This suggested that a combination of spectral and thermal 

sensors may indeed enable a more accurate characterization of stay-green. However, the relevance 

of such assessments for grain filling and GY remains to be investigated.   

The findings presented in this thesis provide solutions to several difficulties in applying sensor-

based high throughput phenotyping in a breeding context. We propose a time-integrated multi-

sensor approach to characterize stay-green as dynamic traits. We use normalized values of the 

initial canopy reflectance and canopy temperature shortly after flowering as a baseline. This 

approach helps to control confounding effects of phenology, canopy structure and morphology as 

well as strong year-effects. 
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Zusammenfassung  

Weizen (Triticum aestivum, L.) ist das weltweit am häufigsten angebaute Grundnahrungsmittel. 

Er liefert ein Fünftel der menschlichen Kalorien- und Proteinzufuhr, was seine herausragende 

Bedeutung für die globale Ernährungssicherheit verdeutlicht. In wichtigen Weizenanbaugebieten 

stagnierten die landwirtschaftlichen Erträge in letzter Zeit jedoch, wahrscheinlich als Folge 

zunehmend ungünstiger Umweltbedingungen während besonders empfindlicher 

Entwicklungsstadien. Als Folge des globalen Klimawandels werden Wetterextreme wie Hitze 

und Trockenheit voraussichtlich gehäuft und mit grösserer Intensität auftreten. Die 

Weizenzüchter stehen daher vor der schwierigen Aufgabe, Ertrag und Qualität unter sich rasch 

ändernden klimatischen Bedingungen zu verbessern.  

Neueste Genotypisierungstechnologie bietet mittlerweile Zugang zu detaillierten genomischen 

Informationen für eine grosse Anzahl von Genotypen. Darüber hinaus sind seit kurzem 

Referenzsequenzen des Brotweizengenoms verfügbar. Diese Entwicklungen dürften das 

Verständnis der molekularen Basis der wichtigsten agronomischen Merkmale verbessern und den 

genetischen Fortschritt beschleunigen. Unter Feldbedingungen wird die Leistung einer 

Kulturpflanze jedoch nicht nur durch deren Genotyp, sondern auch durch die Umwelt und die 

Wechselwirkungen zwischen Genotyp und Umwelt bestimmt. Die primären züchterischen 

Zieleigenschaften von Weizen, Kornertrag und Kornproteinkonzentration, sind komplexe 

Merkmale. Sie werden durch verschiedene Prozesse während des gesamten Wachstumszyklus 

beeinflusst. Genotyp-Umwelt Interaktionen sind bei solchen komplexen Merkmalen besonders 

ausgeprägt, da unvorhersehbare Wechselwirkungen die Leistung der Pflanzen in jedem 

Wachstumsstadium entscheidend beeinflussen können. Dies erschwert die Selektion, da sich die 

Rangordnung der Genotypen über die verschiedenen Umwelten hinweg ändert. Ein detailliertes 

Verständnis der physiologischen Basis der Genotyp-Umwelt Wechselwirkungen ermöglicht eine 

gezieltere Selektion auf der Grundlage weniger komplexer und besser vorhersagbarer Merkmale. 

Die "physiologische Pflanzenzüchtung" zielt daher darauf ab, die Anzahl vorteilhafter Merkmale, 

die Wachstum und Leistung während der gesamten Wachstumssaison verbessern und zum 

Endertrag beitragen, zu maximieren. 

Ein solches potenziell vorteilhaftes Merkmal ist das so genannte "stay-green"-Merkmal, das in 

einer längeren Erhaltung der grünen Blattfläche während der Kornfüllphase (d.h. einer 

verzögerten Seneszenz) besteht. Stay-green verlängert die Dauer der CO2-Assimilation, was die 

Kornfüllung begünstigen kann. Stay-green kann jedoch unterschiedliche genetische und 

physiologische Grundlagen haben. Dementsprechend variieren auch seine Auswirkungen auf 

Kornertrag und Kornproteinkonzentration je nach genetischem Kontext und der Umwelt, in der 

es entsteht.  

In jüngster Zeit haben Fortschritte bei Sensoren und Trägersystemen den Weg für 

Hochdurchsatzmessungen von Pflanzen- und Bestandesmerkmalen unter Feldbedingungen 

geebnet. Viele dieser sensorbasierten Ansätze zur Feldphänotypisierung sind jedoch noch nicht 

gründlich in einem züchterischen Kontext validiert worden. Dies ist eine anspruchsvolle Aufgabe, 
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da subtile Unterschiede zwischen Genotypen erkannt werden müssen. Darüber hinaus weisen 

Genotypen grosse Unterschiede in Morphologie, Phänologie und Bestandesstruktur auf, was 

Sensormessungen stark beeinflusst.  

Das übergeordnete Ziel dieser Arbeit war die Entwicklung nicht-invasiver Hochdurchsatz-

Phänotypisierungsmethoden zur Quantifizierung der Dynamik der grünen Blattfläche während 

der Kornfüllphase des Weizens. Solche Methoden werden grossangelegte Screenings von 

Zuchtpopulationen in kontrastierenden Umgebungen für dieses Merkmal erleichtern. Es wird 

erwartet, dass dies die Identifizierung von Determinanten des Stay-Green erleichtert und zu einem 

besseren Verständnis seiner Auswirkungen auf Kornertrag und Kornproteinkonzentration 

beitragen wird. Wir zielten ferner darauf ab, eine wichtige Blattkrankheit, die Septoria tritici 

Blattdürre (STB), mit Hochdurchsatzmethoden erkennen und quantifizieren zu können, und sie 

von der physiologischen Seneszenz abzugrenzen. Dies wird einerseits der Resistenzzüchtung 

zugutekommen, andererseits aber auch das Verständnis der Beziehung zwischen der Dynamik 

der grünen Blattfläche und Kornertrag und Kornproteinkonzentration verbessern. Schliesslich 

wollten wir die stay-green-Phase hinsichtlich ihrer Funktionalität weiter charakterisieren. Dazu 

wurden in drei aufeinanderfolgenden Jahren Feldexperimente in der ETH-

Feldphänotypisierungsplattform durchgeführt, wobei ein Satz von ~330 registrierten 

Weizensorten verwendet wurde.  

In einer ersten Studie haben wir die Stay-green- und Seneszenz-Dynamik visuell erfasst und die 

spektrale Reflektanz der Bestände während der gesamten Kornfüllphase gemessen. Die visuellen 

Bonituren und die Messungen der spektralen Reflektanz wurden dann verglichen, um spektrale 

Merkmale zu identifizieren, die die visuell beobachtete Seneszenz-Dynamik am besten 

widergeben. Der aus drei Spektralbanden berechnete Plant Senescence Reflectance Index 

approximierte die visuelle Bonitur am besten über Genotypen und Jahre hinweg. Unsere 

Ergebnisse legten auch nahe, dass einfachere Sensoren mit einer geringeren spektralen Auflösung 

ohne einen signifikanten Informationsverlust verwendet werden können. Dies wird die 

Übertragung der entwickelten Konzepte auf Drohnenplattformen erleichtern, was den 

notwendigen Durchsatz für grossangelegte Screenings von Zuchtgärten garantiert.  

Wir stellten eine starke Umweltabhängigkeit der Beziehungen zwischen spektraler Reflektanz 

und visuellen Bonituren über die Jahre fest. Insbesondere das regnerische Jahr 2016 unterschied 

sich diesbezüglich stark von den trockeneren Jahren 2017 und 2018. Im Jahr 2016 kam es trotz 

intensiver Kontrollmassnahmen zu starkem Befall mit STB. STB verursacht nekrotische 

Blattläsionen, die leicht mit physiologischer Seneszenz verwechselt werden. Wir stellten daher 

die Hypothese auf, dass die Umweltabhängigkeit der Beziehungen auf das Vorhandensein von 

STB zurückzuführen ist, und dass solche Unterschiede ausgenutzt werden können, um STB zu 

erkennen und zu quantifizieren, sowie STB von physiologischer Seneszenz abzugrenzen. Wir 

testeten diese Hypothese in einem separaten Experiment mit künstlichen Inokulationen. Unsere 

Ergebnisse zeigten die Machbarkeit eines STB-Nachweises, einer Quantifizierung der 

Befallsstärken, sowie einer Abgrenzung zur physiologischen Seneszenz. Unser Ansatz war im 

Vergleich zu früheren Berichten hinsichtlich der Präzision ebenbürtig, hat aber Vorteile in Bezug 

auf die Robustheit bei genotypischer Vielfalt und variierenden Umweltbedingungen. 



VII 

 

In einem dritten Experiment versuchten wir, stay-green genauer zu charakterisieren, indem wir 

Bonituren der Blattgrün-Dynamik mit Messungen der Bestandestemperatur kombinierten. Die 

Bestandestemperatur wird von der Transpirationsrate und dem Wasserverbrauch des Bestandes 

beeinflusst und kann daher mit Photosyntheseraten und CO2-Assimilation in Verbindung gebracht 

werden. Wir konnten wiederholbare zeitliche Trends in der Bestandestemperatur während der 

Stay-green-Phase ableiten. Wir fanden unabhängige zeitliche Trends für Grünheitsindikatoren 

und Bestandestemperatur und beobachteten genotypische Unterschiede in diesen Trends. Dies 

deutete darauf hin, dass eine Kombination von Spektral- und Thermalsensoren tatsächlich eine 

genauere Charakterisierung von stay-green ermöglichen könnte. Die Relevanz solcher 

Messungen für die Kornfüllung und den Kornertrag muss jedoch noch untersucht werden.   

Die in dieser Arbeit vorgestellten Ergebnisse zeigen Lösungsansätze für mehrere Probleme bei 

der Anwendung sensorbasierter Hochdurchsatz-Phänotypisierung in einem züchterischen 

Kontext auf. Wir schlagen einen zeitintegrierten Multisensor-Ansatz vor, um stay-green als eine 

Kombination dynamischer Merkmale zu charakterisieren. Dabei verwenden wir normalisierte 

Werte der anfänglichen Bestandesreflektanz oder Bestandestemperatur kurz nach der Blüte als 

Grundlage. Dieser Ansatz hilft, den Einfluss von Störeffekten wie Phänologie, Bestandesstruktur 

und -morphologie und variierender Umweltbedingungen zu minimieren. 
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1 General Introduction 

In recent decades, growth in agricultural production has continuously outpaced the expansion of 

demand for agricultural commodities. This has contributed to improved food security for a large 

part of the world population despite rapid population growth (Southgate et al., 2010). Bread wheat 

(Triticum aestivum L., 2n = 6x, AABBDD) is the most widely cultivated crop in the world, with 

a production area of approximately 220 million ha (FAOSTAT, 2019). Wheat production extends 

as far as 45°S in Argentina and 67°N in Scandinavia and Russia (Shiferaw et al., 2013). The 

widespread cultivation of wheat illustrates its adaptability, which is a cornerstone of its success 

(Shewry, 2009). Unprecedented yield growth rates have been achieved in the course of the Green 

Revolution through a combination of the use of high-yielding, fertilizer-responsive semi-dwarf 

varieties and improved agricultural production techniques (Southgate et al., 2010). 

At present, humanity relies on wheat for roughly one fifth of its dietary calorie and protein intake, 

which highlights the outstanding importance of this crop for global food security (Shiferaw et al., 

2013). However, current gains in wheat yield are insufficient to meet projected demands (Ray et 

al., 2013; Tilman et al., 2011), and yields are even stagnating in some important wheat exporting 

regions such as western Europe (Brisson et al., 2010; Finger, 2010). Given the cardinal 

importance of wheat in the global food system, accelerating yield gains is a matter of increasing 

urgency and will critically depend on genetic improvement of yield potential and on closing yield 

gaps (Reynolds et al., 2012).  

The objective of this general introduction is to discuss a potential avenue to achieving sustained 

yield growth in wheat – physiological breeding – as well as a tool that is essential to its 

implementation – phenotyping. Finally, a possible specific implementation of such a 

physiological breeding strategy, which this doctoral thesis aims to contribute to, is discussed. 

1.1 Physiological wheat breeding 

Traditionally, wheat breeding has had a strong focus on selection for genetically simple traits and 

grain yield per se (Araus et al., 2008; Reynolds and Langridge, 2016). Yield gains have been 

achieved primarily through unspecified recombination of genes among elite germplasm and 

through introgression programs, most often focused on disease resistance and grain quality (Araus 

et al., 2008; Jackson et al., 1996; Reynolds and Langridge, 2016). Retrospective studies (reviewed 

by Araus et al., 2008) reveal that breeders have achieved yield increases primarily by optimizing 

flowering time, reducing plant height, increasing harvest index and increasing the number of 

grains per area. With the exception of the number of grains per area, these traits are largely 

optimized. For example, harvest index (HI) appears to be close to its biological maximum (Austin, 

1980) and there has been no significant progress in HI since the 1980s (Miralles and Slafer, 2007). 

Grain yield per se is a highly quantitative trait under complex genetic and environmental control. 

Large genotype-by-environment interactions reduce heritability and, consequently, response to 

selection.  
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An improved understanding of genotype-by-environment interactions is urgently needed to 

support breeding decisions (Hund et al., 2019; Reynolds et al., 2012). Grain yield is ultimately 

determined by a multitude of processes with cumulative effects. The ensemble of these processes 

occurring throughout the growing season determines grain yield by defining three essential 

parameters: light interception efficiency, radiation use efficiency (i.e. the efficiency to convert 

intercepted light to biomass) and partitioning efficiency (i.e. the efficiency to convert biomass to 

grain yield; Hund et al., 2019; Reynolds et al., 2009).  

An improved understanding of how physiological traits (hereafter referred to as secondary traits) 

affect these key parameters and how they contribute to yield and quality (hereafter referred to as 

primary traits) in contrasting but well-defined environments will be essential to increase yield 

gains (Araus et al., 2008; Jackson et al., 1996; Reynolds et al., 2009; Reynolds and Langridge, 

2016). This will allow to complement traditional approaches with strategic crossings to 

accumulate as many beneficial secondary traits as possible and to improve early generation 

selection based on the assessment of such secondary traits (Reynolds et al., 2009). Secondary 

traits are most useful if (i) the population to select from is variable, (ii) trait heritability is high, 

(iii) genetic correlation with the primary trait of interest is strong and (iv) assessment costs are 

low (Jackson et al., 1996; van Eeuwijk et al., 2018).  

1.2 High Throughput Field Phenotyping 

A full implementation of physiological breeding strategies relies on a detailed, quantitative 

description of plant performance throughout the growing season in appropriate environments 

representing the conditions of the targeted cropping systems. The collection of the required data 

is referred to as ‘phenotyping’ and may encompass a characterization of plant organs, entire plants 

and/or plant stands in terms of their structural, biochemical and physiological properties (Fiorani 

and Schurr, 2013; Furbank and Tester, 2011; Walter et al., 2015). A high temporal resolution of 

such assessments in combination with a detailed characterization of the environment (sometimes 

referred to as ‘envirotyping’; Bernardo, 2016; Hund et al., 2019; Xu, 2016) is increasingly 

enabling the characterization of dynamic processes such as growth or maturation in terms of their 

response to short term variation in environmental conditions (e.g., Grieder et al., 2015; 

Kronenberg et al., 2019, 2017). The larger the breeding population screened in this manner, the 

greater the probability of identifying superior alleles. On a more basic notion, such investigations 

are equally key to the identification or evaluation of new candidate secondary traits and their 

effects on primary traits under contrasting conditions. This enables a better conceptualization of 

genotypes combining as many physiological and morphological traits that optimize its 

performance in particular environments as possible (i.e. the definition of “ideotypes”; Martre et 

al., 2015). Such ideotypes are at the basis of selection programs (Hund et al., 2019; Jackson et 

al., 1996). The need to achieve a full-season, detailed characterization of as many genotypes as 

possible at a high temporal resolution demonstrates the need to complement classical approaches 

(e.g. a visual scoring by the breeder) with automated, high throughput phenotyping tools (Araus 

and Cairns, 2014; Furbank and Tester, 2011; van Ginkel et al., 2008).  
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Thanks to progress in sensor technology and carrier systems in recent decades, the theoretical 

potential of phenotyping has increased far beyond the capabilities of the human eye. For example, 

thermal imaging allows fast assessments of canopy temperature in large breeding experiments 

(Deery et al., 2019, 2016; Perich et al., 2020). This may facilitate the identification of drought-

resistant genotypes, because leaves of genotypes avoiding dehydration are cooled by 

transpiration. Multi- or hyperspectral sensors may provide valuable information about 

biochemical or physiological properties of individual leaves or crop canopies, such as chlorophyll 

or nitrogen (N) concentration, water status, biomass, and even photosynthetic efficiency (e.g., 

Becker and Schmidhalter, 2017; Bendig et al., 2015; Gamon et al., 1992; Yu et al., 2014).  

Sensor-based high throughput phenotyping and automated data analysis provide access to traits 

that are theoretically quantifiable by eye but only at prohibitive costs. For example, emergence 

rates and biophysical properties such as canopy cover, tiller number or number of ears can be 

assessed based on automated analysis of RGB images (Grieder et al., 2015; T. Liu et al., 2016; 

Sadeghi-Tehran et al., 2019, 2017; Yu et al., 2017). Similarly, canopy height and its development 

can be assessed using light detection and ranging (LiDAR) technology (Friedli et al., 2016; 

Jimenez-Berni et al., 2018; Kronenberg et al., 2017) or unmanned aerial vehicles (UAV) - based 

imagery in combination with structure from motion photogrammetric methods (Hund et al., 2019; 

Szeliski, 2011).   

Despite the potential outlined above, efficient implementation of high throughput phenotyping in 

breeding programs has been limited so far (Araus et al., 2018). For example, difficulties remain 

in connecting sensor measurements carried out at canopy level to biochemical properties or the 

physiological status of plants. This is primarily due to the complex architecture of crop stands and 

contrasting morphological properties of genotypes which strongly affect the reflection of the 

incoming radiation without being stably related to the physiological or biochemical trait of 

interest. In addition, genotypic variation in target traits is often relatively small within elite 

germplasm, particularly for biochemical traits. Finally, natural factors such as atmospheric and 

illumination conditions affect sensor measurements and may change drastically across sites, 

years, consecutive measurement time points or even during a single measurement campaign. In 

this respect, previous research has sometimes significantly overestimated the technological 

readiness of sensor-based phenotyping approaches for applications in a breeding context. 

Specifically, variance in target traits has often been artificially increased through varying 

management practices (e.g. fertilization treatments, irrigation treatments, variation in sowing 

dates and/or densities) and by comparing sensor and ground truth data across various growth 

stages. Often, this has been paired with a limitation of confounding factors such as genotypic 

diversity (i.e. morphology, canopy structure and phenology) and environmental variability (i.e. 

single-year and possibly even single-site experiments). This combination of manipulations results 

in unrealistically high signal-to-noise ratios, greatly simplifying the task of stable trait prediction. 

Such conditions do not represent the reality of breeding experiments and their relevance in this 

respect should therefore be evaluated with caution (see e.g., Øvergaard et al., 2013a, 2013b for 

an illustration of such issues). For example, with current annual yield gains, grain yield 

differences of about 0.05t/ha must be reliably detected to identify superior genotypes. This task 
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has to be performed on genotypes with contrasting morphological and canopy structural 

properties, grown under different environmental conditions. As a possible solution, a combination 

of sensors is anticipated to provide information of various canopy structural and morphological 

traits, allowing to statistically correct for variation in confounding factors (e.g., Deery et al., 2019; 

Rebetzke et al., 2016). 

1.3 Stay-green, green leaf area dynamics and senescence 

As described above, grain yield can be understood as a function of light interception efficiency, 

radiation use efficiency and partitioning efficiency. A delayed senescence (i.e. the stay-green 

phenotype; Thomas and Smart, 1993) increases light interception by extending the growing 

season when compared to early-senescing genotypes. Under the basic scenario of all three 

efficiencies having constant additive effects on grain yield, the stay-green phenotype is therefore 

expected to increase yield. Positive correlations between stay-green properties and yield are 

indeed common in many crops (reviewed by Gregersen et al., 2013 and Thomas and Smart, 1993).  

In wheat, the situation appears to be complex and contrasting associations between stay-green 

and grain yield have been reported. In addition, wheat breeders aim to improve not only GY but 

also GPC, which is a key quality parameter of major economic importance. Simultaneous progress 

in breeding for these two traits is hampered by the negative genetic relationship between them 

(Levi et al., 2017; Simmonds, 1995; Slafer et al., 1990), which illustrates the interconnection 

between carbon and N metabolism at the canopy level (Bogard et al., 2011). One key junction 

between carbon and N metabolism is senescence (Bogard et al., 2010, 2011), because the onset 

of senescence marks the basic transition of canopies from carbon assimilation to N remobilization 

(Thomas and Ougham, 2014). The timing of the onset is thus expected to affect both GY and 

GPC, and is likely to contribute to the observed negative relationship between these traits.  

The term stay-green is not always used in the same way. For example, in sorghum Borrell et al. 

(2000) and Jordan et al. (2012) refer to genotypes as stay-green if they maintain green leaf area 

up until and beyond physiological maturity. In this case, stay-green does not explicitly denominate 

genotypes with an extended post-anthesis duration. In contrast, in wheat, the term is most often 

used to refer to genotypes with an increased integral of some curve describing the size of the 

green leaf area over chronological or thermal time. This increase can arise either from a delayed 

onset of senescence, from a decreased rate of senescence, from a higher greenness at maturity or 

a combination of any of these phenomena (Thomas and Smart, 1993; see Christopher et al., 2014; 

Lopes and Reynolds, 2012; Xie et al., 2016 for examples). For simplicity, the term stay-green will 

be used in Chapter 1 to denominate any phenotype with an increased integral under the green leaf 

area curve. In the description of our own work (i.e. in Chapters 2-5), we will refer to stay-green 

genotypes as genotypes with a delayed onset of senescence (i.e. with an extended period between 

heading and the onset of senescence in thermal time). The term senescence dynamics will be used 

to summarize the timing and the rate of senescence. The term green leaf area dynamics (GLAD) 

will be used to refer to the evolution of green leaf area after anthesis as a function of physiological 

senescence and other phenomena affecting green leaf area, such as foliar diseases. 
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1.3.1 Effects of stay-green on grain yield 

Potential yield in wheat is largely determined during the vegetative and reproductive growth 

stages. The number of spikes per plant, the number of spikelets per spike and the number of grains 

per spikelet are determined before anthesis (reviewed by Distelfeld et al., 2014 and Slafer et al., 

2015). In contrast, individual grain weight may be interpreted as the degree of realization of this 

potential during the grain filling phase, depending on post-anthesis source strength and 

environmental conditions. Source strength is a function of post-anthesis assimilate production and 

remobilization of assimilates stored prior to anthesis (Savin and Slafer, 1991). Flag leaf 

photosynthesis in wheat contributes about 30-50% of assimilates for grain filling (Sylvester-

Bradley et al., 1990). Stay-green is therefore expected to increase grain yield by favoring post-

anthesis assimilate production through an extended period of photosynthetic activity (e.g., Kipp 

et al., 2014; Spano et al., 2003). This rather simple model appears to hold true for some important 

cereal crops such as maize and sorghum. In these crops, a prolonged post-anthesis green leaf area 

duration confers stable yield advantages, particularly under drought (Borrell et al., 2000; Jordan 

et al., 2012; Rajcan and Tollenaar, 1999a).   

In wheat, there is ample evidence to suggest that source capacity is adequate to allow for complete 

grain filling under a wide range of environmental conditions, meaning that yields are mainly 

limited by sink strength (see Araus et al., 2008 and Borrás et al., 2004 for a review). This has 

been demonstrated in a number of experiments through manipulations of the sink-source 

relationship by seed removal or defoliation (e.g., Cartelle et al., 2006; Richards, 1996), through 

post-anthesis canopy shading (e.g., Savin and Slafer, 1991) or through chemical leaf desiccation 

(e.g., Blum et al., 1983).  

At least three distinct characteristics of wheat may explain the strong sink limitation of yields 

(Borrás et al., 2004): (i) an outstanding remobilization efficiency enables buffering of short-

comings in concurrent assimilate supply, (ii) potential grain weight is determined well before final 

seed dry weight is reached, and (iii) radiation levels during sink size determination strongly 

contrast with radiation levels during the grain filling period. Whereas (i) may be related to the 

timing and dynamics of senescence (see e.g., Gaju et al., 2014; Yang and Zhang, 2006), (ii) and 

(iii) are factors operating independently of senescence.  

Though post-anthesis processes may affect individual grain weight, it is important to consider that 

differences in grain size and weight at physiological maturity are already evidenced at early stages 

in the grain filling phase (Borrás et al., 2004). Coat layer formation and endosperm cell division 

cease well before final grain weight is achieved (Millet and Pinthus, 1984). Similarly, the number 

of starch granules, determined around the onset of rapid grain growth, correlates well with grain 

weight at maturity (Borrás et al., 2004; Brocklehurst, 1977). Thus, it appears that maximum 

attainable yield is defined relatively early in the grain filling phase.  

Despite the strong evidence for sink limitation of wheat yields, there are numerous reports of the 

stay-green phenotype correlating positively with yield. For example, Spano et al. (2003) found a 

positive association between functional stay-green, individual grain weight and final yield, when 

comparing four different stay-green ethylmethane sulphonate mutant lines with the control in a 
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glasshouse experiment. Verma et al. (2004) assessed a population of 48 double haploid wheat 

lines derived from a cross between an early senescing and a stay-green genotype in field 

experiments and found a positive correlation between the percentage of green flag leaf area 

remaining at 35 days after anthesis and final grain yield, though individual grain weight was not 

assessed. Kumari et al. (2007) found the stay-green phenotype to be positively associated with 

biomass, grain filling duration and yield under heat stress, but no correlation with grain weight 

was observed. Bogard et al. (2011) evaluated a double haploid population in multiple year-

locations under two contrasting N fertilization regimes. Although the duration of the stay-green 

phase explained up to 50% of the environmental variation in grain yield, only weak phenotypic 

correlations were found within environments. Furthermore, anthesis date mostly explained the 

observed correlations, probably through an effect on the number of grains per area (Bogard et al., 

2011). Christopher et al. (2008) compared a wheat line with significant yield advantage in 

Australian multi-environment screening trials with a locally adapted genotype and concluded that 

yield advantages were closely associated with its stay-green phenotype, likely a result of access 

to deeper soil water (Christopher et al., 2008, 2014). In this case, higher average individual grain 

weight was an important factor in determining higher yield (Christopher et al., 2008). This was 

subsequently confirmed in a double haploid population derived from a cross of the investigated 

genotypes (Christopher et al., 2016).  

Other studies have reported negative correlations between stay-green duration and grain yield. 

For example, Kipp et al. (2014) found a strong negative correlation for fifty winter wheat cultivars 

grown under high-yielding conditions in a single year-location. Jiang et al. (2004) observed a 

negative correlation in a doubled haploid rice population, which probably resulted from the 

negative correlation between stay-green and seed-setting rate. Gong et al. (2005) reported that the 

strong vigor of a wheat hybrid resulted in the maintenance of green leaf area until physiological 

maturity, resulting in much unused carbon reserve in straws and a decreased harvest index.  

Naruoka et al. (2012) observed negative or no correlations of stay-green with GY in rain-fed and 

irrigated environments for a recombinant inbred line population derived from a cross between a 

stay-green and an intermediate spring wheat cultivar. 

These contrasting findings highlight the complexity of the relationship between stay-green and 

grain yield in wheat. It appears likely that the genetic and physiological determinants of stay-

green vary widely among studies. For example, the findings by Jiang et al. (2004) strongly suggest 

that stay-green was an emerging consequence of a reduced sink demand. In contrast, the stay-

green phenotype described by Christopher et al. (2008) and Reynolds et al. (2012) is interpreted 

as the avoidance of drought- or heat-stress-induced premature senescence. In this context, it 

appears to be unclear whether stay-green affects GY by relieving temporal constraints to grain 

filling or whether effects are determined by modifications of the sink-source balance. Several 

studies suggest that an increase in post-anthesis temperature shortens grain filling duration 

without adequate compensations through increased grain filling rates (García et al., 2016; Lizana 

and Calderini, 2013). This negatively affects final grain weight even in the absence of any 

indication of source limitation (García et al., 2016; Yang and Zhang, 2006). Investigations on the 

effect of senescence dynamics on grain filling rates produced contradictory results, probably due 
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to contrasting environmental conditions, stress timing and yield potential (Gong et al., 2005; Xie 

et al., 2016; Yang and Zhang, 2006). 

1.3.2 Effects of stay-green on grain protein concentration  

In wheat, translocation of leaf N to developing grains accounts for 40-90% of final grain N 

(Kichey et al., 2007), highlighting the crucial importance of translocation processes for protein 

yield formation. Given the tight interconnection between senescence and resource remobilization 

from vegetative organs to the developing sink (Yang and Zhang, 2006), the importance of 

senescence in determining GPC is therefore obvious.  

The negative relationship between grain yield and GPC is often attributed to a dilution of proteins 

through increased starch accumulation and/or to a competition between carbon and N for energy 

(Acreche and Slafer, 2009; Munier‐Jolain and Salon, 2005). Thus, depending on post-anthesis N 

availability, stay-green may affect GPC in different ways (Acreche and Slafer, 2009; Bogard et 

al., 2010, 2011; Munier‐Jolain and Salon, 2005): 

(i) Under a high post-anthesis N availability, stay-green genotypes are expected to take up 

additional N, resulting in a better overall N supply and, via competition for energy in 

storage compound synthesis, decrease starch content in grains;  

(ii) Under a low post-anthesis N availability, stay-green genotypes are expected to maintain 

carbon assimilation but not N uptake, which will result in a dilution of grain protein by 

an increased starch synthesis.  

However, in this context, it may not always be clear whether the stay-green phenotype causes 

additional N uptake (e.g., Hirel et al., 2007), or whether the stay-green phenotype is merely an 

emerging consequence of a sustained post-anthesis N uptake (Yang and Zhang, 2006). 

1.3.3 Basic considerations on the regulation of senescence 

Though senescence is under complex genetic and environmental control (Borrill et al., 2019; Lim 

et al., 2007), it is well known that the balance between N supply and demand is an important 

determinant of its timing and dynamics (Kichey et al., 2007; Rajcan and Tollenaar, 1999; Triboi 

and Triboi-Blondel, 2002; van Oosterom et al., 2010). If grain N demand exceeds soil N uptake, 

for example due to water or N deficiency, N translocation from stems and leaves is accelerated, 

resulting in an anticipation and acceleration of senescence ('self-destruction' hypothesis; Kichey 

et al., 2007; Sinclair and Wit, 1975) as well as an increased N remobilization efficiency (Gaju et 

al., 2014). Conversely, late fertilizer applications increase post-anthesis N uptake from the soil, 

resulting in delayed and slower senescence (Triboi and Triboi-Blondel, 2002; Yang and Zhang, 

2006). Thus, post-anthesis N availability is an important factor determining the dynamics of 

senescence.  

The relationship between demand and supply of assimilates is also known as a major factor in the 

regulation of senescence (Wingler et al., 2009). In maize, a low assimilation potential of the 

source accelerates senescence in order to meet sink demand through remobilization, in analogy 
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to N-mediated regulation of senescence (Kumar et al., 2019; Lee and Tollenaar, 2007). In contrast 

to the effects described above for N, it appears that a low sink demand for sugars accelerates 

senescence. This acceleration seems to be source-mediated (as opposed to sink-mediated in the 

case of N), and strongly related to the accumulation of soluble carbohydrates in leaves beyond a 

certain threshold (Kumar et al., 2019; Wingler and Roitsch, 2008). In wheat, vertical patterns of 

senescence have been associated with corresponding sugar levels in leaves (Shi et al., 2016), 

suggesting a significant role of sugar source-sink relationships on the regulation of senescence.  

Bogard et al. (2011) found genetic variation in senescence dynamics to be strongly related to 

genetic variation in flowering time. This could be due to direct effects of flowering, for example 

metabolic changes such as starch accumulation in leaves, which acts as a strong intrinsic 

senescence-promoting signal (Bogard et al., 2011; Kumar et al., 2019). However, it appears more 

likely that flowering time affects senescence primarily through genotype-by-environment 

interactions. Early flowering genotypes are likely to perceive a less stressful environment during 

grain filling, and benefit from increased soil N availability, partly related to soil water availability 

and partly due to soil N uptake partitioning between stages (Bogard et al., 2010, 2011).  

Although senescence is a complex process involving the up-regulation of hundreds of genes 

(Borrill et al., 2019), single genes can still have a major direct effect on senescence and 

remobilization processes. A well-described example is the NAM-B1 gene, present mainly in 

ancestral wheat, which encodes a NAC-domain transcription factor (Uauy et al., 2006). High 

expression levels result in a hastening of senescence, an increase in remobilization of zinc, iron 

and N and an increased GPC (Uauy et al., 2006).    

As outlined above, different internal and external factors can trigger senescence and contribute to 

modifications of its dynamics. However, it appears that once the senescence program is initiated, 

common pathways are activated, irrespective of the trigger (Guo and Gan, 2012). Also, an orderly 

process of senescence is largely maintained, even if senescence is prevalently stress-triggered 

(Guo and Gan, 2012; Lim et al., 2007). In this context, it is important to note that factors 

influencing GLAD after anthesis but not the dynamics of physiological senescence may be related 

to GY and GPC in a different way than physiological senescence. Specifically, epidemics of foliar 

diseases reduce green leaf area similarly to premature senescence, and therefore reduce source 

capacity in a similar way (see e.g., Bingham et al., 2019). However, in contrast to other stresses, 

foliar diseases may more strongly interfere with whole-plant functioning and an orderly process 

of senescence. Physiologists generally disregard the effect of diseases. However, from a practical 

viewpoint, diseases and physiological senescence are likely to co-occur in temperate, high-

yielding environments. In the special case of the Swiss federal wheat breeding program of 

Agroscope, genotypes are evaluated without fungicide applications. Thus, a distinction between 

different factors influencing GLAD may be important to better understand the context-specific 

relationships between GLAD and GY and GPC.    

  



9 

 

1.3.4 Stay-green - a secondary trait for physiological wheat breeding using high 

throughput phenotyping? 

As described above, the relationship between stay-green and primary traits appears to be more 

complex in wheat than in other crops, which has been attributed to the contrasting patterns in the 

sink-source relationship among crops. Effect sizes appear to depend on the genetic and 

physiological bases of stay-green and on environmental conditions (e.g., Christopher et al., 2018). 

The complexity of the regulation of stay-green often results in low to intermediate heritability 

across environments (e.g., Crain et al., 2017; Lopes and Reynolds, 2012), which may discourage 

the use as a secondary trait (Jackson et al., 1996). Finally, the well-documented prevalent source-

limitation of wheat yields might challenge a focus on maximizing the source capacity of wheat 

during grain filling. 

However, there is increasing evidence for stay-green to be advantageous particularly under heat 

and drought or heat combined with drought environments. Among the best investigated source of 

stay-green is the CIMMYT line SeriM82 (Christopher et al., 2008, 2014, 2016, 2018; Olivares-

Villegas et al., 2007). Here, a 1d delay in senescence onset conferred a 3.2% yield advantage 

(Christopher et al., 2016). Identified stay-green QTLs were highly heritable in certain 

environments (Christopher et al., 2018).  

As a result of climate change, heat and drought events are projected to increase in frequency and 

severity, even in high-yielding environments mostly unaffected by such stresses so far 

(Holzkämper et al., 2015; Lehner et al., 2006; Trnka et al., 2015). Further adjustments in 

flowering time to avoid late season heat and drought appear to be increasingly in conflict with the 

need to safeguard potential yield formation during the vegetative and reproductive growth stages 

(Slafer et al., 2015). In Europe, modern cultivars require a 14-18% lower temperature sum to 

reach flowering than cultivars grown in the 1950s and 1960s, due in equal parts to rises in 

temperature and cultivar changes (Rezaei et al., 2018). In contrast, increases in total biomass and 

thus, sufficient time for plant and sink growth, are absolutely required to maintain a continued 

increase in grain yield (Araus et al., 2008; Reynolds et al., 2012; Slafer et al., 2015). It is therefore 

imperative to achieve genetic progress in plant performance under heat and drought stress.  

1.4 Aims and structure of the thesis 

As described above, it may become increasingly infeasible to escape late-season heat and drought 

periods by reducing time to anthesis and physiological maturity without negative effects on 

biomass acquisition and potential yield formation during the vegetative and reproductive stages. 

Consequently, developmental adaptation will increasingly have to be complemented with genetic 

progress in plant performance under heat and drought stress. Under such conditions, a prolonged 

maintenance of green leaf area after anthesis has been a major breeding aim in several crops, 

particularly in maize and sorghum. In wheat, a comprehensive understanding of the physiological 

and genetic determinants of stay-green as well as of its effects on key economic traits such as 

grain yield, grain protein content and N use efficiency under varying environmental conditions is 
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lacking. Contrasting results reported in the literature reflect varying environmental conditions, 

management practices and genetic material examined in different studies.  

The overarching goal of this thesis was the development of remote sensing based methods for the 

characterization of late development in genetically diverse wheat germplasm at the canopy level. 

Special attention was given to the assessment of GLAD after anthesis and to the characterization 

of stay-green regarding its functionality. The availability of such methods is expected to facilitate 

(i) the characterization of genetic variability existing in breeding programs, (ii) estimation of 

effect sizes in contrasting environments and the subsequent definition of environment-specific 

ideotypes, (iii) indirect selection in early breeding generations, when yield cannot yet be 

accurately determined and (iv) an improved understanding of the genetic basis of the investigated 

traits. A central aspect of the following three chapters is the evaluation of potential ways to cope 

with morphological, canopy structural and phenological diversity in examined plant material as 

well as with contrasting environmental conditions across experimental years. Remote sensing 

based approaches must be robust to variation in such parameters, as they represent a fundamental 

element of any breeding experiment.  

All experiments were carried out in a temperate, high-yielding environment, with average bread 

wheat yields of 6 t/ha (Hategekimana et al., 2012; Swissgranum, 2019). The crop was sown with 

a sowing density of 400 plants m-2, resulting in dense canopies with a leaf area index of about 6 

m2m-2 at flowering (unpublished data). N fertilizer is applied according to the amount expected to 

be removed with the harvested product and taking the N fertilization status of the soil at sowing 

into account. This typically results in N fertilization of 120 - 140 kg/ha (Flisch et al., 2009), which 

is normally applied in two to four split-applications. 

Chapter 2: Assessment of stay-green and the dynamics of senescence in wheat canopies 

In order to capture variation in stay-green and the dynamics of senescence, experiments need to 

be monitored with a high temporal resolution. The potential of high throughput reflectance-based 

techniques to assess these dynamics has been demonstrated previously with a focus on drought- 

and heat-stress environments (Christopher et al., 2014, 2016; Kipp et al., 2014; Lopes and 

Reynolds, 2012; Montazeaud et al., 2016). However, an optimization of spectral indicators was 

not performed and investigations under high-yielding conditions are rare and limited to a single 

year (Kipp et al., 2014). 

In chapter two, we tested different approaches to infer visually observed senescence dynamics 

from repeated hyperspectral reflectance measurements in three consecutive years. Furthermore, 

we aimed to estimate the potential of hyperspectral measurements to quantify the process of 

senescence beyond a simple representation of visually observable greenness decay over time.  

Chapter 3: Disentangling the effects of foliar diseases and physiological senescence on 

spectral reflectance 

In chapter three, we aimed to develop a method enabling the identification and quantification of 

foliar diseases based on canopy reflectance measurements. High throughput methods to detect 

major foliar diseases are expected to greatly facilitate resistance breeding and are thus important 

in their own right. Furthermore, given that both foliar diseases and physiological senescence affect 
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GLAD, a distinction between these phenomena is required to improve our understanding of how 

GLAD affect primary breeding target traits. We chose Septoria tritici blotch (STB) caused by the 

fungal pathogen Zymoseptoria tritici as a model, as it represents a major threat to wheat 

production in many important wheat growing areas around the world, including Switzerland 

(Orton et al., 2011; Torriani et al., 2015). Furthermore, STB epidemics frequently reach damaging 

levels and affect crop performance most during the grain filling phase (Bancal et al., 2007), 

apparently without modifying the dynamics of physiological senescence (Bancal et al., 2016).  

Chapter 4: Combining spectral and thermal measurements to quantify performance during 

the stay-green phase and resistance to heat and drought 

As outlined above and in chapter two, GLAD can be tracked using spectral reflectance 

measurements, offering the potential of upscaling to large breeding nurseries. The stay-green 

phenotype may result from various combinations of traits and environments. Some of these, for 

example a low sink demand resulting from heat stress damage in critical stages, are undesirable. 

Spectral indicators are limited in their potential to assess plant performance indicators such as 

transpiration or photosynthetic rates. However, wheat plants may respond to a high sink demand 

by increasing stomatal conductance (Richards, 1996). Therefore, it has been hypothesized that 

genotypes showing functional stay-green may be identified using a combination of sensors 

(Rebetzke et al., 2013).  

In chapter four, we used repeated measurements of canopy temperature to evaluate whether 

temporal trends in canopy temperature could be used for the identification of genotypes 

maintaining high transpiration and possibly photosynthetic rates during their stay-green phase. 

The applicability of thermal imaging to screen for drought resistance still has to be evaluated in 

environments with high in-season precipitation levels. For this, we evaluated the repeatability of 

temporal trends in CT and their correlation with known confounding factors. Furthermore, we 

investigated whether genotype-specific contrasts in temporal trends between CT and spectral 

reflectance could be expected. Such contrasting trends may facilitate the identification of stay-

green genotypes maintaining high levels of transpiration and thus potentially high photosynthetic 

rates. Alternatively, they may help to identify dysfunctional or partly functional stay-green 

genotypes as genotypes maintaining a large green leaf area but not high transpiration rates.  
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Abstract 

The ability of a genotype to stay-green affects the primary target traits grain yield (GY) and grain 

protein concentration (GPC) in wheat. High throughput methods to assess senescence dynamics 

in large field trials will allow for (i) indirect selection in early breeding generations, when yield 

cannot yet be accurately determined and (ii) mapping of the genomic regions controlling the trait. 

The aim of this study was to develop a robust method to assess senescence based on hyperspectral 

canopy reflectance. Measurements were taken in three years throughout the grain filling phase on 

>300 winter wheat varieties in the spectral range from 350 to 2500 nm using a spectroradiometer. 

We compared the potential of spectral indices (SI) and full-spectrum models to infer visually 

observed senescence dynamics from repeated reflectance measurements. Parameters describing 

the dynamics of senescence were used to predict GY and GPC and a feature selection algorithm 

was used to identify the most predictive features. The three-band plant senescence reflectance 

index (PSRI) approximated the visually observed senescence dynamics best, whereas full-

spectrum models suffered from a strong year-specificity. Feature selection identified visual 

scorings as most predictive for GY, but also PSRI ranked among the most predictive features 

while adding additional spectral features had little effect. Visually scored delayed senescence was 

positively correlated with GY ranging from r = 0.173 in 2018 to r = 0.365 in 2016. It appears that 

visual scoring remains the gold standard to quantify leaf senescence in moderately large trials. 

However, using appropriate phenotyping platforms, the proposed index-based parameterization 

of the canopy reflectance dynamics offers the critical advantage of upscaling to very large 

breeding trials. 

Keywords: high-throughput phenotyping, canopy reflectance, hyperspectral remote sensing, 

field-based phenotyping, feature selection 
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2.1 Introduction 

Maximizing carbon assimilation by a prolonged green leaf area duration after anthesis is a major 

breeding aim in many crops. This so-called “stay green” (Thomas and Smart, 1993) has been 

linked to increased grain yield (GY) in several crops (reviewed by Gregersen et al., 2013). Stay 

green results from a delayed onset of senescence and/or a reduction in the rate of the process 

(Gregersen et al., 2013). The benefit of such an extended period of functional stay green, i.e. a 

prolonged photosynthetic activity, has been particularly well documented in maize and sorghum 

(Borrell et al., 2000; Rajcan and Tollenaar, 1999b).  

In wheat, potential GY is currently viewed as being predominately limited by sink strength, i.e. 

the number of grains available for grain filling, which is largely determined up until and including 

a short period after anthesis (reviewed by Borrás et al., 2004; Distelfeld et al., 2014; Fischer, 

2008). However, several studies have reported positive correlations between delayed senescence 

and GY, particularly under stress conditions (Bogard et al., 2011; Christopher et al., 2008, 2014, 

2016; Lopes and Reynolds, 2012; Montazeaud et al., 2016; Verma et al., 2004). Where plants are 

exposed to severe stress, the stay-green phenotype may be interpreted as the avoidance of 

premature senescence, which could result in source limitation, i.e. a lack of carbohydrates 

delivered to the developing grains (Borrás et al., 2004). Fine-tuning senescence dynamics has 

therefore been proposed as a promising selection criterion in wheat breeding particularly under 

the scenario of an increased frequency of weather extremes, such as heat and drought.  

Optimising senescence dynamics requires intense field testing for at least two reasons: (i) 

senescence per se is known to underlie complex genetic and environmental control (reviewed by 

Lim et al., 2007), typically resulting in moderate to low heritability across environments (e.g., 

Crain et al., 2017; Lopes and Reynolds, 2012) and (ii) effects of altered senescence dynamics on 

key primary traits such as GY and grain protein concentration (GPC) often depend on the 

environment (Bogard et al., 2011; Lopes and Reynolds, 2012a). For example, negative 

relationships between GY and stay-green have also been reported, especially in the absence of 

water- or nitrogen-limiting conditions (Derkx et al., 2012; Jiang et al., 2004; Kipp et al., 2014; 

Naruoka et al., 2012). A delayed or slow senescence has also been linked to a reduced efficiency 

of remobilization, with adverse effects on harvest index (Gong et al., 2005; Yang and Zhang, 

2006), nitrogen use efficiency and GPC (Gaju et al., 2014; Gregersen et al., 2008). GPC is a key 

quality parameter in bread wheat, which may be additionally lowered via a dilution effect if the 

increased post-anthesis C-compound synthesis of stay-green cultivars is not paralleled by an 

increased uptake and transfer of nitrogen to the developing grains (Bogard et al., 2010; Cormier 

et al., 2016). Thus, in order to exploit variation in senescence dynamics for the improvement of 

bread wheat, a better understanding of environmental, genetic and physiological determinants of 

senescence dynamics per se as well as of the effects of senescence dynamics on GY and GPC in 

contrasting environments is required. Traditional phenotyping methods, such as visual senescence 

inspection (e.g., Bogard et al., 2011) or SPAD meter measurements (e.g., Xie et al., 2016) do not 

provide the necessary throughput to assess a dynamic trait for large numbers of genotypes at high 

temporal resolution and in contrasting environments.  
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Regular ground-based normalized difference vegetation index (NDVI) measurements obtained 

from an active spectral GreenSeeker sensor (NTech Industries, Ukiah, CA, USA) have shown 

significant potential for the rapid identification of variation in senescence patterns among wheat 

genotypes (Christopher et al., 2014; Lopes and Reynolds, 2012; Montazeaud et al., 2016). 

However, the use of a single and relatively unspecific spectral index is likely to entail some 

important limitations. During senescence, wheat canopies undergo a sequence of profound 

biochemical and biophysical changes. These changes in part temporally overlap and their effects 

on the reflectance spectrum of the canopy are therefore confounded. In this context, to the best of 

our knowledge, the NDVI has been used primarily as a generic indicator of canopy greenness or 

green biomass and has not been thoroughly validated as a tool to track canopy senescence in 

wheat. Gitelson and Merzlyak (1994) demonstrated the insensitivity of the NDVI to physiological 

changes occurring during early senescence at the leaf scale. At the canopy scale, the NDVI is 

often saturated in dense canopies as can be observed for wheat stands under favorable conditions 

(Asrar et al., 1984; Gu et al., 2013). This is likely to limit the sensitivity and precision of the 

NDVI in detecting early senescence at the canopy scale. Using passive sensors with a high 

spectral resolution, more specific narrow-band spectral indices (SI) or full-spectrum analysis can 

be deployed to reduce the effect of canopy structure and other confounding factors on the 

assessment of biochemical or physiological traits of interest (e.g., Chen et al., 2010; Haboudane 

et al., 2002; Li et al., 2014). For example, the plant senescence reflectance index (PSRI) 

developed by Merzlyak et al. (1999) can be used to measure leaf and fruit senescence. It is based 

on the chlorophyll/carotenoid ratio which undergoes major changes as a consequence of 

differential breakdown rates of these pigments during early senescence, offering advantages over 

the NDVI (Fischer and Feller, 1994; Merzlyak et al., 1999; Sanger, 1971). Similarly, Kipp et al. 

(2014) were able to estimate greenness of flag leaves and onset of flag leaf senescence in wheat 

using ground-based hyperspectral canopy reflectance measurements in combination with full-

spectrum models, while no stable relationships were found for the NDVI.  

An additional advantage of hyperspectral reflectance measurements, as compared to single SI 

measurements, could consist in the opportunity to track multiple processes simultaneously. For 

example, during late development, green leaf area, pigment composition and total content, 

nitrogen distribution and water content of the canopy change dramatically. Visual senescence 

scorings mainly capture changes in pigment composition and content, but largely disregard other 

canopy characteristics, potentially resulting in a loss of breeding-relevant information. For 

example, the dynamics of nitrogen remobilization after flowering has been identified as a key 

determinant of GPC in wheat (reviewed by Kong et al., 2016). In contrast to visual scorings, all 

of the aforementioned traits have been shown to be amenable to assessment using hyperspectral 

measurements provided sufficient variability exists (Becker and Schmidhalter, 2017; Haboudane 

et al., 2002; F. Li et al., 2014; X. Li et al., 2014). In a breeding context, variability for a trait of 

interest is typically low, and differences in morphology and canopy structure among genotypes 

are thus likely to mask their effects on spectral reflectance at a specific point in time. However, 

assessments of relative changes over time could reveal differences in trait dynamics, which can 

be analyzed at the level of genotypes or experimental plots. Thus, we hypothesized that capturing 

the dynamics of such traits using repeated reflectance measurements during late development 
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could complement a precise representation of canopy greenness. The objective of the present 

study was two-fold: First, we aimed to develop a high-throughput method based on spectral 

reflectance to track visually observed senescence dynamics in a large population of 

morphologically diverse wheat genotypes. Second, we aimed to establish whether the resulting 

representation of canopy greenness decay could be complemented with additional information 

(e.g. relating to pigment, nitrogen or water content of the canopy) derived from repeated 

hyperspectral reflectance measurements. 

2.2 Materials and Methods 

2.2.1 Plant Materials, Experimental Design and meteorological data 

A field experiment was conducted in the field phenotyping platform (Kirchgessner et al., 2017) 

at the ETH Research Station for Plant Sciences Lindau-Eschikon, Switzerland (47.449N, 8.682E, 

520 m a.s.l.; soil type: eutric cambisol) in the wheat growing seasons of 2016-2018. In each year 

300 cultivars comprised in the GABI wheat panel (Kollers et al., 2013) obtained from the Leibniz 

Institute of Plant Genetics and Crop Plant Research (IPK) were used, which were complemented 

with important Swiss cultivars for a total of 335 cultivars in 2016 and a total of 352 cultivars in 

2017 and 2018. The cultivars were grown in plots of 1 m × 1.4 m size. The designs were generated 

using the R package DiGGer (Coombes, 2009; http://nswdpibiom.org/austatgen/software). The 

plots were arranged in a two dimensional incomplete block design with checks. The test varieties 

were randomized in two complete replications (one per lot). Within each replication, these test 

varieties were allocated to incomplete row blocks of size one (one row per block) and incomplete 

range blocks of size six (six ranges per block). The check varieties were distributed as follows: In 

2016, wheat cultivar CH CLARO was used as a check variety at 21 evenly distributed locations 

in each replicate leading to a total of 42 checks per design. In 2017 and 2018 the three Swiss 

cultivars CH CLARO, SURETTA and NARA (DSP, Delley, Switzerland) were  allocated to nine 

complete blocks spanning seven rows by six ranges each, summing up to a total of 54 checks per 

design. In all cases, at least one check was present per row and column of the design. Crop 

husbandry was performed according to local agricultural practice. The experiments were sown 

with a sowing density of 400 plants m-2 on Oct 13, 2015, on Nov 1, 2016, and on Oct 18, 2017, 

respectively. Temperature data was retrieved from an on-site weather station. Rainfall data was 

obtained from a nearby weather station of the federal Swiss meteorological network Agrometeo 

(www.agrometeo.ch) located at ca. 250 m distance to the field trial. The temperature data was 

used to calculate growing degree-days (GDD) following 

𝑇𝑚𝑒𝑎𝑛𝑑 =
∑

𝑚𝑎𝑥𝑇𝑑.ℎ + 𝑚𝑖𝑛𝑇𝑑,ℎ

2 − 𝑏𝑎𝑠𝑒𝑇

24
 

𝐺𝐷𝐷 = ∑ 𝑇𝑚𝑒𝑎𝑛𝑑

𝑛

𝑑=1

  

http://www.agrometeo.ch/
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where 𝑇𝑚𝑒𝑎𝑛𝑑 is the mean temperature for day d after heading, 𝑚𝑎𝑥𝑇𝑑,ℎ and 𝑚𝑖𝑛𝑇𝑑,ℎ are hourly 

maximum and minimum temperatures for day d and 𝑏𝑎𝑠𝑒𝑇 is the base temperature, set to 0°C. 

2.2.2 Phenology and agronomic data 

Heading date was recorded when 50% of the spikes were fully emerged from the flag leaf sheath 

(BBCH 59, Lancashire et al., 1991). Senescence was assessed visually, separately for the flag leaf 

and the whole canopy, following guidelines provided by Pask et al. (2012). Flag leaf senescence 

was scored based on the portion of green leaf area on a scale from 0 (0% green leaf area) to 10 

(100% green leaf area). An integer mean value was estimated for plants located in a central region 

of about 0.5 m × 0.5 m of each plot. Whole plot senescence was scored on the same scale by 

estimating the overall greenness of the plot when inspected at a view angle of approximately 45° 

considering the entire plot area. Where necessary, the canopy was opened by hand to enable 

inspection of lower canopy layers. All scorings were done in 2-4 day intervals. Senescence 

scorings were done from approximately 20 days after flowering to complete canopy senescence. 

All heading and senescence scorings were done by the same person. The progression of leaf and 

whole plot senescence as assessed by visual scorings was then fitted against thermal time after 

heading (BBCH 59) for each individual plot using linear interpolation as well as a Gompertz 

model with asymptotes constrained to 0 and 10 (eq. 1; Gooding et al., 2000), 

𝑆 = 10𝑒−𝑒−𝑏∗(𝑡−𝑀)
 (eq. 1) 

where S represents the scaled senescence scoring, t is the accumulated thermal time after heading 

for a given plot, b is the rate of senescence at time M and M is the accumulated thermal time after 

heading when senescence rate is at its maximum. Eq. (1) was fit for each experimental plot using 

the R package ‘nls.multstart’ (Padfield and Matheson, 2018). Senescence dynamics parameters 

were then extracted as follows (Figure 2.1): Onset of senescence (Onsen) was defined as the time 

point when values fell below 80% of the initial maximum, midpoint of senescence (Midsen) when 

values fell below 50%, end of senescence (Endsen) when values fell below 20%, and duration 

(Tsen) was defined as the time between onset and end of senescence, similar to the procedure 

applied to NDVI data by Christopher et al. (2014). We will refer to the duration between heading 

and the onset of senescence as the duration of stay-green. 

GY was determined by manually harvesting the sowing rows 7 and 8 (out of 9). Grain moisture 

content was measured on a subset of 290 plots in 2016, 108 plots in 2017 and 84 plots in 2018, 

using a Wile 55 moisture meter (Farmcomp Oy, FIN-04360 Tuusula, Finland). Where available, 

grain weight was normalized to 14% water content using the plot-specific moisture content. The 

mean value of the measured plots was used otherwise. GPC was determined using near-infrared 

transmission spectroscopy (InfratecTM 1241 Grain Analyzer; Foss, DK-3400 Hilleroed, 

Denmark). 
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2.2.3 Statistical Analysis 

The derived senescence dynamics parameters and agronomic traits were spatially corrected using 

two-dimensional P-splines as implemented in the R-package SpATS (Xose Rodriguez-Alvarez et 

al., 2018). To fit an independent smoothed surface to each replicate, the replicates were allocated 

diagonally in a grid of 49 rows by 41 ranges with replicate one ranging from row 1 to 22 and 

range 1 to 18 and replicate two ranging from row 27 to 49 and range 23 to 41. The spatial model 

was: 

𝑌𝑖𝑗𝑘𝑙 = 𝑓(𝑟𝑖, 𝑐𝑗) + 𝐾𝑙 + 𝐺𝑘 + 𝑅𝑖 + 𝐶𝑖 + 𝜀𝑖𝑗𝑘𝑙

(1)
 

where 𝑓(𝑟𝑖, 𝑐𝑗) is a smoothed bivariate surface defined by row r (i=1,…,49) and range c 

(j=1,…,41) as covariates (for details see Xose Rodriguez-Alvarez et al., 2018), K  is the fixed 

effect of the check or the mean of all test genotypes (l = 1, 2, 3, 𝜇̅ test), G is the random effect of 

the test genotypes (k = 1, …, 351), with check genotypes coded as missing. Ri and Cj are random 

factors of the rows and ranges, respectively, and  is the random error vector. Twenty spline points 

were used each for rows and ranges. 

To obtain best linear unbiased estimators (BLUEs) for all genotypes, the factor genotype was 

considered as a fixed effect in model (1) (k = 1, …, 354) and K was omitted from the model. The 

sum of the genotypic BLUE and the plot-specific residual error was extracted as a spatially 

corrected plot value. 

Figure 2.1 Scaled visual scorings of canopy greenness (Sc) and a scaled spectral index (SI) as a function 

of thermal time after heading for one experimental plot. Linear interpolation was used to derive the onset 

(Onsen), mid (Midsen) and end (Endsen) of the rapid senescence phase, its duration (Tsen) and the deviation of 

the SI curve from the Sc curve (error; shaded area). Black arrows represent the difference between SI- and 

Sc-derived parameters. The mean of these differences across all plots represents a measure of bias. 
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Within-season repeatability (w2) of the spatially corrected traits was calculated according to Xose 

Rodriguez-Alvarez et al. (2018) based on the genetic effective dimensions provided by SpATS 

as: 

𝑤2 =
𝐸𝐷𝑔

𝑚𝑔 − 1

(2)

 

where EDg is the effective dimension for the genotypes and mg is the total number of genotypes 

evaluated.  

Spatially corrected plot values derived from (1) were used for the multi-year model using the R 

package ‘asreml-4’ (Butler et al., 2018): 

𝑌𝑖ℎ𝑘𝑙 = µ + 𝐾𝑙 + 𝐺𝑖 + 𝑌ℎ + 𝐵𝑘(ℎ) +  𝐺𝑌𝑖ℎ + 𝜀𝑖ℎ𝑘𝑙

(3)
 

where Yihkl is the spatially corrected senescence dynamics parameter or single plot measurement 

estimated in (1), µ is the overall mean, Y the fixed effect of the year (h = 2016, …, 2018), B is 

fixed effect of the replication within year h (k = 1, 2), GYih the random genotype-by-year 

interaction and εihkl is the random normally distributed error with a year-specific variance. The 

effect of the replicate was specified only for years where more than one replicate was measured 

(i.e. for reflectance-based traits, where both replicates were measured only in 2016).   

Across-year heritability was derived according to the method proposed by Cullis et al. (2006) as: 

𝐻𝐶
2 = 1 −

𝑎𝑣𝑠𝑒𝑑2

2𝜎̂𝐺
 

where 𝐻𝐶
2 is the heritability that is appropriate for complex residual structures (though not needed 

here) and avsed is the average standard error of prediction differences provided by the 

predict.asreml function. In the original equation provided by Cullis et al. (2006), the avsed is 

expressed as the mean variance of a difference between a pair of genotype 𝑣̅𝐵𝐿𝑈𝑃𝑑𝑖𝑓𝑓, the square 

of avsed (Isik et al., 2017). 

2.2.4 Hyperspectral assessment of senescence dynamics 

Hyperspectral reflectance measurements 

Canopy hyperspectral reflectance in the optical domain from 350 to 2500 nm was measured using 

a passive spectroradiometer (ASD FieldSpec® 4 spectroradiometor, ASD Inc., USA) equipped 

with an optic fiber with a field of view of 25˚. Whenever possible, measurements were carried 

out between 10:00 and 14:00 local time under clear and cloudless conditions. However, given the 

need for frequent measurements and the geographic location of the experiment, this was not 

always possible. Reflectance spectra were recorded as the average of 15 – 25 separate spectral 

records. Measurements were taken from nadir view holding the sensor at a height of 

approximately 0.4 m above the canopy. In 2016, reflectance spectra were recorded for 1-2 

locations per plot holding the sensor in a nadir position above a crop row. In 2017 and 2018, 5 
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spectra were recorded while moving the fiber optic along the diagonal of each plot. This change 

in the measurement procedure was decided to reduce the variance of reflectance measurements 

due to plot heterogeneity in senescence observed in the first year. A Spectralon® white reference 

panel was used for calibration before measuring canopy reflectance, and the calibration was 

repeated approximately every 10 min. Under more variable conditions, the device was re-

calibrated more frequently. When light conditions changed perceivably, measurements were 

interrupted immediately and the device was recalibrated before continuing the measurements 

under stable light conditions. In 2016, both replicates were measured, requiring about 3 hours on 

average, whereas in 2017 and 2018 measurements were limited to one replicate, requiring about 

2 hours on average. The experiments were measured between heading and physiological maturity 

on 7 dates in 2016, on 8 dates in 2017 and on 12 dates in 2018. Thus, the frequency of spectral 

measurements was slightly lower than the frequency of visual scorings. The resulting 

hyperspectral dataset was then analyzed from two different perspectives relating to the main 

objectives of this study (Figure 2.2, upper and lower panel, respectively). The two approaches are 

described in more detail in the following sections and in supplementary methods (see 

supplementary material chapter 2). For ease of notation, reflectance at specific wavelengths will 

be abbreviated as R followed by the wavelength (e.g. R750). 

  

Figure 2.2 Overview of the objectives of this study and the implemented workflow: pre-processing of 

reflectance spectra and conversion to spectral indices (SI) [1];  full-spectrum models (Mod) to obtain 

predictions (Pred) of visual senescence scorings (Sc) based on reflectance spectra [4]; fitting of SI, Sc and 

Pred against thermal time and extraction of corresponding dynamics parameters (DynPars) [2]; 

Unsupervised DynParsSI subset selection [3]; Model and SI evaluation based on DynPars [5]; Spatial 

correction and calculation of best linear unbiased estimators (BLUEs) [6]; Modelling of primary traits (i.e. 

grain yield (GY) and grain protein concentration (GPC)) and supervised feature selection by recursive 

feature elimination [7] to determine the most predictive features and estimate the potential benefits of a 

high spectral resolution. 
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Spectral Indices and full-spectrum models to infer senescence dynamics 

An assessment of the performance and robustness of SI and full-spectrum models to track canopy 

senescence across environments was performed. A detailed description of the methodology is 

provided in supplementary methods (see supplementary material chapter 2). In brief, a large 

number of published spectral indices were computed and full-spectrum models to infer visually 

observed senescence scorings were calibrated from pre-processed reflectance spectra (Figure 2.2, 

[1], [4]). Models were used to generate predictions of senescence scorings for unseen data of the 

same environment as used in model calibration and of environments not included in model 

calibration. The resulting SI values and model predictions were scaled to range from 0 to 10, 

representing the minimum and maximum value recorded or predicted for the assessment period, 

respectively. Scaled values were fitted against thermal time after heading, and parameters 

describing the observed dynamics were extracted from time courses as was done for visual 

scorings (Figure 2.2, [2]). A subset of spectral indices was then selected using several filtering 

criteria to reduce multi-collinearity of the dataset (Figure 2.2, [3]). For full-spectrum models, 

waveband selection was performed in each experiment using recursive feature elimination. 

Performance and robustness of selected SI and full-spectrum models was assessed by comparing 

the dynamics parameters obtained from selected SI and model predictions  to those obtained from 

visual scorings as shown in Figure 2.1 (step [5] in Figure 2.2). Pearson product moment 

correlation coefficients were calculated for the dynamics parameters obtained from linear 

interpolation of visual scorings, SI and model predictions. The mean difference in GDD over all 

experimental plots between the SI-derived and the scoring-derived parameters was also calculated 

to reveal potential general bias. Finally, the area between the resulting lines was calculated as a 

measure of precision in tracking the entire process. 

Multiple spectral indices during senescence to predict primary traits 

Finally, all senescence dynamics parameters obtained from scorings and from the selected SI 

(hereafter referred to as features) were analyzed directly for their association with GY and GPC. 

BLUEs or spatially corrected values were used for the analysis (Figure 2.2, [6]). We aimed to 

answer three separate questions in a step-wise procedure: Firstly, whether a phenotypic 

correlation between senescence dynamics and GY and GPC existed for any given trait in any 

given year; we used simple linear regression models for this purpose. Secondly, if the results 

suggested the presence of such a linear correlation, we investigated the potential of additional 

information contained in multiple SI time courses as opposed to the time course of a single SI or 

visual scoring. Such single SI or scoring values are likely to capture only part of the changes 

occurring during senescence (e.g. the dynamics of chlorophyll breakdown) while other processes 

might hold complementary information. Thirdly, we aimed at identifying the most important 

features to predict the trait. The rationale behind this was the following: Given a significant 

correlation between senescence dynamics and GY and GPC and a number of features describing 

aspects of senescence, the feature identified by the model to be the most relevant feature to predict 

GY or GPC should also be the one feature that most precisely captures the relevant aspects. For 

this purpose, we conducted supervised feature selection by recursive feature elimination (Figure 

2.2, [7]; see Ambroise and McLachlan, 2002; Granitto et al., 2006; Guyon et al., 2002 for a 
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detailed description and discussion of the methodology). A detailed description is provided in 

supplementary methods (see supplementary material chapter 2). 

2.3 Results 

2.3.1 Experiments represented contrasting environments 

Weather conditions during the main growing phase of the three experimental years strongly 

contrasted (Figure 2.3). The year 2016 was characterized by a wet summer with high precipitation 

causing severe lodging and high levels of foliar diseases. In particular, high levels of Septoria 

tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici were observed. A total of 

88 plots had to be excluded from further analyses due to heavy lodging. An additional 24 plots 

were excluded due to extended patches affected by take-all disease (Gaeumannomyces graminis 

var. tritici), which made objective senescence scorings and reflectance measurements impossible. 

Contrarily, the years 2017 and 2018 were characterized by dry summers and in 2017 additionally 

Table 2.1 Descriptive statistics, within-year repeatability and across-year heritability for heading date 

(HD), grain yield (GY), grain protein concentration (GPC) and senescence dynamics parameters derived 

from linearly interpolated visual canopy senescence scorings (Sc,Lin) and from linearly interpolated values 

of the PSRI (PSRI,Lin). Data referring to individual years is reported sequentially for consecutive years 

(2016/2017/2018). 



23 

 

by high temperatures with daily maximum temperatures exceeding 30°C on several days, 

particularly during grain-filling. While both biotic and abiotic stresses can affect senescence 

dynamics in wheat, the underlying responses are stress-specific and may be controlled by very 

different genes or gene networks (Guo and Gan, 2012). Consequently, the three experimental 

years can be considered contrasting environments for the assessment of senescence dynamics and 

effects on GY and GPC. 

2.3.2 Large variability and moderate to high heritability for senescence dynamics 

and agronomic traits 

Large variability was observed for heading date, GY and GPC among the >330 genotypes in all 

years (Table 2.1). Heading occurred 8 days earlier in 2018, likely due to the comparably dry 

conditions in spring (Figure 2.3). Large variability was also observed for senescence dynamics, 

with a difference of > 300 °C days in the onset between the earliest and the latest genotype in all 

years. Similarly, the duration of senescence varied strongly across genotypes. The rate of 

senescence was somewhat lower in 2017 as expressed by an increased duration of the process. 

Across all genotypes, flag leaf senescence was somewhat delayed with respect to canopy 

senescence in 2016 and 2017, especially in early senescing genotypes. In 2018, this sequential 

vertical pattern of senescence was much less pronounced (data not shown). The stay-green phase 

was shorter in the dry seasons of 2017 and 2018 and longer in the wet season of 2016. Correlations 

between the senescence dynamics parameters extracted from the non-linear model fit and linear 

interpolation of visual senescence scorings were high for Onsen (r = 0.94), Midsen (r = 0.99) and 

Endsen (r = 0.96), suggesting a good approximation of the dynamic patterns through linear 

interpolation. Therefore, linear interpolation was used for further analyses. Repeatability for 

Figure 2.3 Daily mean temperatures (black solid line), daily maximum temperatures (red dotted line) and 

rainfall measured at 2 m above the ground for the main growing period of the experiment at the field 

phenotyping platform of ETH Zurich. Temperature data was retrieved from an on-site weather station. 

Rainfall data was obtained from a nearby weather station of the federal Swiss meteorological network 

Agrometeo (www.agrometeo.ch). 
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senescence dynamics parameters was higher in 2016 than in 2017 and intermediate in 2018 (Table 

2.1). Repeatability for Onsen, Midsen and Endsen was moderate to high, ranging from 0.72 to 0.79, 

from 0.44 to 0.65 and from 0.64 to 0.68 in 2016, 2017 and 2018, respectively. For Tsen, 

repeatability was distinctly lower in all years. Across-year heritabilities were intermediate to high 

for Onsen, Midsen and Endsen (Table 2.1). 

  

Figure 2.4: General reflectance patterns of senescing wheat canopies. (A) Mean reflectance spectrum of 

wheat genotypes through the process of senescence (10 denotes completely green canopies, 0 denotes 

complete senescence, based on visual scorings). Data from all time points and all years was used to calculate 

the mean reflectance spectrum per scoring. Vertical lines mark the wavebands constituting the NDVI and 

the PSRI. (B) Pearson correlation between reflectance at each wavelength and visual senescence scorings. 

Positive correlations indicate increasing reflectance as senescence progresses, negative correlations indicate 

decreasing reflectance as senescence progresses; Year-specific correlation coefficients. (C) Separate 

analyses for early senescence (scorings = [0:3]), intermediate senescence (scorings = [4:7] and late 

senescence (scorings = [8:10]). This part of the graph is based on data of the 2018 experiment. 
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2.3.3 Spectral reflectance is associated with visual senescence scorings in a non-

linear manner 

Senescence led to major changes in canopy reflectance throughout the recorded spectrum (Figure 

2.4A). Reflectance in the visible range (VIS; 400-700 nm) increased strongly, whereas reflectance 

in the near infrared (NIR; 750-1300 nm) portion of the spectrum decreased. In the short-wave 

infrared (SWIR; 1475-1781 nm and 1991-2400 nm) portion of the spectrum, reflectance 

increased. Pearson correlation coefficients between the reflectance at each wavelength and the 

visual canopy senescence scores were calculated for each year (Figure 2.4B) and separately for 

different phases of the senescence process (Figure 2.4C). High positive correlations were found 

between the reflection in the VIS, with peaks at around 500 nm and 680 nm, as well as in the 

SWIR, indicating a decrease of light absorption (resulting in an increase in reflection) in these 

parts of the spectrum as senescence progresses. Strong negative correlations were found in the 

NIR with a peak near 750 nm, indicating a strong decrease of reflectance in this portion of the 

Figure 2.5: Dynamic pattern of scaled spectral indices (in grey) and visual canopy senescence scores (in 

green; identical in all subplots) over thermal time after heading. Mean linearly interpolated values over all 

experimental plots of the 2016 experiment (thick lines) and their standard deviations (thin lines) are shown. 

Dashed lines mark the thresholds defined as onset, midpoint and end of senescence. 
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spectrum as senescence progresses. These patterns were consistent across years. When different 

phases of the senescence process were analyzed separately, major differences in the correlations 

over large parts of the spectrum were found, indicating that reflectance throughout the spectrum 

is associated in a non-linear manner with visual senescence scorings.  

2.3.4 Spectral indices track visually observed senescence dynamics across all years 

A subset of 83 SI-derived senescence dynamics parameters was retained for further analyses. 

These included 21 Tsen parameters, suggesting that this parameter could be measured with a 

satisfactory repeatability (w2 > 0.5) using certain SI. Several SI could be identified for which the 

mean value across all experimental plots followed clearly contrasting dynamic patterns (see 

Figure 2.5 for examples). Generally, the NDVI-derived senescence dynamics parameters 

correlated well with the scoring-derived parameters. However, for some SI the senescence 

parameters consistently correlated better with the scoring-derived parameters and were less biased 

(i.e. deviated less from scorings) than the NDVI-derived parameters (Table 2.2, Figure 2.5). PSRI-

derived onset of senescence correlated best with scoring-derived onset and was unbiased (r = 0.72, 

dOnsen = 6°C days, r = 0.78 and dOnsen = -11°C days and r = 0.75, dOnsen = -7°C days for 2016-2018, 

respectively) as opposed to the parameter derived from NDVI (r = 0.64, dOnsen = -43°C days, r = 

0.63 and dOnsen = -61°C days and r = 0.51, dOnsen = -57 °C days in 2016-2018, respectively). PSRI 

also predicted midpoint of senescence with a high accuracy (r = 0.76, dMidsen = 43°C days, r = 

0.91, dMidsen = 25°C days and r = 0.86, dMidsen = 26°C days in 2016-2018, respectively). Endpoint 

of senescence was predicted quite accurately (r ≈ 0.7 across all years) by several SI, whereas the 

NDVI was clearly less stable across different years. Across all three years, Endsen derived from 

VARIgreen was correlated best with scoring-derived Endsen (r = 0.79, dEndsen = 10°C days, r = 

0.83, dEndsen = -18°C days and r = 0.82, dEndsen = -17°C days in 2016-2018, respectively), while 

NDVI was clearly less precise and less stable across years (r = 0.59, dEndsen = 53°C days, r = 0.78, 

dEndsen = 65°C days, and r = 0.54, dEndsen = 52°C days in 2016-2018, respectively). The PSRI 

performed best in tracking the senescence process as observed visually from the onset to the end 

of the process, as expressed by comparably small error reprinted by the area between the curves 

(Table 2.2). Since repeatability for Tsen assessed visually was low in all years, results of the 

correlation analysis should be interpreted with caution, but the strongest correlations were found 

Table 2.2 Pearson correlation (*, p < 0.05; **, p < 0.01; ***, p < 0.001) between the senescence dynamics 

parameters derived from visual scorings and spectral indices, mean deviation in GDD between the derived 

parameters, and the total error throughout the entire process. Only spectral indices outperforming the NDVI 

in all three years for at least one parameter are listed, and the respective cells are highlighted in green. 

Several additional Spectral indices gave a better representation of Endsen, but only the VARIgreen, which 

performed best, is listed here. 
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again for the PSRI. Thus, in summary, the PSRI outperformed the NDVI and all other tested SI 

in assessing most of the senescence dynamics parameters investigated here. Importantly, the 

observed correlations were stable across the three years. A comparison of experimental plots for 

which NDVI-derived Onsen strongly differed from the scoring-derived Onsen with RGB images 

suggested that this might be largely due to canopy structural effects such as leaf angles, spike 

geometry and spike orientation. This is illustrated in Figure 2.6 for two contrasting example plots, 

sown respectively with a genotype with changing spike orientation during grain filling (Figure 

2.6, left) and a genotype with relatively stable spike orientation (Figure 2.6, right). 

2.3.5 Full-spectrum models are environment-specific 

We aimed to develop a further optimized spectral model to track wheat canopy senescence 

exploiting the full spectrum. Both tested algorithms resulted in significantly improved predictions 

of senescence scorings compared to the best SI for held out samples of the same year. This resulted 

in smaller errors in tracking the entire process (Table 2.2, Table 2.3). 

Cubist regression models performed better and reduced the RMSE by an average of 0.2 with 

respect to the PLSR models (Table 2.3). Overall, PLSR-derived senescence dynamics parameters 

were not higher correlated with scoring-derived parameters than the SI-derived parameters (Table 

2.3). In contrast, cubist produced better estimates of Onsen, Midsen and Endsen and outperformed 

the SI in most cases. The difference between algorithms was particularly ample in 2016. However, 

when models were validated across years, correlations were drastically reduced in many cases. 

Major differences were found for accuracy in predicting all senescence dynamics parameters, 

Figure 2.6: Time courses of PSRI, NDVI (nadir view) and visual scorings (whole plot, 45° viewing angle) 

for two experimental plots of the 2018 experiment. Left: Genotype with changing spike orientation during 

grain filling. With time, spikes make up an increasingly dominant part of the image. Concomitantly, NDVI 

values decrease early in the grain filling phase, while visual scorings indicate no change in canopy 

greenness (evidenced by red arrow). Right: Genotype characterized by relatively stable spike orientation 

during grain filling and comparable NDVI, PSRI and scoring time courses (evidenced by red arrow); Letters 

A-F in the upper part of the Figure represent time points when corresponding images were taken. Images 

were taken by the field phenotyping platform (FIP, Kirchgessner et al., 2017). 
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depending on which year(s) were used for training and validation, respectively. Generally, adding 

a second year to the training data did not substantially improve model performance on samples of 

the held out year. In some cases, the correlations were even negatively affected by adding 

additional training data, especially when PLSR was used. Commonly observed problems were (i) 

remaining non-linearity in the predicted vs. observed regressions, particularly for PLSR (Figure 

2.7A), and (ii) year-specific bias in the predicted vs. observed regression (Figure 2.7A, Figure 

2.7B). Neither data type or pre-processing procedure was clearly and consistently superior to 

Table 2.3 Within-year and across-year validation results for partial least squares regression (PLSR) and 

cubist regression models. Results are shown for smoothed reflectance spectra as input data. Data was mean-

centered and scaled to unit variance prior to modelling. Root mean square error (RMSE) of the scoring 

predictions, Pearson correlation coefficients between the senescence dynamics parameters derived from 

visual scorings and full-spectrum models, and the total error in assessing the entire process (area between 

the curves) are shown. Cases where the full-spectrum models outperformed the PSRI are highlighted in 

green, other cases are highlighted in red. As the main interest lies on the capability of full-spectrum models 

to represent the entire process of senescence, an average RMSE for 10 different random upsamples of the 

test data are reported in brackets, where each upsample contains all possible scoring values an equal number 

of times, i.e. exactly the number of times of the most frequent observations. 
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another. Notably, the year-specific bias could not be removed by using first derivatives or 

continuum-removed spectra. 

Near-optimal models could be created using 6-8 wavelengths for 2016 and 12-14 wavelengths for 

2017 and 2018 (Figure 2.8A). In all years, most of the commonly selected wavelengths were 

contained in the 650 nm to 800 nm range (Figure 2.8B). However, there were some obvious 

differences between 2016 on the one hand and 2017 and 2018 on the other hand. Models for 2016 

frequently used several wavelengths between 720 nm and 770 nm, whereas models for 2017 and 

Figure 2.7 Example of model within-year (red) and across-year (cyan) validation results. Predictions of 

senescence scorings obtained from full-spectrum models are plotted against the visual scorings (observed). 

Here, averaged reflectance spectra were used, and the data was mean-centered and scaled to unit variance 

prior to modelling. Data from the 2017 experiment was used for model training. Models were validated on 

held-out samples of the same year (within-year validation) as well as on samples from the 2018 experiment 

(across-year validation). The full dataset was used for model training, i.e. no down-sampling was 

performed, whereas validation datasets were randomly down-sampled. (A) Results for partial least squares 

regression; (B) Results for cubist regression. 

Figure 2.8 (A) Performance of the cubist regression models to predict visual senescence scorings 

depending on the number of wavelengths used as predictors. Mean performance as measured by the RMSE 

of predictions and standard deviations are shown based on 30 resamples of the data. (B) Frequency of 

wavelengths resulting among the most informative to predict visual scorings of canopy senescence. 

Frequencies denote the number of times out of 30 resampling iterations in which a given wavelength was 

retained in the cubist regression model down to a subset size of 12 wavelengths during recursive feature 

elimination. Only wavelengths which were among the top 12 predictors in at least 10% of the resamples 

(i.e. in at least 3 resamples, marked by the dashed horizontal line) are shown. The grey line represents the 

mean reflectance spectrum of canopies with a visual scoring of 8 (early senescence). 
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2018 relied more heavily on the region from 670 nm to 720 nm, i.e. the chlorophyll absorption 

maximum and the red edge. Models for 2016 used a combination of R677 and one wavelength in 

the NIR (most often 764 nm or 767 nm) as the top two predictors in all 30 resamples and this 

combination contained most of the spectral information (Figure 2.8A). Contrarily, models for 

2017 and 2018 used several wavelengths (typically 3-6) in the range from 677 nm to 695 nm 

before including a wavelength in the NIR or around 575 nm. Given the limited potential of full-

spectrum models to infer senescence dynamics across years, we aimed to optimize the PSRI to 

the case of wheat canopy senescence and identify the factors driving its temporal dynamics. For 

this purpose, we simplified the PSRI to a simple ratio index and searched the spectrum for optimal 

waveband compositions for these simple ratio indices as well as for the original 3-band PSRI 

formula (Figure 2.9). The 750 nm waveband in the denominator of the PSRI is at the upper limit 

of the red edge. Moving R750 towards R800 did not significantly affect the accuracy of the index, 

whereas moving it into the red edge affected it negatively (Figure 2.9, upper left panel). Thus, 

similarly to the NDVI, the PSRI appears to be driven largely by chlorophyll absorption and 

canopy structure. However, omitting R500 from the PSRI (i.e. reducing the PSRI to a simple ratio 

index R678/R750) resulted in a decrease of its accuracy (Figure 2.9, lower left panel). Substituting 

R500 by neighboring wavelengths had little effect, although a small improvement was observed 

when replacing R500 by R525 (Figure 2.9, upper right panel). 

Figure 2.9 Correlation-based sensitivity analysis of the spectral bands (500, 678 and 756) constituting the 

PSRI. The “x” in the SI formula denotes the reflectance at the waveband that was varied in the depicted 

range. 
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2.3.6 Grain yield and grain protein concentration correlate with senescence 

dynamics 

Simple linear regression models suggested the presence of significant, albeit rather weak, linear 

phenotypic correlations between senescence dynamics and GY and GPC in all years (Table 2.4). 

The strongest linear correlation was found between the PSRI-derived onset of senescence and GY 

in 2016 (r = 0.369, p < 0.001) which was slightly higher than the linear correlation between 

scoring-derived midpoint of senescence and GY (r = 0.365, p < 0.001) and significantly higher 

than the correlation between NDVI-derived onset of senescence and GY (r = 0.311, p < 0.001). 

A significant linear correlation was also found between Tsen derived from several SI and GPC in 

2016 (r = -0.297, p < 0.001 for NPCI). In 2017 and 2018, there was only a weak (r < 0.19) linear 

correlation between senescence dynamics parameters and GY and GPC. In these years, scoring-

derived parameters were always among the three most highly linearly correlated senescence 

dynamics parameters for both traits. 

Heading date correlated negatively with the duration of the stay-green phase. The strongest 

correlation was observed in 2016, when the correlation between stay-green and GY was also 

strongest. However, multiple linear regression suggested a significant effect of stay-green 

duration on GY even when accounting for heading date, whereas heading date did not have a 

significant effect on GY (Table S 2). Both heading date and stay-green correlated negatively with 

GPC in both years (2016 and 2017, Table S 2). Thus, it seems that senescence dynamics had a 

direct effect on GY and GPC in our experiments. 

2.3.7 Visual senescence scorings accurately track senescence-related processes 

affecting final grain yield 

Given the phenotypic correlations between senescence dynamics parameters and GY and GPC in 

all three years, recursive feature elimination was performed for each trait × year combination. 

Performance of the models with a given subset size differed across years (Figure 2.10A). Multiple 

SI improved the prediction accuracy for GY and GPC as compared to single SI (Figure 2.10A). 

However, after inclusion of 2-3 features, mean model performance levelled off rapidly. In 

addition, there was significant variance in model performance estimates and feature ranks across 

resamples (Figure 2.10A, Figure 2.10B). Feature ranks showed lower variance in 2016 for both 

GY and GPC models, whereas in 2017 and 2018, there was considerable variance across 

resamples (Figure 2.10B). The most important feature in the 2016 GY model (i.e. midsen derived 

from the Gompertz model fitted to visual canopy senescence scorings) had an average rank of 

1.40 (±0.97), indicating that it was consistently retained as the most predictive feature. For the 

2017 GY model, the most important feature had an average rank of 4.10 (±5.57) and for the 2018 

GY model, it had an average rank of 5.83 (±4.77), indicating much lower consistency across 

resamples (data not shown). In the GY model for 2016, features derived from the visual scorings 

were clearly the most predictive (Figure 2.10B). The features derived from the non-linear fit of 

visual canopy senescence scorings had lower ranks than the corresponding feature derived from 

linear interpolations, except for Endsen, for which the features had almost identical ranks. SI-

derived features had much higher mean ranks than scoring derived features. The lowest ranked 
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SI-derived features were derived from the mND705, the PSRI, the NDRE, the REIP and the 

VARIgreen. No Tsen parameters were among the top 15 features of the GY models for any year, 

suggesting that the duration of senescence as assessed here did not affect GY in any experiment. 

Feature ranks were quite unstable across years, particularly for the GY models. In contrast to the 

GY models, no scoring-derived features were among the most important features in the GPC 

models. Instead, features derived from the PSND4 and the PRInorm had relatively low mean 

ranks in both years. This was in strong contrast to the results of the simple regressions, which 

suggested mainly a negative correlation between the duration of senescence and GPC in 2016 and 

a negative correlation between visually assessed stay-green and GPC in 2017 (Table 2.4). 

 

  

Figure 2.10 (A) Performance of the random forest regression models to predict grain protein concentration 

(GPC) and grain yield (GY). Mean performance and standard deviation are shown based on 30 resamples 

of the data for models containing a decreasing number of features selected by recursive feature elimination. 

(B) Feature ranks as determined by recursive feature elimination. Mean feature rank and standard deviation 

are shown based on 30 resamples of the data for the top and lowest 15 features, separated by the broken 

line. Features are plotted according to their descending mean rank in the 2016 models. 
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2.4 Discussion 

2.4.1 Large genetic variability in senescence dynamics and minor effects on grain 

yield and grain protein concentration  

Within-year repeatability of Onsen, Midsen and Endsen was moderate to high for scoring and SI-

derived parameters, which is in line with previous reports (Blake et al., 2007; Crain et al., 2017; 

Lopes and Reynolds, 2012). Within-year repeatability of Tsen derived from some SI was similar, 

but was nearly zero for visual scorings (Table 2.1). This suggests that the duration and the rate of 

the senescence process is more accurately estimated using specific SI. 

In this study, a positive correlation between the duration of the stay-green phase and GY was 

observed in all years. However, a strong correlation was found only in the wet season of 2016, 

whereas in the relatively dry and hot seasons of 2017 and 2018, correlations were weaker (Table 

2.4). This is somewhat unexpected, as drought and heat stress are likely to anticipate and 

accelerate senescence (Gregersen et al., 2013). This could result in source-limited GY and 

therefore enhance differences in GY between stay-green and early senescing genotypes (Borrás 

et al., 2004). In 2016, visual senescence scorings were affected by foliar diseases, mainly STB. It 

seems likely that disease symptoms affected senescence scorings particularly during the late stay-

green phase. High levels of STB can reduce GY significantly (reviewed by Fones and Gurr, 2015). 

Thus, differences in STB severity likely contributed to the observed correlation between visually 

assessed senescence dynamics and GY. Another possibility is that the phenotypic correlation 

between senescence dynamics and GY in 2016 arose at least in part from pleiotropic effects. 

Bogard et al. (2011) demonstrated that phenotypic correlations between senescence dynamics and 

Table 2.4 Correlation (**, p < 0.01; ***, p < 0.001) between senescence dynamics parameters and grain 

yield (GY) and grain protein concentration (GPC) in different years. Pearson correlation coefficients are 

reported for the three most highly correlated features for each trait × year combination. 
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GY were mainly related to differences in flowering date in a doubled haploid mapping population. 

In our experiments, heading date was significantly correlated with the duration of the stay-green 

phase, but effects on yield were not statistically significant. This highlights that, in addition to 

facilitating the investigation of direct effects of secondary trait dynamics on primary traits, the 

implementation of high throughput phenotyping protocols may equally benefit the elucidation of 

such pleiotropic effects. A detailed understanding of such interdependencies is paramount to 

improve genetic crop models and fine tune dynamic traits in breeding (Chenu et al., 2017, 2009). 

It should also be understood that such aspects will have to be taken into account when 

investigating the genetic determinants of senescence dynamics. In the subsequent sections, we 

discuss the results of different approaches to phenotype senescence as a dynamic trait. 

2.4.2 Spectral indices emphasizing reflectance in the visible to near-infrared range 

accurately track canopy senescence dynamics 

Regular NDVI measurements have been used by several authors to evaluate stay-green, mainly 

under drought conditions (Christopher et al., 2014, 2016, 2018; Lopes and Reynolds, 2012; 

Montazeaud et al., 2016). In this study, the PSRI gave a better representation of visually recorded 

canopy senescence dynamics than the NDVI. The dynamics of the SI suggest that the accuracy 

of the NDVI is not primarily hampered by saturation effects, as it tends to decrease earlier than 

the PSRI (Figure 2.5, Figure 2.6). 

At the leaf scale, the PSRI specifically measures changes in pigment composition by comparing 

the reflectance at 500 nm, which is controlled by the combined absorption of chlorophyll a, 

chlorophyll b and carotenoids with absorption at 678 nm, which is controlled by chlorophyll a 

only (Merzlyak et al., 1999). Major changes in pigment composition have been observed for flag 

leaves of field-grown wheat plants after about 20 days post-anthesis (Lu et al., 2001). These 

changes in pigment composition coincided with the onset of a steep decrease in total chlorophyll 

content and thus probably with the onset of chloroplast dismantling, which marks the beginning 

of senescence (Havé et al., 2017; Lu et al., 2001). Therefore, it appears plausible that the PSRI is 

indicative of wheat canopy senescence. However, unlike at the leaf scale, R750 changes 

drastically during senescence at the canopy scale (Figure 2.4A). Thus, PSRI values at the canopy 

scale are strongly driven by R750. Reflectance in the NIR is dominated by leaf area index among 

other canopy structure parameters (Jacquemoud et al., 2009). Based on a comparison with RGB 

images, we hypothesized the PSRI to be less sensitive to variation in canopy structure than the 

NDVI. The NDVI is highly sensitive to canopy structure, as R800 is one of two constituting 

wavebands. Canopy structure may change drastically prior to and during senescence. For 

example, leaf-roll can be induced by water shortage resulting in major canopy structural changes 

and an increased contribution of soil reflectance that is not necessarily related to senescence. 

Furthermore, changes in spike geometry are likely to interfere with the retrieval of biochemical 

information. Both factors strongly affect reflectance in the NIR, while reflectance in the VIS is 

less affected (Gutierrez et al., 2015). It appears that the inclusion of a second waveband in the 

VIS stabilized the PSRI against canopy structural effects during early senescence (Figure 2.6). 
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The relatively low sensitivity of the observed correlations between the PSRI and visual canopy 

senescence dynamics to shifts in the constituting wavebands suggests that multispectral 

information is sufficient to obtain accurate estimates of canopy senescence dynamics. This makes 

the trait amenable to phenotyping using multispectral cameras which can be mounted on 

unmanned aerial vehicles (Aasen et al., 2018; Aasen and Bolten, 2018). This would greatly 

facilitate large-scale screenings and frequent measurements. Such large-scale screenings and a 

high temporal resolution of measurements are likely to be the primary benefits of digital 

phenotyping of senescence dynamics in the near future. 

2.4.3 Non-linear models outperform PLSR in tracking senescence dynamics, but 

are similarly environment-specific 

Full-spectrum models improved the inference of visual senescence scorings from spectral data as 

compared to the best SI, but their power to track senescence dynamics was limited by the 

extraction of year-specific relationships between reflectance and scorings, and, in the case of 

PLSR, by their inflexibility to capture non-linear relationships between spectral reflectance and 

visual scorings. Such non-linearities likely arise from the fact that senescence is a complex 

process, during which major physiological and structural changes at the leaf and canopy scales 

occur sequentially or simultaneously with most of them having strong but contrasting effects on 

the reflectance characteristics of plant canopies. Such changes include chlorophyll degradation 

and changes in pigment composition, loss of cellular structure, mesophyll breakdown and water 

loss at the leaf level (Gitelson and Merzlyak, 1994) as well as a reduction in leaf area index and 

ground cover, changes in leaf and spike geometry, nutrient redistribution to the spikes and water 

loss at the canopy level. 

PLSR failed to accurately track visually observed senescence dynamics in our experiment, and 

was outperformed by several SI, even when validated on held out samples of the same experiment. 

Kipp et al. (2014) found no stable relationships between various types of SI and flag leaf color, 

but reported a good predictive performance of PLSR models. This is not necessarily in 

contradiction to our observations, since we also found improved prediction of visual senescence 

scorings when exploiting the full spectrum. However, our objective was not to predict absolute 

values of greenness, but to track temporal changes throughout the process of senescence and 

extract parameters that describe these dynamics. Therefore, we scaled both scorings and spectra-

derived predictions to a uniform range and only exploited the relative temporal changes (Figure 

2.2, upper panel). With this intermediate step, we eliminated initial and terminal differences 

across genotypes or experimental plots, which can have multiple origins and interfere with the 

retrieval of dynamics parameters and measures of overall accuracy. The increase in accuracy of 

cubist compared to PLSR models was paralleled by an increased across-year applicability of the 

models on average, indicating that the problem of year-specific modelling was not exacerbated 

by using a more flexible algorithm. 

In general, the RMSE of the cubist models was low (<0.7 in 2017 and 2018). We speculate that 

this is close to the performance ceiling set by the precision of visual scorings. Achieving 

substantial improvements by further optimizing the models seems therefore unlikely. Rather, 



36 

 

more precise ground truth data would be required. Visual scorings are subjective and limited in 

tracking small changes between assessment time points. SPAD meter or color measurements have 

been used by other authors (e.g., Kipp et al., 2014; Xie et al., 2016). These tend to be more 

objective, more sensitive to subtle changes and relate more directly to a physiological trait. On 

the other hand, they sample only a small part of the leaf and are laborious to obtain. Also, 

senescence typically does not progress uniformly along the leaf, resulting in difficulties to obtain 

a good average value per plot. Thus, in our opinion, these measurements do not produce better 

average values per plot than a visual scoring. Furthermore, small gains in precision need to be 

weighed against the necessity of sampling a sufficiently large genotypic diversity at a high 

temporal resolution in several years/environments to achieve robust models, as illustrated above. 

2.4.4 Model transferability is strongly related to differences in environmental 

conditions 

We found major differences in the applicability of models across years. In particular, the 

dynamics of visual scorings in the 2016 experiments were very poorly predicted by models trained 

on 2017 and/or 2018 data (Table 2.3). Furthermore, models trained and validated within the 2016 

experiment performed poorly compared to the other two years. This could be due to the different 

measurement protocol applied in 2016. Interestingly, however, models trained using data from 

2016 performed well in 2017 and 2018. Therefore, it seems more likely that limited model 

applicability in 2016 is at least in part a consequence of a larger variability in how progression of 

senescence affected hyperspectral reflectance across genotypes in this year. In the same 

experiment and during the same period, major differences were found for STB severity among 

genotypes and STB was the dominant disease throughout the stay-green phase (see Karisto et al., 

2017 for details). In contrast, in 2017 and 2018 foliar diseases were at very low levels due to dry 

weather conditions. Several STB severity metrics were found to affect spectral reflectance in 

2016, with strong effects particularly in the NIR (see Yu et al., 2018 for details). We therefore 

hypothesize that STB altered the temporal evolution of the hyperspectral reflectance signal during 

the late stay-green and early senescence phases with respect to disease-free plots. Assuming that 

STB also affected the visual canopy senescence scorings at least during early senescence, this 

would explain the strong contribution of wavebands in the NIR to models in 2016 (Figure 2.8B). 

The results of the SI dynamics seem to offer some additional support for this hypothesis. Indeed, 

the difference in accuracy between the PSRI and the more generic NDVI in tracking visually 

assessed senescence is relatively small in 2016 as compared to 2017 and 2018 (Table 2.2). This 

suggests that changes in pigment composition were not much better indicators of senescence in 

2016 than was a generic indicator of greenness such as the NDVI. Leaves affected by STB 

develop necrotic lesions, but do not undergo controlled dismantling of the photosynthetic 

apparatus resulting in the typical changes in color and in pigment composition probably 

contributing to the increased performance of the PSRI. Finally, the difference between 

performance of PLSR and cubist was particularly large for 2016 (Table 2.3). Under the scenario 

that STB affected overall greenness in the late stay-green and early senescence phase (see above) 

this pattern is to be expected, since STB should affect the spectral reflectance in a different manner 

than physiological senescence, which will dominate in later phases, increasing the non-linearity 
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between spectral reflectance and visual senescence scorings through the entire process. We 

hypothesize that repeated hyperspectral reflectance measurements during late stay-green and 

throughout senescence might allow to distinguish purely physiological senescence from partly 

disease-driven loss of green leaf area, and facilitate an indirect assessment of disease resistance 

in field-grown wheat at high throughput. 

2.4.5 Digital senescence phenotyping may benefit crop breeding primarily through 

increased temporal resolution and throughput of measurements 

Relatively strong linear correlations were observed between senescence dynamics parameters and 

GY and GPC in 2016 and results from feature selection are most conclusive for this year. 

Increases in model performance could be observed both for GY and GPC in 2016 when using 

multiple features and the obtained feature ranks were relatively stable across resamples. For GY, 

the most important features are either directly derived from visual senescence scorings of the 

canopy or from SI that were found to predict these scorings well (Table 2.2). Specifically, Endsen 

derived from NDRE is highly correlated to Endsen derived from visual scorings (r = 0.73), 

mND705 was found to be most accurate to predict Midsen (r = 0.81), followed by the PSRI (r = 

0.76).  NDRE and mND705 have been developed to improve sensitivity to chlorophyll content 

with respect to the NDVI (Barnes et al., 2000; Sims and Gamon, 2002). This is achieved primarily 

by replacing the reflectance in the red by reflectance in the red-edge, which is less prone to 

saturation at high chlorophyll contents of leaves and vegetation and more robust in presence of 

leaf or canopy structural effects (Demetriades-Shah et al., 1990; Gitelson and Merzlyak, 1994; 

Sims and Gamon, 2002). 

The low average feature ranks of visual canopy senescence scorings and SI that accurately track 

these scorings suggest that the dynamics of chlorophyll breakdown was most predictive of GY, 

and that this trait could be assessed with a high precision using visual scorings or the proposed 

SI. This can be well explained, as the onset of chlorophyll breakdown marks the onset of 

remobilization and the end of photo-assimilation, thereby directly affecting source capacity. 

However, several additional conclusions can be drawn from these findings.  

Firstly, it can be concluded that feature selection on time courses of multiple SI resulted in the 

identification of features most strongly associated with GY and describing a dynamic trait 

interpretable in terms of plant physiology. 

Secondly, given that no SI-derived feature was more predictive of GY than scoring-derived 

features, we conclude that potential precision gains in estimating the switch from stay-green to 

remobilization using hyperspectral high throughput phenotyping techniques rather than visual 

scorings may be limited. It should be noted, however, that most of the SI used in this study were 

not developed for use in wheat canopies during senescence, and only few of them have been tested 

for their applicability during this growth stage (Barmeier and Schmidhalter, 2017; Erdle et al., 

2013; Hassan et al., 2018). Significant relationships seem to be maintained during later growth 

stages, but tend to be unstable across stages (Erdle et al., 2013). Nonetheless, we assume that the 

selected features summarize a considerable part of the total information contained in 
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hyperspectral measurements during this phase. We further conclude that visual scorings 

apparently allow assessing a key trait during senescence in a reliable manner. Further research 

should therefore aim at understanding the factors hampering across-year applicability of 

otherwise successful full-spectrum models to infer senescence scorings and how these factors can 

be accounted or corrected for. A method to obtain highly accurate training data of canopy 

greenness will also be required to achieve good predictive models. Additionally, the lower mean 

ranks of PSRI-derived features and higher linear correlation coefficients between PSRI-derived 

features and GY provide additional evidence for the superior precision of the PSRI compared to 

the NDVI.  

Thirdly, in a first step, improvements in precision may be achieved mainly by increasing the 

temporal resolution of measurements. The higher ranks of features derived from the parametric 

models are likely the result of the smoothing properties of non-linear model fits, better 

approximating the gradual nature of the senescence process and reducing the impact of 

measurement or scoring errors associated with a particular time point on the estimation of 

dynamics parameters. In addition, parametric models would also allow for the derivation of 

measures that better separate distinct characteristics of the senescence process. In particular, the 

derivation of a parameter describing specifically the rate of senescence or any process occurring 

during senescence, could be highly beneficial to elucidate effects of senescence dynamics on 

primary traits, particularly GPC and nitrogen use efficiency, but also GY (Gregersen et al., 2008; 

Kong et al., 2016; Wu et al., 2012; Xie et al., 2016). In contrast, the Tsen parameter used here is 

partly reflected by the other parameters since it was derived by substracting Onsen from Endsen. It 

also integrates over the whole process, which may be overly simplistic and may not adequately 

represent senescence dynamics observed at the leaf or canopy scale (Bogard et al., 2011; Gaju et 

al., 2014).  

Several of the selected features had relatively low linear correlation coefficients whereas some 

other highly ranked features also had high linear correlation with GY. Thus, it seems that rf 

extracted some non-linear relationships between features and GY and these seemed to be more 

predictive of GY than the linear correlations found for some features. Unfortunately, the final rf 

model is not interpretable due to its ensemble nature. We chose rf as a base learner for feature 

selection (1) because it is affected much less by the presence of non-informative predictors and 

multi-collinearity among predictors than parametrically structured models, (2) for its capability 

to capture non-linear relationships between predictors and the response and interactions between 

predictors which could not be excluded in our case and, most importantly, (3) precisely because 

of its ensemble nature that allowed it to produce stable variable importance rankings even in the 

presence of highly collinear predictors and consequently facilitated the removal of the less 

important one during subsequent feature elimination steps. We recognize that this may have come 

at the cost of less-than-optimal performance in the presence of strictly linear relationships between 

predictors and the response and might, in some cases, have resulted in the extraction of 

relationships that are difficult to interpret in terms of plant physiology or phenology. However, 

the fact that the scoring and PSRI-derived features were among the most highly ranked features, 
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while we also found high linear correlations suggests that these weaknesses of the rf algorithm 

should have impacted the result only marginally.  

The above observations could not be confirmed in 2017 and 2018 in spite of the fact that simple 

linear regressions suggested that visual scorings and corresponding SI were again among the most 

predictive features (Table 2.4). It seems likely that the overall effect of senescence dynamics on 

GY and GPC was too weak in 2017 and 2018, which would also explain the increased variability 

of feature ranks across resamples. In the presence of small effects and under the hypothesis that 

the correlations between features and responses are close to linear, the results of linear regressions 

may be more reliable. 

Finally, it should be noted that our analysis was based on the observation of a phenotypic 

correlation between senescence dynamics parameters and primary traits. We did not observe a 

significant effect of heading date on GY. Nevertheless, it cannot be excluded with certainty that 

this phenotypic correlation arose primarily as a result of pleiotropic effects, and this might have 

affected our conclusions. Subjecting genotypes to very harsh conditions post-anthesis is likely to 

accentuate direct effects of senescence dynamics on primary traits, enabling a more precise 

evaluation of the potential benefits of a high spectral resolution during late development. 

2.5 Conclusions 

Using existing variability in senescence dynamics for wheat improvement requires intensive 

field-testing of large populations in contrasting environments. We hypothesized that repeated 

spectral reflectance measurements may facilitate an accurate assessment of this developmental 

phase at high throughput. Our results show that time series of the PSRI accurately track visually 

observed canopy senescence dynamics across a large number of genotypes and under varying 

environmental conditions. When a substantial effect of senescence dynamics on GY was present, 

correlations between scoring-derived and PSRI-derived senescence dynamics parameters and GY 

were very similar. We therefore conclude that visual scorings could be replaced by PSRI 

measurements without a significant loss in precision. On the other hand, the high spectral 

resolution of measurements did not confer significant advantages over visual scorings or 

measurements of a single spectral index in our experiment. This is encouraging for the breeding 

and plant-phenotyping community, since it implies that senescence dynamics may be accurately 

tracked using less sophisticated and potentially cheaper spectral sensors. Thus, we conclude that 

digital senescence phenotyping will benefit wheat breeding through an increased temporal 

resolution and high throughput of measurements. 
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Abstract  

Hyperspectral remote sensing holds the potential to detect and quantify crop diseases in a rapid 

and non-invasive manner. Such tools could greatly benefit resistance breeding, but their adoption 

is hampered by (i) a lack of specificity to disease-related effects and (ii) insufficient robustness 

to variation in reflectance caused by genotypic diversity and varying environmental conditions, 

which are fundamental elements of resistance breeding. We hypothesized that relying exclusively 

on temporal changes in canopy reflectance during pathogenesis may allow to specifically detect 

and quantify crop diseases whilst minimizing the confounding effects of genotype and 

environment. To test this hypothesis, we collected time-resolved canopy hyperspectral reflectance 

data for 18 diverse genotypes on infected and disease-free plots and engineered spectral-temporal 

features representing this hypothesis. Our results confirm the lack of specificity and robustness 

of disease assessments based on reflectance spectra at individual time points. We show that 

changes in spectral reflectance over time are indicative of the presence and severity of Septoria 

tritici blotch (STB) infections. Furthermore, the proposed time-integrated approach facilitated the 

delineation of disease from physiological senescence, which is pivotal for efficient selection of 

STB-resistant material under field conditions. A validation of models based on spectral-temporal 

features on a diverse panel of 330 wheat genotypes offered evidence for the robustness of the 

proposed method. This study demonstrates the potential of time-resolved canopy reflectance 

measurements for robust assessments of foliar diseases in the context of resistance breeding. 

Keywords: high throughput phenotyping, field-based phenotyping, feature engineering, feature 

selection, spectral vegetation index 
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3.1 Introduction 

Hyperspectral remote sensing has shown significant potential for the rapid, non-invasive 

assessment of crop diseases at different scales, ranging from single leaves (e.g., Ashourloo et al., 

2014; Mahlein et al., 2010) to the canopy (e.g., Cao et al., 2013; Yu et al., 2018) to fields and 

regions (Wakie et al., 2016). Applications have been proposed primarily in the context of 

precision agriculture, but resistance breeding may equally benefit (Mahlein, 2016). The 

identification of novel sources of durable, quantitative disease resistance requires screening large 

and diverse germplasm collections under field conditions. Reflectance-based techniques hold the 

potential to reduce associated costs and allow for the screening of more genetic variation, if 

deployed on adequate phenotyping platforms (Aasen et al., 2018; Aasen and Bolten, 2018; 

Kirchgessner et al., 2017). This may enable indirect selection in early breeding generations and 

facilitate the identification of novel sources of resistance. 

However, to benefit crop breeding, new methods must accurately estimate phenotypes for large 

numbers of diverse genotypes under field conditions (Araus et al., 2018; Araus and Cairns, 2014; 

Furbank and Tester, 2011). This represents a significant challenge because genotypic diversity 

and contrasting environmental conditions are major sources of variation in spectral reflectance. 

This variation arises mostly from (i) genotype morphology, canopy cover and canopy 3-D 

structure (Gutierrez et al., 2015; Haboudane et al., 2002; Jacquemoud et al., 2009; Zarco-Tejada 

et al., 2005), (ii) differences in genotype phenology and the timing of developmental transitions 

such as heading, flowering and senescence (Kipp et al., 2014; Pimstein et al., 2009; Stuckens et 

al., 2011) and (iii) reactions to other biotic or abiotic stresses, which may result in similar spectral 

responses as the disease of interest (Zhang et al., 2012). At present, effects of diseases on canopy 

reflectance are often investigated at specific points in time (see e.g., Cao et al., 2013; Yang, 2010; 

Yu et al., 2018). Such investigations have provided valuable but highly context-specific insights 

(i.e. specific to the genotype, growth stage and/or site and environment under study; see e.g., 

Delalieux et al., 2007; Zhang et al., 2012; Zheng et al., 2019). Accordingly, identified spectral 

features and corresponding thresholds or calibration curves are not sufficiently robust (i.e. 

universally applicable) for use in resistance breeding. Largely due to such difficulties, high 

throughput phenotyping of disease resistance under field conditions using hyperspectral 

reflectance is still elusive (Araus et al., 2018). 

Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici is a serious threat 

to wheat production in major wheat growing areas around the world (Orton et al., 2011; Torriani 

et al., 2015). The development of cultivars with improved resistance to this disease has become a 

significant objective in wheat breeding and constitutes a key component of STB management 

strategies (Brown et al., 2015; McDonald and Mundt, 2016; O’Driscoll et al., 2014). Several 

major resistance genes conferring near-complete resistance to certain Z. tritici isolates have been 

identified and used in commercial cultivars (reviewed by Brown et al., 2015). However, these 

genes are frequently overcome within a few years of their introduction due to the high 

evolutionary potential of Z. tritici populations (McDonald and Mundt, 2016). Genetic loci 

conferring broadly effective partial resistance are thought to be more durable than major 
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resistance genes (McDonald and Linde, 2002; McDonald and Mundt, 2016). However, sources 

of partial resistance are much more difficult to identify, as subtle differences in disease severity 

must be accurately quantified under field conditions, ideally over time.  

Automated image analysis has shown great potential to accurately quantify STB resistance and 

characterize different components of resistance in genetically diverse breeding material (Karisto 

et al., 2018; Stewart et al., 2016). However, such measurements are more labor-intensive than 

visual scorings and do not provide the necessary throughput to routinely screen large breeding 

trials over time. Some recent work has investigated the potential of reflectance-based techniques 

to detect and quantify STB non-destructively at the leaf and canopy level (Odilbekov et al., 2018; 

Yu et al., 2018). At the canopy level, the above-mentioned challenges are particularly pronounced 

in the case of STB, because epidemics frequently reach damaging levels and affect crop 

performance most during the grain filling phase (Bancal et al., 2007). Consequently, detection 

and quantification of STB must be achieved in fully developed canopies with a complex 

architecture and a clear delineation of STB and physiological senescence is essential for efficient 

selection.  

Recently, efforts have been made to increase the specificity of reflectance-based methods. For 

example, new spectral vegetation indices (SVIs) with improved specificity to diseases have been 

developed by several authors for various patho-systems (e.g., Ashourloo et al., 2014; Mahlein et 

al., 2013). Other work has demonstrated that SVI combinations may allow to differentiate 

between diseases (Mahlein et al., 2010) and to delineate disease symptoms and nitrogen 

deficiency in wheat (Devadas et al., 2015). Yu et al. (2018) investigated the potential of different 

spectral features to robustly estimate STB severity at the canopy level in a large population of 

genetically diverse wheat genotypes. Other work has demonstrated that the sequence of temporal 

changes in hyperspectral reflectance signatures at the leaf level may be disease-specific, allowing 

to differentiate between sources of biological stress (Mahlein et al., 2012, 2010; Wahabzada et 

al., 2015).  

Here, we aimed to achieve robust reflectance-based detection and quantification of STB under 

field conditions by exploiting changes in hyperspectral canopy reflectance over time. The basic 

rationale of the proposed approach is that pathogenesis consists in a specific and fixed sequence 

of events producing a constant outcome (i.e. disease symptoms). Accordingly, these events and 

outcomes should result in a specific and fixed sequence of changes in canopy spectral reflectance 

over time, irrespective of the genotype or environment under study. It seems highly likely that 

relying exclusively on this type of information increases the robustness of resulting estimations.  

To test the feasibility of this approach, we engineered spectral-temporal features based on 

hyperspectral time series measurements. These features are designed to capture relevant changes 

in reflectance over time whilst minimizing the effect of the known confounding factors discussed 

above. We put forward the following hypotheses: (H1) Confounding effects of contrasting 

morphology, canopy cover and canopy 3-D structure are strongly reduced, if only relative changes 

in reflectance over time at the level of individual plots are analyzed. (H2) Confounding effects of 

phenology can be reduced by using combinations of STB-sensitive and STB-insensitive spectral 
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features. Specifically, we hypothesize that several plant traits are relatively unaffected in their 

temporal dynamics by STB. Thus, related spectral features can be used as a baseline of changes 

in spectral reflectance over time, arising primarily from advancing crop phenology. This baseline 

can then be used to correct temporal patterns observed in STB-sensitive features for variation in 

phenology. Finally, we hypothesized (H3) that the sequence and the dynamics of STB-sensitive 

features is to a certain extent specific to this disease and not related to other biotic or abiotic 

stresses. 

Thus, the objective of this study was (i) to evaluate the potential of time-resolved hyperspectral 

reflectance measurements to detect and quantify STB infections, (ii) to delineate STB and 

physiological senescence and (iii) to estimate the robustness of the proposed method and hence 

its potential for breeding applications. 

3.2 Materials and Methods 

3.2.1 Plant Materials, Experimental Design, Phenology and meteorological data 

A field experiment was carried out in the field phenotyping platform (FIP, Kirchgessner et al., 

2017) at the ETH Research Station for Plant Sciences Lindau-Eschikon, Switzerland (47.449N, 

8.682E, 520 m a.s.l.; soil type: eutric cambisol) in the wheat growing season of 2017-2018. A 

subset of 18 bread wheat (Triticum aestivum) genotypes was selected from the GABI wheat panel 

(Kollers et al., 2013; complemented with Swiss cultivars) for contrasting levels of resistance to 

STB and for contrasting stay-green properties based on previous experiments at the same location 

(Anderegg et al., 2020; Karisto et al., 2018). The set comprised morphologically diverse 

genotypes (e.g. awned and unawned) and there were obvious differences in canopy structural 

parameters (e.g. flag leaf angle) among the selected genotypes (Figure S 7.1). The study was 

conducted as a two-factorial experiment in a split-plot design with the presence/absence of 

artificial pathogen inoculation as a whole-plot factor and genotype as a split-plot factor.  

Artificial inoculation with Z. tritici spore suspension was done on May 21, 2018. Z. tritici strains 

ST99CH_1A5, ST99CH_1E4, ST99CH_3D1, ST99CH_3D7 were used (Zhan et al., 2002; see 

also http://www.septoria-tritici-blotch.net/isolate-collections.html). Spores were grown for six 

days in 200ml of YSB liquid media (10g yeast extract and 10g sucrose in 1l water) in several 

flasks for each strain. The spore suspension was filtered and pooled together for each strain. Spore 

concentration was adjusted and spores suspensions of each strain were mixed to achieve 150ml 

of inoculum for each plot containing in total 106 spores/ml (2.5 x 105 sp/ml of each strain). 

Inoculum was sprayed in the evening into wet canopy of each plot.  

There were two replications for the whole-plot factor. On the same site, the entire GABI panel 

was also grown in two replicates (two spatially separated lots). One replication of the inoculated 

plots each was located in a row adjacent to a lot of the GABI panel, separated by one row sown 

with the resistant cultivar CH NARA (DSP, Delley, Switzerland). One replication of the non-

inoculated control plots each was spatially randomized within a lot of the GABI panel. The 

experiments were sown with a sowing density of 400 plants m-2 on Oct 18, 2017. The plots sown 

http://www.septoria-tritici-blotch.net/isolate-collections.html
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with the GABI panel (and thus control plots within it) were treated with fungicides on three 

occasions: (i) Input, Bayer (a mixture of sprioxamin at 300 g/liter and prothioconazole at 150 

g/liter) was applied with a dose of 1.25 liter/ha on 23 April, 2018 (BBCH 31), (ii) Aviator Xpro, 

Bayer (a mixture of bixafen at 75 g/liter and metconazole at 41.25 g/liter) was applied with a dose 

of 1.25 liter/ha on 14 May, 2018 (BBCH 51), and (iii) Osiris, BASF (a mixture of epoxiconazole 

at 56.25 g/liter and metconazole at 41.25 g/liter) was applied with a dose of 2.5 liter/ha on 28 

May, 2018 (BBCH 65). The inoculated control plots did not receive fungicide treatment. 

Temperature data was obtained from an on-site weather station. Rainfall data was obtained from 

a nearby weather station of the federal Swiss meteorological network Agrometeo 

(www.agrometeo.ch) located at ca. 250 m distance to the field trial. The temperature data was 

used to calculate growing degree-days (GDD) following 

𝑇𝑚𝑒𝑎𝑛𝑑 =
∑

𝑚𝑎𝑥𝑇𝑑.ℎ + 𝑚𝑖𝑛𝑇𝑑,ℎ

2 − 𝑏𝑎𝑠𝑒𝑇

24
 

𝐺𝐷𝐷 = ∑ 𝑇𝑚𝑒𝑎𝑛𝑑

𝑛

𝑑=1

  

where 𝑇𝑚𝑒𝑎𝑛𝑑is the mean temperature for day d after sowing, 𝑚𝑎𝑥𝑇𝑑,ℎand 𝑚𝑖𝑛𝑇𝑑,ℎare hourly 

maximum and minimum temperatures for day d after sowing and 𝑏𝑎𝑠𝑒𝑇 is the base temperature, 

set to 0°C. Heading date was recorded when 50% of the spikes were fully emerged from the flag 

leaf sheath (BBCH 59, Lancashire et al., 1991). BBCH scores within the main growth stages were 

linearly interpolated between assessment dates. Stay-green was assessed visually as described 

Table 3.1 Overview of wheat phenology, canopy reflectance measurements, visual scorings and samplings. 

Visual incidence scorings of Septoria tritici blotch (STB), Leaf samplings (Fl1 = Second leaf, Fl0 = Flag 

leaf), average growth stage (GS), canopy stay-green (Stg Cnp) and Flag leaf stay-green (Stg Fl0) are 

reported. Days after inoculation (dai) and days after heading (dah) are indicated for each date. 

http://www.agrometeo.ch/
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previously (Anderegg et al., 2020), separately for the flag leaf and the whole canopy, following 

guidelines provided by Pask et al. (2012). Flag leaf stay-green was scored based on the portion 

of green leaf area on a scale from 0 (0% green leaf area) to 10 (100% green leaf area). An integer 

mean value was estimated for plants located in a central region of about 0.5 m × 0.5 m of each 

plot. Canopy stay-green was scored on the same scale by estimating the overall greenness of the 

plot when inspected at a view angle of approximately 45° considering the entire plot area. All 

scorings were done by the same person in 2-3 day intervals. An overview of measurements, 

scorings and samplings is given in Table 3.1. Growth stages were recorded until physiological 

maturity following the BBCH scale (Lancashire et al., 1991).  

3.2.2 Hyperspectral reflectance measurements 

Canopy hyperspectral reflectance in the optical domain from 350 to 2500 nm was measured using 

a passive non-imaging spectroradiometer (ASD FieldSpec® 4 spectroradiometer, ASD Inc., 

USA) equipped with an optic fiber with a field of view of 25˚. Five spectra were recorded as the 

average of 15 – 25 separate spectral records while moving the fiber optic once along the diagonal 

of each plot at a height of approximately 0.4 m above the canopy. A Spectralon® white reference 

panel was used for calibration before measuring canopy reflectance. The calibration was repeated 

after measuring one-half of a replicate (i.e. after 9 plots, approximately every 3-5 min). 

Measurements were carried out on 14 dates between heading and physiological maturity (i.e. 

between May 30 and July 12, 2018) resulting in an average of one measurement every three days. 

The maximum distance between two consecutive measurement dates was six days. In parallel, 

one lot of the GABI panel was measured on 13 dates. Here, the sensor calibration was repeated 

approximately every 10 min after completion of measurements on two rows. 

3.2.3 STB disease assessment 

The amount of STB in each plot was assessed on five dates (t1 – t5) between 16 days after 

inoculation (dai; June 6, 2018) and 42 dai (July 2, 2018). STB was quantified by combined 

assessments of disease incidence (i.e. the proportion of leaves showing visible symptoms of STB) 

and conditional disease severity (i.e. the amount of disease on symptomatic plants). Disease 

incidence was assessed visually for 30 plants per plot by inspecting the leaves of one tiller per 

plant. Incidence scorings were obtained per leaf layer. Conditional disease severity was then 

measured using automated analysis of scanned leaves exhibiting obvious disease symptoms. To 

this end, eight infected leaves were sampled per plot, transported to the laboratory and imaged on 

flatbed scanners following the method described by Stewart et al. (2016) and Karisto et al. (2018). 

However, to avoid interfering excessively with the development of the disease epidemic, leaf 

samples from inoculated plots were taken only if disease incidence was at least 1/3 (i.e. if at least 

10 out of 30 examined leaves exhibited symptoms of STB infection). Thus, no leaf samples were 

taken at t1, while at t2, second leaves from the top were sampled from a subset of plots. Starting 

at t3, all plots were sampled at the flag leaf layer. In contrast, from non-inoculated control plots, 

eight leaves were sampled without reference to their disease status due to very low disease 

incidence. Automated image analysis was then used to extract the percent of leaf area covered by 

lesions (PLACL) from the generated leaf scans using thresholds in the HSV color space and 
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functions of the python API of openCV V3.0.0 (https://opencv.org/). The precision of the 

automated image analysis method used here to assess STB has been demonstrated repeatedly in 

greenhouse and field-studies (Krishnan et al., 2018; Lendenmann et al., 2014; Meile et al., 2018; 

Stewart et al., 2018; Zhong et al., 2017). The procedure was optimized to minimize the effect of 

insect damage, powdery mildew infections and physiological senescence, particularly leaf-tip 

necrosis, on the derivation of PLACL. PLACL was extracted only from t2 and t3 scans, as leaves 

increasingly displayed physiological senescence at later time-points. The developed python script 

with detailed annotations can be retrieved from github (https://github.com/and-jonas/stb_placl). 

Finally, overall disease severity was calculated by multiplying disease incidence with conditional 

disease severity for inoculated plots, whereas it was directly extracted from the leaf scans for 

control plots. 

3.2.4 Data analysis 

All data analyses were done in the R environment for statistical computing (R version 3.5.2; R 

Core Team, 2018). Raw spectra were smoothed using the Savitzky-Golay smoothing filter 

(Savitzky and Golay, 1964) with a window size of 11 spectral bands and a third order polynomial, 

using the R package ‘prospectr’ V0.1.3. (Ramirez-Lopez and Stevens, 2014). Spectral regions 

comprising the wavelengths from 1350 nm to 1475 nm, from 1781 nm to 1990 nm and from 2400 

nm to 2500 nm were removed because of the very low signal-to-noise ratio resulting from high 

atmospheric absorption. Spectra were averaged for each experimental plot. Pre-processed spectra, 

consisting of reflectance values at 1709 wavelengths, were then used for time-point specific 

analysis as well as for time-integrated analyses, as described in the next sections. For ease of 

notation, the reflectance at a specific wavelength will be abbreviated by R followed by the 

wavelength in nm (e.g. R750). 

Benchmark time-point specific analysis 

The relationship between spectral reflectance and STB was studied on a diverse panel of wheat 

genotypes by Yu et al. (2018), but the analysis was limited to single time-points. We performed 

a comparable analysis for each measurement time-point as a benchmark and to estimate model 

transferability across time. Yu et al. (2018) reported improved prediction of STB severity metrics 

and classification accuracy when using the full spectrum rather than single SVIs. Therefore, our 

analysis focuses on these approaches. We tested two parametrically structured linear models 

(Partial Least Squares (PLS) regression and ridge regression) and two tree-based ensemble 

models (random forest regression and cubist regression) for their capability to predict STB 

severity metrics. For classification, Partial Least Squares Discriminant Analysis (PLSDA) was 

used (for details on these methods we refer to Kuhn and Johnson, 2013 and citations therein). 

Prior to modelling, spectral resolution was reduced to 6 nm by binning (i.e. by computing average 

values for six adjacent wavelengths) due to very high correlation of reflectance values at 

neighboring wavelengths. Following a standard procedure (Kuhn and Johnson, 2013), model 

hyperparameters were tuned using 10-times repeated 10-fold cross-validation. Thus, training and 

test datasets comprised 90% and 10% of the original dataset, respectively. The root mean square 

error of predictions (RMSE) and overall classification accuracy as performance metrics for 

regression and classification, respectively. The overall accuracy reflects the agreement between 
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the predicted and the observed classes. This agreement can also be expressed in terms of 

sensitivity and specificity of the model, with 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
#𝑝𝑙𝑜𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑 

#𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑 𝑝𝑙𝑜𝑡𝑠
 and 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
#𝑝𝑙𝑜𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 ℎ𝑒𝑎𝑙𝑡ℎ𝑦

#ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑝𝑙𝑜𝑡𝑠
. 

The simplest model with a performance within one standard error of the absolute best model was 

chosen as the final model. Variable importance for the projection (VIP) was computed for PLSDA 

models to estimate the importance of individual wavebands to predict the class (i.e. ‘healthy’ or 

‘diseased’). In the regression setting, two different training datasets were used for model fitting: 

the full dataset, including all control plots, and a dataset consisting of the inoculated plots only. 

When all control plots were used for model fitting, the RMSE and R2 of the resulting models was 

adjusted by removing the predicted and observed values for the control plots again, in order to 

avoid overly optimistic performance estimates resulting from a good prediction of disease severity 

in control plots. The R packages ‘caret’ V6.0.80 (Kuhn, 2008), ‘mixOmics’ V6.3.2 (Rohart et al., 

2017), ‘pls’ V2.7.0 (Mevik et al., 2018), ‘Cubist’ V0.2.2 (Kuhn et al., 2018), ‘ranger’ V0.10.1 

(Wright and Ziegler, 2017) and ‘elasticnet’ V1.1.1 (Hastie, 2018) were used for the analysis. 

Time-integrated analysis 

Summarizing H1-H3, we hypothesized that the analysis of temporal dynamics in hyperspectral 

reflectance signatures may facilitate a robust detection and quantification of STB across diverse 

wheat genotypes under field conditions. To evaluate these hypotheses, we condensed the 

hyperspectral time series into time series of SVIs, similar to the procedure described previously 

Figure 3.1 Extraction of dynamics parameters for one spectral vegetation index (SVI; here scaled values 

of the Plant Senescence Reflectance Index) and one experimental plot (here a non-inoculated control plot). 

The t85 parameter is the time point when fitted scaled SVI values decrease to 8.5; M is a parameter of the 

Gompertz model, representing the time point when the rate of decrease is at its maximum; the dur parameter 

represents the duration in thermal time between t85 and M; b is a parameter of the Gompertz model, 

representing the maximum rate of decrease. M and t85 are labelled ‘key points’, dur and b are labelled 

‘change parameters’. 



50 

 

(Anderegg et al., 2020). Thereby, we obtained a comprehensive summary representation of the 

hyperspectral dataset collected over time, interpretable in terms of plant physiology and canopy 

characteristics. The smoothness of SVI values over time was evaluated graphically and only SVIs 

showing a clear and interpretable temporal trend were maintained for further analyses. Values of 

the selected SVIs were scaled to range from 0 to 10, representing the minimum and maximum 

values recorded during the assessment period for the corresponding experimental plot, 

respectively. To simplify subsequent steps in the analysis, the scale for SVIs with increasing 

values over time was inverted. Measurement dates were converted to thermal time after heading 

by subtracting the plot-specific accumulated thermal time at heading from the accumulated 

thermal time at each measurement date. The scaled SVI values were then fitted against thermal 

time after heading for each experimental plot and SVI using a Gompertz model with asymptotes 

constrained to 0 and 10 (eq. 1). 

𝑆 = 10exp [− exp[−𝑏 ∗ (𝑡 − 𝑀)]] (eq. 1) 

where S represents the scaled SVI value, t is the accumulated thermal time after heading, b is the 

rate of change at time M and M is the accumulated thermal time after heading when the rate is at 

its maximum (Gooding et al., 2000). Eq. (1) was fitted using the R package ‘nls.multstart’ V1.0.0 

(Padfield and Matheson, 2018). Two types of dynamics parameters for each experimental plot 

and SVI were extracted from the resulting model fits: (1) ‘key time-points’, which are specific 

points in time when a certain criterion (e.g. a threshold) is met; and (2) ‘change parameters’, 

which represent the rate or duration of a process (Figure 3.1). We extracted two key time-points: 

the M parameter of the Gompertz model, and the time when fitted values decreased to 8.5 (t85). 

As change parameters we used the rate parameter b of the Gompertz model, and the duration 

between t85 and M (dur). While the b and M parameters of the Gompertz model fully describe the 

fitted curve, the t85 and dur parameters are affected by both Gompertz model parameters, thus 

representing a mix of both. The threshold was set to 8.5 because (i) this level efficiently captured 

Figure 3.2 Temporal dynamics of spectral vegetation indices (SVIs). Gompertz model fits for all 72 

experimental plots are shown. (A) A disease-insensitive SVI (here the Flowering Intensity Index, FII) 

displays the same temporal patterns for both treatments (inoculated and control). (B) A disease-sensitive 

SVI (here the Modified Chlorophyll Absorption Ratio Index, MCARI2) displays contrasting temporal 

patterns for control and inoculated plots. 
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observed variation during the late stay-green phase (Figure 3.2), (ii) it was little affected by 

somewhat unstable values during the stay-green phase observed for some SVIs, and (iii) for some 

SVIs, the initial highest values were not optimally represented by the Gompertz model.  

Next, SVIs least affected in their temporal dynamics by the presence or absence of STB infections 

were selected separately for each dynamics parameter as follows: for the key time-points (t85, M) 

by selecting SVIs with the smallest average difference between the parameter values of the 

inoculated and non-inoculated control plots; for change parameters (b, dur) by selecting SVIs 

with the smallest average deviance from 1 of the ratio of the change parameter values. For each 

dynamics parameter, a subset of eight SVIs with the smallest difference or ratio was selected. All 

other SVIs were considered to be significantly affected by STB infection. Figure 3.2 shows an 

example of an STB-sensitive and an STB-insensitive SVI. 

We then performed unsupervised subset selection (i.e. without considering the response) on both 

sets of SVIs (i.e. the STB-sensitive and STB-insensitive SVIs) with the aim of removing 

redundant SVIs. For each dynamics parameter (t85, M, dur, b), pairwise Pearson correlation 

coefficients between the parameter values derived from all used SVIs were computed. For change 

parameters, the maximum linear correlation allowed was set to r = 0.9, whereas for the key time-

points it was set to r = 0.95, as these were generally highly collinear. In cases where pair-wise 

correlations were higher than these threshold values, only one of the two SVIs was retained, 

preferring narrow-band SVIs over broad-band SVIs, SVIs with a specific physiological 

interpretation and SVIs developed specifically for use in wheat or barley canopies over more 

generic SVIs. Additionally, the goodness of the Gompertz model fit was evaluated qualitatively 

(i.e. graphically) and used as an additional selection criterion. The parameters were then combined 

by calculating differences between the key time-points derived from selected STB-sensitive and 

STB-insensitive SVIs and the ratios of the change parameters derived from STB-sensitive and 

STB-insensitive SVIs (Figure 3.3). These differences and ratios were calculated for all possible 

Figure 3.3 Derivation of the final key time points based predictors for disease classification and 

quantification. Key time points extracted from disease-sensitive and disease-insensitive spectral vegetation 

indices (SVI) are combined to isolate the effect of the disease from other effects (e.g. contrasting stay-

green) by calculating the differences (highlighted by red arrows). (A) Control, ‘healthy’ plot, (B) 

Inoculated, ‘diseased’ plot. For change parameters, the ratio, rather than the difference, was calculated. 
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pairs of STB-sensitive and STB-insensitive SVIs and were then used as features for (1) the 

classification of plots into non-inoculated healthy control plots and inoculated, diseased plots and 

(2) the prediction of STB severity in each plot. This final step was performed primarily to estimate 

whether a combination of features outperform single features in predicting STB severity (relevant 

with respect to H3), and to identify the most predictive features. Models and model fitting 

procedures were identical to the time-point specific analysis.  

Selection of spectral-temporal features 

While tree-based models are considered naturally resistant to non-informative predictors, and 

some perform feature selection intrinsically, the presence of highly correlated predictors makes 

the interpretation of resulting variable importance measures challenging (Strobl et al., 2007). 

Hence, we performed supervised feature selection by recursive feature elimination with cubist 

and random forest regression as base-learners, using a nested cross-validation approach. The 

dataset was resampled 30 times with an 80:20 split using stratified sampling. Samples were binned 

into eight classes based on percentiles of STB severity to ensure balanced evaluation datasets. 

Thus, for each resample, feature elimination was carried out on 80% of the data, and model 

performance was evaluated on the remaining 20% in 28 decreasing steps. Eliminated features 

were assigned a rank corresponding to the iteration after which they were excluded (i.e. those 

eliminated first had rank 28, whereas the feature retained as the last had rank 1).  In each iteration, 

the base-learner hyperparameters were tuned using 10-fold cross-validation (see Ambroise and 

McLachlan, 2002; Granitto et al., 2006; Guyon et al., 2002 for a detailed discussion of the 

methodology).  

Independent model validation 

Due to the relatively small size of the experiment (n = 72 experimental plots) we did not rely 

exclusively on the cross-validated training performance estimates for model evaluation. The 

performance and robustness of the developed models was further evaluated using data of 360 

wheat plots sown with 330 registered varieties obtained from one replication of the GABI panel. 

Low to intermediate disease incidence and very low conditional disease severity as well as late 

appearance of symptoms in all 36 control plots spatially randomized within the two replications 

of the panel suggested that STB disease should not have reached damaging levels in the vast 

majority of these plots. Therefore, these plots were considered as essentially disease-free. For all 

of these plots, spectral-temporal features were extracted from the 13 measurement time-points as 

described previously and were then used to generate a class label and class probabilities from the 

classification models as well as a prediction of disease severity from the regression models. To 

distinguish the performance measures obtained for held-out samples of the main experiment (i.e. 

the cross-validated training performance) from those obtained for the independent plots, these are 

referred to as the internal accuracy (accint) and the generalized accuracy (accgen), respectively. 

It is important to note that accuracy represents only model specificity in this case, as no 

independent plots with significant levels of STB were available. In a final validation step, the 

spatial distribution of class labels and severity predictions were examined by creating plots of the 

experimental design. Thus, we aimed to test the robustness of the models to heterogeneous field 

conditions. Field heterogeneity may affect plant physiology and thus hyperspectral reflectance 
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over time (e.g. through the development of local drought stress). The presence or absence of 

spatial patterns in model predictions can therefore be interpreted as an additional measure of 

model robustness.  

Validation of the most predictive feature in a contrasting environment 

Spectral-temporal features were engineered specifically to minimize effects of genotype and 

environment. However, it is still conceivable that relative changes in spectral reflectance over 

time are also affected by environmental conditions. This may result in the extraction of 

environment-specific relationships between spectral-temporal features and disease severity. We 

therefore evaluated the relationship between the most predictive spectral-temporal feature and 

STB severity using data from a separate year. This dataset enables a rigorous validation of the 

spectral-temporal features as predictors of STB for several reasons: (i) it originates from a 

strongly contrasting environment with wet and cool weather conditions, (ii) sowing parameters 

were different, likely affecting canopy structural parameters, (iii) only natural variance in disease 

resistance was observed, as artificial inoculations were not performed, (iv) a large number of 

morphologically, phenologically and structurally diverse genotypes not contained in the training 

population were assessed, (v) reflectance measurements were not carried out with a sufficient 

frequency to allow fitting of parametric models, and we had to use linear interpolations of 

individual measurement time points instead, losing the advantage of the smoothing effect, finally 

(vi) sampling procedures to quantify STB severity were not optimal for our purpose. As 

parametric models could not be fitted, the time point when interpolated values decreased below 

50% of their initial value (t50) was extracted as an equivalent to the M parameter of the Gompertz 

model. For more details on datasets and experiments we refer to Karisto et al. (2018) and 

Anderegg et al. (2020). 

3.3 Results 

3.3.1 Development of STB disease 

Towards the end of the vegetation period, all inoculated plots had substantial levels of STB. In 

contrast, non-inoculated control plots were essentially disease-free until late in the vegetation 

period. Thus, artificial inoculations were effective in all plots and the dataset was suitable for 

testing the feasibility of the classification of plots into healthy and diseased canopies based on 

reflectance spectra or spectral-temporal features. Furthermore, large variation in the levels of STB 

could be observed among the inoculated plots, probably attributable to different levels of 

resistance, with the largest variation observed during late stay-green (i.e. at t3, June 19, 2018, 

compare with Figure 3.4B). Thus, the dataset was also suitable for testing the feasibility of disease 

quantification using reflectance spectra or spectral-temporal features. 
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High levels of STB in inoculated plots were the result of both high incidence and high conditional 

severity, particularly at t4 and t5 (Figure 3.5A, Table 3.2). Visual assessments of scanned leaves 

suggested a high conditional severity in all inoculated plots at these late stages. In contrast, the 

non-inoculated control plots displayed very low levels of STB even at late stages. STB incidence 

increased in some plots at t4 and t5, but visual assessments of the sampled leaves demonstrated 

very low conditional disease severity even at t5. Since the subset of genotypes used for the 

experiment also included some highly susceptible genotypes, this suggests that natural infections 

did not cause agronomically significant levels of STB in this experiment. This was likely the 

result of fungicide applications and the very low rainfall in the period from May to July. Rainfall 

in this period totaled 178 mm, which represents 52% of the average of 343 mm in the reference 

period 1981–2010 (MeteoSwiss, 2019). 

Figure 3.4 Symptoms of Septoria tritici blotch (STB) and associated spectral reflectance characteristics 

over time. (A) Date-wise averaged reflectance spectra of healthy canopies (upper panel) and of inoculated, 

diseased canopies (lower panel). Colors approximate the average color of the vegetation on the 

corresponding measurement date (estimated based on average visual canopy senescence scorings). The 

thick black spectra mark the average reflectance spectra measured at t3 (i.e. June 19, 2018). (B) Images of 

two inoculated plots, taken on June 16, 2018. The genotype in the upper panel was highly resistant to STB, 

developing visible symptoms only later, whereas the genotype in the lower panel was highly susceptible 

and displays severe symptoms of STB. Images were captured using the Field Phenotyping Platform (FIP, 

Kirchgessner et al., 2017). (C) Values of the Structure Insensitive Pigment Index (SIPI) for both treatments 

on three measurement dates. The plots shown in panel B are contained in this boxplot (indicated by the red 

box). No obvious signs of apical senescence were visible by June 20, 2018 in any of the healthy control 

plots, but senescence started shortly after. 
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STB incidence was low at t1, both in inoculated and in control plots. Symptoms were apparent at 

significant levels only on lower leaf layers of inoculated plots, whereas flag leaves were 

essentially disease-free in both treatments. At t2, there was approximately a five-fold increase in 

STB incidence at the flag leaf and subtending leaf layer in many inoculated plots (Figure 3.5A, 

Table 3.2). At t3, STB incidence on flag leaves reached very high levels in most inoculated plots, 

and PLACL reached an average of 17%, indicating a moderate conditional STB severity on 

average. Thus, the observed differences in STB severity among inoculated plots is primarily a 

result of differences in conditional severity, with PLACL ranging from 0% to 38% (Figure 3.5B). 

In control plots, almost no lesions were detected. There were some signs of physiological 

Figure 3.5 Development of Septoria tritici blotch (STB) disease. (A) STB incidence at five different 

assessment dates for non-inoculated ‘healthy’ control plots (ctrl) and for artificially inoculated ‘diseased’ 

plots (dis). In diseased plots, STB incidence on flag leaves was assessed at all time points, whereas for the 

control plots, it was assessed only from t3 onwards. Filled boxes represent STB incidence on flag leaves; 

open boxes represent STB incidence on lower leaf layers. 1)Open boxes represent STB incidence on third 

leaves from the top, 2)open boxes represent STB incidence on second leaves from the top. (B) Conditional 

disease severity measured as percent leaf area covered by lesions (PLACL) at t3 (June 19, 2018) for eight 

flag leaves per plot for all 72 experimental plots. 

Table 3.2 Summary of Septoria tritici blotch (STB) assessments. STB incidence and conditional severity 

was assessed at the level of individual leaf layers, namely the flag leaf (Fl0), the penultimate leaf (Fl1) and 

the ante-penultimate leaf (Fl2). Conditional severity was measured as percent leaf area covered by lesions 

(PLACL). Severity was calculated as the product of STB incidence and conditional severity. Values are 

reported separately for non-inoculated control plots and inoculated plots, separated by a slash. Mean values 

across all plots are reported, with minima and maxima in brackets. Disease assessments were carried out 

on five dates (t1 – t5) covering the growth phases of 15 days after inoculation (dai) to 41 dai. 
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senescence on sampled flag leaves at t3, but these were mostly limited to yellowing of the entire 

leaves and/or leaf tip necrosis. As there was ample variation for disease severity at t3 among the 

inoculated plots, and physiological senescence did not significantly affect extraction of PLACL 

from leaf scans, this time-point was chosen as a measure of overall disease severity and used as 

response variable in the time-integrated analysis. 

3.3.2 Effects of STB and phenology on canopy spectral reflectance 

Over the assessment period, observed changes in spectral reflectance were similar for diseased 

and healthy canopies (Figure 3.4A), showing the typical pattern of senescing canopies. However, 

an obvious effect of STB infections consisted in an early marked decrease in reflectance in the 

NIR not observable in healthy canopies. This decrease preceded the appearance of physiological 

senescence and was observable in the pre-symptomatic phase of STB infections. Furthermore, an 

early increase in reflectance in the VIS, especially for wavelengths greater than 535 nm, was 

observed. An early increase in SWIR reflectance in diseased canopies compared to healthy 

canopies was also discernable. However, these differences were small compared to changes in 

reflectance over time.  

Canopy spectral reflectance seemed to remain relatively constant throughout the stay-green phase 

in healthy canopies (Figure 3.4A, upper panel). However, the examination of SVI values over 

time revealed significant changes in canopy reflectance during this period (Figure 3.4C). 

Importantly, variation caused by advancing phenology (i.e. within-treatment variation in Figure 

4C) was prominent with respect to STB-induced variation (i.e. between-treatment variation in 

Figure 3.4C). This is true even for the structure insensitive pigment index (SIPI), which has been 

proposed as a potential surrogate for crop disease under field conditions (Yu et al., 2018; Figure 

3.4C). For several other spectral indices, initial variation as well as variation over time was even 

larger (data not shown). 

3.3.3 Time-point specific full-spectrum analysis 

Binary classification into healthy and diseased canopies using reflectance spectra 

PLSDA models correctly classified all held-out samples in most resampling iterations, resulting 

in classification accuracies accint ≥ 0.96 for all time-points (Figure 3.6). The optimal number of 

components used by the PLSDA models (determined via repeated CV) was between 5 and 17, 

depending on the time-point. Correct class labels were obtained for all held-out samples even for 

the first time-point at 9 dai, when no visual symptoms of STB were present in most experimental 

plots. However, prediction accuracies for the independent GABI plots were distinctly lower, 

particularly for models calibrated with data from early and late measurement time-points (data 

not shown). A satisfactory performance on independent plots was observed for models calibrated 

with data from the late stay-green phase (i.e. between 2018-06-10 and 2018-06-22), which 

correctly predicted the independent plots as disease-free in most cases (accgen ≥ 0.88 in all cases).   

VIP scores quantify the importance of wavebands to predict the response, i.e. to generate the class 

label (‘healthy’ or ‘diseased’) or to predict STB disease severity here (Yu et al., 2018). VIP scores 

for the first three components showed some general patterns across time-points (Figure 3.6). The 
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near-infrared region (NIR, 750-1300 nm) and the short-wave infrared region (SWIR; 1475-1781 

nm and 1991-2400 nm) had a relatively high importance (Figure 3.6). However, the relative 

importance of the SWIR compared to the NIR drastically changes over time. The importance of 

the SWIR is comparably low during early stay-green, but its importance greatly increases and 

exceeds the importance of the NIR during late stay-green. Furthermore, the red-edge (RE, 680-

750nm) had a low importance at the beginning, but is increasingly important at later stages, as 

indicated by a gradual left-shift of the peak in VIP at the NIR for later time-points. Finally, at 

early time-points, there is a significant contribution of wavebands in the visible range (VIS, 400-

700nm). This feature is somewhat transformed over time, resulting in a narrow peak in VIP at 

wavelengths around 535nm at intermediate time-points. Towards later time-points, this feature 

broadens again.  

Figure 3.6 Variable importance for the projection (VIP) of the time point specific partial least squares 

discriminant analysis (PLSDA) models for the first three components (comp.1 – comp.3). The total number 

of components used by the model (ncomp), the prediction accuracy for plots included in the experiment 

(accint) and prediction accuracy for the independent test set comprising >300 plots of an adjacent experiment 

measured on the same day or with a maximum delay of one day (accgen) are also reported for each model. 

The earliest and latest time points are not represented. The grey shaded area represents the spectral range 

between 680 nm and 750 nm, i.e. the red edge. The horizontal black line marks a commonly used threshold 

value for an important contribution (VIP = 0.8). 
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Given the common patterns but also significant differences across time-points, we aimed to 

evaluate the robustness of the developed models to temporal changes in reflectance induced by 

advancing crop phenology, as differences in crop phenology are typically present among 

genotypes in breeding programs. Model performance across time is shown in Figure 3.7. The 

performance of models calibrated with data from early and late time-points quickly deteriorates. 

In contrast, models calibrated with data of intermediate time-points show a higher stability over 

time, although the performance of some models still decreases rather fast. The models created 

using data from 2018-06-10 and 2018-06-19 were most robust over time, and produce accurate 

class predictions over a period of about 10 days. It is essential to note that these performance 

estimates are derived from the same plots used to calibrate the models, although at different time-

points. Given the lower accgen compared to the accint (see above), significantly decreased 

performance should be expected on entirely independent plots (different genotypes). 

Regression models to quantify disease severity using reflectance spectra 

Cubist regression models performed best in predicting disease severity. The smallest RMSE was 

obtained for models trained on data from inoculated plots only (RMSE = 0.061, R2 = 0.67; Figure 

3.8). The underlying model was simple, building on only four variables (R748, R766, R892 and 

R1084) in a single model tree. Model performance was slightly decreased when all available data 

was used for model fitting (RMSEadj = 0.066, R2
adj = 0.55). Here, significant improvements were 

achieved by increasing model complexity. Validation on the largely disease-free plots of the 

GABI panel suggested a high specificity of the model (i.e. disease levels on healthy plots were 

predicted to be virtually zero for almost all plots). This was true irrespective of whether the control 

Figure 3.7 Overall prediction accuracy of PLSDA models across time. Binary classification models were 

calibrated for each measurement time point, using reflectance spectra collected on this date as predictors 

and the known class label (i.e. “diseased” or “healthy”) as response. The performance of these models was 

evaluated on held out samples of the same date as well as on all plots of the subsequent measurement time 

points as the overall accuracy of classification. Colored lines track the performance of each date-specific 

model across time (e.g. the left-most red line represents the performance of the model calibrated with 

spectra obtained on May 30, 2018, when tested on the same date, and for all subsequent measurement 

dates). The broken black line indicates a performance of 0.5, i.e. the performance of a random guess of the 

class label. 
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plots were included in the training dataset or not. PLS and ridge regression performed similarly 

(RMSE = 0.063, R2 = 0.64), whereas random forest regression performed comparably poorly 

(RMSE = 0.087, R2 = 0.46). A strong systematic bias was observed in predictions of the random 

forest, with low values of disease severity overestimated and high values underestimated.  

3.3.4 Time-integrated analysis using combinations of spectral vegetation indices 

Engineering of spectral-temporal features as new predictors 

Fifty-seven of the tested SVIs were deemed amenable for analysis of their temporal dynamics in 

the proposed framework (i.e. they displayed a clear and interpretable temporal trend, which could 

be represented using a Gompertz-type model). For seven of these, the last three measurements 

were excluded prior to modelling their temporal dynamics, as values increased again in later 

stages. After subset selection, seven and 13 SVIs were retained as insensitive and sensitive SVIs, 

respectively, for the key time-points. For change parameters, four and twelve SVIs were retained 

as insensitive and sensitive SVIs, respectively. In total, 24 distinct SVIs were retained, of which 

ten sensitive and 14 insensitive SVIs. From their fitted dynamics, a total of 278 (i. e. 4 insensitive 

SVIs * 12 sensitive SVIs * 2 parameters + 7 insensitive SVIs * 13 sensitive SVIs * 2 parameters) 

spectral-temporal features were generated as pairwise combinations of dynamics parameters 

obtained from sensitive and insensitive SVI. These features were then used for classification and 

regression, as described below.  

  

Figure 3.8 Predicted vs. observed Septoria tritici blotch (STB) severity levels of 36 artificially inoculated 

wheat plots. Mean and standard error of predictions are shown. STB severity was measured on flag leaves 

using a combination of visual incidence scorings and scans of flag leaves exhibiting disease symptoms. 

Predictions were obtained from a cubist regression model based on the reflectance spectrum of the canopies 

measured on June 19, 2018. The broken red line represents the 1:1 line, the blue line represents the least 

squares line of the linear regression of predicted vs. observed values, the gray area represents the 95% 

confidence interval of the least squares line. 
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Binary classification into healthy and diseased canopies using spectral-temporal features 

A PLSDA model using 4 components achieved a classification accuracy accint = 1.00, suggesting 

correct classification of each experimental plot as healthy or diseased canopy based on spectral-

temporal features. In the external validation, the model achieved accgen = 0.86, thus correctly 

classifying 304/353 plots as healthy. This is slightly less accurate than the best time-point specific 

models (Figure 3.6).  

Regression models to quantify disease severity using spectral-temporal features 

Overall, disease severity predictions from spectral-temporal features were similarly accurate as 

those obtained from time-point specific models based on reflectance spectra. The lowest RMSE 

was achieved when no control plots were used as training data using the PLS algorithm (RMSE 

= 0.068, R2 = 0.71). Differences in performance among algorithms were smaller than in time-

point specific analyses, but the random forest performed relatively poorly also in this case (RMSE 

= 0.076, R2 = 0.62). Both tree-based models, and particularly the random forest, produced 

systematically biased predictions, which was not observable for PLS and ridge regression. In 

contrast to the time-point specific analyses, validation on the largely disease-free plots of the 

GABI panel suggested the necessity to include the control plots in the training data in order to 

obtain accurate predictions for low levels of disease, except for ridge regression. When these were 

included, tree-based models produced good estimates of the low disease-levels, whereas PLS and 

Figure 3.9 (A) Predicted vs. observed Septoria tritici blotch (STB) severity levels of 36 artificially 

inoculated wheat plots. Mean and standard error of predictions are shown. Data from all experimental plots 

(n = 72) was used to tune/train the model, but reported performance estimates are based only on artificially 

inoculated plots (n = 36) in order to avoid overly optimistic performance estimates resulting from a good 

prediction of disease severity in control plots. STB severity was measured on flag leaves using a 

combination of visual incidence scorings and scans of flag leaves exhibiting disease symptoms. Predictions 

were obtained from a cubist regression model based on spectral-temporal features for the same 36 plots and 

36 non-inoculated control plots sown with the same genotypes. The broken red line represents the 1:1 line, 

the blue line represents the least squares line of the linear regression of predicted vs. observed values, the 

gray area represents the 95% confidence interval of the least squares line. (B) Spatial distribution of 

predicted STB severity levels of ~360 largely disease-free plots of the GABI wheat panel, grown next to 

the plots used as training dataset. White fields correspond to the plots contained in the training dataset. 
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ridge regression still predicted disease severity of > 0.05 in a significant number of plots. The 

inclusion of the control plots resulted in a lower systematic bias of the tree-based predictions, 

while only marginally decreasing model performance (RMSEadj = 0.074 and RMSEadj = 0.076 for 

cubist and random forest, respectively; Figure 3.9A). Importantly, the inclusion of the control 

plots also strongly reduced or eliminated spatial patterns in predictions of the GABI panel, except 

for ridge regression (Figure 3.9B). Thus, cubist regression seemed to perform best when taking 

all evaluated aspects of model performance into account.  

  

Table 3.3 Spectral vegetation indices (SVI) identified to be insensitive in their temporal dynamics to the 

presence or absence of Septoria tritici blotch (STB) disease. For each dynamics parameter, a subset of eight 

SVI with the smallest difference (diff, GDD) or ratio (dimensionless) of the parameters between treatments 

was selected. The reported SVI were retained after subset selection based on pairwise correlations. The 

mean pairwise correlation (corr) is reported per dynamics parameter. Values in brackets report the 

minimum and maximum pairwise correlation. 
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Feature selection and validation 

Feature selection was performed to identify the most important spectral-temporal features and to 

estimate the benefit of adding additional features. The difference between M derived from the 

modified chlorophyll absorption ratio index (MCARI2) and the structure insensitive pigment 

index (SIPI) was consistently the most informative spectral-temporal feature (Table S 3). The 

MCARI2 was designed to estimate green leaf area index in crop canopies, whereas the SIPI 

measures pigment concentrations and ratios in leaves. This feature was retained as the last in all 

30 resamples by the random forest and in 29 resamples by cubist. Following features had much 

increased ranks. The most influential features were all based on the M parameter of the Gompertz 

model, whilst other parameters were clearly less important. In particular, differences in change 

parameters did not seem to be informative of disease severity. Most selected features used the 

SIPI, R780/R740 and PRInorm indices as STB-insensitive index, even though they seemed to be 

somewhat more affected by the presence of disease than the FII on average (Table 3.3). There 

was little evidence for the existence of complementary information among the spectral-temporal 

features, as model performance was affected little by the sequential removal of features (Figure 

3.10). However, the small sample size resulted in very high variance of the performance estimates 

obtained from the test set and contrasting patterns between the cross-validated training and the 

test performance estimates (Figure 3.10). The top-selected spectral-temporal feature was found to 

be informative of STB severity in the separate experiment carried out under contrasting 

environmental conditions (Pearson r = 0.53, p < 0.001, Figure 3.11). 

Figure 3.10 Performance profile of models based on spectral-temporal features to predict STB severity as 

a function of the number of spectral-temporal features used. Mean performance and standard deviation are 

shown based on 30 resamples of the data 
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3.4 Discussion 

3.4.1 Limitations of time-point specific analyses 

Current reflectance-based approaches to high throughput phenotyping of crop diseases under field 

conditions suffer from a lack of specificity and from insufficient robustness to genotypic diversity 

and environmental variability (i.e. context specificity). This problem has previously been 

described in detail with regard to growth stages of the crop, different phases in the pathogenesis 

and the presence of other stresses (Devadas et al., 2015; Zhang et al., 2012; Zheng et al., 2019).  

Our results prominently illustrate context-specificity of the relationship between spectral 

reflectance and disease. Firstly, variation on a specific date in potentially disease-sensitive 

spectral features, such as the SIPI (see Bajwa et al., 2017; Yu et al., 2018), is quickly overridden 

by variation caused by advancing phenology (Figure 3.4C), illustrating the difficulty in defining 

thresholds or calibration curves. Secondly, unstable VIP values of single wavelengths in PLSDA 

models, systematic shifts in VIP patterns (Figure 3.6) and limited model applicability over time, 

even for the plots contained in the training dataset (Figure 3.7), illustrate marked short-term 

changes in the relationship between STB and spectral reflectance. Thirdly, the decreased 

classification accuracy on independent test plots (Figure 3.6) indicates context-specificity related 

to the effect of genotypes and, possibly, field heterogeneity.  

Figure 3.11 Septoria tritici blotch (STB) severity as measured by the percent leaf area covered by lesions 

(PLACL) plotted against the spectral-temporal feature identified as most predictive of STB severity (the 

difference between t50 extracted from the MCARI2 and SIPI spectral vegetation indices, expressed in 

growing degree days). The Pearson product moment correlation coefficient and the p-value of the linear 

correlation are based on 592 experimental plots. Data was collected in a separate experiment conducted in 

2016 without artificial inoculation. In this experiment, 330 genotypes were grown in two replicates, but 

some plots were excluded from the analysis due to heavy lodging. 
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There was a short period during late stay-green when classification models were transferable 

between time-points to some extent (Figure 3.6). This can be explained by the relatively 

synchronized appearance of moderate to high levels of STB in front of the relatively stable 

background of a stay-green canopy. In this intermittent phase, the signal caused by STB is strong 

compared to the noise caused by genotypic diversity and in-field measurements (see also Figure 

3.4A). Nonetheless, the regression model for STB severity based on reflectance spectra is still 

context-specific, as reflectance in the NIR (used as predictors) gradually decreases during the 

stay-green and senescence phase irrespective of the presence of STB (Figure 3.4A). NIR 

reflectance is also strongly affected by genotype morphology, canopy 3-D structure and canopy 

cover (Gutierrez et al., 2015; Jacquemoud et al., 2009) and is therefore not specific to STB if 

analyzed on a particular point in time. In addition, time-point specific models highlight the 

potential of detecting STB in different phases, using different spectral features. This potential 

would be left unused if only a short period would be targeted. 

3.4.2 Potential of temporal changes in reflectance to detect and quantify STB 

Due to the strong limitations of models based on reflectance spectra, we evaluated the potential 

of exploiting temporal changes in reflectance for disease detection and quantification instead. 

Models based on spectral-temporal features were characterized by a somewhat lower performance 

compared with models trained on reflectance spectra of a specific time-point (Figure 3.7, Figure 

3.8). Nevertheless, classification accuracies were similar to the time-point specific PLSDA 

models, and regression models suggested that spectral-temporal features were also informative of 

disease severity. This is encouraging, particularly given the strongly contrasting morphological, 

canopy structural and stay-green properties of the genotypes comprised in the experiment. 

3.4.3 Selected spectral indices and resulting spectral-temporal features  

Even though high levels of STB developed during the stay-green phase in most artificially 

inoculated plots (Figure 3.4), several SVIs could be identified which displayed similar temporal 

patterns across treatments (Table 3.3). In particular, the flowering intensity index (FII; Stuckens 

et al., 2011), i.e. the normalized difference of R475 and R365, was found to be almost unaffected 

by STB (Figure 3.2A). In a previous study, we found that early physiological senescence of wheat 

canopies results in only (proportionally) small increases in reflectance at wavelengths shorter than 

500 nm (unpublished data). Strong increases were observable only towards later stages of 

senescence. The observed insensitivity of the FII to STB likely results from the fact that STB 

affects only parts of the vegetation, initially mostly lower leaf layers, while significant amounts 

of healthy green tissue remain. Thus, FII values should change significantly only with the onset 

of rapid apical senescence, encompassing a generalized loss of green leaf area. It has been 

suggested that STB does not accelerate or anticipate apical senescence under a range of 

environmental conditions (Bancal et al., 2016). This is in line with the observed insensitivity of 

the FII to STB. Interestingly, the dynamic pattern of the structure insensitive pigment index (SIPI; 

Penuelas et al., 1995) was also found to be highly insensitive to STB. In contrast, this SVI was 

previously suggested as a potential surrogate for crop disease under field conditions (Bajwa et al., 

2017; Yu et al., 2018). This Index was developed at the leaf scale to maximize sensitivity to the 
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ratio between carotenoid and chlorophyll a concentrations (Car/Chl a ratio), while minimizing 

the effect of leaf surface and mesophyll structure (Penuelas et al., 1995). Provided the principles 

underlying the SIPI hold also for canopy level reflectance, a low sensitivity of the dynamic pattern 

to the presence of STB would be expected, as there seems to be no reason to expect a significant 

change at canopy level of the Car/Chl a ratio due to STB. STB causes the appearance of localized 

necrotic lesions; however, a general increase in the Car/Chl a ratio is not expected, unless STB 

accelerates or anticipates apical senescence, which does not seem to be the case (Bancal et al., 

2016). The PRInorm was also among the most STB-insensitive SVIs. This SVI is based on the 

photochemical reflectance index (PRI), initially employed to measure changes in the relative 

levels of pigments in the xanthophyll cycle (Gamon et al., 1992). Over larger temporal scales, the 

PRI was shown to be strongly responsive to the Car/Chl ratio (Sims and Gamon, 2002). Zarco-

Tejada et al. (2013) modified this SVI to decrease the effect of reduced canopy leaf area resulting 

from water stress. Thus, its insensitivity to STB can probably be explained in an analogous 

manner as for the SIPI.  

The temporal patterns of water-sensitive SVIs such as the water index (WI; Peñuelas and Inoue, 

1999) and the normalized difference water index (NDWI; Gao, 1996) were found to  be highly 

sensitive to STB. Similarly, the disease water stress index (DSWI; Apan et al., 2004), which uses 

information from the water-sensitive SWIR and the NIR, was strongly affected in its temporal 

dynamics. In particular, water sensitive SVIs decreased much earlier for inoculated than for 

control plots, and the decrease occurred more gradually than in healthy plots (data not shown). 

This is in line with findings by Yu et al. (2018), who reported both the WI and NDWI to 

discriminate best between STB-diseased and healthy canopies in early stages of disease 

development. Several SVIs using reflectance in the RE and NIR also showed strongly contrasting 

temporal patterns (e.g. DSWI, NDVI, PSRI, and VI700). Similar to the SIPI, the plant senescence 

reflectance index (PSRI; Merzlyak et al., 1999) is highly sensitive to the Car/Chl ratio at the leaf 

level. However, NIR reflectance is used to normalize the difference between R677 and R500. It 

seems highly questionable whether the PSRI is particularly sensitive to the Car/Chl ratio in 

diverse germplasm at the canopy level. Variation in the PSRI seems to arise primarily from 

differences in canopy structure among genotypes and from canopy structural changes over time 

(Anderegg et al., 2020). The modified chlorophyll absorption ratio index (MCARI2; Haboudane 

et al., 2004), sensitive to green leaf area index, also showed strongly contrasting dynamic patterns 

(Figure 3.2B). The healthy-index (HI; Mahlein et al., 2013) was developed to separate healthy 

sugar beet leaf tissue from tissues affected by various foliar diseases. The prominent use of the 

RE by this index suggests that in our case, HI values are mostly driven by canopy structure and 

to a lesser extent chlorophyll absorption. Overall, our results thus suggest that SVIs sensitive to 

leaf internal structure and canopy structure are strongly affected by the presence of STB. This 

effect has been previously described for various patho-systems (e.g., Yu et al., 2018; Zhang et 

al., 2012; Zheng et al., 2019).  

In summary, it seems that many of the derived spectral-temporal features can be interpreted as 

robust measures of STB-induced temporal changes in leaf internal structure, canopy structural 

parameters and canopy water content. These are obtained by normalizing the temporal dynamics 
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of corresponding SVIs via the estimation of temporal changes in pigment ratios and reflectance 

at short wavelengths centered around 465 nm, likely representing physiological apical 

senescence. Thus, spectral-temporal features seem to well represent our hypothesis H2, as STB-

affected plant and canopy traits are expressed relative to phenology-related traits. 

3.4.4 Robustness of spectral-temporal features 

As far as quantifiable in the framework of this experiment, models based on spectral-temporal 

features were robust to variation in genotype morphology, phenology, canopy cover and canopy 

3D-structure as well as genotype-specific temporal changes thereof. Accurate predictions were 

obtained also for 330 diverse genotypes comprised in the GABI panel and grown in a large field 

experiment, suggesting robustness of the method to varying growing conditions arising from field 

heterogeneity (Figure 3.9B). The most predictive feature was also among the best predictors of 

STB severity in a different experiment. The observed correlation is very similar to the correlations 

reported by Yu et al. (2018) for simple SVI measured at individual time points, however with the 

advantages discussed throughout the manuscript. The results of this final validation likely 

underestimate the power of the developed approach for several reasons as described in section 

3.2.4.5, but offer evidence for the transferability of our results across sites, environments, 

genotypes and agricultural practices.  

Results from feature selection suggested that a single spectral-temporal feature (i.e. the difference 

between M derived from MCARI2 and SIPI), relating structural changes in leaves and canopies 

to senescence-induced changes in pigment composition, was sufficient to achieve the 

performance illustrated above. Other stresses occurring during grain filling such as terminal 

drought stress and nitrogen shortages are likely to result in a similar decrease in green leaf area 

index. However, these stresses are also known to accelerate physiological senescence (Bogard et 

al., 2011; Distelfeld et al., 2014; Martre et al., 2006). Therefore, we speculate that the developed 

models may be moderately robust against the effect of common other stresses despite their 

simplicity. Yet, we conclude that our hypothesis H3 (i.e. that the combination of several spectral-

temporal features representing the unique sequence and dynamics of separate events during 

pathogenesis could increase the specificity of the method) remains to be confirmed in larger 

experiments including other stress factors. In particular, other diseases causing similar symptoms 

and prevalent in the same developmental stage of the crop may have similar effects on the 

temporal evolution of hyperspectral reflectance. Large multifactor experiments will be required 

to judge the potential of the proposed approach to detect, quantify and delineate individual 

necrotrophic foliar diseases. Finally, it should be noted that some effects of fungicide applications 

on canopy reflectance characteristics cannot be excluded in our experiment. However, a fungicide 

formulation without greening effect was used for the last treatment at BBCH 65. It seems unlikely 

that this or earlier fungicide applications significantly affected the temporal dynamics of canopy 

reflectance. 
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3.4.5 Multiple spectral vegetation indices to exploit temporal dynamics in 

reflectance 

A key component of the proposed approach consists in summarizing hyperspectral data in terms 

of multiple SVIs and modelling of their temporal dynamics. Though this may result in the loss of 

some relevant information contained in reflectance spectra (Pauli et al., 2016), the use of SVIs 

presented a number of advantages here: (i) noise in temporal patterns was much reduced 

compared to reflectance values at single wavelengths, facilitating the fitting of parametric models; 

(ii) the inevitable subset selection step preceding feature combination could be based on objective 

criteria related to the form and purpose of SVIs; (iii) many of the used SVIs were designed 

specifically to maximize responsiveness to certain vegetation properties while minimizing the 

effect of common confounding factors, which is likely to also increase the robustness of derived 

spectral-temporal features (see e.g., Haboudane et al., 2004; Penuelas et al., 1995); and finally 

(iv) the procedure results in a summary of the hyperspectral dataset that is interpretable in terms 

of plant physiology and canopy characteristics, which also holds true for derived spectral-

temporal features. Fitting parametric models to scaled SVI values may smooth out measurement 

errors related to single measurement dates, resulting for example from varying sun angle at 

measurement or short-term variation in illumination conditions. Thus, scaling SVI values and 

modelling their temporal dynamics reduces the effect of confounding factors on initial reflectance 

spectra and minimizes the effect of errors related to single measurements in the series. 

3.4.6 Context and scope 

In this study, we used a non-imaging spectroradiometer and manual feature engineering for 

disease detection and quantification. A high spatial resolution of imaging sensors has been 

deemed critical for disease detection, identification and quantification by others (Mahlein, 2016; 

Mahlein et al., 2012, 2010). The high potential of 2-D information in combination with deep 

learning methods for disease identification has been demonstrated recently (Fuentes et al., 2017; 

Mohanty et al., 2016). However, changes in spectral reflectance over time have also been shown 

to be highly informative at the leaf level (Mahlein et al., 2010; Wahabzada et al., 2015). To make 

use of the spatial and temporal dimensions under field conditions, individual lesions would 

arguably have to be tracked across time. Some solutions to this problem have been presented for 

close-range hyperspectral measurements (Behmann et al., 2018). However, similar solutions at 

the canopy level may be technically extremely challenging to implement and require extensive 

studies due to problems in tracking individual pixels or organs over time and in obtaining a clean 

spectral signal from objects with varying orientation. Existing approaches to make use of spectral, 

spatial and temporal information rely on automated and data-driven extraction of characteristic 

spectral features for diseased plants under controlled conditions (Thomas et al., 2018; Wahabzada 

et al., 2016, 2015). Here, promising results were achieved using a non-imaging sensor and manual 

feature extraction. This highlights that an improved understanding of potential confounding 

factors arising under field conditions may equally boost the potential of remote sensing methods 

for applications in crop breeding. 
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We developed and validated the presented method to facilitate robust in-field detection and 

quantification of STB. However, the underlying concepts should be transferrable to different 

problems, such as the detection and quantification of other foliar diseases. Several features of the 

proposed approach (e.g. exploiting plot-based relative changes in reflectance over time, 

combining sensitive and insensitive features, or the SVI-based parameterization of temporal 

dynamics) may also be valuable in quantifying other breeding-relevant traits, such as the timing 

and dynamics of nitrogen remobilization.  

3.5 Conclusions 

Here, we tested the possibility to detect and quantify STB relying exclusively on relative changes 

in spectral reflectance over time, which is expected to minimize confounding effects on spectral 

reflectance arising from genotypic diversity and environmental conditions. Our results 

demonstrated the feasibility of the proposed approach and suggested that resulting models were 

robust against variation in several common nuisance factors. Specifically, it appears that the 

temporal dynamics in green leaf area index when set in relation to the dynamics of physiological 

apical senescence is highly indicative of the presence of STB infections and of STB severity. 

Time-resolved measurements of the MCARI2 and the SIPI spectral vegetation indices could allow 

to assess these traits at very high throughput, facilitating time-resolved large-scale screenings of 

breeding nurseries.  

Larger calibration experiments will offer the opportunity to evaluate the inclusion of additional 

spectral-temporal features that better capture relevant information in different phases of 

pathogenesis. This is likely to improve sensitivity and specificity of resulting models, which 

should also be tested in more detail. Furthermore, the evaluation of the scalability to unmanned 

aerial vehicles will represent a crucial step towards application of such methods in breeding 

programs. 
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Abstract  

Transpiration through leaf stomata decreases leaf temperature due to the cooling effect of water 

evaporation. Drought-resistant genotypes avoid canopy dehydration and the subsequent reduction 

in transpiration rates under drought. Therefore, measurements of canopy temperature (CT) have 

proven a useful tool in the selection of drought-resistant genotypes for breeding purposes in 

wheat. However, besides transpiration rates, variation in shoot biomass, morphology, canopy 

structure and phenology also strongly affect CT. This study evaluates the potential of repeated 

measurements to derive temporal trends in CT, independently of  absolute values of CT. In a set 

of 354 registered European wheat cultivars, a moderate to high repeatability was found for 

temporal trends in CT during the stay-green phase under hot and dry conditions. Temporal trends 

were much less correlated with biomass, canopy structural parameters and phenology than single 

time point measurements. A comparison of trends in CT and in spectral indices representing 

canopy greenness demonstrated that green leaf area and CT evolve independently over time. 

Among three replicated check cultivars, the contrast between temporal trends in greenness 

indicators and CT appeared to be genotype-specific. This suggested that a combination of time-

resolved thermal and spectral measurements may allow for the identification of different levels 

of functionality in stay-green. 
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4.1 Introduction 

Drought is a major factor limiting wheat productivity in rain-fed production systems around the 

world. In Europe, increased climatic variability, in particular the occurrence of heat and drought 

in high-yielding regions, has recently counter-balanced constant genetic progress in yield 

potential (Brisson et al., 2010; Oury et al., 2012). As a result of climate change, heat and drought 

periods are predicted to further increase both in frequency and in severity (Calanca, 2007; Lehner 

et al., 2006; Trnka et al., 2015).  

In regions with predictable early-season rainfall, heat and drought occurring during the late 

growing season may be escaped by adjusting crop phenology. However, this escape strategy in 

combination with increased temperatures has led to a considerable shortening of the generative 

growth phase in modern wheat cultivars (Rezaei et al., 2018). Further adjustments in phenology 

may become increasingly incompatible with sufficient biomass acquisition and adequate potential 

yield formation during these stages (Slafer et al., 2015). Thus, developmental adaptation will have 

to be complemented with genetic progress in plant performance under heat and drought stress 

(Lobell et al., 2011; Tester and Langridge, 2010).  

Drought resistance is often regarded as a complex trait, arising from different underlying 

constitutive or adaptive traits, each of which potentially under complex genetic and environmental 

control. However, it has been argued that viewed from an agronomy or breeding perspective, it is 

a relatively simple phenomenon, manifesting itself primarily as the avoidance of plant 

dehydration under prolonged periods of limited water availability (Blum, 2011). Dehydration 

avoidance is equally important under heat stress conditions, because higher transpiration rates 

reduce leaf and canopy temperature through evaporative cooling (Amani et al., 1996; Ayeneh et 

al., 2002; Reynolds et al., 1994). Therefore, the assessment of leaf or canopy temperature (CT) 

has been proposed as a low-cost indirect selection criterion for drought and heat stress resistance 

(e.g., Mason and Singh, 2014; Reynolds et al., 2009; Singh and Kanemasu, 1983). 

So far, CT measurements in genetics or breeding experiments were most often obtained plot-by-

plot using hand-held infrared thermometers (e.g., Lopes and Reynolds, 2010; Rebetzke et al., 

2013). Lower CT values have been associated with increased yield under various conditions (Li 

et al., 2019; Lopes and Reynolds, 2010; Rebetzke et al., 2013; Reynolds et al., 1994). However, 

such measurements are time consuming and often result in a low repeatability if environmental 

conditions change during the measurements (Deery et al., 2016). More recently, airborne 

thermography has gained popularity as it allows for the assessment of CT in large breeding or 

genetics experiments in short time (Deery et al., 2019, 2016; Joalland et al., 2018; Li et al., 2019; 

Liebisch et al., 2015; Perich et al., 2020), increasing repeatability as compared to manual plot-

by-plot measurements (Deery et al., 2016).  

Unfortunately, CT is not only a function of canopy water status and transpiration rates, but is also 

strongly affected by shoot biomass, phenology, morphology and canopy structural parameters 

such as plant height, leaf area index, ground cover and leaf and spike orientation (reviewed by 

Prashar and Jones, 2014). This is prominently illustrated by a high repeatability of CT even at 
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physiological maturity, where only dry canopies and no transpiring plant tissues are left (Perich 

et al., 2020). The presence of confounding factors may complicate the use of CT as a proxy for 

drought or heat stress resistance (i) when diverse material is screened in order to identify new 

sources of drought resistance, (ii) when aiming at early selection of genetically diverse material, 

where confounding factors cannot be tightly controlled, and (iii) in environments with drought or 

heat stress intermittent and restricted to certain phenophases. For example, if drought is restricted 

to the grain filling phase, it does not affect stem elongation and biomass acquisition. Still, 

genotypic differences in final height and biomass have strong effects on CT measured at a later 

point, thus confounding the possible effect of drought on CT. Therefore, genotype-specific 

temporal trends in CT may be more informative of drought and heat stress resistance than 

individual measurements. Genotypes better able to cope with extended periods of water shortage 

and high temperatures should exhibit little change in CT over time, whereas drought- or heat-

susceptible genotypes are expected to tend towards higher CT, as transpiration rates decrease 

(Figure 4.1A). 

The derivation of plot-based trends in CT is complicated by the effect of environmental factors 

varying from one measurement campaign to the other. Such factors are air and soil temperature, 

cloud cover or wind speed (Prashar and Jones, 2014). Measurement errors related to single time 

points may be removed by the use of average CT integrating over a longer period of time, as 

proposed by Thapa et al. (2018). In contrast, the above-mentioned crop-related confounding 

factors cannot be effectively controlled in this manner. To better compare measurements across 

different measurement time points, a genotype’s CT at a specific measurement time point may be 

expressed relative to the rest of the population under study, as a normalized relative canopy 

temperature (NRCT) calculated as (Elsayed et al., 2015; Jackson et al., 1981)  

𝑁𝑅𝐶𝑇 = (𝐶𝑇 − 𝐶𝑇𝑚𝑖𝑛)/(𝐶𝑇𝑚𝑎𝑥 − 𝐶𝑇𝑚𝑖𝑛) 

where CT is the canopy temperature for a particular experimental plot at a specific measurement 

time point, and Tmin and Tmax  are the lowest and highest canopy temperatures measured in the 

entire experiment at a specific measurement time point, respectively.  

Terminal heat and drought stress may trigger premature senescence, resulting in a shortening of 

the grain filling phase and in reduced assimilate production during grain filling (Gregersen et al., 

2013). Under such conditions, a prolonged post-anthesis maintenance of green leaf area (i.e. the 

“stay-green” phenotype; Thomas and Smart, 1993) has been proposed as a possible selection 

criterion (Christopher et al., 2008; Lopes and Reynolds, 2010, 2012). However, the stay-green 

phenotype may equally result from source-sink imbalances (Bogard et al., 2011; Borrell et al., 

2003; Jiang et al., 2004), in which case it would be an undesirable trait for selection. Thus, a 

delayed senescence is expected to be beneficial in wheat only if coupled with a highly productive 

green leaf area during the stay-green phase and a subsequent fast and efficient remobilization of 

nutrients (Gregersen et al., 2008), indicating a strong sink demand. Spectral vegetation indices 

(SVI) can be used to assess stay-green in wheat at high throughput (Anderegg et al., 2020; 

Christopher et al., 2014; Lopes and Reynolds, 2012). However, they are limited in their capability 

to assess plant performance in response to environmental conditions (e.g. photosynthesis or 
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transpiration rates). In contrast, a combination of spectral and thermal measurements may allow 

for a more precise characterization of stay-green. Specifically, genotype-specific contrasting 

trends between SVI commonly used to characterize canopy greenness, green leaf area index, 

green biomass and senescence on the one hand, and CT on the other hand may allow for a more 

precise characterization of crop performance during the stay-green phase (Figure 4.1B, Figure 

4.1C; Rebetzke et al., 2016).  

The overall aim of this study was to evaluate the potential of plot-based changes in NCRT over 

time as a selection criterion for resistance to intermittent or terminal drought conditions in 

genetically diverse breeding material. The specific objectives were (i) to evaluate the repeatability 

of plot-based changes in NRCT over time, (ii) to examine the correlation between changes in 

NRCT and initial NRCT or NRCT integrating CT throughout the investigated phase, (iii) to 

examine the correlation between changes in NRCT and morphological, canopy structural and 

phenological traits known to affect CT at specific time points and (iv) to evaluate the potential of 

a combination of thermal and spectral temporal trends to characterize genotype performance 

during the stay-green phase. To achieve this, we examined a time series of thermography and 

spectral reflectance measurements carried out during grain filling using our recently established 

unmanned aerial vehicle (UAV) measurement platform and image and reflectance data processing 

pipelines (Anderegg et al., 2020; Perich et al., 2020).  

4.2 Materials and Methods 

4.2.1 Plant Materials, experimental design and meteorological data 

A field experiment was conducted in the field phenotyping platform FIP (Kirchgessner et al., 

2017) at the ETH Research Station for Plant Sciences Lindau-Eschikon, Switzerland (47.449N, 

Figure 4.1 Hypotheses underlying this work. (A) Temporal trends from heading to late stay-green in 

normalized relative canopy temperature (NRCT) for a drought susceptible and a drought resistant genotype, 

in relation to the population (represented by the sketched grey distribution). (B) A genotype exhibiting 

functional stay-green; the low decay in canopy greenness relative to the population (indicated by a 

normalized relative spectral reflectance index) is accompanied by a relatively decreased NRCT. (C) A 

genotype exhibiting dysfunctional or partly functional stay-green; the relatively low decay in canopy 

greenness is not accompanied by a decreased NRCT, suggesting that the stay-green phenotype is not 

paralleled by relatively high transpiration and possibly relatively high photosynthetic rates. Illustrations of 

wheat plants were modified from Schürch et al. (2018). 
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8.682E, 520 m a.s.l.; soil type: eutric cambisol) in the wheat growing season of 2017-2018 which 

was characterized by extraordinarily dry and hot weather from April 2018 on (MeteoSwiss, 2018). 

Three hundred cultivars comprised in the GABI wheat panel (Kollers et al., 2013) obtained from 

the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) were used and 

complemented with important Swiss cultivars for a total of 354 cultivars. A detailed description 

of the experimental design is provided by Anderegg et al. (2020). In short, cultivars were grown 

in two spatially separated replications in plots of 1 m × 1.4 m size, arranged in a two-dimensional 

incomplete block design with three check varieties. Checks were distributed evenly at 21 locations 

in each replicate. The experiment was sown with a sowing density of 400 plants m-2 on Oct 18, 

2017 and crop husbandry was performed according to local agricultural practice. Temperature 

data was obtained from an on-site weather station. Rainfall data was obtained from a nearby 

weather station of the federal Swiss meteorological network Agrometeo (www.agrometeo.ch) 

located at ca. 250 m distance to the field trial. 

4.2.2 Phenology, canopy structural and morphological parameters and biomass 

The used plant material comprised phenologically, morphologically and structurally diverse 

genotypes. To characterize the diversity of the panel with respect to traits reported to affect CT, 

we assessed heading date (HD), the onset of apical senescence (OnSen), glaucousness, flag leaf 

angle, flag leaf length and width, the presence or absence of awns, final height and above ground 

biomass. For simplicity, these traits are subsumed under the term “covariates” hereinafter.  

HD was recorded when 50% of the spikes were fully emerged from the flag leaf sheath (BBCH 

59, Lancashire et al., 1991). Following Gooding et al. (2000) and Pask et al. (2012), OnSen was 

extracted from a Gompertz model fitted to repeated visual canopy senescence scorings as 

described by Anderegg et al. (2020). To account for contrasting temperatures experienced by 

early and late genotypes, HD and OnSen were converted to growing degree days after sowing 

(GDDAS) and GDD after heading (GDDAH), respectively, using hourly mean temperatures and 

a base temperature of 0°C. Glaucousness, flag leaf angle, length and width were assessed strictly 

following the guidelines provided by Pask et al. (2012). Final height was determined over the 

three preceding years (growing seasons of 2014-2015 until 2016-2017) for most of the genotypes 

comprised in the experiment based on repeated terrestrial laser scans (for details refer to 

Kronenberg et al., 2017). Here, the derived three-year genotypic best linear unbiased estimators 

(BLUE) were used, as within-year repeatability of final height was 0.98-0.99 and across-year 

heritability was 0.98 (Kronenberg et al., 2019). Finally, above-ground biomass was estimated 

using a calibration for spectral reflectance created in parallel as follows: For a subset of 49 

genotypes grown in one replicate next to the main experiment, above-ground biomass was 

determined destructively as the average of eight samples of an area of 0.25 m2. Technical 

replicates deviating from the overall mean by more than two standard deviations were excluded 

from the analysis as outliers. Spectral reflectance was measured on 13 dates covering the entire 

grain filling phase on the same plots. For each measurement date, a large number of spectral 

vegetation indices were computed and evaluated for their correlation to destructively determined 

above-ground biomass, and the optimal date-by-SVI combination was used to infer biomass for 
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all plots of the GABI panel. The highest correlation (R2 = 0.36, Figure S 7.2) was observed for the 

reflectance ratio at 1200 nm, calculated as (Pu, 2011) 

𝑅𝑎𝑡𝑖𝑜1200 =  
2 × 𝐴𝑣𝑔(𝑅1180𝑡𝑜1220)

𝐴𝑣𝑔(𝑅1090𝑡𝑜1110) + 𝐴𝑣𝑔(𝑅1265𝑡𝑜1285)
 

for measurements carried out on 22 June, 2018 (i.e. during late stay-green/early senescence). The 

use of this SVI was preferred over full-spectrum models due to the instability of the latter, 

probably resulting from the relatively small sample size (n = 49; for details on measurement 

procedures and calculation of SVI refer to Anderegg et al., 2020). 

4.2.3 Canopy temperature and derived time-integrated traits 

CT data was obtained from a radiometrically calibrated FLIR A65 thermal imaging camera (FLIR 

integrated Imaging Solutions Inc., Canada) with a field of view field of 25° x 20° and a resolution 

of 640 x 512 pixels. The camera was mounted on a DJI Matrice 600 Pro (SZ DJI Technology Co. 

Ltd., China). Both the UAV platform and the processing of the thermal data were described in 

detail by Perich et al. (2020). In short, 24 flights were carried out during the grain filling and 

ripening phase (BBCH 73-92, Lancashire et al., 1991) at 80 m height above ground level with an 

image overlap of >70% across flight direction and >90% along the direction of the flight path, 

resulting in a flight duration of approximately 8 min to cover the two replications. Thermal 

orthomosaics were generated from individual thermal images in the following steps implemented 

in Agisoft PhotoScan Professional 1.4.3 (Agisoft LLC, St.Petersburg, Russia): (i) generation of 

sparse point clouds using the Structure from Motion algorithm, (ii) geo-referencing of sparse point 

clouds using custom-made thermal ground-control points, (iii) generation of digital surface 

models, (iv) generation of dense point clouds, (v) generation of digital surface models and finally 

(vi) generation of georeferenced thermal orthomosaics using the blending mode ‘average’. Plot-

wise canopy temperature was then extracted using polygons describing the plot shape and 

location. QGIS 3.2.3 Geographic Information System Software (QGIS Development Team, 2019) 

was used to create an inward buffer of 40 cm from the shapes to omit edge effects. Based on a 

Python 3.6 script, the median of this area was then used as CT for a plot ( for details refer to 

Perich et al., 2020).  

Time-integrated measures of CT were derived from NRCT obtained from flights carried out in 

June 2018. According to the recommendations of Perich et al. (2020), flights performed at around 

14:00h local time were selected for the analysis. For each plot, the following time-integrated CT 

traits were extracted: (i) the slope of the linear model fitted to date-specific NRCT, (ii) based on 

the same linear model fit, the predicted NRCT at mid-stay-green and (iii) the predicted NRCT at 

OnSen. Unfortunately, the presence of significant variation in heading date (12 d between the 

earliest and latest genotype), as well as variation in the duration of the stay-green phase (i.e. 

between HD and OnSen), allowed only a limited number of flights covering the stay-green phase 

for most genotypes to be retained for this part of the analysis. The selected five flights were carried 

out prior to OnSen for 539 experimental plots (i.e. 72% of all plots). Thus, the selection of these 

five flights represented a trade-off between limiting the effect of phenology on the 
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characterization of the stay-green phase and retaining as much data as possible to enable a reliable 

derivation of temporal trends. 

4.2.4 Spatial correction and calculation of repeatability 

Spatial heterogeneity of NRCT values at each measurement date, for each of the time-integrated 

NRCT traits, and for each of the covariates was corrected by applying two-dimensional P-splines 

to the raw data using the R-package SpATS (Rodriguez-Alvarez et al., 2019). Repeatability (w2), 

genotypic BLUEs and spatially corrected plot values were obtained as described previously 

(Anderegg et al., 2020). Spatial correction for time-integrated NRCT traits was performed either 

on derived traits extracted from uncorrected NRCT values at each time point or on derived traits 

extracted from spatially corrected time-point-specific NRCT values (in this case, spatial 

correction was applied at the level of individual NRCT values per time point as well as at the 

level of derived NRCT traits). For simplicity, date-wise spatially corrected NRCT values are 

denoted as NRCTcorr, whereas uncorrected NRCT values are denoted as NRCTraw. 

4.2.5 Correlation of Canopy temperature and derived traits with covariates 

Covariates were measured at one point in time and correlated with CT on different measurement 

dates by calculating pair-wise Pearson product moment correlation coefficients. For correlation 

analyses at each measurement time point, uncorrected CT and covariate values were used. To 

examine correlations between time-integrated measures of CT and covariates, spatially corrected 

values were used. This approach was motivated by the fact that linear models fitted to date-wise 

spatially corrected NRCT yielded higher R2 and lower p-values on average, and derived time-

integrated measures of NRCT had a higher repeatability (see section 4.3 for details).  

To quantify the portion of the variance in NRCT explained by covariates, multiple linear 

regression using all covariates was performed for NRCT values at each time point as well as for 

time-integrated measures of NRCT. All calculations and data analyses were performed in the R 

environment for statistical computing (R Core Team, 2018). 

4.2.6 Combining thermal and spectral measurements to characterize genotype 

performance during stay-green 

To estimate the potential of thermal and spectral measurements to provide complementary 

information regarding plant performance during the stay-green phase, we first examined the 

correlation in the temporal trends of the respective signals. We selected the three frequently used 

indices NDVI (Tucker, 1979), MCARI2 (Haboudane et al., 2004) and PSRI (Merzlyak et al., 

1999) and determined their dynamic development (slope) during the stay-green phase as was done 

for NRCT (for details on measurements of spectral reflectance and spectral data processing refer 

to Anderegg et al., 2020). To quantify the contrast between thermal and spectral trends, we 

calculated the difference between the resulting slopes as slopeSVI – slopeNRCT. In this way, a 

difference greater than zero hypothetically indicates a genotype maintaining a relatively low 

canopy temperature, though not necessarily a high canopy greenness (Figure 4.1B). Conversely, 

a difference smaller than zero hypothetically indicates a genotype maintaining a relatively high 
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canopy greenness, but not a low canopy temperature (Figure 4.1C). As spectral measurements 

were performed only on one replicate (i.e. one Lot), no repeatabilities for the observed patterns 

could be calculated. Instead, we compared the distribution of the derived trait observed for three 

replicated check cultivars with the distribution observed for all 354 genotypes in the experiment 

to obtain an indication of whether genotype-specific differences may be measureable (see section 

4.2.1). 

  

Figure 4.2 Trends in canopy temperature across measurement time points for 756 experimental plots, sown 

with two replications of 354 genotypes plus checks. The first five measurement dates were used for the 

derivation of time-integrated CT traits. Upper panel: Canopy temperature across measurement dates. Lower 

panel: Canopy temperature across measurement time points as expressed in thermal time after heading. 

Here, measurement dates correspond to a range in thermal time after heading (represented by colored bars) 

due to the phenological diversity of the screened material. The dark yellow bar corresponds to the observed 

range in the onset of rapid apical senescence. Due to contrasting average daily temperature sums between 

measurement dates, intervals are stretched or contracted. 
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4.3 Results 

4.3.1 Trends in canopy temperature and correlation with covariates 

A clear temporal trend was observable for CT values across measurement dates (Figure 4.2, upper 

panel). This trend is primarily attributable to environmental conditions at the time of measurement 

or during a short period preceding the measurement, as demonstrated by the temporal trends in 

CT expressed in thermal time after heading (Figure 4.2, lower panel). Hence, the time series 

examined here demonstrates that the interpretation of temporal trends in absolute CT values is 

greatly complicated by fluctuations in mean canopy temperature across dates and its variation 

within each date making modelling of the temporal trend and extraction of interpretable 

parameters challenging.  

Besides environmental conditions, different crop phenological, morphological and canopy 

structural traits (i.e. “covariates”) seemed to affect CT at specific points in time (Figure 4.3). Of 

the examined covariates, shoot biomass as approximated by the Ratio1200 was highly correlated 

to CT, reaching a maximum value of r = 0.81 on 23 June. Flag leaf length and OnSen also strongly 

correlated with CT (r-values of circa -0.5). In contrast, flag leaf angle, glaucousness, and width 

were only weakly correlated with CT (Table 4.1). Final height correlated weakly with CT, except 

at the final measurement time points. The correlation between heading time and CT showed an 

increasing trend towards later measurement time points, but remained relatively weak throughout 

the assessment period. The portion of the variance in normalized CT explained by the covariates 

in multiple linear regression models varied across time points. It was particularly large in the 

period between 20 June and 30 June, i.e. during the late stay-green and early senescence phase 

Figure 4.3 Correlation between canopy temperature and final canopy height (FH), flag leaf angle (Fl0Ang), 

flag leaf glaucousness (Fl0Glc), flag leaf length (Fl0Len) and width (Fl0width), heading (expressed in 

growing degree days after sowing), onset of apical senescence (OnSen, expressed in growing degree days 

after heading),  the ratio of reflectance at 1200 nm (Ratio1200) as a biomass proxy for all measurement 

dates.   
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(0.62 ≤ adj. R2 ≤ 0.67, p < 0.001), but somewhat smaller during the early stay-green phase (0.43 

≤ adj. R2 ≤ 0.54, p < 0.001). 

4.3.2 Time-integrated analysis of CT 

We hypothesized that time-integrated measures of CT may represent useful alternatives to 

absolute values of CT at specific points in time, particularly when genetically diverse material is 

examined and/or when the stress is restricted to certain pheno-phases (see Section 4.1 for details). 

To evaluate this hypothesis, we calculated repeatability of trends in NRCT and evaluated their 

correlation with factors known to confound the CT signal at specific points in time. Linear 

regression models were fitted to date-wise spatially correct NRCT values, as well as to raw  

derived from uncorrected CT values over thermal time for each individual plot.  

Fitted linear models often provided a poor fit to the data, but the slopes of these regressions, 

representing changes in NRCT during the period between June 4 and June 23, showed a moderate 

to high repeatability (w2 = 0.27 if slopes were obtained for NCRTraw, w2 = 0.64 if slopes were 

obtained for NRCTcorr; a summary of the linear model fits is given in Figure S 7.3 and Figure S 

7.4). The predicted NRCT at OnSen had a high heritability, with w2 = 0.76. Thus, both trends in 

NRCT and average NRCT during the stay-green phase appear interesting as selection tools from 

this perspective.  

Table 4.1 Pearson correlation between time-integrated normalized relative canopy temperature (NRCT) 

traits and covariates as well as the initial NRCT. Time-integrated NRCT traits were extracted for date-wise 

spatially corrected NRCT values. NRCT at mid stay-green (NRCTmidstg) and NRCT at the onset of 

senescence (NRCTOnSen) were predicted from the linear model, whereas the initial NRCT (NRCTinit) 

represents the NRCT at the first measurement date, i.e. on 4 June, 2018. 
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At the plot level, slopes were negatively correlated with initial NRCT if slopes were extracted for 

NRCTcorr (r = -0.30, Figure 4.4A). This pattern was observable also at the genotype level, i.e. 

using average spatially corrected slopes and initial NRCT (Figure 4.4B).  

Only weak correlations were found between slopes fitted to NRCTcorr and any of the examined 

covariates (0.07 ≤ r ≤ 0.24), with the highest correlation found for heading and final height (Table 

4.1). Instead, time-integrated measures of NRCT (predicted NRCT at OnSen and at mid stay-

green) were moderately correlated with FH and the Ratio1200 (r = 0.56 and r = 0.58; and r = 0.43 

and r = 0.56, respectively; Table 4.1), and less with heading (r = 0.20 and r = 0.32, Table 4.1). 

Overall, the correlation between time-integrated measures of NRCT and covariates was lower 

than at specific time points (Table 4.1, Figure 4.3).  

The portion of variance in slopes fitted to NRCTcorr explained by covariates (adj. R2 = 0.21) was 

much lower than for NRCT at individual time points (0.43 ≤ adj. R2 ≤ 0.67). When the initial 

NRCT was added as a predictor, the portion of the explained variance increased (adj. R2 = 0.39, 

Table 4.1), due to the correlation between the initial NRCT and the extracted slope (Figure 4.4). 

4.3.3 Combination of spectral and thermal measurements 

No significant correlations were observed between any of the slopeSVI and the slopeCT (Figure 4.5). 

Therefore, we aimed to determine whether these contrasting trends could be genotype-specific, 

based on the three check cultivars included in the experimental design. A rather large variation in 

the difference of slopes was observed for SURETTA and CH CLARO, whereas for CH NARA 

values were more similar across replicates (Figure S 7.7, Figure S 7.6). CH NARA showed a 

clearly different contrast between the trend in NRCT and NRSVI, particularly if the NDVI was 

used as a greenness indicator (Figure 4.6, Figure S 7.7, Figure S 7.6). In spite of the relatively 

Figure 4.4 Slopes of linear regression models fitted to NRCT over thermal time plotted against initial 

NRCT. (A) Plot-level correlation for NRCT based on date-wise spatially corrected NRCT values (compare 

Figure S 7.4B); (B) Genotype-level correlation for spatially corrected initial NRCT and slopes derived from 

date-wise spatially corrected NRCT values; The red line represents the least squares line, reported 

correlation coefficients (r) are Pearson product moment correlation coefficients. 
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large variation, these preliminary results suggest that it may be possible to identify population 

extremes, i.e. genotypes showing strongly contrasting patterns in frequently used canopy 

greenness or senescence proxies and canopy temperature during the stay-green phase. 

4.4 Discussion 

Canopy temperature (CT) has been proposed as an indirect selection criterion under heat and 

drought conditions at least since the 1980s (e.g., Singh and Kanemasu, 1983) due to the effect of 

canopy water status and transpiration rates on leaf temperature. However, strong effects of 

phenology, morphology and canopy structural parameters on canopy temperature have been 

demonstrated in a multitude of studies (e.g., Ayeneh et al., 2002; Giunta et al., 2008; Rebetzke et 

al., 2013; see Prashar and Jones, 2014 for a review). To limit such effects, it has been 

recommended to tightly control for confounding factors and restrict comparisons to material with 

very similar phenology and morphology (Lopes and Reynolds, 2010; Prashar and Jones, 2014). 

However, if CT is to be incorporated as a secondary trait indicative of performance under heat or 

drought in early selection as proposed by e.g. Rutkoski et al. (2016) and Sun et al (2019), the 

presence of such confounding factors, particularly differences in above-ground biomass or leaf 

area index, must be expected. An accurate characterization of the screened material for all factors 

Figure 4.5 Correlations among slopes of the linear regression models fitted to normalized relative canopy 

temperature (NRCT) and normalized relative spectral vegetation indices (NRSVI). Slopes were obtained 

for date-wise spatially corrected NRCT and NRSVI against thermal time. 
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with sizable confounding effects on CT as the trait of interest itself (i.e. water status or 

transpiration rates) may offer a solution as suggested by Deery et al. (2019). These factors may 

be used as covariates in a statistical model. Alternatively, relative temporal changes in CT at the 

level of individual plots may be much less affected by confounding factors, and therefore reflect 

dynamic genotype-specific responses to developing stress conditions. A similar approach was 

previously used successfully to track senescence dynamics and detect and quantify foliar diseases 

in diverse wheat germplasm using repeated spectral reflectance measurements (Anderegg et al., 

2019a, 2020). In this study, we used a large set of phenologically and morphologically diverse 

genotypes – hence not ideally suited for the analysis of CT in terms of drought or heat stress 

resistance – to evaluate the potential and feasibility of this approach.  

4.4.1 Repeatability of trends and effects of covariates 

A key finding of this study is the high repeatability of temporal trends in CT, which are relatively 

independent of important covariates compared to measurements at individual time points (Figure 

4.3, Table 4.1). In particular, the repeatability of 0.64 for slopeNCRT was higher than the 

repeatability of date-specific NRCT values obtained for the same experiment during the same 

Figure 4.6 Distribution of the differences between slopes fitted to date-wise spatially corrected normalized 

relative spectral vegetation indices (NRSVI) and normalized relative canopy temperature (NRCT). The 

density plot shows the distribution based on three different SVI for all 378 experimental plots, sown with 

354 different wheat genotypes. The colored bars represent the range observed for the three check cultivars 

CH CLARO, CH NARA and SURETTA, grown each in seven replicate plots, i.e. in a total of 21 plots, 

evenly distributed across the entire experimental field. Density curves represent smoothed histograms, 

using a Gaussian kernel, with the area under the curves standardized to equal unity. 
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period (0.4 ≤ w2 ≤ 0.61). This finding is promising, particularly in light of the low correlation 

between covariates and trends. The investigated covariates were assumed not to vary greatly 

during the measurement period. This is a valuable assumption for final height, shoot biomass and 

flag leaf glaucousness, length and width. However, flag leaf angles and other canopy structural 

parameters may undergo significant changes over time, particularly towards the end of the stay-

green phase. For example spikes may increasingly bend over and cover a larger fraction of the 

plot area. Such effects were identified as a likely cause of imprecise measurement of the onset of 

senescence by means of spectral reflectance in the same experiment (Anderegg et al., 2020). If 

such changes in canopy structure are heritable, for example because they are closely related to 

plant height, lodging resistance, peduncle length or ear size and weight, this may also contribute 

to the observed repeatability, as ears differ strongly in their surface temperature from the rest of 

the canopy (Ayeneh et al., 2002; Fernandez-Gallego et al., 2019). Similarly, such canopy 

structural changes may affect the soil fraction in images over time, likely with consequences on 

extracted plot-based CT values (Deery et al., 2019). This highlights the importance of restricting 

the analysis of temporal trends to the period of early grain filling before major changes in 

covariates occur.  

A significant correlation was observed between the slopeNRCT and the initial NRCT (Figure 4.4). 

Since the initial NRCT is based on a single time point measurement of CT, it follows that 

covariates with an effect on CT at this stage will equally affect the slope. This is demonstrated by 

the results of multiple linear regressions (Table 4.1). A possible explanation for this correlation 

may be that genotypes producing less biomass (thus with a higher initial NRCT) have consumed 

less water and therefore run out of water later than genotypes that have accumulated much more 

biomass (and thus have a lower initial NRCT). Another possible explanation for the observed 

correlation is that the slopes for very high and very low initial NRCT cannot be positive and 

negative, respectively. It is thus at least partly attributable to the approach taken here to cope with 

environmental variability across different measurement time points. This issue could be avoided 

by using non-linear models to derive temporal trends in NRCT. This was not possible here due to 

the inherently limited period of time that could be used for the analysis, resulting in merely five 

measurement time points. The window of opportunity could, however, be significantly enlarged 

by decreasing the variation in phenology. Here, a difference of 12 d was observed for heading 

between the earliest and the latest genotypes. In addition, given the low operational costs of the 

used platform (Perich et al., 2020), frequency of flights could be significantly increased. 

4.4.2 Combined thermal and spectral measurements to characterize stay-green 

Particularly under heat and drought stress, the stay-green phenotype (in this case interpretable as 

the avoidance of premature senescence) has been proposed as a promising selection criterion in 

wheat (Christopher et al., 2008; Lopes and Reynolds, 2012). Stay-green and the dynamics of 

senescence can be tracked using repeated spectral reflectance measurements (Anderegg et al., 

2020). However, the productivity of the retained green leaf area cannot be accurately quantified 

using spectral measurements. In contrast, thermal imaging has the potential to identify genotypes 

with high and stable transpiration rates (Rebetzke et al., 2013), which is presumably related to a 

high photosynthetic activity (Fischer et al., 1998; Richards, 1996). Thus, a combination of 
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spectral and thermal sensors may facilitate the selection of genotypes exhibiting ideotypic stay-

green coupled with a high productivity of the retained green leaf area (Gregersen et al., 2008; 

Jagadish et al., 2015; Rebetzke et al., 2016). 

The absence of a significant correlation between any of the slopeSVI and the slopeCT indicated an 

independent temporal evolution of canopy reflectance and canopy temperature during the stay-

green phase (Figure 4.5). This provides additional support for the conclusion drawn earlier that 

trends in the analyzed data set were not affected by the differences in phenology. If that were the 

case, both SVI and CT trends would be strongly driven by the onset of senescence, necessarily 

resulting in correlation between the two. The absence of such a correlation, thus, allowed 

exploring the potential to derive genotype-specific contrasts between these two temporal trends.  

Replications of the check cultivars showed a relatively large variation for the contrast between 

the two temporal trends (Figure 4.6). In particular, this variation was rather large compared to the 

overall variation observed for all 378 experimental plots (Figure 4.6), especially for the cultivars 

CH CLARO and SURETTA. Nonetheless, it appeared that differences between genotypes may 

be present and that at least population extremes should be clearly separable. Since increased sink 

capacity appears to increase photosynthetic activity and stomatal conductance (Richards, 1996), 

we hypothesize that it may be possible to separate functional stay-green combined with a high 

photosynthetic activity from dysfunctional or partly functional stay-green or a stay-green 

phenotype resulting from source – sink imbalances. However, it should be noted that variation in 

the examined plant material is larger than what would be typically observed in a commercial 

breeding program. As pointed out previously, it will be critical to clarify whether observed trends 

may be affected by canopy structural changes over time, which could also result in genotype-

specific contrasts between the two temporal trends even in the absence of genotypic differences 

in photosynthetic activity during the stay-green. 

4.5 Conclusions 

This study evaluated the potential of time-resolved canopy temperature measurements as 

indicators of resistance to short-term drought periods. We found temporal trends in normalized 

relative canopy temperature to be repeatable and not strongly affected by genotypic diversity and 

varying environmental conditions across measurement dates, as opposed to single time point 

measurements. Such trends may thus represent genotype-specific reactions to increasing stress 

levels over time. Furthermore, in combination with spectral measurements, a time-integrated 

analysis of CT may enable an accurate characterization of the degree of functionality of the stay-

green phase. Further evaluations will need to clarify the degree of genetic correlation between 

observed trends and primary target traits under terminal drought conditions. 
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5 General Discussion 

5.1 Multiple aspects of stay-green and consequences for its remote 

assessment 

The main aim of this thesis was to evaluate the potential of remote sensing based high throughput 

methods to characterize genetically diverse material with respect to important secondary breeding 

traits during the grain filling stage. In this context, the most obvious phenomenon to investigate 

is stay-green and the dynamics of senescence (see Chapter 1 for a discussion of the relevance of 

such assessments). From a technical remote sensing perspective, this is in itself a readily 

achievable objective, given the obvious changes in canopy characteristics associated with the 

transition from carbon assimilation during the stay-green phase to N remobilization during 

senescence. Indeed, a multitude of studies has successfully used remote sensing based canopy 

indicators to distinguish stay-green from early-senescing genotypes in various crops, including 

maize, sorghum and wheat, using relatively low-cost equipment (e.g., Christopher et al., 2014; 

Lopes and Reynolds, 2012; Makanza et al., 2018; Potgieter et al., 2017). However, as discussed 

in Chapters 1 and 2, the regulation of senescence and green leaf area dynamics is highly complex. 

The effects of this dynamics on key primary breeding traits such as GY and GPC are prone to 

strong genotype-by-environment interactions. The genetic and physiological determinants of the 

dynamics are still poorly understood. This is stressed here not to question the relevance of work 

interpreting stay-green as a stress-adaptive trait contributing to the avoidance of sink limitation 

during grain yield formation. On the contrary, such stress situations during grain filling are 

predicted to occur with increasing frequency and severity in many major agricultural production 

systems around the world (Lehner et al., 2006; Trnka et al., 2015). As a consequence, there is an 

urgent need to develop adapted genotypes. It is widely recognized that the stay-green phenotype 

and a high throughput method to assess senescence dynamics may significantly contribute to crop 

adaptation to changing climatic conditions (Thomas and Ougham, 2014). However, as discussed 

in Chapters 1 and 2, the stay-green phenotype may arise from a multitude of underlying factors, 

some of which are deemed desirable in specific environments, others entirely undesirable (Borrell 

et al., 2003; Sadras et al., 2019). This is the case in particular for bread wheat grown in temperate 

high-yielding environments with a low probability of encountering yield-relevant terminal heat 

and drought stress. Under such conditions, green leaf area dynamics are strongly affected by an 

interplay of phenology driven by developmental signals, the N economy at the canopy level, water 

availability and foliar diseases. Thus, stay-green cannot simply be interpreted as the avoidance of 

a premature senescence that would hamper grain filling and possibly result in source limitation. 

Furthermore, significant effects on GPC are expected and must equally be considered.  

With this complexity, it appears difficult to capitalize on variation in stay-green without a basic 

understanding of the underlying physiological and possibly genetic determinants. From an 

extensive literature review, Gregersen et al. (2008) concluded that “a large and highly productive 

green leaf area should be kept as long as possible, but should also be able to respond as quickly 

as possible to environmental stress such as heat or desiccation and mobilize nutrients with high 
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efficiency”. This highlights that in high-yielding environments, optimizing stay-green and the 

dynamics of senescence requires a more detailed characterization of green leaf area dynamics and 

its determinants than in environments with well-defined stress patterns and constraints to grain 

yield improvement.  

This requirement motivated the choice of sensors, their combined use as well as the data analysis 

approaches taken in this thesis. We believe, like others (e.g., Deery et al., 2019; Gregersen et al., 

2008; Rebetzke et al., 2016), that a multidimensional characterization of the stay-green and 

senescence phase (w.r.t. green leaf area, its productivity, remobilization of nutrients and the 

underlying determinants) is required and requires in turn a time-integrated multi-sensor approach.  

With this thesis, we focused on the development of methods to enable accurate phenotyping in 

the final growth stages of wheat. A detailed investigation of the physiological and genetic basis 

of stay-green and senescence and corresponding effects on GY and GPC was beyond the scope 

of this thesis and cannot be reliably addressed based on the data collected here. Investigations into 

the regulation of senescence and direct effects on GY and GPC will have to be carried out using 

genetic material not segregating for major genes regulating development (i.e. Vrn and Ppd; 

Bogard et al., 2010; Lopes and Reynolds, 2012, 2010; Pinto et al., 2010). Given the effect of 

varying plant height through the Rht genes on the sink- source ratio, segregation in these genes 

should equally be avoided (Borrell et al., 2003; Miralles and Slafer, 1996). High throughput 

phenotyping will enable the screening of multiple homogeneous populations or large diverse 

populations which can be analyzed in subsets with similar phenology. Finally, experiments should 

arguably be carried out under environmental conditions expected to maximize direct effects of 

the grain filling phase on primary traits (Jackson et al., 1996, V. Allard, personal communication). 

5.2 Assessments of visually observed senescence dynamics  

In Chapter 2, we evaluated the potential of hyperspectral reflectance measurements to accurately 

track visually observed canopy senescence dynamics and possibly to provide a better 

representation of the most relevant (in terms of their effect on GY and GPC) changes occurring 

at the canopy level during grain filling. The PSRI was identified as the optimal spectral vegetation 

index in terms of precision and robustness to track visually observed canopy senescence 

dynamics.  

The use of the PSRI does not per se provide additional information when compared to visual 

scorings. A more accurate characterization of the stay-green phase and the elusive switch from 

carbon assimilation to remobilization (Jagadish et al., 2015; Thomas and Ougham, 2014) cannot 

be provided. Instead, benefits may arise primarily from an increased temporal resolution and 

throughput (see Chapter 2). However, this alone may be of value in several ways:  

(i) An often proposed physiological strategy to improve wheat yields consists in 

adjusting phasic development through photoperiod-sensitivity (Pérez-Gianmarco et 

al., 2018; Slafer et al., 2001; Slafer and Rawson, 1996) and temperature-sensitivity 

of developmental processes (Atkinson and Porter, 1996). Given the large effects of 
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major genes regulating development on senescence dynamics (e.g., Bogard et al., 

2011), the evaluation of such strategies will have to take effects on the entire life 

cycle into account. In this context, the onset of senescence is a cardinal point 

requiring assessment.  

(ii) The onset of senescence represents a key junction between C and N metabolism at 

canopy level (Bogard et al., 2011), and trade-offs are likely to contribute to the 

observed negative correlation between GY and GPC (see Chapter 1). Due to the 

complexity of the regulation of senescence per se and strong context-dependency of 

its effects on GY and GPC, it seems likely that only intense field testing under 

contrasting environmental conditions will allow for a definition and possibly 

selection of environment-specific ideotypes. 

(iii) Under well-characterized terminal stress conditions, a delayed senescence may be 

safely interpreted as an adaptive trait (see Chapter 1), and used as an indirect selection 

criterion for stress resistance. 

(iv) Phase-dependent environmental indices (Millet et al., 2019) require a genotype 

specific timing of developmental stages, one of which is physiological maturity, 

which may be approximated by the onset or end of the rapid senescence phase (Pask 

et al., 2012). 

For these purposes (i.e. to quantify the onset of senescence as a cardinal point in plant 

development), identifying the onset of senescence as the onset of visually observable chlorophyll 

breakdown is likely to be precise enough. In this context, the question arises whether this could 

be achieved using RGB photography, which would reduce equipment costs and simplify data 

processing and analysis. This approach has not been tested here and can only be evaluated on 

color-calibrated images to remove the effect of unstable ambient illumination conditions varying 

from one measurement campaign to another, as done for example by Grieder et al. (2015). In 

contrast, the exploitation of color information from uncalibrated images to derive time-integrated 

descriptors of vegetation is challenging, even for comparably simple tasks such as the 

segmentation of vegetation from the soil background, where absolute color information is not 

used explicitly (see e.g., Sadeghi-Tehran et al., 2017; Yu et al., 2017, compare with Figure 2.6 

for an illustration of such effects). 

5.3 Beyond visual - Assessing GPC and the N economy of canopies 

As pointed out in Chapter 1, the stay-green phenotype is unlikely to confer yield benefits under 

the conditions of our experiments, because source capacity is largely adequate to allow for 

complete grain filling. In contrast, the N economy of developing grains and the canopy appears 

to be more strongly interconnected with post-anthesis processes and senescence in particular, even 

under high-yielding conditions. In this context, several physiological traits have been identified 
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which may contribute to improvements of NUE and GPC. These include post-anthesis N uptake, 

which may be of particular value because it increases GPC without reducing GY (Bogard et al., 

2010; Kichey et al., 2007; Taulemesse et al., 2016), and N remobilization dynamics, which have 

been identified as an important determinant of N utilization efficiency and consequently, overall 

N use efficiency and GPC (Gaju et al., 2011, 2014; Kong et al., 2016).  

Here, the spectroradiometer was chosen for evaluations due to its (at least theoretically) unrivalled 

potential to characterize vegetation in terms of biochemical properties, physiological status and 

healthiness (see e.g., Araus et al., 2018; Mahlein, 2016; Yendrek et al., 2017). Several studies 

have evaluated spectral measurements during grain filling as a tool to assess traits related to the 

N economy of wheat canopies and developing grains. Many studies revealed that traits related to 

N content and N uptake of individual organs or the canopy are best assessed during the milk- or 

dough ripeness stages using red-edge based SVI (Barmeier and Schmidhalter, 2017; Frels et al., 

2018; Prey et al., 2020; Prey and Schmidhalter, 2019a, 2019b). This holds true for predictions of 

N traits at anthesis (in this case sometimes referred to as “post-dictions”, e.g., Prey et al., 2020), 

for predictions of N traits at maturity and for predictions of N traits integrating over the entire 

grain filling phase (e.g. post-anthesis N uptake, N remobilization or N utilization efficiency). 

While such studies have a long tradition in the domains of plant nutrition and precision 

agriculture, more recently the interest in variety differentiation has increased (Frels et al., 2018; 

Prey et al., 2020; Prey and Schmidhalter, 2019a). For N uptake at anthesis and maturity, some 

potentially useful correlations with spectral indicators were observed. In contrast, correlations are 

substantially lower for N translocation efficiency, post-anthesis N uptake and N harvest index 

(e.g., Prey and Schmidhalter, 2019a). N uptake after anthesis is closely related to continued 

biomass acquisition by stems, serving as a temporary sink (Taulemesse et al., 2016), which may 

help to maintain a high root activity (V. Allard, personal communication). In contrast, sensors 

detect the horizontally aligned leaf blades whereas occluded organs may be assessed only 

indirectly via correlation in biochemical characteristics with measured organs. Therefore, N 

uptake in stems is often only weakly correlated with spectral indicators (Barmeier and 

Schmidhalter, 2017; Prey and Schmidhalter, 2019a), suggesting it may be difficult to assess post-

anthesis N uptake via a direct functional relationship with spectral reflectance.  

As pointed out by Prey et al. (2020) and Prey and Schmidhalter (2019a), correlations are likely 

to arise as a consequence of contrasting senescence status. Such correlations can arguably arise 

(i) directly, because senescence and N remobilization are tightly linked processes and their timing 

is often reported to have significant effects on N traits (Masclaux et al., 2001; Sinclair and Wit, 

1975; Uauy et al., 2006); (ii) as a spurious relationship, because both N traits and senescence 

dynamics are strongly related to anthesis date (Bogard et al., 2011; Foulkes et al., 2004; Gaju et 

al., 2011, 2014; Xie et al., 2016), (iii) through interactions between management interventions 

and anthesis date. These result in genotypes with contrasting phenology receiving treatments at 

different growth stages, affecting the partitioning of N uptake between phases and the duration of 

the stay-green phase via modified relative N availability across growth stages (Bogard et al., 2010, 

2011); finally (iv) through interactions between anthesis date and environment, resulting in 

genotypes with contrasting phenology perceiving contrasting environments in given phenophases. 
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Variation in flowering time is often not taken into account when evaluating correlations between 

spectral indicators and N traits. Instead, average growth stages at treatment interventions and 

measurements are normally reported. Consequently, correlations (even genetic correlations as 

reported by e.g. Frels et al. (2018)) may suffer from a strong dependency on genotype and 

environment, because the timing of senescence (in chronological time after sowing) is associated 

with N traits in an unstable manner, as it critically depends on anthesis date. This potentially limits 

the generalizability of the developed secondary traits (see Chapter 1). Such effects may be a cause 

of the frequently observed environment-specificity of optimal growth stages for assessments of 

N traits (Erdle et al., 2013; Frels et al., 2018; F. Li et al., 2014; Pavuluri et al., 2015).  

Under the hypothetical scenario of differences in senescence dynamics representing indeed the 

dominant factor underlying the predictability of N traits, the approach taken in Chapter 2 of this 

thesis may be advantageous because the dynamics of senescence are explicitly described and 

expressed relative to heading date (a proxy measure for flowering). In this way, several 

consecutive measurements are functionally integrated over time based on prior physiological 

knowledge on the dynamics of the process (Gaju et al., 2011; Gooding et al., 2000; Moreau et 

al., 2008). This may have the additional benefit of reducing the effect of measurement errors 

related to a particular measurement date on the estimation of the target trait. Furthermore, given 

the dynamic nature of senescence, modelling its dynamics allows to take spatial patterns in field 

experiments affecting these dynamics into account when estimating genetic effects (see e.g., van 

Eeuwijk et al., 2018). A time-integrated analysis allows for the derivation of independent 

parameters describing different aspects of the dynamics of senescence (see e.g., Kong et al., 2016; 

Moreau et al., 2008; Xie et al., 2016; see Chapter 2 for details). Furthermore, we propose the 

exploitation of relative temporal changes in reflectance characteristics at the level of individual 

plots as a means to control for confounding effects on spectral reflectance caused by genotypic 

diversity and varying environmental conditions. Frequent measurements are becoming 

increasingly feasible and affordable with technical advances in platform and sensor technology 

(see e.g., Aasen et al., 2015; Aasen and Bolten, 2018).  

Due to the context-specificity of effects of senescence on N traits and GPC, it would be preferable 

to measure relevant physiological processes occurring during the grain filling phase that are 

directly linked with N traits (e.g. post-anthesis N uptake and N remobilization) “as they occur”. 

Unfortunately, this appears infeasible given the spectacular changes in canopy structural 

characteristics during late development. These changes are functionally largely unrelated with N 

uptake and remobilization processes. However, they have massive effects on reflectance 

characteristics of canopies in the entire measureable spectrum. In Chapter 3, we showed that even 

in the absence of visually apparent changes in canopy structure during the stay-green phase, 

values of spectral indices such as the structure-insensitive pigment index (SIPI) change quite 

drastically in short time when set in relation to the time span between early and late flowering 

genotypes (Figure 3.4B, Figure 3.4C). In fact, it seemed that even treatments such as inoculations 

only moderately affected canopy reflectance, compared to changes over time, highlighting the 

importance of accounting for contrasting phenology among genotypes. It has been argued that the 

use of the full spectrum instead of just a few wavelengths may facilitate the detection of subtle 
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differences in canopies (Araus et al., 2018). However, these methods suffer from a lack of 

generalizability across genotypes and environments, which is a key requirement for an efficient 

implementation in breeding (Araus et al., 2008). This problem was obvious also in our work 

despite the apparent simplicity of the task (Figure 2.7, Figure 2.8). This led us to conclude that 

the extraction of tailored and thoroughly validated spectral features may be preferable over a 

“brute-force” modelling approach. Several spectral indices were developed taking the effect of 

common confounding factors explicitly into account (e.g., Haboudane et al., 2004). Nonetheless, 

many spectral indices are also strongly affected by canopy structural changes, limiting their 

predictive ability for biochemical or physiological changes.  

Possibly a part of the predictive ability of spectral indicators stems from a direct relationship 

between N traits of canopies and spectral reflectance (as opposed to an indirect relationship via 

the timing of senescence). However, given the strong effect of phenology, it appears that only a 

time-integrated analysis may be able to reveal relevant differences among genotypes. We found 

marked differences in the dynamics of different spectral indices, suggesting the potential to 

capture different aspects of senescence (Figure 2.4). However, our analysis of time-courses of 

spectral indices delivered rather inconclusive results. It appeared that visual scorings best captured 

GY-relevant aspects of senescence when a correlation existed between senescence dynamics and 

GY. This was probably because scorings were less affected by canopy structural changes over 

time (particularly spike orientation). This finding was in contrast to the findings of the same 

analysis for GPC. Here, NIR/VIS indices apparently better captured relevant processes, a pattern 

which was comparably stable across the two years for which data was available (Figure 2.10B). 

In time point specific analyses, most authors found a superior predictive power of red-edge based 

indices over NIR-based indices. The superior performance of these indices in assessing N traits 

during grain filling is frequently ascribed to the absence of saturation effects as opposed to NIR-

based indices such as the NDVI (Barmeier and Schmidhalter, 2017; Frels et al., 2018; Prey et al., 

2020; Prey and Schmidhalter, 2019a). We observed decreasing NDVI-values before any visual 

symptom of senescence could be observed, which seemingly contradicts the assumption of 

saturation (Figure 2.5). However, it also seemed that NIR-based indices react sensitively to 

canopy structural changes (Figure 2.6), although we were not able to analyze this relationship 

quantitatively. Thus, it seemed that an increased contribution of spikes to the signal rather than 

biochemical changes occurring in the subtending canopy were responsible for the observed 

decline in NDVI values. 

5.4 A time-integrated multi-sensor approach to characterize green leaf 

area dynamics - Towards an understanding of factors driving 

senescence under field conditions? 

Despite its importance for grain yield and N yield formation, senescence and its physiological and 

genetic determinants under field conditions remain relatively poorly understood (Jagadish et al., 

2015). In the special case of the Swiss federal wheat breeding program of Agroscope, effects of 

foliar diseases may interact with or overlay physiological and genetic factors regulating 
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senescence, as breeders select without fungicide applications. Given this complexity, an improved 

understanding of mechanisms determining GLAD under specific environmental conditions may 

be required to better understand and exploit the functional relationship with primary traits for 

breeding purposes. We hypothesized that a combination of different sensors and a time-integrated 

approach may offer insights due to the potential to track multiple aspects of GLAD over time.  

In Chapter 3, we demonstrated the potential to distinguish between disease-driven GLAD and 

GLAD primarily affected by physiological senescence. Such a distinction may allow for a better 

interpretation of the correlations between GLAD and primary traits. This is prominently 

illustrated by the difference observed between the wet season of 2016 and the dry and hot seasons 

of 2017 and 2018 in our experiments. Although in the three year-locations investigated in this 

work, a well-informed breeder would probably be able to provide a solid interpretation of the 

observed correlations between GLAD and primary traits without much phenotyping data, the 

characterization of environments may often not be as simple as in these relatively extreme cases. 

Thus, a presence of several different factors influencing GLAD should always be expected. 

Accordingly, a larger number of possible mechanisms conferring stay-green or early senescence 

may be present simultaneously within experiments, some of which may be more or less beneficial. 

A coarse, overall analysis of the effects of GLAD on primary traits may therefore mask beneficial 

genetic variation, if a more detailed characterization is not achieved.  

In Chapter 4, we evaluated the potential to combine spectral and thermal measurements to more 

accurately characterize genotype performance during the stay-green phase. Stay-green is a broad 

phenotype, which can represent the underlying genotypic driver of assimilation, but can also 

simply reflect slowed water use, greater N uptake or slowed N remobilization (Rebetzke et al., 

2016 and citations therein). As a proxy of transpiration rates, CT measurements may therefore 

complement measurements of canopy greenness to distinguish between different physiological 

determinants of stay-green. We were able to extract repeatable temporal trends of CT, in the dry 

and hot summer of 2018, without applying drought treatments. These trends were not correlated 

with trends in spectral canopy greenness indicators. This suggested that multiple temporal trends 

derived from different sensors may indeed provide complementary information to more 

accurately characterize stay-green. However, it is stressed here that the value of this approach 

requires further evaluation, including assessments of repeatability and heritability and 

investigations into the genetic correlation with primary breeding target traits (Araus et al., 2008; 

Jackson et al., 1996). 

5.5 Potential of high throughput phenotyping of green leaf area 

dynamics for physiological wheat breeding 

As pointed out previously, the development of an ideotype for the tested environments is beyond 

the scope of this thesis and will require extensive additional investigations. Consequently, the 

question whether GLAD, stay-green and senescence dynamics may represent a valuable 

secondary trait for a physiological breeding strategy can only be addressed in terms of its technical 

feasibility. 
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Despite the small plot size used in our work, we found moderate to high repeatability within years 

and a moderate to high heritability across years for senescence dynamics parameters extracted 

from repeated canopy reflectance measurements. Importantly, this also held true for parameters 

describing the duration (and thus the rate) of senescence (Table 2.1). A similar correlation for 

spectral and visual parameters with primary traits (derived genotypic BLUEs) appears to justify 

the use of spectral indices instead of laborious visual scorings. However, only the upscaling to 

phenotyping platforms such as UAVs will deliver the required throughput to investigate the value 

of senescence dynamics as a secondary trait in breeding programs. Such an implementation will 

require additional prior validation of spectral indices. Furthermore, trait heritability may be 

overestimated here because it was estimated in an unrealistically genetically diverse population 

that is representative of breeding populations (Jackson et al., 1996).  

There is some evidence that senescence dynamics may affect GY in other ways than by relaxing 

a source capacity constraint. For example, grain filling dynamics and senescence dynamics may 

be related. For example, a delayed but short and fast senescence was related to a shortened grain 

filling phase but higher grain filling rates in a doubled haploid mapping population (derived from 

‘Forno’×’Oberkulmer’; Xie et al., 2016). Final individual grain weight appears to be more 

strongly related to grain filling rates than grain filling duration (Xie et al., 2016a; Zahedi and 

Jenner, 2003). Thus, if senescence dynamics and grain filling dynamics are related, senescence 

dynamics could be used as a readily accessible indicator for grain filling dynamics. This appears 

to be of particular interest under heat stress conditions, where temporal constraints to grain filling 

may become limiting, even in the absence of source limitation (García et al., 2016). However, 

under increased night temperatures, the shortened duration of grain filling was not associated with 

changes in green leaf area dynamics (García et al., 2016). 

Detailed direct assessments of yield and quality formation during grain filling are not possible 

using current high throughput phenotyping techniques. However, as discussed throughout this 

thesis, correlations of green leaf area dynamics with primary target traits or with secondary traits 

conferring yield or quality benefits under certain environmental conditions are frequently 

observed. This suggests that senescence dynamics may be used as a readily available indicator 

for important physiological and developmental processes determining yield and quality. 

Relatively low-cost and high throughput post-harvest assessments of yield components 

(particularly individual grain weight) and N traits at maturity will help to elucidate these 

correlations and their dependency on environmental conditions. From our work, a time-integrated 

multi-sensor approach emerges as the most promising way to characterize green leaf area 

dynamics and investigate causal genetic and physiological factors. Upscaling to mobile 

phenotyping platforms will provide the required throughput. We anticipate that this will allow for 

the identification of combinations of stay-green phenotypes and environments with stable positive 

effects on yield and quality.   
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7 Supplementary material 

Supplementary material Chapter 2 

Supplementary Methods 

Calculation of spectral indices and extraction of dynamics parameters 

Spectral regions comprising the wavelengths from 1350 nm to 1475 nm, from 1781 nm to 1990 

nm and from 2400 nm to 2500 nm were removed because of the very low signal-to-noise ratio 

resulting from high atmospheric absorption. Spectra were then averaged for each experimental 

plot and 100 published spectral indices (SI) sensitive to chlorophyll content, water content, N 

content and total above ground N, leaf area index, green biomass and vegetation cover, and 

pigment changes and plant senescence were computed according to the formulae reported in Table 

S1 (Figure 2.1, [1]). Values of SI were scaled to range from 0 to 10, representing the minimum 

and maximum values recorded during the assessment period, respectively. Scaled values of these 

SI were then fitted against thermal time after heading using linear interpolation and dynamics 

parameters were extracted as was done for visual scorings (Figure 2.1, [2]). Parametric models 

were not used for SI as different SI exhibited distinct temporal patterns and would have required 

the use of SI-specific models (compare Figure 2.5).  

Spectral index subset selection 

We then performed unsupervised subset selection to reduce multi-collinearity of the dataset using 

several filtering criteria (Figure 2.1, [3]). Only SI that showed a monotonous or near-monotonous 

decrease during the assessment period for most experimental plots were retained for further 

analysis. Repeatability (w2) of the senescence dynamics parameters derived from the selected SI 

was then calculated based on data obtained in 2016. Only parameters with w2 similar to those 

observed for the visual scorings were retained (w2 > 0.6 for Onsen, w2 > 0.7 for Midsen, w2 > 0.8 

for Endsen and w2 > 0.5 for Tsen). Finally, highly correlated parameters were iteratively removed 

by calculating a correlation matrix based on three years data and discarding one of two parameters 

with a pair-wise correlation coefficient > 0.96. Parameters were selected preferring narrow-band 

SI over broad-band SI, SI with a specific physiological interpretation over more generic SI and 

SI developed specifically for use in wheat or barley canopies. Additionally, the smoothness of SI 

values over time was evaluated graphically and used as an additional selection criterion. This 

selection procedure resulted in a set of 83 SI-derived senescence dynamics parameters based on 

51 distinct SI with pair-wise correlation coefficients r < 0.96.  

Development and validation of full-spectrum models to infer visual senescence scorings 

As an alternative to published SI, two multivariate modelling techniques were used to infer 

senescence scorings from spectral data (Figure 2.1, [4]) : (1) Partial Least Squares Regression 

(PLSR), which has been used extensively for analyzing field measured hyperspectral reflectance 

data (see Wold et al., 2001 for details) and (2) cubist regression, which substantially builds on the 

M5 model tree (Quinlan, 1992), extending it by incorporating a boosting-like procedure referred 

to as committees. The latter algorithm is more flexible since it does not require the user to specify 

the nature of the relationship between predictors and the response and is able to capture more 
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complex non-linear relationships (Kuhn and Johnson, 2013). The R packages ‘pls’ V2.7.0 (Mevik 

et al., 2018) and ‘Cubist’ (Kuhn et al., 2018) were used for the analysis. The hyperparameters of 

each model were tuned using 10-fold cross-validation, which was repeated 5 times in the case of 

PLSR, using the R package ‘caret’ V6.0.80 (Kuhn, 2008). As the main interest lies on the 

capability of full-spectrum models to represent the entire process of senescence, average RMSE 

for 10 different random upsamples of the test data were calculated, with each upsample containing 

all possible scoring values an equal number of times, i.e. exactly the number of times of the most 

frequent observation. This was achieved by random sampling with replacement.  

A common issue with full-spectrum models is limited applicability on data of experiments not 

contained in the model training process (see e.g. Øvergaard et al., 2013). We hypothesized that 

this problem should be less pronounced in our case, as senescence results in major changes of 

canopy reflectance that should be similar across years.  Still, to maximize model across-year 

applicability, we evaluated different types of input data: (1) raw reflectance spectra, (2) smoothed 

reflectance spectra, (3) first derivative of smoothed reflectance spectra, (4) continuum removed 

smoothed reflectance spectra and (5) raw reflectance spectra limited to the spectral range between 

500 nm and 700 nm, as done by Kipp et al. (2014). Smoothing of raw spectra and calculation of 

derivatives was done using the Savitzky-Golay smoothing filter (Savitzky and Golay, 1964) with 

a window size of 11 spectral bands and a third order polynomial. Continuum removal (Clark and 

Roush, 1984) was done using linear interpolation between extrema and subtraction for 

normalization. Spectra pre-preprocessing was done using functions of the  R package ‘prospectr’ 

V0.1.3 (Ramirez-Lopez and Stevens, 2014). Each type of input data was tested without pre-

treatment and with mean-centering and scaling to unit variance of all predictors. Finally, feature 

selection was conducted following the procedure described in the next section to identify the most 

important wavelengths for each year. Model evaluation was done within experiments (years) as 

well as across experiments to estimate the robustness of the developed models. Validation datasets 

were randomly up-sampled to obtain an estimate of model performance across the whole process 

of senescence.  

Supervised feature selection 

Supervised feature selection was performed by recursive feature elimination using a nested cross-

validation approach. Cubist was used as a base-learner for full-spectrum models to infer 

senescence scorings, while rf was used as a base-learner for selection of scoring- and SI-based 

senescence dynamics parameters. The ‘ranger’ implementation (Wright and Ziegler, 2017) of the 

original rf algorithm (Breiman, 2001) was used (R package ‘ranger’ V0.10.1). The mtry 

hyperparameter was tuned using 10-fold cross-validation, while variance reduction was defined 

as a split criterion, the minimal node size was set to five samples and the number of trees was set 

to 10,000, resulting in stable feature importance rankings for given resamples. Feature importance 

was calculated based on permutation. In order to obtain a robust ranking of features and measure 

of model performance, the data set was resampled 30 times into training and test sets with an 

80:20 split. For each resample, a rf was trained using all features, as described above. Then, from 

the set of original features, those with the lowest importance values were removed iteratively in 

29 decreasing steps until only one feature remained in the model. After each iteration, feature 
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importance was re-calculated due to remaining multi-collinearity in the feature set and 

performance was assessed on the corresponding test set. The results of the 30 resamples were then 

aggregated to obtain a performance profile over the feature subset sizes and robust feature 

importance rankings. For full-spectrum models, the procedure was identical. Here, the varImp() 

function of the R package ‘caret’ was used to extract variable importance in each iteration. The 

returned measure is a linear combination of the usage in rule conditions and the model. For more 

details, we refer to Kuhn and Johnson (2013). 

Supplementary Tables 
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Table S 1 Hyperspectral vegetation indices used in this study to track senescence dynamics.   

1
2
3
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Index Application Formula Reference 

ANTH Anthocyanin R760to800*(1/R540to560-1/R690to710) (Gitelson et al., 2006) 

ARI Anthocyanin 1/(R549to551*100)-1/(R699to701*100) (Gitelson et al., 2001) 

ARVI 
LAI/vegetation fraction/green 

biomass 

(R845to885-(R845to885-R460to480+R845to885))/(R845to885+(R635to685-

R460to480+R635to685)) 

(Kaufman and Tanre, 

1992) 

CAI Plant litter / crop residues 0.5*(R2019to2021*100+R2219to2221*100)-R2099to2101*100 (Nagler et al., 2000) 

CARG Car R760to800*(1/R510to520-1/R540to560) (Gitelson et al., 2006) 

CARRE Car R760to800*(1/R510to520-1/R690to710) (Gitelson et al., 2006) 

CHLG Chl R760to800/R540to560 (Gitelson et al., 2006) 

CHLRE Chl R760to800/R690to720-1 (Gitelson et al., 2006) 

CIG Chl / LAI R750to800/R520to585-1 (Gitelson et al., 2003) 

CIRE Chl / LAI R750to800/R695to740-1 (Gitelson et al., 2003) 

CLSI Disease discrimination (R697to699-R569to571)/(R697to699+R569to571)-R733to735 (Mahlein et al., 2013) 

CNHI Senescence 
(R8455to890-R1200to1300)*(R775to805+R630to690))/( R8455to890+ 

R1200to1300)*(R775to805- R630to690)) 
(Pimstein et al., 2009) 

CRI1 Car 1/R506to514-1/R535to565 (Gitelson et al., 2002b) 

CRI2 Car 1/R506to514-1/R693to707 (Gitelson et al., 2002b) 

DCNI Plant N concentration (R717to723-R697to703)/(R697to703-R667to673)/( R717to723- R667to673+0.03) (Chen et al., 2010) 

DSWI Disease discrimination (R795to805+R543to553)/R1654to1664+R676to686) (Apan et al., 2004) 

EVI LAI / Vegetation fraction 2.5*(R841to876-R620to670)/(R841to876+6*R620to670-7.5*R459to479+1) (Huete et al., 2002) 

FII Flowering (R470to480-R360to370)/(R470to480+R360to370) (Stuckens et al., 2011) 

GBNDVI N concentration / LAI (R567to579-R438to442)/(R567to579+R438to442) 
(Hansen and Schjoerring, 

2003) 

GLI Vegetation cover / Chl (2*R580to610-R580to660-R400to520)/(2*R580to610+ R580to660+ R400to520) (Louhaichi et al., 2001) 

GM Chl R841to876/R545to565 - 1 (Gitelson et al., 2005) 

HI Disease discrimination (R533to535-R697to698)/(R533to535+R697to699)-1/2*R703to705 (Mahlein et al., 2013) 

LCI Chl / Senescence (R849to851+R709to711)/(R849to851+R679to681) (Datt, 1999) 

LCI2 Chl / Senescence (R849to851-R709to711)/(R849to851+R679to681) (Datt, 1999) 

LWI Leaf water content / EWT R1250to1350/R1400to1500 (Seelig et al., 2008) 

LWVI1 Leaf water (R1089to1099-R888to898)/(R1089to1099+R888to898) (Galvão et al., 2005) 

LWVI2 Leaf water (R1089to1099-R1201to1209)/( R1089to1099+R1201to1209) (Galvão et al., 2005) 

MCARI LAI 
{1.5*[2.5*(R797to803 - R676to673)-1.3*(R797to803 – R547to553)]}/ 

sqrt[(2* R797to803 + 1)^2-(6* R797to803-5*sqrt( R676to673)) - 0.5] 
(Haboudane et al., 2004) 

MCARI/MTVI2 Leaf N concentration (SPAD) MCARI/MTVI2 (Eitel et al., 2007) 
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MCARI/OSAVI Chl MCARI/OSAVI (Wu et al., 2008) 

mND705 Chl (R749to751-R704to706)/(R749to751+ R704to706-2*R444to446) (Sims and Gamon, 2002) 

MSAVI Green cover / LAI 0.5*(2*R790to890+1-sqrt((2*R790to890+1)^2-8*(R790to890-R610to690))) (Qi et al., 1994) 

MSRrev Chl [(R750/R705) + 1]/sqrt[(R750/R705) + 1] (Wu et al., 2008) 

MTCI Chl  (R751to757-R705to713)/(R705to713-R678to684) (Dash and Curran, 2004) 

MTVI1 LAI 1.2*(1.2*(R797to803-R547to553)-2.5*(R667to673-R547to553)) (Haboudane et al., 2004) 

MTVI2 LAI 
{1.5*[1.2*(R797to803+R547to553)+2.5*(R667toR773+R547to553)]}/ 

sqrt[(2*R797to803+1)^2 + (6*R797to803+5*sqrt(R667toR773))+0.5] 
(Haboudane et al., 2004) 

NDLI 

foliar/bulk canopy lignin 

(senescence) and N  

concentration 

(log(1/R1750to1758)-log(1/ R1676to1684))/(log(1/ R1750to1758)+log(1/ 

R1676to1684)) 
(Serrano et al., 2002) 

NDMI Vegetation water content (R760to900-R1550to1750)/(R760to900+R1550to1750) (Hardisky et al., 1984) 

NDNI  
Foliar/bulk canopy N 

concentration 

[log(1/R1506to1514) - log(1/R1676to1684)] / [log(1/ R1506to1514) + 

 log(1/ R1676to1684)] 
(Eitel et al., 2007) 

NDRE 
Crop cover / Chl / water / N 

stress 
(R786to794-R716to724)/(R786to794+R716to724) (Barnes et al., 2000) 

NDREI Chl-a / Senescence (R749to751-R704to706)/(R749to751+R704to706) 
(Gitelson and Merzlyak, 

1994) 

NDSVI Residues / Senescence (R1550to1750-R630to690)/(R1550to1750+R630to690) (Qi et al., 2002) 

NDTI Tillage (residue cover) / soil plain 
 

(R1550to1750-R2080to2350)/( R1550to1750+R2080to2350) 
(Deventer et al., 1997) 

NDVI 
LAI / Vegetation fraction / Green 

biomass 
(R799to801-R669to671)/(R799to801+R669to671) (Rouse et al., 1974) 

NDWI Water content (R856to864-R1236to1244)/(R856to864+R1236to1244) (Gao, 1996) 

NDWI1650 Water content (R770to910 – R1550to1750)/( R770to910 + R1550to1750) (Clay et al., 2006) 

NDWI2130 Water content (R841to876-R2105to2155)/(R841to876+R2105to2155) (Chen et al., 2005) 

NGRDI Biomass / Water content / Chl (R520to600 – R630to690)/(R520to600 + R630to690) (Tucker, 1979) 

NHI Heading of wheat (R1098to1102-R1198to1202)/( R1098to1102+R1198to1202) (Pimstein et al., 2009) 

NPCI Chl/Car ratio (R678to682-R428to432)/(R678to682+R428to432) (Peñuelas et al., 1994) 

OCAR Chl R629to631/R679to681 (Schlemmer et al., 2005) 

OSAVI Vegetation cover / LAI / Chl (1+0.16)*(R797to803-R667to673)/(R797to803+R667to673+0.16) (Rondeaux et al., 1996) 

PBI Chl / N R806to814/R556to564 (Rao et al., 2008) 

PMI Disease discrimination (R519to521-R583to583)/(R519to521+R583to583)+R723to725 (Mahlein et al., 2013) 
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PRInorm 
Xanthophyll / Car / Canopy leaf 

area 
[(R570-R531)/(R570+R531)] / {[(R800-R670) /sqrt(R800+R670)]*(R700/R670)} 

(Zarco-Tejada et al., 

2013) 

PSND1 Chl / Car (R799to801-R674to676)/( R799to801+R674to676) (Blackburn, 1998) 

PSND2 Chl / Car (R799to801-R649to651)/(R799to801+R649to651) (Blackburn, 1998) 

PSND3 Chl / Car (R799to801-R499to501)/(R799to801+R499to501) (Blackburn, 1998) 

PSND4 Chl / Car (R799to801-R469to471)/(R799to801+ R469to471) (Blackburn, 1998) 

PSRI Pigment changes / Senescence (R677to679-R499to501)/R749to751 (Merzlyak et al., 1999) 

PSSR1 Chl/Car R799to801/R674to676 (Blackburn, 1998) 

PSSR2 Chl/Car R799to801/R649to651 (Blackburn, 1998) 

PSSR3 Chl/Car R799to801/R499to501 (Blackburn, 1998) 

R1200 Leaf water content (2*R1180to1220)/(R1090to1110+R1265to1285) (Pu, 2011) 

R760/R730 Dry matter / Total aerial N R759to761/R729to731 
(Mistele and 

Schmidhalter, 2010b) 

R780/R550 Dry matter / Total aerial N R779to781/R549to551 (Takebe et al., 1990) 

R780/R700 Dry matter / Total aerial N R779to781/R699to701 
(Mistele and 

Schmidhalter, 2010a) 

R780/R740 Dry matter / Total aerial N R779to781/R739to741 
(Mistele and 

Schmidhalter, 2010a) 

R970/R900 Dry matter / Total aerial N R969to971/R899to901 
(Mistele and 

Schmidhalter, 2010b) 

R975 Water content (2*R960to990)/(R920to940 + R1090to1110) (Pu et al., 2003) 

REIP Dry matter / Total aerial N 700+40*[(R669to671+R779to781)/2-R699to701]/(R739to741-R699to701) (Guyot et al., 1988) 

RGR Anthocyanin / LAI R682toR684/R509toR511 
(Gamon and Surfus, 

1999) 

RGR2 Anthocyanin / LAI R600to699/R500to599 
(Gamon and Surfus, 

1999) 

RRDIRed-edge Chl (R744to746-R739to741)/(R739to741-R699to701) (Yu et al., 2014) 

RVI2 Leaf N accumulation (g N m-2) R805to815/R655to665 (Xue et al., 2004) 

SAVI 
LAI / vegetation fraction / (green 

biomass) 
(1.5)*(R857to863-R667to673)/(R857to863+R667to673+0.5) (Huete, 1988) 

SBRI Disease discrimination R569to571-R512to514)/(R569to571+R512to514)-1/2*R703to705 (Mahlein et al., 2013) 

SGR Green vegetation cover ∑ R500to599 (Fuentes et al., 2001) 

SINDRI Fraction residue cover (R2185to2225-R2235to2285)/( R2185to2225+R2235to2285) (Serbin et al., 2009) 

SIPI Chl / Car / (Senescence) R799to801-R444to446)/(R799to801-R679to681) (Penuelas et al., 1995) 
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SIPI Chl, Car / LUE / Senescence (R799to801−R444to446)/(R799to801−R679to681) (Penuelas et al., 1995) 

SIWSI Water stress (R841to876-R1628to1652)/( R841to876+R1628to1652) 
(Fensholt and Sandholt, 

2003) 

SLAIDI1 LAI 5*(R1049to1051-R1249to1251)/(R1049to1051+R1249to1251) (Delalieux et al., 2008) 

SLAIDI2 LAI 40*R1554to1556*(R1049to1051-R1249to1251)/(R1049to1051+R1249to1251) (Delalieux et al., 2008) 

SRWI Water content R841to876/R1230to1250 
(Zarco-Tejada et al., 

2003) 

TCARI Chl 3*((R697to703-R667to673)-0.2*( R697to703-R547to553)*( R697to703/ R667to673)) (Haboudane et al., 2002) 

TCARI/OSAVI Chl TCARI/OSAVI (Haboudane et al., 2002) 

TGI Chl  -0.5*(190*(R666to674-R546toR554)-120*(R666to674-R476to484)) (Hunt et al., 2011) 

VARIgreen Vegetation fraction (R546to556-R620to670)/(R546to556+R620to670-R459to479) (Gitelson et al., 2002a) 

VI700 Vegetation fraction (R700to710-R620to670)/(R700to710+R620to670) (Gitelson et al., 2002a) 

VIgreen Vegetation fraction (R546to556-R620to670)/(R546to556+R620to670) (Gitelson et al., 2002a) 

VIopt N in crop (kg N ha-1) (1+0.45)*((R760to900)*2+1)/(R630to690+0.45) (Reyniers et al., 2006) 

VOG1 Chl R739to741/R719to721 (Vogelmann et al., 1993) 

VOG2 Chl (R733to735-R746to748)/(R714to716+R725toR727) (Vogelmann et al., 1993) 

VOG3 Chl R733to735-R746to748)/(R714to716+R719to721) (Vogelmann et al., 1993) 

WDRVI 
LAI / Vegetation fraction / (green 

biomass) 
(0.1*R750to1000-R580to680)/(0.1*R750to1000+R580to680) (Gitelson, 2004) 

WI Leaf water content R896to904/R966to974 (Peñuelas et al., 1993) 

WI/NDVI Plant water content (R896to904/R966to974)/((R796to804-R676to684)/(R796to804-R676to684)) (Penuelas et al., 1997) 

YCAR Chl R599to601/R679to681 (Schlemmer et al., 2005) 
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Table S 2 Least squares coefficient estimates associated with the regression of grain yield (GY) or grain 

protein concentration (GPC) in 2016-2018 onto heading (in GDD after sowing) and midpoint of 

senescence (midsen, in GDD after heading) as assessed visually. In a first step, the interaction term was 

included in the model, but was subsequently dropped, as the analysis did not suggest the presence of a 

statistically significant interaction. Bold numbers highlight significant p values at the significance 

threshold of 0.05. 



129 

 

Supplementary material Chapter 3 

Supplementary Tables 

 

Spectral-temporal feature 

Base 

Learner 

Mean 

rank sd SVI_sen SVI_insen Parameter 

SI_MCARI2-SI_SIPI_r-M_delta rf 1.00 0.00 MCARI2 SIPI Δ(M) 

SI_DSWI-SI_780_740-M_delta rf 6.17 3.81 DSWI R780/R740 Δ(M) 

SI_VOG1-SI_780_740-M_delta rf 6.30 4.07 VOG1 R780/R740 Δ(M) 

SI_MCARI2-SI_780_740-M_delta rf 8.50 4.23 MCARI2 R780/R740 Δ(M) 

SI_WI-SI_PRInorm_r-M_delta rf 9.03 4.13 WI PRInorm Δ(M) 

SI_MCARI2-SI_PRInorm_r-M_delta rf 9.93 5.54 MCARI2 PRInorm Δ(M) 

SI_DSWI-SI_PRInorm_r-M_delta rf 11.20 5.41 DSWI PRInorm Δ(M) 

SI_YCAR-SI_FII_r-M_delta rf 11.47 7.24 YCAR FII Δ(M) 

SI_VOG1-SI_SIPI_r-M_delta rf 12.30 5.69 VOG1 SIPI Δ(M) 

SI_DSWI-SI_GNDVI_HI-M_delta rf 12.53 3.70 DSWI GNDVI Δ(M) 

SI_DSWI-SI_SIPI_r-M_delta rf 13.27 6.60 DSWI SIPI Δ(M) 

SI_DSWI-SI_DCNI_ASD-M_delta rf 13.77 6.97 DSWI DCNI Δ(M) 

SI_MCARI2-SI_SR-b_ratio rf 14.53 5.47 MCARI2 SR ratio(b) 

SI_NGRDI-SI_SIPI_r-sen15_delta rf 14.97 4.56 NGRDI SIPI Δ(sen15) 

SI_NDWI2130-SI_SIPI_r-sen15_delta rf 15.00 5.02 NDWI2130 SIPI Δ(sen15) 

SI_MCARI2-SI_SIPI_r-M_delta cubist 1.03 0.18 MCARI2 SIPI Δ(M) 

SI_NGRDI-SI_PRInorm_r-M_delta cubist 8.80 7.46 NGRDI PRInorm Δ(M) 

SI_DSWI-SI_780_740-M_delta cubist 13.10 3.36 DSWI R780/R740 Δ(M) 

SI_DSWI-SI_FII_r-M_delta cubist 13.33 4.76 DSWI FII Δ(M) 

SI_DSWI-SI_GNDVI_HI-M_delta cubist 13.50 4.16 DSWI GNDVI Δ(M) 

SI_MCARI2-SI_PRInorm_r-M_delta cubist 14.57 5.52 MCARI2 PRInorm Δ(M) 

SI_DSWI-SI_PRInorm_r-M_delta cubist 14.67 3.52 DSWI PRInorm Δ(M) 

SI_HI-SI_CHLRE-M_delta cubist 14.70 3.70 HI CHLRE Δ(M) 

SI_VI700-SI_CHLRE-M_delta cubist 14.77 7.67 VI700 CHLRE Δ(M) 

SI_DSWI-SI_SIPI_r-M_delta cubist 15.00 3.81 DSWI SIPI Δ(M) 

SI_MCARI2-SI_780_740-sen15_delta cubist 15.13 4.99 MCARI2 R780/R740 Δ(sen15) 

SI_VOG1-SI_780_740-M_delta cubist 15.40 5.76 VOG1 R780/R740 Δ(M) 

SI_DSWI-SI_FII_r-sen15_delta cubist 15.60 2.44 DSWI FII Δ(sen15) 

SI_NDVI_nb_ASD-SI_GNDVI_HI-M_delta cubist 15.63 5.54 NDVI GNDVI Δ(M) 

SI_DSWI-SI_780_740-sen15_delta cubist 15.67 1.71 DSWI R780/R740 Δ(sen15) 

Table S 3 Ranks of spectral-temporal features as determined by recursive feature elimination using random 

forest (rf) and cubist regression as base learners. Mean feature rank and standard deviation (sd) are reported 

based on 30 resamples of the data for the top 15 spectral-temporal features. The sensitive SVI (SVI_sen) 

and insensitive SVI (SVI_insen) constituting the spectral-temporal features and the dynamics parameter 

used are also reported, where Δ stands for the difference between the parameter values derived from the 

corresponding SVIs. 
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Supplementary Figures 

 

  

Figure S 7.1 Distribution of important morphological, phenological and canopy structural traits in the 

GABI wheat panel and in the subset of genotypes selected for the present study. Flag leaf glaucousness, 

presence or absence of awns, flag leaf angle, flag leaf length and flag leaf width were assessed in 2018, 

following guidelines provided by Pask et al. (2012). For Final height and onset of senescence, distributions 

of best linear unbiased estimators from experiments conducted in three consecutive years at the same 

location are shown. For details on methods to determine these traits, we refer to Anderegg et al. (2020), 

Kronenberg et al. (2017) and Pask et al. (2012). 
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Supplementary material Chapter 4 

Supplementary Figures 

 

 
Figure S 7.3 Summary of plot based linear models fitted by ordinary least squares of NRCT vs. thermal 

time. Distribution of linear model slopes, R2 and p-values. (A) Linear models were fitted to uncorrected 

NRCT; (B) Linear models were fitted to date-wise spatially corrected NRCT. 

Figure S 7.2 Regression of destructively measured dry matter of the total aerial biomass (bm) on the ratio 

of reflectance at 1200 nm spectral vegetation index (SVI) for measurements performed on 23 June, 2018. 

A subset of 49 genotypes contained in the main experiment were used for to select the best-performing 

SVI-by-date combination. The blue line represents the least squares line of the linear regression of bm vs. 

SVI, the gray area represents the 95% confidence interval of the least squares line. 
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Figure S 7.4 Some examples of linear model fits. Genotypes were selected to have highest or lowest 

average (across two replicates) R2 values. (A) Trends for uncorrected NRCT. (B) Trends for date-wise 

spatially corrected NRCT.     

Figure S 7.5 Scatter plots of slopes fitted to date-wise spatially corrected normalized canopy temperature 

(CT) values (SlopePlot rank, corr) versus spatially corrected slopes fitted to raw normalized CT values (SlopePlot 

rank, raw). The red line represents the least squares regression line.   
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Figure S 7.7  Temporal trends in canopy temperature (CT) and the spectral vegetation index NDVI (SVI) 

ranks for all plots sown with the check cultivars CH CLARO (A) and CH NARA (B). NRCT and NRSVI 

are date-wise spatially corrected values. Lines are least square regression lines. 

Figure S 7.6 Three extremes to both ends of the distribution shown in Figure 4.6. The NDVI was used as 

an indicator of canopy greenness. (A) Extremes at the upper end of the distribution, the slopeSVI – slopeCT 

values range from 1.10 to 1.24; (B) extremes at the lower end of the distribution, the slopeSVI – slopeCT 

values range from -0.92 to -1.02. 
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Supplementary material: Data and Analysis Scripts 

 

Chapter 2 

Data sets generated and analyzed in this study are available from the ETH Zürich publications 

and research data repository (https://www.research-collection.ethz.ch).  

Experimental data supporting the conclusions of this article can be downloaded from the 

following link: https://doi.org/10.3929/ethz-b-000365618.  

All analysis scripts required to reproduce the results published in this article are publicly available. 

An archived version can be retrieved from: https://doi.org/10.5905/ethz-1007-227.   

Development repository: https://github.com/andjonas/Andereggetal2019.  

Programming language: R. License: GNU General Public License, version 3 (GPL-3.0). 

 

Chapter 3 

Data sets generated and analyzed for this study are available from the ETH Zürich publications 

and research data repository (https://www.research-collection.ethz.ch/)  

Experimental data supporting the conclusions of this article can be downloaded from the 

following link: https://doi.org/10.3929/ethz-b-000370027.  

All analysis scripts required to reproduce the results published in this article are publicly available. 

An archived version can be retrieved from: http://doi.org/10.5905/ethz-1007-228 

Development repositories: https://github.com/and-jonas/Andereggetal2019b  and 

https://github.com/and-jonas/stb_placl. 

Programming language: R, Python. License: GNU General Public License, version 3 (GPL-3.0). 

 

  

https://www.research-collection.ethz.ch/
https://doi.org/10.3929/ethz-b-000365618
https://doi.org/10.5905/ethz-1007-227
https://github.com/andjonas/Andereggetal2019
https://www.research-collection.ethz.ch/
https://doi.org/10.3929/ethz-b-000370027
http://doi.org/10.5905/ethz-1007-228
https://github.com/and-jonas/Andereggetal2019b
https://github.com/and-jonas/stb_placl
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