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‘Either this is madness or it is
Hell’.‘It is neither’, calmly replied
the voice of the Sphere, ‘it is
Knowledge; it is Three
Dimensions: open your eye once
again and try to look steadily.’

Edwin Abbott, Flatland: A
Romance of Many Dimensions
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Abstract

The identification of small-molecule inhibitors of macro-molecular targets
is a challenging task, and one to which considerable resources have been
devoted over the preceding decades. Huge compound libraries have
been synthesised and trialled, and yet still capture only a tiny fraction of
the available chemical space. At a fundamental level, we are interested
in learning how chemical and biological spaces interrelate, to describe
what makes a ligand, or a target, promiscuous, and what makes some
targets ‘harder’ than others to ligand. As such, methods which allow us
to gain a broader perspective are valuable, if they can guide us in new
directions.

One compelling conceptual framework which has been proposed to
describe the process underlying these relations is that of shape comple-
mentarity. This has the dual advantages of an intuitive relation to the
induced-fit and conformational-selection models of ligand-target inter-
action, and substantial support from experimental data. Shape-based
approaches have been used to identify novel compounds, representing
‘scaffold hops’ into new chemical space. These hops are immensely valu-
able, on both a scientific and a commercial basis, representing genuinely
novel chemical insights into biological problems. Shape-based screening
is not without issues; the results can be counter-intuitive, the definition is
subject to debate, the good methods are often slow, and the fast methods
give at best a rough sketch of a molecule, rather than a finely detailed
likeness.

Shape-based approaches which help us to ‘look before we scaffold hop’,
to encompass a wider view of chemical space, which capture shape in
an intuitive fashion, and do so in a reasonable time-frame, are of con-
siderable value in the pursuit of new chemical perspectives on biology.
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Abstract

Equally, the shape-complementarity hypothesis motivates the develop-
ment of methods which allow us to compare the geometries of binding
sites, and then to assess the relationship between ligand and target shape.

Here, we develop and describe a novel method for the generation of
global shape descriptors and shape-based fingerprints, capturing these
through the local fractal dimension of surface representations of small-
and macro-molecules. Given the profusion of descriptors available to the
computational chemist, we focused our initial efforts on demonstrating
the novelty, validity, and utility of the developed method.

We adopted a ligand-based retrospective benchmarking platform, and
used this to compare our approach with existing shape-based and simple
methods. We saw that our method recovered more, and more diverse,
actives for a set based on medicinal chemical efforts than a gold-standard
commercial technology, in a thousandth of the time. Its performance
on other sets was broadly equivalent. We used data extracted from this
experiment to train probabilistic models to determine the form of the
relationship between chemical and biological similarity for the methods
profiled.

Given this promising early result, we conducted two prospective screen-
ing rounds with the developed methods. The first, a small screen and
subsequent SAR study based on the natural product (-)-Englerin A,
utilised the global shape descriptor to identify a novel inhibitor with no
known analogues for the described target. The second, utilising the local
shape fingerprint, was conducted against seven targets. 22% (n=28) of
all screened compounds were active against the desired targets. These
contain 22 scaffolds which were not previously publicly-known to mod-
ulate the targets. As such, the retrieved compounds represent novel
chemical space for the targets of interest. Additionally, we assessed the
performance of the trained probabilistic model, and found the hit rate at
the chosen cutoff to be 42%, which captures 93% of the hit compounds.
The probability model based on simple similarity was found to have
higher predictive power than more advanced methods for this set of
compounds.

To explore the relationship between ligand and target shape, one of the
hit compounds identified was profiled in depth, determining its IC50
against the Pim-1 kinase (484 nM), subjecting it to a kinase selectivity
panel, and obtaining a crystal structure. It was discovered to be a highly-
selective inhibitor, potently inhibiting the Pim-1, GSK-3β and DRAK-1
kinases. Analysis of 133 existing crystal structures revealed that the
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compound binds in a similar fashion to known inhibitors, with few
specific contacts. The advantages of a shape-based method which is less
sensitive to conformation are highlighted by comparison with ROCS.
There is some correlation between protein and ligand shape-fingerprint
similarity.

Having shown that a shape-based method suffices to identify active
compounds for a set of targets, we sought to determine the feasibility of
reversing the relationship, suggesting ligand shape fingerprints based
on the shape of a binding pocket. To do this, we analysed fourteen
thousand published crystal structures, calculating ligand and pocket
shape-fingerprints, and using a portion of these to train a sequence
transduction model. Approximately a fifth of the reconstructed test
ligand fingerprints were highly-similar to those extracted from the crystal
structure, and all were significantly better than a simple statistical model.

In summary, this work seeks to demonstrate the novelty and validity of
the described approach for capturing shape information, and the utility
of such approaches in the description of chemical space, both small- and
macro-molecular.
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Zusammenfassung

Die Identifizierung von niedermolekularen Inhibitoren für makromole-
kulare Zielproteine ist eine herausfordernde Aufgabe und eine, für die
über viele Jahrzehnte erhebliche Mittel zur Verfügung gestellt wurden.
Grosse Substanzbibliotheken wurden synthetisiert und gegen Zielprote-
ine getestet, jedoch stellen diese nur winzige Anteile des erreichbaren
Chemical Space dar. Davon ausgehend sind Methoden wertvoll, die uns
erlauben eine Perspektive für einen breiteren Bereich des zugrunde lie-
genden Chemical Space zu kriegen, vor allem, wenn sie uns in eine neue
Richtung führen. Auf einer grundsätzlichen Ebene sind wir daran inter-
essiert zu verstehen wie sich der chemische und der biologische Raum
überschneiden, zu beschreiben was einen Liganden oder ein Zielprotein
mehrere Partner haben lässt, und zu erkennen was es für bestimmte
Zielproteine herausfordernder macht Liganden zu finden als für andere.

Ein Rahmenkonzept, das den Prozess von diesen zugrunde liegen-
den Verhältnissen beschreibt, ist das der Shape-Komplementarität. Des-
sen dualer Vorteil besteht in eine intuitiven Beziehung für Liganden-
Zielprotein Interaktionen zwischen dem Induced-fit und Modellen zur
Konformationsauswahl, sowie einer starken Untermauerung basierend
auf einer Fülle an experimenteller Daten. Shape-basierten Screenings
sind nicht ohne Herausforderungen; Das Resultat kann entgegen der
Intuition sein, deren Definition kann Gegenstand der Debatte sein, gute
Methoden sind häufig langsam, und die Bestleistung schneller Methoden
ist, eher ein grober Umriss des Moleküls, als ein voll detailliertes Abbild
dessen.

Shape-basierende Ansätze, die uns helfen, bevor wir einen Scaffold-hop
machen, einen größeren Überblick im Chemical Space zu kriegen, sollen
die Kontur eines Moleküls auf eine intuitive Art einfangen, und dies in
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Zusammenfassung

einem nützlichen Zeitrahmen tun. Erfüllt ein Ansatz dies, kreiert es einen
beachtlichen Wert, wenn es darum geht neue chemische Perspektiven
auf die Biologie zu bekommen. Genauso motiviert uns die Hypothese
der Shape-Komplementarität bei der Entwicklung von Methoden, die
uns erlauben Bindungsseitengeometrien zu vergleichen, und dadurch die
Beziehung zwischen Liganden-Shape und Zielprotein-Shape zu messen.

In dieser Arbeit entwickeln und beschreiben wir eine neue Methode, um
globale Shape Deskriptoren und shape-basierte Fingerprints zu generie-
ren, die über die lokale fraktale Dimension der Oberflächendarstellung
von niedermolekularen und makromolekularen Verbindungen erfasst
wird. Aufgrund der Fülle an Deskriptoren, die einem Computerchemi-
ker zur Verfügung stehen, fokussieren wir unser in erster Linie darauf
Neuartigkeit, Validität und Nützlichkeit der entwickelten Methode auf-
zuzeigen.

Wir nehmen eine liganden-basierte, retrospektive Benchmarking Platt-
form und nutzen diese um unseren Ansatz mit existierenden shape-
basierten und einfacheren Methoden zu vergleichen. Basierend auf einem
Set von Verbindungen mit medizinal-chemisch Ursprung, hat unsere
Methode mehr und diversere, aktive Verbindungen gefunden, als eine
kommerzielle Technologie, die als Goldstandard im Feld gilt, und das
Ganze in einem tausendstel der Zeit. Die Leistung unserer Methode auf
andere Sets war weitgehend gleich. Wir haben, von diesem Experiment
stammende, Daten genutzt um Wahrscheinlichkeits-Modelle zu trainie-
ren, die bestimmen, welche Form der Beziehung zwischen chemischer
und biologischer Ähnlichkeit für die verwendeten Methoden besteht.

Aufgrund dieser vielversprechenden frühen Resultate haben wir zwei
prospektive Screeningrunden mit den entwickelten Methoden durch-
geführt. Das erste, kleinere Screening und die darauffolgenden SAR
Studie, basierend auf dem Naturstoff (-)-Englerin A, nutzte den globa-
len Shape-Deskriptor, um neue Inhibitoren zu identifizieren, von denen
noch keine Analoga für die beschriebenen Zielproteine getestet wur-
den. Das zweite Screening umfasste sieben Zielproteine und nutzte den
lokalen Shape-Fingerprint. In diesem Screening sind 22% (n=28) der
Verbindungen aktiv gegen das jeweilige Zielprotein und umfassen 22
Molekülgerüste, deren Aktivität gegen die Zielproteine bisher nicht be-
kannt waren. Als solche stellen die gefundenen Verbindungen neuen
Chemical Space für die Zielproteine dar. Zusätzlich wurde die Leistung
des trainierten probabilistischen Modells bewertet und die Hitrate, bei
dem gewählten Schwellenwert, ist 42%, womit 93% der Hits erfasst wer-
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den. Das Wahrscheinlichkeitsmodell basiert auf einfacher Ähnlichkeit
und hat, für dieses Set an Verbindungen, eine höhere Vorhersagekraft als
komplexere Methoden.

Um die Beziehung zwischen der Kontur von Liganden und Zielproteinen
zu erforschen, wurde einer der identifizierten Hitverbindungen weiter
untersucht. Dessen IC50 gegen die Pim-1 Kinase (484 nM), und seine
Selektivität gegen andere Kinasen, mittels einer Kinase-Selektivitäts-
Auswahl, wurden bestimmt und seine Kristallstruktur erhatlen. Diese
Verbindung ist ein hoch-selektiver Inhibitor mit potentieller Inhibition
von Pim-1, GSK-3β und DRAK-1 Kinasen. Die Analyse von 133 exis-
tierenden Kristallstrukturen zeigte, dass die Verbindung eine ähnliche
Bindungsstrategie, mit wenig spezifischen Kontaktpunkten, wie andere
bekannte Inhibitoren hat. Durch den Vergleich mit ROCS wird der Vor-
teil zum Vorschein gebracht, dass die Shape-basierten Methode weniger
beeinflussbar durch Strukturkonformation ist.

Wir haben gezeigt, dass eine Shape-basierte Methode ausreicht um ak-
tive Verbindungen für ein Set von Zielproteinen zu identifizieren. Wir
untersuchten die Machbarkeit, die Beziehung zwischen Ligand und
Bindungstasche umzudrehen, und damit zu suggerieren, dass Shape-
Fingerprints von Liganden basierend auf der Bindungstaschen-Kontur
bestimmt werden können. Um dies zu tun, analysierten wir vierzehntau-
send publizierte Kristallstrukturen, berechneten deren Liganden- und
Bindungstaschen-Shape-Fingerprint, und nutzten das Verhältnis dieser,
um ein Sequenz-Transduktion-Modell zu trainieren. Ungefähr ein Fünftel
der rekonstruierten Testliganden Fingerprints war hochgradig ähnlich zu
jenen, die von den Kristallstrukturen extrahiert wurden, und alle waren
signifikant besser, als ein simples statistisches Modell.

Zusammenfassend hat diese Arbeit die Neuartigkeit und Validität des
beschriebenen Ansatz, um Shape Information zu erfassen, und die
Nützlichkeit eines solchen Ansatz, um den Chemical Space für nie-
dermolekulare und makromolekulare Verbindungen zu beschreiben,
demonstriert.

ix





Acknowledgements

The past few years have been somewhat eventful, to put it mildly.

I would like to thank Gisbert for giving me the opportunity to spend
some time in the lab. To a profound degree, your constant creativity,
scientific discussions and the occasional non sequitur have kept me going,
and mostly on the right path. As you put it, I think we’ve learned a lot
from one another, and most of it good.

In no particular order, I’d like to thank my labmates and friends from
the past few years.

Alex Button, for the consistently stimulating and energetic conversation,
from my first days in the lab until the present, and for your creative
approach to problem-solving. Berend Huisman, for introducing me to
the splendour and complexity of Dutch food, and for your consistently
kicking my feet under the table, as a reminder to stay in the present. Erik
Gawehn, for your approach to life. Gisela Gabernet Garriga, for your
good humour and guidance in my early days. Dominique Bruns, for your
eternally-sunny disposition, extreme kindness, and love of papier-mâché
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Winkler, Tatu Lindroos, Elena Gelžintye, Anvita Gupta, Emanuele Rossi,
Moritz Gück, Stefan Gugler, Arpad Dunai, Joana Sigrist, Robin Ling-
wood, and Shinji Iida. Any omissions are a mark of my advanced age.
Niamh O’Neill, Tao Jinyan, and Aakriti Sethi, for tolerating my entirely
inadequate supervision with humour and patience, and for teaching me
how to teach better. Aakriti, your words will stick with me, always.

My heartfelt gratitude to the Marie Skłodowska-Curie actions for pro-
viding the ESR programme, which facilitated my time at the ETH, for
the interesting courses and opportunities, and, more than anything, for
introducing me to a great bunch of people across Europe. To Charlotte,
Roberto, Francesca, Engi, Atilio, Giulia, Patrick, Laura, Valeria, Simon
(João), Joy, Markella, Ave, and Maxime: for forming a nucleus of support,
and for the good times across Europe, I’m forever grateful.

For the BigChemists in the frozen North (Mike, Thomas, Ollie, Laurianne,
and Josep) - thank you for making my sojourn in Sweden so pleasant. A
special thanks to Drs. Hongming Chen and Ola Engkvist for hosting me
there.

I would like to thank Switzerland (as a nation) for providing a home for
a rather confused British person, at a rather confusing time, and showing
me how well things can work when people trust one another. On that
note, cheers to Camille Glaus and Gabriel Fiette, for the constitutional
discussions and introduction to life beyond the Röstigraben.
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Chapter 1

Introduction

1.1 Computational Chemistry - Similarity and
Repetition

The primary task of the computational chemist is to impose order on
the chemical world, to help us better rationalise our decision-making
when it comes to which compounds might work for a given problem,
and why. More specifically, they are concerned with how best to arrange,
and subsequently search through, the vastness of chemical space in
a structured manner, so as to optimise for a few separate objectives
simultaneously. Estimates for the size of said space vary widely, from
1023 [1] to 10180 [2] compounds, and many in-between [3], depending
on the definition chosen. Even limiting this to very small molecules, a
virtually-enumerated library of all chemically-reasonable combinations
of 17 heavy atoms has 166 billion entries [4]. Naturally, much of this
space is of no immediately-obvious interest to medicinal chemistry, and
compound libraries accumulated to date for High-Throughput Screening
(HTS) by various pharmaceutical companies typically have counts in
the low millions [5], representing a tiny fraction of accessible chemical
matter, whilst achieving substantial successes across a wide range of
target families [6]. Plans to increase this by an order-of-magnitude or
more [7], still leave much of the chemical world in darkness.

This presents two issues; first, the cost, and sometimes questionable
utility of this approach. Typical validated hit-rates for HTS screens are
between 0.01 and 0.14% of screened compounds, for screening panels
of between one-hundred thousand and a million compounds [8–10].
While screening large numbers of compounds more efficiently [11–13]
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1. Introduction

can help to reduce costs, it does not necessarily improve the validated hit
rate. Attempts have been made [14, 15] to rationalise which subsets of a
compound library to choose first, to maximise potential benefit, as have
efforts to improve the libraries themselves [16]. Whilst early-stage efforts
are comparatively inexpensive compared to later stages of the drug
development process, a lot of value is created early on, and good quality
lead structures can improve the odds of a compound getting through later
stages of the process. As the long decline in pharmaceutical productivity
continues, promoting consistent efforts to rationalise each stage of the
process allows for the early identification of problem candidates, reducing
overall attrition rates [17, 18].

Secondly, the titanic effort made to date only represents a tiny fraction
of chemical space. Surprisingly, for those cases where pharmaceutical
libraries have been compared between companies, the overlap ranged
between 1.5% [5] and 10% [19, 20]. As with the combinatorial chemistry
approaches much in vogue in earlier years, promotion of diversity is
a strong focus [21, 22] in library construction [23] However, defining
chemical diversity is, in itself, problematic, and often context- and target-
dependent [24]. Commonly, it is used to refer to the variation in scaffolds,
the molecular substructure underlying common drug classes [25, 26],
or, in medicinal chemistry, to describe an approach developing sets of
reactions and substituents which allow for easy reach into different areas
of chemical space [27, 28]. The importance of developing new chemo-
types, and of successfully emulating natural product compounds with
medicinal chemical efforts [29, 30], has led to somewhat philosophical
discussions of the correct route for synthetic efforts to take [31, 32].

Fundamentally, chemical space is vast, and not intrinsically ordered at a
macro-scale in a way which reflects biological observations. Compounds
which are superficially similar can have drastically different on-target
effects, diminishing, or inverting, the observed biochemical or phenotypic
response [33, 34]. Equally, dissimilar compounds can affect the same
target. Complicating matters further are the issues of compound (and
target) promiscuity, and polypharmacology. A single (promiscuous)
compound often interacts with multiple targets, and vice versa [35]. This
is not inherently problematic [36–39], but does complicate the rosy mental
image of neatly-divided fields in the chemical landscape.
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1.1. Computational Chemistry - Similarity and Repetition

If we wish to take a pragmatic approach to defining molecular similar-
ity, then, there are a few fundamental questions which we should answer:

1. How can we describe small- and macro-molecules?

2. How can we compare those descriptions?

3. How confident can we be that those comparisons are useful?

4. What can we do with them?

3
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1.2 Describing the undefined - Molecular simi-
larity

To define the relationships between compounds in this vastness, then, in
a computationally-feasible, and pharmacologically-meaningful fashion,
we require some means of describing our compounds which is both
computer-legible and biochemically-relevant in the first instance. Early
efforts at developing such means were primarily focused on quantifying
small, rational changes to molecular structure, with the aim of describing
the relationship between such changes and the effect of the molecule,
the Quantitative Structure-Activity Relationship (QSAR) approach [40].
This was facilitated through the development of ‘descriptors’, numerical
encodings of chemical properties, although simple grammatical descrip-
tions, such as the SMILES system for representing small molecules as a
text-string, have grown increasingly popular as novel means of utilising
them have been developed.

1.2.1 Molecular properties to substructures - 0D/1D

Remaining with the former category for now, descriptors vary substan-
tially in size, theoretical complexity, and intended usage [41]. At their
simplest (0D) level, they encode experimental or simple molecular prop-
erties, such as weight, or LogP, of an entire molecule. The next level (1D)
incorporates information on substructures, such as Molecular ACCess
System (MACCS) keys [42] as either binary (absent/present) or frequency
vectors.

1.2.2 Molecular Fingerprints - 2D

These approaches are useful, and correlate well with chemical under-
standing. As the dimensionality considered increases, typically we find a
reduction in comprehensibility, and, ideally, a commensurate, compen-
sating effect in efficacy, although this is highly task-dependent. “2D”
descriptors, such as the popular Daylight and Extended-Connectivity
FingerPrint (ECFP) [43] (the latter of which will be discussed in greater
detail in subsection 3.1.6), attempt to capture information about atoms,
and their bonds, in a graph-based approach. Typically, these approaches
label atoms with atom-specific information (e.g. valency, charge, weight),
and the considers local environments of such labels, building these into
overall representations of the molecules. They differ from the 1D ap-
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proaches in their flexibility, as the groups are not pre-defined, and in
the process used to convert these environments into the eventual finger-
print representation. These approaches generally allow one to specify
a radius (ECFP) or path-length (RDK, Daylight) parameter, which de-
fines the scale at which we wish to consider the molecule’s features.
Another form of 2D descriptor are pharmacophoric vectors, such as the
Chemically-Advanced Template Search (CATS) [44, 45] descriptor, which
describes atoms in terms of annotated pharmacophoric features, and
builds a vector representation on their cross-correlation in topological
distances. This approach attempts to capture the “ensemble of steric and
electronic features that are necessary to ensure the optimal supramolecu-
lar interactions with a specific biological target and to trigger (or block)
its biological response” (as defined by International Union of Pure and
Applied Chemistry (IUPAC) [46]), in a framework which allows for rapid
comparisons over target sets.

1.2.3 Molecular Geometries - 3D

Geometric (3D) approaches attempt to capture more of the physical reality
of a ligand than lower levels, by taking into account the coordinates
of energy-minimised molecular representations. As this subject is the
primary focus of this work, we will expand on this matter in greater depth
than for the lower-dimensional representations. These methods can be
divided into two rough categories; alignment-dependent, and alignment-
independent methods. The former, including Shape and Electrostatic
Potential (SHAEP) [47], and the popular Rapid Overlay of Chemical
Structures (ROCS) [48] family of approaches, are not necessarily what
would commonly be termed as descriptors, as, while they do compare
vectorised molecular representations, these must be altered for each pair
of compounds considered, rather than being invariant.

1.2.4 Alignment-dependent methods

Gaussian approaches - ROCS, WEGA

With the alignment-based approaches, the underlying principle is that
molecules with similar distributions of volume in space should have
similar shapes [49]. At its simplest, Root-Mean Square Deviation (RMSD)
could be viewed as a simple descriptor of alignment between molecules,
although it does not generalise easily to non-identical molecules (this can
be accomplished with flexible atom-mapping approaches, however [50]).
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Moving from that approach, and incorporating volumetric information,
we have hard-sphere and Gaussian-sphere representations, which do
not require explicit mapping, and can incorporate relevant information
such as atom size, which is correlated with pharmacophore types to a
certain extent. The hard-sphere approaches, treating molecules as col-
lections of intersecting spheres of radius equal to their van der Waals
radii for example, were initially developed as part of an effort to improve
volumetric calculations for macromolecules [51, 52], before their applica-
tions in small molecule comparison were considered [53]. In the latter
work, which also introduced atom-typing, directly incorporating phar-
macophoric characteristics, they introduce the necessary mathematics to
facilitate rigid optimisation (rotation and translation) such as to maximise
the overlap between any given pair of conformations. In essence, this
approach considers similarity as the ratio of the of the intersection of two
volumes with their union, and seeks to find the best spatial configuration
to maximise this quantity. The pharmacophoric model is implemented by
considering sphere ‘type’, inferred from atomic characteristics, when con-
ducting volume-matching. An alternative form, based on finite-thickness
molecular ‘skins’ was also proposed, which aimed to correct for some of
the distortions incumbent upon volume-overlap approaches, and to facili-
tate ligand-macromolecule analysis, was also proposed [54]. Importantly,
these works recognised that alignment-based approaches can become
stuck in local overlap maxima, and so introduced a search strategy to
minimise the impact of such events. However, this approach was not
capable of flexibly matching one conformation onto another, and took
approximately 96 wall-clock hours (1993, Silicon Graphics R4000-50) for
192 pairwise searches.

An elegant extension of this approach was proposed, incorporating a
‘soft’, Gaussian description of the atomic spheres [55, 56] model. This
approach, which later became best known, after further development, as
ROCS, was based on insights garnered from early work on aligning ab
initio electron density maps for the purposes of shape comparison [57–
59], and the observation that equations of a similar form had been used
extensively in quantum chemistry [60] and in the analysis of solvation
behaviours [61]. It benefits from offering a logical means of avoiding
the computational complexity of calculating the overlap of n-spheres, for
which analytical derivatives were unavailable , necessitating expensive
refactoring, and from being closer, conceptually, to a ‘true’ represen-
tation of molecular surface than the hard-sphere model. The primary
advantages, however, are mathematical and computational, as expressing
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volumes as Gaussians allowed for easy integration and differentiation
(and consequently facilitated the process of alignment enormously).

We will briefly discuss the mathematics facilitating this, adapted from the
first ROCS-specific publication [48]. This overlap of Gaussians approach
defines shape as;

OA,B

(
~qA,~qB

)
=
∫∫∫

χA
(
~r,~qA

)
χB
(
~r,~qB

)
d~r (1.1)

where the triple integral indicates integration over (d~r = dxdydz), r
is a position in space, q some set of variables defining orientation and
position, and χ represents a ‘characteristic volume’ function. The primary
difference is in the form of χ ,where it is defined simply as an inclusion
(hard boundary, Heaviside) measure for the hard-sphere case, and as

χ(~r) = 1−
i=N

∏
l=1

(1− gi(~r)) (1.2)

For the Gaussian extension of the concept, where

gi(~r) = pie−γ~r2
i (1.3)

And the local co-ordinate centre is defined as ri = |~ri| = |r−~ci|, from
the atomic centre, (~ci). An atom, of radius R, is included as a Gaussian
of width γ, according to

γ = π

(
3p

4πR3

)2/3

(1.4)

Where γ simply allows one to approximate the corresponding volume
of the hard-sphere volume. Owing to the Gaussian product rule, where
the product of n-many Gaussians can be expressed as a finite sum of
the distributions, situated at a point on their original axes, integration
of the product of the Gaussian representations is radically-easier than
for the hard-body, discontinuous case. In practice, only relations up to
the sixth order are considered. The interested reader is referred to the
original papers for lengthier discussion of the rationale behind the initial
formulation [55] and early applications [56]. A further optimisation to
the search heuristic mentioned earlier is given, which involves alignment
of two molecules along the axes of their moments of inertia, and choosing
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starting locations by rotating the starting position by π radians in each
axis. This approach will be referred to as ROCS Shape hereafter.

Issues with the implementations of the Gaussian models were explored
in recent work [62], highlighting the tendency of such methods to over-
estimate similarity for ‘crowded’ atoms, meaning, in essence, that they
would over-weight ring structures in their alignment. Their solution,
the WEighted Gaussian Algorithm (WEGA), adds a corrective factor,
weighting the contribution of each Gaussian term in accordance with
how ‘crowded’ its local neighbourhood is. In addition, this research
group published a parallelisation of their procedure [63], which can
process 110 million conformations in two seconds using a combination of
clever heuristics, and massive computational power; their approach runs
on the Tianhe-2 supercomputer, and uses 80 GPU nodes. Regardless, this
increases the scale of shape-based approaches by an order of magnitude
or more.

As with the earlier work on hard-sphere representations, a colour force-
field was later introduced to more directly incorporate pharmacophoric
information (ROCS colour). As far as the authors are aware, no pub-
lished work discusses the correlation between the information content
of the simple Gaussian and this extension with atom-typing, although
it has an observably better performance in most tasks with this feature
enabled [64]. In practice, ROCS is either used in shape-only mode, or
as a combination mode (ROCS Combination), combining similarity un-
der the shape and colour approaches. However, other researchers have
built feature-engineering approaches, essentially descriptors, upon the
colour component alone [65, 66]. The authors have been unable to find a
canonical reference for the implementation of ROCS colour, although a
publication by the developers [64] describes it as “an overlap of groups
with like properties (donor, acceptor, hydrophobe, cation, anion, and
ring)”, which is then added to the shape score. Work by another group
[65] states that this score assesses the overlap in ‘dummy’ atoms possess-
ing that type, and is a simple unweighted sum of the overlap volumes.
Interestingly, the authors note that ROCS colour has no internal model
for the relative disposition in space of these pharmacophoric features,
leading to spurious scores, both positive and negative. The primary
issue with alignment-based approaches are their speed: on the orders of
thousands of comparisons per seconds, which limits the range of chem-
ical space that can be considered. Attempts to improve this, through
GPU-acceleration, have reportedly accomplished speed-ups of 2-3 orders
of magnitude [67].
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Gaussian approaches - MolShaCS, SHAEP, SABRE, Shapelets

Other approaches to alignment-based similarity comparison have been
published, covering similar approaches, such as MolShaCS [68], which
features a novel charge-based extension, also utilising the Gaussian prod-
uct approach. There are a small family of methods, which, although oper-
ating on a similar principle, integrate interesting heuristic approaches to
render the task of generating a reasonable initial alignment easier, such
as triplet-matching methods SHApe-FeaTure Similarity (SHAFTS) [69]
and PhaseShape [70]. In a similar vein, Shape-Approach-Based Routines
Enhanced (SABRE) [71, 72], makes a sensible initial placement based on
shared features, encoded in a reduced graph format, before performing
full shape optimisation. A novel variant of the Gaussian-approach [73–75]
considers shape as a local property, whilst allowing for global compar-
isons. The latter approach, ‘Shapelets’, focuses on capturing shape with
high fidelity, rather than virtual screening as such, but still represents an
interesting perspective.

Spherical Harmonics (SH) representations capture molecular shape in a
unit sphere reference system, where the molecular surface is described at
each point by its spherical coordinates and a polynomial radial function.
In essence, these harmonics form a basis on the unit sphere in much
the same way that familiar trigonometric functions do on a line, or on
a circle. This approach was extensively adopted for the comparison of
macromolecules [76, 77] and pockets [78], but suffers from the complexity
of calculating a reasonable overlap for high-throughput small-molecule
screening. Nevertheless, combining SH with pharmacophoric scoring
has led to some promising results, with broadly similar performance to
the ROCS combined approach on a small test set [79]. To extend the SH
concept into a more useful format for Ligand-Based Virtual Screening
(LBVS) several attempts at reformulating the underlying description
were made, creating “rotation-translation invariant fingerprints” [80],
and extracting partially-invariant representations from the distribution
of radial terms [81], neither of which is provably invariant under rigid
transformation, but which do reduce the complexity of comparison
considerably.
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1.2.5 Alignment-independent methods

Distribution-based: USR, USRCAT, UFSRAT, ACPC

A simple example of the second major grouping of shape-based ap-
proaches, the alignment-independent methods, is the vector underlying
simple Principal Moments of Inertia (PMI) [82] plots familiar to medicinal
chemists. One branch of this category are the distribution-based methods.
Early work in shape-matching led to approaches based on histograms
capturing information on distance distributions in atom triplets [83–85],
which suffered from a few issues, with initial implementations being
limited to molecules with an equal heavy atom count, and later work
generating representations requiring several multiples of the memory
requirement for coordinate storage to express the distribution adequately.
Attempts to remedy these issues led to several useful heuristic approxi-
mations for increasing shape search speed, including the calculation of
signatures from the calculated vectors, using the properties of hashing
functions to provide a good first-pass search of chemical geometric space
[86].

Adopting a slightly-different tack with regards the description of molec-
ular shape, but remaining within the domain of alignment-independent
methods, Ultrafast Shape Recognition (USR) [87] is a popular moments-
based approach to capturing geometric information. It has the advantages
of extremely-good computational performance, in terms of memory and
time requirements, and a relatively simple conceptual framework. Es-
sentially, for each molecule, four points of reference are defined, two of
which are entirely geometric, and two are more tied to the molecular
structure. More properly, these are the molecular centroid and the far-
thest point from same, and the closest atom to the centroid and closest
atom to that farthest point. For each of these reference positions, the dis-
tributions of Euclidean distances to all atoms are characterised in terms
of their first three statistical moments; namely their mean, variance, and
skewness, and formed into a 12-element vector for comparison. Slight al-
terations, to improve the performance, and limit the impact of the second
and third moments, were detailed in a patent application and subsequent
papers [88, 89], which consist of taking the square- and cube-roots of the
second and third moments, respectively, so that the resulting values are
expressed in the same unit as the first moment. This also has the effect,
given the magnitude of the three moments so normalised, of more highly
weighting the first element. This has led to some confusion in the litera-
ture surrounding this approach and its implementation [90]. In addition
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to the speed and memory requirements mentioned above, this approach
benefits from a useful website for rapid searching [91] of a subset of the
ZINC [92, 93] database, screening millions of compounds per second, an
implementation in the popular open-source cheminformatics package
RDKit, and a series of small-scale, target-focused prospective applications
[88, 94, 95]. The purely shape-based approach mentioned above has been
extended and combined with various sources of molecular information,
such as MACCS [96], CREDO atom types [97, 98], and information on
lipophilicity, electrostatics and chirality [99, 100]. As such, it seems a
readily-extensible concept, and a good basis for investigating specific
hypotheses.

Another simple approach using a somewhat similar concept is the Auto-
Correlation of Partial Charges (ACPC) method, [101], which, as the name
suggestions, is based on spatial autocorrelation of point representations
of partial charge, and similar in form [102] or intent [103] to earlier work.
Although very simple, its performance in a small retrospective study
was broadly similar to the other alignment-independent methods so far
discussed. The well-established Weighted Holistic Invariant Molecular
(WHIM) [104, 105] descriptors could be regarded as members of this
class, as they focus on the decomposition of atomic co-ordinates within a
defined reference frame.

One recently-published approach, to some extent diverging from estab-
lished methods, are the Extended Three Dimensional FingerPrint (E3FP)
fingerprints [106], which generate the typical atom invariants associated
with the ECFP-like fingerprints (vide supra), but describe their relations
in a Euclidean rather than topological space. They found this method
to have a superior performance to the purely 2D ECFP4 in a variety
of tasks. Interestingly, they found no additional benefit from the in-
clusion of explicit stereochemical information; all improvement in task
performance was correlated with the inclusion of non-bonded but close
atoms. Naturally, deconvoluting the contribution of stereochemistry in
this case is difficult, but it seems to have been naturally captured in the
formulation of the fingerprint.

Grid-based approaches, which site a molecule within a grid context and
calculate some parameters thought likely to describe the activity of the
molecule in an attempt to characterise it, have been discussed exten-
sively in the literature. Various approaches, like Comparative Molecular
Field Analysis (CoMFA) [107] and its intellectual successors Comparative
Molecular Similarity Indices Analysis (CoMSIA) [108] and Comparative
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Molecular Moment Analysis (CoMMA) [109], illustrate the benefits and is-
sues of such approaches. The evolution in this approach highlights issues
with alignment-dependent methods, and those where interpretability is
an issue. CoMMA and GRIND [110], which are based on a similar ap-
proach, follow this strategy [111], focusing on developing the method into
an alignment-independent approach, for many of the reasons previously
discussed. Molecular Interaction Fields (MIF), such as those generated by
the GRID [112] program, follow a similar approach on a conceptual ba-
sis, and have also been developed into alignment-independent methods
adopting the spatial autocorrelation approach [110]. Such approaches
have gained wide acceptance in the field of 3D-QSAR, on which there
are several excellent reviews [113, 114].

These grid-based approaches typically treat the volume surrounding
the molecule in terms of electrostatics, energies, and steric parameters.
Another means of defining such a grid would be solvent-based, rep-
resenting the packed volume for instance. It is possible to define the
interactions with this volume through one of a series of surface repre-
sentations, commonly either the solvent-accessible (Lee-Richards [115,
116]) or solvent-excluded (Connolly [52, 117, 118]) surfaces. One means
of conducting shape-based screening using such a representation is to
treat such a representation as a collection of curves ([119]) or patches,
and use a clique-detection approach ([120]) to identify a matching subset
of shape-areas, described by their local curvature, binned into one of five
categories in the latter case. This can, of course, be extended with other
methods, such as those described in the SURFCOMP [121] approach,
which considers near-patch environments as well.

Interestingly, in several instances purely geometric findings, used in vari-
ous applications (computer game design, industrial computer graphics,
engineering) have been applied successfully to the question of shape-
comparison, using bounds defined by solvent surfaces, or by van der
Waals’ radii of constituent atoms. One such approach, shape signatures
[122–125], is based on the ray-tracing technique used in the generation
of high-quality graphics, provides an elegant formulation for shape as
a set of probabilities defining a distribution of segment-lengths for a
ray-trace. In essence, this involves allowing a path to propagate into a
molecule, reflecting it off an internal surface (where this is constructed
from the Lee-Richards surface), noting the distance between the last point
of reflection or the origin as appropriate, and allowing this process to
continue until a certain number of reflections have been recorded. The
descriptor is then formed from a simple histogram representation of the
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lengths of all segments. This approach has also been extended to incor-
porate surface properties, to consider shape as a fragment property [125],
and to create a variant less sensitive to deformation [126]. This latter
approach again calls into question what we mean by shape, and whether
deformation-invariance is necessarily something we want in this case. It
is relatively common, and rather tempting, to conflate conformation with
shape, but as the latter concept is defined on a more or less per-case basis,
conformation (atomic position) is not necessarily any more meaningful
than surface localisation, or intra-surface distances; it is simply more
intuitive for humans.

Another method, based on α-shapes [127, 128], seeks to characterise sets
of points using a so-called α-parameter. Intuitively, this is a measure
of how closely one fits a ‘net’ to a set of points, in this case atomic
coordinates for a molecule. Expanding on this a little for the 3D case
only, for a molecule defined by a set of points of its surface, S, a finite
set in R3 , α is a real number in 0≤ α ≤ ∞. S is not necessarily convex,
nor connected. One could imagine describing the protein surface near a
ligand as an example of the latter case. At ∞, the α-shape is equivalent
to the convex hull of S, gradually becoming a more detailed represen-
tation as α tends towards zero. One could think of α as a parameter
describing the radius of a ball forced onto S with a smaller ball more
naturally fitting the form of the latter. After this, the representation is
faceted for simplicity, resulting in a generalised polytope, with few limi-
tations regarding connectedness or convexity. As such, the approach is
related to the mathematical dual of Delaunay triangulation and Voronoi
decomposition [128].

Moving on to the applications of this theory, the α-shape Joint-Density
(AJD) [129] method represents an elegant implementation of this the-
oretical concept for a “real-world” problem. Rather than considering
the spectrum of α-shapes, they simplify this by taking the ‘optimal’, i.e.
the lowest value of α which produces a single α-surface for which all
points are within the described volume. The orientation of each facet
is determined by ray-tracing, following which the joint distribution of
distances and change in orientation for all pairs of facets is calculated
and binned, resulting in a 2D-matrix representation. The authors found
that it captured ‘shape’ well, on a subjective level. As implemented,
this approach is a global descriptor of space. An important caveat in
their work is that the definition of α-shape employed is technically only
valid for homogeneously-sized atoms, in their case defined as carbon.
Based on the relationship with the Delaunay triangulation, a size-variant,
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weighted scheme is possible which should allow for the variation present
in actual molecules [130, 131]. One advantage of this approach is in its
degree of abstraction: by being less directly related to a specific biological
or chemical concept, this framework is readily extensible to assessing the
shape of other objects.

1.2.6 Target similarity

Naturally, a method which can be applied to describing small-molecule
shape can be extended to larger, macro-molecules. Capturing geometric
information about a pocket, or describing its inverse-pharmacophore,
allows us to build models describing the relationship between properties
of small- and macro-molecules, facilitating target prediction, for instance.
It has been suggested that shape-complementarity determines a large
part of the ligand-specificity of a pocket [132], with the remainder owing
to chemical compatibility and energetics [133, 134]. As several excellent
reviews of the topic [135–140] have been published, here, we will focus
on shape-based, geometric approaches. Additionally, sequence-based, or
sequence-enriched, structural approaches have been attempted.

It has been found that, depending on the definition chosen, approx-
imately a third of a given binding site [132] is typically occupied by
ligands, as determined by analysis of crystal structure. Whether this mis-
match is owing to a “wasted opportunity”, the limits of “drug-likeness”,
reflects on the dynamics of the interaction, or simply indicates that our
definitions of a pocket are rather poor, is unclear. Estimates for average
small-molecule binding pocket volume vary significantly, from 610 [141]
to 930Å3 [134], depending on whether an energy or geometry-based
approach is utilised. Given this, it is perhaps surprising that most pocket-
comparison approaches to date have taken a global, or defined-locality,
approach to pocket definition, by which we mean they either compare
entire pockets, howsoever defined, or allow a user to specify a pocket
region, and treat that as the global segment.

Broadly-speaking, these approaches can be divided into similar tranches
as the geometric descriptions of small molecules; alignment-based, and
alignment-independent, at the highest level. The former includes meth-
ods such as geometric hashing [142–144], and procedures dependent
on rigid transformations (roto-transformation, primarily). As implied
in our discussion of ROCS and related approaches, the computational
cost of this, setting aside the matter of flexibility, is considerable, and
so these methods typically depict the local environment in terms of
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the coordinates and volumes of their Cα atoms. It has been observed
that although sequence- and structure-based similarity, when the latter
is based on alpha-carbon backbone overlap, are useful [145], they fail
to capture the whole gamut of substrate recognition [132]. In general,
these binding-site similarity methods take a simplified representation
of a known binding pocket, the level of abstraction depending on the
algorithm, and then proceed to align and score these representations
[133, 146]. Given the profusion of these resources, readers are referred to
an extensive review for a complete enumeration [147], to a more focused
work for discussion of the algorithms not mentioned here [133], and to a
very recent benchmarking study for comparison of outcomes [148].

PocketMatch [149] takes all atoms within 4 Å of a crystallographically
solved protein–ligand structure as its basic definition of a binding pocket.
To encode the shape of this local environment, amino acids are repre-
sented as a combination of the location of their alpha- and beta-carbons,
and a measure of the average position of the side-chain atoms. The dis-
tances between all pairs of atoms on that local surface are calculated, and
the atoms are grouped according to the characteristics of their amino-acid
parents, and are then grouped and binned into a matrix representing
the interpoint and inter-group distances. When querying these models
to look for structurally-related pockets, a simple greedy alignment is
performed to assess the similarity of the matrices, and then scored based
on the average of the matching elements over all elements in the larger
of the two matrices.

CavBase [150] adopts an approach used in generating representations
of ligands and inverts it, mapping chemical properties onto the amino
acid residues, and then onto the protein surface. From here, it builds up
a graph model of how these properties are distributed in space. These
graphs are then compared with a clique-detection algorithm [151] to
find the maximum overlap between site models. Further optimisation is
performed based on aligning the regions of the protein surface associated
with each feature.

IsoMIF [152, 153] aims to compare the regions in binding sites in which
the binding-critical events take place, using the MIF formalism described
previously. With regard to the characteristics of this field, it is parame-
terised on physicochemical functionalities, some of which are modeled
as exponentially decaying relationships. Essentially, the binding cavity is
filled with probes, for each of which a molecular interaction-likeness is
calculated. As per CavBase, it makes use of the Bron–Kerbosch clique

15



1. Introduction

detection algorithm to find the maximum common subgraph when in
query mode, which are then scored with a Tanimoto coefficient based on
node-matching between the graphs. Using a different fundamental rep-
resentation, eF-seek [154] considers comparison of the vertex-described
Connolly surface as a maximum clique problem.

Surfing the Molecules (SuMo) [155, 156] begins by calculating the local
density for each atom in an identified binding site. This measure is the
atomic weight of all atoms within a radius, r, of the start atom, over r.
In addition, a local center of mass is computed (the center of mass of
the aforementioned sphere), and assigned as a vector directed toward
the protein interior. A similar procedure is carried out for different
“chemical groups,” which are, loosely speaking, amino acids grouped
by physicochemical nature. For the matching process, both of these sets
of triangles, and associated vectors, are used in a simple, rule-based
geometric system.

Another purely-geometric approach is PocketPicker [157], which calcu-
lates a measure of buriedness from a grid placed over a target molecule,
identifying those which are deeply buried within cavities (but not sub-
surface). Following this, a shape descriptor is calculated, relating the
distances and buriedness of the remaining buried grid points, which
allows for pocket comparison and prediction of binding site ligandability
[158]. As previously alluded to, the geometric SH approach, and derived,
roto-transformation invariant representations such as the 3D Zernike
descriptors, [159, 160], can also be applied to pocket and protein compar-
ison. The α-shape approach has been utilised extensively for describing
and comparing pockets [161, 162], and proteins, with some approaches
utilising the weighted Delaunay approach [162, 163]. Of these, CAST
[163] is probably best-known. Given the known importance of local
properties of pockets [164], relatively few approaches [150, 154, 165–167]
that we are aware of have considered it explicitly. Using the α-shape
approach, one group defined a local application of the α-shape [168],
considering the variation in curvature across a small local area defined
by nearby atoms. We are not aware of any subsequent applications of
this approach.

An interesting geometric approach to the description of binding pockets
(to the best of our knowledge, the authors did not use it to explicitly
compare them), is the local roughness indicator (LoRI) model [169], based
on the widely-applied mathematical formulation of Fractal Dimension-
ality (FD). The authors developed a machine-learning model, utilising
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insights gained from a statistical analysis of the local roughness of bind-
ing pockets to predict binding sites in unseen targets. This approach
essentially quantifies the complexity and folded-ness of an object, or,
to put it another way, how densely-packed the surface of an object is
in the volume it occupies [170](for 3D objects). In this case, this is the
Connolly surface of a binding pocket (they also made a statistical analysis
of ligand FD distributions), resulting in a single numerical representation
of shape. Although this value can be approximated with the α-shape
approach [171, 172] for 2D objects, this is computationally laborious.
However, it does reflect some joint utility in the two approaches. Major
advantages of the FD approach are that it is natively scaled, and as such
it does not require a weighting scheme, as with the weighted Delaunay
triangulation, that it produces a single characteristic number, that it is
readily calculable for any arbitrary set of points, meaning that surface
locality can be defined however the author sees fit, and, in common with
α-shape, that it has a long history of applications and development across
multiple fields, demonstrating its utility as a general descriptor. Given
the technical advantages of such an approach, and its ready extensibility
to other problems, we investigated its utility as a unifying framework
for the comparison of small- and macromolecules. As such, we will
expand a little on the underlying principles of fractal dimensionality
here, to demonstrate its elegance as a foundational concept for shape-
based similarity, and, more importantly, to illustrate its utility and ideal
properties.
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1.2.7 Fractals and fractal dimension

Fractals, as defined by Mandelbrot [173], pre-date their definition. Close
approximations of the mathematically exact form can be found through-
out nature. We will restate Mandelbrot’s initial, intuitive formulation for
clarity’s sake. If we take as our object the measurement of the length
of an island’s coastline, using a ruler, we would find it to be a little
more involved than initially imagined. Our results would vary widely,
having circumnavigated the island, depending on the length of the ruler
employed. A ruler of 100 km would give us a rough measure, 1 cm finer,
and 1nm finer still, although at this scale, moment-to-moment variation
would outweigh the accuracy of our measurement. However, intuitively,
as our scale of measurement grows finer, our measured length increases
hugely, without a similar expansion in the area of the circumscribed area
[174]. In addition, the area of the line itself is still zero. This seeming
paradox is at the root of the concept of fractal, or fractional, geometry:
How should one describe an object which behaves so “badly”?

This example illustrates the less intuitive side of this branch of mathemat-
ics, while introducing an important concept, one of ‘characteristic length’.
This is both simple, in that the characteristic length of a 1D object is its
length, a 2D object its area, and a 3D object its volume, and surprisingly
profound. For a line, a square, a cube these concepts have an obvious
translation into our understanding of the object. For less well-defined
objects, it raises a question, though: what is the characteristic length
of an island, or of a tree? That is, how should we characterise natural
objects?

Fractal geometry has been extensively applied to facilitate the analysis
of such objects, and has proved a useful framework for describing phys-
ical phenomena varying from turbulence [175, 176], to the analysis of
radiograms [177–179] and homeostatic mechanisms [180], the design of
biomaterials [181], antennae [182, 183], novel chemical constructs [184–
186], and in the analysis of biological entities [169, 187–192]. As such, we
emphasise that this method is simply a formalism, a means of describing
the world, which happens to be useful, and to have some properties
which render its application appealing.

Previous works have demonstrated the utility of fractal dimensionality as
a means of describing and utilising the local roughness of macromolecular
surfaces. Early work [189] illustrated that macromolecules are not equally
irregular over their entire surfaces, and that there are some general
trends relating local roughness and interaction membership. Lewis et
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al. observed that ligand-binding active sites were smoother, on average,
than protein-protein interaction surfaces, and smoother even than the
whole-molecule average. Their approach, while considering FD as a local
property, delineates this on a patch-wise basis defined by division of
a spherical projection, rather than as a property of local atoms. Later
work, such as that by Pettit et al. [164], alters the locality definition
used, by tying it explicitly to an analysis of the surface surrounding
solvent-exposed atoms. This approach facilitated their analysis, in which
they showed that surface roughness is a somewhat better indicator of
the propensity of a given surface patch to engage in ligand-binding
than concavity alone. Interestingly, they found that smaller binding
sites are rougher, on average, than their larger cousins, supporting their
working hypothesis that a certain degree of geometric complexity is
necessary to promote sufficient specificity, and that smaller sites require
higher complexity as they present fewer possibilities for non-specific
interactions. In contrast to the work of Lewis et al., Pettit et al. found
that small-molecule binding sites are rougher than average for their
parent molecules, a contrasting result which the authors of the latter
study attribute to errors introduced by the earlier spherical projection,
and limited data. This latter perspective is supported to a certain extent
by work on geometric complementarity in protein-protein interaction
analysis [193].

Utilising significant growth in the number and diversity of deposited
structures, Todoroff et al. [169] utilised a data-driven approach, facil-
itating the development of more powerful models incorporating local
roughness for binding-site prediction. First, they replicated the findings
of Pettit et al. with a significantly larger pool of solved structures, pro-
viding further support for the finding that binding sites are rougher, on
average, than their parent structures. Next, they extended their analysis
to consider pocket atom environments. Interestingly, the authors found
that, when considering pocket definition as an inverse problem, using
a bound-ligand to delineate interacting atoms rather than a definition
based on surface-buriedness, for example, that the former category con-
tains both rough and smooth patches. They proposed that this patchwork
facilitates binding, and developed a ‘local roughness model’, the Local
Roughness Indicator (LoRI), utilising information on the local distribu-
tion of atomic FD values, to predict binding hotspots. This method had
considerable success in a large-scale retrospective study. Interestingly,
the authors of this study found no obvious, direct relationship between
the roughness of each binding partner, and did not posit a mechanistic
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interpretation for the observed utility of the developed method, in terms
of underlying physical interactions. These approaches demonstrate the
utility of FD as a means of capturing biologically-relevant information,
but have not, to the author’s knowledge, been extended to consider both
interacting partners. Returning to the question of characterisation, it is
useful to first reflect on what we mean by 1D, 2D, 3D, above. Intuitively,
this is simple. Here, we provide an intuitive description of the relation
between these dimensions, defraying a more rigorous definition until
later.

An intuitive description of fractal dimension

One approach to considering dimensionality is to determine a charac-
teristic measurement of each dimension. For example, the characteristic
measure of a 1D object is its length, for a 2D object its area, and for a 3D
object its volume. If we consider this for a simple object, such as a cube,
then we observe that its characteristic measure goes from δ (the length
of one side) to δ2 (its area) to δ3, its volume. As such, the characteristic
measure of a simple object is equal to δdimension.

As discussed, for simple object this behaviour is straightforward. How-
ever, for a class of mathematical oddities, fractals, this relationship does
not hold true. Consider the von Koch curve (Figure 1.1, [194]. If we
follow the process described, we end with an infinitely-intricate struc-
ture, which has several properties of note. It is ‘self-similar’, in that its
structure on the micro-scale resembles its macro-structure. It has ‘fine
structure’, in that it is detailed at all scales. It has a simple method of
construction, and a somewhat natural appearance (See Figure 1.2). It is
non-differentiable at every point, and does not have a simple formula for
construction. One additional characteristic feature of fractals, possessed
by this construct, is that its characteristic measure depends on the scale
considered.

We will assume, for convenience, that our initial line (iteration n0) is of
length equal to one. The second stage has four segments, each equal to a
third of the initial length, giving an overall length of 4/3 (1.33). Our third
stage has 16 segments, each equal in length to a ninth of the initial line,
giving a total length equal to 16/9 (1.77). As we see, with each iteration,
the length of the curve increases to 4/3n. As previously discussed, a true
fractal is finely, in fact infinitely, detailed. With a generated shape of this
sort, every n < ∞ is known as a pre-fractal. As such, taking n as ∞, we
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Figure 1.1: Illustration of the initial steps for the construction of a
von Koch curve. Taking a simple line, we extract the central third,
replacing it with two third-scale copies. We repeat this with each
segment. We can continue doing this ad infinitum.

find an infinite length for the von Koch curve. However, this infinite
length does not alter its area, which is still equal to zero. Intuitively, the
length that could be drawn on a 2D object is infinite, as a 1D coordinate
provides insufficient bounds. Therefore, length-wise, the von Koch curve
behaves like a 2D object, while still being 1D.

This mismatch between the capacity of the familiar dimensions to ade-
quately describe the shape led to the formulation of a novel concept of
fractional, or fractal dimensionality (FD). It allows one to capture this
expansive behaviour, as with the (4/3)n growth of the von Koch curve, in
a similar manner to the simple relationship described for the cube above.
In this case, we have an analytical formulation for the ‘fractal dimension’
of our curve, where a fractal that is composed of x copied of itself, each
at scale 1/δ has an FD of log x/ log δ. Thus, FD is equal to log 4/ log 3
(1.26). Relating this back to cube - if we increase the length of the side of
a cube times three, we increase its volume by a factor of nine, so 33. As
such, there are nine copies of the original cube in the later one. Here, we
say that such a scaling would result in a characteristic measure which is
31.26 times as large.

Of course, in nature, no object is a true fractal. At a minimum, at
some stage any pattern will peter out at the atomic level. In practice, it
happens much before this. However, this does not render the formalism
inapplicable; such objects still obey the weaker definition of a fractal,
such that they ‘fill space’ in a manner more reminiscent of a higher-
dimensional structure. Various means of calculating FD for real objects
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Figure 1.2: Illustration of two exemplar fractals, the ‘explosion’ and
Mandelbrot set fractals, each with 4000 iterations of the construction
process. Although considerably more complex than the von Koch
curve, we see some similarities. In particular, the self-repeating and
somewhat ‘natural’ appearance discussed as indicative of a fractal
nature are readily apparent. These images were generated with GIMP
2.10.10
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exists, which are typically concerned with estimating the relationship
between the scale of measurement δ, and the measured size, as with the
analytical example above. As we discussed the length of the von Koch
curve scales as a power law, accordingly we can take the exponent of a
log-log plot of various values for δ, and the measured size of an object at
those δ-values, and use this to approximate the FD of real objects.

A formal definition of fractal dimension

Lebesgue Dimension One intuitive definition of dimension, for simple,
regular objects, would be that the dimensionality of an object is equal to
the maximum number of parameters (or coordinates), needed to uniquely
identify a point in the space contained by that object. This does not hold
for more exotic constructs, such as a space-filling curve, where the typical
formalism used to reflect our intuition is that of the topological (DT),
Lebesgue, or covering dimension. Here, we relist a few mathematical
terms for convenience.

A cover (C) on S - A collection of subsets on S whose union is equal to S
An open cover - a cover where each of its members are open sets.
Open set - a set containing objects up to, but not including, boundary
members. In our case, open sets are limited to those with a conventional
diameter < ε, for any positive value of ε.
Ply - the smallest number, n, of sets such that each point in S belongs to
at most n sets from the cover.

With these terms in mind, the topological dimension of S is equal to the
minimum n such that every C of S has an open refinement with a ply of
n+1 or less [195]. Usefully, this definition aligns with familiar Euclidean
geometry for simple objects in E, such that an n-dimensional Euclidean
space, En, typically has a covering dimension equal to n.

23



1. Introduction

Hausdorff Dimension Moving on from this, we can describe one of a
family of related measures. We will follow the approach of Mandelbrot
[196], in stating that:

‘A fractal is by definition a set for which the
Hausdorff-Besicovitch dimension strictly exceeds the

topological dimension.’

The ‘Hausdorff dimension’, (DH), introduces a m-dimensional measure
in R such that, when m is equal to n, it is equivalent to the Lebesgue,
covering, dimension.

Here, ε is defined as

ε(T) = sup{|x− y| : x, y ∈ T}

where T is any subset of Rn. Then, let αm denote the Lebesgue measure
of the closed unit ball Bm(0, 1) ⊂ Rm. For small values of δ, covering S
efficiently with countably many sets Tj, with ε(Tj) ≤ δ, and taking the
sum of all αm · (ε(Tj)/2)m and the limit as δ→ 0,

DH(S) = lim
δ→0

inf
S⊂∪ε(Tj)

ε(Tj)≤δ

∑ αm

(
ε(Tj)

2

)m

(1.5)

where the infimum is taken over all countable coverings ε(Tj) of S whose
members have a diameter at most equal to δ. Therefore, as we take the
the limit as δ→ 0, the most-restricted infimum cannot further decrease,
resulting in the limits 0 ≤ DH(S) ≤ ∞ (Morgan 2016).

Box-counting Dimension In practice, we typically take a numerical
approximation of DH, such as the box-counting dimension, DB. This
dimension, also known as the Minkowski-Bouligand or capacity dimen-
sion, has the advantage of ready comprehensibility and computability.
A common definition is as follows: starting with a mesh of cubes of a
δ-coordinate mesh on S (where each n-cube is δn), let N′δ(S) be the num-
ber of δ-mesh n-cubes covering S. The box-counting dimension (without
qualification) is defined as

DB(S) ≤ lim
δ→0

log N′δ(S)
− log δ

(1.6)
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In practice, we note N′δ(S) as δ→ 0, and take the logarithmic rate as DB.
Put another way, we simply take the gradient of the graph of log N′δ(S)
vs. − log δ as DB [197]. N.B. Properly, there is an additional term to be
considered here, captured by the intercept term in the linear equation,
often denoted c, which represents. As we take the limit as δ → 0, the
significance of this term diminishes. For practical cases, where we lack
sufficient density to bring δ sufficiently close to 0, our graphical method
affords us a simple means to remove it from further consideration.

Correlation Dimension The box-counting dimension, while useful, suf-
fers from a few issues when considering higher-dimensional objects. The
difficulty of accounting for variation in starting coordinates increases
[198], as does the effect of local sparsity. Essentially, that approach treats
all δ-mesh cubes with at least one contained point as equivalent. As a
result of the coincidence of these two issues, it has been observed that
higher-dimensional objects need substantially increased point-densities
to given an accurate estimate of DH [199]. To mitigate these issues, the
correlation dimension (DC) is intended as a density-sensitive, placement-
agnostic estimator of DH [200, 201].

As with the Hausdorff and box-counting dimensions, we are interested
in the scaling of the coverage of a surface with the scale at which it
is considered. In this case, our coverage is defined by means of the
correlation sum,

C(δ) =
1

N2

N

∑
i,j=1
i 6=j

θ
(
δ−

∣∣Xi − Xj
∣∣) (1.7)

where Xi, Xj ∈ S, δ is the radius of the hypersphere, N is equal to |S|,
and θ is the Heaviside function

θ(x) =
{

0, x > δ
1, x ≤ δ

C(δ) is an unbiased estimator of the correlation integral. Then, for
sufficiently small values of δ,

C(δ) ∝ δυ
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where υ is a close approximation of DH, within tight bounds, giving
DC = υ. The authors note that they were able to get a good approxima-
tion of analytical values of DH with one-thousandth as many points for
complex systems.

As discussed, this last approach, the DC, correlation dimension, has
the benefits of stability with low vertex counts, independence from
an additional frame of reference other than the point cloud, S, and
simplicity. Added to the proven utility of FD for the description of real-
world systems, it seems an excellent fit for shape-based description of
molecules, and for capturing the complexity of these objects. Henceforth,
unless specified otherwise, we shall refer to the DC of a given object as
its FD.

26



1.3. Molecular similarity comparison

1.3 Molecular similarity comparison

Moving on to our second question, that of how to compare molecular rep-
resentations once we have them, it is commonly accepted, and with good
reason, that “similar” ligands will bind to the same, or similar, targets.
Indeed, much of the early, pre-genomic work in protein classification was
on the basis of similar biochemical or phenotypic activity profiles in the
presence of a molecular probe. Having developed many thousands of
molecular representations, we are left with the task of comparing them,
and deciding ‘how close is close enough’?

In practice, some combination of descriptors and models often proves
a more powerful tool than either alone. Fundamentally, the issue is
how one should represent a structure which has a complex topological,
physicochemical, and geometric nature in a fashion which allows us
to compare them meaningfully. Equally, our definition of activity is
important: ligand–target affinity has often been viewed as a binary
classification (where a molecule has affinity for a given target, or has not)
rather than as a regression (molecules have a continuously valued affinity
for a target) problem in cheminformatics. This distinction also applies
in our concept of ligand similarity itself: while descriptors are often
described as being a means of encoding a medicinal chemist’s complex,
theoretically underpinned, and, to some extent, intuitive view of the
chemical world in such a way that a computer can understand it, it is
also true that the classification problem (deciding whether two or more
molecules are similar to one another, or not) is much easier for trained
humans than the ordering or regression problems (e.g., the most similar
molecule from a set of 100 is number 47, then 35, etc., or to state that two
molecules are 35% similar).

This proves to be a fundamental issue in all cheminformatics endeavours;
however, given the comparatively large volume of data a computer can
hold in memory at any one point in time, it is not an intractable one, and
computational efforts have proven to be increasingly helpful in assisting
the efforts of lab-based chemists, biochemists, and molecular biologists.

Similarity Metrics and Indices In the decades since its inception, chemo-
informatics has produced many means of comparing such descriptors
once calculated, some novel forms of which we will return to in the
closing matter of this chapter, which vary in their properties to a consid-
erable degree. In the main, though, a few of these have proved especially
useful to date. For the sake of clarity and utility, we will discuss a few
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here at length. In the first instance, it is important to be clear with the
field’s terminology. “Similarity,” in its applications in chemoinformatics,
refers to comparing molecular representations in such a manner that two
identical representations would evaluate to one, i.e., 100% similarity.

For these same two representations, their “distance” would be zero.
Indeed, distance is the complement of similarity. Obviously, identity
comparisons are relatively straightforward, with the nuance being in the
non-integer ranges of comparison, where similarity is a non-negative real
number. For these methods to perform well, it is necessary to characterise
them in a formal manner. Certain characteristics are required to be met
before a similarity or distance measure can be properly classed as a
metric:

1. Distance values D for two objects A and B must be greater than or
equal to zero, and the distance between an object and itself must
be equal to zero:

A, B ≥ 0, DA,A = DB,B = 0 (1.8)

2. Distance values must be symmetric, that is, evaluate to the same
value regardless of direction:

DA,B = DB,A (1.9)

3. Distance values must obey the triangular inequality:

DA,B ≤ DA,C + DC,B (1.10)

4. Non-identical objects must be separated by a distance greater than
zero, i.e., they cannot collide in the metric space:

A 6= B⇔ DA,B > 0 (1.11)

If a given measure meets only the first three characteristic requirements,
we call it pseudo-metric; it gives a consistent representation in space of
objects, but is not capable of separating all objects in space. Broadly speak-
ing, one might divide the commonly employed metrics into two camps,
based on their consideration, or otherwise, of “absent” features in the
molecular descriptors [202]. The former camp includes the Minkowski
distance metrics (Euclidean, Manhattan, etc.), the latter measures such
as the Tanimoto coefficient (Tc) and its complement (for binary-valued
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feature vectors), the Soergel distance. In the equations to follow, the
variables are defined as such: S defines a similarity metric, D a distance
metric. For the continuous versions of each function, XjA refers to the
j-th element in the descriptor vector for molecule A. For binary-valued
variables, a is the number of bits which are 1-valued in molecule A, b
the same for molecule B, and c the common on-bits for both molecules.
In all cases, formulae are paired in their forms for continuous- and
binary-valued feature vectors, respectively.

DA,B =

√√√√j=n

∑
j=1

∣∣∣(XjA − XjB
)2
∣∣∣ (1.12)

DA,B =
√

a + b− 2c (1.13)

Equations 1.12 and 1.13 describe the form of the Euclidean (also L2 norm)
distance metric.

DA,B =
j=n

∑
j=1

∣∣XjA − XjB
∣∣ (1.14)

DA,B = a + b− 2c (1.15)

Equations 1.14 and 1.15 describe the form of the Manhattan (also Ham-
ming, city-block, L1-norm) distance metric.

SA,B =
∑

j=n
j=1 XjAXjB

∑
j=n
j=1

(
XjA

)2
+ ∑

j=n
j=1

(
XjB
)2 −∑

j=n
j=1 XjAXjB

(1.16)

SA,B =
c

a + b− c
(1.17)

Finally, equations 1.16 and 1.17 describe the form of the Tanimoto simi-
larity coefficients. These metrics vary in their behaviours; some sources
[203, 204] state that the Tanimoto coefficient is a better means of assessing
the similarity of two molecules, with the other metrics being of more use
in placing multiple molecules in context with one another. One disad-
vantage of the Tanimoto similarity and Soergel distance metrics is their
susceptibility to molecular size, owing to a combination of their proper-
ties and those of the underlying fingerprint descriptors themselves; the
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latter tend to be relatively sparse, and are unscaled, so a larger molecule
necessarily has a higher probability of exhibiting a given feature, along
with other, irrelevant features. This property, coupled with the Tanimoto
and Soergel metrics’ lack of accounting for shared absent (zero-valued)
features, leads to odd size-dependency behaviours. Means of minimising
these issues have been discussed in the literature, and mostly involve
introducing an additional corrective step for the normalisation of the
metric value.

Similarity Threshold Compared to the continued efforts in descriptor
design, and in the analysis of their performance in virtual and prospective
screening, comparatively little effort has been expended on the matter
of determining the relationship between similarity values and similarity
in bioactivity. One commonly-used cut-off for Tanimoto similarities was
obtained by consideration of local neighbourhoods in terms of their
Unity fingerprints, finding that a Tc of 0.85 [205] was sufficient to infer
a similar bioactivity, with later work finding that, in fact, this similarity
value resulted in two- to three-fifths of the retrieved compounds sharing
bioactivity [206]. Indeed, for the popular Daylight fingerprints, it was
found that only 30% of compounds retrieved at this similarity level
shared activity [207]. As such, it seems that threshold values for a given
similarity coefficient likely depend more on the underlying fuzziness of
the descriptor, rather than the absolute value of the coefficient, and that
even for a given descriptor-coefficient pairing, this might depend on the
target domain.

Given the size of typical databases available for virtual screening (the on-
demand subset of the popular ZINC15 [92] database has approximately
13 million compounds, as of writing, for instance), one might expect that
the nearest-neighbour to an active compound would have reasonable
odds of shared bioactivity. This is not necessarily the case, as similar-
ity values have been observed to follow an extreme-value distribution,
wherein very few compounds in a given set have a high similarity to
a template compound [204]. Thus, the likelihood of finding a “close”
neighbour, depends heavily on the novelty of the template compound
under consideration, as captured through its descriptor representation
[208, 209]. This illustrates issues with choosing compounds based solely
on ranking. Even so, if such a compound (Tc ≥ 0.85) were found, it would
also, likely, be subjectively very similar to the template. This presents
another problem: typically, we begin searching in such databases ex-
plicitly to locate novel chemical matter with similar bioactivity [210],
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i.e. “isofunctional but structurally dissimilar molecular entities” [211].
Therefore, in practice, we seek methods which have both a high correla-
tion between their activity values and associated bioactivity, and which
retrieve “novel”, that is to say structurally-dissimilar, compounds.

1.4 Benchmarking

As such, given the dynamic tension between our desire to find iso-
functional and dissimilar compounds simultaneously, some means of
rigorously assessing overall performance is critical. There is, as noted by
Nicholls[212], a tendency towards argument-by-anecdote, largely owing,
in our opinion, to the difficulty of deconvoluting the various factors
determining the performance of a given LBVS run. Briefly, barring innate
performance of the descriptor-coefficient combination themselves, we
have: the relative “difficulty” of targets or template ligands, the size,
diversity, and density of our library with regard our descriptor, and
variability in our definitions of activity and novelty [213]. As such, we
need both useful metrics, and carefully constructed datasets, to allow us
to meaningfully compare our methods. While prospective applications
allow for a less biased assessment than their retrospective counterparts in
general, they are typically less rigorous, given the smaller dataset sizes.

Methods and Metrics In the main, cheminformatics performance met-
rics are concerned with enrichment (the relatively early retrieval of active
compounds) and diversity (some measure of the intrinsic difference be-
tween chemical structures). Here, we take the line of argument proposed
by Nicholls, in stating, “in a somewhat circular manner, one of the first
characteristics of a good measure is that everyone uses it.” Given that
there are relatively few established measures of global enrichment in
our field, and as they are observed to correlate reasonably well with one
another [214], analysis of the Receiver Operating Characteristic (ROC)
by determining the Area Under Curve (AUC) is generally useful. This
measure essentially captures the relative ranking of active and inactive
compounds under a given ordering, and is closely related to statistical
tests, such as the Mann-Whitney U (MWU) [215]. It is unweighted,
meaning that it affords no especial credit to the early retrieval of com-
pounds (as do early-enrichment methods), but rather gives a good global
assessment of the performance of a method in ordering chemical space.
It has a few nice properties, such as being bounded in [0, 1], being
broadly independent of the proportion of actives and inactives, and be-
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ing readily interpretable. A more mathematical definition is provided in
Equation 3.7.

Of course, in general, we would prefer not to screen the entire database
of compounds. As such, early enrichment methods are popular in the
field. Of these, Enrichment Factor (EF), and, more recently, , are the
most established. The former, enrichment factor, has the benefits of
comprehensibility and a clear relationship with the desired behaviour.
Informally, it is simply the enrichment in the observed proportion of
actives at some percentage of the ranked compounds, over what would
be anticipated were the ranking random. As such, there are two impor-
tant variables which define the range it can take per experiment: the
percentage chosen, and the underlying number of active compounds. As
such, it can more properly be viewed as a metric of the performance
of the method and the particular dataset chosen, in combination [216].
Additionally, it is insensitive to the ranking of active compounds within
the percentage interval chosen. Its bounds depend both on the number
of active compounds in the set, and the percentage chosen.

To avoid some of these issues, and to preclude bias by choice of the
percentage, the Robust Initial Enhancement (RIE) [217] and Boltzmann-
Enhanced Discrimination of ROC (BEDROC) methods were developed.
The former avoids a percentage factor by weighting the contribution of
each rank position in an exponentially-decreasing fashion. This avoids
choosing an arbitrary cutoff, but does still require the user to choose
the exponent. In addition, it is not bounded in [0, 1], and depends
on the proportion of actives and inactives. Thus, it is not suitable for
comparison between cases. BEDROC [216] aims to solve this latter
problem, bounding the result in [0, 1]. However, it is still sensitive to the
choice of α parameter, which roughly corresponds to the inverse of the
percentage term for enrichment factor. Riniker and Landrum [214] have
observed that, after accounting for the mismatch between percentage
and α terms, that these early enrichment methods tend to be highly
correlated. As such, they state that any of these methods, combined with
AUC, suffice to describe the early and global enrichment potential of a
descriptor-coefficient combination.

The issue of compound diversity is somewhat more problematic. There
are two major approaches; one based on neighbourhood analysis, and
the other focusing more directly on molecular scaffolds. Neighbourhood
analysis and its related approaches depend on the notion of molecu-
lar similarity previously discussed to ensure a minimum separation, in
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terms of maximum or mean values, to a neighbour or neighbourhood
of molecules in chemical space [218]. As such, it is highly dependent
on the descriptor chosen, and scales somewhat poorly, being impractical
for a pairwise comparison of the ZINC screening database previously
alluded to, for example, although this is feasible with efficient clustering
algorithms [219]. The latter approach, considering molecular scaffolds
directly, is somewhat more popular, given its ease of definition and direct
relation to the question at hand. TheBemis-Murcko Scaffold (BMS) [26]
extracts the backbone of a given small molecule, retaining heteroatom
and bond information. This approach differs from the maximum com-
mon substructure [220–222] approach by means of generation of an
invariant representation which reflects the “decorable” scaffolds of in-
terest to medicinal chemistry, rather than comparison of subgraphs to
find commonality. This has the benefit of computational simplicity and
an intuitive interpretation. Extending this reductionist approach, Gener-
alised BMS (GMS) [223] removes heteroatom and bond order information,
leaving a very “bare-bones” molecular description, but one which cap-
tures the general distribution of features. As such, it generates the same
result for common bioisosteric replacements, commonly found in series
generated through medicinal chemistry efforts. Overall, there is no one
“best” measure of diversity, rather it is application dependent. As noted
by Kirchmair et al. [224], typically we desire to retrieve novel scaffolds, as
these represent a more reliable “jump” in chemical space, with associated
claims of biological and intellectual novelty, but these run the risk of
interacting with the target in a different manner. This is not necessarily
problematic, but does raise the spectre of the “activity cliff” [225], where
a rapid diminution in biological activity accompanies a small step in
chemical similarity. As such, Kirchmair notes that a reduction in over-
all enrichment might be acceptable, if accompanied by a concomitant
increase in diversity. This will likely remain context-dependent, however.

Datasets and Benchmarking As mentioned previously, many of the
metrics vary substantially depending on the composition of the dataset
in question. Over the years, benchmarking of LBVS methods has typically
been performed on an ad hoc basis, although several datasets have been
employed frequently to that end. Recent reviews cover this field in some
depth [226, 227], so we will restrict our discussion to a few pertinent
examples. The MDL Drug Data Report (MDDR) [228] is a licensable
repository of drug pipeline data. As such, it has been employed as
a relatively consistent source, manually curated and covering much
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of the activity of a typical pharmaceutical pipeline. However, given its
commercial nature, it is relatively poorly described, resulting in divergent
analyses between attempts to utilise it for benchmark studies [219, 229–
231]. One criticism is that the sets of active and decoy ligands in the
MDDR are often trivially separable based on simple molecular properties
[232]. As such, attempting to ascertain the information-richness of a
given molecular representation in this environment is somewhat fraught
[233].

Datasets specifically constructed for virtual screening have been devel-
oped, such as the Directory of Useful Decoys (DUD) [232] and Maximum
Unbiased Validation (MUV) [234, 235]. The former, developed for use in
docking studies, is constructed choosing pools of decoy molecules which
are physically similar to, but topologically distinct from, known active
compounds for a pool of 40 targets. As such, and as noted by one of
the authors in a later work [236], it is fundamentally unsuited for the
comparison of 2D and 3D methods, as it contains many trivial analogues
for each active compound. Although popular in the field upon its release
[237], and still highly-relevant for docking studies, attempts to utilise it
for LBVS approaches led to several criticisms and improvements [238],
leading to the later release of the Enhanced DUD (DUD-E) [239] dataset.
This considerably expands the number of targets considered, and also
addresses issues with the original protocol used for dataset construction,
specifically removing trivial analogues in the actives sets and correcting
the treatment of charged molecules. However, additionally, they also
impose a similarity filter, removing the decoys with a Daylight finger-
print Tc of ≥ 0.5 to the retained actives. The authors reiterate that the
enhanced version is also unsuitable for LBVS benchmarking. As such,
studies comparing performance of 2D and 3D methods on the DUD set
[33, 240] are unlikely to provide generalisable insights.

Moving on to the MUV database, which takes a rather elegant approach
to tackling the analogue bias, decoy selection, and data curation issues.
They utilise publicly-available data from the PubChem [241] database,
subjecting the information extracted from HTS studies to a series of
filtering steps, and confirming hits with EC50 data. The authors propose
some general rules for the construction of an unbiased dataset. First,
actives should be embedded within the decoy set, which can be accom-
plished by comparing distributions of similarity values for available
databases. Second, considering simple properties, such as atom counts,
the authors state that the distances between actives according to such
measures should be at least as large as the distances between the active
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and decoy sets. Lastly, each target should have actives and decoys with
approximately similar dispersion in molecular space. Although these
conditions are excellent for demonstrating the ability of a given method
to separate active and decoy compounds, it is unclear to what extent
performance on this dataset is reflected in the conditions more typical
for an LBVS campaign, and, therefore, whether we can use this to gain
actionable insights for further screening.

Alternative approaches, which attempt to emulate conditions “in the
field”, have had some success. REProducible VIrtual Screens DataBase
(REPROVIS-DB) [242] collates results from papers with hits from LBVS
approaches with ≤ 10 µM potency and scaffolds not present in their
template sets. Several reproducibility criteria were imposed, leaving a
total of 25 studies which met their defined standard. The authors state
that this resource is primarily of use for those who wish to see if their
method meets current gold-standards in the field. Alternatively, one
could use a database of medicinal chemical findings such as ChEMBL
[243] and construct decoy sets according to some similarity criteria [244].
This approach suffers, as with many of the other methods discussed,
from poor decoy definition, where uncertainties in declaring a compound
inactive affect our confidence in the obtained performance metrics.

Given the diversity of means by which such a set could be constructed,
a reasonable approach is simply to try a few of them, and consider
the overall and per-dataset behaviours. This method, as published by
Riniker and Landrum [214], attempts to set a gold-standard by providing
clearly defined subsets, a means of integrating novel descriptors, and a
standardised system of metrics and statistics for evaluation. As such, it
represents a useful synthesis of the criteria desired for the formulation of
a good benchmark [212]. One issue that remains unclear with all such
benchmarks, insofar as shape-based methods are concerned, is whether
sets based on years of medicinal chemical work primarily developed with
a 2D mindset [245] are useful for profiling 3D-focused methodologies.
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1.5 Applications

Thus far, we have seen how to define an input space, how to compare
locations in that space, and how to assess whether we can meaningfully
distinguish between areas of that space containing active and inactive
compounds. This leaves us with the final point: what next? What can we
do with a well-profiled, well-behaved descriptor, if we can find one?

1.5.1 Prospective screening

Naturally, the primary, and immediately-occurring use would be to look
around in chemical space, to see if we can better define the relationship
between actives, ‘near-actives’, and ‘never-actives’ for targets of interest.
Discriminating between the second category and the other two has
proven broadly impossible to date, and is a somewhat subjective term at
best. As noted by Scior et al. [213], our preoccupation with discovering
highly-active compounds, at the cost of promoting structural diversity, is
likely a misstep. This approach encourages a certain amount of ‘playing
it safe’, ensuring that methods retrieve known chemotypes at the cost of
missing novel ones.

Shape-based methods have a well-established ability to retrieve struc-
turally diverse, active compounds. The importance of building complex
screening libraries, incorporating multiple scaffolds, can be captured
through analysis of the shape diversity of combinatorial libraries [82]. In
that work, the authors used simple PMI plots to describe the diversity
of compounds generated through combinatorial substitution of vary-
ing numbers of scaffolds, and rationalise the construction of screening
libraries with broader applicability to target space than was then com-
monly the case. As contemporary studies noted [246, 247], the ongoing
disappointment with screening simple combinatorial libraries could be
correlated with the structural diversity of the targets considered, im-
plying that some more fundamental aspect of chemical structure was
missed by such approaches. As such, efforts were placed into the efficient
generation of scaffolds themselves, recognising that “compounds that
have a common molecular skeleton display chemical information simi-
larly in three-dimensional space” [248], and that increasing molecular
complexity in library design improves the likelihood of finding highly-
selective compounds [249]. Interestingly, this is also posited as a means
of promoting “selective promiscuity”, where we tailor a compound to
“hit” a group of related targets, based on the shape similarity of their
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binding pockets [250]. Attempts at clustering chemical space in terms
of geometric similarity have identified promiscuous ligands based on
shape similarity alone [251]. As well as assisting in the development
of diverse, and biologically-relevant, screening libraries, shape-based
methods can also help drive the screening process itself [56, 252–254].
For a comprehensive enumeration, we would refer the reader to Kumar
and Zhang [90].

The general applicability of an approach is perhaps best illustrated
through its utilisation for a variety of targets, and in a variety of scenarios.
Various applications, ranging from benchmarking studies to prospective
studies in biophysical, biochemical and phenotypic screens [94, 255],
have been published. Targets have included protein-protein interactions
[48, 256], nuclear receptors [257], and helicases [258], to name a few. As
noted by Ripphausen et al. [259], there have been comparatively few
large-scale, multi-target attempts to validate shape-based protocols, and,
of these, the majority incorporate expert knowledge at some stage to
choose compounds, limiting the general utility of the study. Of course,
the incorporation of expert knowledge can be useful if the desired end-
result is the maximisation of hit rate, but limits the extent to which
we can test the shape-based hypothesis. Overall, the increased utility
of alignment-based approaches is somewhat uncertain [260]. Whether
this is owing to the global alignment metric commonly employed, which
struggles with the partial matches often seen in nature [261] is unclear. As
Giganti et al. [262] note, the best-scoring alignment is not necessarily the
most natural. Their study was primarily focused on molecular docking
approaches, but they note that the same effect was seen to a lesser
extent with LBVS methods. This might go some way to explaining that
there is little observed benefit in including multi-conformer ensembles
when screening with the popular ROCS program, for instance [263]. In
general, however, the performance of single methods varies substantially
depending on the specific use case[255], with our ability to define the
domain of applicability of any particular approach remaining rather
limited.

Further complicating this picture, shape-based methods are frequently
integrated into efforts which combine this basic principle with other ap-
proaches, such as 2D or molecular docking, based on a desired outcome.
Combination with the former typically indicates an intention to stick to
a desired pharmacophore, the latter is often a filtering step to reduce the
computational complexity of the molecular docking approach. These ap-
proaches have shown some notable successes, and it is likely, in general,
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that such a combination will be more powerful in terms of retrieval than
any one method [231, 264, 265]. To the best of our knowledge, however,
no systematic benchmarking of such approaches has been performed
with a platform such as that proposed by Riniker and Landrum.

Given the assumed relation between ligand shape similarity and bioactiv-
ity, utilisation of such methods for target prediction is a natural extension.
Various efforts to that end have been made, with SwissTargetPrediction
[266, 267] (based on the ElectroShape [99, 100] USR variant) the most
user-friendly of these, providing a web-portal for assessment. Target-
fishing approaches, utilising the combined ROCS mode, have also been
published [268, 269], which found that incorporation of additional topo-
logical information significantly improved prediction accuracy. Given
the high degree of structural conservation between binding pockets [270],
a different approach is possible. Shin et al. showed that matching of
pocket and ligand surfaces was possible to a certain extent by means
of the Zernike descriptors previously mentioned [271]. Overall, then,
shape-based approaches can be used to enrich and order chemical space,
to search that space for compounds whose scaffold had not previously
been considered for a given target, and to predict to which (and how
many) targets a given compound might bind.

1.5.2 Deep learning in shape-based drug discovery

Given this complementarity, the question arises as to whether it might
be possible to generate a ligand de novo to match a given protein bind-
ing pocket. To approach this question, we will briefly introduce some
terminology and basic material underlying modern progress in the field
of machine-learning, and then discuss how it might be used to answer
the question of structure-based ligand design.

Parts of this section adapted from:
Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery,
ACS Chemical Reviews 2019.
X.Yang, Y.Wang, R. Byrne, Prof. G. Schneider, Prof. S. Yang

For comprehensive coverage of the subject matter, and for insights into
other applications of AI in drug discovery, we refer the reader to that
work.
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AI Architectures

Artificial Neural Networks Artificial Neural Networks (ANN) are com-
posed of interconnected artificial neurons that act as basic information-
processing units. [272–275]The product of some input vector X =

[x1 · · · xn]
T and the neuron weights wi is combined with a bias term

b and passed through an activation function f (z) to generate an out-
put. A neuron can be regarded as a function that maps an input vector
to an output vector. Mathematically, the output of the neuron can be
represented as

y = f

(
n

∑
i=1

wixi + b

)
(1.18)

A typical ANN architecture contains many artificial neurons arranged in
a series of layers: the input layer, an output layer, i.e., the top layer, which
generates a desired prediction (absorption, distribution, metabolism, ex-
cretion and toxicity (ADMET) properties, activity, a vector of fingerprint
etc.), and one or more hidden (middle) layer(s) where the intermediate
representations of the input data are transformed. A variety of learning
techniques can be used to train an artificial neural network, for example,
gradient descent algorithms such as stochastic gradient descent (SGD)
and adaptive Momentum (Adam), [276] coupled with backpropagation.

Backpropagation refers to the distribution of the calculated error at the
output of a model back through its structure, assigning a portion of the
total network error to each neuron and enabling the gradient descent
algorithm to find a better solution, i.e., the approximation of the under-
lying function to the problem at hand. Error backpropagation is used
primarily for supervised learning tasks, as it requires the target output
values for error calculation, although it also works with quantization or
construction errors, enabling its employment for architectures such as the
autoencoder . For more mathematical details about how the backpropa-
gation algorithm works, we refer readers to several excellent references
[273, 277, 278].

The term “deep learning” refers to any learning system composed of
several information processing layers [279]. These layers might incorpo-
rate multiple machine-learning methods, although this term currently
refers mainly to one or more variants of artificial neural networks. A
Deep Neural Network (DNN) refers to an ANN that has several hidden
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layers (with the definition of “deep” being a matter of some debate) with
several differences.

1. Unlike traditional ANNs which have typically been used for super-
vised learning tasks, DNNs can be applied to both supervised and
unsupervised tasks.

2. The workhorse algorithm used for training an ANN, i.e., adjusting
its parameters, has been SGD coupled with backpropagation. [279]
However, this is usually employed in concert with a selection of
other algorithms and designs to successfully train a DNN, examples
of which include regularisation (such as maxout [280] or dropout
[281]), rectification of activation functions, and optimisation of
structures, as in Microsoft’s ResNet approach [282]. In addition,
different optimisers, such as Adam and evolutionary methods, e.g.,
swarm algorithms, [283] can be employed. The extent to which
these improve matters is an area of active research and debate in
the AI community.

3. In contrast to using hand-crafted features extracted by extensive
preprocessing and feature engineering efforts in traditional ANNs,
DNNs can automatically extract useful features from raw input
through their hierarchical structure. For example, given a molecular
substructure fingerprint representation, for instance, DNNs are
capable of learning that a given pattern of bits corresponds to a
given feature and that to a certain biological activity. This ability
to abstract information, and to generalise, is behind much of the
success of these methods.

4. DNN training requires a relatively large number of training ex-
amples compared to human learning. Creating a system that can
generalise from few examples is the focus of ongoing research. To
a certain extent, the availability of data limits the tasks we can
accomplish today. ANNs and DNNs are theoretically similar, and
therefore, in the following sections, we will discuss them as a single
concept. The feed-forward neural network is the most basic form of
artificial neural network, where the connections within the network
architecture are directed from the input to the hidden layer(s) and
onward to the output layer, without loops or backward connections.

Recurrent Neural Networks .

Recurrent Neural Networks (RNN) are designed to identify patterns in
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sequential data, such as time-series data, genome, and protein sequence
data, or simplified molecular input line entry specification (SMILES)
strings. In contrast to feed-forward networks, RNNs introduce multiple
cells which take as their input not just the current input xt−1 but also
the information they have perceived from the previous state cellt−1,
according to the following equation:

cellt = σ
(

Wxt + Ucellt−1
)

(1.19)

where σ is the activation function, W is the weight matrix, and U is
the hidden-state-to-hidden-state matrix (i.e., transition matrix). A reg-
ular RNN struggles to capture long-term dependencies because of the
vanishing gradient problem [284].

Several variations of RNNs were specifically designed to alleviate this
problem, such as long short-term memory (LSTM) [285] and gated re-
current unit (GRU) [286]. Deep RNN models based on LSTM or GRU
have been used for de novo molecule design. These RNN models [287]
are able to capture long-term dependencies and approximate grammars
[288], which are necessary to conduct SMILES string prediction since
a valid SMILES string, in addition to the correct valence for all atoms,
must count ring openings and closures, as well as bracket sequences with
several bracket types. All of these elements combine to form a grammar
relating chemical vocabulary to molecular features and should be cap-
tured by the model to compute valid SMILES that correctly represent the
intended molecule.

Autoencoder and its Variants A minimalist autoencoder consists of
an encoder functionality, translating an input into a latent space, and
a decoder, translating this internal latent-space representation back to
the original input space. Given an input x , the goal of an autoencoder
is to compute a reconstruction x′ with minimal error compared to the
original input x, while also having an internal representation with fewer
features than are present in the input. In essence, then, an autoencoder
can be regarded as a dimensionality reduction approach, as it can be used
to build potentially more meaningful, or less noisy, representations of
feature vectors. It is also extensively employed in generative modelling,
as it allows for the creation of a well-described and consistent internal
representation with few dimensions that can be translated back to the
original or a related space.
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When the input data have a complicated internal structure, as is often the
case with biological data, multiple autoencoders can be stacked, adding
nonlinearity and flexibility. Variations of autoencoders have been devel-
oped to prevent “vanilla” autoencoders from simply approximating the
identity operator and to increase their ability to extract useful features
from data. Examples include the denoising autoencoder [289], the Varia-
tional Autoencoder (VAE) [290, 291], and the Adversarial Autoencoder
(AAE) [292].

Denoising autoencoders are intended to recover the original undistorted
input data from corrupted input data, making the final model more ro-
bust to noisy data than vanila autoencoders. To accomplish this, stochas-
tic noise is added to x , giving x∗ , and the autoencoder is trained as
before, with the exception that we are now interested in the loss values
obtained from x and x′, when trained on x∗.

In the case of a VAE [290], we direct the system to produce outputs
similar to our inputs by adding a requirement that the distribution of
the variables in the latent space should follow some distribution, most
commonly a Gaussian. Subsequently, these latent vectors are fed into
the decoder to reconstruct the input. Due to this, we have the possibility
of generating new samples that are similar to the original samples used
for training, which has the effect of increasing the localised density
in our latent space. This process has the advantage that input data
that are somewhat similar to our training set are more likely to have
a sensible decoded form than in simpler autoencoder models. Besides
the reconstruction loss used in vanilla autoencoders, another term is
also added to the loss function in VAEs, that is, the Kullback-Leibler
divergence between the distribution created by the encoder and the prior
distribution.

Since the integral of the Kullback-Leibler divergence term in VAEs adds
to the computational cost, AAEs [292] have been introduced to avoid
the necessity of evaluating that term. This is achieved through intro-
ducing a new network (called the discriminator) to each AAE, which is
trained to determine whether its input comes from encoder-generated
latent vectors or from a prior distribution determined by the user. The
first step of training the overall network is the same as for the vanilla
autoencoder above, where we minimise our reconstruction loss, i.e., we
train the encoder-decoder system to reproduce inputs. Then, we train the
discriminator to distinguish between noise and true values and predicted
true values. Finally, we optimise our encoder by using the discriminator
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with a cross-entropy loss function; essentially, we use the discriminator
to label our input data and drive the optimiser to produce only outputs
that are indistinguishable from true data.

Convolutional Neural Networks Convolutional Neural Networks (CNN)
are used in situations where input data can be represented as images
or image-like objects [293, 294]. A typical CNN contains at least three
components: convolutional, pooling, and densely connected layers. A
convolutional layer is described in terms of its width, height, and depth;
that is, it captures x-and y-coordinate information over a small recep-
tive field (a square of pixels), with a depth z corresponding to different
sources of information (e.g., RGB colors in images) and uses the patterns
observed as it slides across the input image to set weights. The main
advantages of the convolutional layers are that they reduce the number
of parameters via their weight-sharing mechanism and gradually build
up spatial and configural invariance [294].

Pooling layers essentially implement subsampling to reduce the impact
of noise and the number of learned parameters. In addition, pooling
layers add a certain level of resilience to small shifts in the placement
and orientation of input features. A convolutional layer followed by
a pooling layer can form a convolutional module, and each module
of the CNN network learns to identify features while preserving their
spatial relationships. These properties lead to a major advantage of
CNNs over standard ANNs, namely, that they are translation-invariant,
i.e., they can recognise the same feature in different areas of the input
field. Generally, a CNN is composed of a stack of convolutional modules
to achieve feature extraction, followed by one or more fully connected
layer(s) for prediction and loss-minimisation. It should be noted here
that the convolution operation is linear, since the output of each neuron
∅ in the feature map is simply the result of multiplying the input value
xi by the weights wi of a given filter and adding them:

∅ = ∑
i

xiwi (1.20)

Therefore, in most cases, the output of a convolution layer will be passed
through some form of nonlinear activation function (such as rectified
linear unit, ReLU) to allow the network to handle more intricate relation-
ships. As CNNs grow ever deeper, a new problem arises: information
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about the input or gradient can vanish and “wash out” when it reaches
the end of the network.

Several different approaches have been proposed to address this and
related problems, such as creating short paths from early layers to later
layers [281, 295, 296] or connecting each layer to every other layer in
a feed-forward fashion to ensure maximum information flow between
layers in the network [297]. Similar to other neural network architectures,
hyperparameter tuning has a great impact on the performance of CNN
models, and the number of possible choices makes the design space
of these architectures large, rendering an exhaustive manual search
infeasible. In this case, various approaches have been developed to
provide reasonable initial hyperparameter values and to rationalise the
tuning process, examples of which include grid search, random search
[298], Bayesian optimisation [299, 300], and evolutionary methods [301].
CNNs were originally developed for two-dimensional image recognition.

Some of the approaches utilised in typical CNN networks, such as
the pooling algorithm, are adopted to reduce the dimensionality of
the representation and to allow for position shift, which can lead to a
loss of information and hence a poor performance in drug discovery-
related studies. An advanced deep learning architecture, the Capsule
Network [302], allows the modelling of hierarchical relationships of the
network’s internal knowledge representation and could have considerable
potential for drug discovery-related research. CNN architectures can
also trivially be applied to sequence transduction problems [303], such
as with the ByteNet [304] architecture, which achieves good performance
on standards such as English to German translation, runs lightly and
in linear time, but with the issue that path-lengths (how far the model
has to “look” at any point) can be logarithmic, reducing the working
memory.

Attention and Attention-Based Architectures Rather than being a net-
work architecture as such, attention is a means of improving the perfor-
mance of other models, with special attention to the generative RNN
and encoder-decoder architectures, and allowing them to generate more
useful output in cases where there are substantial long-range dependen-
cies in the input or output sentences. English-to German translation is
often given as an example of such a problem, given that German is a
subject-object-verb order language. This means that decoders can strug-
gle to produce sensible input, as they are not sure of the relationship
between subject and object. Bahdanau et al. [305] developed an approach
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to get around a “bottleneck” introduced by encoder compression, forcing
a fixed number of dimensions onto the latent space representation of
input sentences and avoiding the direction-dependence of earlier meth-
ods [306], significantly increasing performance on translation tasks. In
essence, the attention model allows the decoder in a bidirectional-LSTM
encoder/LSTM decoder model to focus on sections of the input when
producing an input, thus “paying attention”, rather than using only
information in the context vector. Luong et al. [307] extended this work,
adding new kinds of attention models, and the distinction between global
and local attention. It can be defined as a means of “mapping a query
and a set of key-value pairs to an output, where the query, keys, values,
and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed
by a compatibility function of the query with the corresponding key.”
[308]. As such, and in tune with our intuitive understanding of the term,
attention facilitates ‘focus’, allowing the model to focus on only the most
relevant information when making its next step.

Having observed the power of this concept, a novel architecture, the
“transformer” [308] was proposed, which aims to solve some known
issues with sequence transduction models implemented with RNN and
CNN architectures. As there is no recurrence in this architecture, word
or character position is maintained with use of a positional encoding, in
particular a sine function. Describing the overall architecture, it inherits
its basic formulation from earlier work [309, 310], wherein stacked RNNS
are used as encoders and decoders (vide supra). Each of these layers
contains two substituents: the “multi-head self-attention” and fully-
connected FFN. In addition it features some “short-circuit” or highway
connections [311], which essentially bypass sections of the architecture,
“carrying along” the gradient, to deal with the vanishing gradient issue.

Several kinds of attention are employed here. Multi-head attention de-
scribes multiple learned projections of the query, key, and value matrices
into lower-dimensional spaces (which are then re-projected), reducing the
impact of averaging over multiple attention-weighted positions, whilst
still running with the same performance overall as the approach de-
scribed by Bahdanau [305]. The implementation of self-attention differs
between the encoder and decoder stacks. For the encoder, the current
state can attend upon all states from the previous layer. For the decoder,
inputs to the right of the current position are masked, so the model is
unable to “look forward”. For a fuller description, the original paper
is strongly recommended, also as an introduction to attention-based
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methods.

General considerations

Constructing a Model Applying a particular AI algorithm in drug
discovery is a sequential process that requires the proper definition of
the problem domain [312]. This process typically includes problem
definition, data preparation, design of the AI architecture, model training
and evaluation, and understanding and explaining the results. More
specifically, one should be clear about the problem at hand before any
specific architectural decisions are made, since the choice of the machine
learning method should be appropriate for the problem under study.
First, one needs to know whether this particular problem belongs to
the domain of discriminative or generative tasks. With the task of AI
modeling in mind, the next step is to design an appropriate model
architecture. This step includes the choice of a suitable algorithm and
setting sensible initial values for hyperparameters.

In general, ANNs are the go-to part of the field for these tasks, given
their ability to generalise and hypothetical ability to approximate any
input-output relationship function. Hyperparameters vary with different
AI algorithms. The architectural parameters for a neural network include,
but are not limited to, the choice of the number of neurons and layers
(and their type), learning rate and decay, regularisation parameters, and
the presence of connections between neurons or adjacent layers. After a
provisional architecture is determined, it is time to prepare the data set.
The representativeness, quality, and quantity of initial data have a crucial
impact on the quality of an AI model.

Once the initial architecture and the data sets have been established, one
may proceed to model training and evaluation. The training step aims to
search a set of parameters with the objective of reducing/minimising the
prediction error. The final AI model should have the ability to express
the underlying relationship between the molecular representations and
practitioners’ own specific purposes. If this is not the case then examining
specific examples can help guide the practitioner in developing their
model “ecosystem” to accomplish the goal.

Input Data Preparation Newcomers to the application of AI methods
in drug discovery projects tend to make improvements on the overall
performance of the model by focusing on the deployment of the latest
AI approaches. However, it is often more beneficial to focus in the first
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instance on the training data, as it underpins all further progress. More
high-quality data usually leads to a better generalization performance,
regardless of model chosen [313]. However, data preparation is a labour-
intensive and challenging task. One needs to understand the origin and
meaning of the training data, for example, the types and complexity of
entities represented, the quantity of data, and more domain-specifically,
their distribution in chemical space, for instance. Overall, the question is
how well we have populated the space of possible inputs that we might
want to make predictions for. If the need for more data is apparent, one
must decide on a preprocessing strategy, whether unlabelled data might
suffice, what sort of representation would be most useful for encoding
the entities represented, etc. Importantly, no single rule is universally
applicable. Here, we attempt to provide some guidance on these issues.

Data Types in Medicinal Chemistry The most frequently used input
data type in drug discovery is a fixed-length input vector (e.g., molec-
ular descriptors, fingerprints) [314, 315]. However, there are two major
limitations inherent to this type of representation. Such vectors tend to
be rather large to encode all possible substructures without collisions
(overlap), resulting in models that have many learnable parameters and
that attempt to learn from relatively sparse inputs. For example, a
fingerprint vector of size 43,000 was used by Unterthiner et al. [316].
Similarity assessment in such a high-dimensional chemical space is error-
prone [317].To partially alleviate this problem, various types of graph
fingerprints [318, 319] have been proposed, which are calculated with
a differentiable neural network whose inputs are molecular structure
graphs. The other limitation is caused by the difficulty in establishing bi-
jection (one-to-one correspondence) between input vectors and molecular
structures. Input vectors can be easily generated from a molecular struc-
ture, but reverse structure reconstruction from vectors is an extremely
difficult task, especially as a single fingerprint representation likely cor-
responds to multiple possible chemical structures. One way to avoid
this limitation is to use AI deep generative models in combination with
SMILES strings as molecular representations [320].Such combinations
have been widely investigated in recent years for the generation of novel
compounds with desired properties. In this case, the output data is either
a SMILES string or a fingerprint vector. The output data in most other
AI-assisted drug discovery projects are numerical value(s), with binary
values corresponding to binary classification, integer values for the mul-
ticlass classification (or clustering), and real-valued numbers involved in
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regression tasks, often with experimental biochemical data.

1.5.3 Applications in generation and regeneration

Note: This section is shortened and adapted for clarity, please refer to
the original work for a comprehensive discussion of the state of the field
as of time of writing.

Drug design aims to generate chemical species that meet specific criteria,
including efficacy against pharmacological target(s), a reasonable safety
profile, suitable chemical and biological properties, sufficient novelty
to ensure intellectual property rights for commercial success, etc. With
the aid of novel algorithms to carry out the design and evaluation of
molecules in silico, de novo drug design is increasingly considered an
effective means to reduce the vastness of chemical space into something
more manageable for the identification of tool compounds for chemoge-
nomic research and for use as starting points for hit-to-lead optimisation.
In this section, we highlight the achievements of AI-assisted de novo drug
design and point toward potential future developments. The reader is
referred to some comprehensive resources regarding de novo molecular
design for further information. [321–323].

Early de novo drug design approaches [322] almost exclusively used
structure-based methods to grow ligands within the constraints (steric
and electronic) of a binding pocket for the target of interest, whether
adapted directly from protein structures or inferred from properties
of known ligands [324, 325]. A limitation of these early methods was
that the generated structures were prone to synthetic infeasibility and
poor druglikeness (such as poor drug metabolism and pharmacokinetic
properties). More recently, the ligand-based de novo design method has
demonstrated its applicability in medicinal chemistry. Generated com-
pound libraries may be additionally analyzed with the aid of a scoring
function which takes into account several properties such as biological
activity, synthetic accessibility, metabolism, and pharmacokinetic proper-
ties [326, 327]. One way to build such a virtual library is to use a curated
subset of chemical reactions, along with a group of available chemical
building blocks, leading to a pool of synthetically accessible molecules
[328]. This approach was adopted by Hartenfeller et al. [327, 329] in the
development of DOGS, a software which allows the ‘in silico assembly of
molecules’ based on a template structure and the aforementioned build-
ing block and reaction libraries. Syntheses of these products resulted in
novel active compounds against γ-secretase, histamine-4 receptor, and

48



1.5. Applications

polo-like kinase 1 and in the successful imitation of the pharmacological
profile of a natural product, (-)-Englerin A, among other applications
[330].

A related approach is to apply knowledge-based expert rules from medic-
inal chemists to design analogues for a query structure. For example,
Besnard et al. [331] used a knowledge-based approach to automat-
ically generate novel dopamine receptor type 2 (DRD2) modulators
with specific polypharmacological profiles and suitable ADMET proper-
ties for blood-brain barrier penetration. Even though the use of either
knowledge-based or reaction rules can reliably and effectively generate
novel molecular structures, these approaches are limited by the inherent
rigidity imposed by the predetermined rules and reactions. Whether
this fact poses a practical problem may be a matter of discussion. For
the purpose of scaffold hopping, however, the cardinalities of the virtual
compound libraries that can be generated by a rule-based system easily
exceed 1030 drug-like molecules.

A third approach, called “inverse QSAR”, deals with the de novo design
task from a different angle. Instead of first generating a virtual chemical
library and then scoring and ranking it based on similarity to a template
compound, inverse QSAR attempts to find an explicit inverse mapping
y→ X from properties y to molecular descriptor space X and then maps
back from the favorable region in descriptor space X to the corresponding
molecules [332–338]. The major obstacle of inverse QSAR approaches
lies in the selection of a molecular representation which is informative
and suitable not only for sufficiently handling the forward QSAR task
for a given biological property but also for the subsequent reconstruction
stage to be meaningful. Many de novo drug design methods utilise sets
of molecular building blocks or fragments of synthesized compounds
for molecule assembly to reduce the risk of generating unfavourable
chemical structures [333, 339–341]. To avoid overlooking attractive can-
didate molecules and to increase the diversity and novelty of generated
structures, a large fragment library should be used. This comes at the
price of a substantial increase in the cost of the fragment swapping and
similarity search processes. Ikebata et al. [332] investigated the use of a
fragment-free strategy for the generation of novel molecules with desired
properties by integrating forward and backward QSAR predictions with
the aid of machine learning techniques. They first set up a group of
machine learning QSAR models for the prediction of various properties
of a given molecule. These forward models were then inverted through
Bayes’ law, and the resulting posterior distributions were used to iden-
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tify high-probability regions for molecules with desired properties. A
chemical language model based on SMILES was created to circumvent
the problem of chemically unfavourable structures.

As noted by Gómez-Bombarelli et al., [319] many methods in de novo
chemical design depend on explicit rules based on chemical knowledge
for replacing or adding molecular fragments to yield new structures,
which may bias the search space and ignore certain other structures.
Efforts to resolve this issue have primarily focused on means by which to
learn such transformations implicitly via generative models. [342]Deep
generative networks have shown promise in de novo drug design, with-
out any explicit prior chemical knowledge. Examples of this approach
include AAEs [343, 344], VAEs [319], and RNNs [345–347]. Among
the various neural networks, there is a growing interest in RNN-based
generative models for the de novo design of molecules, [347, 348] given
their ability to cope with sequential data with long-range dependencies,
such as the SMILES chemical representation format and to learn com-
plex grammar. Harel and Radinsky [349] proposed a prototype-driven
diversity network, a generative chemistry architecture which combines
encoder, VAE, CNN, and RNN components to generate diverse molecules
with similar properties to those of a molecular template. They found that
the proportion of valid SMILES, i.e., those parsable into sensible molecu-
lar structures, from generated suggestions was significantly improved
by prototype-conditioning the VAE. This suggests that not all areas of
the latent space representation conditioned by the encoder are equally
easy to translate into real molecules, likely because of the sparsity in the
training data and insufficient penalization of such events during training.
Interestingly, 0.01% of the molecules generated using 869 FDA-approved
compounds as prototypes were, themselves, FDA-approved.

Gómez-Bombarelli et al. [319] proposed a generative model which adopts
a somewhat similar strategy. The interconversion between SMILES and
continuous latent-space representations was achieved bu combining a
VAE with an RNN encoder and decoder. To enable molecular design,
an additional multilayer perceptron was trained to predict properties
of interest based on the latent space coordinates of molecules. The
prediction task was jointly trained on the reconstruction task, so that
when given the latent vector of an encoded molecule, new candidate
vectors can be generated and decoded into corresponding molecules
by moving in the direction most likely to improve the target properties.
The results showed that the model exhibited good predictive power for
electronic properties (i.e., orbital energies). Moreover, upon adopting
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an optimisation objective incorporating a mixture of drug-likeness and
synthetic accessibility, the model was able to perform iterative, gradient-
based optimisation to suggest molecules better matching the desired
properties.

Segler et al. [347] demonstrated that RNNs trained on the SMILES
representations of molecules can both learn the grammar required to
generate valid SMILES and generate candidate molecules with similar
properties to those of template compounds but with differing scaffolds.
The de novo drug design cycle of this method adopts transfer learning,
in which an RNN model is first trained on a large set of molecules and
then further retrained with a small set of active molecules to bias the
sampled molecules toward a given template set. Their retrospective
results showed that their de novo RNN model could reproduce 28% of
1240 known active compounds against Plasmodium falciparum, without
having seen the compounds in the initial training, having utilised a
roughly equivalent number for fine-tuning. For Staphylococcus aureus, the
corresponding figures were 14% of 6051 test molecules, having trained
on 1000.

Similar to the work of Segler et al., Yuan et al. [350] described a new
library generation method, Machine-based Identification of Molecules
Inside Characterized Space (MIMICS). This method consists of two steps.
The first step is to use a character-level RNN (char-RNN) to learn the
probability distribution of characters in SMILES strings for given chemical
subsets, followed by postprocessing to eliminate structures with invalid
valences, aromaticity, or ring-strain issues, resulting in MIMICS output of
molecules with similar properties and dissimilar scaffolds to those of the
input set. MIMICS-generated compounds were found to act as inhibitors
of the unfolded protein response (UPR) and VEGFR2 pathways in cell-
based assays, demonstrating the capability of MIMICS to generate useful,
novel compounds. The ability of RNN-based generative approaches
to suggest molecules with similar biochemical activities to those of a
template or set of templates but with novel scaffolds has been the subject
of much interest.

For example, Merk et al.[351] developed an LSTM model to generate
novel bioactive mimetics of natural products with retinoid X receptor
modulating activities. It adopted a transfer learning approach, learning
the basic grammar of small molecules from ChEMBL and was then
fine-tuned on a small set (N = 6) of known natural product retinoid
X activators. The generated compounds had a distribution of natural
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product-likeness 483 scores intermediate between those of ChEMBL
and the dictionary of natural products, and 50% of the synthesized
molecules showed activity against retinoid X receptor. This approach
allows the generation of compounds which incorporate natural-product-
like features, while still retaining some of the synthetic feasibility of
typical small-molecule compounds and promoting structural diversity.

Arús-Pous et al. [352] demonstrated that two-thirds of the GDB-13 chem-
ical space, constructed by means of a rules-based enumeration scheme,
can be efficiently reconstructed with an RNN generative model trained
on less than one percent of the input space. They found that the model
struggled to reproduce more complex structures but performed well
overall. The well-defined subset of chemical spaces allowed a rigorous
comparison of the model performance to that of an ideal generator (one
which only produces valid SMILES, all of which are part of GDB-13) by
using the coupon collector problem to establish the baseline performance.
The proportion of valid SMILES in the output of any given generative
model is a commonly adopted metric by which to evaluate reconstruction
performance.

One major contributor to the generation of invalid SMILES is the long-
range dependency issue, wherein, for example, the opening and closing
brackets representing a ring structure might be separated by many inter-
mediate characters, resulting in an increased likelihood of unclosed rings
in the output SMILES. Pogány et al. [353] addressed this issue through
use of a bidirectional LSTM architecture coupled with Luong global
attention, [307] a strategy which has been observed to improve the perfor-
mance in terms of long-range dependency sequence generation tasks in
other fields. In addition, their approach used reduced-graph representa-
tions as intermediate descriptions of molecules and then employed these
representations to generate corresponding SMILES which met the phar-
macophoric template. Lim et al.[354] proposed a molecular generative
model incorporating the conditional variational autoencoder for de novo
molecular design. This approach concatenates molecular property infor-
mation to the latent representation of molecules. The performance of the
model was demonstrated by generating drug-like molecules with specific
values for five target properties (molecular weight, partition coefficient,
number of hydrogen bond donors and acceptors, and topological polar
surface area) with a defined margin-of-error and by creating analogues
with variable log P values while constraining the other properties.

An approach to this issue is to adopt the transfer learning method,

52



1.5. Applications

which aims to improve predictive performance by using insights gained
from training on a previous task and transferring them to a new but
related task. Awale et al. [355] trained LSTM generative neural networks
using molecules taken from commercial catalogs and from FDB-17 499 (a
database of fragments up to 17 atoms) and performed transfer learning
with ten drug compounds to generate new analogues of these drugs.
Their results suggested that transfer learning can learn the rules to
assemble small fragments into larger, drug-like molecules and that the
performance was broadly similar regardless of whether the models were
trained on fragments or larger molecules. Gupta et al. [356] successfully
integrated the transfer-learning approach into RNN-based generative
models via a new approach to de novo drug design. An LSTM-based
RNN model was first trained on ChEMBL to learn the correct SMILES
grammar. The transfer learning technique was used to fine-tune the
model to produce SMILES strings which were structurally similar to small
libraries of target-focused compounds. Starting from a single receptor-
binding fragment, the researchers demonstrated that their generative
RNN model could successively grow the remaining molecules. They
found that even with a small number of representative molecules used
during the fine-tuning process, their approach generated structures with
similar chemical characteristics to those of the provided subset providing
a means by which to carry out hit-to-lead optimisation with limited data.

Blaschke et al. [320] compared the performance of adversarial autoen-
coders as structure generators with several VAE instances. The VAE
instances were named teacher and no-teacher VAE, with “teacher” re-
ferring to teacher-forcing, a technique in which a model gives both the
output of the model and the corresponding character from the training
corpus as inputs for the next time-step. Molecular structures were en-
coded into a continuous latent space and then decoded into the original
space to determine the loss introduced by this compression process. The
reconstruction accuracy of all models was at least 95%, with an observed
benefit of the adoption of teacher-forcing in the VAE case during training,
with the effect inverted during generation. The overall reconstruction
accuracy was higher for all AAE models considered and best of all for
the uniform AAE, which forces a uniform distribution onto the latent
vectors. If the latent space is well constructed then the distance between
compounds in their original space should be preserved. This behavior
was used to sample latent space vectors at increasing distances from
the vector corresponding to celecoxib, leading to analogous compounds
being proposed, and to confirmation that the distance in latent space
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corresponds with the Soergel distance between the compounds’ ECFP6
representations.

An interesting application using the same architecture, the VAE, was
recently published [357]. In contrast to much of the existing literature, it
incorporated information about molecular shapes and pharmacophores,
as encoded through a 3D-CNN, using an LSTM model to caption the
result, and, in doing so, generating a SMILES representation. Attempts to
regenerate test SMILES were minimally successful (1.74% of cases), and
suffered from a high invalid rate (65% were parsable after disabling of
valency and sanitisation checks), with the primary issue being improper
ring closure. For those which could be parsed successfully, aromatic
rings were generally present, but hydrogen-bond acceptors and donors
were rarely reconstructed. The authors note that the decoded shape
representation is not roto-translation invariant. This detailed analysis
of reconstruction error, and definition of applicability domain, is often
missing from other works. In an additional analysis, the authors com-
pared their results with those generated from some of the other methods
discussed here, and found that the molecules generated from the shape
approach had a similar distribution of simple properties, and higher di-
versity than a SMILES-focused VAE model, with a lower shape-similarity
(as measured under USRCAT and its associated metric) to the template
molecules. As a result, although encoding geometric information does
seem to be associated with an increased diversity, it remains unclear to
what extent this is owing to noise other than that deliberately introduced
via the VAE approach. This approach has the major advantage of being
readily extensible to the inverse pharmacophore problem, should the
outstanding issues be resolved.

To achieve further acceptance of compounds generated from AI tech-
niques, it will be important to understand the current limitations of this
design approach. One of the main limitations is the lack of informative
and suitable ways to translate the domain knowledge learned by the AI
model into molecular structures. Even though there are various choices
for molecular representation, such as SMILES strings, molecular finger-
prints, descriptors, or novel representations based on chemical graphs,
the most popular method to-date in AI-assisted de novo drug design is
the SMILES representation of two-dimensional molecular graphs because
of the ease of conversion to a molecular structure. There is still room for
improvement of these outputs in terms of validity and chemical novelty.

Nearly all generative models in the field of AI-based de novo drug design
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barely consider the structural (steric and electronic) information on the
target protein, although examples of deep learning networks for predict-
ing protein-ligand binding affinity that incorporate protein structural
information exist [358]. The lack of standardised approaches for the
analysis and scoring of generated molecules renders it difficult to create
an honest appraisal of the merits and pitfalls of each approach. Proxy
measures, such as the proportions of valid and unique SMILES, give an
overview of the generative capacity but little insight into the representa-
tive aspect. Next-generation small-molecule drugs will be designed to
interact with multiple targets [359, 360]. This multidimensional view of
chemical and biological ensembles is a perfect base for AI-based de novo
drug design, as the incorporation of multiple objectives can improve the
power of such system markedly.
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Chapter 2

Aims

Shape-complementarity is commonly regarded as a powerful determi-
nant of ligand-target binding, and of the promiscuity of both partners.
Several shape-based virtual screening approaches, each with their own
definition of what constitutes molecular shape, have been widely adopted
in academic and industrial environments. Their popularity owes much
to the perception that they can aid in ‘scaffold-hopping’. These differ
substantially in their complexity, utility, and flexibility.

Existing work profiling their relative advantages and disadvantages has
largely been conducted on an ad hoc basis, with the addition of extra
ranking and refining methods rendering it difficult to accurately profile
each approach. Although some promising work has considered the
opposite relation, such that the shape of target pockets defines the shape
of binding partners, these tend to be somewhat anecdotal, localised to a
particular target family.

An approach which would allow us to retrieve novel compounds for a
given target, to describe that target, and, ideally, to suggest ligands based
on structural analysis, would help both to assess the importance of shape,
and offer a valuable contribution to the field of virtual screening.

Hypothesis: Shape complementarity determines a considerable portion of
the target-complementarity of ligands, and the ligand-complementarity
of targets, in a manner substantively different to simple descriptors.
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To assess the validity of this hypothesis, we followed a five-fold strategy:

1. We developed a method based on the formalism of fractal dimen-
sion, allowing for the construction of local and global descriptors
of ligand and target shape.

2. We constructed a benchmarking approach, based on a published
strategy, to compare the performance of several popular shape-
based approaches with each other, and with a non-shape com-
parator. This allows us to determine the ability of the developed
descriptors to identify active compounds. Accordingly, it allows
for an analysis of whether or not the developed shape method
correlates with on-target activity.

3. We carried out two prospective studies, assessing the global and
local shape descriptors developed, to determine whether either
could suffice to identify novel compounds that would not have
been chosen with traditional approaches.

4. We conducted a detailed analysis of one of these prospective studies,
determining in-depth the relationship between ligand and pocket
shapes for a particular target.

5. We attempted to construct a model to translate from a target pocket
back to a complementary ligand, to assess whether the geometry of
a protein pocket contains sufficient information to specify that of a
binding ligand.
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Methods

3.1 FRACTVS Package

The FRACTal Virtual Screening (FRACTVS) package allows for the cal-
culation of the correlation dimension (DC) of FD (henceforth referred
to as FD) for small- and macro-molecules. Implementations for both
global and atomistic FD are provided, and utilised for retrospective and
prospective studies.

Here, we aim to highlight and discuss snippets of the code to provide
a detailed overview of the package developed. Chosen functions cover
the basic operation of the software, algorithmic considerations and opti-
misations which aid in reducing the overall computational complexity
of the approach, and provide a broad overview of the command logic
used, without entering into exhaustive detail with regards house-keeping
tasks, simple transformations, and trivial optimisations, etc. A complete
version of the software, along with documentation, will be provided in
the public domain upon publication, and is available in the first instance
from the Schneider lab. To facilitate this discussion, clearly-marked
pseudocode may be used in place of the working code. The code-base is
written in Python 3.7 [361], with a Python 2.7-compatible version avail-
able. Python is an object-oriented scripting language, with considerable
community support, and a wide variety of packages available to facilitate
easy prototyping.

Many open-source packages have been used to aid the process of devel-
opment. RDKit provides much of the chemical logic for the software,
facilitating washing procedures, keeping track of molecular properties
and geometry, and providing for the minimisation of small molecules.
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Numpy consists of a library of highly-optimised numerical subroutines,
with a Python interface, allowing speedy and memory efficient distance
calculations. SciPy is used in a similar fashion, likewise offering efficient
pairwise-distance calculations. NanoShaper facilitates rapid and accurate
calculation of molecular surfaces for small- and macro-molecular objects.
BioPython provides a suite of useful tools for the processing of PDB files
into formats more amenable for inclusion in the developed pipeline. Mul-
tiprocessing provides an easy interface for distributing jobs on multi-core
machines. Finally, the Cython interpreter, and numba package, were
used during development, to facilitate the inclusion of fast C subroutines.

Our approach is concerned with the description of a set of vertices placed
on the Solvent-Excluded Surface (SES) surface of a given molecule. The
SES, or Connolly surface, was chosen for a mixture of chemical and
algorithmic reasons; briefly, that it presents a more ‘physical’ surface
than the Solvent-Accessible Surface (SAS), that it has been observed
to be more useful for geometric interactions, and that the prominent
invaginations seen with the SAS are problematic for our algorithm, given
that they distort the local density of the surface. The rationale for this
choice of representation is expanded on in subsection 3.1.2. To calculate
the Connolly surface, we employ the software NanoShaper [362], which
has been shown to be orders-of-magnitude faster than MSMS [363], at the
cost of a somewhat-increased memory footprint. In addition to its speed,
scalability, and improved reconstruction on some tasks, it also exposes
some functionality for the segmentation of its vertex set according to
their corresponding atom; this allows for a simple definition of a surface
exposed atom as one with at least one associated vertex, and for the
consideration of atom-specific local FD environments (subsection 3.1.5).
We use the standard radius value for an idealised model of a water
molecule, 1.4Å [115].

As discussed by Grassberger and Procaccia [200], the correlation exponent
provides a good approximation of the analytical solution for fractal
dimensionality in non-pathological cases. We employ a version of this
algorithm optimised for our particular use-case in small- and macro-
molecules, as alluded to previously. The correlation exponent (and thus
FD) is obtained by observing the variation in an unbiased estimator,
the correlation sum Ĉ(δ), with δ, a distance in euclidean space, in D,
where D = < δmin, δmin + δint. . . , δmax >. For a given configuration, δmin
represents the minimal value of δ considered, δint the step-size, and δmax
the maximal value. The algorithm is described in depth in section 1.2.7.
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Figure 3.1: Schematic overview of the FD calculation procedure, as
defined by Grassberger and Procaccia [200], and applied to the natu-
ral product (-)-Englerin A. Given a simple 2D representation, we gen-
erate a range of conformers, describe them in terms of a set of vertices
on their Connolly surface, and characterise the relationship between
these points in terms of the gradient of the log-log plot of how many
pairs are within a distance, δ, as we vary δ. This gradient gives us an
estimate of FD, more specifically the correlation dimension, DC.

We construct the distance matrix to be evaluated on an atomic basis, to
reduce the computational complexity of the problem, and to enable FD
measures based on the surface local to each atom in a molecule, which
we term atomistic FD (AFD). To enable this, we extract the atom centroid
co-ordinates and identities from the RDKit molecular representation,
construct a Euclidean (L2-norm) matrix of the inter-atomic distances
using functionality exposed in SciPy (v 0.18.1), and subtract δmax, the
sum of the atomic-radii vector, A, its transpose, AT, and a small corrective
factor (2.8Å, predicated on the diameter of the probe molecule employed
in NanoShaper) (see Figure 3.3). Pairs of atoms whose value in this
matrix are ≤ 0, and where i 6=j, are then deemed to be ‘within-range’ of
one another. For each of these pairs, their corresponding set of vertex-
coordinates are retrieved from the dictionary discussed in subsection 3.1.2,
and a Euclidean matrix constructed.
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In addition, an intra-atomic matrix is constructed, which considers the
relations between points attached to the parent atom. These two matrices
are then considered under a histogram rule, which bins the distances
with the edges defined in D, and the corresponding counts are returned
to a global per-bin counter. This allows for one-step evaluation of the
Heaviside step function for all δ in D , and also a reduction of complexity
by narrowing the problem space, which is of considerable value in the
case of macromolecular analysis. The equation of the line is then obtained
by means of a Theil-Sen[364] estimator, which is reasonably robust to
outliers. A schematic overview of this process, moving from molecule,
to surface, to dimensionality estimation, is given in Figure 3.1. Utilising
this atomic-level FD information, we then proceed to build fingerprint
representations, using the ECFP approach [43] previously described in
the literature, to construct a Fractal Dimensionality FingerPrint (FDFP)
for small molecules, and a modified approach to facilitate a similar
representation of macromolecules, as per the E3FP-NoStereo algorithm
described in the literature [106]. More detail on all aspects is given in the
following sections.

Comparing our approach to previous work, we see some general, and
specific, differences. The early work of Lee et al. [115] established the
utility of FD for considering binding propensity. Their method, utilising
area over probe size, gives a similar range for average FD to those seen in
later work [169], but their method (spherical projection) for summarising
the regional variation in the surface results in artefacts, as discussed by
Pettit et al. [164]. While the latter authors use the same basic FD defini-
tion as Lee et al., they consider it as a local property, building a smoothed
AFD representation. This averages the roughness over a patch of the
surface by considering the relationship between area and probe size for
all of the surface within 5Å of each atom. This approach, considering
local roughness as an important property, was extended by Todoroff et al.
[169], who emphasised the importances of a pattern of smooth and rough
local patches in defining a binding site. Again, they consider this as an
atomistic property. Our initial approach, calculating FD on an atomic
basis, has several features in common with the work of Todoroff et al.
[169]. However, their implementation, refinement, and the direction taken
with validation, results in a substantially different representation. On
an algorithmic basis, several innovations and efficiency improvements
have been made, substantially reducing the computational overhead,
and allowing for a more rigorous estimation of FD (subsection 3.1.5),
which is less sensitive to parameter choice, and therefore more easily
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extensible to new problem domains. Importantly, we then re-integrate
these local-similarities into a fingerprint structure, which allows for the
easy comparison of small and macromolecules on a pairwise basis, and
facilitates the prospective studies undertaken. This allows for a repre-
sentation which combines both the very localised, atom-level roughness
description, and enables consideration of the shape of binding pockets
at patch or pocket level through combination of AFD with a geometric
fingerprinting approach. Equally, it allows for the useful application of
the FD approach to capture information about small molecules, and to
model the relationships between small- and macro-molecules in detail,
based on their geometric complementarity.

3.1.1 calculate correlation exponents.py

This interface module offers various means of calculating global and
fingerprint FD for small and macro-molecules, supporting command
line usage, and import for use in another script. In general, this module
orchestrates the operation of the other major modules, containing mainly
command and output code, and is the most likely start-point for an
end-user. Given an SDF file containing small molecules, this script will
note the desired maximum number of conformations, δmin, δint, and
δmax values. All can be passed as user-defined parameters, but sensible
parameters based on empirical studies are set by default. Text files
with SMILES, and Mol2 files, are also valid inputs. For PDB files, the
result is slightly different, as the poses for a ligand in the PDB file are
deemed canonical. Washing of the protein and any associated ligands is
still enabled, as there are often issues with PDB files, whether publicly-
deposited or privately-generated [365], and we wish to obtain a consistent
representation for our further calculations. Initially, for both small-
and macro-molecules, the approach is similar: The number of unique
entities is determined, and chunked across the available processors.
This is to avoid the computational overhead of ‘spinning-up’ a new
process for each molecule, which becomes excessive for large numbers
of small-molecules. This requires the input file(s) to be processed using
the functionality exposed in the MolecularRepresentation class, which
will be discussed below. Following this set-up process, which, broadly
speaking, involves checking that molecules are comprehensible and
valid, individual processing takes place. The MolecularRepresentation
instance mentioned earlier is utilised again, to generate conformers if
necessary, and a molecular representation for all molecules associated
with a given parent. Following this, the script iterates over each molecule
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in the parent object, determines whether the last step was successful,
and, if so, calculates global and atomistic FD values for each. Leaving
the code-block, eventually the results are collated, associated with their
parents, and written as SDF files, or as log and matrix files for PDB
input. These can then be further processed with the fingerprinter.py
script, producing fingerprints for small molecules, and any associated
near-molecule protein pockets in the case of those extracted from PDB
files.

3.1.2 molecular representations.py

The processing of raw input files into a format suitable for FD calculation
is handled within this module. Given an input file, this script attempts
to determine the input file-type from its MIME type and suffix, and then
either refers it to PDBProcess.py for processing, if detected to be a PDB
file, or constructs RDKit mol objects from the list of input SMILES, Mol2
or SDF file provided. These are then washed (subsection 3.1.3), and the
conformer generation script described in subsection 3.1.4 and as outlined
in listing 3.1 is called, if enabled.

Having washed our input molecule and generated a suitable conformer,
or obtained such geometric data from a crystallographic source, the issue
of molecular representation remains. Two commonly adopted surface def-
initions, from the fields of structural biology and molecular visualisation,
are the SAS and SES. The former of these, also known as the Lee-Richards
[115] or Shrake-Rupley [116] surface, describes a molecule in terms of
a surface defining positions where a solvent probe, commonly water,
may be positioned most closely to the molecule. This can be thought
of, and implemented as, building a surface based on rolling the probe
over the molecule, and tracking the coordinates of the centre of the probe
throughout, as can be seen in Figure 3.2. This is a useful representation,
computationally tractable, and with a solid basis in structural biology,
having been developed originally to facilitate protein-folding efforts [366,
367], and analysis of hydrophobic effects in free-energy transfer [368].
Essentially, it describes the potential cavity that a given molecule would
form in bulk solvent. As can be seen, it functions to a certain extent as
an ‘expanded’ van der Waals surface, where the expansion is equal to
the probe radius, preserving the invaginated surfaces between atoms.

An alternative approach, developed by Connolly et al. [52, 117, 118], is
to consider another property of the probe molecule interaction. If we
instead take the contact surface between the probe and molecule, we
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Figure 3.2: Schematic representation of the solvent-accessible [115,
116] (SAS, purple), solvent-excluded [117, 118] (SES, red) and van der
Waals (grey) surfaces of a molecule. A representative solvent molecule
is included in blue. When ‘rolling’ this solvent probe over the van
der Waals representation of a molecule, the solvent-accessible surface
can be defined by considering the area delineated by the centre of
said probe molecule. The solvent-excluded surface can be defined
as the collection of points of nearest contact, i.e., the point of closest
approach of the solvent probe to the molecule, for all points on its
van der Waals surface. As such, it consists of contact areas, where
it is identical to the van der Waals surface, and re-entrant surfaces,
representing volumes not occupied in the hard-sphere molecular
representation, but which are too small to permit the entry of the
solvent probe.

elucidate the so-called SES, as depicted in Figure 3.2. This approach
results in a smooth envelope, ‘wrapping’ the molecule. Although initially
intended primarily as an aid to visualisation of interaction surfaces,
this representations gained widespread use in the field, representing a
slightly more intuitive depiction of molecular volume than the SAS. As
discussed in the literature [369–371], the latter is a somewhat ‘unphysical’
representation for many purposes, preserving the invaginations projected
outwards from the van der Waals surface, and has proven less suitable
than the SES for surface-matching and geometric docking of binding
partners [193, 372–375]. Given that the SES has been identified as a better
option for visualising and predicting interactions on a geometric basis,
and that it is somewhat more physical, we adopt it here. Additional
considerations, from the perspective of the algorithm here employed,
relate to the acute invaginations seen with SAS, and with analysis of
binding partners. With the former, these represent areas of substantial
density, in terms of number of vertices per Å3, owing to the inwards
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folding of the surface, and as such are over-weighted compared to solvent-
exposed surfaces by our FD calculations. The latter point overlaps with
observations made about the relative utility of these representations
for geometric docking, in that surface-clash is to be expected given the
addition of the probe-radius to the van der Waals surface, especially given
the certain degree of noise often present in crystallographic structures,
rendering FD calculation of the binding pocket for a given molecule
problematic.

To generate the Connolly surface for a given small- or macro-molecule,
we use an external software, NanoShaper [362]. This uses a ray-casting ap-
proach to rapidly, and accurately, locate the SES. An exhaustive list of pa-
rameters chosen is included in two parameter files included in the reposi-
tory, namely ligand nanoshaper config.prm and protein nanoshaper config.prm.
Briefly, there is substantial overlap between the parameter files, barring
some adjustments made to allow for a higher memory footprint for
macro-molecules. Otherwise, we specify ‘xyzr’ input, ask for the result-
ing vertices set to be divided on a per-atom basis, set the radius of the
solvent probe to 1.4Å, the vertex density to to 7Å-2 and the proportion of
the ray-casting box occupied by a given molecule to 50%. Additionally,
we enable ‘accurate triangulation’ of surface vertices, a post-processing
step which seeks to verify the placement of vertices on the traced surface,
and which was noted by the authors to significantly improve stability
with minimal computational overhead. This module writes the necessary
input and configuration files for NanoShaper, triggers its operation, and,
depending on the outcome, processes the resulting files into a format
amenable for further calculations. The resulting data structure consists of
a dictionary whose keys are atom indices, and values are numpy arrays
of vertex co-ordinates. In addition, a second dictionary mapping atom
index to atom position (as defined in the coordinate list produced by
minimisation, or loaded from PDB file) is generated.

In the case of a PDB input file, this script also selects all residues with
a surface-exposed atom, i, whose minimal distance, d, to any atom, j in
any associated ligand, is ≤ 3.5Å+(ri + rj), where ri and rj represent the
van der Waals’ radii of atoms i and j respectively. The threshold value
was chosen by consultation with literature on typical interatomic bond
distances from crystallographic databases [376], coupled with empirical
observations on the resulting bit density of generated protein pocket
fingerprints. We observed that choosing lower thresholds, such as 2.5Å
resulted in too-few contact atoms in many instances, whereas increasing
to our current threshold avoided adding many fewer indexed atoms in
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cases where the lower threshold had proven adequate.

3.1.3 Washing procedure

Using an approach adapted from several sources (RDKit cookbook,
MolVS project, Sanifix project), we perform a basic washing workflow
for input small molecules. This procedure is optional, but the results
of conformer generation, and subsequent FD description, depend to a
large extent on having a consistent basis. The tasks performed by this
script can be divided into fragmentation, neutralisation, and correction.
The former category contains two functions, one of which disconnects
covalent organic-metal bonds under certain conditions (defined by a pool
of curated SMARTS), the other attempts to remove salts, as these do not
contribute to the minimisation step. Neutralisation consists of SMARTS
patterns for the modification of imidazoles, amines, carboxylic acids,
thiols, sulphonamides, enamines, tetrazoles, sulphoxides and amides
such that their charge state is consistent. Correction contains a SMARTS
pattern to correct common issues with aromatic nitrogens, and charge
correction, which checks whether each atom in the molecule has an ap-
propriate charge, adds implicit hydrogens (necessary for minimisation),
and performs molecular sanitisation.

This final step proceeds as follows: first, valence states are checked, and a
few common, non-standard valence states are corrected for. These include
forcing some charged groups into a consistent zwitterionic form. Then,
implicit and explicit valences are re-checked, the molecules are kekulised,
and radical electrons assigned. Aromaticity flags on each atom are re-
checked, as are bond conjugation and chirality, before finally re-checking
whether all implicit hydrogens have been made explicit. If RDKit-based
conformer generation is enabled by the user, the washing procedure
will also remove those molecules containing atoms for which there are
no available MMFF parameter sets. To the best of our knowledge, no
open-source software implemented in Python is available for tautomer
generation and pH-appropriate charge assignation, although the MolVS
package is a considerable contribution in that direction.

For macromolecules, we utilise the PDBFixer [377] for standardisation
purposes, along with a custom script for chain nomenclature standardis-
ation. This consists of residue nomenclature standardisation, selection of
a single position for atoms with multiple positions listed in the crystal-
lographic file, removal of hydrogen atoms, removal of crystallographic
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additives (glycerol, magnesium, salts, etc. - for a complete list, please see
PDBProcess.py).

3.1.4 Conformer generation

The generation of biologically-relevant conformers for small molecules
remains problematic. The reproduction of crystallographically-obtained
ligand conformations remains the gold standard in assessing the per-
formance of conformer generation approaches, but is problematic [378])
given the dynamics of crystal formation (with especial reference to in-
duced changes in side-chain conformations, leading to modified ligand
poses, with different space groups) [379], and artefacts introduced when
such crystal poses are obtained by soaking [380, 381]. A common so-
lution, adopted for a variety of shape-based approaches published to
date, is to simply incorporate multiple conformers for each molecule
when performing a similarity comparison. Our strategy for generating a
small set of diverse, representative, and chemically reasonable conform-
ers is based on attempts to optimise this process for use with the ROCS
shape-based virtual screening software [48, 263, 268, 382], whilst utilising
open-source chemoinformatic and force-field implementations and the
best practices associated with each [383]. To maintain easy compatibility,
and to facilitate deployment, we utilise the conformer generation capabili-
ties presented in the RDKit, which has the advantages of a well-described
implementation, and comparable speed to commercial competitors [383].
A brief overview of the code to achieve this is provided in listing 3.1.
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Snippet 3.1: molecular representations.py - conformer generation
1 PSEUDOCODE
2
3 def generate conformers ( mol ) :
4 return rdki t geom opt imisat ion ( mol )
5
6 def embed molecule ( s e l f , mol , n conformers = 1 0 ) :
7 params = AllChem .ETKDG( )
8 params . pruneRmsThresh = 0 . 5
9 params . useBasicKnowledge = True

10 params . useExpTorsionAnglePrefs = True
11 params . useRandomCoords = True
12 params . numConfs = max ( 1 0 , n conformers )
13
14 c i d s = l i s t ( AllChem . EmbedMultipleConfs ( mol , confnum , params ) )
15 conformers = l i s t ( mol . GetConformers ( ) )
16
17 for conf in c i d s :
18 va l id = c h e c k i f v a l i d ( )
19 i f not val id :
20 remove conf ( conf )
21
22 return success , mol
23
24 def rdki t geom opt imisat ion ( s e l f , mol , mode , n conformers ) :
25 success , mol = s e l f . embed molecule ( mol , n conformers )
26 i f not success :
27 return None , None
28
29 opt im sta tus = AllChem . MMFFOptimizeMoleculeConfs (
30 mol , mmffVariant= ’ mmff94 ’ , maxIters =1000
31 )
32
33 min energy = min ( energ ies )
34 conformers = l i s t ( mol . GetConformers ( ) ) ]
35 conformer proper t ies = c a l c u l a t e e n e r g y d e l t a ( conformers )
36
37 for idx , [ conf ] in ener gy sor t ( conformers ) :
38 i f energy <= min energy + 5 :
39 keep ( conf )
40
41 return mol , conformer proper t ies
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For initial conformer generation, we use the Experimental-Torsion basic
Knowledge Distance Geometry (ETKDG) [384] implementation provided
in RDKit. This utilises experimentally-observed information on torsion-
angle preferences from a database of crystallised small molecules to
facilitate rapid generation of reasonable conformers, using an augmented
distance-geometry approach. In addition, incorporating explicit addi-
tional knowledge terms for plausible ring geometries was observed to
facilitate reproduction of crystal conformations with fewer poses than
purely distance-based minimisation approaches. In accordance with our
literature survey, we generate 10 conformers at this initial stage, with
an RMSD ≥ 0.5Å to all others in the set, setting random coordinates
on initialisation for each iteration. This threshold value matches the
significance threshold employed by Riniker et al. [384] to determine
whether the bioactive conformation was replicated within reason, and,
as such, is used here to meaningfully distinguish between conformers.

A second threshold value obtained from that survey, and a means of
constraining the number of generated conformers while maintaining
adequate coverage of the conformational space, is to impose an energy
window of 5 kcal/mol [385], meaning that all conformers with an energy
greater than the sum of the lowest energy plus this threshold value are
discarded. This entails calculating the energies of the conformers under
a forcefield. The Merck molecular forcefield 94 [halgren˙1996, 386–388]
(MMFF94) as implemented in the RDKit toolkit [389], and as utilised
in a modified form (without the terms capturing electrostatic and van
der Waals interactions) in the popular OMEGA conformer generation
software [390], has been employed in previous evaluations and applica-
tions of shape-based virtual screening approaches [87, 100, 385]. It was
originally parametrised using the composite quantum chemical method
HF/6-31G* [391], and has shown considerable utility in the generation of
pharmacologically-relevant conformations, although Hawkins et al.[390]
report that it overestimates strain contributions, leading to failure to
reproduce crystallographic conformations, primarily in cases where a
molecule has many degrees of freedom.

Following this we then remove explicit hydrogens added in subsec-
tion 3.1.3. Atomistic FD calculation is only carried out for heavy atoms,
owing to the high degree of rotational flexibility of hydrogen observed
during minimisation.
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3.1.5 fractal calculators.py

This module performs all calculations required to estimate the fractal
dimension of a given molecule, at both the global and atomic levels.
As discussed in section 3.1, a trivial implementation of the algorithm
for calculating the correlation exponent, and approximating the fractal
dimension, of a point cloud would be to calculate the pairwise distances
between all vertices, V, and, from there, to analyse V for δ in D.

In the course of developing the AFD description, the basis of the FDFP
method, we modified this initial approach to take advantage of the un-
derlying structure present in our case, to wit, the chemistry defining
relations between atoms, and, therefore, shaping the molecular surface.
Our approach is conceptually similar to that of Theiler [392], barring
that in our case, we utilise the geometric information implicit in our con-
formers rather than choosing an arbitrary grid structure. We utilise the
dictionaries described in subsection 3.1.2, molecular representations.py
to define which sets of vertices should be compared, on the basis that
atoms which are too far distant will not have any vertices within dmax of
one another (see: Figure 3.3), and therefore will not affect the final FD
value.

C = θ(M− R− RT + RS)

where C is a logical matrix encoding the homogenous relation over the
set of atom indices defined by θ, M is the matrix of interatomic Euclidean
distances, R the van der Waals radii of the molecule’s atoms, and RS a
solvent adjustment factor, fixed to 2.8Å, based on the diameter of the
solvent probe utilised for NanoShaper. θ is the Heaviside step function,

θ(x) =
{

0, x > δmax
1, x ≤ δmax

For all pairs of atom indices, (a, b) ∈ C , we compute the squared
Euclidean distances between the vertices belonging to each atom, and
bin the result using a cumulative histogram function. Here, the bin edges
are defined as per the vector of delta values D previously described,
taken to their square, to avoid the computationally-expensive square root
operation. The global correlation sum is obtained using the atomistic
contributions, albeit restricted to the sum of histograms for the multiset
of unique unordered pairs in C. The histogram process is identical to
applying the procedure described in section 1.2.7, for each δ in D.
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Snippet 3.2: Fractal calculators.py
1 PSEUDOCODE
2 def c a l c u l a t e f d ( atom coordinates , atom radi i ,
3 v e r t e x c o o r d i n a t e s , dvector ) :
4
5 i n t e r a t o m i c d i s t m a t = e u c l i d e a n d i s t a n c e ( atom coordinates )
6 i n t e r a t o m i c d i s t m a t −= atom radi i
7 i n t e r a t o m i c d i s t m a t −= atom radi i . Tminipage
8 dmax = max ( dvector )
9

10 v a l i d p a i r s = l i s t ( zip ( np . where ( i n t e r a t o m i c d i s t m a t <= dmax ) ) )
11 p a i r w i s e d i s t a n c e s d i c t = {}
12
13 for i i d x , j i d x in v a l i d p a i r s :
14 i f i i d x > j i d x :
15 p a i r w i s e d i s t a n c e s d i c t [ i i d x ] [ j i d x ] =
16 p a i r w i s e d i s t a n c e s d i c t [ j i d x ] [ i i d x ]
17 e lse :
18 p a i r w i s e d i s t a n c e s d i c t [ i i d x ] [ j i d x ] =
19 eucl idean ( v e r t e x c o o r d i n a t e s [ i i d x ] ,
20 v e r t e x c o o r d i n a t e s [ j i d x ] )
21
22 g loba l fd , a t o m i s t i c f d = [ ] , {}
23
24 s e e n x p a i r s = [ ]
25 for i i d x , p a i r w i s e d i s t s in p a i r w i s e d i s t a n c e s . i tems ( ) :
26 for j i d x , ds in p a i r w i s e d i s t s . i tems ( ) :
27 binned vals = histogram ( ds , bins=dvector )
28 i f ( i i d x , j i d x ) not in s e e n p a i r s :
29 g l o b a l f d += binned vals
30 s e e n p a i r s . append ( ( i i d x , j i d x ) )
31 a t o m i s t i c f d [ i i d x ] += binned vals
32
33 a t o m i s t i c f d [ i i d x ] = t h e i l s e n (
34 log ( dvector ) ,
35 log ( cumulative sum ( a t o m i s t i c f d [ i i d x ] ) ) )
36
37 g l o b a l f d = t h e i l s e n ( log ( dvector ) ,
38 log ( cumulative sum ( a t o m i s t i c f d [ i i d x ] ) ) )
39
40 return a t o m i s t i c f d , g l o b a l f d
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Figure 3.3: Illustration of molecule-specific adaptations to the cor-
relation integral algorithm, to improve run-time and memory per-
formance whilst retaining standard accuracy. We calculate the Eu-
clidean interatomic distance matrix M for all pairs of atoms in a given
molecule, based on the coordinates of the centres of their represen-
tative atomic volumes. For atoms A and B, in green and blue respec-
tively, the distance between these centres is δ. The van der Waals radii
of the two atoms, rA and rB , are subtracted from this distance to a
give the adjusted interatomic distance, the closest that two points
placed on the representative spheres of the atoms can be, given their
radii and the distance between them. Finally, this is adjusted with a
parameter for the solvent radius, adding 2.8Å in each case, and then
transformed with a Heaviside step function, evaluating to unity for
only those atom pairs whose adjusted distance is less-than or equal-to
the specified δmax threshold, giving a binary relation matrix, C, de-
scribing those pairs of atoms which are likely to have patches of their
surfaces within distance δmax of one another. As a result, the speed
of the FD calculations depends on δmax to a large degree. This ad-
justment to the basic algorithm is described more formally in section
3.1.5, fractal calculators.py.
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The AFD approach differs slightly, in that for a given atom, A, we would
consider only those elements of V corresponding to the indices of the
set of vertices for A. Thus, it is a reflection of the distribution of the
surface from the perspective of the surface of each template atom, rather
than of the pairwise distances for the surfaces ‘belonging’ to each nearby
atom. This is an important distinction, as this allows us to retain arbitrary
addressability of individual portions of the surface, whilst allowing for
the consideration of local behaviour.

Having determined the correlation sum for both the global and atomistic
cases, obtaining the exponent is accomplished through use of a regressor.
As discussed in section 1.2.7, the use of fractal conceptions of dimension-
ality to describe non-fractal objects encounters some difficulties, one of
which is that non strictly-self-regular objects result in irregular correla-
tion exponents, as the rate of repetition is scale-variant. To reduce the
impact of this, we chose to utilise the Theil-Sen estimator, a robust regres-
sion method with high noise tolerance which returns identical results to
least-squares regression in normal cases, but can handle the addition of
noise (up to 29.3% of total data points [393]) without producing markedly
different estimates of the exponent.

3.1.6 fingerprinter.py and graph construction.py

As discussed in section 1.2.4, performing pairwise shape comparison of
large sets of molecules in a reasonable time-frame is difficult. Several
approaches to avoiding costly pairwise alignment of molecules have
been implemented, often featuring a vector representation of molecular
shape. To compare the performance of our global FD (GFD) and AFD
approaches, we sought a means of encoding the atomistic information in a
fashion which would permit rapid comparison whilst retaining a physical
grounding. We chose a fingerprint approach, based on the flexibility and
ease-of-use associated with this molecular representation. The popular
ECFP method [43, 394] allows for the incorporation of per-atom labelling
information. In the original definition of ECFP, the daylight atomic
invariants [395] are used to label each atom, namely; number of heavy
neighbours, atomic number, atomic mass, atomic charge, and number of
attached hydrogens, extended with a label signifying whether a given
atom is a member of at least one ring.

Without reiterating the algorithm in detail, these labels are then hashed,
returning an integer value, and relabelled with the transformed label.
In subsequent iterations, the labels of topologically-connected atoms
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are considered, concatenated to the current label, and the result is then
hashed again. This process is continued for a fixed number of iterations,
which provides the suffix for the ECFP prefix, e.g. ECFP4 indicates that
two such cycles are completed, where two is the radius, doubled to
give the diameter of four referred to. All of the hashed labels generated
during this process are then used to generate a bit vector representation,
where the on-bits are specified by the modulus of the label over the
desired length of the resultant bit vector.

We re-implemented the algorithm described in the original paper, swap-
ping the set of invariants employed there for a discretised version of
the AFD, where we round the calculated value to two decimal points,
and then multiply the result by a factor of 100. This discretisation step
was introduced to avoid the problem of small differences in float val-
ues having an outsized impact on the resulting bit allocation, with two
decimal points being chosen such that all resultant numbers would fit
naturally into the commonly used 1024-bit vector, and based on observed
variations in AFD between runs with identical conformers, due to some
slight variation in the surface generated by NanoShaper. Using this
discretised representation to replace the invariants specified in the earlier
implementation of the ECFP algorithm gives us the final FDFP vector.

Generating topological fingerprint representations of macromolecules
requires a different approach. Many of a surface-exposed atom’s neigh-
bours are buried, and therefore have no associated AFD value, meaning
that their atomic invariants vector would be null. In addition, two atoms
in close proximity from a geometric perspective, may have a very large
topological distance, given the intricately folded nature of proteins, for
example. To circumvent this, we use the subset of near-ligand, surface-
exposed atoms whose identification is described in subsection 3.1.2,
molecular representations.py, and generate a fingerprint adapted from
the E3FP NoStereo variant [106] described by Axen et al. Briefly, this
approach differs from the topological fingerprint in that it uses concentric
rings in E3, centred on a given atom, to define neighbourhoods, rather
than topological distances obtained from walking along the molecular
graph. In their original implementation, the authors use the same set
of invariants as described for ECFP, above, and include information on
bonds, unbonded atoms, and stereochemistry. The algorithm proceeds
in the same fashion as ECFP, albeit increasing the geometric discrete
distance, rather than the topological, with subsequent iterations. These
distances are drawn from a set of shells where the radius increases by
1.718Å upon each iteration. For our implementation, we ignore specific
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bonding information and stereochemistry, and treat all atoms in the
surface-exposed set as unconnected. Again, we replace atom invariants
with the discretised AFD described above. The authors of that study
note that the addition of stereochemical information did not improve
performance of E3FP in their chosen test, likely indicating that such
information is captured implicitly.

3.1.7 PDBProcess.py

This module is primarily concerned with the processing of PDB-format
files to facilitate FD calculation for small molecules. It removes common
crystallographic additives, such as polyethylene glycol, imidazole, and
calcium ions, removes chains for which no bound ligand is in range, and
extracts ligands. Additional functionality for providing a user-specified
binding site is also provided, but disabled in normal usage. Specific
functionality for the processing of scPDB data is included: mainly this
involves incorporating ligand files, provided in the Mol2 format, into the
protein PDB file, to enable smooth integration with the established PDB
workflow, but also allows for an alternative binding site mode, in which
the definition is obtained from the scPDB database rather than using
the rules described in section 3.1.2, molecular representations.py. In
addition, this module provides some convenience functions for retrieving
the corresponding UniProt IDs for a given PDB ID, along with any
associated affinity data stored in the BindingDB database.
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3.2 Benchmarking study

We adopted and adapted the benchmarking study by Riniker and Lan-
drum [214]. Whilst the code provided (bit.ly/rdkitbenchmark) was very
useful, and easily extensible with additional 2D descriptors, substantial
modifications were required to facilitate inclusion of shape-based ap-
proaches, for reasons of computational efficiency, inclusion of logic for
multi-conformer comparisons, and the extraction of additional endpoints
for extended analysis of the retrospective results.

3.2.1 Datasets

The merged dataset consists of actives and ‘decoys’ (presumed inactives)
from the benchmarking study platform for 88 targets; 17 from MUV [235],
21 from DUD [232], and 50 from the ChEMBL subset. For a description
of the target set properties, please see the original paper [214].

The MUV approach is based on data extracted from the PubChem bioas-
say database. Data from pairs of analyses (one high throughput for
hit-finding, one low-throughput for hit-verification) were sourced, ex-
tracting active and inactive compounds for a set of 17 targets. Com-
pounds which aggregated under test conditions, promiscuous binders,
and optically-active compounds were filtered out. As noted by the au-
thors, their approach is not sensitive to false negative data, as compounds
which register as negative on the HTS screen were not progressed for the
high-quality screen. The main innovation in their approach is to consider
the embedding of active data in the validated decoys, by removing active
compounds from further consideration which are very far from, and
have an insufficient number of nearest-neighbours in, decoy data sets
under the molecular representation chosen (a vector of simple molecule
properties, such as atom counts, acceptor and donor counts, LogP, chiral
centre counts, and number of ring systems). Two approaches are taken,
one to separate active compounds in the descriptor space by an equal
amount, and another to surround these with decoys

One issue with this dataset, as discussed previously in the literature
[396], is its treatment of so-called ‘activity cliffs’, where very similar
compounds can have markedly different activity values. As such, it is
hard to know whether a method has retrieved a molecule in the right
chemical space, where a slight reconfiguration could markedly boost
activity without much superficial alteration to the molecule. By assessing
compound pairs which had been trialled on other targets, they noted
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that this cliff-like behaviour correlates with the variation in per-target
performance noted in their benchmarking study.

DUD is a very popular resource for the comparison of different docking
methodologies. It is constructed so as to generate a set of decoys for
a pool of known actives with very similar physical properties, whilst
retaining distinct chemistry. It is based on a curated set of crystal struc-
tures, associated ligands, and a set of decoys chosen from the ZINC
database on the basis of sharing some physical properties (Molecular
weight, Hydrogen-bond acceptors and donors, LogP and number of ro-
tatable bonds), whilst having a maximum equivalent Tc of 0.7 under the
Daylight fingerprints (equivalent: the authors used CACTVS fingerprints,
with a threshold of 0.9). In the years following its release, the set was
very actively adopted, leading to some focused criticism of the methodol-
ogy underlying its construction, such as poor treatment of charge, and
that some of the annotated decoy compounds have later been shown to
have on-target activity, leading to further enhancements [239] and the
development of related resources [397].

The original authors note that it is, by definition of its construction, fun-
damentally poorly-suited as a means of discriminating between ligand-
based approaches, whether 2- or 3D [236], as the active sets for each
target contain trivial analogues, readily-separable by even the simplest
methods. Regardless, it remains a commonly-used benchmark for LBVS.
As such, we have retained it here for comparison purposes. The subset
utilised in the benchmarking study consists of 20 targets with 30 or more
annotated actives. We excluded FXa from further consideration, as a high
proportion of its annotated active compounds were invalid, as previously
reported in the literature [397].

The ChEMBL[243, 398] database reflects the efforts of decades of research
and innovation in medicinal chemistry. As such, it contains records on
≥1.6 million compounds, and over 9,000 target proteins, approximately
4,000 of which are human. It is constructed primarily by manual data
curation, alongside data submission by companies and collaborative
research efforts [399]. Given the multiplicity of data sources, annotation
quality varies from set to set; this is accounted for with confidence mea-
sures. Earlier efforts to construct benchmarking sets from ChEMBL [243]
utilised this to facilitate automating the process somewhat, choosing
targets for which at least 50 active compounds were annotated, at the
highest confidence level, and with ≤10 µM potency. This was repeated
for the benchmarking approach detailed here. Additional filters, such
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as removing molecules with a molecular weight ≤700 gMol-1 or which
contain metal ions, were imposed. Finally, a diversity picker was used to
pick the 100 most-diverse actives for each target. Decoys for this set were
constructed by randomly selecting two compounds from ZINC with an
ECFC0 Dice similarity ≥0.5 for each active.

3.2.2 Benchmarking study workflow

The implementation of the workflow described by Riniker and Landrum
is included in gfd fdfp analysis.py. This script handles all implemented
features from that study, although generation of conformers and FDFPs
are managed separately. To assess the impact of the δmin, δmax and δint pa-
rameters, and the role of the fingerprint radius, a script which generates
the necessary files for all combinations is utilised. This also handles the
necessary alterations for each run, to ensure that the parameters passed
to the benchmarking script itself are appropriate.

3.2.3 Ligand-based screening methods

Extending the work of Riniker and Landrum, we incorporate their initial
findings to narrow the pool of 2D descriptors, whilst including several
3D approaches, including that described in this manuscript, and several
established methods. ECFP-type descriptors are included to provide a
baseline performance level, firstly, as they were found to provide the best
overall performance for 2D methods in the original benchmarking study,
and, secondly, owing to their continued popularity in virtual screening
and as inputs for machine-learning studies. The USR, and USRCAT, 3D
descriptors have a very light computational footprint, and offer a compar-
ison to other alignment-free shape-based screening methods. OpenEye
Scientific’s ROCS 3D tool remains the gold-standard approach for shape-
based virtual screening, and has been adopted widely in academia and
industry for the identification of novel ligands. USRCAT and ROCS
colour benefit from the addition of explicit pharmacophoric and elec-
trostatic information, which was observed, in each case, to substantially
improve performance in ligand retrieval over their baseline variants. A
full overview of these approaches is given in section 1.2.4. N.B. All
future mentions of ECFP4 and ECFP6 refer to the Morgan fingerprint
implementation provided in the RDKit, unless otherwise specified.

79



3. Methods

Table 3.1: Overall number of compounds per database, and resultant
conformers generated after a process of de-duplication.

Database Initial count Unique count Conformer count

Actives Decoys Actives Decoys Actives Decoys

ChEMBL 7834 10000 6739 10000 32572 53777
DUD 1917 89309 1617 61037 8056 330739
MUV 510 254999 492 96340 2492 511914

Data generation and processing For the sake of comparability, multi-
ple conformers are generated once for each set of actives and decoys
described. The number of actives and decoys per database, along with
the number of unique molecules and conformations generated are in-
cluded in Table 3.1. On average, approximately five conformers remained
for each unique molecule after conformer generation in the manner de-
scribed in subsection 3.1.4, Conformer generation. For each combination
of parameters, we carried out FD calculation and fingerprint generation
as described in section 3.1. As the other methods trialled do not depend
on these parameters, benchmarking is only performed once per dataset
for the other virtual screening methods assessed.

That aside, for each instance of the parameter set, the subsequent order
of operations is identical. Each run is assigned a new subdirectory,
into which all subsequent files are deposited. We calculate GFD and
AFD descriptions of the pre-computed conformers according to the trial
parameters, and then calculate FDFPs, before calling the benchmarking
script. We construct dictionaries mapping from active molecule IDs to
targets, conformers, and descriptors, where these can be pre-computed.
This is structured so as to minimise the memory footprint of each run,
allowing for each set of fingerprints to be computed and loaded only once,
although they are involved in multiple comparisons, and to facilitate the
easy addition of new descriptors in future.

For the purposes of our study, we consider FDFP variants, ECFP4, ECFP6,
USR, USRCAT, and ROCS Shape and Combination modes. For all shape-
based approaches, we used the same set of conformers, as described in
section 3.2.3. For each molecule, we ordered its set of conformers by their
energy under the MMFF94 forcefield, such that the lowest energy con-
former is first in the array, with the others following in ascending order,
to facilitate the conformer sampling experiment described in section 3.2.3.
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Figure 3.4: Illustration of the similarity MAX fusion rule, described
by Willett et al.[265]. For each column in a m × n similarity matrix,
S, the maximum value is retained in a corresponding column in the
n-dimensional vector, s.

ROCS (v. 3.2.2.2) was utilised in two modes, Shape and Combination.
The command-line options used were:
‘rocs -query -dbase -outputdir -shapeonly -nostructs -progress none
-status none -stats all -report each -conflabel title -scdbase -maxconfs 100’
and ‘rocs -query -dbase -outputdir -nostructs -progress none -status
none -stats all -report each -conflabel title -scdbase -maxconfs 100’, re-
spectively.

Post-processing of the output text files was with a customised parser
(to be found in the benchmarking script file), to construct an equiva-
lent similarity matrix to those obtained with the other methods. USR
and USRCAT were calculated for all conformations for each molecule
using the default parameters specified in RDKit. ECFP4 and ECFP6-like
fingerprints were hashed to a bitstring length of 1024 bits.

81



3. Methods

Figure 3.5: Illustration of the multiple-sampling strategy adopted
in the benchmarking study. For each target in the three datasets, five
known actives are chosen, at random, and without replacement, from
the pool of known actives. The similarity of all remaining compounds
in the active and decoy sets to these is then calculated, and a max
fusion approach taken. This procedure is repeated 50 times in each
instance, and results for each sample are calculated and stored for
later analysis.

Sampling and screening strategies For each target the same procedure
is followed. All compounds, active and decoy, related to an individual
target are retrieved, along with their GFD, FDFP, and ECFP descriptors
and fingerprints. To assess the impact of search group composition on
achieved virtual screening results, we repeat the experiment 50 times
for each target, sampling five known actives at random without replace-
ment in each instance. This subset is then used to perform a similarity
comparison against all remaining known actives and presumed inactives
(as illustrated in Figure 3.5), and performance assessed according to the
procedures described in section 3.2.5, Performance metrics. We utilise
a group fusion approach, specifically ‘max similarity fusion’, or max
fusion, which has been noted to considerably improve virtual screening
performance [265]. For a given panel of five random query molecules,
and n database molecules, we condense the resulting 5× n similarity
matrix into an n-dimensional vector, by taking the maximal value for
each column. As such, we take the maximum similarity of each of our
database molecules to the group of five query molecules, as illustrated in
Figure 3.4.
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Figure 3.6: Illustration of the three strategies adopted to assess
the importance of utilising multiple conformers for shape-based
approaches. For two molecules, A and B, one-vs.-one (OVO), one-
vs.all (OVA), and all-vs.all (AVA) describe the result of comparing the
lowest-energy conformers of A and B, the lowest-energy conformer
for A with all of B’s, and all conformers for each molecule respec-
tively. In each case, the result returned is a single, scalar similarity
value, obtained by taking the maximum of the cells considered.

In a deviation from typical practice for 2D methods, but one which has
frequently been advocated in the literature as a means of improving
virtual screening results by reducing the impact of noise from conformer
generation [260, 262, 263, 385] we adopted three conformer-set com-
parison strategies; one-vs.-one (OVO), one-vs.-all (OVA)), and all-vs.-all
(AVA), to determine the added value of a multi-conformer approach
when conducting shape-based virtual screening. Here, ‘one’ indicates
that the first, i.e. lowest-energy conformer, is used, and ‘all’ that each
conformer is considered. For instance, a one-vs.-all FDFP comparison for
two molecules, A with three conformers, and B with five, would result in
a five-element vector, where each position is the similarity of a conformer
B to the lowest-energy conformer in A. In line with the intent of the max
fusion approach, we would then take the maximum value of that vector
as a representative of the whole. An all-vs.-all comparison would result
in a 3× 5 matrix, from which we would take the maximum similarity
value. This is illustrated in Figure 3.6.
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3.2.4 Similarity Ranking

As each method profiled differs slightly, so too does the means of de-
termining their similarity. For FDFP and the ECFP-type methods , we
adopt the Dice similarity [202], defined as :

SA,B = 2c/[a + b] (3.1)

where SA,B is the similarity of the binary fingerprint representations
of two molecules, A and B, c is the number of ‘on’, i.e. 1-valued, bits
shared between both binary vectors, a the count of on-bits in A, and b
the equivalent value for B. These latter quantities are defined as:

a =
j=n

∑
j=1

xjA

b =
j=n

∑
j=1

xjB

c =
j=n

∑
j=1

xjAxjB

(3.2)

Dice similarity is faster to calculate than the popular Tanimoto coefficient
and results in provably identical similarity rankings [214, 400]. For
the ECFP-like methods, we use a bit-vector length of 1024, the default
value in the RDKit implementation of that algorithm. Although an
increase to 4096 bits was observed to increase performance very slightly
in the initial benchmarking study, the additional overhead of doing so
means that this is rarely adopted in practice. Longer bitstrings result in
fewer bit collisions, and therefore retain somewhat more information,
whilst increasing the cost of pairwise comparisons dramatically. For
ECFP4 with a bit vector length of 1024, approximately 1.4% of bits set
result in collision, having a minimal impact on any subsequent similarity
comparisons.

Given that GFD is bounded in [0, 3] for the objects our studies are
concerned with, and that more properly that their FD should strictly be
in [2,3] assuming an appropriate δmax, we take the Euclidean distance
between the GFD of A, gA and of B, gB, normalising it with the upper
bound, and taking its complement such that the resulting value is 1 for
the most-similar pairs [189].
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SA,B = 1−
(√

(gA − gB)2

3

)
(3.3)

USR and USRCAT both use the ‘USR Score’, defined as follows,

SA,B =

(
1 +

1
N

N

∑
l=1
|MA

l −MB
l |
)−1

(3.4)

taking the average of |MA
l −MB

l |, the Manhattan distance between the
value of the USR or USRCAT vectors MA and MB at index l, for all pairs
of values, which is then translated by unity and inverted, to give a final
value which is one for identical vectors, and monotonically decreasing
otherwise.

The previous methods have in common that they produce output which
is easily contained within a simple vector, and which is not the subject
of an optimisation strategy. For the two ROCS approaches, we use the
similarity coefficient defined as

TA,B = OA,B/ (OA,A + OB,B −OA,B) (3.5)

where O is the overlap function as defined in Equation 1.1. The ROCS
Tanimoto similarity is the overlap in the molecular volumes after align-
ment, OA,B, divided by the sum of the individual molecular volumes
(OA,A, OB,B) minus that overlap. For ROCS combination, this is the com-
bination of shape and colour Tanimoto terms. For simplicity, we halve
the resultant value, such that it fits in the same natural range as the other
methods profiled.

As previously mentioned, we then adopt a max fusion approach to the
similarity matrix generated. The procedure is illustrated in Figure 3.4.
More formally, it is defined as the vector, s formed from the maximum
value of each column in the m× n pairwise similarity matrix S as follows,

s = max
1≤j≤n

S (3.6)

where rows correspond to query entries, and columns to library entries.
s is then ranked in descending order, and the transformation required
is applied to the list of identifiers for each molecule in the library. This
results in a similarity-ranked list of identifiers, and allows us to deter-
mine the relative capacity of each method to separate active and decoy
compounds.
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3.2.5 Performance metrics

Many schemes for assessing the performance of virtual screening meth-
ods have been proposed, utilised, and criticised heavily. To gain a broad
overview of the differing characteristics of the methods employed, we
adopted many of the metrics utilised in Riniker and Landrum’s work,
and include some additional analyses based on belief theory [401] to
determine whether we can observe any generalisable and statistically-
meaningful relationships between similarity and likelihood of activity
for the approaches profiled.

The former category contains enrichment-related measures such as the
AUC and BEDROC, and diversity-related measures, such as the Scaffold
Enrichment Factor (SEF). In accordance with their findings, we limit
the number of outcomes here, reporting AUC as an overview statistic,
and BEDROC20 as a measure of early enrichment. Early-recognition,
or early-enrichment methods, were found to correlate very highly with
one another assuming an appropriate choice of parameters. Scaffold-
enrichment is also incorporated, as the ability of shape-based approaches
to retrieve relatively diverse active compounds, and by doing so to
‘scaffold-hop’, is a primary motivation for their use and development.
In their work, they found that SEF was not especially valuable for 2D
approaches, as it correlates very highly with overall performance for those
methods, supporting the intuition that such methods are not especially
well-suited for ‘scaffold-hopping’.

AUC is a common method for assessing overall virtual screening perfor-
mance, and has the benefits of naturally falling in [0,1], being relatively
readily-understood, and providing a global measure of how well a given
descriptor-similarity method orders chemical space. Under AUC, a
method which ranked a test-set of molecules such that all actives were
at the top of the list, followed by all inactives, would achieve a value
of 1. Random performance, such that actives are interleaved amongst
inactives in accordance with their relative proportion, would result in a
value of 0.5. It is defined more formally as

AUC =
1

nN

N

∑
i=2

Ai (Ii − Ii−1) (3.7)

where n represents the number of actives present in a given test set, N
is the size of that test set, A the cumulative count of actives, and I the
cumulative count of inactives.
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BEDROC [216] is based upon a modification of the RIE method, which
was developed to avoid some of the difficulties in comparing enrichment
factors between different compound sets. To emphasise the importance
of early enrichment, RIE uses a decaying exponential weight, as an α
parameter, which reduces the contribution of lower-ranked compounds.

RIE(α) =
N
n

∑n
i=1 e−αri/N

1−e−α

eα/N−1

(3.8)

where ri is the rank of a given active, normalised by N, the numerator
is the sum of the exponent-weighted normalised ranks of the actives,
over the denominator which is representative of the case of their being
drawn from a uniform distribution. The result is then transformed with
the ratio of the test set size to the number of actives. [216]. We then
determine the maximum and minimum RIE achievable with the values
for n and N we obtain for each target set, and for the value of α chosen:

RIEmin(α) =
N
n

1− eαn/N

1− eα

RIEmax(α) =
N
n

1− e−αn/N

1− e−α

(3.9)

BEDROC provides a bounded equivalent of the RIE, defined as

BEDROC(α) =
RIE(α)− RIEmin(α)

RIEmax(α)− RIEmin(α)
(3.10)

which has the advantage of being comparable between datasets and
experiments, and providing a readily interpretable measure in [0, 1]. We
adopt BEDROC20 here, as it is the exponentially-weighted analogue of
EF(5%), which was found in the original paper to correlate well with SEF
below, while avoiding some of the issues associated with EF, especially
its instability with varying proportions of actives and inactives.

To calculate scaffold enrichment, we take a similar approach to that
used for the calculation of the RIE, without the term for exponential
weight decay. We take SEF at 5%, as per the original paper. SEF has the
same issues as the regular enrichment factor [212], including a strong
dependence on the underlying ratio of diverse actives to inactives, and
sensitivity to the percentage value chosen, but is an established and
readily-interpreted diversity metric. The definition of a scaffold here is
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two-fold: we use the BMS [26], and also GMS, which is essentially a
pared-back version of the former definition, where information on ring
aromaticity and atom identify are removed and replaced with simple
heterocycles and carbon placeholders.

SEF can be defined as,

SEF(χ) =

n
∑

i=1
δ (min ri)

χn (3.11)

where min ri is the minimum rank for compounds belonging to a given
scaffold, χ is the proportion of the ranked compounds to consider, i.e. χ
equal to 0.05 entails considering the first 5% of top-ranked compounds,
χn is the number of unique active scaffolds present in the test set, and
δ (min ri) is

δ (min ri) =

{
1, min ri ≤ χN
0, min ri > χN (3.12)

This calculation is identical for both the BMS and GMS definitions of
scaffold identity, giving Bemis-Murcko scaffold enrichment (BMSE) and
generalised BMS enrichment (GMSE) respectively. The second category
of measures, those relating to the construction of probabilistic models
which allow us to predict a given compound’s activity, given its similarity
to the pool of known compounds, is discussed in the following section.

3.2.6 Benchmarking study analysis

Statistical analysis We analysed the distribution of the performance
metrics obtained for each target, grouped by database, and by prop-
erties of the active compound sets. We applied a ranking procedure,
determining the relative performance of each method assessed, under
each performance metric implemented, enabling a statistical approach to
defining which methods are better at the individual tasks described, and
which methods have best overall performance. Our analysis proceeds as
per the original paper [214], where they conducted an initial ANOVA
test to determine whether there is any statistically significant difference
between the methods overall, and then pairwise bootstrapped Friedman
post-hoc tests in the event that such a difference is found. ANOVA and
Friedman bootstrapped post-hoc tests are performed in the R (v. 3.5.2)
statistical computing environment. All other statistical tests, and correla-
tion analysis, are performed using the SciPy (v.1.2.0) statistical package,
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available in Python3.7. The R script for statistical analysis is provided in
the RDKit Github repository (bit.ly/rdkitbenchmark). This script takes
as input a series of files (one for each performance metric), which list
the methods profiled, and rank of that method for each of the 50-fold
repetitions described in section 3.2.3. It outputs a significance table for
each method, and an overall significance table. Pre- and post-processing
is performed in a Jupyter notebook, taking the results file from each
benchmarking experiment, and outputting the formatted significance
tables found in Table 4.1.

In addition, for each target, and for each query block, we retrieve the
similarity under each method to each remaining active in the test pool,
as well as storing the entries used as templates. This allows for post-
hoc correlation analysis, to determine the extent to which the various
similarity methods produce similar orderings of chemical space, and to
what extent that depends on template properties.

Information-theoretic and statistical approaches In addition to the
methods employed in Riniker et al.’s work, we take an information-
theoretic approach, allowing for consideration of the overall performance
of each method, and for the assessment the separability of the distribu-
tions. We consider two approaches, commonly employed in the analysis
of continuous probabilities, and use normalised similarity distributions
as our input. First, we consider the symmetrised form of the Kullback-
Leibler divergence (DKL), between the two distributions. This can be
thought of as the amount of information that would be lost if we used
one distribution to approximate the other, and so captures the degree
to which the active distribution, for example, can be modelled by con-
sidering the inactive. If the distributions were identical, and there was
therefore no information loss upon modelling, the DKL would be zero.
This approach has the advantages of a relatively straightforward inter-
pretation and common usage. We take the symmetrised form, as DKL
is more properly a measure of the divergence of one distribution from
another, rather than the divergence between them, i.e., it is inherently
asymmetric. The single form in this case is:

DKL(P‖Q) =
∫ ∞

−∞
p(x) log

(
p(x)
q(x)

)
dx (3.13)

with p and q as the probability densities of some distributions P and Q
(which we take as the active and inactive distributions, respectively). It
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can also be defined as

DKL(P‖Q) = H(P, Q)−H(P) (3.14)

where H(P, Q) is the cross-entropy of the two distributions, and H(P) the
entropy of P. The asymmetric component here is the lack of consideration
of Q, so, to correct for this, we take the sum of DKL(P‖Q) and DKL(Q‖P).

As a simplification of the symmetrised form of the DKL, we compute the
Jensen-Shannon distance (DJS), which has the advantages of innate sym-
metry, and fulfilling the prerequisites of a metric, owing to its definition
as the sum of the divergences of each distribution with respect the mean.
It is defined as

DJS =

√
DKL(P‖M) + DKL(Q‖M)

2
(3.15)

where M is the pointwise mean of P and Q.

Finally, we take a statistical approach to assessing the separation of
the two distributions, P and Q. We utilise the non-parametric Mann-
Whitney U test, which allows us to determine whether two independent
samples are drawn from the same distribution. In our case, we employ
the test such that we assess whether P is stochastically greater than
Q, with continuity correction. If we take both distributions, combine
them, and rank their values, while maintaining knowledge of their origin
distribution, the U statistic is defined as

U = R− n(n + 1)
2

(3.16)

where R is the sum of ranks belonging to one distribution, and n the
sample size for that distribution. In general, this statistic is calculated
for both P and Q, and the smaller of the two used for comparison to
the null distribution U statistics. However, as we are interested in the
test for P being stochastically greater than Q, i.e. for the HA where
P(P > Q) 6= P(Q > P), we take U of Q only. Results for this test are as
p-values, where we take a p-value ≤ 0.05 as sufficient to reject H0, where
H0 is that P(P > Q) = P(Q > P).
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FDFP Parameterisation We tested several hundred combinations of
parameters, to determine the combination of parameters which produced
the best overall ranking. Rank performance of each method was assessed
using the pairwise post hoc Friedman test previously described (sec-
tion 3.2.6). We vary δmin, δint, and δmax in [0.5, 1.8], [0.2, 0.455], and [3.2,
6, 8, 10], respectively. All units are Å. δmin and δmax parameters were
chosen to cover a wide range of values, relevant at the scale of small- and
macro-molecules. As such, the upper limits are somewhat higher than
were considered in earlier work on this topic [169].

The δmin values take into account the density of vertices placed on the
molecular surface (7/Å2), where the lower of the two is chosen such
that δmin ≥

√
7. For FDFP-specific optimisation, we considered all of

the above parameters for calculation of the atomistic FD values, and,
in addition, all combinations of fingerprint radii in [2, 3, 4, 5, 6], and
bitstring length [256, 512, 1024]. To choose a single-best overall method,
we conducted the benchmarking experiment for each combination of
parameters, and chose the parameter set which resulted in the best overall
ranking.

Probabilistic regression - similarity and activity prediction Given the
size and diversity of our retrospective benchmarking set, we utilised
these data to construct probabilistic models, providing an evidence-based
rationale for choosing similarity thresholds. Our aim is to determine
whether we can use such an approach to find support for empirical
cut-offs used in making similarity assignations, such as the commonly-
used ≥ 0.7 Tanimoto similarity threshold used with ECFP4 to assign
activity-level similarity, for all methods employed in our version of the
benchmarking protocol.

Adopting a similar approach to that described by Muchmore et al.[401],
we set out the problem as a probabilistic one, where we wish to define
the relationship between similarity to a known template, and probability
of a given compound sharing that template compound’s activity. In that
work, the similarity considered is between pairs of compounds with
measured IC50 values against a panel of 23 protein targets. They define
‘active’ compounds as having a measured IC50 in the range of one to
10 nM against at least one of these targets, and then randomly sample
pairs of actives and inactives from a pool of 60,000 compounds from their
corporate database. Dissimilar pairs are those with a differing activity
label, meaning that their measured IC50 against a given target is greater
than 10 nM, that there is greater than 1 log unit difference in their pIC50
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at that target, or that they do not have an annotated activity (for the
compounds extracted from the corporate database). The distributions of
similarity scores are then binned, and the corresponding activities noted,
allowing for the fitting of a sigmoidal relationship between the two, in a
manner reminiscent of the Hill plot, and for the eventual prediction of
shared activity annotations between pairs of compounds held out in a
test set.

Differing from their approach, we use the maximum similarity to known
actives (max fusion) approach described in section 3.2.3 as our measure
of similarity, and utilise the sets of actives and decoys as our labelled
training data. During the benchmarking process, we store the distribu-
tions of similarity values for each query block to the test set. As well as
altering the definition of similarity adopted, we utilise multiple models.
First, an isotonic regression model, adapted from its common use in
classifier calibration. It is defined as

min
n

∑
i=1

wi (yi − xi)
2

subject to
x1 ≤ x2 ≤ ... ≤ xn,
w ∈ Rn

(3.17)

such that it minimises the sum of weighted differences, subject to a
complete order [402]. It has the advantage of being nowhere-decreasing,
which fits better to our intuitive model of the relationship between
chemical and biological similarity, whilst also being able to fit sigmoid-
like curves with arbitrary precision.

The second approach, logistic regression, is popular for probability-
prediction tasks, and is well-calibrated by default. The predicted value,
P, is a pseudo-probability of activity, defined as

P =
ea+w·X

1 + ea+w·X (3.18)

where a is a bias term, w the weight corresponding to the independent
variable (learned by maximum likelihood estimation) at a given value,
and X its value.

We train our model on our decoy and active distributions. Our isotonic
regression model is adapted, and logistic regression used as provided,
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from scikit-learn (v. 0.2.0). We perform 5-fold cross-validation. To assess
model quality, we can adopt metrics used commonly in machine learning,
such as the Matthews correlation coefficient (MCC), a balanced measure
of predictive power, and recall, as a measure of the ability of these models
to retrieve active compounds. MCC is defined as

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3.19)

where, in our case, TP is the count of correctly-predicted active com-
pounds, TN correctly-predicted decoy compounds, FP decoy compounds
incorrectly predicted as active, and FN the reverse. The MCC gives a
balances perspective on overall performance, and is in [-1, 1], with the
lower bound indicating perfectly-incorrect classification, and the upper
that all predictions are correct. Another use-case, where an end-user
is most interested in retrieving active compounds, is assessed through
recall, defined as

Recall =
TP

TP + FN
(3.20)

with all terms as defined for MCC. Initial assessment of model quality is
performed on the withheld test set, via these two metrics. Additionally,
we validate our models through analysis of endpoints utilising data
gathered during the prospective study (section 3.4.2).

93



3. Methods

3.3 Shape searching for de novo (-)-Englerin A
Mimetics

Parts of this section are published as: Shape Similarity by Fractal Di-
mensionality: An Application in the de novo Design of (-)-Englerin A
Mimetics. [403]
Authors: Lukas Friedrich, Ryan Byrne, Michael Mederos y Schnitzler,
Aaron Treder, Inderjeet Singh, Christoph Bauer, Thomas Gudermann,
Ursula Storch and Gisbert Schneider

GFD Virtual Screening, and SAR To determine the utility of the GFD
method in de novo drug design, we applied this approach to identify
computationally generated, small molecule mimetics with similar bio-
logical activities to the structurally intricate (‘complex’) natural product
(-)-Englerin A, henceforth referred to as compound 1a. This natural prod-
uct acts as nanomolar activator of transient receptor potential canonical
(TRPC) 4 and 5 (TRPC4/5) calcium-permeable cation channels, which
leads to selective growth inhibitions of cancer cell lines, although, in-
terestingly, (-)-Englerin B (1b) suffers a complete reduction of activity
through the cleavage of the glycolate side-chain [404], demonstrating its
importance for the on-target effect.

Utilizing compound 1a as a template, we previously generated new
chemical entities (NCE) by a ligand-based, reaction-driven de novo design
method [327, 330]. By topological pharmacophore-based scoring and
manual refinement of the computational designs, we identified natural
product mimetics inhibiting the transient receptor potential melatstatin
(TRPM) (TRPM8) calcium permeable cation channel, also inhibited by
compound 1a. Here we extend this study by utilising the GFD measure.
Given that the previously employed design software tool (Design Of
Genuine Structures (DOGS)) and the pharmacophore similarity metric
(CATS [44, 45]) each rely on two-dimensional molecular representations,
we investigated the use of GFD as an orthogonal similarity ranking
approach, to take the spatial disposition of molecules into account. By
omitting the proposed synthetic routes of the original designs, the library
of 903 in silico structures employed in our previous study resulted in
a set of 323 unique de novo designed small molecules, as the de novo
generation method could employ multiple synthetic routes, resulting in
identical molecules.
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We ranked these computer-generated designs according to their Eu-
clidean distance from compound 1a in terms of their GFD. To assess
the potential of GFD as a shape-based descriptor for this target case, we
conducted a comparative, retrospective, analysis of the chemical space
retrieved by this method, against gold-standard fingerprint (ECFP4),
moment (USR) and alignment based shape (SHAEP) approaches. Given
that we lack a ground-truth in this case, i.e. experimental activity data
for each molecule in our compound library, our retrospective analysis
adopts two approaches. We begin with an analysis of three data sets; (i)
the initial de novo design set, (ii) the 30 top-ranked compounds in terms
of global fractal dimensionality distance (GFD distance), and (iii) the
top 30 compounds according to their topological pharmacophore simi-
larity (CATS distance) to compound 1a. Set (iii) is included to compare
the GFD ranking approach with the CATS approach described previ-
ously. We extracted the BMS of these compounds and analysed their
molecular scaffold diversity (pairwise Tanimoto coefficient (Tc)) based on
Morgan structural fingerprints (radius = 2), equivalent to ECFP4. This
approach allows us to compare the areas of chemical space retrieved
by each method, a proxy for the likely on-target efficacy, necessitated
by the lack of ground-truth activity data for each library compound.
Secondly, we employ an experimentally-validated target-prediction soft-
ware developed in-house, Self-organizing map–based Prediction of Drug
Equivalence Relationships (SPiDER) [405, 406] which utilizes 2D molec-
ular descriptions to provide an estimate of the likelihood of a given
compound being active against the target family ‘Transient Receptor
Potential Ion Channel’.

SHAEP and USR The SHAEP [47] program (v. 1.2.0) was used for com-
parison with alignment-dependent shape-based methods. The program
was run with default settings, in the ‘onlyshape’ mode (-onlyshape),
disabling partial charge contributions (-charge-weighted=False) and lim-
iting output per DOGS molecule to the optimally-overlapping, i.e., best,
structure (-nStructures 1). Output was parsed with a Python script (ver-
sion 3.6.5), taking the ‘shape similarity’ field as the output per database
molecule, and then taking its complement to obtain a distance measure.
The USR descriptors were calculated using the implementation provided
in RDKit 2018.03.4 in Python 3.6.5. Scores were calculated using the USR
Score implementation using default parameters. We converted these into
distance measures by taking the complement of the USR Score.
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Scaffold Analysis and Property Calculations Scaffolds were extracted
as BMS with RDKit 2017.09 in Python 3.6.5. Physicochemical properties
were calculated using RDKit 2017.09 in Python (version 3.6.4). As a
prioritisation criteria, we utilised the synthesisability score (synthetic
accessibility) [407] implemented in Python (version 3.6.4).

3.3.1 Biological assay

All biological assays were carried out by collaborators at the Ludwig
Maximilians University of Munich, or on a fee-for-service basis by Cerep
Eurofins. For further detail, see appendix section 5, Bioactivity determi-
nation

3.3.2 Analysis of results

We generated pairwise similarity matrices for all compounds based on
similarity under GFD and FDFP approaches. FDFP was not used to
guide compound selection in this study, it is included to compare the
similarity rankings produced by the global (GFD) and atomistic (AFD)
approaches. In each case, the resulting pairwise similarity matrix was
normalised using a symmetric min-max procedure, defined as

minmax(S) =
S−min S

max S−min S
(3.21)

bounding S in [0,1].
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3.4 Prospective study

3.4.1 Screening

Seven targets previously utilised in our group for method-benchmarking
were selected for analysis. Using an in-house script, we retrieved and
standardised activity information from a local instance of ChEMBL 23
for all compounds with high-confidence activity annotations for each
receptor in our set. Following this, we impose a threshold, retaining only
those compounds with an annotated ‘standard value’ of ≥ 7, correspond-
ing to a potency of ≤ 100 nM, and with the intended outcome (agonism
or antagonism, depending on target, see Table 3.4). This threshold was
chosen owing to the ready availability of bioactivity data for these recep-
tors, and with consideration to the concentration at which we intended
to test all retrieved compounds (10 µM in the first instance). This rep-
resents a 100-fold potency shift between our template compounds and
tested retrieved compounds, and was chosen given the abundance of
available compounds, the heterogeneity of the assays used to initially
profile these compounds, and the known issues of false-positive hits with
high-throughput screening approaches [11]. The identifiers for our tar-
gets, and the number of template compounds meeting the threshold, are
described in table 3.2. Our screening library, comprised of purchasable
compounds available from one or more of several suppliers was compiled
in-house, and is described on a per-supplier basis in table 3.3.

Our approach here is broadly similar to that described in Section 3.2.3,
Sampling and screening strategies, differing in a few crucial aspects. For
each target, we sample five known actives from the pool of annotated
actives, and use this to calculate a similarity matrix relating the pairwise
similarity of our group of query compounds, with all compounds in
the remainder of the actives pool and those in the commercial screening
library, which we call the test set. The max fusion rule is then applied to
condense this into a single similarity value for each compound in the test
set, as described in Figure 3.4. For each query set, we note the proportion
of the top 20 compounds which are members of the actives set. We then
remove these actives from further consideration, and store the identifiers
of the top 20 library compounds retrieved, alongside their similarity
values. By repeating this process 50 times, we build an incidence table,
where we can observe the frequency with which a given compound is
highly-ranked with diverse, randomly-chosen query sets. We then choose
the twenty most common hits, our ‘high-ranked’ compounds.
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Table 3.2: Target identifiers and number of active compounds re-
trieved from ChEMBL at the 100 nM threshold.

Short ID ChEMBL ID UNIPROT
Accession

Recommended
Name

Templates at
100 nM

A2a CHEMBL251 P29274 Adenosine A2a
receptor 1,775

CB1 ChEMBL218 P21554 Cannabinoid
receptor 1 1,913

GRG ChEMBL2034 P04150 Glucocorticoid
receptor 1 1,315

JNK1 ChEMBL2276 P45983 Mitogen-activated
protein kinase 8 508

mGluR5 ChEMBL3227 P41594 Metabotropic glutamate
receptor 5 883

PIM1 ChEMBL2147 P11309 Serine/threonine-protein
kinase PIM1 2,818

PPAR-δ ChEMBL3979 Q03181 Peroxisome proliferator-
activated receptor delta 538

Table 3.3: Source of screening library for prospective screening cam-
paigns by supplier and collection. Discrepancy in ‘total’ and ‘unique
total’ owing to availability of the same compound from multiple
sources.

Supplier Compound count

Asinex Elite 104,521
Asinex Fragments 23,179
Asinex Gold + Platinum Collections 296,394
ChemBridge SC Collection 1,032,195
Enamine Advanced 245,930
Enamine HTS Collection 1,678,558
Specs Natural Products 848
Specs Screening Compounds 210,036
Total 3591661

Unique Total 3,380,696
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Table 3.4: Biochemical testing carried out on a fee-for-service basis at
Cerep Eurofins (Celle l’Evescault, France). Target short-form IDs are
matched with corresponding agonist and antagonist assays carried
out, with a dash indicating that a given combination was not tested.

Target ID Agonist Assay ID Antagonist Assay ID

A2a 4 -
CB1 1744 1745
GRG 469 -
JNK1 - 2880
mGluR5 - 3844
PIM1 - 2919

To assess the overall validity of our approach, we modified the proce-
dure above, to also sample those compounds at around the 1000th rank.
Many compounds in this region were also observed to appear frequently,
suggesting that the ordering of the library remains relatively stable with
the choice of query set. These two pools, of high- and intermediate-rank
compounds (n=130), were purchased and sent for biochemical testing,
which was performed on a fee-for-service basis at Cerep Eurofins (Celle
l’Evescault, France) (see Table 3.4 for details of which assays were per-
formed for each target). All compounds were tested at a concentration of
10.0 µM, barring the compounds tested for PPAR-α/γ/δ activity, which
were tested by a collaborator (Dr. D. Merk, Goethe-Universität, Frank-
furt, Germany) at 30.0 µM, with follow-up EC50 determination for those
compounds which exhibited activity in the initial screen.

3.4.2 Analysis

Activity data To allow for comparative analysis of all target datasets,
compounds tested against PPAR-α/γ/δ with no activity at 30 µM, or
with an IC50 of ≥ 15 µM are treated as inactive. In the larger assay,
conducted at Cerep, we define active compounds as those with ≥ 30%
activation or inhibition of their target, as appropriate, assuming all values
below this threshold to be within the noise of the assay, or likely to have
an IC50 of substantially higher than 10 µM. In the case of CB1, where
both agonistic and antagonistic studies were carried out, we merge these
values for the overall analysis.
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Target prediction We performed post-hoc target prediction for each
compound tested using two popular target-prediction programs; the
Similarity Ensemble Approach (SEA) and SPiDER. Neither prediction
was used when picking compounds. For SEA, we used the public portal
provided (sea.bkslab.org), submitted a list of compounds SMILES and
specified which target was of interest for each. SPiDER was run locally
(Mac Pro, 2012, OS X Yosemite, 10.10.5, 2x2.26 GHz Quad-Core Intel
Xeon, 48GB memory) as a KNIME workflow, wrapped in a Python3.7
script. This returns all predicted targets for each compound, and allows
for a greater level of detail than the version of that program available
online (bit.ly/modlabspider). We tested known active compounds for
each target to extract a list of internal target labels of interest, and then
parsed the results for our purchased compound to determine which were
predicted to be active. Finally, we enriched our initial data with these
two predictions as binary labels. For performance assessment, we treat
activity as a binary characteristic as discussed above, and binarise pre-
dicted pseudo-probabilities at the P(0.05) inflection point. This allows us
to compare the performance of these target prediction programs with the
target-agnostic similarity-based classifier trained on the benchmarking
data, described in section 3.2.6.
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3.5 PIM1 - detailed analysis

A novel PIM1 inhibitor was identified in the prospective screening. We
searched ChEMBL 25, and PubChem (July 2019) using their online portals,
and were unable to find previous evidence of PIM1 inhibition for this
compound. Equally, a similarity search for its BMS on ChEMBL at 0.7
Tc with ECFP4, and a substructure search on the PubChem site, did not
reveal further relevant records for PIM1. We ordered a kinase panel, also
at Cerep Eurofins, to determine the inhibitory efficacy of our compound
against other disease-relevant kinases. Additionally, the structure of this
compound in complex with the native protein was solved at a fee-for-
service provider (SARomics Biostructures AB, Lund, Sweden), to facilitate
assessment of the relationship between shape similarity of our compound
in its minimised and bound states with other known inhibitors.

3.5.1 Selectivity study

Dataset Construction

While several large studies of kinase specificity have been published
[408, 409] we are not aware of a study dataset which covers the group
of kinases available as a panel at Cerep. Therefore, we extracted the
set of all publicly-known inhibitors available in ChEMBL25 for each of
the kinases (n=58) included in the panel, using the UniProt IDs collated
from Eurofins online material to retrieve compound records using the
ChEMBL API [410]. These records were then parsed, to retain only those
conducted with 10 µM inhibitor concentration in the presence of 10 µM
ATP, emulating our assay conditions.

We identified 167 compounds which had annotated activities for the ma-
jority (n=55) of the targets. We removed the remaining three targets from
further comparative analyses. Of these 167 compounds, 72 had an anno-
tated activity ≥ 30% for PIM1 kinase. This exercise was repeated with
the PubChem bioassay database, using a Python-based API to retrieve
records for assay IDs which were associated with the corresponding
Uniprot IDs. However, this approach retrieved 58 compounds which
shared a similar number of targets to those retrieved from ChEMBL. 52
of these compounds were present in CheMBL also, and so this dataset
was not further considered for the sake of consistency.
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Selectivity scores

Several metrics for assessing the selectivity of compounds against classes
of targets have been proposed. Simple measures, such as a ratio of
actives to inactives at a particular threshold and concentration (S), give
an immediate impression of the relative selectivity of compounds. We
define this for some threshold, t as

S(t) =

n
∑
i

θxi

n
,

where θ =

{
0, xi < t
1, xi ≥ t

(3.22)

Thresholds at S(50%), S(70%), and S(80%) are reported in the literature
[411]. The Gini coefficient has been proposed [412] as a more sensitive,
and less threshold-dependent, means of analysing the uneven distribu-
tion of activities across a group of targets. It can be defined as [411]

G =

n
∑

i=1
(2i− n− 1)xi

n
n
∑

i=1
xi

(3.23)

where x are the observed activity values in ascending order and n the
number of kinases profiled. Essentially, it is a measure of how the
cumulative fraction of the total inhibition (across all kinases) varies with
the cumulative fraction of kinases. A compound which is equipotent at
all targets would receive a Gini coefficient of 0, and one which had no
activity at any target other than that intended a 1. For this ordered case, it
is related to the AUC described in equation 3.7 as AUC = (G + 1)/2. In
its implementation in the paper, and in our reimplementation in Python
3.7, values below 0, or above 100, are capped. Given the assumption,
stated above, that inhibition values 0 ≤ 30% are within noise limits of our
assay system, we set these values to zero. The analysis is also repeated
without this cleaning step, for comparison. The authors of that study
[412] note the importance of a consistent ATP concentration in assessing
inhibition, although they speculate that a linear correction might suffice
to correct for this. They observe that this measure is quite dependent
on the number of kinases profiled, although a 50-member kinase panel
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was determined to give good generalisability to the broader kinome.
In addition, they state that the ideal concentration range for testing is
within 10-100 fold of the compound IC50 against the desired target, which
renders comparison between compounds somewhat problematic.

Given these issues, and the lack of an established, authoritative, metric in
the literature, we adopt several additional selectivity definitions. A recent
paper [411] reviews existing measures, and adds two novel types which
have similarities to existing, KD specific measures [409]. We will focus
only on those of immediate relevance to the comparison of inhibition
percentage values. The first method discussed is the Window Score
(WS) a simple proportion of activities within a given percentage of the
maximum activity noted for that compound, as follows;

WS(t) =

n
∑
i

θxi

n
,

where θ =

{
0, xi < m
1, xi ≥ m

and m = max(x)− t

(3.24)

This approach has the advantage of taking into account the maximal
inhibition noted for a given compound, and for considering the relative
importance of targets which are significantly inhibited. The authors
suggest thresholds for the WS approach at 5, 10, and 20% (WS(5%),
WS(10%), WS(20%)). The final method discussed is the Rank Score (RS),
the difference between the maximal inhibition noted and that at some
specified lower rank. Assuming x is ranked in descending order of
inhibition, it is defined as

RS(t) = max(x)− xt (3.25)

None of S, WS, RS are comparable between compounds with varying
numbers of activities annotated. In all instances where a sensible score
cannot be calculated, for example if a compound has no annotated
inhibition of greater than 50% and we wish to calculate the selectivity
score at that interval, its value is set to be equal to that representing the
least specific possible compound, in this case, S(50%) would be set equal
to one.

103



3. Methods

3.5.2 PIM1 - Inhibitor crystal structure

Crystallisation PIM1 apocrystals were soaked with compound 102 at
a fee-for-service provider (SARomics Biostructures AB, Lund, Sweden).
Final resolution of the solved structure was 1.8 Å. Crystallographic
parameters in Appendix 2, Table 2.

Data curation and alignment We downloaded all solved crystal struc-
tures for Uniprot P11309/PIM1 (n=151) from the RCSB PDB as mmCIF
files, employing the programmatic access provided in Biopython. We
converted these to PDB files using the pybel (OpenBabel) and Biopy-
thon toolkits, removed crystallographic additives, and cleaned them
for standard errors using the ‘PDBfixer’ tool [377], as described in sub-
section 3.1.3. Sequence-alignment weighted structural-alignment was
performed using the Biopython package in Python, following an adapted
version of a ‘recipe’ published online online (bit.ly/weightedalignment).
This uses the Needleman-Wunsch global-alignment algorithm [413] of
a query crystal protein construct onto the obtained structure to build
sequence identity and similarity matrices, and then minimises RMSD
with regard to the latter.

Analysis For each PDB file, we extract the ligand in its crystal conforma-
tion, generate a set of ten conformers for that ligand (using the approach
described in subsection 3.1.4), and store these alongside the apo-protein.
For the analysis of ligand crystal-derived and energetically-minimised
conformations, we define four sets of pairwise comparisons. ‘Self’, where
we consider the maximum similarity of a given ligand’s crystal confor-
mation to those generated by the minimisation routine. ‘Crystal-Crystal’,
where we compare the similarity of the crystal pose of compound 102 to
the crystal conformations of all other ligands. ‘Crystal-Minimised’, which
assesses the maximum pairwise similarity of crystal structure of com-
pound 102 against each set of conformers for the remaining molecules.
‘Minimised-minimised’, which replaces the pose obtained for compound
102 with the set of its generated conformers. Each of these comparisons
for the ligand sets is performed using FDFP8 (1024-bit), ROCS Shape,
and ROCS combination. We compare binding pockets for each crystal
structure in terms of their FDFP8 (512-bit) representation. All FDFP
comparisons use the Dice coefficient, ROCS Shape and combination use
the ROCS Tanimoto score previously discussed (Equation 3.5). As each
method has a different innate scale of similarity values, comparisons
are primarily in terms of relative shifts in the distributions, their mean
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values, and standard deviations. Pairwise statistical analyses use the
Kendall-Tau test, at the α=0.05 significance level.

Crystal structure ligand-protein interaction analysis was performed in
Schrödinger Maestro 2019 Academic Edition.
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3.6 Protein FD - Back Translation and Analysis

3.6.1 Dataset construction

We downloaded the sc-PDB (2017), which contains 17,594 manually-
curated ligand-bound crystal structures. Having written a parser to
improve record consistency (in some cases, ligands were not explicitly
annotated), we were able to reform the structures into a format suitable
for automated FDFP generation for 14,556 of these. We then generated
a variety of FDFP fingerprints, for all reasonable diameters (FDFP-6,8).
These fingerprints were transcribed from array to text format, with the
index position of each on-bit (incremented by one) written as a string,
for both the target and its corresponding ligand fingerprints, e.g. ‘1
28 257 0 32 48 100 0’. This representation has the advantage of being
pre-tokenised for model building. ‘0’ above represents a period, used to
separate the protein and ligand components, and to signal end-of-line.

3.6.2 Models

Frameworks Our proof-of-concept study of the feasibility of translation
of a protein pocket FDFP to a corresponding ligand FDFP utilises multi-
ple approaches from the field of sequence transduction. Two different
frameworks were employed; OpenNMT, using Torch as a back-end, and
the github implementation (bit.ly/aiayn) of the Attention is all you need
(AIAYN) transformer, written in Keras, and employing Tensorflow as its
backend. The former is used for a survey of existing sequence transduc-
tion methods, including ‘vanilla’ LSTM models, LSTM with attention,
GRU, CNN (non-hierarchical), and various formats of the transformer
model, based on promising initial results. For an overview of these
methods, please consult section 1.5.2. To investigate the effect of hyper-
parameter optimisation on model quality and performance, we utilised
the AIAYN transformer model.

Models All models were trained on an machine equipped with eight
Nvidia GTX 1080Ti GPUs. All models use the same datasets described
above. Unless indicated otherwise, batch-sizes are 32, a learning-rate of
0.001 was chosen, the Adam optimiser was utilised for training, dropout
is set to 0.1 to slow over-fitting, and a sequence length of 0.4×maximum
folded bit-string length enforced. This latter parameter is based on
observed bit densities, and excludes less than 1% of pairs at each fold-
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level. Train test split results in 11,178 training examples, 1,242 test
examples.

Models - OpenNMT We assessed the following approaches, utilising
the OpenNMT toolkit. Validation was performed every 200 steps. All
models were run until a patience callback determined that no improve-
ment had been made within the last 5 epoch-equivalents, at which point
model weights were reverted to their then-current state. OpenNMT uses
input feeding and global general attention on the decoder by default, so
we left this enabled for all models.

1. LSTM: This model was intended as a simple baseline of a naı̈ve
sequence transduction approach. The model has 5 layers of LSTM
units.

2. GRU: rather than using LSTM recurrent units, this model uses
GRU.

3. CNN-3, CNN-9: These models use the CNN2Seq approach, with
varying kernel/filter widths corresponding to their titles.

Transformers: All transformer models assessed with OpenNMT used
sinusoidal position encoding. Neuron initialisation is by the Glorot
approach. Label smoothing loss-function is enabled (0.001), and 4000
warmup steps are hard-coded. Adam β2 parameter is set to 0.98. Unless
otherwise specified, the position-wise feed forward (FF) width is equal
to encoder width.

4. MINI-transformer: a relatively shallow and thin transformer, as
described in OpenNMT documentation. Model trained with 8
heads. Additional attention types implemented: self (scaled dot),
coverage. Adam β2 parameter - 0.98. Label smoothing enabled,
set to 0.001. Gradients computed on each batch (accumulation
count=1). Encoder and decoder RNNs 256-wide. 2000 warmup
steps.

5. MED-transformer: as per the mini-transformer, although encoder
and decoder widths are doubled to 512.

6. MEDWIDE-transformer: as per the MED-transformer, but with 16
heads.
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7. OpenNMT-Google: This is the OpenNMT implementation of the
AIAYN transformer discussed below. FF width is 2048. 6 lay-
ers, accumulation count 2. Stringent gradient normalisation at 0
enabled.

8. OpenNMT-Google Big: essentially the same as OpenNMT-Google,
but with 16 heads.

9. OpenNMT-Google Shallow: A two-layer version of the the Open-
NMT -Google model.

10. OpenNMT-Google Big-shallow: A shallow (two-layer) version of
the OpenNMT-Google Big model.

Models - AIAYN Having observed the relative performance of the
models described above, we focused further efforts on optimising the
transformer models for our task, and, in addition, assessing the variation
in performance associated with small algorithm adjustments between
frameworks. All models were run until a patience callback determined
that no improvement had been made within the last 5 epoch-equivalents,
at which point model weights were reverted to their then-current state.
Maximum number of epochs was set to 2000. Maximum length of output
sequence set to 160. All combinations of the following parameter sets
were assessed:

• Optimisers: Adam, Nadam, Adadelta
• Encoder/decoder width: 256, 512
• Layers (depth) : 2, 4, 6
• Number of heads: 4, 8, 12, 1

We use the ‘noam’ learning-rate scheduler, as above, with 4000 warmup
steps.

108



3.6. Protein FD - Back Translation and Analysis

3.6.3 Performance assessment

To assess model quality, and to direct further analysis, we take the best
average word-wise validation perplexity achieved by each model, as its
definition is the same under both frameworks.

This can be defined as

perplexity = 2−∑N
i=1 p(xi)·log2q(xi)

= e−∑N
i=1 p(xi)·ln q(xi)

= e−∑N
i=1

1
N ·ln q(xi)

=
N

∏
i=1

q(xi)
− 1

N

= N

√
1

q(x1) · q(x2) . . . ·q(xN)

(3.26)

where 2 is an arbitrary base, chosen by convention, xi is the probability
of a given word in our corpus, qi the prediction under our model for that
word. From there, taking the natural log for convenience, we assume that
each word is equally probable under our base model (random picking),
and reach our final definition, which is essentially equal to cross-entropy.
Under this definition, then, a uniform model for word probability would
give q(xi) =

1
N , leaving perplexity equal to N by cancellation. In essence,

it is a weighted-average number of choices over the vocabulary, at each
position.

To translate this into a metric more familiar and meaningful to computa-
tional chemistry, we translate the validation set back into its fingerprint
representation (using the beam-search method), and calculate the Tc of
the reconstructed ligand fingerprint versus that obtained from the crystal
structure. Beam search for translation is a heuristic search algorithm,
which, in contrast to greedy-search, keeps k-best intermediate solutions
obtained while traversing a subset of paths across the full breadth-first
search (BFS) tree of translation possibilities, rather than just picking the
option at each step with the largest immediate reward. The best-overall
translation is then returned. This is necessary owing to the combinatorial
complexity of conducting a full tree search, which has an upper-bound
determined by the vocabulary size, raised to the power of the maximum
length of the sequence. We set k equal to five. To determine the level
of random performance, we sampled an equivalent number of unique
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on-bits at random from the vocabulary (concatenation of all words) to
the count of on-bits for each validation fingerprint, and calculated the
Tc between these. This is a relatively harsh benchmark standard, as
it draws the correct number of on-bits for each instance, which is not
guaranteed for the sequence transduction model. The median bitwise
on-bit frequency in the test ligand FDFP dataset is 0.008, with a median
of 46 bits set per fingerprint.

110



3.7. Computational resources

3.7 Computational resources

All calculations were run on the ETH Leonhard cluster. Cluster runs
CentOS 7.5.1804. CPU-intensive jobs (all where not specified otherwise)
were run on mid-range compute nodes equipped with two 18-core Intel
Xeon Gold 6140 processors with 384Gb available memory. All jobs were
restricted to single compute nodes, as Python cross-node parallelism
remains complex. Parallelism was accomplished by logical separation.
All CPU-intensive jobs were run with 24 cores and 72 Gb of memory, to
allow for rapid scheduling and fair service usage.

GPU-intensive jobs were run on the ETH Leonhard cluster mid-range
GPU nodes, which are equipped with two 10-core Xeon E5-2630v4 pro-
cessors, 256 GB of memory and 8 Nvidia GTX 1080 Ti GPUs. Hyper-
parameter optimisation was run at full node capacity, all other jobs using
2 GPUs, 6 CPUs for processing purposes, and 128 Gb RAM.

All graphical and statistical analysis was conducted on a high-end laptop,
with Intel i7-8750H CPU @ 2.20GHz, 16Gb RAM, Nvidia 1070 GPU.
Analyses typically require numpy, scipy, sklearn, matplotlib, and seaborn
libraries, and were conducted in the Jupyter lab environment. Package
management with Conda. Unless specified otherwise, all statistical
analyses were carried out with scipy v1.2.0.
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Chapter 4

Results and Discussion

4.1 Benchmarking study

Summary Having developed the FRACTVS package for the shape com-
parison of small- and macro-molecules, we sought to compare its per-
formance to established 2D and 3D methods on a robust test platform.
As previously discussed in the literature [226], similarity methods often
have radically different perspectives of chemical space. We adapted
the benchmarking approach previously described [214] to facilitate the
inclusion of shape-based molecular representations. In addition to the
methods described there, we also assessed the performance of shape-
based methods with single- and multi-conformer representations of our
template and query molecules.

Overall, we found that the FDFP approach developed achieves an equiv-
alent global enrichment to topological approaches when these dominate,
and matches ROCS combination performance when trialled on a diverse
set. Early-enrichment performance follows a similar trend. Our method
has the best overall performance of the methods assessed in the early
retrieval of diverse scaffolds. We see some encouraging evidence for the
orthogonality of 2D and 3D approaches. Interestingly, we found that
our approach varies substantially less than other shape-based methods
with the diversity of conformers considered. Additionally, we anal-
ysed the distribution of similarity values observed for active and decoy
compounds, and trained models to describe the relationship between
molecular similarity and biological activity.
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4. Results and Discussion

4.1.1 Retrospective Virtual Screening Performance

Determining the global ‘best’ approach to virtual screening depends heav-
ily on the desired outcomes, primarily whether one wishes to promote
novelty or early retrieval of active compounds in the similarity-ordered
list. In common cases, some combination of these two characteristics
is desired, which is reflected in the construction of the benchmarking
approach we have adopted [214]. The authors concluded that it was
sufficient to include one global enrichment metric, such as AUC, and one
measure of early enrichment (such as BEDROC), given the high degree
of correlation observed between such metrics. Given that it is commonly
proposed that shape-based methods enable users to retrieve more di-
verse scaffolds, as they are less dependent on explicit atom typing, we
include two measures of diversity retrieval. Defining molecular diversity
is challenging; here, we use the enrichment in known scaffolds of both
the specific (BMS) and generic (GMS) types, where the latter excludes
heteroatom typing. Unless stated otherwise, all statistical analyses are
performed for the AVA modality, except in the cases of ECFP4 and ECFP6,
where this distinction is not applicable.

For each target, from a pool of 88, we repeat an experiment where we
take five query molecules, and use them to order a pool of actives and
decoys. This is repeated 50 times per target, and the performance of each
approach. For each repetition, the AUC, BEDROC20, BMSE, and GMSE
are noted for each method profiled. A rank is assigned to each method
for each repetition, and the results analysed to give an overall rank for
each method on the four tasks.

Results Considering overall performance on the four tasks, in Table 4.1
we see that ECFP6, ECFP4, and FDFP8 are statistically indistinguishable
overall, sharing approximately the same averaged rank (3.04, 3.09, 3.19).
ROCS combination performs next-best, overall (5.17), and is slightly
better than ROCS Shape (5.62), but not to a statistically-significant degree.
Similarly, USRCAT (7.15) is slightly, but not significantly better than USR
(8.39). The difference between performance for USR and GFD (9.34) is
also not statistically significant. However, as can be seen in Figure 4.1,
we see variation in the performance of each method over the set of four
tasks, and no one method has best performance on the entire set.

For the global enrichment (AUC) task, ECFP4 (2.79), ECFP6 (2.93), FDFP8
(3.10) and ROCS combination (3.74) are statistically indistinguishable.
USRCAT (5.28) and ROCS shape (5.33) are in the next bracket, followed
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4.1. Benchmarking study

Table 4.1: Results of pairwise post-hoc Friedman test for all similar-
ity searching methods implemented in our version of the benchmark-
ing study. Here, we consider the average rank across all metrics, for
each repetition, for each target as our input. ‘X’ indicates that a given
pair has no statistically significant difference in performance, ‘o’ that
the statistic is near to the confidence level, α (0.05), and ‘-’ that there is
a statistically significant difference. Similarity searching methods are
ordered by rank.

ECFP4 FDFP8 ROCS
Comb

ROCS
Shape USRCAT USR GFD Rank

ECFP6 X X - - - - - 1
ECFP4 X - - - - - 2
FDFP8 - - - - - 3

ROCS Comb X - - - 4
ROCS Shape - - - 5

USRCAT o - 6
USR X 7
GFD 8

Figure 4.1: Average rank for each task across 50 repetitions for each
target. Dark and light grey: ECFP6 and ECFP4. Dark and light green:
FDFP8 and GFD. Dark and light blue: ROCS combination and shape.
Dark and light purple: USRCAT and USR.
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4. Results and Discussion

Table 4.2: AUC rank summary: methodology and interpretation as
per Table 4.1

ECFP6 FDFP8 ROCS
Comb USRCAT ROCS

Shape USR GFD Rank

ECFP4 X X X - - - - 1
ECFP6 X X - - - - 2
FDFP8 X - - - - 3

ROCS Comb - - - - 4
USRCAT X - - 5

ROCS Shape o - 6
USR X 7
GFD 8

Table 4.3: BEDROC20 rank summary.

ECFP6 FDFP8 ROCS
Comb

ROCS
Shape USRCAT USR GFD Rank

ECFP4 X o - - - - - 1
ECFP6 X - - - - - 2
FDFP8 X - - - - 3

ROCS Comb - - - - 4
ROCS Shape X - - 5

USRCAT - - 6
USR X 7
GFD 8

Table 4.4: BMSE rank summary.

ECFP6 ECFP4 ROCS
Comb

ROCS
Shape USRCAT USR GFD Rank

FDFP8 X - - - - - - 1
ECFP6 X o - - - - 2
ECFP4 X - - - - 3

ROCS Comb - - - - 4
ROCS Shape - - - 5

USRCAT - - 6
USR - 7
GFD 8

Table 4.5: GMSE rank summary.

ECFP6 ECFP4 ROCS
Comb

ROCS
Shape USRCAT USR GFD Rank

FDFP8 X - - - - - - 1
ECFP6 X - - - - - 2
ECFP4 X - - - - 3

ROCS Comb - - - - 4
ROCS Shape - - - 5

USRCAT - - 6
USR - 7
GFD 8
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4.1. Benchmarking study

by USR (6.26) and GFD (6.55). As can be seen in Figure 4.1, average rank
on this task is less variable than for the others, and, as such, it is a less
powerful discriminant in this instance.

With the early enrichment (BEDROC20) task, some differences in the rank
order are observed. ECFP4 (2.26) and ECFP6 (2.43) form a clear group at
the top of the rankings, followed by FDFP8 (3.19) and ROCS combination
(3.30, with borderline significance). ROCS shape (5.15) and USRCAT
(5.64) are statistically indistinguishable in their performance on this task.
Finally, USR (6.66) and GFD (7.39) are statistically indistinguishable.

For the diversity enrichment tasks (BMSE and GMSE), a slightly different
pattern is observed. On BMSE, FDFP8 (1.94) and ECFP6 (2.21) are
highest-ranked, and statistically indistinguishable. ECFP4 (2.45) and
ROCS combination (3.77) are next-best on this task, followed by ROCS
shape (4.77), USRCAT (5.97), USR (6.96) and GFD (7.97). With GMSE, the
order is preserved, with FDFP8 (1.97), ECFP6 (2.15), ECFP4 (2.43), ROCS
Combination (4.77), ROCS Shape (3.77), USRCAT (5.97), USR (6.97), and
GFD (7.97).

In summary, USRCAT, USR, and GFD are consistently low-ranked, indi-
cating worse overall performance. ROCS Shape performs moderately well
on the AUC and BEDROC20 tasks, doing somewhat better on the BMSE
and GMSE 5% tasks, indicating the value of shape-driven approaches in
retrieving a diverse subset of the active scaffolds. FDFP8 out-performs
all other shape-based methods profiled on the global (AUC) and di-
versity tasks, and matches ROCS combination on the early enrichment
(BEDROC) task (see Table 4.2 and Table 4.3). Both ECFP methods have
consistently good performance across all tasks, and are highly correlated
with one another. As previously stated, they have statistically-equivalent
overall performance to FDFP8 ( Table 4.1), but perform somewhat better
on the BEDROC20 task, and slightly worse on the diversity tasks.

As this high-level analysis averages performance over the entire set (collat-
ing the results for MUV, DUD, and ChEMBL), we thought it informative
to consider the per-dataset performance, to determine whether the het-
erogeneity of these target datasets, on an inter-target and inter-database
level, could offer further insight into the relative performance of each
method. The per-task, per-database analysis is presented in Figure 4.2. In
addition, a comparison of the OVO and AVA modalities is presented, to
reflect the importance of multi-conformer ligand representations. Given
the similarity in overall performance (see Table 4.1) between ECFP6 and
ECFP4, we will primarily refer to ECFP6 henceforth.
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4. Results and Discussion

Figure 4.2: Distributions of mean AUC, BEDROC(20), BMSE, and
GMSE per target, over 50 repetitions, for the target database (n=88),
for all-vs.-all (AVA) and one-vs.-one (OVO) configurations. Results
for FDFP8 (Green), GFD (light green), ROCS Combination and Shape
(Dark blue, sky blue), USRCAT and USR (Dark purple, light purple)
and ECFP6 (Grey) are shown. ECFP4 is excluded, for simplicity, but is
included in the ranking and statistical analyses.
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4.1. Benchmarking study

For the ChEMBL dataset (n=79), we see that FDFP8 has the best AUC
and BEDROC(20) results of all shape-based methods tested, and the high-
est BMSE and GMSE overall. Methods enriched with pharmacophoric
information perform well on this set, with ECFP6 having best over-
all performance, and both enriched shape methods showing improved
performance over their purely-geometric counterparts. USRCAT out-
performs ROCS Shape on this dataset for both enrichment measures.
This relationship is not observed on the scaffold enrichment tasks, where
both USR and USRCAT have performance levels only somewhat above
random. USR and GFD have notably poorer performance than USRCAT
and FDFP, and the worst overall performance on this dataset.

All methods performed well on the DUD targets (n=21) for the global
and early enrichment tasks. AUC and BEDROC20 performance for ROCS
combination is slightly better than for FDFP8, followed by USRCAT, USR,
and GFD. ECFP6 achieved best overall performance on this dataset for
these two tasks. For scaffold enrichment, we again see a substantial
decline in the relative performance of USR and USRCAT, compared to
the other methods profiled. FDFP and ROCS combination have a better
performance on these tasks than ECFP6.

FDFP is the second-best method for the MUV (n=17) dataset in terms
of enrichment metrics in the AVA configuration, and joint-best in terms
of diversity (with ROCS combination performing somewhat better on
this task, in the first instance). The relative rankings on this dataset are
slightly more complex than in the other cases discussed. For AUC, ROCS
shape is the third-best approach, followed by GFD, USR, USRCAT, and
ECFP6. For BEDROC20, BMSE, and GMSE, ROCS shape is again third,
followed by ECFP6, USRCAT, USR, and GFD.
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Overall AVA
FDFP

OVO
FDFP ECFP6 OVA

FDFP

AVA
ROCS
COMB

OVO
ROCS
COMB

OVO
ROCS

SHAPE

OVA
ROCS
COMB

AVA
ROCS

SHAPE

OVA
ROCS

SHAPE

AVA
USRCAT

OVO
USRCAT

OVA
USRCAT

AVA
USR

OVO
USR

OVA
USR

AVA
GFD

OVO
GFD

OVA
GFD Rank

ECFP4 X X X X X X - - - - - - - - - - - - - 1
AVA FDFP X X X X X - - - - - - - - - - - - - 2
OVO FDFP X X X X - - - - - - - - - - - - - 3

ECFP6 X X X - - - - - - - - - - - - - 4
OVA FDFP X X X o - - - - - - - - - - - 5

AVA ROCS COMB X o - - - - - - - - - - - - 6
OVO ROCS COMB X X - - - - - - - - - - - 7
OVO ROCS SHAPE X X o - - - - - - - - - 8
OVA ROCS COMB X X - - - - - - - - - 9
AVA ROCS SHAPE X X - - - - - - - - 10
OVA ROCS SHAPE X - - - - - - - - 11

AVA USRCAT X - - - - - - - 12
OVO USRCAT X X X - - - - 13
OVA USRCAT X X X X o - 14

AVA USR X X X - - 15
OVO USR X X X - 16
OVA USR X X X 17
AVA GFD X - 18
OVO GFD X 19
OVA GFD 20

Table 4.6: Results of pairwise post-hoc Friedman test for all similar-
ity searching methods implemented in our version of the benchmark-
ing study. Here, we consider the average rank across all metrics, for
each repetition, for each target as our input. ‘X’ indicates that a given
pair has no statistically significant difference in performance, ‘o’ that
the statistic is near to the confidence level, α (0.05), and ‘-’ that there is
a statistically significant difference. Similarity searching methods are
ordered by rank. This table includes all modalities - OVO, OVA, AVA.
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ECFP6 OVO
FDFP

AVA
FDFP

AVA
ROCS
COMB

OVA
FDFP

OVA
ROCS
COMB

OVO
ROCS
COMB

AVA
USRCAT

AVA
ROCS

SHAPE

OVO
USRCAT

OVO
ROCS

SHAPE

OVA
USRCAT

OVA
ROCS

SHAPE

OVO
USR

OVO
GFD

AVA
USR

OVA
USR

AVA
GFD

OVA
GFD Rank

ECFP4 X X X X X X o - - - - - - - - - - - - 1
ECFP6 X X X X X X - - - - - - - - - - - - 2

OVO FDFP X X X X X - - - - - - - - - - - - 3
AVA FDFP X X X X - - - - - - - - - - - - 4

AVA ROCS COMB X X X - - - - - - - - - - - - 5
OVA FDFP X X - - - - - - - - - - - - 6

OVA ROCS COMB X - - - - - - - - - - - - 7
OVO ROCS COMB o - - - - - - - - - - - 8

AVA USRCAT X X X X X o - - - - - 9
AVA ROCS SHAPE X X X X X X o - - - 10

OVO USRCAT X X X X o o - - - 11
OVO ROCS SHAPE X X X X o - - - 12

OVA USRCAT X X X o o - - 13
OVA ROCS SHAPE X X X o - - 14

OVO USR X X X X X 15
OVO GFD X X X X 16
AVA USR X X X 17
OVA USR X X 18
AVA GFD X 19
OVA GFD 20

Table 4.7: As per Table 4.6, considering only the AUC metric.

ECFP6
AVA

ROCS
COMB

OVO
FDFP

AVA
FDFP

OVA
FDFP

OVA
ROCS
COMB

OVO
ROCS
COMB

AVA
ROCS

SHAPE

OVA
ROCS

SHAPE

AVA
USRCAT

OVO
ROCS

SHAPE

OVA
USRCAT

OVO
USRCAT

AVA
USR

OVO
USR

OVA
USR

OVO
GFD

OVA
GFD

AVA
GFD Rank

ECFP4 X X X o o X - - - - - - - - - - - - - 1
ECFP6 X X X X X - - - - - - - - - - - - - 2

AVA ROCS COMB X X X X - - - - - - - - - - - - - 3
OVO FDFP X X X X - - - - - - - - - - - - 4
AVA FDFP X X X - - - - - - - - - - - - 5
OVA FDFP X X - - - - - - - - - - - - 6

OVA ROCS COMB X - - - - - - - - - - - - 7
OVO ROCS COMB X - - - - - - - - - - - 8
AVA ROCS SHAPE X X X o o - - - - - - 9
OVA ROCS SHAPE X X X X - - - - - - 10

AVA USRCAT X X X - - - - - - 11
OVO ROCS SHAPE X X o - - - - - 12

OVA USRCAT X o - - - - - 13
OVO USRCAT X o - - - - 14

AVA USR X X X o o 15
OVO USR X X X X 16
OVA USR X X X 17
OVO GFD X X 18
OVA GFD X 19
AVA GFD 20

Table 4.8: As per Table 4.6, considering only the BEDROC20 metric.
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OVO
FDFP

OVA
FDFP ECFP6 ECFP4

OVO
ROCS

SHAPE

OVO
ROCS
COMB

AVA
ROCS
COMB

AVA
ROCS

SHAPE

OVA
ROCS

SHAPE

OVA
ROCS
COMB

AVA
USRCAT

AVA
USR

OVO
USRCAT

OVO
USR

AVA
GFD

OVA
USRCAT

OVA
USR

OVO
GFD

OVA
GFD Rank

AVA FDFP X X X X X - - - - - - - - - - - - - - 1
OVO FDFP X X X X o - - - - - - - - - - - - - 2
OVA FDFP X X X X - - - - - - - - - - - - - 3

ECFP6 X X X X - - - - - - - - - - - - 4
ECFP4 X X X - - - - - - - - - - - - 5

OVO ROCS SHAPE X X - - - - - - - - - - - - 6
OVO ROCS COMB X X - - - - - - - - - - - 7
AVA ROCS COMB X X - - - - - - - - - - 8
AVA ROCS SHAPE X X - - - - - - - - - 9
OVA ROCS SHAPE X X - - - - - - - - 10
OVA ROCS COMB X - - - - - - - - 11

AVA USRCAT X X - - - - - - 12
AVA USR X X X o - - - 13

OVO USRCAT X X o - - - 14
OVO USR X X X - - 15
AVA GFD X X - - 16

OVA USRCAT X X - 17
OVA USR X - 18
OVO GFD X 19
OVA GFD 20

Table 4.9: As per Table 4.6, considering only the BMSE metric.
OVO
FDFP

OVA
FDFP ECFP6 ECFP4

OVO
ROCS

SHAPE

OVO
ROCS
COMB

AVA
ROCS
COMB

AVA
ROCS

SHAPE

OVA
ROCS

SHAPE

OVA
ROCS
COMB

AVA
USRCAT

AVA
USR

OVO
USRCAT

OVO
USR

AVA
GFD

OVA
USRCAT

OVA
USR

OVO
GFD

OVA
GFD Rank

AVA FDFP X X X X X - - - - - - - - - - - - - - 1
OVO FDFP X X X X - - - - - - - - - - - - - - 2
OVA FDFP X X X X - - - - - - - - - - - - - 3

ECFP6 X X X o - - - - - - - - - - - - 4
ECFP4 X X o - - - - - - - - - - - - 5

OVO ROCS SHAPE X X - - - - - - - - - - - - 6
OVO ROCS COMB X X - - - - - - - - - - - 7
AVA ROCS COMB X X - - - - - - - - - - 8
AVA ROCS SHAPE X X - - - - - - - - - 9
OVA ROCS SHAPE X X - - - - - - - - 10
OVA ROCS COMB X - - - - - - - - 11

AVA USRCAT X X - - - - - - 12
AVA USR X X X o - - - 13

OVO USRCAT X X o - - - 14
OVO USR X X X - - 15
AVA GFD X X - - 16

OVA USRCAT X X - 17
OVA USR X - 18
OVO GFD X 19
OVA GFD 20

Table 4.10: As per Table 4.6, considering only the GMSE metric.
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We repeated the same analysis as above, while considering all con-
former modalities, i.e. OVO, OVA, and AVA, in our ranking study.
While this necessarily adds some level of redundancy, the end results
are important for optimising shape-based screening protocols. Over-
all, the methods maintain the same ordering, within the noise-levels
of the bootstrapped-ranking (FDFP8 and ECFP6 swap positions). For
each method, the ordering of approaches is AVA, then OVO, then OVA.
No statistically-significant difference in overall performance was noted
between all modalities with FDFP8 and USR. OVA was significantly
worse for both ROCS Combination, GFD, and USRCAT than the other
modalities. ROCS Shape resulted in a near-α p-value for OVO- and
AVA configurations. In line with previous studies [64, 260, 263, 414], we
found that there is at best marginal benefit in the addition of multiple
conformers per molecule.

The observed trend varies somewhat from task-to-task. For instance,
OVO-GFD has an indistinguishable performance level to AVA-ROCS
Shape on the AUC task, whilst its AVA-configuration is significantly
worse (Table 4.7). OVO-FDFP is also higher-ranked than AVA, although
this is not statistically-significant at α=0.05. For the BEDROC20 task
(Table 4.8), only the AVA configuration of ROCS combination performed
better than FDFP, although again the difference is not significant. How-
ever, a significant difference was found with OVO-ROCS Combination.
Looking at performance on the two diversity tasks (Table 4.9 and Ta-
ble 4.10), we see that the OVO-configurations of ROCS Combination,
Shape, USRCAT and USR achieve better diversity enrichment than their
multi-conformer equivalents, and that these differences are statistically
significant.

Discussion As discussed by Riniker and Landrum, there is a high-
degree of correlation, in general, between all four tasks described, for the
simple reason that a descriptor which perfectly ranked the compounds
would have maximal AUC and BEDROC20, and scaffold enrichment
values, assuming that the percentage chosen for the latter suffices to
include all active molecules. Still, given that no method is perfect, and
that each gives a different perspective on chemical space [226], it is
informative to consider the variation in these other metrics. Diversity-
retrieval results obtained for the shape-based approaches are promising.
The highest average scaffold enrichment was observed for FDFP, followed
by ROCS combination, and then the ECFP methods. While there is a
broad similarity between the rankings according to early enrichment and
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scaffold enrichment, we do not observe a recapitulation of the simple
linear relationship observed in the purely 2D study initially conducted
(Figure 4.1). For example, although FDFP and ROCS combination have
similar and worse early enrichment, respectively, than ECFP6, they show
improved and equal scaffold enrichment. This relationship was not noted
in the original study by Riniker and Landrum, lending some credence to
the assumption that shape-based methods differ substantially from their
2D brethren.

In terms of global and early enrichment, the ECFP methods were noted
to have the best overall performance in the initial study, and to be use-
ful tools for scaffold-hopping [415]. Based on a statistical comparison
(post-hoc pairwise Friedman test), ECFP6, ECFP4 and FDFP8 are not dis-
tinguishable at the α=0.05 significance level, meaning that each approach
is approximately equally well-performing when all tasks are considered
(Table 4.1). As such, FDFP8, which contains no explicit atom-typing
information, is capable of matching the performance of a gold-standard
2D approach, on sets originally constructed using 2D methods. Notably,
the developed method demonstrates an improved overall performance
over the other 3D approaches profiled, especially in the retrieval of di-
verse scaffolds. While overall scaffold enrichment for FDFP8 was not
significantly improved over an existing fingerprint method (ECFP6), we
saw considerable variation in this relationship when considering the
results on a per-dataset basis.

The importance of the weighting between pharmacophoric and geometric
features seems to differ significantly between datasets, likely reflecting
the biases inherent in their construction. For ChEMBL-AUC, we find
that FDFP8 performs well, but that other shape-based approaches have
significantly poorer enrichment than an established 2D method. This
relationship is also seen with the early enrichment task, albeit to a lesser
extent. For MUV-AUC, however, all shape-based methods, FDFP8 in-
cluded, out-perform ECFP6. One might infer that this approach, and
other purely shape-based methods, capture pharmacophoric type in-
formation implicitly, but this is hard to quantify given that there is no
purely-geometric method with which to compare it. A useful proxy, in
our case, is to compare the performance of the ‘unenriched’ and ‘en-
riched’ shape-based methods, USR and ROCS Shape on one hand, and
USRCAT and ROCS combination on the other. This makes the simplis-
tic assumption that the unenriched approaches do not innately encode
pharmacophoric information. The source of better overall performance
with these ‘enriched’ methods is not entirely clear, although the intu-

124



4.1. Benchmarking study

itive explanation is that it captures additional information necessary for
binding. For the ChEMBL dataset, we see a substantial improvement
in each metric for each of the enriched methods over their unenriched
counterpart. This relationship is preserved for DUD, but to a lesser extent
for MUV, where the relationship is more ambiguous. Given this, it seems
reasonable that the variation is owing to the inclusion of the pharma-
cophoric information; equally, however, it could be that these methods
simply down-weight the importance of a noisy shape-component.

However, as the MUV dataset is the only one which sees improved
performance overall for shape-based approaches than 2D comparators,
and as the enriched methods offer little additional benefit in this instance,
it suggests that the former hypothesis may have more support from these
data. The marginal value of pharmacophoric information seems limited
here, likely owing to the efforts made by the original authors of the
MUV set to ensure that active compounds were embedded within decoy
compounds on a topological basis. The performance of ROCS shape
and combination modalities here are in line with an earlier study on
the same dataset [396]. As the active to decoy ratio is at least five-times
larger than for the other datasets considered, it is difficult to ascertain
whether this variation is fundamental to the sampling strategy employed
in its construction or not. In contrast with an earlier study which focused
solely on the DUD dataset [416], we see a more complex overall picture
for the relative performance of USR-type approximate methods, and
ROCS-type alignment-based approaches, when we consider the other
two datasets.

While the alignment-based approaches demonstrate better retrieval per-
formance, there are a few indicators that the moments-based approaches
offer a novel perspective on chemical space, such as their performance
when compared to ECFP6 on the MUV-AUC experiment, and solid
outcomes for the ChEMBL-AUC experiment as well. USRCAT shows
markedly better overall performance than its equivalent without pharma-
cophoric information, achieving better average AUC than ROCS shape
on the ChEMBL set, and remains inexpensive to calculate. While the
results are not quite as good as those observed with ROCS, there is a
place for such fast, approximate methods, especially in the consideration
of large chemical spaces. Given that this does not correlate with perfor-
mance on the ChEMBL-BEDROC(20) task, it seems plausible that ECFP6
picks what few ‘low-hanging fruit’ are remaining in the somewhat sparse
MUV landscape, as reflected in the limited diversity of the retrieved
compounds (see BMSE and GMSE performance).
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Somewhat surprisingly, overall performance on this dataset was not
worse than on ChEMBL, and in some cases significantly higher, although
this was certainly not the case for the purely topological approach ECFP6
which saw a substantial degradation in performance on all tasks barring
BEDROC20, as previously discussed. One explanation for this observa-
tion is that, for any given query molecule, compounds which possess
a corresponding electronic disposition and a matching shape are nec-
essarily a subset of those with matching molecular shapes. By adding
this information as an additional ordering on the space of compounds,
it appears that such methods substantially improve early enrichment.
As such, it seems plausible that one benefit of pharmacophoric meth-
ods resides in their exclusion of dissimilar compounds, which can have
similar shapes given a broad enough sampling of conformational space.
Given that MUV set is constitutionally difficult to separate based on
simple properties such as charge, the smaller difference observed in
global performance between enriched and unenriched methods for that
set would seem to fit that hypothesis. Additionally, the improvement
in AUC for ROCS shape, USR, and GFD when going from ChEMBL to
MUV has, to the best of our knowledge, not been observed for any of the
2D methods profiled on this platform previously. Again, this suggests a
certain orthogonality between the information captured by geometric and
2D approaches, given that different sets are more separable according to
one family of similarity approaches than another.

Returning to the DUD dataset, the results obtained support the view,
in line with comments made by the creator of that resource [236], that
it is largely inappropriate for distinguishing between LBVS approaches.
Previous work comparing shape-based approaches using this set [416]
concluded that USR and ROCS shape were approximately equally pow-
erful discriminants for DUD actives and decoys, based on AUC alone.
While we see similar AUC values for USR to those published, our AUC
for ROCS shape is substantially higher (approximately 0.19) higher than
found by the authors. Our value for ROCS combination AUC is also
somewhat higher, 0.92 as opposed to to approximately 0.75 in that study.
This likely reflects our overall screening methodology, utilising the max
fusion approach for example, or some improvement in the ROCS code-
base. It is interesting that we see no substantial increase in USR AUC in
this instance, however. USR and USRCAT achieved reasonable perfor-
mance on this dataset, indicating that they capture sufficient information
to distinguish between topologically-distinct molecules.

We see relatively poor scaffold enrichment for USR and USRCAT for
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this dataset, only somewhat indistinguishable from random performance.
While this bears further investigation, a plausible interpretation is that
this reflects both the relatively low scaffold diversity of the DUD set
(0.47 and 0.32 for BMS and GMS respectively), and the higher ratio
of actives to inactives (approximately an order of magnitude higher
than that for MUV), imposing limits on achievable scaffold enrichment
beyond random. Given the homogeneity of many of the DUD active
sets, it is possible that these approaches preferentially retrieve one or
two chemotypes, explaining their decent overall performance. However,
given that the previous study concluded that a simple heavy atom count
sufficed to give equivalent performance to both USR and ROCS shape, the
utility of such comparisons is unclear. This highlights an important issue
with the approach adopted, in that the ranking procedure substantially
overweights one dataset (ChEMBL) by virtue of its higher proportion
of the targets assessed. Equally, the arbitrarily-good performance of
LBVS approaches on the DUD dataset renders comparison somewhat
ineffectual, and calls into question the merit of merging these ranks to
the overall ranking.

Overall, ROCS combination is the ‘winner’ for the DUD dataset amongst
the shape-based approaches, likely reflecting its incorporation of pharma-
cophoric features in the colour score, closely followed by FDFP. As such,
and given the composition of the DUD active and decoy sets, it is likely
in this instance that pharmacophoric features are a much better discrimi-
nator than geometric ones. This does, however, again raise the question
of what we mean by shape; GFD and USR are purely shape-based ap-
proaches, but have approximately random enrichment here, whereas an
alignment-based approach sees considerable improvement from baseline.
Whether this is a trivial matter, owing to the relative ease of alignment of
two topologically-similar molecules, is uncertain, and requires further
investigation. Regardless, the conformational space sampled, and topo-
logical representation of same, suffices to render FDFP approximately
equivalent to ROCS combination and ECFP6 in this instance, lending sup-
port to our conclusion that FDFP captures pharmacophoric information
through its combination of geometry and topography.

In Figure 4.2 we see some interesting relationships, which might help
us test that understanding. USR, for example, shows a decline in per-
formance for the AUC task (ChEMBL and DUD sets) while going from
OVO to AVA. However, the opposite is true for MUV, where there is
a substantial increase, with a higher average AUC than USR or USR-
CAT. The added benefit of multi-conformer representations is clearer,
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overall, for MUV than the other sets, for all shape-based methods other
than FDFP. Why multi-conformer representations should ‘strengthen’
the signal for MUV, and add noise for the other methods is unclear,
but we observe that the ‘unenriched’ methods have substantially higher
variability with AVA than OVO configuration. Despite its surprisingly
competitive performance in the MUV-AUC comparison, GFD seems too
coarse-grained a method for blind-use against large sets. USR, which
has a similar overall performance to GFD, has demonstrated utility in
prospective studies for arylamine N-acetyltransferases[88], and, as such,
it is likely that the utility of these coarser methods depends to a large
extent on the properties of the template ligands and screening databases
in question.

In general, the addition of multiple conformer representations per query
and target molecule offers at best a moderate boost to enrichment and
diversity metrics for all shape-based methods. We observed an approxi-
mately equal increase in power with the OVA and AVA configurations,
although our experimental setup does not let us deconvolute these results
to assess the per-query molecule shift, so it is possible that one or other
configuration has some marginal benefit, and that this is lost in the dou-
ble max-fusion synopsis. These results are somewhat counter-intuitive,
as one might imagine that the benefits of conformational diversity ob-
served with the AVA case should be preserved for OVA; while OVA is
statistically-indistinguishable for FDFP, USR, GFD, and ROCS Shape, en-
tirely shape-based approaches, this is not maintained for those methods
which incorporate pharmacophoric information. In addition, improved
performance in diversity sampling with lower conformer numbers is a
surprising outcome, but one which may be valuable for future large-scale
screening efforts.

As with previous works in this field [416, 417], we observed no significant
correlation between the performance of the methods described and the
number of rotatable bonds in the query compounds. In addition, we
found no significant correlation between AUC per iteration and the aver-
age synthetic accessibility (a proxy for complexity) or molecular weight
for any of the methods profiled. Previous work has found that heavy
atom count has some influence on the achieved enrichment [416], so it is
unclear whether this disparity is owing to some ‘averaging out’ effect of
the max fusion approach, a property of the conformer generation strategy
[390, 418], or a result of the procedures employed in dataset construction
[419]. We did not use the proprietary OpenEye OMEGA[390, 418] con-
former generation software, instead preferring an open-source approach,
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to facilitate the analysis and dissemination of our software. By default,
the OMEGA approach utilises a modified form of the MMFF94 forcefield,
ignoring Coulomb interactions[420], and the attractive component of van
der Waals[390]. As such, we feel the RDKit MMFF94 implementation
to be a reasonable substitute, and a fair method for all trialled software,
given that application of the full forcefield to OMEGA conformations has
been observed to improve ROCS performance [385].

Overall, FDFP8 behaves like a shape-descriptor, with considerably better
performance on the MUV set than purely topological methods, while
maintaining best-in-class performance on the ChEMBL dataset. Its rela-
tive invariance with number of conformers chosen could be an artefact of
the conformer generation approach chosen (perhaps a more substantial
change would be seen with a larger conformational range), but indicates
that this approach could be used in a single-conformer mode without
a major decline in performance. Whilst somewhat surprising on its
face, this is in line with previous findings, that found multi-conformer
representations to be of limited value [64, 219, 260, 414], certainly in
comparison to the multi-query approach [263]. How to choose an ideal
set for multi-query searching is somewhat of an open question, although
diversity-focused methods have been noted to substantially improve per-
formance. Even simplistic multi-query approaches such as that trialled
here resulted in substantial gains in enrichment [396].

4.1.2 Distribution and probabilistic analysis

While AUC and BEDROC20 are useful single-number representations of
similarity distributions, one can also take a more general approach to
their analysis. In principle, an ideal similarity metric should maximise
the Jensen-Shannon divergence (DJS) between P and Q, where these
are the distributions of similarity values for the active and inactive set,
respectively. This formalism allows for a numerical analysis of the
distribution graphs shown in Figure 4.4, in table 4.11.

Results Taking the performance of FDFP8 as an example, we see sub-
stantial differences in P and Q, the similarity distributions for the active
and inactive sets, for the three datasets. In Figure 4.3, DUD shows a mul-
timodal distribution for P, with a substantial rightwards shift. ChEMBL
has next-most separation between distributions, followed by MUV. The
results suggest that the majority of the DUD actives are not embedded
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Figure 4.3: Distribution of similarity values for actives (green) and
decoys (orange) on a per-dataset basis for the FDFP8 descriptor. The
relative difficulty of the overall and early enrichment metrics are a
function of these distributions. ChEMBL and MUV active distribu-
tions resemble that o the decoys, but with more positive skewness.The
multimodal distribution obtained for DUD is qualitatively different.

Table 4.11: Jensen-Shannon divergence (DJS) for the distributions of
active and decoy similarities retained from the benchmarking experi-
ment. DJS and rank (in parentheses) are provided for the distributions
in Figure 4.4, and for the distributions for each dataset individually.
It was not possible to calculate a sensible DJS for GFD. Text in grey
indicates those combinations for which the null hypothesis, that the
similarity for actives is not stochastically greater than that for decoys,
is not rejected at the 0.05 significance level, under the Mann-Whitney
U test.

Overall ChEMBL DUD MUV

ECFP6 0.36 (1) 0.42 (1) 0.60 (1) 0.23 (1)
ECFP4 0.36 (1) 0.42 (1) 0.59 (2) 0.21 (1)
FDFP8 0.34 (3) 0.40 (3) 0.58 (3) 0.20 (3)
ROCS Comb 0.33 (4) 0.36 (4) 0.58 (3) 0.20 (3)
ROCS Shape 0.25 (5) 0.26 (5) 0.45 (5) 0.19 (5)
USRCAT 0.17 (6) 0.21 (6) 0.36 (6) 0.13 (6)
USR 0.09 (7) 0.10 (7) 0.20 (7) 0.09 (7)

within their decoy set, as far as this approach is concerned, which is also
reflected in the computed DJS (Table 4.11).

Considering overall separability of P and Q for the combined datasets,
we see that that there is a clear overall relationship between the degree
of separability of these distributions for each method, and the achievable
enrichment factors. This is apparent from inspection of Figure 4.4, and
supported by Table 4.11. Ranking methods based on DJS results for the
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Figure 4.4: Distribution of similarity values for actives (green) and
decoys (orange) from the combined results obtained from the bench-
marking process. In the cases of FDFP8, ROCS Combination, Shape,
and ECFP approaches, we see a clear separation in the distributions,
with a heavy-shoulder on the actives distribution. USR and USRCAT
have much less obvious separation of actives and decoys. Given the
extremely narrow range for GFD, it is difficult to estimate perfor-
mance from this graph. (section 3.2.2)
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Table 4.12: Mean and standard deviations for the active (P) and
decoy (Q) distributions, by method and dataset. These distributions
are not normally-distributed (normality test, SciPy [421, 422], returns
a p-value below the 0.05 threshold in all instances, recommending
rejection of the null hypothesis that each distribution is normally-
distributed). Methods are ranked in order of performance on the
overall-AUC task.

Method Dataset P (sP) Q (sQ)

ECFP6 DUD 0.50 (0.19) 0.25 (0.05)
ECFP6 MUV 0.32 (0.13) 0.27 (0.06)
ECFP6 ChEMBL 0.39 (0.18) 0.25 (0.04)
ECFP6 Overall 0.37 (0.18) 0.25 (0.05)
ECFP4 DUD 0.57 (0.19) 0.29 (0.07)
ECFP4 MUV 0.37 (0.13) 0.32 (0.07)
ECFP4 ChEMBL 0.44 (0.18) 0.30 (0.05)
ECFP4 Overall 0.43 (0.18) 0.30 (0.06)
FDFP8 DUD 0.72 (0.11) 0.60 (0.07)
FDFP8 MUV 0.66 (0.08) 0.62 (0.07)
FDFP8 ChEMBL 0.64 (0.09) 0.58 (0.06)
FDFP8 Overall 0.64 (0.10) 0.59 (0.06)
ROCS Comb DUD 0.68 (0.16) 0.45 (0.06)
ROCS Comb MUV 0.53 (0.12) 0.47 (0.06)
ROCS Comb ChEMBL 0.49 (0.15) 0.41 (0.05)
ROCS Comb Overall 0.51 (0.16) 0.43 (0.06)
ROCS Shape DUD 0.84 (0.10) 0.74 (0.06)
ROCS Shape MUV 0.78 (0.08) 0.74 (0.07)
ROCS Shape ChEMBL 0.71 (0.10) 0.69 (0.06)
ROCS Shape Overall 0.74 (0.11) 0.71 (0.07)
USRCAT DUD 0.34 (0.13) 0.26 (0.05)
USRCAT MUV 0.30 (0.07) 0.28 (0.05)
USRCAT ChEMBL 0.28 (0.08) 0.25 (0.05)
USRCAT Overall 0.28 (0.09) 0.25 (0.05)
USR DUD 0.85 (0.07) 0.82 (0.07)
USR MUV 0.85 (0.06) 0.84 (0.06)
USR ChEMBL 0.82 (0.08) 0.81 (0.07)
USR Overall 0.83 (0.08) 0.82 (0.07)
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combined distributions results in an identical overall ranking to that
achieved with AUC. The approach is generally sufficient to discriminate
between methods for each dataset, and provides additional numerical
support for the perceived ‘difficulty’ of each dataset, and another per-
spective on the AUC values achieved. We do see some deviation from the
distributions of average AUC recorded in Figure 4.2, possibly reflecting
the variation in P and Q on a per-target basis.

Secondary analysis As a consequence of our modifications to the bench-
marking approach, we retained data on similarity distributions under
each approach, and the recorded similarity values per active compound
per repetition of the experiment. As the discussion of similarity un-
der a new method often ends with the question ‘how similar is similar
enough?’, we utilised these data to construct models to approach an-
swering that question. We assessed two approaches, both of which take
the form of a regression, where the outcome is the pseudo-probability
of activity. As we utilise the results of our prospective application as a
test-set, we will defer further discussion to subsection 4.3.3, for the sake
of clarity.

Discussion We see some broad similarities in the similarity distributions
between some of the approaches, which can be used to explain the single-
valued performance metrics discussed above, and to derive some novel
metrics [423]. ECFP4 and ECFP6 are very similar, as might be expected.
Both USR and ROCS shape have a strongly right-shifted distribution
for both active and decoy sets, indicating that, to a certain extent, many
molecules ‘look the same’ under those approaches. This might serve to
explain the observed scaffold-hopping tendency of these approaches, but
it does not imply equality. Notably, ROCS shape has a clear separation
in the two distributions beyond 0.8 similarity. USR also separates the
two at a higher similarity level, but fewer of the compounds are in this
region, limiting the achievable global and early enrichment. Interestingly,
USR displays a distribution of similarity values where the left-tail, i.e.
the more dissimilar compounds, is heavier than the right, which inverts
the relation seen in all other distributions here, and the pattern typically
observed with virtual screening methods [204]. USRCAT behaves much
more like ROCS combination and FDFP than its unenriched version.
Separation in the right-tail is considerably better, although still less
obvious than for ROCS combination, FDFP, or the ECFP fingerprints.
The distributions of these last three are substantially similar, although
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this obscures relevant parameters such as the relative ranking of diverse
scaffolds.

When comparing the achieved AUC and BEDROC20 (Figure 4.2), we find
that the DJS correlates well with the ranking observed by AUC, indicating
that this information-theoretic measure of distribution separability is
useful in comparing methods. Equally, it suggests that analysing these
distributions in greater detail might help elicit useful cut-off criteria;
this will be discussed in subsection 4.3.3. Interestingly, DJS and MWU
results are not in perfect alignment. Although USRCAT sees a smaller
separability under JSD than ROCS shape, for each database we reject the
H0 that P > Q at the 0.05 significance level, which is not the case for
ROCS shape. For DUD and MUV, there is some disagreement between
the two measures; although the DJS values are higher for both datasets
under ROCS shape than those seen for USRCAT, we see a failure to
reject the H0 for these datasets only in the case of ROCS shape. When
comparing the achieved AUC and BEDROC20 (Figure 4.2), we find that
the DJS order better recreates the relative performance of the methods.
This may be owing to some assumptions of the MWU test, namely that P
and Q should have approximately equal variance. However, in Table 4.12,
we see that variability for Q remains relatively constant for every method,
while the standard deviation of P increases in line with overall increase
in performance on the AUC task. Accordingly, both USRCAT and ROCS
shape have comparatively similar P(sP and Q(sQ values, rendering it
less likely that variation is the cause of the discrepancy, and somewhat
more likely that it results from using a median-sensitive statistical test
for a problem where extreme-values are most often of interest.
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4.1.3 Algorithm Run-time Performance

A frequent criticism of 3D methods in virtual screening is the added over-
head compared to lower-dimensional approaches. This relatively-heavy
computational requirement serves as a barrier to the wider adoption of
these methods. As such, methods to reduce this could facilitate broader
usage of shape-based approaches, and their integration into the virtual
screening pipeline at an earlier stage [424].

Results If we take the similarity benchmarking experiment as an exam-
ple, generating ECFP6 fingerprints for each dataset, and then performing
the repeated similarity screening experiment described in Figure 3.5
takes 35±3 minutes wall-clock time on a 20-core machine (5 repetitions),
which includes app. 57 million pairwise similarity comparisons, of which
just over one minute is required for fingerprint generation. All times to
follow are wall-clock on the machine described in section 3.7, but in each
case are trivially parallelisable.

Conformer generation is typically the rate-limiting step for alignment-
independent shape-based methods. Sampling 1000 molecules at random
from the three databases, conformer generation using the procedure pre-
viously described takes 18±8 seconds. For the complete set of molecules
in the three databases (n=176,225), conformer generation takes 57 min-
utes. USR and USRCAT vector description and similarity calculation are
then only slightly slower than the ECFP method. Given that approxi-
mately 5 conformers are retained per molecule (n=939,550), the influence
of this secondary stage is multiplied by approximately 52. As such, the
benchmarking experiment takes approximately two hours for USR or US-
RCAT. The primary cause for the discrepancy in observed and expected
times is due to the much larger number of pairwise comparisons which
are made on each repetition, owing to the number of conformers per
molecule, and on the additional post-processing of this data to give a
sensible output.

FDFP8 calculation, including molecular surface generation, FD calcula-
tion, and the fingerprinting process, takes an average of 35±7 seconds
over 50 random samples of 1000 molecules from each of the datasets, or
55±12 if minimisation is included. Minimisation aside, larger molecules
take slightly longer, on average, but this effect plateaus at a certain point,
with macromolecules taking up to ten times as long as small molecules.
Fingerprint generation takes approximately eight minutes. In total, then,
the first run using the FDFP8 method takes approximately nine hours.
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Subsequent runs take approximately as long as the ECFP method, as the
fingerprints can be loaded into memory, or recomputed on the fly, in a
reasonable time frame.

The equivalent procedure (combining ROCS combination and ROCS
Shape) , takes a total of 95 hours, plus initial conformer generation. The
expense primarily comes from the computational cost and complexity of
pairwise alignment. In short, ECFP is more than an order-of-magnitude
faster than USR/USRCAT when considering conformer generation. In
turn, these methods are roughly five times faster than FDFP, which is, in
turn five times faster than ROCS for its initial calculation, and more than
two orders faster for subsequent repetitions of the experiment.

The overhead of calculating and retaining additional metrics means that
it is difficult to generalise from these figures. A simple implementa-
tion of pairwise similarity calculation for ten conformers of compound
1a against the ‘immediately available’ subset of ZINC15 (n=10,285,641)
takes 40±2 seconds (5 repetitions) on a single-core machine. The same
calculation would take between 50 and 100,000 seconds on an equally
powerful CPU, according to data from the OpenEye ROCS website, or 100
seconds using their recent FastROCS GPU-accelerated implementation
(bit.ly/FastROCS).
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Discussion In practice, this means that shape-based screening against
millions of compounds can be accomplished with our method in a similar
time-frame to traditional 2D approaches, assuming that the libraries are
pre-computed, and on widely-available hardware, such as a commercial-
standard laptop. To the best of our knowledge, no publication has
been released to date discussing the relative characteristics of ROCS vs.
Fast ROCS, so it is unclear to what extent the analysis performed here
generalises to results obtained with that approach.

One would imagine that a commensurate speed-up could be accom-
plished with the initial computation, and subsequent pairwise similarity,
under our approach, given that in both cases the rate-limiting process is
based on pairwise distance calculation, which is trivially parallelisable. A
20-40 times speed-up on similarity searching [425] and a linearisation of
pairwise similarity searches on conventional hardware have recently been
demonstrated for other binary vectors [426, 427]. Additionally, the FDFP
approach is property-independent in the comparison stage, meaning that
highly-flexible molecules impose no additional overhead, for example.
These rates of comparison allow for the shape-based consideration of a
much larger swathe of chemical space than has previously been feasible
in a reasonable time-frame.
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4.2 Shape searching for de novo (-)-Englerin A
Mimetics

Parts of this section are published as: Shape Similarity by Fractal Di-
mensionality: An Application in the de novo Design of (-)-Englerin A
Mimetics. [403]
Authors: Lukas Friedrich, Ryan Byrne, Michael Mederos y Schnitzler,
Aaron Treder, Inderjeet Singh, Christoph Bauer, Thomas Gudermann,
Ursula Storch and Gisbert Schneider

Summary Continuing earlier work [330] with the natural product (-)-
Englerin A, we sought to determine whether shape similarity could work
to enrich a group of de novo designed compounds build on a pharma-
cophoric template. We utilised the GFD descriptor, to see whether a
coarse-grained measure without local shape environments could cap-
ture useful information for the selection of novel compounds. Given
the diversity of the compounds retrieved from our de novo designed
library, we found that a global, shape-based approach confers similar
enrichment, while capturing diverse actives than a fingerprint approach.
We identified a promising hit compound representing a scaffold hop
from the template natural product, and conducted a small shape-focused
SAR to determine the tolerance to substitution of the identified scaffold.

4.2.1 Similarity and SAR studies

Retrospective analysis We begin with an analysis of three data sets; (i)
the initial de novo design set (323 computer-generated molecules), (ii)
the thirty top-ranked compounds in terms of global fractal dimensional-
ity distance (GFD distance), and (iii) the thirty top-ranked compounds
compounds according to their topological pharmacophore similarity
(CATS distance) to (-)-Englerin A. Set (iii) was included to compare the
GFD ranking approach with the CATS approach described previously.
[330] As a first approach, we extracted the molecular scaffolds (BMS) of
these compounds and analysed their scaffold diversity in terms of the
pairwise Jaccard-Tanimoto coefficient (Tc) based on Morgan structural
fingerprints (radius = 2; equivalent to ECFP4). The 323 initial de novo
designs consisted of 152 unique scaffolds (47%) with high diversity (Tc
= 0.18). The 30 top-ranked molecules according to glsgfd distance con-
tained 24 unique (80%) and diverse (Tc = 0.17) scaffolds, whereas the 30
top-ranked compounds by CATS distance comprised 19 unique scaffolds
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(63%) with slightly lower diversity (Tc = 0.24). Only two scaffolds were
present in both top-ranking sets.

Second, we employed an experimentally-validated target-prediction soft-
ware (SPiDER [405, 406]) to provide an estimate of the likelihood of a
given compound being active against the target family ‘Transient Recep-
tor Potential Ion Channel’. The top 30 compounds retrieved by screening
with the GFD, USR, SHAEP, and ECFP4 methods were analysed to de-
termine their SPiDER predicted activity (number of compounds with an
annotated p < 0.05) for the target family, and the proportion and diversity
of the unique molecular scaffolds for the predicted active compounds was
analysed. We also performed activity prediction and diversity analysis
for the library in its entirety (predicted actives = 0.25, scaffold diversity =
0.47).

GFD retrieved 10 compounds predicted as active, each with a unique
scaffold (predicted actives = 10, proportion of unique scaffolds = 1.0,
diversity of unique scaffolds (pairwise Tc) = 0.22). The SHAEP approach
retrieved fewer predicted-active compounds, also all having unique scaf-
folds (6, 1.0, 0.21). USR retrieved the same number of predicted actives
as the SHAEP approach, with fewer unique, but highly diverse, retrieved
scaffolds (6, 0.66, 0.12). ECFP4 retrieved the same number of predicted
actives as GFD, but with fewer, less diverse, unique scaffolds (10, 0.8,
0.33). Given that topological approaches were used in the processes of
library generation and target prediction, it is corroborative that the GFD
approach, which treats sub-structural information implicitly, achieved
a similar predicted-active retrieval performance under evaluation with
topological methods.

In summary, SHAEP and USR have slightly poorer-than-random perfor-
mance in terms of proportion of predicted actives in their top-ranked
lists (0.2 for each), with variation in number and diversity of retrieved
scaffolds. ECFP4 and GFD retrieve an identical number of predicted
actives, with GFD having a higher, and highest-overall, number of unique
molecular scaffolds in the predicted active compounds retrieved. Cal-
culated physicochemical properties of the GFD top-ranked compounds
were comparable to both the initial de novo design set (DOGS) and
the pharmacophore top-ranked compounds (CATS) (see Appendix 1,
Figure 1).

Prospective analysis For our prospective application, we selected the
thirty top-ranked compounds according to their GFD distance, and
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Figure 4.5: Illustration of workflow for search for synthetic ana-
logues of compound 1a, the natural product (-)-Englerin A (com-
pound 1a). Our active synthetic analogue, compound 2, identified
through GFD screening against a library of synthetically-accessible
compounds as described in section 3.3, GFD Virtual Screening, and
SAR, was developed into a small series based on two hypotheses. One
was that the menthol group was possibly crucial for activity, but that
altering it might allow for greater TRP subtype selectivity. This led
to compounds 2a, 2b, and 2c, testing the tolerance to an aromatic re-
placement, of similar shape, a more simple ring structure, and the tol-
erance for substituents, respectively, with thymol, phenol, and cresol
substituents. The secondary hypothesis was that ‘cutting’ the ring
structure to form a proline-backbone, would allow for a better shape
match, based on visual assessment of a flexible alignment, and might
therefore result in better shape similarity to compound 1a, leading
to compound 2d. In addition, this allowed us to explore the effect of
reduced backbone rigidity in this series of compounds. Compound 3
has only a weak inhibitory effect on TRPC4. Compound 4 is the most
potent known inhibitor of TRPC4 and is included as a reference for
the shape-based comparison. Synthesis and selection of SAR study
compounds was carried out by Dr. L. Friedrich.
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Figure 4.6: Min-max scaled pairwise similarity matrix for com-
pounds 1, 2, 2a–d, 3 and 4 under GFD and FDFP8. Graph a shows the
maximum pairwise similarity (complement of Euclidean distance) un-
der GFD, and b under FDFP8 (Dice similarity, 1024-bit representation),
for a series of ten conformers of each compound. As such, the second
square in the first row of graph a details the maximum similarity ob-
tained when comparing ten conformers of compound 1a to the ten
conformers generated for 1b, for instance. This is then scaled by the
maximum and minimum similarities obtained for the entire matrix
(barring the diagonal), to place the result into a useful range for visual
inspection of graphs a and b, as they have different innate scales ow-
ing to their basis in different descriptor-coefficient pairings. As such,
values here cannot be directly compared with those described else-
where in this work. In general, we see that GFD has higher average
pairwise similarities (0.83±0.26) than FDFP8 (0.37±0.32). Compound
identifiers are as per Figure 4.5, opposite.
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utilised computational target prediction to further refine our selection.
Of these, nine had p values ≤ 0.05 for the target class ‘TRP Ion Channel’.
We selected compounds 2 and 3 for synthesis and bioactivity evalua-
tion, considering their synthesisability and building block availability
(Appendix, Section Figure 2).

Based on the results of this initial study, and on the detailed charac-
terisation of the interactions of compound 2 with a subset of TRP ion
channels carried out by our collaborators, we proceeded to generate a
small structure-activity relationship series, as illustrated in Figure 4.5, to
determine the importance of two structural features. Given the novelty
of the menthol moiety in inhibitors of TRPC4, we sought to determine
whether substitution of the menthol moiety in compound 2 is toler-
ated, and whether modifications would increase selectivity for TRPC4 vs.
TRPM8 inhibition. Tolerance of substitution of the cyclopentapyrrole for
a pyrrolidine was assessed. One suggestion, based on visual observation
by an expert medicinal chemist, was that such a ‘ring cut’ would improve
the quality of a generated overlap between compounds 1a and 2. In
addition, this substitution would substantially alter the rigidity of the
molecule. All selection and synthesis was performed by Dr. L. Friedrich.

4.2.2 Comparative similarity analysis

To compare the newly-selected SAR compounds to the original template,
and the identified inhibitor, we adopted both of the FD methods dis-
cussed thus far, GFD and FDFP. For each compound in the set described
in Figure 4.5, we generated a washed structure (subsection 3.1.3) and a
set of ten diverse conformers using the procedure described in subsec-
tion 3.1.4, to ensure an adequate sampling of conformational space. We
then constructed separate pairwise similarity matrices for each metric.
We calculate GFD and FDFP8 descriptors for each conformer generated,
and then perform a version of the max-fusion approach previously dis-
cussed Figure 3.4. For each pair of molecules, this results in a single
number for each method, which represents the maximal similarity ob-
served between the set of conformers for each molecule, under a given
method and comparison coefficient. For GFD, this is the complement of
the Euclidean distance (Equation 3.3). For FDFP8, the Dice coefficient,
utilising a 1024-bit vector representation. Finally, each matrix is further
processed by use of a min-max scaling procedure (Equation 3.21). As
method-coefficient combinations result in different natural ranges for
the resulting similarity values, this procedure is performed to allow
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Table 4.13: Compound-wise average similarity for Figure 4.6. Diago-
nal is masked, i.e. self-similarity is removed from the calculation. We
see that average similarity values are substantially higher for GFD
than FDFP.

Compound ID Mean GFD
Similarity (SD)

Mean FDFP
Similarity (SD)

1a 0.83(0.25) 0.22(0.19)
1b 0.87(0.22) 0.21(0.20)
2 0.75(0.31) 0.38(0.26)
2a 0.93(0.12) 0.40(0.24)
2b 0.82(0.16) 0.40(0.27)
2c 0.92(0.10) 0.40(0.25)
2d 0.86(0.25) 0.38(0.23)
3 0.91(0.18) 0.17(0.05)
4 0.40(0.24) 0.07(0.04)

for approximate visual comparison, and more meaningful numerical
comparisons, between methods, to highlight the differences between
approaches.

In Figure 4.6, we see a visualisation of these scaled GFD and FDFP8 pair-
wise similarity matrices. The GFD similarity matrix has a notably higher
and less variable (0.83±0.26) average overall pairwise similarity than that
observed with FDFP8 (0.37±0.32). This is also evident, graphically, in the
relative colouration of the two matrices.

If we consider the overall similarity of each compound to the remainder
(see Table 4.13), we find that average GFD similarity is substantially
higher in each instance. In each case, compound 4 is most dissimilar
from the other compounds. For GFD, compounds 1a,b are essentially
indistinguishable (similarity = 0.99). This effect is not replicated with
FDFP (0.71). Compound 2a is more similar to compound 4 (0.80) than its
parent molecule, compound 2 (0.68), and approximately equally similar
to the original template, compound 1a) (0.82). The corresponding values
for FDFP8 are 0.64, 0.03, and 0.11. Under both methods, compounds
2a, 2b and 2c are more similar (GFD: 0.99, FDFP: 0.71) to each other
than to 2d, the proline derivative (0.93, 0.44). In general, FDFP seems
less permissive than GFD, considering the relative similarity values to
compounds 1a,b, 3, and 135 noted for each approach.
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Table 4.14: Activity data for the template molecule, 1a, and our GFD-
selected compounds, 2 and 3. n.d. indicates that a measurement was
not determined.

Target Comp 1a Comp 2 Comp 3

TRPC4 (IC50) 0.011 µM >100 µM >100 µM
TRPC4 (EC50) No effect 5.1±1.8 µM >100 µM
TRPM8 (IC50) 3 µM 1.8±1.1 µM >10 µM
TRPA1 (IC50) 2.62 µM >100 µM n.d.
TRPV3 (IC50) 2.84 µM >100 µM n.d.
TRPV4 (IC50) 3.91 µM 39±1µM n.d

Table 4.15: Inhibition data for TRPM8 and TRPC4 for the series of
SAR compounds developed from compound 2. Asterisk indicates that
standard deviations are not yet available for these data as of time of
writing.

TRPM8 IC50
(µM)

TRPC4 Inhibition
(% at 10 µM)

Comp 2 1.8±1.1 49.6±9.13
Comp 2a 3.3* 30.6±7.32
Comp 2b 10* 26.4±17.1
Comp 2c 2.5* 31.9±14.6
Comp 2d 2.7* 15.3±17.8

4.2.3 Bioactivity Results

To assess their bioactivity profiles, compounds 2 and 3 were profiled
in several TRP assays, in which compound 1a showed activity (TRPC4,
TRPM8, TRPA1, TRPV3, TRPV4). Since compound 1a is a potent TRPC4
channel activator, we analysed the modulatory effects of compounds 2
and 3 on TRPC4 channels. Compound 3 had only a weak inhibitory
effect of ≤ 20% on TRPC4 currents at a concentration of 100 µM per-
forming electrophysiological whole-cell measurements with TRPC4 over-
expressing HEK293 cells (section 5). In contrast, compound 2 showed
inhibitory effects on TRPC4 channels in the same electrophysiological
assay (Figure 2). Compound 1a was used to elicit maximal TRPC4 cur-
rents. Application of stepwise increasing compound 2 concentrations
in the presence of compound 1a decreased the compound 1a-induced
TRPC4 currents. As a control, 1a was applied for a second time inducing
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maximal TRPC4 currents which were used for normalization. The sum-
mary of the maximal outward currents induced by 1a in the presence of
compound 2 reveals an IC50 for compound 2 of 5.1±0.8 µM (Ki = 0.9 µM).
Thus, we could identify compound 2 as a novel TRPC4 channel blocker,
and the first known menthol-containing compound to interact signifi-
cantly with that channel. This was confirmed by substructure searching
in the ChEMBL and PubChem databases.

Considering the inhibitory data in Table 4.15, we see that all derivatives
have a lower inhibition of TRPC4 at 10 µM than the template compound
2. Compounds 2a and 2c see a mild-to-moderate loss of activity for both
TRPC4 and TRPM8. Compound 2b has further reductions in each.The
same series of changes somewhat reduces TRPC4 inhibitory ability also.
TRPC4 inhibition was largely abolished for the ‘ring-cut’ derivative,
compound 2d, whilst the reduction in TRPM8 inhibitory effect is minimal.
Although this compound was closer to compound 2 under both FD
approaches (GFD and FDFP8) than it was to the menthol derivatives, it
sees a much more substantial reduction in TRPC4 inhibitory effect. Both
GFD and FDFP8 identify compound 2d as the least similar derivative to
compound 4, but this applies equally to compound 2 itself.

4.2.4 Discussion

Therefore, based on this small study, it seems that substitutions of the
menthol group are largely tolerated for TRPM8 inhibitory activity, with
the least similar compound (2b) from this series of derivatives (2a, 2b
and 2c) under GFD to compounds 1a and 2 showing the most substantial
reduction in effect. As such, this study emphasises that both GFD and
FDFP8 are useful tools for scaffold-hopping and exploring options which
might not occur to a chemist, but equally that any similarity method
‘without intelligence’ can sometimes struggle to identify which parts of a
molecule are important for bioactivity.

Combining approaches, such as integrating CATS or SPiDER can help
to overcome the limitations of individual methods, but each method
has its own strengths as well. This issue is, of course, not unique to
our approach, but is a more general consideration when attempting to
navigate biological space with a chemical map. Although we were able
to identify a reasonably potent, novel scaffold, a similar study where
2 was replaced in the library with one of its derivatives would quite
possibly be registered as a failure; as such, the presence of activity
cliffs [33] in chemical space continues to confound attempts at rigorous
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method evaluation with prospective screening. Quantifying the strengths
and weaknesses of developed methods is essential to deploying them
appropriately when we come to ‘real-world’ tasks, but without a broad
statistical basis, and good approaches to compare developed descriptors
and strategies, it remains difficult to see the cliff ahead of time.
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4.3 Prospective study

Summary Having conducted a focused study investigating the potential
of GFD as a coarse screening metric, we decided on a larger-scale profiling
of FDFP, based on improved performance in the retrospective tasks (see
subsection 4.1.1), and finer discrimination between groups in the natural
product study (see subsection 4.2.2). As such, we performed a large-
scale virtual screening for seven targets of pharmaceutical interest, for
which multiple high-potency compounds were previously known, and
which we have previously adopted in our lab as a diverse set for the
benchmarking of virtual screening methods.

A common criticism of LBVS validation efforts is that, owing to the
dearth of established benchmarking standards, authors have a large
degree of latitude in defining criteria for success. In the retrospective
study, we adopted an established benchmarking platform, to limit op-
portunities to introduce bias. To address this in the prospective case,
we opted for a strategy which, while likely reducing the number of
retrieved actives, would allow us to determine the relationship between
similarity and activity for our target sets over a larger range. Activity
cliffs, where small shifts in chemical space can dramatically curtail bioac-
tivity, are a known hazard in QSAR construction, and, equally, to the
utility of similarity-screening methods [428–431]. Given the novelty of
the FDFP approach, we attempt to quantify this ‘dropping-off’ in activity,
by selecting compounds with a range of FDFP8-Dice similarity values
to known templates (see subsection 3.4.1). This approach allows us to
assess the generalisability of insights inferred from our retrospective
data to a prospective, shape-driven screening approach. In so doing, we
likely reduce the proportion of active compounds retrieved, but create a
high-quality dataset and testing framework, allowing for further analysis
of the utility of the approaches discussed thus far.

Overall, 28/130 (22%) compounds tested were active at their intended
target, with this figure rising to 42% for retrieved compounds over the
similarity threshold. Of these 28 compounds, 22 had BMS which were not
known for their respective targets, based on a survey of publicly-available
biochemical data. Using these activity and similarity data, we utilised
a probability model trained on data retained from our benchmarking
study, and assessed the applicability of insights learned from these to
our FDFP-ordered space. We found that the FDFP8 model generalised
well in this case, with others showing reduced performance, and that the
method retrieves compounds which are not predicted to be active by two
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popular target-prediction software.

4.3.1 Target overview

We selected seven targets of pharmaceutical interest, differing substan-
tially in their structure and function, which we have previously used
in-house for LBVS method validation (unpublished) (Table 3.2).

Adenosine A2a (A2A), a GPCR with a somewhat unusual binding pocket
[432] which results in extended ligand conformations, is a target of
interest in several immunologic [433], and neurological disorders, in-
cluding Parkinson’s disease [432]. Additional reports have suggested
that A2a inhibition might increase the efficacy of multiple-checkpoint
inhibitors [434]. Cannabinoid-receptor 1 (CB1) is another GPCR, and a
native target of endogenous cannabinoids. Interestingly, this receptor
has been targeted with antagonists, inverse agonists, and agonists, for
varying reasons. Inverse agonists, such as Rimonabant, were found to aid
weight-loss and smoking-cessation efforts, although it was discontinued
in severak markets owing to negative psychiatric effects [435]. Agonists,
such as Dronabinol, have powerful anti-emetic and anti-nauseatic effects,
and also act as appetite stimulants [436]. The metabotropic glutamate
receptor 5 (mGluR5) is a GPCR target of considerable interest in the
development of anxiolytic, antidepressant and anti-addictive medications
[437]. Inhibitors of this receptor also seem to have a specific impact on
suicidal ideation [438].

The glucocorticoid receptor 1 (GRG) is a cytosolic nuclear receptor, and
an a target of endogenous cortisol, involved in the regulation of gene
transcription throughout the body. As such, regulating their activity
allows for modulation of inflammatory and immunological processes.
The majority of approved drugs are agonists, such as dexamethasone,
but antagonists, such as mifepristone, are also of medical interest [439–
441]. The peroxisome proliferator-activated receptor delta (PPAR-δ) is a
nuclear hormone receptor. The family of receptors have established use
as targets of antidiabetic and antihypercholesterolaemic drugs (fibrates,
thiazolidindiones), although PPAR–γ activation has been associated with
adverse outcomes, and a poor side-effect profile. Although it remains con-
troversial [442, 443] , PPAR-δ agonists have been proposed as antidiabetic,
anti-neurodegenerative, and anti-atheroschlerotic agents. Additional
proposed activities are as anti-inflammatory agents [444]. However,
some sources [445–447] have suggested a proliferative effect for PPAR-δ
agonists in colon cancer cell lines.
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Mitogen-activated protein kinase 8, or c-jun N-terminal kinase (JNK1)
plays an important, and wide-ranging role in the regulation of immune
and inflammatory responses, through interactions with c Jun, TNF-α, and
NF-κB [448], and is of interest as an anti-proliferative and anti-neoplastic
target of small molecule inhibitors [449]. Some reports suggest that JNK1
inhibitors could be of use as neuroprotective agents in cases of ischaemic
stroke [450].

Finally, the proto-oncogene serine/threonine-protein kinase (PIM1) is
involved in cytokine signalling and transcription regulation. Inhibitors
of this kinase have been proposed as novel approaches to inhibiting
amyloid plaque formation [451], but interest has primarily come from
investigations into their effects as antineoplastic agents [452], specifically
for head-and-neck cancers, myeloma, lymphoma, and myeloid leukaemia
[453]. Given this, it remains the focus of active development efforts, with
nearly 40 patents published between 2009-2013, for example [454–456].

4.3.2 Compound selection

For each of the targets discussed in subsection 4.3.1, a subset of com-
pounds with a ‘standard value’ ≥7 were extracted from the ChEMBL
database (see subsection 3.4.1), and limited to those compounds display-
ing the desired agonistic or antagonistic effect. We sampled compounds
with a range of similarity values, choosing top hits, and those around
the 1000th rank. Other approaches, such as binning similarity values,
were considered, but having sufficient coverage of the distributions for
seven targets would require a significantly larger experiment. Our sim-
plistic approach allows for dense coverage of the space of most interest
in typical LBVS efforts, i.e. the top-ranked compounds, whilst allowing
us to describe how the likelihood of activity tails off over this range. 131
compounds had their activities profiled overall; approximately 20 per
target, depending on eventual availability in sufficient quantity at the
supplier.

Activity data After assay as described in subsection 3.4.1, activity data
were obtained for 131 compounds. One compound displayed non-specific
interactions, and has been excluded from further analysis as its activity
could not be determined. As discussed in subsection 3.4.1, we discre-
tise the absolute percentage inhibition/activation values to determine
whether or not a compound is active, at the 30% threshold, except for
those compounds tested on PPAR-δ, where an EC50 criterion is used.
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Cmpd. 5 Cmpd. 6

Cmpd. 7 Cmpd. 8

Cmpd. 9 Cmpd. 10

Cmpd. 11 Cmpd. 12

Cmpd. 13 Cmpd. 14

Figure 4.7: Compounds purchased for testing against the A2a recep-
tor
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Figure 4.7: Cont.
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Cmpd. 25 Cmpd. 26

Cmpd. 27 Cmpd. 28

Cmpd. 29 Cmpd. 30

Cmpd. 31 Cmpd. 32

Cmpd. 33 Cmpd. 34

Figure 4.8: Compounds purchased for testing against the CB1 recep-
tor
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Figure 4.8: Cont.
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Cmpd. 43 Cmpd. 44

Cmpd. 45 Cmpd. 46

Cmpd. 47 Cmpd. 48

Cmpd. 49 Cmpd. 50

Cmpd. 51 Cmpd. 52

Figure 4.9: Compounds purchased for testing against the GRG recep-
tor
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Figure 4.9: Cont.
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Cmpd. 61 Cmpd. 62

Cmpd. 63 Cmpd. 64

Cmpd. 65 Cmpd. 66

Cmpd. 67 Cmpd. 68

Cmpd. 69 Cmpd. 70

Figure 4.10: Compounds purchased for testing against the JNK1
receptor
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Figure 4.10: Cont.
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Cmpd. 82 Cmpd. 83

Cmpd. 84 Cmpd. 85

Cmpd. 86 Cmpd. 87

Cmpd. 88 Cmpd. 89

Figure 4.11: Compounds purchased for testing against the mGluR5
receptor
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Figure 4.11: Cont.
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Cmpd. 100 Cmpd. 101
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Cmpd. 104 Cmpd. 105
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Cmpd. 108 Cmpd. 109

Figure 4.12: Compounds purchased for testing against the PIM1
receptor
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Figure 4.12: Cont.
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Cmpd. 125 Cmpd. 126

Figure 4.13: Compounds purchased for testing against the PPAR-δ
receptor
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Cmpd. 127 Cmpd. 128

Cmpd. 129 Cmpd. 130

Cmpd. 131 Cmpd. 132

Cmpd. 133 Cmpd. 134

Figure 4.13: Cont.
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Overall, 28 out of 130 compounds were active at their intended target,
an overall hit rate of 22%. As previously discussed, we chose to sample
compounds over a broad range of similarity values, based on FDFP8-
Dice similarity, such that we could better define the relationship between
shape-similarity and on-target activity for this novel approach. Using
the cutoff threshold obtained from an isotonic model trained on the
benchmarking training set (see Table 4.21), we find that, under FDFP8,
we achieve a hit rate of 42% (n=26). This compares to 70% (n=12) , 66%
(n=6) , 50% (n=1) and 25% (n=1) for ECFP6, ROCS Combination, ROCS
Shape and USRCAT, respectively (See Figure 4.14). As such, the recall of
our FDFP model is substantially better than was achieved for the other
similarity methods considered (See Table 4.21) on this set of compounds.

A complete listing of compound activity values is found in Table 4.17
and Table 4.16. To the best of our knowledge, only two of the tested
compounds were previously known as inhibitors of these targets (Com-
pounds 5 and 43). No significant correlation with incidence, i.e. the
number of times a given compound was highly-ranked in the repeated
ranking process, was observed. The number of active compounds re-
trieved per target varied; A2A (8), CB1 (2), GRG (4), JNK1 (2), mGluR5
(3), PIM1 (5), PPAR-δ (4). For JNK1, PIM1, and PPAR-δ (see Table 4.16,
Table 4.16), subtype-selective active compounds were identified. No
similar tests were carried out for the other targets profiled.
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Table 4.16: Activity data, and predicted activity, collated for all com-
pounds tested in the FDFP prospective study. Grey areas indicate
that a given value is not relevant for that combination of target and
compound.

Target Mol ID FDFP8 ECFP6 SEA SPiDER % Act/Inact

A2a 5 0.92 1 3 7 -101 3

A2a 6 0.88 0.74 3 7 -5 7

A2a 7 0.86 0.78 3 3 -67 3

A2a 8 0.86 0.72 3 3 -100 3

A2a 9 0.83 0.51 3 7 -50 3

A2a 10 0.83 0.7 3 3 -96 3

A2a 11 0.81 0.35 7 3 0 7

A2a 12 0.81 0.7 3 3 -92 3

A2a 13 0.8 0.4 3 3 -38 3

A2a 14 0.74 0.41 7 7 0 7

A2a 15 0.73 0.46 3 7 -2 7

A2a 16 0.59 0.34 7 7 0 7

A2a 17 0.56 0.36 7 7 -33.23 3

A2a 18 0.56 0.4 7 7 0 7

A2a 19 0.54 0.38 7 7 0 7

A2a 20 0.53 0.39 7 3 0 7

A2a 21 0.52 0.44 7 7 -1.07 7

A2a 22 0.52 0.37 7 7 0 7

A2a 23 0.51 0.34 7 7 0 7

A2a 24 0.49 0.32 7 3 -6.34 7

CB1 25 0.78 0.63 3 3 5 7

CB1 26 0.77 0.44 3 7 3 7

CB1 27 0.76 0.45 3 3 13 7

CB1 28 0.76 0.4 3 3 12 7

CB1 29 0.76 0.49 3 7 -41 3

CB1 30 0.75 0.68 3 3 78 3

CB1 31 0.75 0.33 7 7 -15 7

CB1 32 0.74 0.46 3 7 -4 7

CB1 33 0.72 0.54 7 3 24 7

CB1 34 0.61 0.4 7 7 0 7

CB1 35 0.6 0.43 3 7 12.5 7

CB1 36 0.56 0.41 7 7 -12.46 7

CB1 37 0.53 0.47 7 7 -0.9 7

CB1 38 0.52 0.33 7 7 0 7
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Table 4.16 continued from previous page

Target Mol ID FDFP8 ECFP6 SEA SPiDER % Act/Inact

CB1 39 0.52 0.38 7 7 0 7

CB1 40 0.52 0.4 7 3 10.02 7

CB1 41 0.52 0.41 7 7 2.35 7

CB1 42 0.5 0.32 7 7 -5.63 7

GRG 43 0.84 1 3 3 101 3

GRG 44 0.82 0.69 7 3 95 3

GRG 45 0.8 0.86 3 3 95 3

GRG 46 0.74 0.54 3 7 2 7

GRG 47 0.72 0.52 3 7 3 7

GRG 48 0.7 0.5 3 7 11 7

GRG 49 0.68 0.38 7 3 19 7

GRG 50 0.61 0.49 3 7 12 7

GRG 51 0.54 0.34 7 7 -1.9 7

GRG 52 0.51 0.35 7 3 -9.26 7

GRG 53 0.51 0.28 7 7 0 7

GRG 54 0.49 0.29 7 7 -1.54 7

GRG 55 0.49 0.34 7 7 -37.83 3

GRG 56 0.49 0.33 7 7 0 7

GRG 57 0.48 0.32 7 7 -4.28 7

GRG 58 0.48 0.3 7 7 0 7

GRG 59 0.46 0.27 7 7 -0.36 7

GRG 60 0.44 0.35 7 7 0 7

JNK1 61 0.89 0.52 3 7 30 3

JNK1 62 0.87 0.41 3 7 0 7

JNK1 63 0.85 0.58 3 7 0 7

JNK1 64 0.85 0.36 7 7 6 7

JNK1 65 0.8 0.35 7 3 0 7

JNK1 66 0.77 0.43 7 7 0 7

JNK1 67 0.76 0.47 3 3 0 7

JNK1 68 0.74 0.6 3 7 13 7

JNK1 69 0.71 0.43 7 3 15 7

JNK1 70 0.71 0.45 7 3 36 3

JNK1 71 0.56 0.35 7 7 1.4 7

JNK1 72 0.56 0.35 7 7 1.2 7

JNK1 73 0.54 0.29 7 7 1.3 7

JNK1 74 0.53 0.36 7 7 6 7

JNK1 75 0.53 0.36 7 7 8.6 7

JNK1 76 0.51 0.33 7 7 5 7

166



4.3. Prospective study

Table 4.16 continued from previous page

Target Mol ID FDFP8 ECFP6 SEA SPiDER % Act/Inact

JNK1 77 0.5 0.33 7 7 8.13 7

JNK1 78 0.49 0.26 7 7 0 7

JNK1 79 0.48 0.35 7 7 8.14 7

JNK2 61 23 7

JNK2 62 0 7

JNK2 63 0 7

JNK2 64 13 7

JNK2 65 7 7

JNK2 66 8 7

JNK2 67 2 7

JNK2 68 20 7

JNK2 69 14 7

JNK2 70 35 3

JNK2 71 0 7

JNK2 72 0 7

JNK2 73 0 7

JNK2 74 0 7

JNK2 75 0 7

JNK2 76 0 7

JNK2 77 0 7

JNK2 78 0 7

JNK2 79 0 7

mGluR5 80 0.92 0.53 7 3 -57 3

mGluR5 81 0.89 0.46 7 3 -26 7

mGluR5 82 0.88 0.5 7 7 -16 7

mGluR5 83 0.88 0.41 7 3 -20 7

mGluR5 84 0.87 0.6 3 7 -4 7

mGluR5 85 0.87 0.53 3 3 -40 3

mGluR5 86 0.83 0.39 7 3 1 7

mGluR5 87 0.83 0.46 7 3 -7 7

mGluR5 88 0.82 0.52 7 3 -3 7

mGluR5 89 0.76 0.43 7 7 -29 7

mGluR5 90 0.63 0.43 7 3 0 7

mGluR5 91 0.59 0.38 7 3 0 7

mGluR5 92 0.58 0.36 7 3 0 7

mGluR5 93 0.58 0.4 3 3 0 7

mGluR5 94 0.57 0.37 7 3 0 7

mGluR5 95 0.55 0.37 7 3 0 7
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Table 4.16 continued from previous page

Target Mol ID FDFP8 ECFP6 SEA SPiDER % Act/Inact

mGluR5 96 0.5 0.3 7 3 0 7

mGluR5 97 0.5 0.4 3 7 0 7

mGluR5 98 0.45 0.35 7 3 0 7

mGluR5 99 0.42 0.31 7 3 0 7

PIM1 100 0.81 0.79 3 7 70 3

PIM1 101 0.81 0.39 7 3 86 3

PIM1 102 0.8 0.44 7 3 99 3

PIM1 103 0.78 0.48 7 7 4 7

PIM1 104 0.77 0.5 7 7 14 7

PIM1 105 0.75 0.37 7 7 37 3

PIM1 106 0.74 0.46 7 7 82 3

PIM1 107 0.66 0.41 3 7 14.4 7

PIM1 108 0.64 0.34 7 7 3.3 7

PIM1 109 0.62 0.36 7 7 6 7

PIM1 110 0.59 0.34 7 7 8 7

PIM1 111 0.59 0.28 7 7 8.6 7

PIM1 112 0.49 0.34 7 7 16.7 7

PIM1 113 0.49 0.39 7 7 4.3 7

PIM1 114 0.49 0.34 7 7 6.9 7

PIM1 115 0.49 0.37 7 7 0 7

PIM1 116 0.47 0.29 7 7 14 7

PIM2 100 21 7

PIM2 101 58 3

PIM2 102 96 3

PIM2 103 5 7

PIM2 104 2 7

PIM2 105 16 7

PIM2 106 73 3

PIM2 107 0 7

PIM2 108 0 7

PIM2 109 0 7

PIM2 110 0 7

PIM2 111 0 7

PIM2 112 0 7

PIM2 113 0 7

PIM2 114 0 7

PIM2 115 0 7

PIM2 116 0 7

168



4.3. Prospective study

Table 4.16 continued from previous page

Target Mol ID FDFP8 ECFP6 SEA SPiDER % Act/Inact

PPAR-δ 117 0.82 0.78 3 7 3

PPAR-δ 118 0.78 0.41 7 7 7

PPAR-δ 119 0.77 0.5 3 7 7

PPAR-δ 120 0.76 0.86 3 7 3

PPAR-δ 121 0.76 0.37 7 7 7

PPAR-δ 122 0.75 0.5 3 7 3

PPAR-δ 123 0.75 0.48 3 7 3

PPAR-δ 124 0.75 0.44 3 7 7

PPAR-δ 125 0.61 0.38 7 7 7

PPAR-δ 126 0.56 0.36 7 7 7

PPAR-δ 127 0.56 0.41 7 7 7

PPAR-δ 128 0.55 0.29 7 7 7

PPAR-δ 129 0.55 0.34 7 7 7

PPAR-δ 130 0.52 0.28 7 7 7

PPAR-δ 131 0.51 0.32 7 7 7

PPAR-δ 132 0.51 0.31 7 7 7

PPAR-δ 133 0.51 0.28 7 7 7

PPAR-δ 134 0.48 0.31 7 7 7

Table 4.17: Activity of the higher-similarity PPAR-δ compounds.
Where entries are not ‘inactive’ or ‘toxic’ Inactive implies that no EC50
could be measured at 30 µM compound concentration. Compound
124 does not have a measurable EC50, as it exhibits toxicity at 10 µM .

PPAR-α
EC50 (µM)/

fold-activation

PPAR-γ
EC50 (µM)/

fold-activation

PPAR-δ
EC50 (µM)/

fold-activation
119 Inactive Inactive Inactive
121 Inactive Inactive Inactive
122 5.0±0.1 / 8.6±0.1 3.3±0.3 / 6.2±0.2 12.1±0.8 / 21±1
123 Inactive 10±2 / 21±2 Inactive
120 Inactive Inactive 0.17±0.04 / 3.9±0.1
117 Inactive Inactive 1.9±0.4 / 2.2±0.1
124 Toxic Toxic Toxic
118 Inactive Inactive Inactive
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4. Results and Discussion

Figure 4.14: Joint distributions of maximum similarity to any tem-
plate molecule for 130 compounds, under ECFP6, USRCAT, ROCS
combination, and ROCS Shape, against FDFP8. Crosses mark active
compounds, circles inactive. Solid lines indicate P(active) = 0.5 from
isotonic regression models trained on the maximum similarity his-
tograms obtained from the benchmarking study (section 3.2.2) for
each similarity method. Top-left quadrant: compounds identified by
y-axis similarity method but not FDFP8, top-right: compounds iden-
tified by both methods, bottom-right: compounds identified only by
FDFP8, bottom-left: compounds missed by both methods. Further
information on the model-training process is given in Table 4.21.

As can be seen in Table 4.18, there is considerable orthogonality between
the methods profiled in terms of maximum similarity to any compound
in the template set, which is also used as the representative value for
the probabilistic study. We see most overlap with ROCS combination
and shape (0.66). Although correlation coefficients are reasonably high
and statistically-supported for FDFP8-ECFP6 (0.56) and FDFP8-ROCS
combination (0.45) pairs, there is still substantial unexplained variance
between methods. In addition, no method correlates significantly with
USRCAT.

One important aspect of this screening is the consideration of retrieved
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Table 4.18: Kendall-Tau correlation coefficients (and associated p-
value indicators) for the pairwise comparison of maximum template
similarity values for compounds profiled in the prospective study.
‘****’ indicates a given correlation has a p-value ≤0.0001, ‘ns’ that it
is not significant. N.B. the maximally-similar template may differ
between methods, as shown in Figure 4.15

ECFP6 ROCS Comb ROCS Shape USRCAT

FDFP8 0.56
****

0.45
****

0.38
****

0.02
ns

ECFP6 0.37
****

0.27
****

-0.02
ns

ROCS Comb 0.66
****

0.05
ns

ROCS Shape 0.1
ns

compound diversity. In terms of BMS, 25 novel scaffolds were identified
in total, corresponding to 16 GMS (Table 4.19), when comparing the com-
pounds studied with the highly-active compounds utilised as templates.
We find that for each target, the majority of scaffolds retrieved, at both
the BMS and GMS levels, are not present in the template set, indicating
that this approach has discovered novel chemistry for each target. On
average, the hit-rate for known scaffolds is higher, supporting the con-
cept of privileged chemical space. We repeated the ChEMBL-scraping
procedure described in subsection 3.4.1, setting the threshold of allowed
activity to be equivalent to single-digit mM, which includes fragment-like
binding, and determined whether our compounds shared scaffolds with
these lower-activity hits (Table 4.20). We found that including this wider
range of biochemical data did not significantly alter the results of our
analysis, i.e., that these scaffolds were not included in this repository
of publicly-available screening data, and are, for our purposes, unique,
decreasing the number of previously unknown BMS with at least one
active compound from 25 to 22. For GMS, we see a decrease from 16
to 13. As such, the retrieved compounds represent a diverse, novel, hit
group.
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Table 4.19: Annotated active compounds classified by their BMS
and GMS identities, and grouped by their novelty. Here, ‘unique’
means that a given scaffold is not present in the collection of template
molecules, with ‘known’ the converse. Results are given as number
of scaffolds with at least one active compound/cardinality of the set
of that scaffold grouping, so, for example, ‘7/19’ indicates that seven
scaffolds with at least one active compound each were identified, out
of 19 scaffolds tested. For each target, a diverse pool of compounds
are retrieved, with high proportions of novel BMS. The corresponding
bioactivity varies widely with the distribution of similarity values for
the retrieved compounds. We see that in many cases, known BMS
and GMS with associated active compounds lead to inactive screening
results, illustrating the difficulty of determining LBVS success.

Unique BMS Known BMS Unique GMS Known GMS

A2a 7/19 1/1 6/16 2/3
CB1 2/15 0/1 2/12 0/3
GRG 4/17 0/0 2/15 1/1
JNK1 2/17 0/0 2/13 0/2

mGluR5 3/18 0/1 2/14 1/4
PIM1 5/17 0/0 1/10 3/6

PPAR-δ 2/16 1/1 1/14 2/2

Table 4.20: Repetition of analysis in Table 4.19, broadening the ac-
tivity threshold to include compounds with mM annotated activities
against the targets assessed, a reasonable range for fragment-like hits.
As we can see, the FDFP approach recovered some scaffolds which
were present in the lower activity set, but was not otherwise substan-
tially affected, indicating that the active scaffolds retrieved were truly
scaffold-hops. Corresponding molecule counts: A2a, 5926; CB1, 7357;
GRG, 3200; JNK1, 2403; mGluR5, 2757; PIM1, 4880; PPAR-δ, 1766.

Unique BMS Known BMS Unique GMS Known GMS

A2a 7/18 1/2 5/14 3/5
CB1 2/15 0/1 2/11 0/4
GRG 2/15 2/2 1/10 2/6
JNK1 1/16 1/1 1/11 1/4

mGluR5 3/17 0/2 2/12 1/6
PIM1 5/16 0/1 1/8 3/8

PPAR-δ 2/14 1/3 1/10 2/6
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Illustrative examples Considering the compounds retrieved in a differ-
ent fashion, we here discuss a few illustrative examples of the ‘real-world’
implications of different definitions of similarity. As our sampling proce-
dure follows the process of repetition previously described, we have no
single ‘template’ for each tested molecule. For each of the compounds,
we calculate its similarity to all active compounds for its given target
(as described in Table 3.2), and identify the most similar structure. We
perform this procedure with FDFP8-Dice, ECFP6-Dice and ROCS-Tc com-
binations. This approach was taken as we are certain within reason that
all of the active set molecules are indeed active, and it represents the
sum of public knowledge for these targets. These compounds were not
necessarily sampled as templates in the initial screening, as we chose
a random sampling approach to the query set, to encourage diversity,
and limit the impact of over-represented structures. To illustrate various
aspects to consider with molecular similarity, we do not select the most
active compounds for each target, but rather those where the disparities
between each approach are most revealing.

For A2A compound 10 (96% inhibition at 10 µM) the terminal five-
membered ring is not preserved in the ROCS and ECFP picks, in favour
of a more rod-like substituent. The sometimes counter-intuitive nature
of shape-similarity is reinforced with the neighbours of CB1 compound
29 (41% inhibition at 10 µM). Of these, the ECFP6 and FDFP8 picks seem
closer to the chosen compound, in terms of complexity, and in preserva-
tion of the central five-membered ring in the latter case. However, the
ECFP6-Dice similarity is approximately 0.47, which is rather low (see
Figure 4.4). In contrast the ROCS-Tc pick, with a relatively inflexible
central scaffold, is amongst the highest-scoring matches for the identified
actives (0.64). FDFP8-Dice gives a borderline score (0.76).

The next example, compound 55 (38% inhibition at 10 µM) was chosen
as it is the retrieved active with the lowest shape similarity under FDFP8-
Dice (but not under ROCS-Tc) to the template structures. The compound
seems reasonable, post hoc, given that each method contain a decalin-like
scaffold with an aromatic substituent, which seems to mimic a similar
scaffold in the active molecule (morpholine-substituted cyclopentapyra-
zole). However, the additional decoration results in a much reduced
score in this case (FDFP8: 0.49, ROCS: 0.50, ECFP6: 0.34).

Finally, the differences in macro-level similarity between the templates
retrieved for compounds PIM1 100 (70% activation at 10 µM) and PPAR-δ
122 (12.1±0.8µM EC50) illustrate that relatively small changes with flexi-
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Figure 4.15: A comparison of the most similar compounds, under
FDFP8, ROCS Combination, and ECFP6, to active compounds identi-
fied for targets A2a (compound 10), CB1 (compound 29), GRG (com-
pound 55), PIM1 (compound 100) and PPAR-δ (compound 122). Com-
parisons chosen to illustrate certain aspects of shape-based similarity
comparison, rather than most active or novel compounds identified
for each target. JNK-1 and mGluR5 are left out for the sake of brevity
- In both cases, very similar molecules are returned by every method.
ROCS shape, USRCAT, USR, and GFD are not discussed here, owing
to their relative performance in the benchmarking experiment.
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ble molecules can lead to drastically different compounds being retrieved,
with both 2D and 3D-methods. In the former case, the compounds are
relatively uniform, with correspondingly high similarity values (FDFP8:
0.79, ROCS: 0.70, ECFP6: 0.81). The high similarity under a topological
approach is somewhat surprising, given the substantial superficial rear-
rangement of the molecule. In the latter, we have a more complicated
picture, in which both ROCS (0.5) and ECFP6 (0.5) provide radically dif-
ferent candidates, neither of which scores particularly well. The ECFP6
pick contains approximately the same elements as the active compound,
albeit rearranged. The ROCS compound captures the linear character
of the molecule, but otherwise diverges. The FDFP8 pick contains ap-
proximately the same substructure as the chosen template, varying in
heteroatom identities.

Discussion Overall, we find that the FDFP screening approach allowed
for the identification of novel compounds for each of the targets profiled.
Although hit-rates vary substantially, for each target at least one scaffold
was identified which was previously publicly-unknown. Overall, we
find that although shape similarity, as encoded here through the FDFP
approach, is not always as natural a fit for chemical intuition as subgroup
analysis and other 1- and 2D approaches, it allows us to retrieve novel,
bioactive compounds for each target assessed, and to scan databases
of tens of millions of molecules in under a minute, facilitating new
discoveries, and allowing for an efficient sampling of chemical space.

While a comprehensive discussion of the chemistry of the retrieved
compounds is not the subject of this work, a closer examination of
the compounds retrieved, and some subjective differences between the
compounds retrieved under our method and comparator topological
and shape approaches, is worthwhile, as every similarity determining
method builds certain biases into its model of the world. As there is
no intrinsic measure of shape to act as a standard, comparison is, by
necessity, somewhat subjective. Above, we highlight some surprising
results with all three methods. As per Figure 4.14, we see that there
are active molecules which would be ‘missed’ were one to use one
of the other methods profiled, and that, a few consistent high-scorers
aside, there are substantial differences between methods’ rankings of
the chemical space. Of course, we are blind to active molecules which
might have been retrieved under other methods than our own, which is
a limitation of prospective studies of this kind, but it serves to emphasise
that our approach is somewhat orthogonal to both ROCS combination
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and ECFP6.

Ascertaining this based on retrospective study datasets, such as that
summarised in Figure 4.2, can be difficult. Primarily this is owing to the
necessary biases utilised in their construction, which renders deconvolu-
tion, and analysis, impractical. In practice, each approach has benefits;
retrospective studies have much more data, prospective studies that the
answer is not known ahead of time and that the dataset directly reflects
the method adopted. Prospective studies also rely on biased databases;
our ChEMBL sets contain extensive examples of medicinal chemical
optimisation of scaffolds. Although we did not directly control for this
(for example, by clustering our sets by scaffold), the FDFP approach
retrieved a diverse set of active scaffolds, some of which are receptor
subtype-selective. It is unclear whether this diversity is an innate benefit
of shape-based methods as has been suggested [48, 211, 457, 458], or
whether it varies substantially depending on the experimental setup.
Our adoption of the multiple-sampling max-fusion strategy utilised in
the retrospective screen may have an effect on this, and would be an
interesting direction for future research.

4.3.3 Probability Models

Results Returning to the similar property principle [229, 459] which
underlies most interest in virtual screening methods, we thought it
appropriate to attempt quantify the extent to which we can infer similar
activity under the similarity approaches considered (see section 3.2.6). We
trained two regression-type machine-learning models on the similarity
and activity data, generating training set 5-fold cross-validation metrics,
and testing the models on the withheld activity data gained in the
prospective study. The two models chosen were isotonic and logistic
regression, both of which fit pseudo-sigmoidal curves, although the
former makes locally-linear approximations. Both are used in probability
calibration, in which the pseudo-probability output of a machine-learning
model is calibrated so as to more closely reflect real-world performance.

Overall, we find that all isotonic regression models have better-than-
random performance on the test set (see Table 4.21), with the ECFP, FDFP,
and ROCS combination approaches demonstrating the most significant
discriminatory power. In terms of recall, which reflects the proportion
of actives retrieved, the ECFP and FDFP methods do significantly better
than other approaches. There is relatively little shift in the threshold
values observed between the isotonic and logistic approaches, however
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Table 4.21: MCC, Recall and threshold values for isotonic and lo-
gistic regression models trained on distributions of similarity values
(see Figure 4.4) for active and decoy sets obtained from a publicly-
available benchmarking set [214], and tested on withheld data ob-
tained from our prospective study. Threshold indicates the similarity
value at which the model assigns a pseudo-probability of activity, P,
≥0.5.

Model Similarity method Train Test Threshold
MCC Recall MCC Recall

Isotonic ECFP4 0.35±0.01 0.17±0.02 0.46 0.49 0.64
ECFP6 0.35±0.02 0.16±0.01 0.43 0.48 0.58
FDFP8 0.28±0.01 0.17±0.01 0.48 0.93 0.69
ROCS Combination 0.23±0.02 0.08±0.01 0.30 0.21 0.79
ROCS Shape 0.17±0.01 0.04±0.00 0.09 0.04 0.95
USRCAT 0.11±0.01 0.02±0.00 0.02 0.04 0.56
USR 0.04±0.00 0.00±0.00 0.04 0.09 0.98

Logistic ECFP4 0.36±0.02 0.19±0.01 0.54 0.43 0.71
ECFP6 0.36±0.02 0.19±0.01 0.46 0.43 0.55
FDFP8 0.30±0.02 0.13±0.02 0.47 0.93 0.68
ROCS Combination 0.23±0.02 0.08±0.01 0.30 0.21 0.78
ROCS Shape 0.00±0.00 0.00±0.00 0.00 0.00 1.00
USRCAT 0.11±0.01 0.02±0.00 -0.08 0.00 0.60
USR 0.00±0.00 0.00±0.00 0.00 0.00 1.00

the latter results in several cases where the results are suboptimal (USR,
ROCS Shape), whilst only improving FDFP8 and ECFP performance by
a small margin. Therefore, we chose to adopt the thresholds determined
by the isotonic regression approach for further study. To compare our
approach with established target prediction methods, we also utilised two
publicly available tools, SEA, and SPiDER, to compare with gold-standard
target-prediction performance, and determine whether such methods
could capture actives with diverse shapes. Neither approach resulted in a
test-set MCC greater than those observed with target-agnostic similarity
values described in Table 4.21. SEA achieved an overall MCC of 0.38,
with a recall of 0.64. For SPiDER, a MCC of 0.21, and recall equal to 0.5,
were observed. To assess the relationship between similarity under a 2D
method, such a those used to train both SEA and SPiDER, and prediction
accuracy, we plotted maximal similarity for each profiled compound
under FDFP8 and ECFP6 to known actives, overlaying the predictions
made by the dedicated software (see Figure 4.16, and Table 4.16 for
per-compound predictions).
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Figure 4.16: Plot of the terms of the confusion matrix for target pre-
dictions generated with the online resources SEA and SPiDER for the
compounds assessed in the prospective study. Neither approach han-
dles compounds with high shape-similarity and low ECFP6 similarity
well, with many false-positives and false-negatives in that region. In-
terestingly, SPiDER predicts more compounds with low similarity
under both approaches as active, perhaps reflecting that, in contrast to
SEA, it is not built upon ECFP-type fingerprints. Both models make
confident, accurate predictions for high ECFP6 similarity compounds.
SEA: MCC 0.38, Recall 0.64. SPiDER: MCC 0.21, Recall 0.5. FDFP8:
MCC 0.48, Recall 0.93
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In general, we see that the bottom-left of each graph (low similarity
under both methods), is occupied primarily by true-negative predictions
in both cases, plus two false negatives. SPiDER has a significant number
of false-positives in this region. The upper-left quadrant (high FDFP
similarity, low ECFP similarity) sees both SPiDER and SEA perform
relatively poorly compared to the top-right quadrant (high similarity
under both approaches).

Discussion Both SPiDER and SEA perform significantly better where
there is reasonable ECFP similarity to known templates. SPiDER seems
somewhat less conservative in this regard, making false positive predic-
tions at low ECFP4 similarity, although we did identify a few actives
at that similarity level. As the data underpinning each model varies,
and as SEA is a constantly-updating resource incorporating publicly
available bioactivity data, it is hard to construct a secondary test-set,
not incorporating shape-based screening, to establish a fair baseline
performance level for each. Although SEA is trained on ECFP4 data,
it achieved a lower MCC, and higher recall, than the target-agnostic
approach described here. In both cases, however, the models struggled
with compounds which have a high maximum FDFP and low maximum
ECFP6 similarity to a known template (see Figure 4.16), demonstrating
the importance of appropriate descriptor choice in the design of target
prediction approaches, and suggesting that FDFP might be useful for
such methods in future.

Improved enrichment with shape-based approaches in target prediction
has previously been noted in the literature [106]. These ‘missed opportu-
nities’ for traditional approaches offer considerable possibilities for the
identification of novel compounds, and are a primary justification for the
inclusion of shape-based approaches into virtual-screening pipelines. As
we do not have ready access to the data on which SPiDER and SEA were
trained, we cannot assess how our compounds are embedded within
the training sets for each approach, which is a limiting factor in compar-
ing their performances. Given the known predisposition of screening
libraries towards simple, ‘linear’ [82] molecules, it seems reasonable to
assume that this bias is reflected in the training data for each approach,
but this should also be reflected in the libraries from which we selected
compounds. An additional limitation of our model is that we do not ex-
plicitly account for the relative proportion of actives and decoys utilised
in our training set. To the best of our knowledge, no study has directly
considered the overall distribution of library shape characteristics when
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describing the performance of shape-based methods, but this could be a
promising direction for future research in shape-based approaches.

One issue with our approach is that it does not take into account tem-
plate molecule characteristics. Molecules with an ‘unusual’ shape, and
those which are especially large or flexible, may well have a less clear
separation of P and Q, which we have not considered here. We aim
to demonstrate that empirical threshold similarity values, such as the
often-quoted Tanimoto coefficient similarity of ≥ 0.7 for ECFP4, are sup-
ported by the analysis of large, diverse datasets, and can be obtained
in a rigorous fashion. For ROCS shape, a similarity threshold of 0.75-
0.85 has previously been discussed in the literature [48, 460], with the
higher of the two employed for screening, which might suggest that our
model is somewhat conservative. However, given the distribution of
similarity values provided [48], this is likely due to intent rather than a
more fundamental issue. We were unable to find authoritative sources for
cut-off similarity values for the other methods discussed, highlighting the
importance of defining a generalised approach. As a secondary matter,
such approaches could be used to weight similarity values obtained from
multiple sources, and give a measure of confidence to virtual screening
campaigns.

None of the approaches assessed has a perfect predictive power, reflecting
the complex relationship between similarity in chemical and biological
spaces. Our definition of activity, at the 30% inhibition or activation
threshold, may be unduly restrictive, as might testing at a single con-
centration, given the observed tendency for superficially very similar
molecules to have multiple orders-of-magnitude variation in their IC50,
for instance. As such, exploring a wider range of concentration values,
where experimentally feasible, could give us a better idea of the ‘near-
misses’, compounds which have ‘fallen off the activity cliff’. Regardless,
our simple probabilistic models achieved gold-standard performance,
and better, on this small but diverse test set, and seem promising for
further exploration. Most importantly, they give us some measure of
confidence in our definition of sufficient similarity, which is critical to
interpreting the results of any virtual screen, as the closest compounds
in a small, or insufficiently diverse, virtual screening library, may still be
too far away to be confident in our ability to generalise.
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4.4 Shape Screening for PIM1 Inhibitors

Summary We conducted an in-depth profile for one of the targets for
which we had identified active compounds, PIM1. Although we had not
made explicit attempts to promote specificity in our screening campaign,
we found that the most active hit (compound 102) in the initial profiling
is amongst the most selective potent inhibitors of PIM1 for which we
could find sufficient data, and substantially different from molecules
disclosed to date.

Compound 102 is a potent inhibitor of PIM1, GSK-3β and DRAK-1
kinases. Comparing compound 102 to known kinase inhibitors with
available selectivity data, we found that it is more selective than four
out of five kinase inhibitors in the set which have been trialled in man,
and amongst the upper-third of inhibitors overall. For PIM1, we found
that it is amongst the most selective high-potency inhibitors known. We
investigated the role of shape similiarity in determining specificity in this
case.

A crystal structure for the inhibitor in complex with PIM1 was obtained,
and the results analysed. Analysis revealed that compound 102 binds in
the same site, and in a similar orientation, to known inhibitors of PIM1.
The relative stability of FDFP8 with conformal variability, as compared
to the two ROCS methods, was confirmed. A subsequent analysis of the
similarity relationship between ligand and crystal shape shows a mild
positive correlation.

4.4.1 Activity data

Of the seven compounds chosen for IC50 determination, four are low
micromolar inhibitors of the PIM1 kinase, and three have sub-50 µM IC50
values for the Pim-2 kinase (Table 4.22). Compounds 102 and 100 are
at least 5-fold selective against PIM-2. These kinases are similar at both
the sequence (55% sequence identity, 67% sequence similarity) and fold
levels [461].

We searched ChEMBL 25, and PubChem (July 2019) using their online
portals, and were unable to find previous evidence of PIM1 inhibition for
this compound. Additionally, a similarity search for its BMS on ChEMBL
at 0.7 Tc with ECFP4, and a substructure search on the PubChem site,
did not reveal further relevant records for PIM1. Additionally, as best
we are able to ascertain, the most similar patent compounds’ ‘claimed’
chemical space does not cover the compound [462].
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Table 4.22: Determined IC50 values for PIM1 and PIM-2 kinases,
with a selection of the compounds chosen for that target

Compound Number Pim-2 IC50
(nM)

PIM1 IC50
(nM)

100 >50,000 5444
101 7922 1625
102 3408 484
103 >50,000 >50,000
104 >50,000 >50,000
105 >50,000 >50,000
106 6527 3046

While inhibition of both PIM1 and Pim-2 kinases is typically regarded
as beneficial, with each promoting improved regulation of apoptosis,
and with PIM1-/- Pim-2-/- Pim-3-/- knockout mice having a survivable
phenotype [463], kinase-specific inhibitor scaffolds are comparatively
uncommon, and have been extensively discussed as a means of reducing
off-target and side-effects associated with kinase inhibitors in clinical
trials [409, 464, 465].

4.4.2 Selectivity analysis

Results To better characterise the selectivity of compound 102, a kinase
panel profile was ordered from Cerep Eurofins. The compound was
profiled at a concentration of 10 µM, against a panel of 58 kinases. The
compound was discovered to be a potent (here defined as inhibition
≥70%) inhibitor of human DRAK-1 (87%) and GSK-3β (82%) kinases,
in addition to PIM1. At the moderate potency level (here defined as
50%≥ inhibition <70% ), the compound is an inhibitor of CHK-1 (56%),
CK-1γ1 (62%), and Rsk1 (56%) kinases. A further nine kinases were
inhibited at a lower level (30%≥ inhibition <50%) (a full list of per-kinase
inhibition values is provided in Appendix 5, section 5. See Figure 4.17
for a schematic overview. A reference target-labelled map can be found
in Appendix 5, Figure 3). The kinases for which compound 102 is
a moderate or potent inhibitor belong to the calmodulin-dependent
protein kinase (CAMK) and GMGC groups, which cover a wide range of
functional space.
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Figure 4.17: Kinase map of inhibition data for compound 102. Cir-
cle size denotes potency category: (large: inhibition ≥70%, medium:
50%≥ inhibition <70%, small: 30%≥ inhibition <50%). Potent in-
hibition is observed for two of the eight groups of typical kinases,
and for none of the 13 atypical families described by Manning et al.
N.B. kinase inhibition data are available for 58/536 kinases visible.
PIM1 kinase is highlighted. A target-labelled map can be found in Ap-
pendix 5, Figure 3. Illustration reproduced courtesy of Cell Signalling
Technology, Inc. (www.cellsignal.com). Illustration produced using
KinMap [466]. For comparison, see Karaman et al., SI Figure 1 [409].
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Considering the kinases for which the compound is a potent inhibitor,
cross-reactivity with GSK-3β is commonly observed, according to com-
prehensive surveys of PIM1 patent data [454, 456], with some authors
suggesting this is owing to a shape-mediated interaction [461, 467]. GSK-
3β has a complex network of signalling pathways, but inhibitors are in
development for Alzheimer’s disease [468], NSCLC and certain forms
of leukaemia [469, 470]. DRAK1 has also been discussed as a potential
target for head-and-neck cancers [471], suggesting the possibility of a
synergistic effect with PIM1 [453].

Comparative selectivity analysis These data are difficult to interpret
in isolation. Inhibition data for each kinase profiled were extracted
from the ChEMBL 25 database. 167 compounds were identified which
had measured activity data for 55/58 (95%) of the targets tested. We
calculated selectivity metrics (see section 3.5.1) for the overall pool of
compounds, and performed further analysis for the subset of these
compounds with annotated PIM1 activity. We applied a threshold to all
activity data of 30% inhibition, as was discussed in section 4.3.2. For the
overall analysis, we highlight reference values for all compounds in the
set which have progressed beyond phase I trials, to provide reference
values for kinase inhibitors trialled for safety in man.

In Figure 4.18, we see that compound 102 is more selective than the major-
ity (four fifths) of compounds in our study which had passed this critical
stage in safety testing, under all metrics other than the Gini coefficient.
Considering all compounds, regardless of their primary target, 28% of
compounds had a lower WS(20%), along with 42% and 34% with better
RS(20) and RS(5) values. This combination indicates that compound
102 potently inhibits a few targets, but that the drop-off in inhibition is
substantial thereafter. The Gini coefficient was the only metric which
changed substantially with the 30% inhibition threshold previously dis-
cussed, as a result of its noise-sensitivity. Without the threshold, 82% of
compounds had a better Gini coefficient, which dropped to 59% when
the threshold was applied to data for all compounds.

If we consider the distribution of inhibition values for our curated dataset,
and for compound 102 (Figure 4.19), we find an interesting behaviour.
For the dataset distribution there are many low values, but a surprisingly
high proportion of very high (≥95%) inhibition values. A two-sided
Mann-Whitney U test, at α=0.05, fails to reject the H0 (p value = 0.09),
i.e. there is insufficient evidence to support the assertion that our data
come from a different underlying distribution to the database. With
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Figure 4.18: Distribution of Gini coefficient, window score, ranking
scores, and selectivity scores for compound 102, and for the 167 com-
pounds with activity data against our panel of 55 kinases. Arrows
indicate direction in which graphs show higher specificity. Compound
102 is indicated in each instances with a solid black line. Reference
phase II compounds are annotated as such: ‘S’: Sirolimus, ‘F’: Fa-
sudil, ‘X’: Semaxanib, ‘T’: Tirolimus, and ‘M’: Midostaurine. Vertical
stacking of letters indicates that the reference compounds were in-
distinguishable with that metric. Under all scoring methods bar one,
compound 136 had better specificity than four of five reference com-
pounds which had passed phase I trials in man.
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Figure 4.19: a) Distribution of inhibition values for all pairs of com-
pounds (n=167) and targets (n=55) in our training set. Inhibition val-
ues precisely equal to zero (n=1807) have been removed, for emphasis.
b) Distribution of inhibition values for compound 102 for all targets.

either interpretation, however, 102 is comparatively selective, with good
separation between high-inhibition targets, including PIM1, versus the
rest of the kinases assayed.

PIM1 Inhibitors With a more specific focus on the selectivity of PIM1
inhibitors, we isolated the subset of our dataset annotated as active
against PIM1 at 10 µM (n=71). Of these, six have both a higher percentage
inhibition of PIM1 and selectivity under the Gini, RS(5), and RS(20), 8
under WS(20), and 11 under WS(5) (Figure 4.20) than compound 102. In
summary, compound 102 has amongst the best overall selectivity profiles
of the PIM1 inhibitors retrieved from ChEMBL under most metrics. In
Figure 4.20 we also see the distribution of pairwise similarities for all
other compounds profiled, against compound 102, under FDFP8 and
ECFP6. There is no clear relationship between either of these similarity
metrics and the specificity values obtained, likely owing to the low
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similarity between compound 102 and those for which we could find
adequate selectivity data (ECFP6-Dice: mean 0.13±0.11, max 0.22, FDFP8-
Dice: 0.32±0.11, max 0.60). As such, even though the compounds profiled
are much-closer in shape-space than under a topological approach, we
are still relatively far from our confidence threshold. The most similar
compound under FDFP8 has a ∆Gini coefficient of 0.04, ∆S(50) of 0, and
∆RS(20) of 4, compared to the ECFP6 most similar with 0.13, 0, and 13,
respectively.

Given these relatively low similarity values, we instead compare com-
pounds based on their potency and selectivity. Considering the most
selective compound which has at least as potent an inhibitory effect
as compound 102, compound 138 (96% inhibition at 10 µM, Gini 0.91,
S50 0.06), and the most potent PIM1 inhibitor, compound 139 (100%
inhibition at 10 µM, Gini 0.62, S50 0.35), we see pronounced differences
in the kinases inhibited. We will refer only to those kinases inhibited at
the moderate and potent levels, for brevity. Staurosporine is an equally-
powerful inhibitor of PIM1 as compound 139, but with a significantly
poorer selectivity profile.

The most selective highly-active compound, 138 (Figure 4.21), has in-
creased inhibition of the protein kinase G (PKG) and Lyn kinases. Inhibi-
tion of PKG is associated with an increased risk of cardiac hypertrophy
[472] and heart disease. Lyn inhibition has been noted to result in slowed
growth of acute myeloid leukaemia cell lines, and similar effects in
other leukaemic cell lines. Additionally, Lyn-specific inhibitors have
been observed to disrupt certain kinds of acquired resistance to the
drug imatinib [473]. The effect of Lyn-specific inhibitors on the immune
system remains unclear, but Lyn-knockout mice develop more severe
and persistent asthma than control animals. Compound 138 shows no
significant inhibition of the targets GSK3β, DRAK-1, CHK1, CK1γ1 and
Rsk1 kinases.

By contrast, compound 139 (Figure 4.22) inhibits NEK2, SRPK1, CK2a2,
ALK, IRAK4, MAP2K1, PAK2, PLK3, PKG1, ROCK1, AurA, MAPKAPK1,
MAPKAPK5 and FRAP kinases, in addition to PIM1 and GSK3β. All
three compounds share some level of activity against the GSK3β and
PKG1 kinases, and two out of three inhibit Lyn, SRPK1, or CK2a2.
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4. Results and Discussion

Figure 4.20: Gini coefficient, window score, ranking scores, and selec-
tivity scores for compound 102 and the 71 compounds with activity
data against our panel of 55 kinases, and a greater than 30% inhibi-
tion of PIM1 at 10 µM. Compound 137 is indicated in each case with
a red circle. Graphs in the left-hand column are coloured according
to the similarity of each compound to 137 under ECFP6, using Dice
similarity. The right-hand column is coloured by similarity under
FDFP8, also employing Dice similarity. Each graph is oriented such
that the upper part of the y-axis represents better specificity. Under
every specificity metric other than WS(5), compound 137 is amongst
the top 10% of PIM1 inhibitors assessed when considering specificity
and activity. No clear relationship between ECFP6 or FDFP8 similarity
and specificity can be established. Average and maximum similarity
to other compounds profiled under ECFP6: 0.13±0.11, 0.22. Average
similarity to other compounds profiled under FDFP8: 0.32±0.11, 0.60.
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4.4.3 Crystallographic study

To gain another perspective on the matter, and to determine whether
the relatively low similarity values to well-characterised antagonists are
owing to a novel binding mode, we obtained a crystal structure for
compound 102 from a fee-for-service provider (SARomics Biostructures
AB, Lund, Sweden). The PIM1 ligand complex was solved to 1.8Å, with
clear density for the inhibitor, and full occupancy in the substrate-binding
site. A list of crystallographic parameters is provided in Appendix
section 5, Table 2.

PIM1 Crystal Structure Analysis Having obtained a crystal structure
for 102 in complex with PIM1, we gathered existing structures for compar-
ison using the RCSB PDB API (n=155). We cleaned all structures using the
PDBFixer [377] script. Every remaining valid PIM1 crystal structure was
aligned to our obtained structure using a sequence-weighted structural
alignment routine (see subsection 3.5.2, PIM1 - Inhibitor crystal struc-
ture) (sequence identity: 96.1%±16.3, n=141), saving the transformed
co-ordinates into new PDB files, and recording the RMSD of each trans-
formed structure with regard the template (Average: 1.00±0.49Å) . This
approach was chosen as the sequence length of the human PIM1 con-
structs crystallised vary substantially.

The crystal poses of compound 102, and of the 133 ligands previously
crystallised, are included in Figure 4.24. We see that compound 102 binds
in the same binding pocket as all other known inhibitors, in the hinge
region of the PIM1 kinase. The compound has a specific interaction with
Lys67, which is highly-conserved across known inhibitors [474, 475], via
a charge-assisted hydrogen bond with the furan moiety. For all solved
structures of PIM1-inhibitor complexes, there are interactions with either
or both of Lys67 and Glu121, accepting and donating hydrogen bonds,
respectively. In addition, there are multiple potential hydrophobic inter-
actions between the central scaffold and buried residues in the binding
pocket (Leu44, Ala65, Leu120, Leu174, Ile185). We see preservation of
the known salt-bridge interaction between Lys67 and Asp186 [476, 477].

Compound 102 has a relatively good average B-factor [478], considering
the high resolution of the solved crystal structure, with an average of
34.3 Å2 across the molecule. The central scaffold of the molecule is
especially stable, with a good B-factor, full occupancy, and no predicted
‘bad contacts’, using the Maestro [479] ligand interaction tool. The two
terminal regions, a furan and a benzene, are somewhat less stable, and
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Figure 4.21: Kinase map of inhibition data for compound 138. Cir-
cle size denotes potency category: (large: inhibition ≥70%, medium:
50%≥ inhibition <70%, small: 30%≥ inhibition <50%). Potent in-
hibition is observed for six of the eight groups of typical kinases,
and for one of the 13 atypical families described by Manning et al.
N.B. kinase inhibition data are available for 58/536 kinases visible.
Illustration reproduced courtesy of Cell Signalling Technology, Inc.
(www.cellsignal.com)
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Figure 4.22: Kinase map of inhibition data for compound 139. Cir-
cle size denotes potency category: (large: inhibition ≥70%, medium:
50%≥ inhibition <70%, small: 30%≥ inhibition <50%). Potent in-
hibition is observed for two of the eight groups of typical kinases,
and for none of the 13 atypical families described by Manning et al.
N.B. kinase inhibition data are available for 58/536 kinases visible.
PIM1 kinase is highlighted. Illustration reproduced courtesy of Cell
Signalling Technology, Inc. (www.cellsignal.com)
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Figure 4.23: Structures of compound 102, the most selective com-
pound profiled, compound 138, and the most potent inhibitor, com-
pound 139.

solvent-exposed. These moieties have a high degree of flexibility, and
might be suitable for improvement through medicinal chemical efforts.

The structure of the PIM1 kinase, in complex with all of the inhibitors
for which a crystal structure is publicly available, seems relatively stable.
The small loop region, containing amino acids 43:50 is comparatively
unstable, as can be seen in Figure 4.25 and Figure 4.26.

PIM1 Crystal Structure FDFP Analysis We utilised our FDFP approach
to analyse the ligand and protein components independently for our set
of crystallographic data, and compared its performance on the first task
with ROCS shape and combination approaches. For each PDB file, we
extract the ligand in its crystal conformation, generate a set of conformers
of that ligand, and store these alongside the apo-protein. For the analysis
of ligand crystal-derived and energetically-minimised conformations,
we define four sets of pairwise comparisons; ‘Self’, where we consider
the maximum similarity of a given ligand’s crystal conformation to
those generated by the maximisation routine, ‘Crystal-Crystal’, where we
compare the similarity of the crystal pose of compound 102 to the crystal
conformations of all other ligands, ‘Crystal-Minimised’, which assesses
the maximum pairwise similarity of crystal structure of compound 102
against each set of conformers for the remaining molecules, and, lastly,
‘Minimised-minimised’, which replaces the pose obtained for compound
102 with the set of its generated conformers. Pocket comparisons are
performed using FDFP8 only (see subsection 3.5.2). As each method
profiled has a different innate scale of similarity values (See Figure 4.4),
comparisons are primarily in terms of relative shifts in the distributions,
their mean values, and standard deviations.
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Figure 4.24: Visualisation of PIM1 in complex with compound 102.
Top: Ligand localised in known binding pocket. Bottom: Overlay
of ligands from collection of superimposed PIM1 crystal structures
extracted from the RCSB PDB (n=133)
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Figure 4.25: Top: Compound 102 has a hydrogen-bond interaction
with Lysine-67, known to be important for PIM1 inhibitor activity,
as well as several hydrophobic interactions with the binding pocket.
Crystal waters shown in transparency. Bottom: Visualisation of B-
factors for crystal structure of 102 in complex with PIM1. Colourisa-
tion: Blue to white, then red, at 0, 40, and 100 Å2 [478]. The central
scaffold of the molecule is stable, with no crystallographic waters
noted in that deeper part of the pocket. The furan and benzene ter-
mini are less stable, and solvent-exposed.
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Figure 4.26: Structural overlap of the protein components of 133
processed crystal structures of PIM1 downloaded from the RCSB PDB,
superimposed on our crystal structure with compound 102. Overall,
the secondary and tertiary structure of the protein is relatively stable.
The largest variation near the substrate binding pocket is in a small
loop region. The relative instability of this region can also be seen in
the B-factor map in Figure 4.25. In some ligand-bound conformations,
this loop region partially obscures, but does not seem to occlude, the
position of the furan moiety, which forms an important interaction
with Lys67.
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Figure 4.27: Similarity under FDFP8, ROCS Combination and ROCS
shape for ligands with crystal structures for PIM1 Kinase. ‘Self’ de-
scribes the maximal pairwise similarity between generated conform-
ers for a given ligand, and its solved crystal structure. ‘Crystal-crystal’
describes the pairwise similarity between the crystal poses of each
ligand, compared to that of compound 102. ‘Crystal-Minimised’ de-
scribes the pairwise similarity between the minimised conformations
of each ligand, compared to the crystal structure pose of compound
102 and ‘Minimised-Minimised’ similarly, replacing the crystal confor-
mation with the corresponding set of conformers.
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Table 4.23: Distribution of similarity values generated for four cases.
Averages and standard deviations are provided, as well as the mean
value of the five-highest similarity values in each case (in parentheses),
as a measure of the tailing in the distributions. Similarity is highest
for the ‘self’ case, and lowest when comparing crystal and minimised
conformers. Definitions are as per subsection 3.5.2, and Figure 4.27

FDFP8 ROCS
Comb

ROCS
Shape

Self 0.84±0.04
(0.93)

0.64±0.17
(0.94)

0.78±0.1
(0.95)

Crystal-Crystal 0.37±0.12
(0.70)

0.39±0.08
(0.63)

0.65±0.09
(0.88)

Crystal-Minimised 0.35±0.1
(0.63)

0.36±0.05
(0.53)

0.61±0.09
(0.79)

Minimised-Minimised 0.43±0.11
(0.74)

0.37±0.07
(0.60)

0.63±0.09
(0.82)

In the ‘self’ case, we see high average similarities under FDFP, and ROCS
Shape, with somewhat worse results for ROCS combination (Table 4.23,
Figure 4.27). Notably, the standard deviation varies substantially be-
tween methods. In Figure 4.28, the conformation for compound 102
obtained from crystallisation is compared with those generated in the
diversity-oriented conformer generation. While the central, relatively
rigid, adenosine-mimetic scaffold is well-captured, the termini show con-
siderable divergence, and none of the conformers generated has the same
essentially-flat pose as that obtained from the crystal structure, which
has been observed in several solved structures of PIM1 inhibitors [475,
476].
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Figure 4.28: Left: pose of compound 102 obtained from the crystal
structure. Centre, right: Alignment of generated conformers of com-
pound 102 to the conformation obtained from the crystal structure.
Diverse conformers were generated using the procedure described in
subsection 3.1.4, Conformer generation. The relatively flat conforma-
tion obtained from the crystal structure is not well captured by the
minimisation strategy, especially in the relatively flexible termini.
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This relationship changes somewhat for the other cases. In each case, the
distribution of similarities is significantly down-shifted in the ‘crystal-
crystal’ and ‘crystal-minimised’ configuration, reflected in the mean of
the five maximal values. FDFP8 retrieves some compounds above the sim-
ilarity cutoff threshold (see Table 4.21) earlier defined in each case, which
is not true for the ROCS combination approach. As discussed earlier,
probability estimation for ROCS shape is difficult, given the right-shifting
and limited range of its distribution. Average similarity of the FDFP8
method increases somewhat when considering the minimised-minimised
set, an effect which is not observed for ROCS shape or combination
methods.

Having considered shape-similarity from a ligand perspective, we then
considered the binding pockets themselves in terms of their shape fin-
gerprints. Protein FDFP8 fingerprints were calculated for all 134 crystal
structures, and folded to 512 bits. We then calculated pairwise similarities
for each of these against the crystal structure obtained for compound 102.
The average similarity obtained was 0.26±0.06 (Figure 4.30) . As we have
no empirical similarity cutoff for this approach, we instead examine the
order imposed on the set of protein crystal structures when ranked by
pocket similarity.

Checking each structure manually, we found that the relevant compounds
were superficially similar initially, morphing into larger molecules grow-
ing upwards out of the cleft, and finally into small, adenosine-like in-
hibitors. In general, the ordering seems relatively intuitive, given its
progression from similar compounds, to similar compounds interacting
with more residues, to those interacting with fewer, although alternative
distance metrics would handle the absence and presence of features
differently. On a quantitative basis, there is slight correlation between
protein FDFP8 and ligand FDFP8 (Kendall-Tau, 0.17, p = 0.02), and also
with ROCS Shape (0.13, 0.03). No statistically-significant correlation was
noted with ROCS combination similarity scores.

In Figure 4.29, we see the most similar ligand under ligand (compound
102a, similarity = 0.70) and protein 102b FDFP dice (0.43) similarity
to the bound conformation of compound 102 and its binding pocket,
respectively. In both cases, molecules sharing many generic features are
retrieved, with similar central scaffolds, and similarly-sized decorations.
Both molecules extend towards the Lys-67 residue, and conserve a similar
binding pose, with more variation in the terminus farther from the
identified interaction.
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Figure 4.29: Superimposition of the ligand (compound 102a) with
the highest similarity under FDFP8 to compound 102 (PDB-ID: 4WSY,
light green) and of the ligand (compound 102b) from the binding
site with the highest similarity under FDFP8 to the binding site of
compound 102 identified during the crystallographic study (PDB-I:
4WT6, blue)

Figure 4.30: Distribution of Dice similarity values of the FDFP8-512
bit representations for each of the 133 previously-solved structures of
PIM1 in complex with an inhibitor against the equivalent representa-
tion of the crystal structure obtained with compound 102. Although
values are lower than in the ligand case, there is good subjective agree-
ment as can be seen in Figure 4.29.
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4.4.4 Discussion

We identified five inhibitors of PIM1 kinase with at least 30% inhibition at
10 µM, further characterised as four high-nanomolar or low-micromolar
inhibitors, using the FDFP approach, of a total of 17 compounds profiled.
Of these, all were located in the above-threshold (see Table 4.21) region,
which contained seven compounds. As such, the hit rate for our above-
threshold picks is either 71%, or 29% if we take the whole set. Each of
these compounds represents a novel BMS (see Table 4.20), and three novel
GMS in total, indicating that the retrieved compounds represent novel
chemistry for this target. This compares to a hit rate of approximately
0.3% for this target by HTS (by Vertex pharmaceuticals) [474], 1% for a
virtual screening [480], 4% for docking [474], and 25% for a multi-level
virtual screening approach, incorporating similarity-searching, machine-
learning, and docking [481], of which 25% had novel scaffolds.

The most potent inhibitor identified after IC50 determination was chosen
for further profiling, and found to be relatively selective compared to
published compounds for which sufficent data could be obtained. Inter-
estingly, we saw potential evidence of reporting bias in our selectivity
dataset (see Figure 4.19), with a significant peak for very potent (>95%
inhibition at 10 µM) inhibitors of all 55 kinases profiled. It is unclear
whether this skew in the reporting of very highly-active compounds
is some fundamental property of kinase inhibitors, or reflects practices
surrounding compound activity data disclosure. While target specificity
was not explicitly selected for (i.e., we did not limit the pool of templates
described in Table 3.2 to those for which a certain selectivity threshold
was met, for example), this is a promising outcome. Although it has
been proposed that shape similarity can more directly encode some
specificity-determining features than pharmacophoric approaches [482],
the evidential basis for this is still somewhat lacking. A common stance
[73, 132] is that shape complementarity between a ligand and target
pockets alone is likely necessary, but insufficient, to determine specificity.
To a certain extent, the established ability of shape-based methods to find
novel scaffolds which are active against a particular target suggests that
they capture the features which are a prerequisite to binding; however, as
identity of the atoms in a molecule, and the pattern of these constituting a
conventional pharmacophore, determines the geometry of a molecule, it
is difficult, and to a certain extent incoherent, to define which component
best selects for specificity.
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Keeping in mind the diversity of ligands retrieved over the set of seven
targets (see Table 4.20), two simple, and somewhat opposing, models
suggest themselves for further investigation. In the first, pharmacophoric
features serve as the primary ‘interaction surface’ determining binding,
and ligand geometry provides sufficient structure to ensure these are in
the appropriate geometric configuration. In the second, ligand geometry
predominates, and the pharmacophoric features add an additional de-
terminant [254]. In favour of the first model are the energetics of ligand
binding, with notably higher bond energies for specific interactions. For
the latter, we note that scaffold hopping, by necessity, requires substantial
alterations in the identity or configuration of atoms within the central
scaffold. One might assess the relative contribution of each by a broader
cross-comparison of molecules, known to be active against a certain tar-
get, under pharmacophoric and shape approaches. The issue of multiple
binding sites renders this somewhat difficult, but here the kinases could
provide a useful platform for investigating this relationship, given their
canonical binding site, abundance of similar structures, and availability
of substantial ligand-target data. As such, it seems a useful starting point
for a broader investigation into the role of shape in determining speci-
ficity. More specifically for PIM1, the large dataset of kinase specificity
assembled here could help guide the development of more specific in-
hibitors by both positive and negative design [483], selecting compounds
closer to known selective inhibitors or potent on-target compounds, and
further away in shape space from known inhibitors of off-target kinases.

An additional benefit of kinases as a platform for investigating specificity-
determining factors is the relative abundance of crystallographic data.
We found that the profiled compound binds in the canonical binding
site, in line with earlier findings that shape-similar compounds share
similar binding sites and poses [484], although unsurprising for a kinase
inhibitor. In our comparative crystallographic study, we observed some
interesting properties of existing shape-based approaches as applied to
structural data. The narrow dispersion of FDFP8 (see Table 4.23) , and
the comparatively wider-dispersion of the other approaches, supports
the argument, discussed in section 4.1.1, that FDFP takes a somewhat
orthogonal approach to the ROCS family of alignment-based approaches,
and varies less with the conformational disposition of the query and tem-
plate molecules. This might serve to explain the relatively low similarity
values obtained by ROCS combination on the self-similarity task (when
compared to the distributions observed in Figure 4.4 for example, and
which are also in many cases lower than the threshold obtained from
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our probabilistic model), as we found that our conformer generation
routine struggled to approximate the bound conformation in this case
(see Figure 4.28).

Supporting the hypothesis that FDFP8 is somewhat orthogonal to the
ROCS approaches, the Kendall-Tau correlation coefficients between the
maximum similarity and minimum RMSD for each compound are 0.09
(p=0.36) , -0.88 (p=0.007), and -0.92 (p=0.003) for FDFP8, ROCS Combina-
tion, and ROCS Shape, respectively, indicating that the quality of both
ROCS similarity measures is extremely dependent on the accuracy of the
conformers generated, whereas FDFP is to a large extent independent of
this, at least in this case. The importance of replicating crystal structure
conformations is well known for ROCS, and a primary reason for the
relatively large conformational ensembles typically employed [385]. The
reason for the mismatch between ROCS combination and shape is unclear,
as in this case the electrostatic features are identical, but unfortunately
the specifics of the ROCS implementations as they currently stand are
somewhat unclear. Interestingly, we see no substantial increase in similar-
ity for either ROCS method when considering the minimised-minimised
case (in which we compare generated conformers of compound 102 to
those generated for each of the other solved ligands). We are not entirely
clear why this should be the case as of yet, given that the ROCS combina-
tion method produced superficially similar compounds when utilised on
the ChEMBL set (see Figure 4.15). Repeating this analysis for a broader
set of crystal structures, covering a wider swathe of target space, might
serve to shed some light on the peculiarities of each method.
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4.5 Back-translation study

Summary We observed qualitative agreement of the ligand and protein
FDFP binding descriptions in our PIM1 case study, and a modest cor-
relation. To better understand the relationship, we sought a means of
describing this complex relationship through statistical approximation.
Having tried simple approaches, such as FFN with binary representations,
we determined that our model required a higher descriptive power. As
such, we considered this as a sequence transduction problem, which can
be thought of as training models to generate ligand ‘answers’ to protein
‘questions’, or as translating a protein pocket into a ligand complement.
Utilising a large database of crystallographic structures, we found an
architecture which managed to generate reasonable reproductions of
ligand shape fingerprints, based on analysis of the binding pockets, for
approximately two-thirds of cases, and excellent facsimiles for one fifth
of targets.

4.5.1 Results

scPDB analysis We utilised the scPDB database (2017 release) of ligand-
protein crystallographic data for the purposes of our proof-of-concept
study. For each of the valid complexes in that database (n = 14,556), we
generated FDFP fingerprints for both the ligand and its corresponding
protein pocket. For descriptive purposes, we calculated the pairwise Dice
similarity between all pairs of protein FDFP6, ligand FDFP6 (bound and
minimised) and ECFP6 fingerprints, as reference values (see Figure 4.31).

Overall, we find that most ligands in the database are quite dissimilar to
one another, with a low ECFP6 Dice similarity (0.23±0.18). As such, this
database represents a broad sampling of ligand chemical space. Interest-
ingly, we find that bound-state FDFP6 distributions show higher overall
similarity (0.49±0.14) than minimised-state (0.39±0.15), perhaps reflect-
ing their higher overall energy [485, 486]. Protein pairwise similarity
more closely resembles the distribution for minimised ligands, although
it does not display the same ‘long-tail’ behaviour: as such, there are no
‘exact matches’ in that set (0.33±0.09).

Model selection The protein and bound-state binary fingerprints were
transformed into text-based representations (see subsection 3.6.1). Mem-
ory limitations in our training setup did not permit consideration of
the FDFP8 fingerprint, as the necessary output length overflowed the
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Figure 4.31: Distributions of pairwise Dice similarity for the protein
and ligand components of the scPDB database. As well as ‘pairwise
protein’ (pairwise protein FDFP6), we have ‘pairwise bound’ (pair-
wise bound-conformation ligand FDFP6), ‘pairwise ECFP6’, and ‘pair-
wise minimised’ (pairwise similarity of extracted, minimised ligands).
As per the ECFP6 graph, we see that most of the bounds ligands are
dissimilar under a conventional approach. With pairwise bound and
minimised graphs, we see that bound conformations are, on average,
more similar to each other than minimised conformations. With pair-
wise protein, we see that overall average similarity between protein
pockets is relatively low, more closely resembling the distribution of
minimised than bound ligands, but absent the ‘long tail’.

memory buffer. Therefore, we proceeded with the FDFP6 512-bit repre-
sentation for this proof-of-concept study. Models were derived from two
publicly-available code repositories; an implementation of the original
AIAYN transformer architecture, and the OpenNMT python package.

For a wide-scan of available sequence transduction models, we utilised
the OpenNMT package. In Table 4.24, we found that the three best
models were three transformer-architecture approaches. The relatively
simple RNN methods, augmented with attention layers, perform well
[487], followed finally by some of the larger transformer architectures

205



4. Results and Discussion

Figure 4.32: Distribution of validation perplexity and accuracy val-
ues for the models considered, coloured by their origin package. Over-
all, less variation was observed with default parameters for Open-
NMT models than for our hyperparameter optimisation study, primar-
ily owing to the influence of the optimiser chosen.

and convolutional approaches. Simply reducing the complexity and
parameter count resulted in a substantial improvement in the validation
perplexity achieved with the Google-Big architectures. Given that the pri-
mary difference between the top- and bottom-ranked transformer models
are their layer widths and overall complexity, we considered this aspect
in our hyperparameter optimisation with the AIAYN implementation.

In our assessment of the effect of hyperparameters on transformer per-
formance, we found that, in this case, the choice of optimiser was by far
the largest determining factor [488]. Higher model complexity resulted
in poor performance for the optimisers other than Adam, which proved
comparably resilient to parameter modification. Model width and depth
had no significant effect on the outcomes. We chose the most parsimo-
nious, lowest validation-perplexity model (AIAYN, Adam optimiser, four
layers deep, 512 width, eight attention heads) for further study.
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Table 4.24: Results of the OpenNMT model screen. Results are
sorted by ascending validation perplexity, where a higher value in-
dicates that the model is more uncertain about its predictions. For
model definitions, please see section 3.6.2

Model Name Validation
Perplexity

Validation
Accuracy

MINI-Transformer 2.42 72.59
MED-Transformer 2.43 72.23
MEDWIDE-Transformer 2.43 72.26
GRU 2.70 70.16
LSTM 2.74 69.66
OpenNMT-Google Big-Shallow 3.47 63.77
OpenNMT-Google 3.51 65.33
CNN-9 3.56 66.44
OpenNMT-Google Shallow 3.89 60.73
CNN-3 3.89 62.86
OpenNMT Google Big 5.03 57.56

Model Performance We used this model to generate ‘reconstructed’
ligand fingerprints based solely on interpretation of protein pocket fin-
gerprints. For assessment, we translated the beam-search generated
sequence into a fingerprint representation, and compared this recon-
structed fingerprint to that calculated from the crystal structure (see
subsection 3.6.3). We found that the model was capable of producing a
significant improvement (Figure 4.33a) on the length-adjusted baseline
reconstruction performance (Tc = 0.04), with 18.4% of generated finger-
prints over the corresponding cutoff threshold for FDFP6 (Equivalent
parameters for FDFP6 to the models described in Table 4.21 are: train-
ing MCC 0.23±0.02, training recall 0.08±0.02, testing MCC 0.41, testing
recall 0.61, threshold 0.77). The model results in Tc ≥ 0.5 in more than
two-thirds (65.7%) of cases, with a median similarity of 0.57.

4.5.2 Discussion

Given the known importance of local roughness and fine shape in de-
termining binding site selectivity, we sought to train a model to infer
complementary ligand shape representations from those of identified
binding sites. As previously discussed, earlier works in this area found
no straightforward relationship when the binding partners are consid-
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Table 4.25: Validation set perplexity and accuracy for all combina-
tions of parameters tested for the AIAYN Keras transformer imple-
mentation. Results are grouped by optimiser, depth and width, and,
lastly number of attention heads. Best results per optimiser row and
column are highlighted. Overall, Adam has the best overall perfor-
mance on this task, then Nadam, and finally the Adadelta approach.
For Adam, no very significant difference is observed between the
configurations trialled, although beyond a certain complexity thresh-
old, we notice a degradation in performance. Nadam shows a similar
pattern. Adadelta degrades much faster in this case, with increas-
ing parameter count. Greyed-out boxes indicate combinations for
which memory requirements were exceeded, or convergence was not
reached after 2000 epochs. All results shown are for FDFP6, 512-bit
representation.

Optimiser Layers, Width 4 8 12 16

Adam 2 256 2.19, 75.08 2.16, 75.48 2.18, 75.34 2.21, 74.89
2 512 2.16, 75.44 2.18, 75.68 2.17, 75.47 2.22, 75.35
4 256 2.16, 75.52 2.15, 75.68 2.15, 75.34 2.19, 75.34
4 512 2.15, 76.02 2.14, 75.97 2.15, 75.90 2.19, 75.65
6 256 2.14, 75.76 2.16, 75.74 2.15, 75.85 2.18, 75.53
6 512 2.17, 75.66 2.19, 75.69 2.19, 75.68 2.19, 75.67
8 256 2.17, 75.64 2.18, 75.56 2.18, 75.62 2.9, 63.03
8 512 3.24, 61.35 2.25, 75.19 3.21, 61.78 3.12, 61.43

Nadam 2 256 2.19, 75.18 2.2, 75.04 2.2, 75.15 2.75, 63.68
2 512 2.22, 75.09 2.22, 75.26 2.22, 75.23 2.76, 63.83
4 256 2.19, 75.28 2.18, 75.38 2.18, 75.51
4 512 2.21, 75.23 2.19, 75.38 2.20, 75.48
6 256 2.19, 75.52 2.17, 75.60 2.17, 75.7
6 512 2.91, 67.49 2.6, 67.48 2.59, 67.17

Adadelta 2 256 4.25, 59.39 4.52, 58.32 4.27, 59.31
2 512 4.14, 59.85 4.12, 59.39 4.19, 59.81
4 256 8.02, 37.37 9.00, 34.11 8.99, 34.53
4 512 8.04, 38.92 8.16, 37.41 8.45, 36.02
6 256 9.53, 29.75 10.52, 26.52 10.54, 26.24
6 512 9.30, 29.34 36.87, 6.19
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4.5. Back-translation study

Figure 4.33: a) Pairwise similarity between crystal-extracted ligand
fingerprint and that reconstructed from consideration of the protein
ligand fingerprint. Median pairwise similarity is 0.57. b) Difference
in the bit-count between the crystal fingerprint and the reconstructed
representation. The median difference is equal to one.

ered at the whole-pocket, whole-ligand level, so we considered the issue
at an atomic resolution, as with the works of Pettit [164] and Todoroff
[169]. Distinguishing our approach from these methods, we use the
developed shape-fingerprint methods to capture information about sub-
structures in both binding partners, encoding these into fixed-length
vectors representing the local shape properties of the ligand and asso-
ciated binding pocket. These authors showed that the local roughness
of a surface correlates with its ligandability, in a complex fashion. In
our work, we aimed to see whether we could to some extent invert the
intention of Todoroff’s model; instead of finding ligandable sites on
a target, we aim to translate a known ligandable site into a potential
ligand, to determine the extent to which target and ligand geometries are
co-determined. Finding considerable variability in binding pocket, and
bound ligand, geometries (Figure 4.31) suggested that such an approach
might be feasible, especially given that we had already found the ligand
FDFP representation useful for ‘real-world’ LBVS campaigns.

To the best of our knowledge, this is the first attempt to directly translate
a binding pocket shape representation into a ligand format useful for
virtual screening approaches. While significant work has been done to
date on the subject of shape-based complementarity, these approaches
have typically been evaluating existing pairs [132, 489, 490], or driving a
geometric docking approach [375], with a few exceptions [271, 491]. The
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latter cases each directly incorporate electrostatic information, and were
both validated on the DUD dataset, and compared against other structure-
based virtual screening methods. Our finding that the developed proof-
of-concept model could accurately recreate ligand fingerprints, and, in a
fifth of cases, sufficiently well that we would retrieve the original ligand
with high-confidence of shared activity based solely on an analysis of the
protein structure, is very encouraging.

Looking into the errors in more detail, we find that, more often than not,
the generated fingerprint has fewer bits than the original crystal form
(Figure 4.33b). One benefit of fingerprint methods is their extension of
atom descriptions to local neighbourhoods. It could certainly be the case
that one reason for this discrepancy is that only the ‘near-side atoms’, by
which we mean those with target-facing surfaces, have shape fingerprint-
bits set in the output. Whilst the overall performance of the model is
surprisingly good, further optimisation of both the engineered features
(fingerprints) and the model hyperparameters, and visual analysis of the
cases at the extremes of the performance distribution, might help direct
improvements to shift more of the distribution beyond the threshold.
Additionally, as noted by Ehrt et al. [148], the choice of similarity metric
used to compare binding pocket shape has a substantial impact on the
quality of results obtained.
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We consider there to be seven significant sources of potential error in our
approach:

1. Protein-description: Given that we have no adequate system for
the benchmarking of protein pocket similarity, it is plausible that
our fingerprinting method fails to capture sufficient information
about pocket geometry, either due to an intrinsic effect, or due
to parametrisation. Free parameters, such as the size of the local
environment, and the distance cut-off for atoms near the bound
ligand, are sources of the latter error. Other local-shape methods
for macromolecules have been proposed [168], but this field lacks a
standardised benchmark such as that discussed for small molecules.

2. Environment-description: the simplification of most immediate
biological relevance is our removal of solvents and co-factors. The
importance of these for determining binding specificity has been
discussed extensively in the literature [492–496]. We ignored these
for reasons of computational expediency.

3. Target and ligand dynamics: Our approach is based on a ‘snapshot’
of a target state, under certain conditions, for which a model is
constructed satisfying the electron density observed. We made no
explicit efforts to further curate the data, or to account for intrinsic
variability in the structures themselves. As noted in Table 4.23,
comparing a crystallographic ligand fingerprint with those describ-
ing generated conformers results in some loss of similarity (Tc
0.84±0.04). The impact of protein structure on ligand conforma-
tion, and vice versa, is innately important for shape considerations.
Analysis of molecular dynamics trajectories, as with the work of
Todoroff et al. [169], allowing for the construction of a consensus
representation, might be a profitable direction for further research.

4. Fingerprint generation (I): One explanation for the good perfor-
mance of the transformer architecture on this task is its lack of
strong position-dependence. As constructed, we simply transcribe
the index positions of on-bits to a string representation. This does
not take into account the intrinsic order of bit-setting, i.e., it is
inherently agnostic to whether or not these bits were set in the first
or last iteration of the fingerprinting algorithm, and hence what
level or size of feature is being described. Additionally, we do
not distinguish between iterations when considering the retrospec-
tive performance. While the transformer architecture has shown
promise for chemistry-related tasks, such as reaction prediction
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[497], SMILES are a more ‘natural’ grammar than that adopted
here.

5. Fingerprint generation (II): Equally, the fingerprinting algorithm
used for each method differs. As previously described, E3FP-like
algorithms (protein fingerprint) generate fingerprints based on a
radius in Euclidean, rather than topological space. Repeating this
experiment with an E3FP-like ligand fingerprint would help to
lessen this representational error.

6. Model-capacity and training: Given that we observed a clear im-
provement through use of the transformer architecture, it is prob-
able that we have not identified the best-possible architecture for
this problem. Models with a higher capacity to generalise, or which
more directly represent the pocket, such asc a 3D-CNN [358, 498],
might be more appropriate for this task.

7. Intrinsic error: As discussed previously, it is unlikely that target
and ligand geometry suffice to determine their interactions entirely.
Electrostatic effects and crystallographic considerations likely im-
pose an upper limit on the achieved performance with such an
approach. Shin et al. [271] noted substantial improvements in
performance of their method with the addition of electrostatics.
However, such an approach would render it quite difficult to assess
the contribution of the geometric component.

Given that our extensive hyperparameter optimisation, and assessment of
models of varying complexity, did not substantially affect performance,
we feel that priority should be given to the definition of the pocket
atoms, and focused analysis of the fingerprint bits set in the output.
Colourisation of the original atoms with the subsequent bit indices is
relatively straightforward, and would help to guide further efforts in this
matter to focus efforts.

Utilisation of the crystal-derived and reconstructed fingerprints in a
similar benchmarking approach to that described could be useful to
determine whether Tc reduction is associated with real-world perfor-
mance degradation, as would attempting this transductive process with
a fingerprint derived from an apo-structure. In addition to demonstrat-
ing the feasibility of ligand fingerprint suggestion, based on pocket
shape, we also see the issues associated with the direct adoption of
metrics considered common in machine-learning domains for chemin-
formatics. Validation perplexity and accuracy for our model have more
direct meaning in language translation tasks. Utilising these directly
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in chemoinformatics, where small alterations can interfere substantially
with similarity searching, for example, is unlikely to be as useful as
translating the results into a more use-case appropriate format.
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Chapter 5

Conclusion

Hypothesis: ‘Shape complementarity determines a
considerable portion of the target-complementarity of

ligands, and the ligand-complementarity of targets, in a
manner substantively different to simple descriptors.’

This work aimed to explore the geometric complementarity between
ligands and targets from a variety of perspectives. This has been ex-
tensively discussed in the literature as contributing to the specificity of
both partners in that interaction. Existing approaches have been widely
adopted in academic and industrial drug-discovery settings, illustrating
the descriptive power of such methods. Previous work has made much
of the capacity of these methods to facilitate scaffold-hopping, and to
predict the promiscuity of a scaffold [499]. Existing implementations
of this idea tend towards one of two extremes; exceptional speed and
approximate description, or a rigorous definition of similarity and poor
scaling characteristics.

Given previous work in the field of small- and macro-molecular compari-
son, based on the α-shape formalism, and recent discussion of the ideal
properties of description in terms of fractal dimensionality for the latter
group, we sought to investigate whether we could harness this formalism
to facilitate rapid, rigorous, shape-based descriptions of large swathes
of chemical space. With an eye to efficient algorithm development, but
without speed as a primary focus, the developed approaches (global and
local fractal dimensionality descriptors) have exceptional run-time perfor-
mance, enabling shape-based comparisons at a speed typically associated
with 2D methods. There is plenty of room for further improvement in the
design and implementation of the approach, which provides a natural
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and readily-extensible framework. Our method is suitable by default for
a wide range of chemical matter, from small organic molecules, to local
and global descriptions of their macromolecular binding partners.

To assess the relevance of the described approaches, we adopted an
external, large-scale benchmarking strategy. This furnished some inter-
esting insights into the relationship between 2D and 3D chemical space.
We observed that shape-based methods, including FDFP and GFD, be-
have substantially differently to their 2D cousins when challenged with
different datasets. The MUV dataset, designed to be challenging for
the familiar 2D approaches, proved easier for each of the shape-based
approaches assessed. This relationship was inverted when considering
a subset of the ChEMBL database, which represents the fruits of years
of labour in drug development. Here, 3D methods typically under-
performed, although FDFP was observed to retain good performance
levels. Given this disparity, one reasonable interpretation of the limi-
tations observed with such approaches is that our existing libraries of
validated compounds are not ‘very 3D’ in nature. This is supported by
analyses of the diversity of screening libraries [82, 499], and it to some
extent a reflection of the easiest-to-reach parts of chemical space, which
are therefore most densely covered in synthesised molecules.

To strike out of this comfort zone, out of the flatlands and into the hills,
it is reassuring to have some sort of guide. In our case, we adopted a
multi-faceted approach, where we took insights from the benchmark-
ing study, and combined these with two prospective studies, to assess
the applicability domain of our approach. The first of these prospec-
tive studies resulted in the identification of a novel inhibitor of TRPC4,
representing a significant scaffold hop from the template, the natural
product (-)-Englerin A. A small SAR study demonstrated both the power
and limitations of a global shape-based approach. A second, much
larger, second study aimed to assess the relationship between shape-
and biological-similarity of compounds for seven targets. We saw that
insights learned from a 2D benchmarking study could be utilised to
enrich a 3D VS campaign, resulting in a hit rate of 42% overall beyond a
cutoff threshold identified in that first study. These compounds represent
a diverse sampling of chemical space, with a high proportion of unique
scaffolds, previously unknown in public databases. As such, we find
evidence in support of our underlying hypothesis, that shape is in some
way privileged, as we can make a jump in pharmacophore and scaffold
spaces without falling off an activity cliff.
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Examining the shape relationship between small- and macro-molecules
at a finer level of granularity, we conducted an extensive profile of a
promising compound, active against the PIM1 kinase. We collated data
on the specificity of kinase inhibitors, and obtained a crystal structure for
our compound in complex with PIM1. Using this as the basis of a focused
set, we assessed the performance of various shape-based strategies for the
comparison of bound and free ligand conformations, and, intriguingly,
noted some correlation between shape similarity in ligand and target
spaces, although this was insufficient to adequately discriminate between
known ligands of PIM1, given that they were all sited within the canonical
binding pocket.

To further investigate that potential lead, we attempted a proof-of-concept
study, demonstrating the ‘translation’ of target pockets into complemen-
tary ligands through a variety of AI approaches. We described roughly
fourteen thousand protein-ligand pairs in terms of their shape, and
profiled various approaches which have been employed successfully in
other fields, finally settling on a relatively novel architecture. We found
that the method worked sufficiently well to suggest screening-ready
shape fingerprints in a quarter of cases, and in two-thirds we recovered
more than a half of the fingerprint, enabling a fuzzier search. As such,
this approach appears to work in principle, although future efforts are
needed to clarify the underlying factors determining success for a given
pocket. Recent work [357] has demonstrated the desire to incorporate
considerations of shape in generative efforts, and we feel our work is a
step towards that, albeit taking a different approach. As with that work,
incorporation of pharmacophoric features, as with ROCS Colour and
USRCAT, could add valuable information, and improve the specificity
of our representation. The FDFP approach is sufficiently fast that its
incorporation into generative models as a scoring metric, guiding the
focused generation of a library of shape-similar compounds, would be
straightforward.
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Returning to our initial hypothesis, we feel that the insights gained
from the benchmarking and prospective studies offer strong support
for the statement above, demonstrating that shape-based methods can
perform equally well, or better, on datasets constructed using traditional
approaches, identifying a higher proportion of novel scaffolds in both
retrospective and prospective applications than would be expected. For
the moment, support for the ‘ligand-complementarity of targets’ is predi-
cated on the ligand-based characterisation of target space, a traditional
approach in pharmacological endeavours [500], although we have made
some early efforts directly supporting this clause.

Further work to support this, and to help parametrise the protein FDFP
approach, could utilise the constructed dataset of protein fingerprints
to build similarity networks of protein fingerprints, and consider the
enrichment in gene ontology [501, 502] terms, allowing for the direct
correlation of shape and functional similarity [148]. In a similar vein, the
developed FDFP approach is sufficiently fast and powerful to facilitate
broader comparisons in chemical as well as biological space. A simple
extension of the analysis here would be to cluster screening libraries
in terms of their shape, providing a useful analysis of the diversity of
‘geotypes’, by analogy to chemotypes [503], present in any given set.
Such an analysis could also be used to determine the overlap of these two
concepts, i.e. the extent to which members of a cluster are isofunctional,
and, by extension, to map between ligand and protein shape-clusters.
Although we showed that a simple FDFP similarity model performed
well as a basic form of target prediction, this would be a natural direction
to take for further development.

Given the observation that structure is more conserved than sequence
for the binding sites of protein targets [165, 504, 505], and that a ligand’s
shape is an adequate predictor of its promiscuity [499], an extension of
our analysis with the PIM1 kinase could prove fruitful, given that we were
unable to find sufficient overlap in our specificity and crystallographic
datasets to adequately explore this relationship. A simple extension
would be the incorporation of crystallographic data for the other kinases
profiled, to assess the overlap between pocket similarity and comparable
bioactivity.
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Overall, considering the various studies conducted, one could say, cau-
tiously, that the picture which emerges is one of shape providing an
underlying framework, upon which pharmacophoric features act as
determinants of specificity. This explains the observation that high shape-
similarity is not as clear an indication of shared activity as high 2D
similarity, but that the latter approach alone is most useful in areas of
chemical space where we are already confident of joint activity, and has
less utility for scaffold-hopping. Equally, we find some support for the
idea that target shape and ligand shape are intrinsically related, and in a
complementary fashion. The falsifiability of our hypothesis is uncertain,
given the difficulty of separating geometry and electrostatics, but we
have found little substantial evidence against it in this work, and much
in its favour. As such, we feel that shape analysis has a valuable role
to play in investigating the nature of ligand-target interactions, and in
the identification of novel bioactive compounds based on the principle
of shape-similarity. The developed approach extends the field by means
of a rigorous definition of shape, which is computable in a reasonable
time, and is readily extensible to the description of new chemical and
biological entities, facilitating further investigation of this concept.
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128. Edelsbrunner, H. & Mücke, E. P. Three-dimensional alpha shapes.
ACM Trans Graph 13, 43–72 (1994).

129. Wilson, J. A., Bender, A., Kaya, T. & Clemons, P. A. Alpha shapes
applied to molecular shape characterization exhibit novel proper-
ties compared to established shape descriptors. J Chem Inf Model
49, 2231–2241 (2009).

130. Edelsbrunner, H. & Shah, N. Incremental topological flipping
works for regular triangulations. Algorithmica 15, 223 (1996).
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133. Pérot, S., Sperandio, O., Miteva, M. A., Camproux, A.-C. & Vill-
outreix, B. O. Druggable pockets and binding site centric chemical
space: a paradigm shift in drug discovery. Drug Discov Today 15,
656–667 (2010).

231



Bibliography

134. Nayal, M. & Honig, B. On the nature of cavities on protein surfaces:
application to the identification of drug-binding sites. Proteins 63,
892–906 (2006).

135. Laurie, A. T. R. & Jackson, R. M. Methods for the prediction of
protein-ligand binding sites for structure-based drug design and
virtual ligand screening. Curr Protein Pept Sci 7, 395–406 (2006).

136. Zheng, X., Gan, L., Wang, E. & Wang, J. Pocket-based drug design:
exploring pocket space. AAPS J 15, 228–241 (2013).

137. Laskowski, R. A., Luscombe, N. M., Swindells, M. B. & Thornton,
J. M. Protein clefts in molecular recognition and function. Protein
Sci 5, 2438–2452 (1996).

138. Rosen, M., Lin, S. L., Wolfson, H. & Nussinov, R. Molecular shape
comparisons in searches for active sites and functional similarity.
Protein Eng 11, 263–277 (1998).

139. Bergner, A. & Günther, J. in Chemogenomics in drug discovery: A
medicinal chemistry perspective (eds Kubinyi, H. & Müller, G.) 97–135
(Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2004).

140. Gold, N. D. & Jackson, R. M. Fold independent structural com-
parisons of protein-ligand binding sites for exploring functional
relationships. J Mol Biol 355, 1112–1124 (2006).

141. An, J., Totrov, M. & Abagyan, R. Pocketome via comprehensive
identification and classification of ligand binding envelopes. Mol
Cell Proteomics 4, 752–761 (2005).

142. Beinglass, A. & Wolfson, H. Articulated object recognition, or: how
to generalize the generalized Hough transform in Proceedings. 1991
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (IEEE Comput. Sco. Press, 1991), 461–466.

143. Sandak, B., Nussinov, R. & Wolfson, H. J. An automated computer
vision and robotics-based technique for 3-D flexible biomolecular
docking and matching. Comput Appl Biosci 11, 87–99 (1995).

144. Nussinov, R. & Wolfson, H. J. Efficient detection of three-dimensional
structural motifs in biological macromolecules by computer vision
techniques. Proc Natl Acad Sci USA 88, 10495–10499 (1991).

145. Xie, L., Xie, L. & Bourne, P. E. A unified statistical model to support
local sequence order independent similarity searching for ligand-
binding sites and its application to genome-based drug discovery.
Bioinformatics 25, i305–12 (2009).

232



Bibliography

146. Kellenberger, E., Schalon, C. & Rognan, D. How to Measure the
Similarity Between Protein Ligand-Binding Sites? CAD 4, 209–220
(2008).

147. Chaudhari, R., Tan, Z. & Zhang, S. in Comprehensive medicinal
chemistry III 259–275 (Elsevier, 2017).

148. Ehrt, C., Brinkjost, T. & Koch, O. Binding site characterization -
similarity, promiscuity, and druggability. Medchemcomm 10, 1145–
1159 (2019).

149. Yeturu, K. & Chandra, N. PocketMatch: a new algorithm to com-
pare binding sites in protein structures. BMC Bioinformatics 9, 543
(2008).

150. Schmitt, S., Kuhn, D. & Klebe, G. A new method to detect re-
lated function among proteins independent of sequence and fold
homology. J Mol Biol 323, 387–406 (2002).

151. Bron, C. & Kerbosch, J. Algorithm 457: finding all cliques of an
undirected graph. Commun ACM 16, 575–577 (1973).

152. Chartier, M. & Najmanovich, R. Detection of binding site molecular
interaction field similarities. J Chem Inf Model 55, 1600–1615 (2015).

153. Chartier, M., Adriansen, E. & Najmanovich, R. IsoMIF Finder: on-
line detection of binding site molecular interaction field similarities.
Bioinformatics 32, 621–623 (2016).

154. Kinoshita, K., Furui, J. & Nakamura, H. Identification of protein
functions from a molecular surface database, eF-site. J Struct Funct
Genomics 2, 9–22 (2002).
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352. Arús-Pous, J. et al. Exploring the GDB-13 chemical space using
deep generative models. J Cheminform 11, 20 (2019).

353. Pogany, P., Arad, N., Genway, S. & Pickett, S. D. De novo Molecule
Design by Translating from Reduced Graphs to SMILES. J Chem
Inf Model (2018).

248



Bibliography

354. Lim, J., Ryu, S., Kim, J. W. & Kim, W. Y. Molecular generative
model based on conditional variational autoencoder for de novo
molecular design. J Cheminform 10, 31 (2018).

355. Awale, M., Sirockin, F., Stiefl, N. & Reymond, J.-L. Drug Analogs
from Fragment-Based Long Short-Term Memory Generative Neural
Networks. J Chem Inf Model 59, 1347–1356 (2019).

356. Gupta, A. et al. Generative recurrent networks for de novo drug
design. Mol Inform 37 (2018).
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498. Skalic, M., Varela-Rial, A., Jiménez, J., Martı́nez-Rosell, G. & De Fab-
ritiis, G. LigVoxel: inpainting binding pockets using 3D-convolutional
neural networks. Bioinformatics 35, 243–250 (2019).

499. Lovering, F. Escape from Flatland 2: complexity and promiscuity.
MedChemComm 4, 515–519 (2013).

500. Keiser, M. J., Irwin, J. J. & Shoichet, B. K. The chemical basis of
pharmacology. Biochemistry 49, 10267–10276 (2010).

501. Ashburner, M. et al. Gene ontology: tool for the unification of biol-
ogy. The Gene Ontology Consortium. Nat Genet 25, 25–29 (2000).

502. Consortium, G. O. Gene Ontology Consortium: going forward.
Nucleic Acids Res 43, D1049–56 (2015).

503. Jenkins, J. L., Glick, M. & Davies, J. W. A 3D similarity method
for scaffold hopping from known drugs or natural ligands to new
chemotypes. J Med Chem 47, 6144–6159 (2004).

504. Zhang, Q. C., Petrey, D., Norel, R. & Honig, B. H. Protein interface
conservation across structure space. Proc Natl Acad Sci USA 107,
10896–10901 (2010).

505. Capra, J. A., Laskowski, R. A., Thornton, J. M., Singh, M. &
Funkhouser, T. A. Predicting protein ligand binding sites by com-
bining evolutionary sequence conservation and 3D structure. PLoS
Comput Biol 5, e1000585 (2009).

260



Appendix

Englerin study

Parts of this section are published as: Shape Similarity by Fractal Di-
mensionality: An Application in the de novo Design of (-)-Englerin A
Mimetics. [403]
Authors: Lukas Friedrich, Ryan Byrne, Michael Mederos y Schnitzler,
Aaron Treder, Inderjeet Singh, Christoph Bauer, Thomas Gudermann,
Ursula Storch and Gisbert Schneider

Predicted active compounds

Physicochemical properties

Bioactivity determination

In vitro biological assessment Intracellular Calcium Assays The modu-
latory effects of compounds 1 and 2 were tested in a cell-based intracel-
lular calcium assay for transient receptor potential melastatin 8 cation
channel (TRPM8). Log(concentration) response curves (four-parameter
logistic curves) were plotted in Prism 7 (GraphPad Software, La Jolla, CA,
USA). IC50 values were determined with Prism 7. Dissociation constants
(Ki) were calculated with the modified Cheng-Prusoff equation:

Ki = IC50

[
1 +

C
EC50 · C

]−1

(.1)

where C is the concentration of control activator icilin (0.1 µM) in the
assay and EC50.C its EC50 value (0.016 µM). Modulatory effects of com-
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Figure 1: Calculated physicochemical properties of the DOGS set
(blue), TOP30 FD (green), TOP30 CATS (red) and (-)-Englerin A
(dashed, orange line). Box-Whisker plots of the a) molecular weight,
b) topological polar surface area (TPSA), c) number of hydrogen-
bond acceptors, d) number of hydrogen-bond donors, e) number of
non-hydrogen atoms, f) calculated octanol-water partition coefficient
(cLogP), g) fraction of sp3-hybridized carbon atoms.
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Figure 2: The top-30 ranked compounds according to GFD towards
1a. Compounds selected for synthesis and testing (Compounds 2
and 3) are highlighted. For each entry, the synthesisability score is
included. Compounds were chosen by a medicinal chemist based on
low synthesisability score and ready availability of building blocks

pounds 1 and 2 on TRPM8 were determined by intracellular calcium
response detected by fluorimetry. Inhibitory effects of 1 and 2 on TRPA1,
TRPV3 and TRPV4 were measured in calcium assays, performed on a
Molecular Devices’ FLIPRTETRA (fluorescent imaging plate reader). Al-
lyl isothiocyanate (AITC, EC80 = 10 µM, TRPA1), 2-aminoethoxydiphenyl
borate (2-APB, EC80 = 50 µM, TRPV3), and
GSK106790A (EC80 = 100 nM, TRPV4) as reference activators. Ruthe-
nium Red was used as reference inhibitor in TRPA1, TRPV3, and TRPV4
assays. Calcium assays (TRPA1, TRPV3, TRPV4, and TRPM8) were con-
ducted by Eurofins Cerep SA (France) and Eurofins Panlabs (USA) on a
fee-for-service basis.

Electrophysiology Human embryonic kidney (HEK293) cells (293T,
ATCC CRL-3216) were maintained in Earl’s MEM (Sigma-Aldrich,
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Taufkirchen, Germany), with 100 units ml-1 penicillin and 100 µg ml-1

streptomycin supplemented with 10% (vol/vol) FCS (Gibco, Thermo
Fisher Scientific, Waltham, MA, USA) and 2 mM glutamine. All cells
were held at 37◦C in a humidified atmosphere with 5% CO2. Cells were
seeded into 6-well dishes and transiently transfected at confluency of
about 90% using GeneJuice (Merck Millipore, Billerica, MA, USA) accord-
ing to the manufacturer’s protocol. Conventional whole-cell recordings
were carried out at room temperature 15 hours after transfection with the
human TRPM8 (NP 076985) in pCAGGSM2-IRES-GFP expression vector
or 24 hours after transfection of the cells with the rat TRPC4 isoform
TRPC4-beta1 (NP 001076584) in pIRES2-eGFP expression vector. The
following bath solution containing 140 mM NaCl, 5 mM CsCl, 1 mM
MgCl2, 2 mM CaCl2, 10 mM glucose, 10 mM HEPES (pH 7.4 with NaOH)
and resulting in an osmolarity of 295-302 mOsm kg-1 was used. The
pipette solution for TRPM8 measurements contained 130 mM CsCl, 5.792
mM MgCl2, 0.524 mM CaCl2, 10 mM BAPTA (5.5 nM free Ca2+), 1 mM
HEDTA (3 mM free Mg2+) and 10 mM HEPES (pH 7.2 with CsOH),
resulting in an osmolality of 296 mOsm kg-1. The pipette solution for
TRPC4 measurements contained 120 mM CsCl, 9.4 mM NaCl, 0.2 mM
Na3-GTP, 1 mM MgCl2, 3.949 mM CaCl2, 10 mM BAPTA (100 nM free
Ca2+) and 10 mM HEPES (pH 7.2 with CsOH), resulting in an osmolality
of 296 mOsm kg-1.

Patch pipettes made of borosilicate glass (Science Products, Hofheim,
Germany) had resistances of 2.0-2.8 MΩ for the whole-cell measure-
ments. Data were collected with an EPC10 patch clamp amplifier (HEKA,
Lambrecht, Germany) using the Patchmaster software (HEKA). Current
density-voltage relations were obtained from voltage ramps from –100 to
+100 mV with a slope of 0.5 V s-1 applied at a frequency of 2 Hz. Data
were acquired at a frequency of 5 kHz after filtering at 1.67 kHz. For
TRPM8 channel activation, 200 µM (-)-menthol was applied. 0.1, 1 and
10 µM compound 2 was applied in the presence of (-)-menthol. In some
measurements (-)-menthol and compound 2 were washed out and a sec-
ond application of (-)-menthol caused second TRPM8 current increases.
The maximal (-)-menthol-induced outward currents at +100 mV before
application of compound 2 were used for analysis. TRPM8-expressing
cells which showed basal activity ≥2 nA/pF at +100 mV were excluded
from further analysis. To determine IC50 value, 0.3, 1, 2, 3, 10, 30 and
100 µM compound 2 was applied. For TRPC4 channel activation 50 nM
(-)-Englerin A (Carl Roth, Karlsruhe, Germany) was applied two times.
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(-)-Englerin A was applied in the presence of different compound 1 and
compound 2 concentrations. The second (-)-Englerin A-induced current
increase was used for normalization. For calculation of IC50, maximal
(-)-Englerin A-induced outward currents at +100 mV were used. For cal-
culation of the percentage of maximal outward currents at +100 mV basal
currents before application of the first stimulus were always subtracted.
Dissociation constants (Ki) were calculated with the modified Cheng
Prusoff equation(.1), where C is the concentration of control activator
(-)-Englerin A (0.05 µM) in the assay and EC50 its EC50 value (0.0112 µM).

Statistical analysis Electrophysiological data was analyzed using Ori-
gin 7.5 software (OriginLab, Northampton, MA, USA). Data are presented
as mean ± standard error of the mean (s.e.m.). For calculation of IC50
value, concentration response curve was fitted using Single Hill-equation
until no reduction of Chi-square was noted.
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Kinase Selectivity

Table 1: Data obtained from fee-for-service provider Cerep Eurofins
regarding kinase selectivity of compound 102 with regard a panel of
medically-relevant kinases of interest in drug discovery.

Kinase Compound 102%
inhibition at 10 µM

Abl(h) 32
ALK(h) 7
AMPKα1(h) 27
ASK1(h) 0
Aurora-A(h) 21
CaMKI(h) 18
CDK1/cyclinB(h) 12
CDK2/cyclinA(h) 9
CDK6/cyclinD3(h) 20
CDK7/cyclinH/MAT1(h) 8
CDK9/cyclin T1(h) 22
CHK1(h) 56
CK1γ1(h) 62
CK2α2(h) 18
c-RAF(h) 37
DRAK1(h) 87
eEF-2K(h) 8
EGFR(h) 42
EphA5(h) 20
EphB4(h) 0
Fyn(h) 21
GSK3β(h) 82
IGF-1R(h) 0
IKKα(h) 0
IRAK4(h) 8
JAK2(h) 7
KDR(h) 0
LOK(h) 0
Lyn(h) 33
MAPKAP-K2(h) 16
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MEK1(h) 21
MLK1(h) 40
Mnk2(h) 41
MSK2(h) 29
MST1(h) 15
mTOR(h) 15
NEK2(h) 16
p70S6K(h) 34
PAK2(h) 0
PDGFRβ(h) 13
PIM1(h) 85
PKA(h) 19
PKBα(h) 30
PKCα(h) 19
PKCθ(h) 0
PKG1α(h) 30
Plk3(h) 9
PRAK(h) 33
ROCK-I(h) 3
Rse(h) 16
Rsk1(h) 56
SAPK2a(h) 12
SRPK1(h) 33
TAK1(h) 18
PI3 Kinase (p110b/p85a)(h) 3
PI3 Kinase (p120g)(h) 13
PI3 Kinase (p110d/p85a)(h) 13
PI3 Kinase (p110a/p85a)(h) 6
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Figure 3: Kinase map showing labelling for targets. N.B. kinase in-
hibition data are available for 58/536 kinases visible. PIM1 kinase
is highlighted. Illustration reproduced courtesy of Cell Signalling
Technology, Inc. (www.cellsignal.com)
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Figure 4: Heatmap of the kinase inhibition for each molecule stud-
ies in the kinase selectivity study, where brighter colours indicate
higher inhibition at 10 µM. Compounds are ranked top-to-bottom by
PIM1 inhibition, except for the first entry, which is for compound 102,
and the following five entries, which are for kinase inhibitors which
have proceeded to at least phase II. Left-to-right order is by sequence
similarity to the PIM1 Kinase.
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Crystallographic parameters

Table 2: Crystallographic parameters obtained for the
PIM1/Compound 911521 complex. Crystallisation was provided on a
fee-for-service basis by SARomics Biostructures AB (Lund, Sweden).
Figures in parentheses are from the highest resolution shell.

Parameter or Observation Value

Protein Complex PIM1/911521

Resolution (Å) 48.83 - 1.8
(1.84 - 1.80)

Wavelength (Å) 1.0332
Space group P65

Unit cell (Å)

a = 97.65
b = 97.65
c = 80.51
α = 90
β = 90
γ = 120

Completeness (%) 99.8 (98.0)
Redundancy 10.1 (9.7)
No. of observations / unique reflections 407886/22861
<I/σ(I)> 13.8 (1.51)
Rmerge (I) (%) 9.5 (174.2)
CC(1/2) (%) 99.8 (58.2)
Rmodel (F) (%) 15.7 (31.9)
Rfree (F) (%) 18.8 (38.7)
No. of non-hydrogen atoms 2601
No. of water molecules 283
RMS deviations from ideal geometry:
Bond lengths (Å) 0.008

Bond angles (◦) 1.5
Mean B-factor protein chain A (Å2) 37.4
Mean B-factor ligands, chain B (Å2) 34.3
Mean B-factor, Imidazole, chain C (Å2) 42.8
Mean B-factor, PEG, chain D (Å2) 53.3
Mean B-factor solvent, chain H (Å2) 47.4

Ramachandran plot quality*
Favoured regions (%) 97.8
Allowed regions (%) 2.2
Outliers (%) 0.0
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