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ARTICLE

Untangling the seasonal dynamics of
plant-pollinator communities
Bernat Bramon Mora1,2✉, Eura Shin1,3, Paul J. CaraDonna4,5 & Daniel B. Stouffer 1

Ecological communities often show changes in populations and their interactions over time.

To date, however, it has been challenging to effectively untangle the mechanisms shaping

such dynamics. One approach that has yet to be fully explored is to treat the varying

structure of empirical communities—i.e. their network of interactions—as time series. Here,

we follow this approach by applying a network-comparison technique to study the seasonal

dynamics of plant-pollinator networks. We find that the structure of these networks is

extremely variable, where species constantly change how they interact with each other within

seasons. Most importantly, we find the holistic dynamic of plants and pollinators to be

remarkably coherent across years, allowing us to reveal general rules by which species first

enter, then change their roles, and finally leave the networks. Overall, our results disentangle

key aspects of species’ interaction turnover, phenology, and seasonal assembly/disassembly

processes in empirical plant-pollinator communities.
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Ecological communities are inherently dynamic. Their spe-
cies composition is in constant change due to species’
intrinsic phenologies1, environmental variability2,3, and

disturbances such as habitat fragmentation and invasive
species4,5. In turn, the presence, absence, and intensity of ecolo-
gical interactions also vary over time6. This happens either by the
direct turnover of interacting species or by higher-order effects of
changes in the community composition7. That is, the arrival of a
new species in a community will come hand-in-hand with a new
set of interactions, and these changes in the community will also
indirectly interfere with existing interactions (e.g. potentially
generating new cases of apparent competition between species8).

There is a longstanding tradition in ecology of exploring
community dynamics using mathematical models9,10. The
empirical basis of such models is generally static interaction
networks, where nodes and links represent the different species
and their observed interactions aggregated over sampling
seasons7,11,12. While species’ interaction strengths are linked to
their abundances in these models, the aforementioned dynamic
nature of ecological interactions makes the underlying static
representation of a community unrealistic—for example, plant-
pollinator systems have been shown to present high levels of
within-season species and interaction turnover13,14. Fortunately,
several pioneering empirical studies have laid the groundwork for
analysing natural systems over different time scales, providing
crucial examples of the way ecological communities change
within seasons1,15–17, across seasons18,19, and over much longer
time scales20,21. These examples can often be represented as
network time series, providing glimpses of ecological dynamics at
whole-community scales. Such a network representation offers a
way to assess how species enter and leave the community, and
how they change their interactions over time. It therefore pro-
vides a valuable way to empirically interrogate three stages of
community dynamics: assembly, intermediate dynamics, and
disassembly22.

There are several hypotheses on how each of these three stages
might progress in natural communities. Within-season assembly
of plant-pollinator networks seems to be described by ‘pre-
ferential attachment’, the mechanism by which newcomer species
are more likely to attach to generalist ones1,23. However, this
preferential attachment hypothesis is not without contention, as
contrasting mechanisms seem to also explain the assembly pro-
cess in other mutualistic systems24 and time scales (e.g. ‘oppor-
tunistic attachment’19). The way communities disassemble, on the
other hand, has been less frequently studied. Although some
studies have shown the disassembly process in plant-pollinator
communities to showcase the preferential loss of less-connected
species (i.e. ‘preferential detachment’5,20), how disassembly plays
a role within seasons is often unexplored. Finally, the bridge
between community assembly and disassembly—its intermediate
dynamics—is largely missing (but see Tylianakis et al.25). The
non-random structure of mutualistic communities suggest,
nevertheless, a coherent dynamic in the way species enter the
community, change their interactions, and leave the community.

Perhaps one of the main obstacles for untangling this coherent
dynamic is finding the ‘appropriate’ scale. For example, some
studies have focused on the change of species composition over
time, adopting a ‘full-network’ perspective to community
dynamics. Unfortunately, while it appears useful to explain
observed species distributions26,27, these studies often need to
assume that interactions are independent from local changes in
species abundances, thereby washing away a key component of
community dynamics. Alternative approaches have found success
quantifying temporal interaction turnover and linking such
turnover to species’ phenologies14,28. Nevertheless, these ‘species-
level’ approaches are often centred around quantifying variation

of species interactions and lack the resolution to understand how
such variation transforms the overall structure of ecological net-
works. That is, changes in species composition or interactions
might not always translate into meaningful changes in the com-
munity structure (or vice versa).

We employ an approach here to study the complete seasonal
dynamics of plant-pollinator communities using the technique of
network alignment29. Conceptually, aligning any two ecological
networks proceeds by pairing up the species that play similar
structural roles in each community21,30,31. This pairing essentially
identifies species with analogous ‘positions’ across communities
(Fig. 1)—i.e. species that are similarly embedded in the corre-
sponding network of interactions. It also offers a suitable scale to
study community dynamics, one in which the state of any given
species is always defined relative to all the other species in the
community. This scale allows us to synthesize the information
encoded within network time series, providing a comprehensive
conceptual mapping of the changes in the communities and their
many components.

In our study, we first use network alignment to assess the
extent to which the positions of individual plant and pollinator
species are variable within seasons. That is, given the alignment
between the network observed in a community at two points in
time, we use the information about who gets paired with whom
to reveal whether and how species change their positions over
time. We then evaluate the similarity of these positions across
all of the data. In particular, we identify the set of distinct
groups of species’ positions found across networks, represent-
ing the characteristic ways in which species tend to be
embedded in their community. This allows us to synthesize the
complex dynamics of individual species over time into some-
thing much simpler: the movement of species across groups of
positions within the network. Characterizing this movement,
we display a road map on how plants and pollinators first enter,
then comprise, and ultimately leave the networks. This enables
us to prune down the seasonal assembly and disassembly pro-
cesses in empirical plant-pollinator communities, respectively.
Likewise, this road map allows us to reveal the mechanisms by
which species vary their positions in the community over the
course of a season, which species will stay in the network the
longest, and what positions species occupy before leaving the
community. Overall, our study uncovers the underlying struc-
tural dynamics of plant-pollinator communities, leading us
towards general rules regarding species’ interaction turnover,
phenology, and assembly/disassembly processes in empirical
plant-pollinator communities.

Results
Changes in species’ positions over time. We studied the inter-
action changes happening to an empirical plant-pollinator com-
munity over the course of three sampling seasons—i.e. examining
three network time series composed of weekly interaction net-
works (Methods). We first focused on the study of species’
positions to understand how these change over time. To do so, we
aligned every pair of weekly networks in our dataset multiple
times to identify the optimal alignments between them, unco-
vering the pairs of species sharing analogous positions (Fig. 1).
Specifically, we analysed (i) the uniqueness in species’ positions
within networks and (ii) the variability of these positions across
networks. An analysis of the uniqueness of species’ positions can
reveal how many species share the same position within any
individual network and is an important measure as it can unveil
the internal symmetries in the structure of these communities
(Methods). An analysis of the position variability across networks
can instead reveal how much the position of any given species
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changes across networks, shedding light on the structural
dynamics of species over time (Methods).

The study of the uniqueness of species positions within
networks showed that, in general, species tend to be paired to
themselves, indicating the presence of very few symmetric
positions within any given network (Fig. 2a). That is, species
are uniquely positioned within networks (i.e. at each point in
time). This is true for both plants and pollinators—with 93% of

plant and 87% of pollinator positions presenting unique-
ness values higher than 0.9 (Supplementary Note 1). Impor-
tantly, the same alignments performed using binary networks
showed the uniqueness of species positions to be much lower in
this type of networks (Supplementary Fig. 1). That is, we found
that interaction strengths add a crucial layer of information
to distinguish between species’ positions in ecological
networks.
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Given that the positions of species within any network tend to
be unique, we next studied the variability of each species’ position
over time. We found that nearly all species that appear in multiple
networks tend to change positions, presenting very high position
variability from network to network (Fig. 2b). That is, species’
positions drastically change within seasons. Again, this was true
for both plants and pollinators—with 81% of plant and 96% of
pollinator positions presenting variability values higher than 0.9.
We also found this to be true when considering binary networks
(Supplementary Fig. 1). We then altered the alignment algorithm
to artificially fix the pairing of common species over time,
studying the effect of any individual species preserving its
position over time (Methods). Somewhat more surprisingly, we
found the fixed plant species to align worse than the fixed
pollinator species. This suggests that plant species change their
positions more drastically than pollinators over time (Fig. 2c),
which could reflect plants’ longer phenologies32.

Groups of species with similar positions. The observed varia-
bility of the species’ position over time hints at the degree of
complexity that the dynamics of plant-pollinator networks
encompass. As an attempt to reduce this complexity, we studied
the similarity of all species’ positions in our dataset. To do so,
we compiled all alignments between networks into an align-
ment matrix M describing who is paired with whom within and
across networks (Methods; Supplementary Methods).

Using this alignment matrix, we tested whether or not there
are fundamental groups of similar positions across networks
(Methods). We found evidence to support the idea that there
are three distinct groups of pollinator positions and three
distinct groups of plant positions (Fig. 3a). Then, we
characterized the nature of these distinct groups by measuring
basic node properties for each of them (Fig. 3b; Methods). In
particular, we used measures of species’ relative degree—the
number of different interactions of a given species divided by
the number of interactions of the most connected species of a
network—because these measures are suitable for comparing
species from differently sized networks. Focusing on the three
groups of pollinator species (A, B and C in Fig. 3), we found
that these show well-defined differences: group A represents
species with low degree that interact with at least one generalist
plant species; group B represents species with high degree that
also interact with at least one generalist plant species; and,
group C represents species with low degree and that interact
with low degree plant species (see effect sizes for the
comparison of position groups in Supplementary Fig. 2;
Methods; Supplementary Methods). These results were
consistent across seasons (Supplementary Figs. 3 and 4), and
we found similar results for the plant species in the networks
(Supplementary Figs. 5–7). In addition, the groupings showed
a strong agreement with the results found using different
valid community detection methods (see Supplementary
Table 1 and Supplementary Fig. 8). Although we lacked
completely independent measures of pollinator abundances to
properly test their influence on the observed patterns, we
studied the relationship between species’ relative degree and
their abundances using flower counts for plants and estimates
from interaction data for pollinators (Supplementary Note 2).
While we found a positive relationship between these factors, a
linear regression showed considerable variation in species’
relative degree that is not explained by abundance (85.9% and
66.5% for plants and pollinators, respectively; Supplementary
Note 2; Supplementary Fig. 9). This implied that abundance
alone cannot fully explain species’ memberships in the three
groups.

Movement of species across position groups. Finally, we mod-
elled the movement of the species across the different groups of
positions found in the alignment matrix using a multinomial
logistic regression (Methods). In particular, we estimated the
time-dependent transition probabilities for the species moving
across groups. These probabilities characterize how likely it is for
any given species to change positions in the network, moving
from one position group to another—e.g. the likelihood of a
specialist pollinator that interacts with generalist plants (group A)
changing interactions to become a generalist pollinator interact-
ing with generalist plants (group B). We found that the results
showcase a characteristic dynamic underlying plant-pollinator
networks (Fig. 4). Moreover, the lower performance of models
that treat the different seasons as independent temporal replicates
suggests that this dynamic is also consistent across seasons
(Supplementary Methods; Supplementary Fig. 10). Given the
three groups of pollinator species found across networks, this
dynamic can be described as follows: the positions of species
entering the network tend to be from group A (specialist polli-
nators interacting with generalist plants); once in group a, these
species tend to either stay in the same group, exit the network or
move to group B (generalist pollinators interacting with generalist
plants); species entering group B tend to either stay in that group
or move back to group A; and species entering group C (specialist
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pollinators interacting with specialist plants) either move to
group A, exit the network or stay in group C (see the effect sizes
for the comparison of these transition probabilities in Supple-
mentary Fig. 11; Supplementary Methods). Notice that similar
results were found for the plant species in the network (Supple-
mentary Fig. 12). In addition, similar results were also found
using alternative probabilistic models that considered constant
transition probabilities (Supplementary Methods; Supplementary
Fig. 13).

Discussion
In this work, we use a network-alignment technique as a way to
disentangle the seasonal dynamics of plant-pollinator networks.
First, we studied the uniqueness and variability of species’ posi-
tions within and across networks, respectively. We found that
species have unique network positions at every time point, but
they also tend to change such positions over time. Assessing the
similarity of positions over time, we then found that there are
major groups of positions characterizing plant-pollinator com-
munities. These groups of positions provide a suitable scale to
synthesizing complex ecological dynamics. For pollinator species,
for example, they can be broadly described as: (i) specialist pol-
linators that interact with at least one generalist plant, (ii) gen-
eralist pollinators that interact with at least one other generalist
plant, and (iii) specialist pollinators that interact with other
specialist plants. Using these groups of positions, we estimated
the underlying dynamics of species within seasons and found

general rules regarding species’ seasonal dynamics within plant-
pollinator communities. Putting this all together, our results
suggest that the structure of plant-pollinator networks is extre-
mely dynamic, where species rapidly switch positions within the
network over a season. This structural dynamic, however, is also
coherent across years, and one can predict the changes in species’
positions within networks over time.

The study of network time series is challenging due to the
many levels of information that these systems encompass. One
could, for example, adopt a full-network perspective and study
community dynamics using general network metrics33. Unfor-
tunately, network metrics lack the resolution to distill the
mechanisms by which species change positions over time19.
Indeed, the study of metrics such as nestedness and connectance
has shown certain mutualistic networks to exhibit generally
constant structures over time15,34,35 (but see CaraDonna and
Waser32). While this may be useful for understanding their
dynamical stability and functioning10,36,37, these metrics are
particularly ill-suited to understand the full scope of plant-
pollinator seasonal dynamics. Alternatively, one could use single-
species approaches. Ecological data, however, are often clouded
by environmental variability38,39 or sampling errors in the data
collection40, both of which can add considerable noise to single-
species dynamics. Perhaps most importantly, these approaches
could also easily be overwhelmed by species’ natural idiosyn-
crasies41, which could mask potential general rules governing
community dynamics. Indeed, we observed the effects of such
idiosyncrasies when studying the uniqueness and variability of
species’ positions. The high uniqueness of species’ positions
indicates how singularly different species are embedded within a
network; and, the high variability shows how sensitive these
positions are to changes in the network structure. Noticeably, our
observations on the variability of species positions also agree with
recent work showcasing constant temporal switching of species’
interactions in empirical plant-pollinator communities14,42.
Therefore, the commonly used static network representation,
albeit useful in many cases, might strongly constrain our
understanding of the dynamic nature of some ecological com-
munities. Much like the artificial nature of the geographic
boundaries between networks43, one could argue that temporal
boundaries are just as artificial44.

Here, we illustrate how it is possible to find a useful middle
ground between full-network and single-species approaches. In
particular, we focused on identifying distinct groups of positions
within networks by clustering species with similar positions. This
group scale allowed us to strategically prune down plant-
pollinator dynamics. Assessing the movement of species across
these groups of positions, one could, for example, focus on how
pollinator species enter the community. As expected, we found
the degree of newcomers to be generally low; we observe species
entering the community mostly as specialists (group A from
Fig. 3). These new-coming species tend to interact with at least
one generalist plant, showing consistency with the idea of pre-
ferential attachment1. Likewise, the detachment of pollinators
from networks often comes from groups of less-connected species
(groups A and C from Fig. 3), also in agreement with the idea of
preferential detachment5,20. The symmetry between these two
processes—preferential attachment and detachment—has been
showcased at longer time scales25 as well as hypothesised to
generate and maintain network patterns promoting stability22.
For example, Tylianakis et al.25 used simulations to show how
commonly observed nested patterns can arise as a result of such
symmetric processes.

Our results provide a road map for how species change posi-
tions within the community, which positions are those that
species take before exiting the network, and which species will
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likely remain in the network the longest. For example, our
approach reveals that once in group A (specialists interacting with
generalists), a species will often remain in this group, or simply
leave the network. This pattern is observed with Anthophora
terminalis (orange-tipped wood digger bee), which briefly appears
in the network across years as a specialist pollinator interacting
with generalist plants. Other species, however, may change their
interactions in such a way that moves them from one group to the
next (e.g. from group A, specialists interacting with generalists, to
group B, generalists interacting with generalists). Species in group
B will either stay in this group, or move to group A (rarely do we
observe species in group B leaving the network). Bombus bifarius
(two-form bumble bee) is such an example, and is often found in
the networks as a generalist pollinator interacting with generalist
plants. Finally, our results also reveal that when species are in
group C (specialists interacting with other specialists), they will
most likely move to group A or leave the network; Arctophila
flagrans (a flower fly) showcases these transitions across years.

Overall, we found species’ network-position dynamics to be
consistent across the three different sampling seasons from our
dataset. In other words, these general patterns we have reported—
i.e. the way in which species first enter, then comprise, and
ultimately leave the networks—are consistent from one year to
the next. This is important because it showcases how network-
position groups could be used as fundamental building blocks for
understanding plant-pollinator community dynamics (similar to
the concept of trophic components in predator-prey food
webs45,46). For the sake of simplicity, we chose the ‘short random
walks’ algorithm to identify these position groups, as it provided
us with a conveniently sized grouping of species positions.
However, different community detection methods can partition
the alignment matrix differently, providing different degrees of
resolution to the dynamics of species across groups. Although, we
showed how more complex partitions display more resolved
dynamics (Supplementary Fig. 8), we also found that finer reso-
lutions might lead to groups of positions that can be difficult to
discern from each other in purely ecological terms (Supplemen-
tary Fig. 14).

There are multiple factors that could play a role in explaining
plant-pollinator dynamics beyond species’ degree. Information on
species’ abundances is likely one such factor, as species’ phenol-
ogies have already been linked to interaction turnover in this
system14, and abundances are good predictors of network struc-
tural properties in other ecological systems47,48. However, the
evolutionary fingerprint underlying empirical communities49 and
evidence regarding pollinators’ plant preferences50,51 point
towards the idea that species’ abundances cannot represent the
full picture regarding species’ interaction dynamics52. In some
pollinator systems, for example, the pollinator costs of searching
for trait-matching resources has been shown to be lower than the
cost of switching to more abundant ones53,54. Indeed, species’
abundances are often considered emergent population-level
properties that are ultimately constrained by species’ traits, and
these same traits have been shown to effectively predict empirical
plant-pollinator interactions55. That being said, the link between
species’ abundances and networks’ structural dynamics define
two ends of an interesting conceptual spectrum: one in which
interaction variability can be explained solely based on species’
abundances, and the other where species interaction changes are
completely independent from their abundances. Previous
research indicates that empirical communities likely fall some-
where in between these two cases6,25,56, and our results also seem
to support this idea. While pollinator observations and flower
counts here showed positive relationships with species’ relative
degree, these weak correlations left a lot of variation unexplained
(Supplementary Fig. 9).

Finally, we identify three areas we feel represent key steps from
which to move forward. First, the approach used in the present
work is not limited to plant-pollinator networks. Indeed, it could
be used to shed light on the mechanisms governing many other
systems, including food webs57, host-parasite communities58 or
other types of temporal networks59. Second, while we focused on
temporal variation, another interesting perspective would be to
put the same tools to work across other type of gradients60. For
example, one could focus on the structural variability of plant-
frugivore networks along forest-farmland gradients3, which could
reveal how bird species change positions within networks in order
to adapt to different environmental conditions. Third, we defined
species’ positions purely based on the structure of plant-pollinator
communities. Nevertheless, these positions could easily also
account for other species’ properties such as species’ ecological
traits and evolutionary histories29. This would allow us, for
example, to study network dynamics from a functional diversity
or evolutionary perspective, potentially untangling the eco-
evolutionary mechanisms governing complex community
dynamics.

Methods
Empirical data. We studied plant-pollinator interaction networks from a subalpine
community in the Colorado Rocky Mountains (USA)14,61. These data were sam-
pled at weekly intervals over three summer growing seasons, and contain nearly
30,000 pairwise interactions between a total of 93 pollinator species and 46 flow-
ering plants. To study the dynamics of these plant-pollinator communities, we
aggregated the observed interactions into weekly plant-pollinator networks, where
the weight of all interactions was set to the absolute number of observed interac-
tions between the corresponding species pair during that week. In total, this
resulted in three seasonal network time series comprising 12, 15, and 16 weekly
weighted networks, respectively (see CaraDonna et al.14 and CaraDonna and
Waser32 for further details). These plant-pollinator networks have been shown to
be robust to sampling effort, with interaction rarefaction curves and abundance-
based richness estimates indicating consistent sampling and an average detection of
interaction of 85–93% across weeks (see Supplementary Fig. 1 and Supplementary
Table 2 from CaraDonna et al.14). Note that although we focused on the study of
weighted networks (also referred to as quantitative network), we also considered
their binary counterparts for different aspects of this study. In a binary network
(also referred to as qualitative network), the link between two species exclusively
indicates the presence of an interaction between them, and the strength of the
interaction is ignored. We therefore generated binary networks by setting the
weight of all interactions in the weekly plant-pollinator networks to a common
value of 1.

Network alignment. To analyse the dynamics of these network time series, we
used the alignment technique introduced by Bramon Mora et al.29. This technique
provides us with a way to map two ecological networks on top of each other. Given
two networks A and B, network alignment pairs up the species i ∈ A and j ∈ B
together using the ‘structural roles’ that they play in their respective communities.
While there are multiple ways in which one could define these structural roles, we
based our definition on the concept of network motifs62—i.e. the set of distinct
patterns of interactions between n species found within a network. Following the
ideas presented by Stouffer et al.30 and Baker et al.31, we defined the role of any
species based on the number of times it appeared in any of the distinct positions
found within motifs made of 3, 4 and 5 species. In particular, we used the tools
developed by Bramon Mora et al.63, where species’ structural roles account for
information regarding the strength of their interactions.

As described in Bramon Mora et al.29, aligning networks is a stochastic
optimisation process, where multiple random alignments λ between the species in
A and B are proposed in order to find the optimal pairing between these species’
roles—i.e. the optimal alignment λ* between A and B. As a result, this optimal
alignment provides us with three key pieces of information: (i) the optimal species-
species pairing between all species i ∈ A and j ∈ B; (ii) a cost function Cλ

characterizing the similarity between A and B; and (iii) the role correlation cij of
every species-species pairing. On the one side, the species-species pairing identifies
species that are similarly embedded within their respective networks, since the
alignment pairs up species that occupy similar positions across networks. On the
other, Cλ and cij describe the ‘quality’ of the alignment and each species-species
pairing, respectively.

Notice that aligning networks can produce multiple equally valid solutions. For
example, a given set of n alignments {λ} between A and B can reveal multiple
species-species parings that minimize the cost function Cλ. Therefore, one should
align any pair of networks multiple times in order to properly compare their
structures and uncover as many pairs of species that share analogous positions
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across networks as possible. Likewise, as noted by Bramon Mora et al.29, the
alignment algorithm provides a one-to-one species pairing; therefore, there will
necessarily be species that remain unpaired when comparing networks of different
sizes. While the pairing of two species indicates their analogous position, an
unpaired species indicates its singular position (see Bramon Mora et al.29 for
further details and tests of the alignment algorithm).

Position uniqueness within networks. To analyse whether or not species’ posi-
tions were unique, we separately compared the structure of the community at each
time point. If a given species i has a unique position within a network A, the
alignment of A with itself should always pair up i with itself (e.g. the position of
species b2 is unique at any point in time in Fig. 1b). In contrast, if i has a position
that is not unique, repeating the same alignment should result in different pairings
for species i—also pairing i with all species within A that share the same position
(e.g. species a3 in Fig. 1b shares position with a4 at t2 and t3). Accordingly, we
aligned every weekly plant-pollinator network in our dataset to itself 100 times.
This allowed us to identify the distinct pairings of species that produced optimal
alignments. Given the 100 independent alignments, we then measured the
uniqueness of the position of a species in a network as the proportion of these
alignments in which a species was paired to itself.

Position variability across networks. To measure the variability of species’
positions over time, we compared networks at different time points. Specifically, we
aligned every pair of networks in a given season 100 times and analysed species that
are common to any of these pairs. For example, given two networks At1

and At2
that were collected at two time points t1 and t2, we wanted to test whether or not
any species i present in both networks—i.e. a species i 2 At1

\ At2
—changed its

position over time (e.g. species b2 and a3 in Fig. 1b). To do so, we looked at whether
or not species i 2 At1

was paired to species i 2 At2
in the alignment between At1

and At2
(e.g. species b2 retains its position β over time while species a3 changes

positions in Fig. 1). Following this, we measured the position variability of a species
i as the probability of i being paired to a different species j in any alignment
between networks containing i.

Measuring the change of position of individual species. We then measured how
much the positions of individual species changed over time. To do so, we re-aligned
the networks while artificially fixing the pairing of common species. That is, for any
pair of networks At1

and At2
with n common species i, we performed n alignments

in which we individually fixed the pairing of each species i and freely aligned the
rest. The difference in the quality of the alignment due to the fixing of any i-i
species pairing can be used to measure i’s change of position. For example, if the
quality of the alignment changes drastically when fixing the pairing i-i, it means
that species i has significantly changed positions from t1 to t2. In contrast, fixing the
pairing i-i will not change the alignment quality if species i presents the exact same
position in At1

and At2
. Following this, we used this comparison across all align-

ments between the networks in our dataset to reveal the effects of fixing individual
species’ pairings, focusing on the differences between fixing plant and pollinator
species.

Alignment matrix. Two species i ∈ A and j ∈ B could have very similar positions
and still not be paired in the alignment between A and B. This would happen, for
example, if there was a third species k ∈ B that also had an identical position to i—
in which case species i ∈ A would be paired to species k ∈ B. The similarity
between i and j, however, can be studied by aligning the networks A and B to other
networks {C, D, . . . }. In doing so, we would likely observe some degree of overlap
between the pairings of i and j across these other networks. This overlap would
indicate that i and j share similar positions.

To uncover these types of similarities between all species’ positions in our
dataset, we compiled here all alignments into an alignment matrix M
(Supplementary Methods). In this matrix, every element mAB

ij accounts for the
pairings between any two species i and j from any two given networks A and B,
respectively. Specifically, it accounts for how often these two species are paired
following a set of 100 alignments {λ} between A and B as well as for the quality of
such pairing. Notice that M contains information regarding all alignments between
all networks in our dataset. Therefore, every row or column of this matrix
represents a species k of a given network X, describing all its pairings within and
across networks.

Identifying distinct groups of species’ positions. The alignment matrix M
allowed us to analyse the similarity across all species’ positions in our dataset. In
particular, we focused on identifying distinct groups of species’ positions that were
similar within and across networks. To do so, we used a ‘short random walks’
algorithm to identify the ‘modules’ within the matrix M describing sets of species’
positions that align more often with each other than they do with the rest64. Notice
that other community detection methods can produce other valid groupings (see
Supplementary Table 1). Therefore, we used a normalized mutual information
analysis to study the agreement of the ‘short random walks’ algorithm with other

community detection methods designed to analyse large weighted undirected
graphs such as the alignment matrix used here65 (Supplementary Table 1).

Given the grouping of species with similar positions in our dataset, we described
the different groups using basic information about the way their constituent species
interact with each other. We focused on measures of species’ relative degree
ki ¼ li=lmax, where li is the number of qualitative interactions of a given species i,
and lmax is the number of qualitative interactions of the most connected species of
the network. A sensitivity analysis of species’ relative degree for plants and
pollinators showed this measure to be robust to sampling effects, with relatively
small absolute changes in the metric following the random removal of observations
(Supplementary Fig. 15). We also observed a moderate average loss of qualitative
interactions following this removal (below 30% loss for 50% removal;
Supplementary Fig. 15). Consider a network formed by a set of species with relative
degree {k}, and let {ki} be the set describing the relative degree of the ki interacting
partners of species i. For any group of species G, we studied: (i) the relative degree
of the species in the group, ki ∀ i ∈ G; (ii) the relative degree of the most connected
interacting partner of each species in the group, maxfkig8 i 2 G; and (iii) the
average relative degree across all interacting partners of every species in the group,
〈{ki}〉 ∀ i ∈ G.

To statistically compare the properties of species from different groups, we used
a multivariate autoregressive model. In particular, we considered the three node
properties described above (i, ii and iii) as response variables, and estimated them
using species’ group, accounting for sampling season, species identity, temporal
autocorrelation within each year, and residual correlation among position
properties (Supplementary Methods). We then used the resultant model to study
the effect sizes for the relationships between group and position properties
(Supplementary Methods).

Species structural dynamics across groups. We examined the movement of
pollinator and plant species across the different network positions using a prob-
abilistic model. Given n groups of positions, our model describes a scenario in
which every species can be found in n+ 2 possible states y! at time t. These
include: n states y1…yn characterizing a species in each of the different groups of
positions; a state yn+1= ypre describing a species that has not yet entered the
network; and a state yn+2 = ypost describing a species that has already exited the
network.

We used a Bayesian multinomial logistic regression as a way to estimate the rate
of movement between the different states of the species over time66,67. In
particular, our model considers n+ 2 types of events, describing the transition
probability of species from any state yi to any possible state yj at time t as:

Pr yjjs1 yi; t
� �

; s2 yi; t
� �

; ¼ ; snþ2 yi; t
� �� �

¼ exp sj yi; t
� �

Pnþ2
k¼1 exp sk yi; t

� � ; ð1Þ

where sk yi; t
� �

are ‘scores’ that determine the resulting probabilities. To infer these
scores, we first fixed one of them to serve as an arbitrary baseline—e.g. assigning
s1 yi; t
� � ¼ 0. We then estimated the remaining scores as n+ 1 linear models of the

form

sk yi; t
� � ¼ αk1 þ βk1t þ

Xnþ2

l¼2

αkl þ βklt
� �

δil ; ð2Þ

where αkl and βkl are the parameters inferred by the model, and δil is a Kronecker
delta that is set to 1 if yl = yi, and 0 otherwise. The time variable t 2 0; 1½ � is defined
relative to every sampling season—i.e. t is calculated as the week number divided
by the total number of weeks in each sampling season. We used the R package
‘rstan’ to generate the posterior samples for the Bayesian models66,68. For all
parameters αkl and βkl, we chose weakly informative normally distributed priors,
with mean μ= 0 and standard deviation σ= 10 (Supplementary Methods).
Importantly, species are assumed not to re-enter the network once they have exited
it, making the transition from state ypost to any other state occur with probability
zero. We also treated species phenologies as uninterrupted; therefore, we
considered any observation of a species transition from any state yi (i.e. species in
the network) to ypre (i.e. species not yet in the network) and back to any state yj
during its activity period to be the result of a likely sampling error. Note that we
ignored any of such observations (i.e. yi to ypre and ypre back to yj) when inferring
the probabilities.

While we estimated the time-dependent transition probabilities analysing all
sampling seasons together, we also considered multiple other forms for the
multinomial logistic regression. Specifically, we considered models accounting for
the different sampling seasons as temporal replicates in different ways as well as
models with constant transition probabilities over time (Supplementary Methods).
Finally, we used the widely applicable information criteria (WAIC) to inform the
relative support of the different models. This comparison allowed us to understand
the effect of accounting for the different sampling seasons as replicates, testing
whether or not the estimated probabilities are consistent across years.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The primary data associated with this manuscript are available in the Environmental
Data Initiative (EDI) digital repository61.

Code availability
Code to conduct the network alignment can be made available upon request.
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