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Recent demonstrations of ultracoherent nanomechanical resonators introduce the prospect of developing
protocols for solid-state sensing applications. Here, we propose to use two coupled ultracoherent resonator
modes on a Si3N4 membrane for the detection of small nuclear spin ensembles. To this end, we employ
parametric frequency conversion between nondegenerate modes. The nondegenerate modes result from
coupled degenerate resonators, and the parametric conversion is mediated by periodic inversions of the
nuclear spins in the presence of a magnetic scanning tip. We analyze potential noise sources and derive
the achievable signal-to-noise ratio with typical experimental parameter values. Our proposal reconciles
the geometric constraints of optomechanical systems with the requirements of scanning force microscopy
and brings forth a promising platform for spin-phonon interaction and spin imaging.

DOI: 10.1103/PhysRevApplied.14.014042

I. INTRODUCTION

Nanoscale magnetic resonance imaging (nano-MRI)
aims at detecting nuclear spins in three spatial dimen-
sions with subnanometer resolution [1–6]. In contrast to
other techniques like electron microscopy or x-ray tomog-
raphy, nano-MRI is able to obtain three-dimensional (3D)
images of complex macromolecules in a nondestructive
manner. Combined with the elemental selectivity of MRI,
this emerging technique has the potential to become a
unique probe of the 3D composition of nanostructures.

Achieving the necessary sensitivity to detect the mag-
netic moment of a nanometer-sized nuclear spin ensem-
ble is a formidable task. One candidate technique to
achieve this goal is magnetic resonance force microscopy
(MRFM) [1,2,7–11]. In MRFM, nuclear spins are peri-
odically inverted inside a magnetic field gradient to gen-
erate a force proportional to the spin magnetic moment.
A mechanical transducer is used to detect this force and
to translate it into an optical or electrical signal. The
sensitivity of the transducer is typically limited by the ther-
momechanical force noise power spectral density (PSD) of
its resonant mode,

Sf = 4kBTγ , (1)

where kB is the Boltzmann constant and T is the mode tem-
perature. The transducer’s dissipation coefficient is γ =√

mk/Q = mω0/Q, where m is the effective mass of the
mode, ω0 = 2π f0 is the angular resonance frequency, k =
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mω2
0 is the spring constant, and Q is the mechanical qual-

ity factor. In order to reach better sensitivity, much effort is
being invested to reduce the dissipation [12–23].

Traditional MRFM setups are constructed around can-
tilever resonators with very small spring constants [8–
12,18,21]. While this strategy reduces γ , it can generate
issues with long-term stability and strong tip-sample inter-
action. In addition, one of the primary goals of MRFM is
the imaging of biological samples and macromolecules,
which are difficult to mount on the tip of a cantilever.
Recently, a route towards ultra-low damping coefficients
has emerged through the development of soft-clamped sil-
icon nitride membranes and strings, with localized defect
modes that feature quality factors up to the Q ∼ 109

range [20,23,24]. Thanks to this outstanding virtue, silicon
nitride resonators offer force sensitivities comparable to
those of singly clamped cantilevers, in spite of their higher
masses and resonance frequencies.

Silicon nitride membranes are attractive transducers
for spin detection instruments [25–28]. Their large sur-
face allows simple placement of samples, and their high
spring constants ensure low displacement drift and bend-
ing even in the proximity of a scanning tip. However,
there remains one serious obstacle, which we term the
“frequency mismatch problem”: the vibrational modes of
interest are in the low megahertz range. Inverting nuclear
spins adiabatically at an angular rate of 2ω0, as required
by traditional MRFM protocols [1,2], is unrealistic with
such devices. More specifically, current experiments use
oscillating fields of a few millitesla in amplitude to achieve
inversion rates of approximately 10 kHz [29]. Scaling this
method to megahertz frequencies would entail oscillating

2331-7019/20/14(1)/014042(13) 014042-1 © 2020 American Physical Society

https://orcid.org/0000-0001-7286-8966
https://orcid.org/0000-0001-6757-3442
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.14.014042&domain=pdf&date_stamp=2020-07-15
http://dx.doi.org/10.1103/PhysRevApplied.14.014042


JAN KOŠATA et al. PHYS. REV. APPLIED 14, 014042 (2020)

field amplitudes that are incompatible with cryogenic oper-
ation and nanoscale precision.

In this paper, we propose a sensing scheme that cir-
cumvents the frequency mismatch problem. We employ
a parametric up-conversion method [30,31] to couple two
nondegenerate normal modes. The coupling is achieved by
a modulation of the effective mechanical frequencies via
nuclear spins that are inverted at the splitting frequency.
We explore how degenerate local defect modes on the
membrane give rise to split extended normal modes, how
parametric modulation of a local mode leads to coupling
between the normal modes, and how parametric modu-
lation is generated by nuclear spins placed on one local
mode in the presence of a magnetic field gradient source.
In addition to solving the frequency mismatch problem,
the extended nature of the normal modes allows for spa-
tial separation of the sample placement and the readout of
the membrane vibrations. This facilitates the integration
of our proposed scanning force setup into a high-finesse
optical cavity, which allows very sensitive readout of the
membrane vibrations and enables a host of optomechanical
control techniques [32]. From our analysis with realistic
experimental parameters, we currently predict a sensitiv-
ity competitive with that of contemporary cantilever-based
MRFM [10,11,29,33], while harnessing the advantages of
the membrane platform (these we discuss in more detail in
Sec. VII B). Furthermore, we pinpoint the critical proper-
ties of the resonator to design transducers with improved
spin detection performances in the future.

The working principle of our sensing scheme is out-
lined in Sec. II. In Sec. III, we derive the full equation
of motion for the system in the coupled mode basis. In
Sec. IV, we obtain a simple closed-form expression for
the signal gain in the absence of nonlinearities and noise.
The limitations of this scheme due to the onset of nonlinear
behavior are explored in Sec. V, followed by noise analy-
sis and a derived expression for the signal-to-noise ratio in
Sec. VI. Finally, in Sec. VII we present a survey of current
state-of-the-art experimental possibilities and evaluate the
expected performance of our method.

II. GENERAL IDEA

We now present our spin detection scheme based on
membrane transducers. Consider an elastic membrane pat-
terned with a hexagonal array of holes (see Fig. 1) to create
a phononic band gap [20]. Small defects in the pattern
define localized out-of-plane vibrational modes whose fre-
quencies lie within the gap—these modes are effectively
isolated from the rest of the membrane and can thus reach
extremely high quality factors.

We consider two such modes with equal frequencies and
effective masses. When in close proximity, the modes are
mechanically coupled, giving rise to symmetric and anti-
symmetric normal modes with frequencies ωS = ω0 and

FIG. 1. Proposed measurement setup. A silicon nitride mem-
brane is patterned such that a phononic bandstructure is obtained
with explicit band gaps. Two unpatterned “defect” areas define
in-gap vibrational modes (labeled 1 and 2). A sample spin (or
an ensemble of spins) on defect 1 is periodically inverted by
radio-frequency pulses, while a sharp tip provides a magnetic
field gradient, transducing the spin inversion to a force acting
on the membrane. A cavity laser focused on defect 2 is used for
driving and readout. Each hole in the pattern has a diameter of
roughly 80 μm.

ωA > ωS [see Figs. 2(a) and 2(b)] [34]. The frequencies
ωS and ωA are in the megahertz range, but their difference
�ω = ωA − ωS is on the order of a few kilohertz.

An ensemble of spins with magnetization M is placed
on one of the defects and is periodically inverted by radio-
frequency pulses [2]. In the presence of a magnetic tip,
the magnetic field gradient couples mechanical motion to
the spin moment. Namely, the second derivative leads to
a frequency modulation of the corresponding defect mode.
This modulation translates into a time-dependent coupling
between the normal modes [35]. If this coupling is peri-
odically varied exactly at the rate �ω, it generates what is
known as parametric frequency conversion or parametric
mode coupling. When one of the modes, e.g., ωS, is addi-
tionally resonantly driven by an external force to amplitude
XS, the parametric mode coupling induces the antisymmet-
ric mode at ωA to be driven by the combination of XS and
M [cf. Fig. 2(c)] to amplitude XA. The presence of the spins
can thus be inferred from the oscillations, which can be
read off at ωA at either of the two defect locations. In this
way, a slow spin inversion can lead to a detectable signal
at a high-frequency mode.

III. MODEL DESCRIPTION

We model the system as two equivalent interacting res-
onators with coordinates x1 and x2, corresponding to modes
1 and 2 in Fig. 1. Note that x1 and x2 are projections of the
full motion of the 2D system onto the normal mode basis
[34]. Our treatment is entirely classical, as in our case ther-
mal effects overcome the oscillator’s energy level spacing,
i.e., �ω0 � kBT down to cryogenic temperatures (with �

the reduced Planck constant). Mechanical nonlinearities
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(a)

(b)

(c)

(d)

FIG. 2. Mode power spectra at different levels of coupling.
(a) The two uncoupled degenerate modes at ωS . The insets
provide schematic representations of the mode shapes. (b) Fre-
quency splitting introduced by linear spatial coupling. (c) Spin-
mediated amplitude at ωA generated by weak parametric mod-
ulation and a strong drive at ωS . (d) Further splitting (Rabi
oscillations) due to strong parametric driving (not realized in our
case).

are added, as they turn out to play an important role
(cf. Sec. V). We designate x1 to host a time-dependent
magnetic moment M(t) in the presence of an inhomoge-
neous magnetic field B(x1) in the x direction. The goal
of our scheme is to measure the magnetization |M(t)|,
which corresponds to the net polarization of a nanoscale
ensemble of nuclear spins. Additionally, x2 is externally
driven by a force F(t), e.g., by laser radiation pressure. The
corresponding Hamiltonian reads

H = H0 + H1, (2)

where H0 describes two noninteracting nonlinear res-
onators, and

H1 = mω0�ω

2
(x1 − x2)

2 − M(t) · B(x1) − F(t)x2 (3)

contains the linear coupling between the resonators, the
field interaction, and the external drive, respectively. The
component of spin polarization that is perpendicular to
the external field undergoes Larmor precession and does
not contribute to the signal. Therefore, M(t) · B(x1) =
M (t)B(x1) and the corresponding equations of motion in
the presence of homogeneous dissipation γ are

ẍ1 + γ ẋ1 + ω2
0[1 + χ1(t)]x1 + ω0�ω(x1 − x2) + K(x1)

= 1
m

[
M (t)

∂

∂x1
B(x1) + ξ1(t)

]
(4)

and

ẍ2 + γ ẋ2 + ω2
0[1 + χ2(t)]x2 + ω0�ω(x2 − x1) + K(x2)

= 1
m

[F(t) + ξ2(t)]. (5)

The function K(x) contains all nonlinear elements; cf.
Sec. V. The terms ξ1,2(t) and χ1,2(t) represent thermal and
frequency noise, respectively, whose roles are discussed in
Sec. VI.

The magnetization M (t) fluctuates with a finite cor-
relation time, known as the spin relaxation time T1 in
NMR experiments. Simultaneously, we apply periodic
spin-flipping with frequency 	, so that

M (t) = MξM (t) cos 	t, (6)

〈ξM (t)ξM (t′)〉 = e−|t−t′|/T1 , (7)

where ξM (t) is a stochastic term with an approximately
Lorentzian PSD in the frequency domain. In accord with
the frequency mismatch problem discussed above, the
spin-flipping rate is slow relative to the membrane mode
frequency, 	 � ω0.

Taking the equilibrium point to be x1 = 0 and expanding
B(x1) yields, to second order [36],

∂B(x1)

∂x1
=

∣∣∣∣∂B(x1)

∂x1

∣∣∣∣
x1=0

+
∣∣∣∣∂

2B(x1)

∂x2
1

∣∣∣∣
x1=0

x1. (8)

Substituting Eq. (8) into Eq. (4), the first derivative of B
corresponds to a direct drive of mode 1 by the spin force,
which is measured in conventional MRFM by flipping the
spin at the resonator frequency, 	 = ω0. For 	 � ω0, this
drive is off-resonant and can be neglected. The second term
corresponds to a force that is proportional to the amplitude
x1, i.e., it corresponds to a parametric drive [37–39]. This
parametric drive is also strongly detuned from the main
parametric resonance frequency, which is 	 = 2ω0. The
frequency shift caused by this term has been observed in
experiments [2,7,40,41], but its practical use for nuclear
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spin detection is typically hindered by frequency noise in
the resonator.

The key role of the higher field derivatives in Eq. (8)
is brought out in the normal mode basis (see Fig. 2 for a
visualization). Applying the linear transformation

(
xS
xA

)
= 1√

2

(
1 1
1 −1

) (
x1
x2

)
(9)

yields two normal modes labeled xS (symmetric) and xA
(antisymmetric), governed by the two equations of motion

ẍi + γ ẋi + ω2
i (t)xi + Ki(xi, xj )

= δω2(t)xj + F(t)√
2m

+ ξi(t)
m

(10)

with i, j ∈ {S, A}, i 	= j . The normal modes are split in
frequency [42],

ω2
S(t) = ω2

0 − δω2(t),

ω2
A(t) = ω2

0 + 2ω0�ω − δω2(t),
(11)

where

δω2(t) = M (t)
2m

∂2
x B, (12)

and from now on we use the shorthand notation ∂2
x B ≡

|∂2B(x1)/∂x2
1|x1=0.

The transformed nonlinear terms Ki(xi, xj ) further cou-
ple the two modes. Note that, for resonators with noniden-
tical frequencies and/or masses, a transformation analo-
gous to Eq. (9) can always be found that cancels the linear
coupling term.

IV. LINEAR CASE

Before turning to the key performance characteristic of
our proposed scheme—the signal-to-noise ratio (SNR)—in
Sec. VI, we demonstrate its working principle on a simple
case. To this end, we neglect nonlinearities and noise terms
in Eq. (10) and set T1 → ∞.

It is important to note that δω2(t) enters as two different
effects. First, it enters Eq. (11) as a (parametric) modula-
tion in time of the normal mode frequencies. As mentioned
before, this modulation is far detuned from resonance and
can be neglected. Second, δω2(t) appears in Eq. (10) as an
explicit coupling term between xS and xA [35].

Energy up-conversion is equivalent to a driving force
exerted by one mode onto the other. Taking, without loss
of generality, xS as the strongly driven “pump” and xA as
the “readout” mode, we set the external force to be F(t) =

F cos(ωSt) and write the pump mode amplitude as

xS(t) = XS cos(ωSt). (13)

The oscillating term δω2(t)xS(t) in Eq. (10) now acts as a
driving force for xA that facilitates a frequency conversion:
the low-frequency parametric drive δω2(t) of the resonator
x1 is up-converted into two driving terms acting on the
mode xA at frequencies ωS ± 	. Flipping the spins at the
modes’ frequency difference, 	 = �ω, hence results in a
resonant driving force for xA with amplitude

Fspin = M∂2
x B

4
XS. (14)

In this way, the driven pump mode generates a
magnetization-dependent motion of the readout mode. We
can thus detect M by measuring the Fourier component
x̂A(ωA) (denoted XA), which is proportional to Fspin and has
a fixed ratio to the pump mode amplitude XS,

XA = M∂2
x B

4mω2
A

QXS, (15)

where Q = ω0/γ .
Note that strong parametric coupling of two nondegen-

erate modes generates doubly split states [see Fig. 2(d)]
[43,44]. This can be understood as a periodic redistribu-
tion of energy between the modes, akin to Rabi oscillations
[35,45,46], which manifest as a beating in the amplitude of
each normal mode. The frequency of the Rabi oscillations
for a sinusoidal parametric drive δω2(t) ≡ δω2 sin (t�ω)

is given by the corresponding natural frequency shift,
ωRabi = δω2/2ω0. In our case, however, ωRabi � γ � ω0,
meaning that energy up-converted from ωS to ωA is dis-
sipated long before it can be coherently transported back
to ωS. We thus neglect coherent Rabi oscillations and only
look for steady-state amplitudes of the normal modes xS
and xA under the influence of weak energy up-conversion
[see Fig. 2(c)].

In summary, we can see that the strong drive at fre-
quency ωS has been converted into a signal at ωA that
depends linearly on M , i.e., it corresponds to the (instan-
taneous) magnetization of the measured spin or spin
ensemble. Measuring the ratio in Eq. (15), instead of a
directly driven resonator amplitude, enables the use of
high-frequency resonators as MRFM sensors. Note that,
for finite spin lifetimes, this magnetization will turn into a
fluctuating quantity whose variance in time represents the
signal [29].

V. NONLINEAR EFFECTS

Inspecting Eq. (15) suggests that, in order to maximize
the signal amplitude, we should drive the pump mode as
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much as possible. However, nonlinearities, which are nat-
urally present in any real system, become non-negligible as
the oscillation amplitudes increase. Though such coupled
nonlinear equations are difficult to solve, we will see that
the effect of nonlinearities on our sensing scheme can be
quantified in a straightforward manner.

In line with the contemporary development of defect
modes in membrane nanoresonators [34], we consider a
combination of a Duffing term α and nonlinear damping
terms �1 and �2, such that K in Eqs. (4) and (5) becomes

K(xi) = α

m
x3

i + (�1x2
i + �2ẋ2

i )ẋi, i = 1, 2, (16)

with our analysis being directly applicable to higher-order
nonlinear terms.

Identifying again xS as the pump mode, we refer to the
equations of motion [Eq. (10)] in the limit of xS  xA.
The nonlinearity of xS will shift its resonant frequency
and induce motion at higher harmonics of the driving fre-
quency [47]. These higher harmonics generally affect the
readout mode xA nonresonantly, such that the approxima-
tion xS ≈ XS cos(ωSt) remains correct. The readout mode
xA has a much smaller amplitude than xS because it is not
driven resonantly. We can therefore continue to treat it as
a linear resonator,

ẍA + γ nl
A (t)ẋA + ωnl

A (t)2xA

= XSδω
2(t) cos(ωSt) + F(t)√

2m
. (17)

However, nonlinearities in the bare resonators x1 and x2
couple the motions of xS and xA (cf. Appendix A). The
damping term γ nl

A and natural frequency ωnl
A are hence

affected by the large amplitude XS as

γ nl
A (t) = γ + X 2

S

4
[�1+3ω2

S�2+(�1−3ω2
S�2) cos(2ωSt)],

ωnl
A (t)2 = ω2

A{1 + λ1[1 + cos(2ωSt)] + λ2 sin(2ωSt)},
(18)

where

λ1 = 3α

4mω2
A

X 2
S and λ2 = �1ωS

2ω2
A

X 2
S . (19)

The time-dependent terms in Eq. (18) act as off-resonant
parametric drives and have no significant effect (cf.
Appendix B). Similarly, the natural frequency shift intro-
duced by the Duffing nonlinearity α is negligible (λ1 ∼=
10−6), precluding significant changes in the response of
xA [48]. Note that λ1 converts any noise present in the
amplitude XS to frequency noise of xA [49]. Importantly,
though, the effective damping is increased. Defining a

nonlinear damping parameter �nl = 1
4 (�1 + 3ω2

S�2), the
quality factor of the readout mode xA is lowered to

Qnl = ω0

γ + �nlX 2
S

, (20)

which in turn limits the signal gain; cf. Eq. (15) with
Q → Qnl. As we show in Sec. VI, the increased damping is
also detrimental to the SNR since it increases the thermal
noise power, in accordance with the fluctuation-dissipation
theorem [cf. Eq. (1)].

VI. STATISTICAL TREATMENT

A. Noise terms in the model

In a realistic setting, the bare resonators [Eqs. (4)
and (5)] are subject to both additive thermal white noise
ξ1,2(t) and multiplicative frequency noise χ1,2(t) [50]. In
the frequency domain ξ1,2 is spectrally flat, whereas χ1,2
will usually drop off as ω−1 or ω−2 [51]. The observed
amplitude of the readout mode xA is thus a combination of
the desired signal and fluctuations in the system. To obtain
the SNR, we analyze the additive and multiplicative noise
components in Eq. (10) separately.

1. Transformed noise terms

In the normal mode basis, the multiplicative noise is
simply

χA,S = χ1(t) + χ2(t)
2

, (21)

while the additive noise has contributions from both addi-
tive (thermal) and multiplicative (frequency) noise of the
bare oscillators,

ξA,S = ξ1(t) ± ξ2(t)√
2

+ mω2
0[χ2(t) − χ1(t)]

2
xS,A. (22)

Specifically, we note the coherent term xS entering the
additive noise ξA; taking xS to be the monochromatic pump
[Eq. (13)], this up-converts the noise from χ1(t) and χ2(t),
creating a qualitatively different noise term in the coupled
system.

2. Noise PSD

For equivalent bare oscillators, we assume equal fre-
quency noise PSDs, Sχ1(ω) = Sχ2(ω) ≡ Sχ(ω), whereas
the thermal noise PSD is taken constant as per the equipar-
tition theorem, Sξ1 = Sξ2 ≡ Sξ . We then arrive at the PSD
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of ξA,

SξA(ω) = 2ω0mkBT
πQnl

+ (mω2
0XS)

2

8
[Sχ (ω − ωS)

+ Sχ(ω + ωS)], (23)

comprising both thermal noise and up-converted frequency
noise [52]. The last term in Eq. (23) will typically be
negligible due to the fast decay of Sχ(ω) with ω.

3. Effect of frequency noise

In general, colored frequency noise is difficult to treat
analytically. Exact results have been obtained for dichoto-
mous and trichotomous Markovian noise with a Lorentzian
PSD [53–55]. These display a highly complex dependence
of the system response on the noise profile, which how-
ever only manifests at relatively long coherence times. In
our case, the typical noise coherence times τc fall within
the limit γ � τ−1

c � ω0. It has been shown [54] that in
this case the noise simply shifts the system slightly off
resonance, so that the response [Eq. (15)] decreases to

XA → XA

[
1 − var(ω2

A)

ω4
0

Q2
]

. (24)

The frequency variance var(ω2
A) can be obtained via the

Wiener-Khinchin theorem by integrating the power spec-
tral density of the dimensionless term χ(t):

var(ω2
A) = ω4

0

∫ ∞

0
Sχ (ω)dω. (25)

Apart from the intrinsic frequency noise χ , our system is
also affected by the conversion of any noise in the pump
amplitude XS into the frequency noise of xA, as shown in
Appendix A. However, both sources result in negligible
corrections compared to the effect of thermal noise acting
on xA and we disregard them from now on.

4. Effect of spin fluctuations

We now study the impact of the finite spin lifetime. Dur-
ing the course of a measurement, the magnetization will
fluctuate with a characteristic time T1; cf. Eq. (7). In the
frequency domain, this corresponds to a Lorentzian distri-
bution. The signal (i.e., the force PSD due to the nuclear
spins) is therefore broadened to give

Sspin(ω) = F2
spin

T1

π [1 + (ω − ωA)2T2
1]

, (26)

where Fspin is the force originating from parametric driving
with a coherent magnetic moment [Eq. (14)]. From a prac-
tical perspective (cf. Sec. VII), it is desirable to increase
the bandwidth of the resonator beyond the spin lifetime,
2Q/ωA < T1 [56]. This is routinely achieved by active
feedback damping [24,57–59].

5. General displacement PSD

We finally present a formulation of the displacement
PSD of the readout mode in the presence of feedback
damping and various noise sources. Since we consider the
case kBT  �ωA, we neglect zero-point fluctuations and
the discrete nature of the energy spectrum.

We start by defining the susceptibility of the mode as

g2(ω) = 1/m2

(ω2 − ω2
A)2 + (ωωA/Qfd)2

(27)

with Qfd = Qnl/(1 + p) being the (nonlinear) quality fac-
tor damped by a feedback gain p . The mode is driven
by the fluctuating force SξA(ω) defined in Eq. (23) and
is further subject to detector noise Sdet and to quantum
backaction force noise Sqba, which represents the non-
negligible disturbance of the system by an increasingly
precise measurement [57,60]. The latter takes the value

Sqba = �2

4π2Sdetη
(28)

with 0 < η ≤ 1 being the detection efficiency [24]. The
observed displacement PSD of the readout mode in the
presence of all of these fluctuating forces as well as a spin
signal becomes [24,59]

Sx(ω) = g2(ω)[SξA(ω) + Sqba

+ Sspin(ω) + g−2
p=0(ω)Sdet], (29)

where g2
p=0(ω) is the susceptibility without feedback

damping. There are three important points to note here.
First, we can see from Eq. (29) that feedback damping
decreases the thermomechanical displacement noise PSD,
but not the underlying force noise PSD (terms in the
bracket on the right-hand side). The benefit of feedback
damping for nuclear spin detection is only to allow for
rapid sampling of statistically independent spin configura-
tions [56]. Second, the fact that zero-point fluctuations are
reduced by feedback damping does not violate the Heisen-
berg uncertainty principle, since the added measurement
uncertainty corresponds to at least one half quantum of
energy [24,57]. Third, tuning Sdet, for instance, by vary-
ing the laser power in an optical cavity used to detect
the resonator motion, enables an optimal measurement that
minimizes Sx over a desired bandwidth [60].

6. Filtering

In order to reduce the measured displacement noise, we
apply a filter to reject noise far off the signal frequency. As
a concrete example, we consider a standard Butterworth
filter, which modulates the signal with G(ω) = {1 + [(ω −
ωA)/ωf ]2n}−1/2, where ωf denotes the bandwidth and n the
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filter order. The signal of our experiment corresponds to
the displacement variance driven by the spin signal,

σ 2
spin =

∫ ∞

0
G(ω)2g(ω)2Sspin(ω)dω, (30)

which is measured together with a noise background of

σ 2
noise =

∫ ∞

0
G(ω)2g(ω)2[SξA(ω) + Sqba

+ g−2
p=0(ω)Sdet]dω. (31)

VII. EXPERIMENT PROPOSAL

We now assess the feasibility of the proposed measure-
ment scheme using representative experimental parameters
of patterned Si3N4 membranes; cf. Fig. 1. The full set of
parameters is included in Appendix E.

First, we need to relate σ 2
spin to the number of spins in

the measured ensemble. To this end, we utilize the MRFM
framework of spin variance sensing [56]. For an ensemble
of N spins, as N becomes small, the thermal (Boltzmann)
polarization scales as N and is eventually outweighed by
the spin noise, whose standard deviation scales as

√
N . The

preferred measurable quantity at the nanoscale is hence the
magnetization variance

〈M 2 − 〈M 〉2〉 = Nμ2, (32)

where μ = 1.4 × 10−26 J T−1 is the proton magnetic
moment. Assuming that 〈M 〉 ∼= 0, the expected spin force
is then 〈F2

spin〉 ∝ Nμ2. Our aim is to estimate the variance
by taking successive noisy readings of M as it fluctuates in
time, and hence determine N . For a spin ensemble with
lifetime T1 and matched filter bandwidth ωf = 1/T1, in
the limits σ 2

spin � σ 2
noise, we can represent the SNR after

a collection time tc  T1 in the concise form [56]

sSNR = 1
2

√
tc
T1

σ 2
spin

σ 2
noise

. (33)

Equation (33) is the most important characteristic of the
proposed experiment.

A. Expected SNR

Let us now evaluate the SNR of the feedback-damped
system [Eq. (33)]. Driving the pump mode XS stronger
boosts the SNR via the parametric conversion into the
force

∣∣Fspin
∣∣ [cf. Eqs. (14) and (26)]. However, it also

increases the readout mode dissipation via nonlinear damp-
ing [Eq. (20)], which in turn increases thermal fluctuations
[Eq. (23)].

1. Asymptotic limit

The nonlinear damping eventually becomes the domi-
nant dissipation mechanism, whereby, for

�nl  γ /X 2
S , (34)

both the signal and the thermal noise PSD scale as X 2
S ,

resulting in a limiting value of the SNR,

lim
XS→∞

sSNR = Cn(μ∂2
x B)2

64kBTm�nl
N

√
tcT1, (35)

where

Cn =
∫ ∞

0 [(1 + z2n)(1 + z2)]−1dz∫ ∞
0 (1 + z2n)−1dz

(36)

is a dimensionless constant, depending solely on the filter
order n. Note that Eq. (35) is independent of the intrinsic
linear damping parameter γ , assuming that it is possible to
drive the system strongly enough to satisfy the inequality
in Eq. (34).

2. Case study

We proceed to calculate the expected SNR [Eq. (33)]
for values motivated by recent experiments [24]. The fil-
tering constant Cn [Eq. (36)] increases with n; we use the
value n = 4 (C4 ∼= 0.77) as higher orders bring negligible
improvement. A plot of the SNR against the pump mode
amplitude for three representative values of �nl is shown
in Fig. 3. All parameters are taken from Appendix E unless
stated otherwise.

The current membrane devices typically possess �nl ∼=
1 × 1014 m−2 s−1 [34]. In Fig. 3, we see that this allows
a SNR exceeding 1 at relatively modest pump mode
amplitudes of XS = 10 nm and collection times of 240 s,
approaching 9.5 at stronger pumping. [Please note that the
spatially resolved amplitudes of x1,2 are equal to XS/

√
2;

cf. Eq. (9). For XS = 10 nm, the spin sample therefore
moves with an amplitude of 7.1 nm.] This projected perfor-
mance is on par with current state-of-the-art MRFM exper-
iments, although with a significant potential for improve-
ment stemming from the unusual sensing mechanism (cf.
Sec. VII B).

A breakdown of the different noise sources in terms of
their impact on the observed displacement is shown in
Fig. 4. The principal noise component is the thermome-
chanical noise.

B. Discussion and conclusions

The SNR results presented in Fig. 3 compare favor-
ably to recent MRFM experiments. We expect to reach
a SNR value of 1 after 240 seconds of measurement
with ensemble sizes around N ∼ 104 spins, which matches
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(a) (b)

s s

FIG. 3. The SNR [cf. Eq. (33)] as a function of (a) pump mode amplitude XS and (b) feedback-damped quality factor Qfd. The lines
correspond to nonlinear damping values �nl = 7 × 1013 m−2 s−1 (red solid line), 1 × 1014 m−2 s−1 (blue solid line), 3 × 1014 m−2 s−1

(green solid line) and no nonlinear damping (gray dotted line). The collection time is tc = 240 s and we consider an ensemble size of
104 proton spins at T = 0.2 K, as well as T1 = 50 ms, and Sdet = 10−31 m2 s (cf. other values given in Appendix E). In (a), the quality
factor is Qfd = 2 × 105, and the dashed lines show the respective asymptotic limits [cf. Eq. (35)]. In (b), the pump mode amplitude is
10 nm.

the sensitivity of current state-of-the-art measurements
obtained with ultrasoft cantilevers and nanowires [10,11,
29]. Further significant improvements are expected since
the design of ultracoherent nanoscale resonators is an area
of active research. As shown in Eq. (35), the instrumen-
tal limitation to the SNR depends on the product (m�nl)

−1.
On the one hand, low mass m can readily be achieved by
designing thin ribbons instead of a drum-mode resonator.
On the other hand, the nonlinear damping coefficient �nl
has hitherto not received much attention. Optimizing the
resonator design accordingly could open up unprecedented
sensitivities in nuclear spin sensing.

Our scheme offers significant practical advantages over
instruments based on cantilevers or nanowires. (i) The
membrane surface is convenient for placement of “large”

samples, such as viruses or biological molecules in the
100 nm range. (ii) The spring constant of the membrane
resonator modes is orders of magnitude higher than that of
typical MRFM cantilevers, which results in a drastically
reduced susceptibility towards spatially varying interac-
tion potentials that affect the sensitivity. The scheme is
easily extendable to oscillators with unequal masses and
natural frequencies. (iii) Our parametric up-conversion
scheme does not require any electrical or magnetic sig-
nal at the frequency of the detection mode. This will be
helpful to avoid spurious driving of the sensor, which can
make data interpretation difficult. (iv) Finally, the mag-
netic field gradient source in our scheme is located on the
scanning tip, which allows us to utilize commercial mag-
netic force microscopy (MFM) probes. Membrane-based

F

D

(a) (b)

FIG. 4. A cumulative plot of (a) the force PSD [36] acting on the readout mode [cf. Eq. (29)] and (b) the resulting filtered displace-
ment PSD [cf. Eq. (31)]. The individual contributions correspond to the quantum backaction [purple region; cf. Eq. (28)], effective
thermal noise SξA (orange region), detector noise Sdet (green region), and the spin signal Sspin [blue region; cf. Eq. (26)]. We use conser-
vative values for Sdet = 10−31 m2 s, and T = 0.2 K, T1 = 50 ms, Qfd = 2 × 105, �nl = 1 × 1014 m−2 s−1, XS = 10 nm. (Other values
are given in Appendix E.)
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MRFM thus has the potential to become a mature and
versatile nano-MRI platform.

In summary, we theoretically demonstrate the feasibil-
ity of using megahertz optomechanical membrane res-
onators as force sensors for nuclear spins. Our work
highlights the potential of membrane platforms for sen-
sitive spin detection and should encourage further devel-
opment of membrane-based nano-MRI instruments and
spin-mechanics quantum information platforms.

ACKNOWLEDGMENTS

For fruitful discussions and inspiration, we acknowledge
A. Schliesser, Y. Tsaturyan, and L. Catalini. This work
was supported by the Swiss National Science Foundation
through grant CRSII5 177198/1, PP00P2_163818.

APPENDIX A: THE EFFECT OF
NONLINEARITIES ON NORMAL MODES

The transformation in Eq. (9) can be applied to the
nonlinear equation of motion, although this no longer
decouples xS and xA. Taking the difference x1 − x2 from
Eqs. (4) and (5), we obtain, after rearranging and leaving
out the noise terms,

ẍA +
[
γ + �1

2
(x2

S + x2
A) + �2

2
(3ẋ2

S + ẋ2
A)

]
ẋA

+
[
ω2

0 + 2ω0�ω + α

2m
x2

A + 3α

2m
x2

S + �1xSẋS

]
xA

= M (t)∂2
x B

2m
(xS + xA) + F(t)√

2m
. (A1)

Since xS  xA, we can drop all higher-order xA terms
in Eq. (A1). The readout mode thus behaves as a linear
oscillator, but with an xS-dependent damping and spring
constant. Nonlinearity of the mode xS itself plays no role
in the detection mechanism; we can thus continue to write
its amplitude as xS = XS cos(ωSt). Equation (A1) hence
simplifies to the form used in Sec. V.

We note that, in general, the pump mode xS is subject to
thermal noise. Looking at the prefactor of xA in Eq. (A1),
we see that this is converted to frequency noise of xA via
the Duffing nonlinearity α [49,61,62]. Let us describe the
noisy pump by XS = (XS0 + δXS) cos(ωSt), where the δXS
is the stochastic contribution of thermal noise. To leading
order, this affects the frequency of xA,

ω2
A = ω2

0 + 2ω0�ω + 3α

m
XS0δXS cos2(ωSt). (A2)

Taking 〈δXS〉 = 0 and 〈δX 2
S 〉 = kBT/mω2

S and dropping the
oscillatory off-resonant terms, this introduces a variance of

the frequency ω2
A,

var(ω2
A) = 3

8

(
3α

m

)2

X 2
S0〈δX 2

S 〉. (A3)

For the reference values in Appendix E and XS0 = 10 nm,
we obtain var(ω2

A) = 1.4 × 107 s−4. While this is far
higher than the intrinsic frequency noise, it does not signif-
icantly diminish the resonant response of xA [cf. Eq. (24)].

APPENDIX B: SPURIOUS PARAMETRIC TERMS
IN THE NONLINEAR REGIME

Exciting the pump mode imparts multiple parametric
drives on the readout mode; cf. Eqs. (18) and (19). The
effect of parametric driving is well explored in the resonant
case, where the spring constant is varied at twice the res-
onator’s natural frequency [63]. The response amplitude in
that case increases or decreases depending on the relative
phase of the parametric and external drives, a phenomenon
known as parametric squeezing [38].

In Eq. (18), however, the spurious parametric terms
oscillate at 2ωS and are thus strongly detuned from 2ωA. A
straightforward perturbative treatment then shows that the
drive induces spurious motion at frequencies |ωA ± 2ωS|.
The signal, extracted from the Fourier component at ωA,
is therefore unaffected. The result calculated earlier for the
linear regime remains valid even in the presence of nonlin-
earities, with Q replaced by Qnl. It is in principle possible
for the drives to cause parametric instabilities; however, as
our prospective system is far from the unstable regime, we
do not pursue this issue further.

APPENDIX C: MAGNETIC FIELD SIMULATIONS

The magnetic field profile is estimated by modeling a
hollow conical tip with a rounded top [cf. Fig. 5(a)] with
the magnetostatics package RADIA [64]. The tip is assumed
to be magnetized to 1.83 T parallel to the x axis [29]. A plot
of the spatial profile of the second field gradient ∂2Bx/∂x2

is shown in Fig. 5(b). At 50 nm above the tip center, we
obtain ∂2Bx/∂x2 = 2 × 1014 T m−2.

In a MRFM experiment, the spin-containing voxels con-
stituting the sample cannot be scanned individually in real
space. Instead, the frequency ωrf of the rf spin-flipping field
is swept from ωrf,0 − �ωrf to ωrf,0 + �ωrf. Spins whose
Larmor frequency lies within these bounds are flipped, pro-
ducing a signal proportional to the second field gradient;
cf. Sec. III. The signal magnitude due to a spin at position
r is hence a function of space, known as the point spread
function (PSF). Here, we define the PSF as

PSF(r) =
[
∂2Bx(r)

∂x2

]2[
1 −

(
γn|B(r)| − ωrf,0

�ωrf

)2]
(C1)
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(a)

(b)

(c)

FIG. 5. Magnetic field modeling results. (a) The second field
gradient along the central axis of the magnetic tip; (inset) cross
section of the tip model, consisting of a nonmagnetic conical base
(light gray region) and a layer of magnetic material (dark gray
region); (b) simulated second field gradient in the central plane
of symmetry; (c) simulated PSF [cf. Eq. (C1)], normalized to the
value at 50 nm above the tip center. We used �ωrf/γn = 10 mT.

for γn|B(r) − B0| ≤ �ωrf and 0 otherwise, with γn being
the nuclear spin gyromagnetic ratio. The bracketed term
is an empirical expression describing flipping fidelity,
whereby spins further off the central resonant condition
produce less signal [2].

We plot the PSF in Fig. 5(c), using for ωrf,0 the Larmor
frequency 50 nm above the tip center. Note that in conven-
tional MRFM, where the transducer is a cantilever moving
along the z axis, the relevant gradient would be ∂Bx/∂z,
which results in PSF maxima near the edges of the tip [2].
With our proposed method based on ∂Bx/∂x, these maxima
persist but cannot be used due to the vertical motion of the
membrane. We however find an additional active area on

the central axis of the magnetic tip that makes for a feasible
sample position.

APPENDIX D: SPIN DYNAMICS ON THE
MOVING MEMBRANE

A conceivable drawback of our scheme is the impact
of the high pump mode amplitude, as well as the ther-
mal motion of the membrane, on the spin ensemble. Since
the ensemble moves rapidly through a region with a field
gradient, its lifetime may be decreased by undergoing
nonadiabatic dynamics. In particular, the effect of thermal
noise has previously been found to be important in the
context of cantilever-based MRFM [65,66].

We describe the flipping in the frame rotating with the
Larmor frequency about the x axis, where, under the effect
of an applied rf field Brf(t) cos[ωrf(t)]êz, the effective field
reads

Brf(t) =
⎛
⎝ωrf(t)/γn

0
Brf(t)

⎞
⎠ (D1)

with the spin dynamics being governed by the Bloch
equation,

Ṁ(t) = γnM(t) × Brf(t). (D2)

Starting with Brf(t) parallel to the x axis, a spin-flip is
achieved by an adiabatic sweep across the Larmor fre-
quency. For simplicity, we take a sinusoidal rf profile,

Brf(t) = Brf

⎛
⎝cos(�ωt)

0
sin(�ωt)

⎞
⎠ (D3)

(a) (b)

(c) (d)

FIG. 6. Magnetization component along the x axis in the flip-
ping process under increasing values of the pump amplitude: (a)
XS = 0, (b) XS = 10 nm, (c) XS = 50 nm, (d) XS = 100 nm.
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TABLE I. Reference resonator parameters and magnetic field characteristics.

m (ng) 1 Resonator mass
ω0 (s−1) 8.2 × 106 Resonator natural frequency
Q 108 Quality factor
α (kg m−2 s−2) 1 × 1012 Coefficient of Duffing nonlinearity
ωA − ωS (s−1) 5 × 104 Normal mode frequency splitting
var(x1) (m2) 2.2 × 10−20 Thermal displacement variance at room temperature
∂xB (T m−1) 6 × 106 Magnetic field gradient ∂Bx/∂x
∂2

x B (T m−2) 2 × 1014 Second magnetic field gradient ∂2Bx/∂x2

η 0.5 Detection efficiency
Sdet (m2 s) 10−31 Detector noise PSD
var(ω2

A) (s−4) 10−1 Frequency variance due to intrinsic frequency noise
Sχ (ωA − ωS) (s−1) ≤ 10−36 Relative intrinsic frequency noise PSD at resonance

with Brf = 5 mT [29] and �ω = ωA − ωS = 5 × 104 s−1.
Optimizing the pulse profiles will likely provide even more
stable spin inversions [29].

1. Motion of the pump mode

When the pump mode oscillates with amplitude XS
[cf. Eqs. (9) and (13)], the sample position is x1(t) =
XS cos(ωSt)/

√
2. Such a motion is equivalent to a spurious

time-dependent field

δB(t) = XS√
2

∂Bx

∂x
cos(ωSt)êx. (D4)

We solve Eq. (D2) numerically with the field Brf(t) +
δB(t). From the field modeling in Appendix C, we obtain
∂Bx/∂x = 6 × 106 T m−1.

In Fig. 6 we show the flipping process under increas-
ing values of XS. We observe that the spurious field
induces oscillatory features in the flipping process, but
only causes significant distortion at very strong (XS
≈ 100 nm) pumping.

Finally, to test the flipping fidelity, we integrated
Eq. (D2) over 250 flips using XS = 10 nm. Starting with
a unit vector M(0) = êx, the magnetization Mx at the end
of each flip never dropped below 0.996. We thus conclude
that the flipping mechanism remains robust under strong
driving of the pump mode.

2. Thermal noise in the membrane

We measured the thermal displacement on one of the
defect mode sites of a Si3N4 membrane. At room tem-
perature, a root-mean-square displacement of 150 pm is
observed, most of which is due to the many delocalized
modes of the membrane. Since cantilever-based MRFM
displays high flipping fidelities at comparable displace-
ment noise levels, and since our envisioned operational
temperature (0.2 K) will further reduce thermal fluctua-
tions, we do not expect this to be an issue with regards
to spin-flipping.

APPENDIX E: REFERENCE VALUES

All resonator parameters used in Sec. VII are shown
in Table I. The values are taken from recent experimen-
tal data [34]. Note that a different, nonunitary normal
mode transformation is typically used in the experimental
literature:

(
xS
xA

)
=

(
1 1
1 −1

) (
x1
x2

)
. (E1)

Relative to our notation, this scales the cubic nonlineari-
ties α, �nl by a factor of 1

2 and the mass m by a factor of
2. This transformation is convenient for experimental use,
but requires additional renormalization when dealing with
external forces.

The magnetic field gradients are estimated by modeling
a conical magnetic tip made of saturated Nd-Fe-B magnet
(such as is used in MFM) with the magnetostatics pack-
age RADIA [64]. The sample is assumed to be positioned
directly above the center of the magnetic tip, where there
is a relatively large area of constant ∂2

x B.
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