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x
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X
(k)
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Φ set of elementary HMMs

λ composite HMM, composed of several elementary HMMs
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ĝ
(k)
t best mixture comp. within a state at time t

for observation sequence X(k)

zn codebook vector with index n

δt(n) auxiliary variable for Viterbi in state n and time t
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Abstract

There are several thousand languages in the world and each language
has a multitude of dialects. State-of-the-art speech recognition tech-
niques, which are usually based on transcriptions, are however only
available for a few languages because of the lack of acoustic and tex-
tual resources which are necessary to build these recognizers.

In this thesis we aim at the development of speech recognition tech-
nologies for languages with limited or no resources. For many applica-
tions such as the control of machines or home appliances by voice it
is not necessary to have a continuous speech recognizer with a large
vocabulary. It is then possible to resort to techniques which need only
very little language-specific resources.

In order to build isolated word recognizers for any language we
relied on speech recognition techniques with an utterance-based vocab-
ulary. In these techniques each word of the vocabulary is defined by
one or several sample utterances. This way of defining the vocabulary
is language-independent and has the further advantage that it can be
done by everybody since no expert knowledge is required.

To improve the recognition rate of speech recognition with an
utterance-based vocabulary we worked with two techniques: the first
one based on dynamic time warping in combination with specially
trained artificial neural networks and the second one based on hidden
Markov models with data-driven sub-word units.

With the availability of moderate resources from the target lan-
guage we were able to develop a recognizer technique which yielded



16 Contents

comparable results to a transcription-based recognizer which requires
in contrast to our technique a pronunciation dictionary to build the
word models. When no resources of the target language were available
and resources from other languages than the target language had to be
used instead, the performance of transcription-based recognition was
not achievable with the utterance-based recognizer techniques devel-
oped in this thesis. Yet, in this case the developed approaches allowed
to halve the error rate of isolated word recognition with an utterance-
based vocabulary compared to a standard approach based on dynamic
time warping using the Euclidean distance measure.

We also applied the developed techniques to other applications such
as acoustic data mining. In this way it was possible to tackle these prob-
lems for speech signals of any language since the developed techniques
do not require resources of the target language.



Kurzfassung

Weltweit existieren einige Tausend Sprachen, und in jeder Sprache
werden viele verschiedene Dialekte gesprochen. Spracherkenner, wel-
che dem Stand der Technik entsprechen, stehen allerdings nur in den
wenigsten Sprachen zur Verfügung, da zu ihrer Implementierung um-
fangreiche akustische und linguistische Ressourcen notwendig sind.

In dieser Arbeit haben wir Techniken entwickelt und getestet, welche
die Spracherkennung in Sprachen mit wenigen oder keinen Ressourcen
verbessern. Für viele Anwendungen, wie zum Beispiel die Steuerung von
Maschinen oder Haushaltsgeräten, ist es nicht nötig, einen kontinuier-
lichen Spracherkenner mit einem grossen Vokabular zur Verfügung zu
stellen. Mit diesen geänderten Anforderungen werden Techniken, wel-
che keine sprachspezifischen Ressourcen benötigen, möglich.

Um die Erkennung von isolierten Wörtern in beliebigen Sprachen zu
ermöglichen, haben wir Techniken, die ein Vokabular verwenden, das
auf Musteräusserungen basiert, verbessert. Bei diesen Techniken wird
jedes zu erkennende Wort durch eine oder mehrere Musteräusserungen
definiert. Neben der Sprachunabhängigkeit haben diese Techniken auch
den Vorteil, dass ein Vokabular von jedermann definiert werden kann,
da kein Expertenwissen nötig ist.

Zur Verbesserung musterbasierter Spracherkennung haben wir grob
mit zwei Techniken gearbeitet: die erste basiert auf dynamischer Zeitan-
passung in Kombination mit speziell trainierten künstlichen neuronalen
Netzen, und die zweite basiert auf Hidden-Markov-Modellen mit spezi-
ellen akustisch motivierten Sprachelementen.
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Wenn einige wenige Ressourcen der Zielsprache zur Verfügung stan-
den, konnten wir mit den entwickelten Techniken Erkennungsraten
erreichen, welche jenen eines dem Stand der Technik entsprechen-
den, Aussprachewörterbuch-basierten Erkenners in nichts nachstehen,
auch wenn dieser mehr Ressourcen wie zum Beispiel ein Ausspra-
chewörterbuch benötigt. Falls gar keine Ressourcen in der Zielspra-
che zur Verfügung standen und auf Ressourcen einer anderen Sprache
für das Training der Modelle zurückgegriffen werden musste, konnten
die Erkennungsraten von Aussprachewörterbuch-basierten Erkennern
nicht erreicht werden. Die Fehlerraten welche wir mit unseren Erken-
nern erreichten, waren allerdings trotzdem nur halb so gross wie jene
von konventionellen Mustervergleich-Erkennern.

Wir haben die entwickelten Techniken auch für andere Anwendun-
gen, wie zum Beispiel die Suche von lautlich ähnlichen Abschnitten,
wie Wörtern, in zwei Sprachsignalen angewendet. Diese Anwendungen
werden dank den neuen Techniken in beliebigen Sprachen möglich.



Chapter 1

Introduction

1.1 Problem Statement

Recognition of isolated words is a fundamental application of speech
recognition. It is for example necessary to control machines or home
appliances by voice.

Most research in automatic speech recognition is nowadays focused
on large vocabulary continuous speech recognition (LVCSR) and iso-
lated word recognition (IWR) is considered as a special case of LVCSR
and tackled with the same methods. LVCSR have high resource require-
ments to the language which they are used in. They need for example
a pronunciation dictionary and large annotated speech corpora.

Around 4000 languages exist worldwide ([SW01]), but only in some
tens of them a pronunciation dictionary is available ([SW01]). Besides
that most people do usually not speak the canonical form of a language
but use a multitude of dialects, which usually lack dialectal dictionar-
ies. This makes the standard LVCSR techniques unusable for most lan-
guages and dialects.

Another problem is the number of languages which a recognizer
needs to cover. If an internationally operating company wants to in-
corporate speech recognition into its products, it needs to offer a huge
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portfolio of languages and it is difficult to use language-dedicated rec-
ognizers for all languages even if they might be available.

In this thesis we aim at building IWR with a satisfactory perfor-
mance in any language and dialect.

1.2 Isolated Word Recognition

Isolated word recognition can be categorized by the way the words
which need to be recognized are represented in the vocabulary. In the
word-based approach the representations of the words are independent,
i.e. they do not share components or parameters. In the sub-word-based
approach every word is represented by a sequence of sub-word units.
The set of sub-word units which the sequences are composed of is shared
among the words.

1.2.1 Word-based Recognition

The words in word-based recognizers are often represented by templates
(i.e. by feature sequences of example utterances of the words). This ap-
proach is referred to as template-based recognition. A major challenge
in template-based recognition is the variability among signals of the
same word, even if they are recorded from the same speaker over the
same channel. Some of these variations can be reduced by considering
the frame-wise representation of appropriately chosen features. Tempo-
ral variations can be compensated by the flexibility inherent to dynamic
time warping, which is normally used to compare signals.

An alternative approach to word-based recognition is to repre-
sent each word with an individual model, i.e. a hidden Markov model
(HMM) or an artificial neural network. A disadvantage of this approach
is that many utterances of each word are necessary to train the word
models.
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1.2.2 Sub-Word-based Recognition

A way to alleviate the need for a lot of training material for each word to
be recognized is to represent each word as a sequence of sub-word units.
Constructing the vocabulary for the recognizer is then divided into two
tasks: The training of an appropriate set of sub-word unit models on
the one hand and the appropriate concatenation of the sub-word units
for each word to be recognized on the other hand.

Sub-word-based recognizers can be further characterized by the way
of selecting the sub-word units for the words to be recognized. In the
first category, which is here termed transcription-based recognition, the
sub-word units are concatenated according to transcriptions given in a
dictionary. In the second category, the sub-word units are concatenated
according to sample utterances of the words to be recognized.

Transcription-based Recognition

In this recognizer category the items to be recognized are usually mod-
eled with hidden Markov models (HMMs), which are concatenated from
phone models according to a pronunciation dictionary. This allows the
construction of HMMs for various recognizer topologies such as IWR or
LVCSR. There are several prerequisites of phoneme-based recognizers:

1. Annotated data to train appropriate statistical models of the
phonemes has to be available.

2. A transcription of each occurring word has to be available. The
transcriptions are usually obtained from a pronunciation dictio-
nary.

3. An appropriate language model which defines the sequences of
words which the recognizer is able to understand and the proba-
bilities of word sequences is necessary.

These prerequisites make the phoneme-based approach language de-
pendent since the resources mentioned above need to be available for
every language in which a recognizer should be deployed.
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For isolated word recognition only the first two prerequisites are nec-
essary since the language model is trivial. The first prerequisite can be
partly circumvented by using cross-lingual resources and therefore only
the second prerequisite remains. The available cross-lingual techniques
are summarized in Section 1.3. There were attempts to circumvent
the need for a pronunciation dictionary by taking context-dependent
graphemes as sub-word units in the speech recognizer ([KN02]). These
approaches were successful for some languages, including languages
with non-Latin script such as Thai ([CHS06]) but yielded poorer results
for languages which have a more complex mapping from graphemes to
pronunciation such as English ([KSS03]).

Utterance-based Concatenation of Sub-Word Units

An alternative method to determine the sequences of sub-word units
which is also applicable if no pronunciation dictionary is available is to
determine the sub-word unit sequence according to utterances of the
words. In this case there is also more freedom in terms of the selection
of an appropriate set of sub-word units, since the sub-word units do
not need to be linguistic units such as phonemes or graphemes.

1.3 Available Cross- and Multi-Lingual

Techniques

In this section we give an overview of problems in cross- and multi-
lingual speech recognition and the available methods to solve them.

1.3.1 Multilingual Vocabulary

There are several applications for which a speech recognizer for a single
language is not enough. Tourist information systems should for example
be controllable in several languages. In this case it can be expected that
a user uses only one language and therefore the cross-lingual aspect
is only that the system has to be operable in several languages. The
situation gets somewhat more complicated if the user can switch the
language. In bilingual communities it is for example quite common that
the speakers switch the language even within one sentence. A system
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which is able to recognize two languages at the same time was for
example presented in [Wen97].

A number of systems have been presented which combine the
phoneme inventories of several languages into one fused phoneme inven-
tory in order to avoid the need for language-specific phoneme models
for every language supported by the system. Usually these systems
are based on standardized international phoneme inventories such as
Sampa ([Wel89]), IPA or Worldbet ([Hie93]). A straightforward ap-
proach is to merge the phonemes with the same IPA symbol. In [Kun04]
even more phonemes could be merged in this way because the distinc-
tion between long and short vowels was abolished. A data-driven fu-
sion of acoustically similar phonemes was presented in [BGM97]. In
[DAB98] the fusion of phonemes was guided by a similar log likelihood
in recognition experiments. Sharing of Gaussian mixture components
of the models in the different languages was allowed in [Wen97]. These
approaches usually resulted in a moderate performance loss compared
to the use of dedicated phoneme models for each language to be recog-
nized.

An interesting cross-lingual application is the recognition of proper
names such as city names since a speaker of one language may pro-
nounce a proper name of another language in different ways: either he
can pronounce the name in his own language or in the foreign lan-
guage. When he uses the foreign language he may have a stronger or a
weaker accent. A possibility to handle this case which was for example
chosen in [Bea03] is to add additional pronunciation variants such that
both the native and the foreign pronunciation is recognized. In [SM07a]
phonemes of a proper name which might be pronounced in a non-native
way were represented with a phonologically inspired back-off model. In
[SNN01] a German speech recognizer which is also able to recognize En-
glish movie titles was presented. To that end, the phonemes of English
and German were merged.

1.3.2 Languages with Limited Acoustic Training

Data

For some languages a pronunciation dictionary is available but there is
not enough acoustic training data which is appropriately annotated for
the training of phone models. In this case it may be possible to take
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phone models from one or several other languages, here called source
languages, to derive models of the target language.

Also these approaches are often based on international phoneme in-
ventories. If phone models which are necessary for a target language
have an equivalent phone model in one or several source languages,
the models of the target language can be substituted by the models of
source languages. The crucial part is usually how phone models of the
target language which are not available in any of the source languages
are handled. In [Ueb01] these phone models are substituted with acous-
tically close phone models. For the selection of the appropriate model
a small amount of data has to be available for the phonemes of the
target language. A way which is a bit more sophisticated was taken in
[Byr00]. Here the phone models of the target language are combined
from one or several models of the source languages with dynamic model
combination introduced in [Bey98].

If some training data is available for the target language, the models
derived from other languages as explained in the previous paragraph
can be taken as seed models which are adapted with the limited train-
ing data of the target language. Such an approach was for example
implemented in [SW01].

There are alternative approaches which suggest a reduction of the
phoneme model mismatch between languages by an appropriate selec-
tion of features. To use articulatory features was for example done in
[Sin08]. Alternatively, phonological features can be used as presented
in [SM07b].

1.3.3 Non-Native Speakers of a Language

Speech recognizers often perform much worse for non-native speakers
than for native speakers. In [LHG03] it was for example found that
speech recognition for non-native English speakers was almost twice as
accurate if training data was used from speakers of the same mother
tongue than if training data from speakers of another mother tongue
was used. In [Hua01] it was observed that the native accent of speakers
introduced the second most important source of inter-speaker variabil-
ity right after the gender difference. That non-native accents are even
more difficult for speech recognizers than native accents has been ar-
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gued in [VC01]. In [FSM03] it was investigated how the first language
of bilinguals influences the pronunciation of English phonemes. A way
to alleviate this problem was presented in [BJ04]: The phonemes of
a French speech recognizer were enhanced for non-native speakers by
adapting the French models with data of phoneme-equivalents of the
speakers native language.

1.4 Investigated Approaches to Isolated

Word Recognition

State-of-the-art recognition of isolated words is usually performed
with a transcription-based approach. The resource requirements for
transcription-based recognizers are however unsatisfiable for most lan-
guages – even if using cross-lingual techniques as described in Section
1.3.

Therefore we have investigated approaches which can be used for
any language. Uttering the words of the vocabulary is an easy and user-
friendly way of defining a small vocabulary. The basic concept of an
utterance-based vocabulary does not make any assumption about the
language which the recognizer is used in. Also no assumption is made
about the user or user population of the recognizer. This is a further
advantage since the acoustic models of transcription-based recognizers
are often shaped for a special speaker population. Most recognizers
are for example optimized for the use by adults and have a very poor
performance for child speakers (see for example [EB04]).

The usual approach to recognizers with utterance-based vocabular-
ies is template-matching with dynamic time warping and a Euclidean
distance measure as described in 1.2.1. These recognizers usually yield a
considerably lower accuracy than state-of-the-art recognizers do, espe-
cially if the template utterances were spoken by a different speaker than
the user of the recognizer. In this thesis we investigated two approaches
to enhance recognition with utterance-based vocabularies:

• Use a more appropriate distance measure in template-based rec-
ognizers based on dynamic time warping.

• Use utterance-based concatenation of sub-word HMMs as out-
lined in Section 1.2.2
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1.5 Evaluation of the Recognizers

The experiments shown in this thesis are designed to evaluate how
different recognizers with utterance-based vocabularies compare among
each other and how they compare with a transcription-based recognizer.

A key question is the type of resources which are necessary from
the target language. The basic principle of utterance-based recognition
needs only utterances of the words to be recognized as resources. For
particular techniques other resources may however be necessary. In our
case this is for example training data for the distance measure in the
dynamic time warping approach or for the sub-word unit models in the
HMM approach.

In the intra-language case, i.e. if the training data is taken from the
target language, it is interesting to evaluate what property the training
material needs to have (e.g. if orthographic annotations are necessary).
In the cross-language case, i.e. if the training data is not taken from the
target language, no data except for sample utterances of the words to
be recognized is required from the target language. Then it is however
important to evaluate what impact the language-mismatch has on the
recognition performance.

In order to evaluate isolated word recognition we performed ten-
word recognition tasks. In all tasks many ten-word vocabularies were
tested with several test utterances. The tasks are described in detail in
Appendix E.2. We performed tests with German and with French tasks.
The tasks were performed with speakers of the speaker sets SG,poly,3

and SF,poly,3 as described in Appendix E.1.

To train sub-word units and multilayer perceptrons we used data
from speakers of the speaker sets SG,poly,1 and SF,poly,1, which are dis-
joint from the test speaker sets.

To test the performance in the intra-language case, the tests were
performed with models (multilayer perceptrons or sub-word unit mod-
els) trained on data of the target language. To test the performance in
the cross-language case, the German tests were performed with models
trained on French data and vice versa.
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Speaker mismatch has a considerable impact on the recognition rate
of recognizers with an utterance-based vocabulary. In order to evaluate
the approaches with different degrees of speaker mismatch we tested
three scenarios:

• Speaker-dependent: The reference and test utterances are from
the same speaker. This is the case for applications in which each
user of a system will define his own vocabulary by uttering each
word one or several times. This is the easiest case since there is
only intra-speaker variability.

• Cross-speaker: The reference utterances are spoken from one
speaker and the test utterances are spoken by another speaker.
This is the case for applications in which we have only reference
utterances from one speaker but need to build a recognizer which
is used for any speaker (i.e. in a speaker-independent fashion). In
this case the inter-speaker variability is likely to be a big source
of error.

• Speaker-independent: The references utterances are from a bigger
population of speakers and the test utterances are from speakers
of another population. This is the case for applications wherein
we have utterances from many speakers available. In this case a
speaker-independent word model can be built from several utter-
ances spoken by different speakers.

1.6 Scientific Contributions

1. We developed a new approach to use appropriately trained mul-
tilayer perceptrons instead of other distance measures such as
the Euclidean distance in speech recognition methods which are
based on dynamic time warping.

2. To obtain appropriate sub-word unit models for recognition with
an utterance-based vocabulary we developed a scheme to train
abstract acoustic elements.

3. We extended the Viterbi algorithm in a way that makes it possible
to find a sequence of sub-word units which optimally describes
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several utterances. Additionally we devised an approximation of
the exact algorithm which performs well but is computationally
much less expensive.

4. We achieved a considerably higher recognition rate with an
utterance-based vocabulary compared to a baseline approach.
With appropriate training data we were able to build a recog-
nizer with an utterance-based vocabulary which had a perfor-
mance similar to a transcription-based recognizer.

5. We developed algorithms to use the developed techniques in other
applications of speech processing – for example for acoustic data
mining. These algorithms were successfully used for a pattern-
matching approach to speaker verification.

1.7 Structure of the Thesis

The thesis is structured in six chapters:

Chapter 2 describes isolated word recognition with DTW and shows
that appropriately trained verification multilayer perceptrons are
a good alternative to other distance measures.

Chapter 3 describes HMM-based isolated word recognition with sub-
word units which are concatenated according to sample utter-
ances. This includes the description of abstract acoustic elements
used as sub-word units and an extension of the Viterbi algorithm
for several observation sequences.

Chapter 4 compares different recognizer techniques with utterance-
based vocabulary among each other. These techniques are also
compared with a transcription-based recognizer.

Chapter 5 describes further applications of speech processing such as
data mining, utterance verification and speaker verification which
may profit from the techniques developed in this thesis.

Chapter 6 gives some concluding remarks of this thesis including an
outlook.



Chapter 2

Improving DTW-based

Word Recognition

The first isolated word recognizers were template-based. In [VZ70] or
[Ita75] the words which are represented in the vocabulary as feature se-
quences are compared to the test utterances with dynamic time warping
(DTW) to compensate for temporal variations. The recognized word is
the one with the smallest distance to the test utterance.

Improvements of DTW-based approaches were mainly achieved by
the use of feature transformations and alternative distance measures
which are reviewed in Section 2.1. A speedup for the DTW approach
by first using a coarse temporal resolution was suggested in [SC04].
DTW has recently regained some interest even for large vocabulary
continuous speech recognition (LVCSR). Different schemes to use DTW
for LVCSR are reviewed in [GL98] and a complete LVCSR based on
DTW was presented in [DW07].

This chapter introduces the verification multilayer perceptron
(VMLP), a specially structured MLP and shows how it can be used
as an alternative distance measure in Section 2.2. Section 2.3 contains
experiments which show the performance of the VMLP in comparison
to other distance measures and feature transformations.
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2.1 Overview of Discriminative Ap-

proaches for DTW

A speech signal does not only contain information about the spoken
text but also about the speakers voice, the speakers mood, the charac-
teristics of the recording channel, the background noise and so forth. A
good overview of factors which lead to the variability of speech signals
is for example [Ben07]. In order to improve speech recognition, various
discriminative methods have been proposed which (pre-)process speech
in a way that the information of the spoken text has a bigger effect
than other information which is disturbing for speech recognition. Us-
ing VMLPs, which are presented in Section 2.2, is such a method. In
this section we give a short overview of work which is done to improve
speech recognition by using discriminative methods. In Section 2.1.1 we
will have a look at alternative distance measures applicable for DTW.
Discriminative feature transformations will be summarized in Section
2.1.2.

2.1.1 Alternative Distance Measures for DTW-

based Recognizers

DTW-based recognizers need a distance measure which determines the
difference between two frames. Very often the Euclidean or the Maha-
lanobis distance are used for this purpose. Alternatively a similarity
measure can be used to express the probability that two frames are
from the same phoneme. We have suggested to use verification mul-
tilayer perceptrons (VMLPs) as a similarity measure. A VMLP com-
putes the posterior probability that two frames are from the same class.
The VMLPs are described in Section 2.2. Following the introduction of
VMLPs another research group has suggested in [Pic09] that the scalar
product of phoneme posterior vectors can be used as an alternative to
the VMLP. This approach is discussed in Section 2.2.2.

There are also other approaches which are for example based on
local distance measures. In [DW04] the two frames for which the dis-
tance has to be computed are first classified with a phoneme recognizer
and for each state in each phoneme a local distance measure is defined
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which makes use of the variance within each state. In [Mat04] a similar
approach is pursued but the local distance measure is optimized with
a gradient descent learning procedure presented in [PV00] to perform
well in a k nearest neighbors classifier.

2.1.2 Feature Transformations

An alternative approach is to use feature transformations which trans-
form an input feature space into a new one in which classes are easier
separable. Some of these transformations are linear and can therefore
be expressed with a transformation matrix. Other approaches perform
a nonlinear transformation and are mostly based on MLPs.

Linear Transformations

The linear feature transformations differ among each other in the way
the transformation matrices are trained. In the standard form of linear
discriminant analysis as described for example in [DHS01] the objective
is to maximize the ratio of between-class data scatter to within-class
data scatter. The training has a closed solution which is based on find-
ing Eigenvectors, is however based only on the scatter matrices.

With the heteroscedastic discriminant analysis an alternative was
therefore presented in [KA98]. Here the transformation is based on
iterative maximum likelihood training. A further refinement presented
in [Sao00] performs an additional maximum-likelihood linear transform
on top of the heteroscedastic linear discriminant analysis to ensure the
linear independence of the resulting features.

In [Dem99] an approach which is based on the maximization of mu-
tual information is presented. This approach is thought as a replace-
ment of the discrete cosine transform which is used in the last step of
the calculation of the Mel frequency cepstral coefficients.
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MLP-based Feature Transformations

Several methods to train MLPs which perform a feature transformation
have been suggested. Nonlinear discriminant analysis which was intro-
duced in [Fon97] is based on a bottleneck layer. An MLP is trained
which has at the input the untransformed features and at the out-
put a phoneme vector which is 0 for all phonemes except for the cor-
rect phoneme for which it is 1. This MLP has a smaller last hidden
layer which is termed bottleneck layer since all information has to be
squeezed through this bottleneck layer. Later, when the MLP is used,
only the part from the input layer to this bottleneck layer is used and
the activations of the bottleneck layer are the transformed features.

A very popular feature transformation was presented with the Tan-
dem features introduced in [HES00]. Here an MLP is trained in a sim-
ilar way as in the bottleneck approach described above. However, the
outputs of the trained MLP are taken directly as the transformed fea-
tures. These transformed features are also termed phoneme posteriors
since every feature corresponds to the posterior probability of a given
phoneme. These transformed features were originally intended to be
used with HMMs but in [AVB06] it was shown that they also yielded
good results in DTW-based recognizers. It was shown in [ZCMS04] that
phoneme posteriors are less speaker-dependent than the untransformed
features. In [ZCMS04] it was also shown how phoneme posteriors can
be merged. If different phoneme-posterior transformations are trained
for the same target (i.e. the same phonemes) but for different input
features the phoneme posteriors of the different transformations can be
combined as a weighted sum. More elaborate merging techniques, e.g.
with an additional MLP for merging were presented in [HM05].

2.2 Multilayer Perceptrons for Class Veri-

fication

MLPs are successfully used in speech processing such as for example to
calculate phoneme posteriors as described in Section 2.1.2. In this case
they are used to identify a phoneme from a given feature vector. Ex-
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pressed in more general terms, the MLPs are used for the identification
of input vectors with a class from within a closed set of classes.

There are applications however, where the identification of input
vectors is not necessary but it has to be verified whether two feature
vectors x1 and x2 are from the same class or not. Therefore we devel-
oped the concept of VMLPs which we expect to calculate the posterior
probability

P (class(x1) = class(x2)|x1,x2) (2.1)

Such an application in speech processing is for example the verifi-
cation whether two given speech frames are from the same phoneme
or not. The objective is therefore to verify phonemes. Another appli-
cation is in a pattern matching-based approach to speaker verification
presented in Section 5.2. Here the objective is to verify speakers.

In experiments which are described in Appendix A we experi-
mentally showed that the verification results of appropriately trained
VMLPs are close to optimal. Furthermore we showed that good re-
sults can be achieved even if the VMLPs are used to discriminate be-
tween classes which were not present in the training set, but have the
same verification objective (e.g. verifying phonemes or speakers). This
is an especially useful property since it allows that for example training
data for speaker VMLPs does not need to be collected from the target
speaker population but can be collected from another population.

2.2.1 Verification MLP Structure

Since the VMLP has to decide whether two given input vectors x1

and x2 are from the same class, the VMLP has to process vector pairs
rather than single vectors. The target output of the VMLP is os if the
two vectors of the pair are from the same class and od if they are from
different classes. The vectors are decided to belong to the same class if
the output is closer to os and to different classes otherwise.

Thus the structure of the VMLP is as shown in Figure 2.1. Al-
ternatively the VMLP could be implemented with two outputs – one
for the probability that the input vectors are from the same class and
the other for the probability that the input vectors are from different
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classes. This topology would allow to use a softmax output layer which
is often used for classification problems (e.g. for phoneme classification
in [BM94]) since it guarantees that the outputs sum to one. We have
experimentally seen however that a topology with two outputs yielded
similar results to the simpler network topology with one output which
we used.
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Figure 2.1: Structure of the VMLPs.

The VMLP shown in Figure 2.1 has two hidden layers. It is known
that this topology is able to describe any input to output mapping pro-
vided that enough units are available (see for example [Lip87]). It has to
be evaluated whether one hidden layer suffices for a given problem and
how many neurons are necessary. The evaluation of these parameters
for our task in speech recognition is done in Section 2.3.4.

2.2.2 Posterior Scalar Product

Following the introduction of VMLPs an alternative was presented in
[Pic09] and [APB10]. The method is based on the observation that a
VMLP which is trained with a standard error criterion such as mean
squared error will optimize the same criterion as the scalar product of
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the vectors of N phoneme posteriors P (phonemen|x), n = 1 . . . N (cf.
Section 2.1.2) of two feature vectors x1 and x2:

N
∑

n=1

P (phonemen|x1) ∗ P (phonemen|x2) (2.2)

This equivalence was both theoretically and experimentally confirmed
for a closed set of classes.

In contrast to the tests performed in [APB10], we aim at verifying
whether two feature vectors are from the same class for an open set of
classes. For this open set of classes only the classification objective (e.g.
classifying speakers or classifying phonemes) is expected to be known.

A further difference is the requirements for the training data.
Whereas the posterior scalar product approach needs a phoneme seg-
mentation to train the phoneme posterior MLPs, only orthographic
annotations are necessary for the training material of VMLPs.

The posterior scalar product would be a very interesting alterna-
tive from the point of view of computational complexity. The compu-
tation of the phoneme posteriors is confined to the individual feature
sequences and between the signals only the scalar product has to be
computed.

Comparative results of the posterior scalar product and VMLPs will
be given in Section 2.3.5.

2.3 Experiments

2.3.1 Description of the used DTW Recognizer

We used an asymmetric DTW implementation with Itakura constraints
([Ita75]) to warp the test utterance on the reference utterances. This
is a reversed approach to mapping the reference utterances on the test
signal which is often used. Our approach required the accumulated dis-
tance to be normalized with the number of frames in the reference
utterance (i.e. using the average distance). We achieved better results
with this approach, probably because the features in the frames of the
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reference template are more reliable especially if several utterances are
used to generate a template. At the start and at the end of both refer-
ence and test signal we allowed the DTW algorithm to skip up to 50 ms
(5 frames) in order to compensate for slightly incorrect endpoints. The
final distance between a reference signal and a test signal was not di-
rectly the accumulated distance on the last frame of the warping curve.
Instead we used the weighted average distance of all frame pairs along
the warping curve as the final distance. As weighting factor we used
the mean RMS value of both frames in a pair. Experiments have shown
that this weighting, which puts more emphasis on the vowels because
they have on average a higher RMS, is beneficial for the recognition
accuracy. We have empirically optimized the parameters of this DTW
recognizer.

2.3.2 DTW Recognizer with Perceptron-based Dis-

tance Measure

For the DTW recognizer it is possible to use a feature transformation
as described in Appendix 2.1.2, an alternative distance measure such
as a distance measure based on a verification multilayer perceptron
(VMLP) presented in Section 2.2 or both. When a VMLP was used
as a distance measure, its output was linearly mapped in a way that
the positive MLP output which indicated the same class of both input
vectors was mapped to 0 and the negative MLP output which indicated
different classes for both input vectors was mapped to 1.

2.3.3 Verification MLP Training

The VMLPs were trained by means of the backpropagation algorithm
with the mean squared error as error criterion. The weights were ran-
domly initialized and a momentum term was used during the training.
For a hyperbolic tangent output neuron a good choice for the output
targets is os = 0.75 and od = −0.75 such that the weights are not
driven towards infinity (see for example [Hay99]). With these settings
we experienced that at the beginning of the training the difference be-
tween desired and effective output decreased quite slowly but that the
training never got stuck in a local minimum.
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Training Data for Phoneme Verification MLPs

In order to train a VMLP which will verify whether two input feature
vectors are from the same phoneme we needed on the one hand positive
feature vector pairs for which we know that the feature vectors are
from the same phoneme. On the other hand we needed negative feature
vector pairs with feature vectors from different phonemes. A method to
obtain such training vector pairs was to apply DTW on vector sequences
extracted from utterances of the same word. The feature vector pairs
located on the warping curve obtained from the DTW algorithm could
then be taken as the positive feature vector pairs. The negative feature
vector pairs were randomly taken from points outside the warping curve
which had an Euclidean distance above a certain threshold.

We used data from speakers of the sets SG,poly,1 or SF,poly,1 to train
the phoneme VMLPs and data from speakers of the sets SG,poly,2 or
SF,poly,2 as validation data. The speaker sets are described in Appendix
E.1.

2.3.4 Determination of Appropriate Structure and

Size of the VMLP

As pointed out in Section 2.2.1, it is necessary to optimize the structure
and the size of the VMLP. The network should be as small as possible
since training problems such as overfitting may arise (see for example
[Hay99]) if the training data is limited. The network size has also a
substantial impact on the speed of the recognizer.

We have investigated both, networks with one hidden layer and
networks with two hidden layers. Both network types were tested with
different sizes. For the networks with two hidden layers we chose the
size of the first hidden layer to be three times as big as the size of
the second hidden layer since the first hidden layer should not be too
small compared to the number of input neurons ([Lip87]). The tested
network sizes are shown in Table 2.1.

We evaluated the VMLPs by measuring the performance of DTW-
based recognizers which use a VMLP as a distance measure in a
speaker-dependent scenario for German (task 1) and for French (task 4)
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2 hidden layers 1 hidden layer
approx. number

size of size of size of
of parameters

hidden layer 1 hidden layer 2 hidden layer

1900 30 10 35
4400 60 20 82
7500 90 30 140
11300 120 40 209
15600 150 50 290
20500 180 60 381

Table 2.1: Tested network structures and sizes.

and in a cross-speaker scenario (tasks 2 and 5 for German and French,
respectively) as described in Appendix E.2. At the input were two fea-
ture vectors FeatnoCms as described in Appendix C.1. The recognition
results of the different network structures are shown as a function of
the number of parameters in Figure 2.2

The results showed that the two topologies with one and two hid-
den layers yielded similar results. The single-layer was slightly better,
especially with the bigger networks. Only for very small networks the
two-layer topology was a bit better.

The networks could also be quite small without the performance de-
grading too much. This allows to implement faster recognizers by min-
imizing the network size. A network with around 8000 tunable weights
was enough for this application.

2.3.5 Evaluation of Discriminative Methods

We then evaluated the performance of the VMLP and compared it to
alternative distance measures such as the posterior scalar product de-
scribed in Section 2.2.2 and to feature transformations such as phoneme
posteriors or linear discriminant analysis (LDA) as described in Section
2.1.2.

The results of the German and French tasks of the speaker-
dependent scenario (tasks 1 and 4) and of the cross-speaker scenario
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Figure 2.2: The influence of network structure and network size on the
recognition rate of speaker-dependent and cross-speaker template-based
IWR. The recognition rates of the architectures with two hidden layers
are in grey, the ones for architectures with one hidden layer in black.

(tasks 2 and 5) as described in Appendix E.2 are listed in Table 2.2.
We used features FeatnoCms as described in Appendix C.1 and a VMLP
with one hidden layer of 209 neurons. Perceptrons with one hidden layer
with 300 neurons were used to estimate the phoneme posteriors. Some
rare phonemes were not considered such that 38 phoneme posteriors
were used for German and 34 for French. As suggested in [HES00] the
softmax outputs of the perceptrons were logarithmized and transformed
with principal component analysis.

In the speaker-dependent scenario the recognition rates achieved
with feature transformations alone were higher than the recognition
rates achieved with the alternative distance measures. The VMLP was
however always better than the Euclidean distance with untransformed
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feature distance speaker-dependent cross-speaker
transf. measure German French German French

none Eucl. dist. 86.6 67.5 62.1 49.7
none VMLP 90.1 73.6 75.5 61.0
none post. scal. prod. 84.3 74.3 70.8 65.0
LDA Eucl. dist. 92.9 77.6 69.7 55.3
LDA VMLP 92.2 77.3 78.0 63.4

poster. Eucl. dist. 92.5 77.2 73.7 60.3
poster. VMLP 93.1 79.1 80.6 67.5

Table 2.2: Evaluation of different discriminative feature transfor-
mations and distances measures in a DTW recognizer. The recogni-
tion rates for the intra-language case in % are given for the speaker-
dependent and cross-speaker IWR scenarios both for German and
French.

features. This ranking was different for the cross-speaker scenario: here
the alternative distance measures were better than the feature trans-
formations. In all scenarios the best results were achieved if the VMLP
was used in combination with the phoneme posteriors. This suggests
that the VMLP is able to compensate a different sort of variability in
the data than the phoneme posteriors.

Cross-Language Performance

It is also important to evaluate how the feature transformations and
alternative distance measures behave in a different language since they
might not generalize for languages other than the language on which
the VMLPs, phoneme posteriors or the linear discriminant analyses
were trained. In Table 2.3 we give the results of the best performing
methods in the intra-language case for cross-language experiments. A
small drop of the recognition rate could be observed but the results
were still much better than the ones of a DTW recognizer which used
untransformed features and an Euclidean distance measure.
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feature distance speaker-dependent cross-speaker
transf. measure German French German French

none Eucl. dist. 86.6 67.5 62.1 49.7
none VMLP 90.5 72.5 75.6 59.7

poster. Eucl. dist. 92.5 75.9 72.1 58.0
poster. VMLP 92.9 76.9 79.2 63.9

Table 2.3: Evaluation of different discriminative feature transfor-
mations and distances measures in a DTW recognizer for the cross-
language case. The test languages are noted in the table and the trans-
formations and distance measures were always trained on the other lan-
guage. The recognition rates in % are given for the speaker-dependent
and cross-speaker IWR scenarios both for German and French.

2.4 Concluding Remarks

We have seen that using VMLPs as a distance measure in DTW-based
word recognition yields much better results than the Euclidean dis-
tance. The recognition rate could be further reduced if phoneme pos-
teriors were used as features instead of raw Mel-frequency cepstral co-
efficients.

To train a VMLP for the target language it is necessary to have
orthographic annotations of the training data. A good property of the
VMLP is that the recognition performance does not suffer very much
in the cross-language case. Therefore a VMLP trained on another lan-
guage can be used for languages with scarce resources.
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Chapter 3

Utterance-based Word

Recognition with Hidden

Markov Models

A suitable HMM structure for isolated word recognition (IWR) was
first suggested by [Vin71]. Each word in the vocabulary is modeled
with a word HMM λw, which is for example a linear HMM. These
word HMMs are connected in parallel to form the HMM λ which is
used for recognition. The word HMM λw through which the optimal
path as determined by a Viterbi decoder leads indicates the recognized
word.

The word models λw can be constructed in several ways:

• The parameters of the word HMMs can be estimated individually
as suggested by [Bak76] from a number of utterances of each
word. This approach would in principle be applicable for our task
of recognition with an utterance-based vocabulary. We have not
used it since every word has to be uttered quite often in order to
get reliable estimates of the parameters.
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• The word HMMs λw can be built by concatenating sub-word
unit HMMs. The recognition network then looks as shown in Fig-
ure 3.1. The training task is divided into the estimation of the
parameters of a set Φ of N sub-word HMMs ϕn, n = 1, . . . , N
and the determination of the sub-word unit sequences Z(w) =

z
(w)
1 z

(w)
2 . . . z

(w)

U(w) with z
(w)
u ∈ Φ, which compose each word w.

In transcription-based recognizers the sub-word unit HMMs cor-
respond to linguistic units such as phonemes which can be con-
catenated according to transcriptions given in a pronunciation
dictionary as first suggested in [Jel76]. In our case of recogni-
tion with an utterance-based dictionary the sequences of sub-word
units Z(w) are determined from sample utterance of the words.
This method was first suggested in [BBdSP88] and [BB93].
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Figure 3.1: A HMM λ which is used for word recognition. Each word

HMM λw is a sequence of sub-word units Z(w) = z
(w)
1 z

(w)
2 . . . z

(w)

U(w) with

z
(w)
u ∈ Φ.

In this chapter we investigate the factors which are crucial for a
well-performing isolated word recognizer with an utterance-based vo-
cabulary. The first factor – the way the word models are formed from
sub-word unit models – is described in Section 3.1. The second factor
– the sub-word units from which the word models are formed – is de-
scribed in Sections 3.3 to 3.5. Experiments to evaluate the developed
techniques are presented in Section 3.6.
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In this thesis we use an HMM-definition which is defined to have L

states. It starts in the non-emitting state S1 and then repeatedly tran-
sits with probability aij from a state Si to a state Sj while emitting
with probability bj(x) the observation x and finally transits with prob-
ability aiL from a state Si to the final non-emitting state SL. Therefore,
the HMM generates a sequence of T observations while visiting T times
an emitting state.

3.1 Determination of the Word Models

The determination of Z(w) from utterances of a word boils down to
the problem of finding the sequence of sub-word units which optimally
describes one or several utterances of that word. In order to determine
such a sequence we use a sub-word unit loop, which is a composite
HMM built by connecting all elementary HMMs ϕn, n = 1, . . . , N in
parallel with a feed-back loop. An equivalent to this fully connected
HMM is shown in Figure 3.2. This equivalent HMM uses two additional
non-emitting states to prevent a quadratic increase of the number of
possible state transitions with the number of sub-word units.

Especially if the elementary HMMs can be traversed while produc-
ing only one observation (e.g. if the elementary HMMs contain only
one emitting state) it is quite likely that the optimal path through the
HMM would entail a very long sequence of sub-word units Ẑ(w). It could
then happen that the word HMMs obtained from this Ẑ(w) cannot de-
scribe shorter utterances of the same word. Therefore we favor shorter
sequences Z(w) by penalizing transitions to a different sub-word unit
with a penalty H.

3.1.1 Building a Word Model from a Single Utter-

ance

If we have only one utterance per vocabulary word the optimal sequence
of sub-word units Z(w) of the composite HMM as described above can
be determined with the normal Viterbi algorithm.
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Figure 3.2: A sub-word loop with penalties H.

3.1.2 Building a Word Model from Several Utter-

ances

If we have several utterances available per word in the vocabulary we
are confronted with the problem of finding the sequence of sub-word
units which optimally describes all of these utterances. In this thesis
we have developed an algorithm to solve this problem which guaran-
tees to find the optimal sequence in a maximum-likelihood sense. The
algorithm solves this K-dimensional decoding problem by finding an op-
timal path through a (K+1)-dimensional trellis (one dimension for the
states and K dimensions for the frames of the K example utterances
of the word under investigation) with an extended Viterbi algorithm.
This algorithm is presented in Section 3.2.2.

Since the computational complexity of the exact extended Viterbi
algorithm is exponential with the number of utterances K we also devel-
oped an approximation of the extended Viterbi algorithm which starts
by finding the optimal sequence of sub-word units of two utterances and
then iteratively changes the resulting sequence by adding one utterance
after the other. For every utterance which is added an additional two-
dimensional Viterbi algorithm has to be performed. This algorithm is
presented in Section 3.2.4. The complexity of this approximate algo-
rithm is only linear with respect to K.
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3.2 Extended Viterbi Algorithm for Sev-

eral Observation Sequences

For the training of the abstract acoustic elements (cf. Section 3.5.3)
and to compose a word model from abstract acoustic elements given
several utterances of that word for a word recognizer (cf. Section 3.1)
we were confronted with the problem of finding a sequence of sub-word
units which optimally describes several observation sequences.

For a single utterance, the problem of finding the optimal (in terms
of maximum likelihood) sequence of sub-word models can easily be
solved by means of the Viterbi algorithm: The sub-word HMMs are
connected in parallel to form a sub-word loop and the optimal state
sequence Q̂ through the resulting HMM λ is evaluated. Then we can
derive the optimal sequence of sub-word units Ẑ from Q̂, which we
denote as: Ẑ = SWU(Q̂).

In contrast to this simple case, determining the sequence of sub-
word models, which maximizes the joint likelihood of several utter-
ances, leads to a non-trivial optimization problem. This problem can
be stated more formally as follows: Given a set of M sub-word HMMs
ϕ1, . . . , ϕM and K utterances of a word, designated as X(1), . . . ,X(K),
find the optimal sequence of sub-word units Ẑ, i.e. the sequence of
sub-word units with the highest probability to produce the utterances
X(1), . . . ,X(K).

Since the utterances X(1), . . . ,X(K) generally are not of equal
length, it is not possible to find a common state sequence for HMMs
as defined earlier in this chapter (page 45).

However, our aim is not to find the optimal common state sequence
for X(1), . . . ,X(K), but the optimal common sequence of sub-word units
Ẑ. We can formulate this optimization task more specifically as follows:
we look for the K state sequences Q(1), . . . , Q(K) that maximize the
product of the joint probabilities P (X(k), Q(k)|λ), k = 1, . . . ,K under
the condition that all state sequences correspond to the same sequence
of sub-word units. Note that λ still designates the sub-word loop men-
tioned above.



48 3 Utterance-based Word Recognition with Hidden Markov Models

Thus, the problem of finding the optimal sequence of sub-word units
Ẑ can be written as:

Ẑ = argmax
Z

K
∏

k=1

max
Q∈Q

(k)
Z

P (X(k), Q|λ) (3.1)

where Q
(k)
Z = {Q | SWU(Q)=Z and |Q|=Tk+2}.

Q
(k)
Z is the set of all state sequences that are consistent with Z and

include Tk emitting states (together with the start and end states the
sequences are of length Tk+2).

The remainder of this section is structured as follows: First an
overview of related solutions from the literature is given in Section 3.2.1.
In Section 3.2.2 we describe an exact solution to the problem which is
basically an extension of the Viterbi algorithm. An illustrative exam-
ple of the case for two observation sequences is given in Section 3.2.3.
In Section 3.2.4 we present an approximation of the Viterbi algorithm
which is computationally much less expensive. Qualitative examples of
the extended Viterbi are given in Appendix B.

3.2.1 Related Work

There are several approaches to determine the optimal sequence of sub-
word units for several utterances. Most of these approaches are based
on heuristics and can be roughly divided into two categories. A first
category of approaches is based on generating sequences of sub-word
units for each utterance and choosing the one which best matches the
complete set of utterances. The simplest variant of this category is to
find the best sequence of sub-word units for every utterance in isolation
and choose the one which best describes the whole set of utterances.
The problem with this approach is that the globally optimal sequence
of sub-word units is often not among the candidates. A solution to this
problem was suggested in [MJ99]. This solution employs the method
described in [SH90] to generate the n best sequences of sub-word units
for every utterance and chooses the best candidate from this extended
set of utterances. This increases the probability to find the optimal
sequence of sub-word units but cannot guarantee to find it.
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The other category of approaches is based on A∗ tree search. In
[BB93] a method was described which chooses the best node to be
evaluated next in the tree search using a heuristically determined esti-
mate of the likelihood for the remainder of the optimal path through
that node. This approach finds the optimal solution only if this like-
lihood is overestimated. Then, however, the tree-search algorithm is
likely to be intractable. An improvement to this algorithm was pre-
sented in [SSP95]. Here the normal forward pass of Viterbi search is
executed individually for each signal and the likelihoods are stored for
all utterance-state-frame triples. The tree search is then performed in
a backward pass, while a better estimate of the continuation likelihood
of the backward path can be computed based on the stored likelihoods
from the forward pass. Since this estimate is based on the forward
scores of the individual paths it is still an over-estimate as it is argued
in [WG99]. Finding the optimal path is therefore still based on heuris-
tics. An approach which uses breadth-first tree-search was presented
in [BN01]. This approach does not guarantee optimality either since it
requires strong pruning.

3.2.2 Extension of the Viterbi Algorithm

The standard Viterbi algorithm is used to solve the decoding problem,
i.e. to determine for an observation sequence X = x1x2 . . .xT and a
given HMM λ with states S1, S2, . . . , SN (S1 and SN being the non-

emitting start and end states) the optimal sequence of states Q̂ =
S1q̂1q̂2 . . . q̂T SN . With the principle of dynamic programming, the joint
probability of the partial observation sequence Xt = x1x2 . . .xt and
the optimal partial state sequence Q̂t = S1q̂1q̂2 . . . q̂t that ends in state
Sj at time t

δt(j) = max
all Qt with qt=S

j

P (Xt, Qt|λ) (3.2)

can be computed recursively with

δt(j) = max
1<i<N

δt−1(i) aij bj(xt). (3.3)
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δT(N) is the probability P (X, Q̂|λ). In order to find Q̂ the optimal
precursor state has to be stored for each time and state tuple:

Ψt(j) = argmax
1<i<N

δt−1(i) aij . (3.4)

The optimal state sequence Q̂ can then be determined recursively, start-
ing at the end. Q̂ can be visualized as a path through a two-dimensional
trellis spanned by the observations and the states.

Now we extend the Viterbi algorithm such that it finds the optimal
sequence of sub-word units Ẑ for K observation sequences, as defined
by equation (3.1). The corresponding trellis has K+1 dimensions and
the path through this trellis has to meet the two following conditions:

1. The path has to proceed in every step by zero or one in every
observation sequence (i.e. in all of the K temporal dimensions in
the trellis) but has to proceed in at least one observation sequence.

2. A path Q through the trellis is valid if this path and its projec-
tions Q(k) meet the condition: SWU(Q) = SWU(Q(k)) = Z. This
condition is obviously met if each transition between states that
do not belong to the same sub-word model, advances a time step
in all observation sequences.

The mathematical formulation of our extension to the Viterbi algo-
rithm is as follows: The joint probability of the partial observation

sequences X
(1)
t1

,X
(2)
t2

, . . . ,X
(K)
tK

and the optimal partial state sequences

Q̂
(1)
t1

, Q̂
(2)
t2

, . . . , Q̂
(K)
tK

with q
(1)
t1

= q
(2)
t2

= · · · = q
(K)
tK

= Sj is defined in
equation (3.5). Of course, the optimal partial state sequences have to
meet the condition that the corresponding sequences of sub-word units
are identical.

Probability δt1,...,tK
(j) can be computed recursively for all points

in the trellis with equation (3.6). Note that all partial paths that vi-
olate the above conditions are excluded, i.e. they get probability 0.
For backtracking the best path we have to save the optimal precur-
sor state i like in the one-dimensional Viterbi algorithm. Additionally
we need the time vector (c1, c2, . . . , cK) which points from the current
time point to the precursor time point. All these values are represented
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δt1,...,tK
(j) = max

all Q
(1)
t1

,...,Q
(K)
tK

with

(

SWU(Q
(1)
t1

)=···=SWU(Q
(K)
tK

)

q
(1)
t1

=···=q
(K)
tK

=Sj

P (X
(1)
t1

, . . . ,X
(K)
tK

, Q
(1)
t1

, . . . , Q
(K)
tK

|λ) (3.5)

δt1,...,tK
(j) = max

(c1,...,cK ,i)

with

(

1<i<N
ck∈{0,1}
P

ck>0

{

δt1−c1,...,tK−cK
(i) a

P

ck

ij bj(x
(1)
t1

)c1 . . . bj(x
(K)
tK

)cK if (
∑

ck = K) or g(i, j)

0 otherwise
(3.6)

Ψt1,...,tK
(j) = argmax

(c1,...,cK ,i)

with

(

1<i<N
ck∈{0,1}
P

ck>0

{

δt1−c1,...,tK−cK
(i) a

P

ck

ij bj(x
(1)
t1

)c1 . . . bj(x
(K)
tK

)cK if (
∑

ck = K) or g(i, j)

0 otherwise
(3.7)

where g(i, j) =

{

true if SWU(Si)=SWU(Sj)
false otherwise



52 3 Utterance-based Word Recognition with Hidden Markov Models

as a (K+1)-dimensional vector Ψt1,t2,...,tK
(j) = (c1, c2, . . . , cK , i). This

vector is determined for each point of the trellis with equation (3.7).

Let’s give some additional explanations to equations (3.6) and (3.7):
With

∑

ck > 0 the first condition is met. In order to satisfy the second
condition, transitions from one sub-word unit to a another one are al-
lowed only if

∑

ck = K. Otherwise the sub-word unit must not change,
i.e. SWU(Si) has to be equal to SWU(Sj). By using ck as an exponent

in bj(x
(k)
tk

)ck , the probability of an observation x
(k)
tk

is multiplied to the
total path probability if and only if the path proceeds by one observa-

tion in dimension k. With a
P

ck

ij also the transition probability aij is
multiplied to the total path probability for each observation sequence
in which the path proceeds by one.

The recursion of the algorithm is initialized with

δ1,1,...,1(j) = aK
1j

K
∏

k=1

bj(x
(k)
1 ) (3.8)

and terminated with

δT1,...,TK
(N) = max

1<i<N
[δT1,...,TK

(i)aK
iN ] (3.9)

ΨT1,...,TK
(N) = argmax

1<i<N

[δT1,...,TK
(i)aK

iN ] (3.10)

Note that the c1, . . . , cK in ΨT1,...,TK
(N) are not defined by equation

(3.10). They are implicitly defined as zero, since the end of all obser-
vation sequences has been reached. The optimal path Q̂ through the
trellis and thus the optimal sequence of sub-word units Ẑ can now be
found by backtracking.

The resulting sequence of sub-word HMMs is guaranteed to be the
optimal one, because all allowed paths through the corresponding mul-
tidimensional trellis are considered.

3.2.3 Illustrative Example

This is a simple example which illustrates the extended Viterbi algo-
rithm for a case with two observation sequences. Given are two obser-
vation sequences X(1) = 01 0 1 1 and X(2) = 00 0 1. The HMM has
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four states: the non-emitting start and end states S1 and S4 and two
emitting states S2 and S3, which have discrete observation probabili-
ties b2(0) = 0.9, b2(1) = 0.1, b3(0) = 0.2 and b3(1) = 0.8. The non-zero
transition probabilities are a1,2 = a1,3 = 1

2 and a2,2 = a2,3 = a2,4 =
a3,2 = a3,3 = a3,4 = 1

3 .

The three-dimensional trellis is illustrated in Figure 3.3. For all
time points the two emitting states are shown as cubes. Printed on
every cube are the partial log probabilities δ, the precursor state i and
the vector c pointing to the selected precursor time point. The states
on the optimal path Q̂ are printed in grey.
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Figure 3.3: Trellis of a 2-dimensional Viterbi example

From this optimal path the optimal sequence of sub-word units Ẑ

is found to be S1S2S3S4. For observation sequence X(1) the resulting
state sequence is Q̂(1) = S1S2S2S2S3S3S4 and for X(2) it is Q̂(2) =
S1S2S2S2S3S4.

It can be seen that the found path conforms to the used constraints;
a state change only takes place on the transition from times (3,3) to
(4,4), i.e. if the path proceeds on both time axes.

An example where the effect of the second constraint can be ob-
served is (S3,4,2). Without the constraints the preceding state would
have been (S2,3,2) rather than (S3,3,2) because of the higher log like-
lihood of S2. A state transition on the temporal transition from (3,2)
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to (4,2) is however not allowed since the path proceeds only in one
temporal dimension.

3.2.4 Approximation of the Extended Viterbi Algo-

rithm

In the approximation to the K-dimensional Viterbi algorithm we do
not compute the optimal sequence of sub-word units at once (i.e. with
one forward and one backward pass). Rather we first perform a two-
dimensional Viterbi with any two of the K observation sequences X(1)

and X(2). From the optimal sequence of this two-dimensional Viterbi
we build a virtual observation sequence X̃(2) which represents the two
observation sequences which were processed. With this virtual observa-
tion sequence X̃(2) and another observation sequence X(3) we perform a
further two-dimensional Viterbi which yields again a new virtual obser-
vation sequence X̃(3), which now represents the three already processed
observation sequences. We proceed in this manner until all of the K

observation sequences are included in the virtual observation sequence.
The desired sequence of sub-word units is then the optimal sequence of
sub-word units for this last virtual observation sequence X̃(K). Thus we
perform rather K−1 Viterbi algorithms for two observation sequences
than one Viterbi algorithm for K observation sequences. We now need
to describe how observation sequences are aligned and how two aligned
observation sequences are merged.

Alignment of Two Observation Sequences

From the two-dimensional Viterbi algorithm we get the optimal se-
quence of sub-word units and the corresponding alignment of the pre-
vious virtual observation sequence X̃(k−1) and the newly added ob-
servation sequence X(k). From the alignment of X̃(k−1) and X(k) we
determine the new virtual observation sequence X̃(k).

From the two-dimensional Viterbi we get the alignment as a se-
quence of sub-word units with the assigned observations from both ob-
servation sequences. This situation is depicted in Figure 3.4 b) where
observations of the two sequences assigned to the same sub-word unit
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are printed in the same color. Within all observed sub-word units we
need to align the sequence of observations which were assigned from
X̃(k−1) with those observations assigned from X(k). Since the observa-
tions within a sub-word unit are supposed to be similar we argue that
a linear alignment within a sub-word unit is enough.

The question which arises is how exactly this linear alignment
should be performed and in particular how long the part of the new
virtual sequence X̃(k) which corresponds to an observed sub-word unit
should be. In experiments which are not shown in this thesis we have
seen that a good length of the full new virtual observation sequence
X̃(k) is chosen such that it is as long as the average length of the obser-
vation sequences contributing to the the virtual observation sequence.
Therefore we calculate the length of each part of X̃(k) corresponding
to an observed sub-word unit with

T̃k = round

(

T̃k−1 ∗ (k − 1) + Tk

k

)

(3.11)

where T̃k−1 is the remaining time of X̃(k−1) within a given state, Tk

the remaining time of X(k) in that state and T̃k the length of the
corresponding part on the new virtual observation sequence.

This implies that some parts of the observations sequences X̃(k−1)

and X(k) have to shrink and others have to dilate. We implemented the
dilation by inserting some of the observations more than once. In Figure
3.4 c) this dilation is shown as two identical observations separated with
a dashed line. Shrinking is implemented by using the average of two or
more observations at one time index of the virtual observation sequence.
In the illustration this is depicted with a horizontal bar separating two
observations at one time index of the new virtual observation sequence.

Merging of Aligned Observation Sequences

We will now explain how two aligned observation sequences are merged.
Merging of observation sequences would get complicated especially if
one observation sequence is a virtual observation sequence and is there-
fore composed of several individual observation sequences.
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Figure 3.4: Illustration of the merging process in the approximate K-
dimensional Viterbi algorithm.

In the core of the Viterbi algorithm we do however not need the
observation sequences themselves. We rather need for every state Sn a
sequence Ln which gives for every observation the log likelihood that it
was produced by state Sn. We can therefore perform the merging op-
erations analogously on all log likelihood sequences Ln, n = 1, . . . , N .
Merging of two aligned observation sequences thus leads to an addition
of the log likelihoods in the sequences Ln.

From this process it can also be seen that the average log likelihood
of subsequent virtual observation sequences gets smaller with the num-
ber of added observation sequences. This has the desired effect that the
virtual observation sequence has the bigger influence than an individual
observation sequence in the two-dimensional Viterbi algorithm.

This approximation of the Viterbi algorithm is computationally
much less costly. The exact K-dimensional Viterbi algorithm has a
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complexity of O(TK) for K signals, whereas the complexity of the
approximate algorithm is only O(K ∗ T 2). T is the geometric mean of
the sequence lengths.

The way observations sequences are dilated or shrunk leads to a
slightly different objective as the one of the exact algorithm. Whereas
in the exact algorithm the weight of an observation sequence is propor-
tional to the number of observations in the sequence, each observation
sequence has the same weight in the approximate algorithm. This could
be changed by using a different strategy of observation weighting. We
have seen however, that this would lead to slightly worse results for our
tasks.

3.3 Appropriate Sub-Word Units

In order to build a speech recognizer with an utterance-based vocab-
ulary which is based on HMMs we need suitable sub-word units, i.e.
sub-word units which can be concatenated to model speech utterances
in any language. The sub-word units should therefore fulfill the follow-
ing requirements:

1. Each sub-word unit should only model the acoustics of a quasi-
stationary segment of speech – an acoustic sub-space – but no
temporal patterns because temporal patterns can be modeled by
the concatenation of sub-word units.

2. The acoustic sub-space covered by a sub-word unit should be
small enough and it should be positioned in a way that all acoustic
vectors located in this sub-space are perceived as phonetically
very similar.

3. The acoustic sub-spaces should be large enough to cover the vari-
ability of the same phoneme being produced by different speakers
and transmitted over different channels.

4. All sub-word units together should cover the whole part of the
acoustic space which occurs in the languages for which the sub-
word units are used.
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3.3.1 Phonemes

In transcription-based recognizers phonemes are used as sub-word
units. There the choice is given because the pronunciation dictionaries
specify the pronunciation in phonemes. Phonemes, which are nowadays
usually modeled with a linear HMM with three emitting states, cover
segments which are not necessarily quasi-stationary. Therefore they do
not meet the first requirement.

Phonemes have further disadvantages as sub-word units for
utterance-derived word models. The optimal number of states may vary
between the phonemes since some phonemes such as plosives are likely
to have more different phases than others. Another issue is that for ex-
ample begin or end phases of different phonemes might be modeled by
the same statistical model because they have similar acoustic proper-
ties. This is not possible with phoneme models unless techniques such
as enhanced tree clustering ([YS03]), which is an extension of tree-
based state tying ([You94]), is used. Furthermore the optimal mapping
of states to phoneme models may not always be the same for each
speaker, an issue which is tackled with pronunciation variants or a
more flexible phoneme to model mapping as for example described in
[HW99].

Further considerations go in the direction of language independence.
It was observed in [WTK98] that monophones perform better than tri-
phones if they are used in a cross-language scenario. In [SW00] it was
shown that monophones cover foreign languages on average better than
triphones. In [Byr00] experiments with model-mapping to foreign lan-
guages showed that a mapping at the state-level performed better than
a mapping at the phoneme level. These results suggest that the fourth
requirement is easier to satisfy for a language-independent system if
the sub-word unit models have only one state and no context.

3.3.2 Abstract Sub-Word Units

The use of abstract, data-driven sub-word units was motivated by the
fact that phoneme models did not meet the requirements. Some ap-
proaches to abstract acoustic elements have been described in the lit-
erature.
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A simple approach is to use the codebook classes, which are for
example used in discrete-density HMMs, as acoustic units. We have
not performed experiments with this approach because poor results
have been reported for recognizers based on discrete-density HMMs in
[Rab89] and [Har01]. An alternative presented in [HO99] is based on
the information-theoretic approach of multigrams introduced in [DB95].
This approach yielded good results in a language identification task. In
[EP06] abstract acoustic elements are based on quasi-stationary seg-
ments of the speech signal.

We have chosen abstract acoustic elements as described in [BB93],
there called fenones, as a basis for this work. There they have how-
ever only been used for discrete-density HMMs. A fenone-variant called
senone for continuous-density HMMs was presented in [HH92]. Some
further suggestions for the training of abstract acoustic elements are
given in [Jel98].

In this thesis we have further developed these ideas and defined
abstract acoustic elements that satisfy all requirements given above.

3.4 Abstract Acoustic Elements

We now have to find a way to create a suitable set of abstract acoustic
elements A. This means that an appropriate structure for the elemen-
tary HMMs ϕn which model the abstract acoustic elements has to be
defined and a method to train their parameters has to be found. The
structure of the elementary HMMs will be defined in Section 3.4.1. Be-
fore describing the training of abstract acoustic elements we will look
at the training of phonemes in Section 3.4.2 because there is much more
knowledge available to train phonemes than to train abstract acoustic
elements. Based on this we will then formulate a training scheme for
abstract acoustic elements in Section 3.4.3.

3.4.1 Structure of Abstract Acoustic Elements

According to the first requirement an abstract acoustic element should
not define temporal properties since it covers a quasi-stationary seg-
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ment of a speech signal. Therefore the elementary HMM ϕn which
describes an abstract acoustic element An is composed of only one
emitting state and has fixed transition probabilities (a22 = a23 = 0.5,
a12 = 1), resulting in the structure shown in Figure 3.5. Each ϕn, n =
1 . . . , N is thus defined only through the probability density function
bn(x), which is used to calculate the observation likelihood of an ob-
servation x, given the abstract acoustic element An.

From now on we will refer to the abstract acoustic element An with
the elementary HMM ϕn which is used to model it and to a set of
abstract acoustic elements A with the set of elementary HMMs Φ.

S
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S
2

S
3

a
12

a
23

a
22

b
n
(x)

Figure 3.5: Structure of an HMM ϕn, which is used to model an ab-
stract acoustic element. The only emitting state S2 is printed in grey.
The production likelihood bn(x) of an observation x is defined with a
GMM.

bn(x) is defined with a Gaussian mixture model (GMM) which has
the form

bn(x) =

M
∑

m=1

cnm N (x,µnm,Σnm), (3.12)

where cnm, µnm, and Σnm are the weights, the mean vectors and the
covariance matrices of the M mixture components, respectively. Since
the features used in the experiments (see Appendix C.1) are supposed
not to be very much correlated, we use diagonal covariance matrices
Σnm.
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3.4.2 Training of Phonemes as a Starting Point

Before explaining the training of abstract acoustic elements we outline
the training mechanisms which are normally used to build phoneme
models. The set of elementary HMMs Φ = {ϕ1, . . . , ϕN} models the
phonemic alphabet. The elementary HMMs are nowadays usually linear
HMMs with three emitting states.

Usually the sequence of phonemes which was spoken in an utterance
(i.e. a training utterance) is known through orthographic annotations
and a pronunciation dictionary. Therefore a composite HMM λk can
be built for every training utterance X(k).

The optimization criterion which is normally used to determine the
parameters of elementary HMMs ϕn ∈ Φ, is the maximization of the
likelihood for K observation sequences X = {X(1), . . . ,X(K)}:

P (X|Φ) =

K
∏

k=1

P (X(k)|λk) (3.13)

There is no analytical solution to solve this optimization problem. With
the Baum-Welch algorithm ([Bau70]) there is however a method to
iteratively determine the optimal parameters.

An alternative method to find the set of parameters is the segmental
k-means algorithm (see [Rab86],[JR90]), which is also known as Viterbi
training. Here the objective is to maximize the joint probability of the
set of observation sequences X and the set of optimal state sequences
Q̂ = {Q̂(1), . . . , Q̂(K)}:

P (X , Q̂|Φ) =
K
∏

k=1

P (X(k), Q̂(k)|λk) (3.14)

This training method is based on two steps. In the first step the opti-
mal state sequences Q̂(k) are determined for each observation sequence
X(k). For continuous-density HMMs like in our case also the optimal
sequence of used mixture components Ĝ(k) (the sequence which indi-
cates for every chosen state on X(k) the best mixture component) has
to be determined. With this first step an unambiguous assignment of
observations to mixture components in the HMM states is performed.
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In the second step the statistics can be computed for all mixture com-
ponents individually and the parameters can be updated. Also the new
estimate of the transition probabilities can be computed from the align-
ment determined in the first step.

In [JR90] it was shown that the production likelihood of the training
data for a set of phoneme models Φ in a given iteration is at least
as hight as the likelihood in the previous iteration. Furthermore in
[ME91] it was both theoretically and experimentally shown that Viterbi
training leads to similar results as Baum-Welch training for the typical
settings in speech recognition.

Difference to the Training of Abstract Acoustic Elements

In the phoneme training the classes into which the acoustic space has to
be partitioned are known prior to model training. The training proce-
dure thus has to align the observation sequences X(k) appropriately to
the corresponding composite HMMs λk and estimate the parameters.

In the case of abstract acoustic elements the training is more com-
plicated since the classes into which the acoustic space is divided are
not known in advance but have to be estimated together with the model
parameters.

3.4.3 Training Procedure of Abstract Acoustic El-

ements

To determines the parameters cnm, µnm, and Σnm for all elements
n and mixture components m we use an iterative training procedure.
The procedure alternates between the assignment of all feature vec-
tors to the states of the abstract acoustic elements and the parameter
reestimation. The assignment is defined by means of state sequences
Q̃ = {Q̃(1), . . . , Q̃(K)} for all utterances X(1),. . . ,X(K). How the state
sequences Q̃ are determined will be described later. The parameters
are reestimated by maximizing the joint probability of the observation
sequences and the given state sequences P (X , Q̃|Φ). This criterion is
quite similar to the criterion in equation (3.14) used in Viterbi training,
but Q̃ is used instead of Q̂.
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The training of abstract acoustic elements follows a training flow
as shown in Figure 3.6. It consists of three loops. In the innermost
loop the parameters are reestimated while Q̃ is not changed. In the
next outer loop Q̃ is redetermined. In the outermost loop the number
of mixtures components is increased. This loop starts directly with a
reestimation of the parameters since a determination of Q̃ does not
make sense directly after splitting the mixture components.

determine Q
~

reestimation

split mixtures

# reest.
< R

1

# mixtures 
< M

Initial Ф

Final Ф

yes

yes

no

nono

# reest.
< R

2

yes

no

Figure 3.6: Flow chart of the training process of abstract acoustic
elements.
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The parameters of the abstract acoustic elements are therefore de-
termined through the parameters of this training flow. The main dif-
ference between different abstract acoustic elements types results from
the way Q̃ is determined. Furthermore the following parameters have
to be defined:

initial Φ the set of initial elementary HMMs

R1 the number of reestimations which is per-
formed without changing Q̃

R2 the number of redeterminations of Q̃ for a
given number of mixture components

M the final number of mixture components in
each abstract acoustic element

How the initial models are constructed will be described in Section
3.4.4. The reestimation of the parameters will be described in Section
3.4.5. Different abstract acoustic element types and their method to
choose Q̃ are presented in Section 3.5.

3.4.4 Initial Models

The initial models are determined with a clustering of the acoustic
space. The whole acoustic space is partitioned in as many clusters as
abstract acoustic elements are desired.

Clustering algorithms are used in the construction of vector quan-
tizers. There a codebook vector is used to represent a cluster of vectors.
The vector quantizer assigns an input vector to the cluster whose code-
book vector is closest. In the domain of speech, vector quantization is
used for speech coding (see for example [MRG85]) or for HMMs with
discrete-valued observation sequences ([RLS83]). Given a set of train-
ing vectors, the clustering algorithms aim at choosing the codebook
vectors such that the distortion within each cluster (i.e. the distortion
of all training vectors which are assigned to a codebook vector) is mini-
mized. A very popular algorithm is the Linde-Buzo-Gray or short LBG
algorithm, which was introduced in [LBG80].
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Using the LBG algorithm with the squared-error distortion measure
d we partition the acoustic space into the number of desired abstract
acoustic elements N . A GMM with a single Gaussian is then taken as
initial model for each abstract acoustic element ϕn. Mean and variance
of the Gaussian are determined from the observation vectors which were
assigned to codebook vector zn.

3.4.5 Parameter Reestimation

All methods to train abstract acoustic elements, which will be described
in Section 3.5, use the same way to update the model parameters ac-
cording to the collected statistics. The algorithms described in Section

3.5 assign each frame x
(k)
t to a state. This state is given with q̃

(k)
t .

Since these algorithms do not determine the mixture component within
each state, always the most likely mixture component is taken like in
the Viterbi training of phonemes. This mixture component is therefore

termed ĝ
(k)
t .

Similar to Viterbi training of phonemes (see for example [PK08]),
the following auxiliary variables are defined for all observation se-
quences k, times t, states Sn and mixture components m:

γ
(k)
t (n) =

{

1 if q̃
(k)
t =Sn,

0 otherwise ,
(3.15)

ζ
(k)
t (n,m) =

{

1 if q̃
(k)
t =Sn and ĝ

(k)
t =m,

0 otherwise .
(3.16)
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The new parameters can then be reestimated in every iteration with
the following formulas:

c̃nm =

K
∑

k=1

Tk
∑

t=1

ζ
(k)
t (n,m)

K
∑

k=1

Tk
∑

t=1

γ
(k)
t (n)

(3.17)

µ̃nm =

K
∑

k=1

Tk
∑

t=1

ζ
(k)
t (n,m)x

(k)
t

K
∑

k=1

Tk
∑

t=1

ζ
(k)
t (n,m)

(3.18)

Σ̃nm =

K
∑

k=1

Tk
∑

t=1

ζ
(k)
t (n,m)(x

(k)
t − µ̃nm)(x

(k)
t − µ̃nm)t

K
∑

k=1

Tk
∑

t=1

ζ
(k)
t (n,m)

(3.19)

3.5 Abstract Acoustic Element Types

In this section we present three different types of abstract acoustic
elements. The training protocol of all types corresponds to the training
flow shown in Section 3.4.3, but differs in the way Q̃ is determined.

The first two types of abstract acoustic elements do not require any
annotation of the training data. The last type presented in Section 3.5.3
requires orthographic annotations.

3.5.1 Purely Acoustic Clustering Based on the LBG

Algorithm

The first approach to the construction of a set of abstract acoustic
elements is purely acoustical and therefore completely unsupervised.
The idea of this approach is to keep the acoustic clustering which was



3.5 Abstract Acoustic Element Types 67

done during the model initialization explained in Section 3.4.4 for the
whole training process. Each cluster is modeled with a GMM.

Using the terminology introduced in Section 3.4.3 the elements of
the sequences Q̃(k) are determined as follows:

n̂ = argmin
1≤n≤N

d(x
(k)
t , zn) (3.20)

q̃
(k)
t = ϕn̂ (3.21)

The parameter R2 is in this case 1 and therefore Q̃ will never change
during the process. This also means that the GMM for each cluster and
therefore for each abstract acoustic element is modeled independently
of the other clusters.

3.5.2 Acoustic Clustering Optimized for GMMs

The approach described in Section 3.5.1 has the drawback that the
shapes of the clusters are still restricted to the shape which was given
by the Voronoi tessellation determined by the codebook vectors even
though GMMs are capable to model more complex distributions. The
approach presented in this section allows the clustering of the acoustic
space to change with the increased modeling flexibility of the GMM if
the number of mixture components is increased.

The state sequences Q̃ which determine the assignment of observa-
tions to abstract acoustic elements are in this case for every observation
sequence X(k) determined like in Viterbi training as the optimal state
sequence Q̂(k) which can be determined with the Viterbi algorithm:

Q̃(k) = Q̂(k) = argmax
Q(k)

P (Q(k),X(k)|λ) (3.22)

The composite HMM λ is here an abstract acoustic element loop com-
posed of the elementary HMMs ϕn, n = 1, . . . , N which describe the
abstract acoustic elements. Note that in contrast to the usual training
of phonemes summarized in Section 3.4.2 this composite HMM λ is the
same for all training utterances.

The state sequences Q̃ are periodically updated. Therefore the clus-
ters can gradually adapt to the modeling capability of GMMs which



68 3 Utterance-based Word Recognition with Hidden Markov Models

grows with the number of mixture components used to model each
abstract acoustic element.

There is no analytically proven guarantee that this training proce-
dure, nor any of the ones described in Section 3.5.3 will converge to a
good clustering of the acoustic space. That the clustering is reasonable
has to be shown experimentally.

Favor Longer Sequences of the Same Element

Speech is often considered as a quasi-stationary process since the vocal
tract of a speaker does not make arbitrarily fast movements. There-
fore the properties of the signal are usually considered as stationary
within a speech frame. We also expect consecutive frames to be simi-
lar. With some modification to the approach presented in this section
we aim at making the abstract acoustic elements less sensitive to small
fluctuations of the features. In other words the decoder which uses the
abstract acoustic elements should remain as long as possible in one
abstract acoustic element.

In order to achieve this we use again an abstract acoustic element
loop λ but impose a fixed additional penalty H on all transitions leading
to a different abstract element. Such an HMM was shown in Figure 3.2.
With this additional penalty in the HMM the state sequences Q̃ are
also determined according to equation (3.22).

3.5.3 Use of Orthographic Annotations

All previously described approaches did not use any annotation of the
training data. It is interesting to evaluate whether knowledge of the
content of the training material may be used to create better abstract
acoustic elements.

In [Jel98] a method is proposed, which assumes that it is known for
every training utterance, which word it contains. All training utterances
containing the same word are then supposed to be described by the
same sequence of abstract acoustic elements. We developed an approach
similar to the one presented in [Jel98], with modifications necessary
mainly since the HMMs used in [Jel98] allow non-emitting transitions.
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The K training utterances are therefore distributed into groups ac-
cording to the word which they contain. Therefore we have as many
groups W as we have words in the training material and each group
contains the utterances which contain the corresponding word. Here we
describe every group with the set of Vw, w = 1 . . . ,W of utterance in-
dices which contain the word w. Now the sequence of abstract acoustic
elements Ẑ(w) which produces the observation sequences X(k), k ∈ Vw

with highest probability has to be computed for every word w. In Sec-
tion 3.2 this optimization problem and its solution are described. Now
a linear HMM λw can be built by concatenating elementary HMMs
ϕn ∈ Φ in the same order as they occur in Ẑ(w) for every word. The
state sequence Q̃(k) can then be determined for every training utter-
ance:

Q̃(k) = argmax
Q(k)

P (Q(k),X(k)|λw) (3.23)

This equation is almost identical to equation (3.22), but the λw is
specific for the word the training utterance k belongs to.

3.6 Experiments

3.6.1 Used Training Parameters and Training Data

The parameters introduced in Section 3.4.3 to control the training pro-
cess were as follows: R1 was 8 and R2 was 4 for all abstract acoustic
elements with the exception of the abstract acoustic elements described
in 3.5.1. Here R1 was 32 and R2 was 1. We have empirically chosen these
parameters in a way that the average log likelihood per frame on the
training data did not increase further when more iterations were used.

All sub-word units used in this thesis were trained on data of speak-
ers of the speaker set SG,poly,1 for German and SF,poly,1 for French.
These speaker sets are disjoint from the speaker sets SG,poly,3 and
SF,poly,3 which were used in the test tasks.
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3.6.2 Comparison of Different Sub-Word Units

In Section 3.5 we have presented different methods to train abstract
acoustic elements. In this section we evaluate the performance of the
abstract acoustic elements generated by the described methods. In all
experiments we kept the used number of elements N at 128 and the
number of mixture components per element M at 16. These numbers
yield about the same number of trainable parameters as for the training
of phonemes. The influence of these parameters will be described in
Section 3.6.5. We used the features FeatnoCms as described in Appendix
C.1.

In Table 3.1 we show the results for the German and the French
ten-word IWR task in a speaker-dependent scenario (tasks 1 and 4). In
these experiment we used only one utterance to construct each word
HMM λw. ALBG are the elements which perform the clustering only
with the LBG algorithm as described in Section 3.5.1. The elements
AFree are elements trained with the unsupervised clustering described
in Section 3.5.2. Here we subtracted a log-likelihood of 2 as a penalty
on transitions to other elements. Orthographic annotations were neces-
sary to train the elements AWordConstrain as described in Section 3.5.3.
Additionally we also evaluated phonemes as described in Appendix D.

The ranking of the systems was the same for both languages even
though the recognition rates were considerably lower for the French
test tasks. The reason is most probably the shorter average dura-
tion of the French words. The abstract acoustic elements ALBG had
by far the worst performance. This clearly showed that a clustering
based only on the LBG algorithm is not sufficient. The abstract acous-
tic elements AFree already yielded much better results but were still
worse than phonemes. They were however still interesting since they
require no annotation of the training data. The abstract acoustic el-
ements AWordConstrain showed the best performance, also better than
phonemes.
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sub-word unit type German French

ALBG 65.3 % 55.7 %
AFree 85.7 % 71.6 %

AWordConstrain 93.3 % 86.6 %
phonemes 90.9 % 84.8 %

Table 3.1: Recognition rates for different sub-word unit types in a
speaker-dependent scenario. All tests were performed with sub-word
models of the target language.

3.6.3 Language-Independence of Abstract Acoustic

Elements

In contrast to training of phoneme models there is no pronunciation
dictionary necessary to train abstract acoustic elements for a given
language or dialect. If abstract acoustic elements have to be trained
for the target language it is however still necessary to have acoustic
training data of this language and for abstract acoustic elements of type
AWordConstrain additionally orthographic annotations are necessary.

It would therefore be desirable to use abstract acoustic elements for
a cross-language scenario, i.e. that abstract acoustic elements which
were trained on one or several languages could be used in a recognizer
of a language not used for the training.

Therefore we evaluated which sub-word unit type is most appropri-
ate to be used in a cross-language scenario. We tested phonemes, ab-
stract acoustic elements of type AWordConstrain and abstract acoustic
elements of type AFree in the German and French tasks of a speaker-
dependent scenario (tasks 1 and 4). The results are given in Table 3.2.
Intra-language means that tests were performed with sub-word mod-
els of the same language. Cross-language means that French sub-word
models were used in the German test task and vice versa. The rela-
tive increase of the error rate when switching from language-dependent
models to cross-language models is shown in Table 3.3.

The first fact to notice is that the decrease in performance if mod-
els from the other language are used was much higher for the French
test task than for the German test task. For the German test task the
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German French
sub-word

intra- cross- intra- cross-
unit type

language language language language

AFree 85.7 % 85.0 % 71.6 % 65.7 %
AWordConstrain 93.3 % 91.5 % 86.6 % 76.3 %

phonemes 90.9 % 86.0 % 84.8 % 71.5 %

Table 3.2: Recognition rates for different sub-word unit types in
a speaker-dependent scenario. Results for intra-language and cross-
language tests are given.

average relative increase of the error rate was only 4.9 % whereas it
was 20.1 % for the French task. This indicates that the German lan-
guage was much better covered by the French models than the other
way round. At the first glance this is astonishing since the German
phoneme-based recognizer had 47 phoneme models whereas the French
recognizer had only 40. If we look closer at the German phoneme mod-
els we see that there are a lot of diphthongs and affricates which may
be substituted by two phoneme models (e.g. [a<u] or [t<s]). Furthermore
there are a lot of vowel-phoneme models which occur in a long and a
short version (e.g. [u] and [u:]). On the other side French has a lot of
nasals which do not occur in German.

sub-word unit type German French average

AFree 4.9 % 20.1 % 12.5 %
AWordConstrain 26.9 % 76.9 % 51.9 %

phonemes 53.9% 87.5 % 70.7 %

average 28.7 % 61.5 % 45.0 %

Table 3.3: Relative increase of the error rates for different sub-word
unit types if using cross-language instead of language-dependent sub-
word units.

Now we look at the different sub-word unit types. As expected the
performance of the phoneme models degrades most if phoneme models
of another language are used instead of phoneme models of the target
language. The abstract acoustic elements AWordConstrain show a bigger
performance loss in cross-language tests compared to intra-language
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tests than the elements AFree . This is probably due to a language de-
pendence which is introduced into the models by forcing all utterances
of a word to the same sequence of abstract acoustic elements Z during
the training.

Looking again at the absolute recognition rates, the elements
AWordConstrain were still much better than the elements AFree . Fur-
thermore, the superiority over phonemes was bigger in cross-language
tests than in intra-language tests.

3.6.4 Influence of Transition Penalties

In Section 3.5.2 we have described how transition penalties can be used
to force the Viterbi decoder to remain longer in an abstract acoustic
element. Transition penalties have an effect during the training of the
abstract acoustic elements but also during the concatenation of sub-
word units to a word HMM from utterances as described in 3.1.

In this section we report results of the influence of the penalty H.
We tested the influence in the two families of abstract acoustic elements
AFree and AWordConstrain , as defined in Section 3.6.2. The penalties
were implemented in the HMMs by subtracting the value H for each
transition between abstract acoustic elements.

All parameters except for the penalties were constant: The number
of abstract acoustic elements was 128 and the number of mixture com-
ponents per element was 16. The used features FeatnoCms are described
in Appendix C.1.

The resulting recognition rates for the intra-language case are shown
in Figure 3.7 for the German speaker-dependent task (task 1) and in
Figure 3.8 for the French speaker-dependent task (task 4). In order to
see whether the transition penalties lead to better abstract acoustic
elements we ran the experiments twice. In the first runs the penalty H

was applied both during training of the elements and during testing. In
the second runs we applied the penalties H only during testing. These
plots are denoted as ”test only”. For German we also printed the average
log likelihood per frame during the training and the average segment
length, i.e. the average time during which the decoder remained in the
same abstract acoustic element.
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Figure 3.7: Influence of transition penalties on the recognizer for a
German speaker-dependent scenario. The effect on the recognition rate,
the average log likelihood during training and the average segment length
during training is shown as a function of the penalty. The abstract
acoustic element types AWordConstrain and AFree are tested twice. In
the tests denoted ”test only” H was only applied during testing while it
was applied both during training and testing in the other tests.
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Figure 3.8: Influence of transition penalties on the recognition rate
of a French speaker-dependent scenario. The abstract acoustic element
types AWordConstrain and AFree were tested twice. In the tests denoted
”test only” H was only applied during testing while it was applied both
during training and testing in the other tests.

We could observe that it was crucial to apply an appropriate penalty
value H for AFree . If H was applied only during testing, the results
were consistently worse than if the penalty was applied both during
training and testing. This demonstrated that the quality of the abstract
acoustic elements with respect to our task was better if a penalty was
used during training. In the case of AWordConstrain the optimal value of
H was smaller. This showed that using several utterances to determine
a sequence of abstract acoustic elements Z leads to better results and
that a high penalty on transitions to a different sub-word unit was not
necessary.



76 3 Utterance-based Word Recognition with Hidden Markov Models

The average log likelihood per frame during training did not de-
crease very much with an increased segment length. It was however
much lower if all utterances of the same word were forced on the same
sequence of abstract acoustic elements.

3.6.5 Suitable Number of Abstract Acoustic Ele-

ments and Mixture Components

So far we have not observed the influence of the number of abstract
acoustic elements N and the number of mixture components per ele-
ment M on the recognition rate. Therefore we trained and tested ab-
stract acoustic elements of the AWordConstrain family to find the number
of elements which is suitable to model speech.

The results of a speaker-dependent scenario are given for the intra-
language case in Figure 3.9 for German (task 1) and in Figure 3.10
for French (task 4). Each line corresponds to a set of abstract acoustic
elements with a given size. The recognition rate is then given as a
function of the number of mixture components in each element.

The results showed that it is especially important to have enough
abstract acoustic elements. Using more than 128 elements did how-
ever not improve the recognition rate a lot but increased the recogni-
tion time. This number of abstract acoustic elements is much higher
than the number of phonemes which are usually used in monophone-
based recognizers (our German recognizer has 47 phonemes and the
French recognizer has 40). If we consider however, that each phoneme
is composed of three states, the number of Gaussian mixture models in
monophone-recognizers is quite close to 128.

3.6.6 Comparison of Algorithms to Find a Sequence

of Sub-Word Units from Several Utterances

In Section 3.2 we presented two algorithms to determine the optimal
sequence of sub-word units for several utterances. We will now evaluate
these algorithms.
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Figure 3.9: Recognition rate for German in a speaker-dependent sce-
nario with different numbers of abstract acoustic elements and mixture
components.

In the following we will refer to the exact algorithm which is pre-
sented in Section 3.2.2 as Algexact and to the approximate algorithm
presented in Section 3.2.4 as Algapprox . All tests were performed with
abstract acoustic elements of type AWordConstrain .

Compared Algorithms

Additionally to the algorithms Algexact and Algapprox we tested two
alternative algorithms to determine the best sequence of sub-word units
for several utterances:

• AlgchooseBest: This algorithm falls in the first category of algo-
rithms described in Section 3.2.1. It was implemented along the
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Figure 3.10: Recognition rate for French in a speaker-dependent sce-
nario with different numbers of abstract acoustic elements and mixture
components.

lines of [MJ99]. We determined for each utterance the 20 best
sequences of abstract acoustic elements with the token-passing-
based Viterbi algorithm (see [You89]) with ten tokens per node.
From the resulting sequences, we selected the sequence that best
described all utterances.

• AlgDtwAlign: In this approximate algorithm the available reference
utterances of a vocabulary word were aligned with DTW in order
to get a time-aligned version of the sequences. All sequences were
aligned to the sequence which had the smallest DTW-distance
to all others. For these time-aligned sequences it was straight-
forward to perform a Viterbi search by using the joint observation
probability of the aligned feature vectors to find the best sequence
of abstract acoustic elements.
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Tests in Speaker-Dependent IWR

The first experiments show how the different algorithms performed in
a speaker-dependent scenario (tasks 1 and 4, cf. Appendix E.2). In
Table 3.4 the results of several algorithms are listed as a function of
the number of utterances which were used to form each word model.
The data available for the speaker-dependent scenario allowed to use
only up to three utterances per vocabulary word.

language German French
# utterances 1 2 3 1 2 3

Algexact 96.2 97.0 93.4 95.2
Algapprox 96.2 96.8 93.4 94.8

AlgchooseBest

93.5
95.6 96.4

86.6
90.9 92.8

AlgDtwAlign 94.7 95.0 89.6 91.9

Table 3.4: Evaluation of different algorithms to find the optimal se-
quence of sub-word units for several utterances in a speaker-dependent
scenario. Recognition rates are given in %.

Tests in Speaker-Independent IWR

In a speaker-independent scenario (tasks 3 and 6, cf. Appendix E.2) we
could also evaluate how the algorithms perform with more utterances
per vocabulary word. The recognition rates as a function of the number
of available utterances per reference word are given in Figure 3.11.
We evaluated the same algorithms as in the speaker-dependent case
except for the algorithm Algexact , which had a too high computational
complexity to be applied for 20 utterances.

A comparison of the algorithms showed that Algexact yielded better
results than AlgchooseBest and AlgDtwAlign . Moreover Algapprox yielded
almost as good results as Algexact . As expected the recognition rate
with AlgchooseBest increased with the number of available utterances. Its
recognition rate was however also with 20 utterances per reference word
still considerably lower than the one with Algapprox . It is a welcome
property of the Algapprox systems that the recognition rates are already
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Figure 3.11: Recognition rate as a function of the number of reference
utterances in a speaker-independent scenario (tasks 7 and 8).

with a few utterances quite high, since a smaller effort is necessary to
record all utterances.

Another important aspect is the computational complexity of the
algorithms. The exact algorithm Algexact has a computational complex-
ity of O(TK) for K utterances where T is the geometric mean of the
utterance lengths. The algorithms AlgchooseBest and AlgDtwAlign have a
computational complexity of O(T 2). The algorithm Algapprox is linear
with respect to T.
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3.7 Concluding Remarks

We have shown that abstract acoustic elements are more suitable sub-
word units than phonemes to build word HMMs by concatenating sub-
word units according to utterances of the words. The superiority of
abstract acoustic elements is particularly evident in a cross-language
scenario.

We could also show that the K-dimensional Viterbi and the approx-
imation thereof which were presented in Section 3.2 are better for the
task of determining the optimal sequence of abstract acoustic elements
than other methods described in the literature.

Abstract acoustic elements AWordConstrain for which orthographic
annotations are necessary perform considerably better than abstract
acoustic elements AFree for which no annotations are necessary. This
is disadvantageous for languages for which only unannotated training
data is available.

Even though the language mismatch had a smaller impact on the
recognition rate when abstract acoustic elements were used than when
phonemes were used, it still resulted in a performance loss. We have seen
however, that the gain which was achieved by using annotated training
data (for AWordConstrain) instead of unannotated training data (for
AFree) was bigger than the loss which is caused by language mismatch.
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Chapter 4

Comparison of Different

Isolated Word

Recognition Techniques

This chapter compares the best-performing systems both of the DTW-
approach described in Chapter 2 and of the HMM-approach de-
scribed in Chapter 3 in speaker-dependent, cross-speaker and speaker-
independent scenarios. All scenarios are compared for the intra-
language case in which the training material was taken from the target
language and for the cross-language case in which the training material
was taken from another language. In Section 4.2 the recognizers with
an utterance-based vocabulary are compared with a transcription-based
recognizer.

4.1 Comparison of Recognizers with an

Utterance-based Vocabulary

Two recognizers were based on DTW pattern matchers as described
in Section 2. DTW Eucl used a standard Euclidean distance measure
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whereas DTW VMLP used the posterior-feature transformation and a
VMLP as a distance measure. HMMAE was a HMM-recognizer based
on abstract acoustic elements AWordConstrain as described in Section
3.5.3. To build a word HMM from several utterances the approximate
K-dimensional Viterbi as described in Section 3.2.4 was used.

First the results of the speaker-dependent, cross-speaker and
speaker-independent scenarios are given in Section 4.1.1 and then dis-
cussed in Section 4.1.2.

4.1.1 Results of Recognizers with an Utterance-

based Vocabulary

Speaker-Dependent Scenario

This section gives the results of the speaker-dependent tasks 1 and 4.
In Table 4.1 the results of several recognizers are listed in dependence
of the number of utterances which were used to form each word repre-
sentation.

language German French
# utterances 1 2 3 1 2 3
DTW Eucl 86.6 89.3 91.6 67.5 71.8 76.8

intra.- DTW VMLP 93.1 92.8 94.6 79.1 80.2 84.1
lang. HMMAE 93.5 96.2 96.8 86.6 93.4 94.8

cross- DTW VMLP 92.9 92.4 93.7 76.9 78.5 82.5
lang. HMMAE 91.5 94.4 96.2 76.3 85.4 88.3

Table 4.1: Evaluation of different recognizers in a speaker-dependent
scenario. Several utterances were used to construct the word represen-
tations. Recognition rates are given in %.

Cross-Speaker Scenario

Table 4.2 shows the performance of the various recognizers for cross-
speaker tasks 2 and 5. The results are given in Table 4.2.
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language German French
# utterances 1 2 3 1 2 3
DTW Eucl 62.1 64.6 66.4 49.7 52.8 56.4

intra.- DTW VMLP 80.6 80.9 82.8 67.5 69.3 72.6
lang. HMMAE 86.3 90.6 92.0 80.6 88.6 90.8

cross.- DTW VMLP 75.6 79.6 80.9 63.9 65.9 69.6
lang. HMMAE 80.1 84.7 86.8 66.3 74.8 78.1

Table 4.2: Evaluation of different recognizers in a cross-speaker sce-
nario if several utterances were used to construct the word representa-
tions. Recognition rates are given in %.

Speaker-Independent Scenario

These experiments have shown how a recognizer performed if the word
representations are speaker-independent as in tasks 3 and 6. In these
tasks up to 20 utterances per word were available. The utterances were
randomly chosen from a large number of utterances spoken by a big
population of speakers. The language-dependent (black lines) and the
cross-language (grey lines) recognition rates in dependence of the num-
ber of utterances used per reference word are given in Figure 4.1.

4.1.2 Discussion of Recognizers with an Utterance-

based Vocabulary

Comparing the results of the speaker-dependent and the cross-speaker
scenario clearly showed that the inter-speaker variability had an adverse
effect on the recognition rate. Using DTW VMLP or HMMAE instead
of DTW Eucl led to a similar relative reduction of the error rate for the
speaker-dependent and the cross-speaker scenarios.

If the word representations could be build from three utterances of
several speakers, as is the case of the speaker-independent scenario, the
recognition rates were only slightly worse than in the speaker-dependent
case. If 20 utterances could be used the results were even better than in
the speaker-dependent scenario with three utterances. The assumption
that more utterances can be used in the speaker-independent case is



86 4 Comparison of Different Isolated Word Recognition Techniques

1 4 8 12 16 20
55

60

65

70

75

80

85

90

95

100

re
co

gn
iti

on
 r

at
e 

[%
]

number of reference utterances

 

 German

DTW
Eucl

DTW
MLP

HMM
AE

1 4 8 12 16 20
number of reference utterances

 

 French

DTW
Eucl

DTW
MLP

HMM
AE

Figure 4.1: Recognition rate as a function of the number of reference
utterances for speaker-independent tasks 3 and 6. The black lines give
the results for systems which use resources (VMLPs, abstract acoustic
elements) trained on the target language. The grey lines give results
for cross-language experiments, i.e. experiments in which the resources
were taken from the other language.

also reasonable from a practical point of view since the same utterances
can be used for all speakers. In the speaker-dependent case the user has
to record all utterances himself, what should not take too much time.

Among the DTW-based recognizers DTW VMLP performed much
better than DTW Eucl . The largest gain of a VMLP used in the DTW-
based approach was observed in difficult tasks such as the French recog-
nition task with one reference utterance per word. The recognizer based
on abstract acoustic elements HMMAE performed however again much
better. The superiority of abstract acoustic element recognizers was
particularly high if several observation sequences were used.
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In the cross-language case the systems performed quite well in the
speaker-independent scenario even though the effect of language mis-
match was clearly observable. For the HMMAE systems with 20 utter-
ances the recognition rate decreased from 97.9 % to 94.7 % for German
and from 95.6 to 88.0 for French. This decrease may seem quite high,
but if we consider that the recognition rates of DTW Eucl were only
81.3 % for German and 72.8 % for French, these figures are still satis-
factory. More concretely, the cross-language systems HMMAE yielded
a decrease of the error rate relative to DTW Eucl of more than 70 %
for German and almost 60 % for French. For the language-dependent
HMMAE systems these numbers were almost 90 % for German and
more than 80 % for French.

We have seen that HMMAE generally performed better than
DTW VMLP . In the cross-language case the difference between the
techniques was however considerably smaller than in the language-
dependent case. This suggests a higher robustness against language
mismatch of the DTW/VMLP-based technique.

4.2 Comparison with Transcription-based

Recognizers

It remains to evaluate how close the devised techniques come to speaker-
independent isolated word recognizers (IWR) which are possible to
construct for resource-rich languages. The two languages German and
French which we used to test our methods both fulfill this requirement.
We therefore tested all tasks with our standard transcription-based
speaker-independent recognizer as described in Appendix D. The re-
sults are listed in Table 4.3 along with the recognition rates of the
best performing systems based on an utterance-based vocabulary. The
results are given for three reference utterances in all scenarios and addi-
tionally for 20 reference utterances in the speaker-independent scenario.

First we compared the HMM system based on abstract acoustic ele-
ments concatenated according to utterances to the transcription-based
system in a speaker-dependent scenario in the intra-language case. On
a first glance this comparison could be considered as unfair since the
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HMMAE

language
num. of

scenario DTW Eucl intra.- cross.-
dict.-

refs.
lang. lang.

based

spkr.-dep. 91.6 96.8 96.2 96.9
3 cross-spkr. 66.4 92.0 86.8

German
69.4 95.8 90.7 97.4

20
spkr.-indep.

81.3 97.9 94.7

spkr.-dep. 76.8 94.8 88.3 96.7
3 cross-spkr. 56.4 90.8 78.1

French
57.1 92.8 80.5 96.7

20
spkr.-indep.

72.8 95.6 88.0

Table 4.3: Comparison of recognition rates in % between different rec-
ognizers. The results are given for all scenarios. For HMMAE results
for intra-language (abstract acoustic elements from the target language)
and cross-language (abstract acoustic elements not from the target lan-
guage) experiments are given. For the recognizers with an utterance-
based vocabulary three utterances were used in all scenarios and in the
speaker-independent scenario additionally the results with 20 utterances
are given.

transcription-based recognizer is speaker-independent. There may how-
ever be situations where one has to build an IWR for a single speaker
and thus both, an utterance-based speaker- and language-dependent
and a transcription-based speaker-independent recognizer are viable
options. If there is only a single utterance available for each vocabulary
word, the best utterance-based recognizer yielded an error rate which
was around twice as high as the one of a transcription-based recognizer
for German and around three times as high for French (cf. Tables 4.1
and 4.3). These results clearly suggest to use the transcription-based
recognizer in this case. With as few as three utterances per vocabulary
word the utterance-based recognizer had a similar performance as the
transcription-based recognizer for German while it was a bit worse for
French. A reason for the better performance of the utterance-based sys-
tem in German was probably the test-speaker population. Most speak-
ers were of Swiss German mother tongue. This caused a dialectal influ-
ence of their pronunciations which therefore differed from the standard
German pronunciations which were used in the transcription-based rec-
ognizer.
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Next we compared the results of speaker-independent tasks 3 and 6.
With around 20 utterances from several speakers per reference word the
best utterance-based method presented in this thesis reached a similar
performance as a transcription-based recognizer if models of the target
language were available.

For a cross-language usage, the recognizer with an utterance-based
vocabulary achieved a lower recognition rate than a recognizer which
is built for the target-language. In the speaker-independent scenario
with 20 reference utterances the HMMAE recognizer had an around
twice as high error rate than a language-dedicated transcription-based
recognizer for German (2.6 % vs. 5.3 % absolute error rate) and an
around 3.5 fold higher error rate for French (3.3 % vs. 12.0 % absolute
error rate).

The results of the French tasks are consistently worse than the re-
sults of the German tasks. One reason for this is that the words in the
German tasks are on average longer than the words in the French task.

4.3 Conclusion

We could see that the HMM-based approaches to IWR with an
utterance-based vocabulary performed better than the DTW-based ap-
proaches even though the use of a VMLP instead of the Euclidean
distance yielded a substantial performance gain. The abstract acoustic
elements which exploit orthographic annotations performed by far bet-
ter than abstract acoustic elements which were trained in a completely
unsupervised way even if applied in another language than the training
language of the elements. The abstract acoustic elements performed
also better than phonemes.

By using the HMM-based technique the error rate of recognition
with an utterance-based vocabulary could be reduced by around 65 %
relative to a standard template-based recognizer although the abstract
acoustic elements were not trained on the target language.

In the intra-language and speaker-dependent scenarios the best
recognizer with utterance-based vocabulary presented in this thesis
achieved almost the same performance as a transcription-based recog-
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nizer if about three utterances of each word in the vocabulary were
available to build the word models. In a speaker-independent sce-
nario a word recognizer with an utterance-based vocabulary could com-
pete with a transcription-based recognizer only if the abstract acous-
tic elements were language-dependent. If abstract acoustic elements
of another language were used it produced considerably more errors
than a transcription-based recognizer. The difference is however that
in contrast to the training of phonemes which are necessary for a
transcription-based recognizer, only acoustic training data but no pro-
nunciation dictionary is necessary for the training of abstract acoustic
elements.

In terms of resource requirements the transcription-based recognizer
needs both a pronunciation dictionary and annotated training data
from the target language. For the intra-language case the utterance-
based technique achieved a similar performance to the transcription-
based recognizer but requires only orthographic annotations and no
pronunciation dictionary. In the cross-language case which requires no
resources of the target language the recognition rates were lower than
the ones of a transcription-based recognizer but still considerably higher
than the ones of a standard utterance-based recognizer.



Chapter 5

Other Application

Scenarios

In previous chapters we have investigated isolated word recognition for
languages that do not allow to build a transcription-based recognizer
because no pronunciation dictionary is available and therefore only the
use of a vocabulary which is based on sample utterances of the words
is a viable alternative. We have presented two techniques which are
considerably better than dynamic time warping which is usually used
for this task.

There are other applications which can profit from these techniques
in that these applications need to compare two utterances in some way.
Some of these applications are

• Utterance Verification: In some applications it has to be verified
whether two utterances are equally worded. With the techniques
developed in this thesis this task can be performed without even
knowing which language is spoken in the two utterances. The
techniques promise in particular a higher speaker-independence
compared to standard DTW-based techniques. Such a task arises
for example in educational applications if it has to be verified
whether a student has pronounced the same word or phrase as in
a reference recording of a teacher and that he has pronounced it
correctly.
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• Acoustic Data Mining: Acoustic keyword spotting, also known
as spoken term detection, is nowadays mostly based on word lat-
tices ([Wei95]), phone lattices ([JY94]) or both ([MRS07], [Mil07])
which are generated with a large vocabulary speech recognition
(LVCSR) system. This makes these systems language-dependent.
The techniques presented in this thesis facilitate the construction
of systems which are language-independent.

• Speaker Verification: Speaker verification systems which are
based on the comparison of words which occur both in the ref-
erence and the test utterance usually use a LVCSR to find the
common words. This makes these systems language-dependent.
The developed techniques open new possibilities to find common
words in two speech signals in a language-independent way.

In this thesis we investigated acoustic data mining with a task to
find common segments such as words or phrases in two signals. These
investigations will be presented in Section 5.1. An application of this
task in a speaker verification application is presented in Section 5.2.

5.1 Acoustic Data Mining

In this section we investigate a task of acoustic data mining, namely to
find common segments such as words or syllables in two speech signals
with techniques that are language-independent, i.e. techniques which
can be applied for speech signals of any language.

The amount of literature available for this task is scarce. The only
algorithm we are aware of is Segmental DTW presented in [PG05]. It
bears indeed some similarity to the algorithm which we present in Sec-
tion 5.1.1 since it is also based on a distance matrix. The algorithm
partitions the distance matrix in overlapping bands in diagonal direc-
tion and finds the optimal path for each band. From this optimal path
a subsegment with a low distance is sought with an algorithm presented
in [LJC02]. A disadvantage of the algorithm is that it finds only one
matching segment in a diagonal band. This has a big impact if the two
signals are almost identically worded but have some inserted, substi-
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tuted or deleted words. In this case the common segments are expected
in a few bands around the diagonal of the distance matrix.

How a derivate of the DTW algorithm in combination with verifi-
cation multilayer perceptrons (VMLP) as presented in Section 2.2 can
be used for this task is shown in Section 5.1.1. In Section 5.1.2 we show
how HMMs based on abstract acoustic elements can be used for the
task. The two approaches are compared in Section 5.1.3.

5.1.1 Seek Similar Segments with Modified DTW

Distance / Probability Matrix

In speech applications the DTW algorithm is usually used to find the
best alignment between two observation sequences which are hypoth-
esized to contain the same wording. In the usual case of a distance
matrix it is expected that there is a valley of small local distances ap-
proximately along the diagonal through the whole distance matrix if
the hypothesis is true (i.e. both observation sequences contain the same
word). If a VMLP as described in Section 2.2 which outputs the prob-
ability that the two input frames are from the same phoneme for each
frame pair is used, a ridge in diagonal direction is expected.

In the task we are aiming to solve we do not expect that the two
signals are equally worded. Therefore there will be no ridge across the
whole probability matrix. If there are however segments of the two
signals which match, there will be ridges in approximately diagonal
direction at the corresponding locations. An example of a probability
matrix is shown in Figure 5.1.

Search Algorithm

Given a probability matrix of the type described above we need an
algorithm to detect the ridges. We have therefore devised an algorithm
which is related to DTW but is not restricted to find one optimal path
through the full probability matrix.
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Figure 5.1: Probability matrix spanned by the German numbers 714
(“siebenhundertvierzehn”) and 143 (“hundertdreiundvierzig”) uttered
by two different speakers. Common segments show as ridges, e.g., the
word “hundert” which occurs in both numbers shows as a ridge between
0.6 and 1 s in signal 1 and between 0.1 and 0.4 s in signal 2.



5.1 Acoustic Data Mining 95

In contrast to the standard application of DTW where processing
starts and ends at more or less constrained starting and end points and
is unidirectional, we use bidirectional DTW that starts at the peak of
a potential ridge and proceeds in both directions until the ridge ends.
More precisely the detection is as follows:

1. The processing starts at the point where Pij is maximal.

2. From this initial point DTW is used to follow the potential ridge,
i.e. to construct a warping curve in both directions. As usual,
slope constraints are used that allow to compensate a maximum
local speaking rate difference of the two speech signals of a factor
of two.

3. The ridge ends where Pij is smaller than threshold Pb for two
consecutive DTW steps.

4. The points of Pij constituting the found ridge are excluded from
further processing.

5. If the found ridge is longer than the minimum length Lm, the
partial warping curve with the frame pairs is kept as a part of the
result of the algorithm.

6. If the maximum of all not yet excluded Pij is greater than thresh-
old Pa, processing loops back to step 1.

The parameters of the ridge detection, i.e. the thresholds Pa for starting
a ridge and Pb for ending a ridge and the minimum length Lm have
to be optimized by means of an appropriate data set. If Pa and Pb are
chosen too high the probability of missing a common segment increases
whereas low Pa and Pb may lead to spurious common segments. Also
the choice of Lm is a tradeoff between missing short segments for a long
Lm and finding unreliable matches for a short Lm.

5.1.2 HMMs to Seek Similar Segments

By means of abstract acoustic elements the common segments in the
observation sequences X(1) and X(2) from the two speech signals S1

and S2 are detected as follows: In the first step the optimal sequence
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Ẑ(1) of acoustic elements for X(1) is determined. In the second step we
seek segments of the observation sequence X(2) which are sufficiently
well described by model subsequences of the sequence Ẑ(1).

Decoding the First Signal

To determine the optimal sequence Ẑ(1) of X(1) we use an HMM as
shown in Figure 3.2 in the same way which is used to determine the
word-HMMs for isolated word recognition as described in Section 3.1.
This results in a sequence of abstract acoustic elements as e.g.

Ẑ(1) = ϕ66ϕ15ϕ43 . . . ϕ97 (5.1)

= ẑ
(1)
1 ẑ

(1)
2 ẑ

(1)
3 . . . ẑ

(1)
U , ẑu ∈ Φ (5.2)

For all elements ẑu in Ẑ(1) we save also the time tb(ẑu) when the element
was entered and te(ẑu) when the element was left.

Finding Similar Segments in the Second Signal

Now we extend the HMM of Figure 3.2 with the model sequence Ẑ(1)

which results in an HMM as shown in Figure 5.2. This HMM consists
of two parts. The part on the right side is identical to the one used to
decode the first signal. The part on the left side represents the sequence
Ẑ(1) of acoustic elements found for X(1). These elements constitute first
of all a linear HMM. There are additional connections through the non-
emitting states that have got again penalties. The motivation for theses
penalties Ha and Hb is similar as in keyword-spotting, where penalties
are used to tune the operation point of the system to minimize false
alarms and missed detections (see e.g. [RP90]). Here the penalties con-
trol the number and the lengths of the detected segments. The penalties
are implemented by subtracting the value Ha or Hb from the accumu-
lated path log likelihood if a transition with a penalty is taken. In the
absence of such penalties the Viterbi decoder would almost never use a
transition ẑu → ẑu+1 because X(2) can’t be better modeled than with
a free sequence of acoustic element models as represented by the right-
hand side of the HMM of Figure 5.2. In this HMM the penalties Hb
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Figure 5.2: Special Markov model to find segments of the observation
sequence X(2) that match parts of the sequence Ẑ(1). All emitting states
(printed in grey) are modeled with acoustic elements. Either directly

through ϕn ∈ Φ or indirectly through the ẑ
(1)
u . Non-emitting states are

printed in white. Ha and Hb are additional penalties associated with
some transitions.

are higher (i.e. a larger log-likelihood value is subtracted in the cor-
responding transitions) than the penalties Ha in order to prevent the
detection of very short segments.

The Viterbi decoder delivers a sequence of abstract acoustic ele-
ments Ẑ(2) through the HMM of Figure 5.2 for the observations se-
quence X(2). This sequence Ẑ(2) could look like

Ẑ(2) = ϕ7 . . . ϕ95ẑ
(1)
18 ẑ

(1)
19 ẑ

(1)
20 ẑ

(1)
21 ϕ17 . . . ϕ14 (5.3)

In sequence Ẑ(2) the subsequences consisting of elements ẑ
(1)
u represent

the desired common segments. In the example above the subsequence of

interest is ẑ
(1)
18 ẑ

(1)
19 ẑ

(1)
20 ẑ

(1)
21 . With the entry times tb(ẑ

(1)
18 ) and the leaving

times te(ẑ
(1)
21 ) of Ẑ(1) and Ẑ(2) we can determine the positions of the

segment in the two signals.
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A handicap of this method is that it can detect for a segment of
X(2) only one matching segment in X(1) (the other way round is no
problem). To alleviate this problem we split the state sequence Ẑ(1)

into several overlapping windows and perform the algorithm described
above for every window of Ẑ(1).

5.1.3 Experimental Comparison

Objectives

In the problem of finding common segments in two sequences there are
two objectives which should be optimized.

• The found segments should be correct

• All potentially available segments should be detected

The devised methods are likely to optimize one objective at the cost
of the other. Which objective will be predominantly fulfilled depends
on the parameters Pa, Pb and Lm for the DTW-based algorithm pre-
sented in Section 5.1.1 and on Ha and Hb for the HMM-based algorithm
presented in Section 5.1.2.

In order to evaluate the quality of the segment search algorithm it
was therefore suitable to test the systems with various parameter-sets
and determine the Pareto-front of the algorithms for the two objectives.

In the next sections we will show how the two objectives were mea-
sured.

Matching Quality

We generated phonetic segmentations of all utterances in the test set
with a forced-alignment using only one pronunciation variant per word.
In this way we could check for all frame pairs from the found common
segments, whether the two frames were assigned the same phoneme
label. If the phoneme labels were matching, we assigned the value 1.
If only the phoneme label in a directly neighboring frame of the other
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signal matched we assigned the value 0.3. All other frame pairs were
assigned the value 0. We then calculated the total matching score as
the mean of the values assigned to all frame pairs.

Completeness of the Found Sequences

The other objective is the ratio between the number of detected com-
mon segments and the number of common segments which are effec-
tively available in the two speech signals. Therefore we determined po-
tential matches by seeking common phoneme sequences in the phonetic
segmentations of the signals. We required the phoneme sequences to be
at least four phonemes long. With the phonetic segmentations also the
locations of every common phoneme sequence in the two speech signals
were known. A potential match determined in this way was consid-
ered as detected if the tested algorithm detected a common segment at
roughly the same positions in the two signals.

Test Setup

We used recordings of German three-digit numbers. Every recording
contained four three-digit numbers. The recording pairs in which the
common segments were sought never contained the same three-digit
numbers. Thus only parts thereof could match. The recordings were
taken form speakers of the SG,digit,3 set as described in Appendix E.1.
This yielded a total of 1299 tested record pairs for speaker-dependent
tests and a total of 1189 record pairs for cross-speaker tests.

We used the features Featcms as described in Appendix C.1. The
VMLPs and the abstract acoustic elements were trained with data of
the SG,poly,1 and SF,poly,1 speaker sets as described in Appendix E.1. We
used abstract acoustic elements AWordConstrain trained as described in
Section 3.5.3 and VMLPs with one hidden layer containing 209 neurons.

Results

First we evaluated the intra-language case, i.e. if the VMLPs and the
abstract acoustic elements were trained in the target language. Due to
the lack of suitable testing data for French we tested only with German
words.



100 5 Other Application Scenarios

40 45 50 55 60 65 70 75 80 85 90 95
45

50

55

60

65

70

75

80

85

se
gm

en
t q

ua
lit

y 
[%

]

segment completeness [%]

 

 

HMM
DTW

Figure 5.3: Pareto fronts for the two objectives completeness and
matching quality in intra-language experiments. The tests in which the
two recordings in a pair are from the same speaker are plotted in black,
the tests in which the recordings were from different speakers are plotted
in grey.

Intra-Language Case

The Pareto fronts for the DTW-based system as described in Section
5.1.1 and the HMM-based system as described in Section 5.1.2 are
shown in Figure 5.3. The parameter Lm of the DTW-based system was
fixed at 120 ms and also for the HMM based systems only segments
longer than Lm were accepted. For the DTW-based system the param-
eter Pa was varied between 0.9 and 0.98, and Pb between 0.8 and 0.97.
In the HMM-based systems the parameter Ha was varied between 4
and 13 and Hb between 12 and 40.
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From the resulting plots in Figure 5.3 we concluded that seeking
common segments was a much more difficult task if the two speech
signals were not from the same speaker. We always performed the tests
for pairs of different speakers with the same parameters which we also
used for testing the signal pairs from different speakers. We could see
that mostly the completeness of the found segments was impaired if
the signals were from different speakers and not so much the quality.

For both, signal pairs from the same speaker and signal pairs from
different speakers the DTW-based systems performed better but the
difference was a bit bigger for signal pairs from the same speaker.

Cross-Language Case

In order to investigate whether the suggested algorithms to seek com-
mon segments can also be used if there is no training material available
for the target language or if the target language is not even known we
tested the algorithms in a cross-language scenario. The VMLPs and the
abstract acoustic elements were trained with French data and the tests
were performed on a German test set.

The result is again illustrated with the Pareto fronts shown in Figure
5.4. The fronts for the DTW-based systems were quite similar as in the
intra-language experiments, indicating that the VMLPs were not very
language-dependent, at least not within the two languages German and
French. For the HMM-based systems the performance dropped much
more.

5.2 Speaker Verification

In this section we investigate a novel approach to text-independent
speaker verification as an application scenario for the methods to seek
common segments which were presented in the Section 5.1. The aim is
to make speaker-verification based on pattern matching (PM), which
yields very good results for text-dependent speaker verification, ap-
plicable for text-independent scenarios. This is achieved by detecting
phonetically similar segments in two speech signals with the methods
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Figure 5.4: Pareto fronts for the two objectives completeness and
matching quality in cross-language experiments. The tests in which the
two recordings in a pair are from the same speaker are plotted in black,
the tests in which the recordings were from different speakers are plotted
in grey.
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devised in this thesis. The PM approach is then applied for the found
common segments. Since the algorithm requires common segment to
be available in two speech signals it is more correctly termed quasi
text-independent speaker verification.

The devised speaker verification method is related to other methods
as outlined in Section 5.2.1 but distinguishes itself by the fact that
it is not dependent on an LVCSR system and is therefore language-
independent.

5.2.1 Related Work

Speaker verification is the task of verifying whether a test signal Stest

is from the same speaker as a reference signal Sref . The first step in
most approaches is that observation sequences X(ref) and X(test) are
extracted from both signals by short-time analysis. The approaches
differ in the way they compute a score which reflects the probability
that the two signals are from the same speaker.

We can distinguish between text-dependent speaker verification
and text-independent speaker verification. In text-dependent speaker-
verification the signals Sref and Stest contain the same text. This al-
lows verification techniques which are not possible for text-independent
speaker-verification, where the content of the signals is different.

Text-dependent Speaker Verification

In our lab text-dependent speaker verification is used for forensic pur-
poses because of the high confidence which can be achieved (see for
example [PB03]). The system is based on the distances between the
frame pairs along the warping curve between X(ref) and X(test) which
is determined by means of DTW. In [NP04] it was shown that the er-
ror probability could be significantly reduced by using an appropriately
trained verification multilayer perceptron (VMLP) (cf. Section 2.2).
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Text-independent Speaker Verification

Text-independent speaker verification systems can be roughly grouped
into system which consider the observations of both observation se-
quences X(ref) and X(test) individually and neglect their temporal or-
der and systems which consider the observations in their natural order.

The first group of approaches, also termed bag-of-frames methods,
is used more often because of its good performance at a moderate com-
putational cost. The standard approach is the GMM-UBM approach
which is well described in [RQD00]. The universal background model
(UBM) is a GMM which models the feature distribution of a large pop-
ulation of background speakers. From the observation sequence of the
reference speaker X(ref) a speaker-dependent GMM is adapted with
maximum a posteriori adaptation. The score is then computed as the
ratio between the likelihood that the observations of X(test) were pro-
duced by the speaker dependent model and the likelihood that the
observations were produced by the UBM.

More recently support vector machines have been used for the bag-
of-frames approach. Some approaches are based on specially developed
sequence kernels ([Cam02], [MB07]). Other approaches such as the one
presented in [CSR06] have their origin in the GMM-UBM approach.
They train a support vector machine for each speaker by using the
supervector (concatenation of the mean vectors of all mixture compo-
nents) as input vector.

A big source of errors in speaker verification is channel mismatch. By
using factor analysis it was possible to distinguish between differences
caused by a different speaker and differences caused by a channel mis-
match ([KD04]). This benefit of factor analysis could be used to achieve
better results for speaker verification in [MSFB07] and [CSRS06] by in-
tegrating factor analysis into support vector machine supervector based
systems.

The method presented in this thesis belongs to the second group
of approaches which considers the frames of X(ref) and X(test) within
their context. Most of these approaches are based on the output of a
LVCSR system which makes them language-dependent.
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Some of these systems calculate a verification score only based on
higher-level sequential information such as speech prosody in [AH03]
or phoneme n-gram statistics in [EP07].

The systems presented in [PCC00] or [PJ02] use individual GMMs
for phonetic classes or more acoustically motivated classes. The systems
described in [CE98], [HH03] or [GSP05] go one step further regarding
the use of sequential information by aligning the frames belonging to
the same phoneme with DTW and using the average distance as system
output. In [New96] a system was presented which uses the ratio of the
likelihood of a speaker-adapted LVCSR system to the likelihood of a
speaker-independent LVCSR system as verification score. Usually this
family of systems showed a performance gain especially if they were
used in combination with a global GMM system (see for example [PJ02]
or [WPN+00]).

Other systems which are based on LVCSR systems calculate a score
on a predefined set of keywords. In [Stu02] individual GMMs are trained
for each keyword found sufficiently often in Sref . The approach chosen
in [BP04] is similar but used word-HMMs to model each keyword. As
shown in [MH05] these approaches are successful for long signals and
if used in combination with a GMM system. In [ABA04] the keywords
are detected with a DTW-based system and also the final verification
score is computed from the DTW-scores.

The system described in [PG06] resembles to our approach since it is
based on the comparison of common segments, which are detected with
a DTW-based algorithm and not with a LVCSR system. The differences
are however that only the best matching segment is used and that it
uses the same Euclidean distance metric both for detecting the common
segments and for determining the speaker verification score.

5.2.2 System Description

The speaker verification approach presented in this thesis involves three
steps. First phonetically matched segments (e.g. common words or com-
mon syllables) are sought in the two speech signals. This step provides
a series of frame pairs where both frames in a pair are phonetically
matched. In a second step the probability that the two frames in a pair
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come from the same speaker is computed for every frame pair with a
VMLP as presented in Section 5.2.4. Finally, a global indicator that the
two speech signals were spoken by the same speaker can be calculated
from these frame-pair-level probabilities. This is described in Section
5.2.5.

5.2.3 Seeking Equally Worded Segments

We need an algorithm which seeks common segments in two speech
signals which have a minimum length. In Section 5.1 we devised two
such algorithms, one based on HMMs, the other based on DTW.

There we have defined two objectives for this task: the completeness
and the correctness of the found segments. Now we want to consider
only one objective: the performance of the speaker verification algo-
rithm. The speaker verification is impaired by a bad matching quality
and by a high rate of missed detections of available common segments.
If the matching quality is bad, the MLP will be fed with vector pairs of
non-matching frames, which will deteriorate its performance. If on the
other hand not all common segments are detected, the final decision
does not consider all available information.

A further requirement is that the search for equally worded seg-
ments is speaker-independent, or more precisely formulated that it
works equally well on two signals which are from different speakers
as it works on two signals of the same speaker. In Section 5.1 we have
seen that this is not totally fulfilled. The completeness is considerably
smaller if the signals are from different speakers. This means that in-
formation which may be beneficial for speaker verification is lost. This
also implies that the optimal parameters can only be determined by
optimizing the speaker-discriminating ability of the system.

5.2.4 VMLP-based Probability Estimation

We use a VMLP to calculate for each frame pair on the warping curve
the posterior probability that the two frames are from the same speaker.
This speaker verification MLP is trained to output the posterior prob-
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ability that the two observations x1 and x2 are from the same speaker
given they are from the same phoneme:

Plocal = P (spkr(x1) = spkr(x2)|x1,x2, phon(x1) = phon(x2)) (5.4)

The VMLP has shown good results for text-dependent speaker-
verification in [NP04] and has been further developed in this thesis.

Training Data for Speaker Verification MLPs

The preparation of training data for speaker verification is similar to the
approach described in Section 2.3.3, but both the positive and the neg-
ative observation pairs are taken from observation pairs on the warping
curve – the positive observation pairs from warping curves of signals
from the same speaker and the negative observation pairs from warping
curves of signals from different speakers.

5.2.5 Final Decision

Finally we evaluate from the scores of all frame pairs the global score
that can be used to decide whether the two speech signals were spoken
by the same speaker or not. The global score is the average over the
frame-level scores of all found common segments.

5.2.6 Experiments

Compared GMM System

As a baseline system we used a GMM system as described in [RQD00].
We found 1024 Gaussians to be optimal. For each speaker verification
trial a speaker model was created by adapting the UBM with the first
of the two given signals using a maximum a posteriori adaptation (see
[GL94]). We have seen, that the system performed best if only the
means of the Gaussians were adapted. This is in accordance with the
results given in [RQD00]. The log-likelihood (LL) of the second signal
was calculated for the adapted speaker model and for the UBM. The
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difference of the two LL values is the desired output of the GMM sys-
tem. For the training of the UBM, the maximum a posteriori adaptation
and the calculation of the LL we have discarded silence frames.

System Combination

In order to verify whether the devised PM system and the GMM system
make use of complementary information, we also evaluated a system
combination. We used a weighted average of the scores delivered by the
two systems. We empirically evaluated equal weights to be optimal. The
scores of both systems were normalized to zero mean and unit variance
before the fusion.

Experiment Setup

For the speaker verification part, i.e. as input for the GMM system
and as input to the speaker discriminating VMLP we used features
Featspveri as described in Appendix C.1. Only for the algorithm to seek
common segments we used Featcms .

The VMLPs used for speaker verification (both for static and delta
features) had one hidden layer with 209 neurons. In experiments not
shown in this thesis we have found this a suitable size.

For the DTW-based algorithm (cf. Section 5.1.1) the parameters Pa

and Pb were 0.95 and 0.9 respectively. For the HMM-based algorithm
(cf. Section 5.1.2) the parameters Ha and Hb were 9 and 27 respectively.
In both algorithms segments shorter than 120 ms were discarded.

For the experiments we used recordings with German three-digit
numbers, here called words. The average duration of such words was
1.5 s.

All speaker verification trials were conducted with signals containing
one to seven words taken from speaker set SG,digit,3 as described in
Appendix E.1. None of the words of the first signal occurred in the
second one. Therefore only common digit names could be detected, not
whole numbers.
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The speaker sets SG,digit,1 and SG,digit,2 were used to train the
speaker verification MLPs and the UBM of the baseline system. Since
these speaker sets are disjoint from SG,digit,3, the VMLPs and the UBM
were used in a speaker-independent way.

The abstract acoustic elements and the phoneme verification MLPs
which were used in the algorithms to find common segments were
trained with data of the polyphone databases and were therefore also
speaker-independent. The training data for the intra-language experi-
ment was taken from the Swiss German polyphone database whereas
the training data for the cross-language experiments was taken from
the Swiss French polyphone database.

Results

We tested the two PM systems PM DTW which used the DTW-based
segment search algorithm and PM HMM which used the HMM-based
search algorithm along with the GMM system.

Segment Search in the Intra-Language Case

First we tested the speaker verification systems which use models of
the target language (i.e. German). The results are given in Figure 5.5.

It could be observed that for only one word the GMM system was
clearly superior to the PM based systems. The performance of the PM
systems increased however with the number of words and was finally
better than the GMM system. With seven words the significance level of
the superiority of both PM system over the GMM system was < 0.1 %
according to the McNemar test (see for example [GC89]).

Further considerable improvements could be achieved if the systems
were fused. This allows the conclusion that the PM system uses comple-
mentary information to the GMM system to compute the probability
that two signals are from the same speaker.
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Figure 5.5: EER of various systems as a function of the number of
used words in intra-language experiments.

Segment Search in the Cross-Language Case

In Section 5.1.3 we have seen that the segment detection rate was
impaired if abstract acoustic elements or VMLPs not of the target
language were used. It remained to show what impact this language-
dependence has on the speaker verification based on these segment-
search algorithms. The results are shown in Figure 5.6.

The results of the PM HMM system alone were clearly inferior to the
ones achieved in the intra-language experiments. With seven available
words a system combination yielded however still an improvement over
the GMM system alone (significance level < 0.1 %). The PM DTW

system was more immune against language-dependence effects which is
in line with the results obtained in Section 5.1.3. The PM DTW system
alone was still significantly better than the GMM system (significance
level < 0.1 %).
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Figure 5.6: EER of various systems as a function of the number of
used words in cross-language experiments.

Note on the Parameter Selection

The parameters were all constant. It is likely that better results could be
achieved if the parameters were dependent on the length of the available
utterance. The PM systems could for example be given a higher weight
if the available utterances are long. We optimized the parameters for
recordings of four words.

5.3 Concluding Remarks

In this chapter we have presented how the techniques developed in this
thesis can be used for other applications than isolated word recognition.
For both, DTW- and HMM-based approaches we presented algorithms
to use them to find similar segments in two speech signals. The common
segments of both approaches could be used in a pattern-matching based
approach to quasi text-independent speaker verification.
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For this application the DTW-based approach was superior to the
HMM-based approach whereas the opposite was true for isolated word
recognition. Since the basic techniques such as abstract acoustic ele-
ments and VMLPs were identical, the difference is likely to be in the
algorithms to detect the segments. We had indeed to use some trickery
to make segment search work satisfactorily with the HMM-approach.
An example is the necessity to divide the reference signal into several
overlapping windows.



Chapter 6

Conclusion

In this thesis we have developed techniques which allow to construct re-
liable isolated word recognizers (IWR) which have an utterance-based
vocabulary. The advantage of this recognizer approach is that it has
smaller linguistic resource requirements than transcription-based rec-
ognizers and can therefore be used in any language or dialect even if
no pronunciation dictionary is available. For the tested languages Ger-
man and French a considerable improvement of the recognition rate
relative to a standard approach to utterance-based recognition could
be achieved with the developed techniques even if no resources of the
target language were used (i.e. if resources of the other language were
used). An even better performance was however possible if annotated
acoustic training data from the target language was used.

Furthermore, the developed techniques could also be successfully
used for other applications such as acoustic data mining in languages
which do not allow to build a large vocabulary speech recognizer be-
cause of limited resources such as dictionaries and annotated speech
databases.
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6.1 Advances in Isolated Word Recogni-

tion with an Utterance-based Vocab-

ulary

With the developed techniques the error-rate of recognizers with an
utterance-based vocabulary could be more than halved in comparison
with a standard DTW-approach even if exclusively resources of an-
other language were used to train the necessary models and multilayer
perceptrons.

If the VMLPs presented in this thesis were used in a DTW rec-
ognizer instead of the Euclidean distance, the IWR error rate could
be greatly reduced. The DTW/VMLP recognizer was however outper-
formed by the developed HMM-based approach to recognition with an
utterance-based vocabulary.

If abstract acoustic elements could be trained with data of the target
language, only three utterances of each word sufficed that the utterance-
based approach reached a similar performance as a transcription-based
recognizer in the speaker-dependent case. Around 20 utterances per
word were necessary in the speaker-independent case. This result also
showed the power of the presented extension of the Viterbi algorithm,
which allows to find the sequence of sub-word units which optimally de-
scribe several utterances and could thus be used to build suitable word
models. The relevance of these results for languages with limited re-
sources lies in the smaller resource requirements for the abstract acous-
tic element-based recognizer. Only acoustic data with orthographic an-
notations but no pronunciation dictionary is necessary to train abstract
acoustic elements. In this intra-language case a different reduction of
necessary training data could be achieved than with the approaches
summarized in Section 1.3.2. With those approaches the amount of
necessary annotated training data could be reduced while a pronuncia-
tion dictionary was still necessary. With the approach presented in this
thesis annotated training data is still necessary for the intra-language
case but there is no need for a pronunciation dictionary.

If the abstract acoustic elements were used in a cross-language sce-
nario the approaches with an utterance-based vocabulary did not reach
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the performance of transcription-based recognition. The application of
the abstract acoustic elements from another language is however an
attractive choice if no resources for a language or dialect are available.

6.2 Benefits for Other Applications

The developed techniques also allow to improve techniques such as
utterance verification or acoustic data mining for languages with scarce
resources.

In this thesis we have presented two novel approaches in a rarely-
treated field of acoustic data mining: to find similar segments such as
word or syllables in two speech signals. Except for the method presented
in [PG05] these are to our knowledge the only approaches which tackle
the problem of finding similar segments in a language-independent way.

The approaches to find common segments could be successfully em-
ployed in a quasi text-independent speaker verification system.

6.3 Comparison of DTW- and HMM-

based Approaches

We could see in IWR and in data mining tasks that the HMM-based ap-
proach was much more sensitive to data mismatch than the DTW-based
approach. This was especially evident in the performance-decrease if
German models were used instead of French models for a French task.
This indicated that the acoustic space of French was not sufficiently
covered by German abstract acoustic elements. Since using French ab-
stract acoustic elements for German was almost as good as using Ger-
man models we argue that the abstract acoustic elements are suitable
sub-word units to be concatenated to word models according to sample
utterances of the words.
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6.4 Outlook

This thesis is rather a broad investigation for various techniques which
aim at improving speech recognizers with an utterance-based vocabu-
lary than an in-depth evaluation of a specific technique. This work may
motivate further work intended to improve a particular approach.

In this work we have not performed an in-depth search for the best
performing features but have relied on standard features. Research in
this area might enhance the performance of both DTW- and HMM-
based approaches. For the HMM-based techniques we see further possi-
bilities for improvement by using model-adaptation techniques to adapt
basic models for a specific language or a specific speaker population.
This may also help to cope with the observed performance-loss due to
data mismatch which was observed for the HMM-based approaches.

In this thesis we have used German and French as experimental
languages which we think to be a reasonable choice because the two
languages are from two language families (Germanic and Romance)
and have an only partially overlapping phoneme inventory. It is however
interesting to investigate how the devised approaches work for a broader
set of languages including non-Indo-European languages.

If a broader set of languages is available it is also possible to pool
training data from several languages in order to build a set of abstract
acoustic elements with a better coverage of the acoustic space and there-
fore also with a higher degree of language-independence. It may also be
beneficial to have different sets of abstract acoustic elements for differ-
ent language families. If the language families are not chosen too small
it is likely that they contain some languages with abundant resources.
The models produced from these languages may then also be suitable
for resource-poor languages of the same family.



Appendix A

Performance of

Verification Multilayer

Perceptrons

In order to show that a VMLP has the capability to perform the ver-
ification task both for the classes which were seen during the training
and for unseen classes we used two test steps. In a first step we showed
the optimality of the VMLP for a closed set of classes with a KNN
approach. In a second step we showed that the VMLP also generalizes
for unseen classes with a real-world verification problem.

A.1 Reformulation as a Classification

Problem

In order to evaluate a VMLP, we measure its verification error rate
for a given dataset and compare it to a reference error rate which is
optimal in a certain sense. By formulating our verification task as a
classification problem, we can use the Bayes error as a reference. The
Bayes error is known to be optimal for classification problems given the
distribution of the data.
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To reformulate a verification task as a classification problem, each
pair of vectors is assigned to one of the following two groups:

GS group of all vector pairs in which the two vectors are from the
same class

GD group of all vector pairs in which both vectors are from differ-
ent classes

Provided that the same classes which are present in the tests are used
to estimate the distributions of GS and GD, the Bayes error is optimal,
since the two distributions are modeled properly. Otherwise there is a
mismatch which leads to ill-modeled GS and GD and thus the Bayes
classifier is not necessarily optimal any more.

In the case of synthetic data it is possible to calculate the Bayes
verification error since the data distributions are given in a paramet-
ric form. For real-world problems the data distributions are not given
in a parametric form and hence the Bayes verification error can’t be
computed directly. In this case we can use a k nearest neighbor (KNN)
classifier to asymptotically approach the Bayes error as described be-
low.

The KNN approach is a straightforward means of classification. The
training set for the KNN algorithm consists of training vectors with
known classification (atr,i, btr,i) where atr,i is the training vector and
btr,i is its associated class. A test vector atst,j is classified by seeking the
k nearest training vectors atr,i and it is assigned to the class which is
most often present among the k nearest neighbors. The KNN classifier is
known to reach the Bayes error if an infinite number of training vectors
is available (see e.g. [DHS01]) and is therefore a means to approximate
the Bayes error if the data distributions are not known in a parametric
form.

A.2 Synthetic Data

The aim of the experiments with synthetic datasets, i.e. datasets with
known data distributions, was to evaluate if the VMLP achieves the
lowest possible verification error from a Bayesian point of view. The
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Figure A.1: Synthetic data: two classes with two-dimensional non-
Gaussian distributions.

data sets had two to four classes and were two- to five-dimensional. We
illustrate these investigations by means of an experiment with a two-
dimensional dataset with two classes that were distributed as shown in
Figure A.1.

The number of training epochs which were necessary to train the
VMLP depended largely on the type of the dataset. We observed the
following properties:

• If only a few features carried discriminating information and all
other features were just random values the VMLP learned quickly
which features were useful and which ones could be neglected.

• The shape of the distributions strongly influenced the number
of epochs that were necessary for the training. For example, two
classes distributed in two parallel stripes or classes that had a
nonlinear Bayes decision boundary, such as those shown in Figure
A.1, required many epochs.
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Figure A.2: Class verification error for the test set as shown in Figure
A.1: the KNN verification error is shown in function of the training set
size. As expected, with increasing size it approximates the Bayes limit
which is indicated with the dotted line. The error rate of the VMLP is
close to the Bayes error.

Figure A.2 shows the error rates of different verification methods for
data distributed as shown in Figure A.1. It can be seen that the error
of the VMLP was almost as low as the Bayes error. The used VMLP
had two hidden layers with 20 hidden neurons in the first hidden layer
and 10 in the second.

For the KNN algorithm the error rate was evaluated as a function
of the number of training vectors to see the asymptotic behavior which
allows to estimate the Bayes error. For the VMLP we were only inter-
ested in the best possible verification error for a given task and not
in the verification error in function of the number of training vectors.
Therefore the VMLP training set was chosen as large as necessary. In
the case of the synthetic data shown in Figure A.1 this is 20’000 vector
pairs.
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For all investigated datasets the verification error achieved with the
VMLP was not significantly higher than the Bayes verification error.

A.3 Speech Data

Even though we have seen that VMLPs performed well for synthetic
data distributions with a quite complex decision boundary as shown
in Figure A.1 it is not sure whether they also provide good results for
real world data which have often much more dimensions. Therefore we
performed experiments with two tasks from speech processing; namely
phoneme verification and speaker verification.

With speech data it was also possible to investigate how the VMLPs
perform if they were used for a verification task with classes (i.e.
phonemes or speakers) which were not seen during the training.

Phoneme Verification

Features FeatnoCms as described in Appendix C.1 were extracted from
German words spoken by 4000 speakers and from French words spo-
ken by 3600 speakers. From these speakers, disjoint speaker sets were
formed as described in Appendix E.1. Within all sets vector pairs are
composed as described in Section 2.3.3. The German VMLPs were
trained with the vector pairs of SG,poly,4 and the training was stopped
when the verification error reached a minimum on the validation set
SG,poly,5 . The French VMLPs were trained analogously with SF,poly,4

and SF,poly,5 . The used VMLPs had one hidden layer with 140 neurons.
For the KNN experiments the validation sets SG,poly,5 and SF,poly,5 were
used to determine the best k and the training sets to do the actual clas-
sification.

For both languages tests were performed by assigning test vectors
either to group GS or to group GD as described in Section A.1. Intra-
language experiments were performed by using training, validation and
test data from the same language (e.g. SG,poly,4, SG,poly,5 and SG,poly,6).
In order to evaluate also the cross-language performance, the VMLPs
trained for a given language were also evaluated with the task of the
other language.
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Figure A.3: Frame pair phoneme verification rate for German test
frame pairs on the left and for French test frames pairs on the right.
The KNN verification is plotted as a function of the number of KNN
training vectors. Results with data and VMLPs from the same language
are in black, cross-language results in grey.

A comparison of the VMLPs and KNN in the intra-language ex-
periments (black line and black dots in Figure A.3) confirmed that the
VMLPs yielded results which are close to optimality in a Bayesian sense
even though the convergence of the KNN could only be guessed due to
the lack of a sufficient number of training vector pairs.

The cross-language KNN experiments (grey line in Figure A.3)
showed that the mismatch between the data of the two languages was
not very big since the performance was only slightly worse than on
data of the same language. Also the VMLPs used in a cross-language
scenario (grey dots in Figure A.3) were only marginally worse.
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Speaker Verification

We then looked at the verification of speakers, a task which was likely
to have a bigger mismatch between training and test data. The data
which we used for these experiments was split into three sets. Since
the speaker sets from the polyphone database were not suitable for
speaker verification experiments we had to use the three-digit database
which contains much less speakers. The speaker sets SG,digit,1, SG,digit,2

and SG,digit,3 were taken as training-, validation-, and test set, respec-
tively. The vector pairs were extracted as described in Section 5.2.4.
The KNN-verification converged quite slowly if the input vector pairs
were a simple concatenation of the two feature vectors pin = (x1,x2)
as also used for phoneme verification. Therefore we tested additionally
a coded version of the input vector pairs pin = (|x1 −x2|,x1 +x2) (see
[NP04] for details about this input coding). The used VMLPs had two
hidden layers with 70 neurons in the first and 18 in the second layer.
Here we used the features Featspveri as described in Appendix C.1.

The results are shown in Figure A.4. It can be seen that the KNN
verification error in function of the training set size decreased much less
steeply than in the experiments done with synthetic data and did not
even get as low as the verification error of the VMLP. This was possible
since the training and test set had some mismatch because the speaker
sets are disjoint. Here it could be seen very well that the KNN which is
based on coded vector pairs converged with much less training vectors.
The VMLP which used coded vector pairs was a bit worse however.

A.4 Concluding Remarks

We could show that the VMLPs have an optimal performance in the
Bayesian sense if data with the same distribution was used for training
and for testing. In experiments with unmatched data, in particular if
discriminating between speakers not seen in the training of the VMLP,
we could see that the VMLP rather learned to discriminate between
classes of a given task than the actual class distributions.



124 A Performance of Verification Multilayer Perceptrons

10
2

10
4

10
6

25

30

35

40

45

50

55

number of training vectors

fr
am

e 
pa

ir 
er

ro
r 

ra
te

 [%
]

 

 

Verification with KNN (input coding)
Verification with KNN (no input coding)
Verification with ANN (input coding)
Verification with ANN (no input coding)

Figure A.4: Frame pair speaker verification: The KNN error rates
decrease with increasing number of KNN training vectors. The error
rates of the VMLPs are shown as dots. The error rates for both, KNN
and VMLP are given for coded and uncoded input vectors.



Appendix B

Qualitative Experiments

with the Extended

Viterbi Algorithm

This appendix gives qualitative results of the algorithms which are
described in Sections 3.2.2 and 3.2.4 to provide an impression of the
result of the algorithms.

B.1 Automatic Phonetic Transcriptions

We estimated phonetic transcriptions of words from one or several ut-
terances of each word. For this we used a phoneme loop with penalties
as shown in Figure 3.2, i.e. a composite HMM which is a full connec-
tion of elementary HMMs which model the German phonemes. The
phonemes are listed in Appendix D.
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B.1.1 Automatic Transcriptions of Seven Words

The automatically generated transcription of the German names of the
weekdays are listed in Table B.1 along with the transcriptions from a
pronunciation dictionary ([DUD05]). The transcriptions are given as
they were determined from the individual three observation sequences
with the normal Viterbi algorithm and as they were determined from
the exact K-dimensional algorithm and its approximation from the
three available observation sequences.

In the transcriptions generated from individual observation se-
quences the words were often hardly recognizable. The transcriptions
which were generated from several observation sequences look much
more appropriate even though they were not completely identical to the
transcriptions from the pronunciation dictionary. Noteworthy is also
that the transcriptions from several observations often differed much
from any of the individual transcriptions. The transcription from the
approximate algorithm was not identical to the one of the exact al-
gorithm but both transcriptions looked similarly appropriate. More in
depth comparisons were made in Section 3.6.6.

B.1.2 Alignment of Three Utterances

In this example we have a particular look at the determination of the
sequence of phonemes which optimally describes three utterances of
the German word Montag (Monday) spoken by two female and one
male speaker. This example also demonstrates the alignment of the
phonemes with the signals as it is done by the exact K-dimensional
Viterbi algorithm. In Figure B.1 the signals of the three utterances are
plotted. In Figure B.1 a) the joint optimal sequence of phonemes for the
three signals is shown and the corresponding positions of the phonemes
is indicated with the vertical lines. In Figure B.1 b1) – b3) the optimal
sequences of phonemes for the individual signals are given.
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K-dim. approx K-dim.
Word

Viterbi
Viterbi Viterbi

pronunc.

1 Utterance 3 utterances 3 utterances
dictionary

moUlNpa<ik
Montag mUnntha:k mo:nnta:k mo:UnNta:k mo:nta:k

mo:mudva:gr
di:nsdapk

Dienstag djufda:k@ di:usdaa:k di:nstdaa:k di:nsta:k
t<sgi:Nstaha:k

PertvOxP

Mittwoch mi:tOx vItvOx vItvOx mItvOx
vItvox

rOo:spda:ks
Donnerstag duUloesta:k dOn@rsda:k dOUn@rsta:k dOn5sta:k

dOm@rssda:p
dva<irpda<uk

Freitag t<szva<iIkpdE:Erp fva<ita:k t<sfva<ita:k fra<ita:k
fva<ista:k
baUstha:t

Samstag ptanxdaa:k zaUnstPa:k zaUnstPa:k zamsta:k
zanstææa:k
fOUnpva:k

Sonntag tsvOUntaps zOUnta:pk zoUnta:pk zOnta:k
dOUnta<ua:pk

Table B.1: Automatically generated transcriptions of the German
names for weekdays. The results of the exact K-dimensional Viterbi
algorithm and its approximation as described in Section 3.2.4 are listed
along with the pronunciations determined from individual observation
sequences and the transcriptions from a pronunciation dictionary.
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Figure B.1: Optimal sequence of phonemes for three utterances of the
German word Montag.



Appendix C

Features

This appendix gives the detailed parameters of the features which were
used in this thesis in Section C.1. Investigations about the subtraction
of cepstral means are presented in Section C.2.

C.1 Feature Description

The main focus of this thesis was on different modeling approaches of
isolated word recognition and not on the evaluation of different features
for this task. Therefore we used features which are commonly known
to yield good results for speech recognition, especially in clean-speech
scenarios. We have decided to use Mel cepstral coefficients introduced
in [DM80]. Besides LPC cepstral coefficients they are probably the most
widely used features for speech recognition.

For two reasons we worked with three variants of Mel frequency
cepstral coefficients:

• In [Rey94] was shown that higher cepstral coefficients have a ben-
eficial influence for speaker verification. We could experimentally
confirm this result. Therefore we used more cepstral coefficients
for the speaker verification features Featspveri .
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• Very often the mean values of the cepstral coefficients are com-
puted for a signal and subtracted from the cepstral coefficients.
This compensates linear channel distortions. For the case of iso-
lated word recognition this can however be quite dangerous since
the signal which the cepstral mean can be computed from is small
(i.e. only the signal length of a word is available unless knowledge
of a wider context around the word is available). Therefore the
cepstral mean may contain phoneme-discriminating information
which should not be discarded. Whether the cepstral mean is
subtracted or not is therefore a tradeoff between channel com-
pensation and discarding of useful information. Experiments to
examine this issue are described in Section C.2.

We always used a short-time analysis with a window length of
37.5 ms and a window shift of 10 ms. All feature vectors were a con-
catenation of Mel frequency cepstral coefficients and their first temporal
derivatives. The parameters of all feature extractions are listed in Table
C.1.

FeatnoCms Featcms Featspveri

preemphasis coefficients -0.9
window Hamming

Mel scale break frequency 700 Hz
number of filters 24 24 34
used coefficients 0–12 1–16

total vector length 26 32
cepstral mean subtraction no yes

Table C.1: Parameters of the used feature extractions.

C.2 Investigation of Cepstral Mean Sub-

traction

For the reasons explained in Section C.1 we tested whether the subtrac-
tion of the cepstral mean values is beneficial for isolated word recogni-
tion.
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Speaker-dependent and cross-speaker experiments for French and
German were performed according to tasks 1, 2, 4 and 5 as defined
in Appendix E.1. Since these tasks all involve mostly short words we
performed additional experiments with German three-digit numbers
(tasks 7 and 8) since the cepstral means can be estimated more reliably
from these utterances which are on average 1.5 s long.

The DTW recognizer described in Chapter 2 was based on the Eu-
clidean distance measure. The HMM recognizer described in Section 3
used abstract acoustic elements AWordConstrain of the target language
as described in Section 3.5.3.

DTW HMM
word type

no CMS CMS no CMS CMS
long German 85.8 97.8 97.8 99.2

speaker-
short German 86.6 86.5 93.5 84.4

dependent
short French 67.5 67.1 86.6 72.7

long German 72.3 89.2 93.5 96.9
cross-

short German 62.1 65.1 86.3 72.3
speaker

short French 49.7 51.3 80.6 63.1

Table C.2: Feature evaluation. The recognition rates in % for different
languages and scenarios are listed for features which have the cepstral
mean subtracted (CMS) and features which don’t (no CMS). Results
are given both for a DTW recognizer and a HMM recognizer.

The results are listed in Table C.2. Two major differences can be
observed: one between long and short utterances, the other between
DTW and HMM recognizer. The difference between long and short
utterances comes with no surprise since the cepstral means can be es-
timated much more accurately on a longer speech segment. Therefore
the benefit from the channel compensation dominated over the informa-
tion loss for longer words. It should also be noted that in the database
used for the longer utterances one single user used different telephones
whereas in the database used for short utterances one speaker used only
one telephone. Therefore there was no channel mismatch for the short
utterances in the speaker-dependent experiments.
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The difference between DTW and HMM recognizer is more interest-
ing. It seems that the channel mismatch had a big impact on the DTW
recognizer. The channel mismatch could be dealt with much better by
the GMMs used in the HMM approach. This is probably an effect of the
temporal derivatives present in the used feature vectors. These deriva-
tives are also free of linear channel distortions because of the logarith-
mization in the calculation of the Mel frequency cepstral coefficients.
These derivatives may be more efficiently exploited by appropriately
trained GMMs than by a distance measure.

Since utterance durations in the order of the ones in the tasks
for short utterances are much more realistic we performed all other
isolated word recognition experiments in this thesis with the mean-
uncompensated features FeatnoCms .



Appendix D

Transcription-based

Recognizer and Used

Phonemes

This appendix briefly describes the phoneme model inventories and the
transcription-based recognizer which were used in this thesis.

D.1 Phonemes

Every phoneme was modeled with a linear three-state HMM. The ob-
servation probability density function of each state was modeled with 32
Gaussian mixture components. The Gaussians were parameterized with
the weights, the mean vectors and diagonal covariance matrices. Every
phoneme was modeled independently of the context, i.e. the models
were monophones.

The phoneme models for both French and German were trained
on the respective Polyphone databases (cf. Appendix E.1.1). The pho-
netic transcriptions were automatically generated from the available
orthographic annotations and a pronunciation dictionary. The models
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were initialized with a flat start. The training was then continued with
Viterbi training (cf. Section 3.4.2). The number of mixture components
in each GMM was iteratively doubled until the final 32 mixture com-
ponents were reached. For every number of mixture components the
expectation maximization process was iterated four times, except for
32 mixture components where it was iterated nine times. Except for
the very beginning of the training additional silence models were in-
serted at the beginning and at the end of the sentences and models for
optional pauses were inserted between the words. No transition proba-
bilities were used in the recognizer.

D.1.1 Phoneme Model Inventories

The list of phoneme models used in this work is given in Table D.1.

German @ ç E E: [ç|g]1I N O O
<
y S U Y a a: a<i

a<u b d e e: f g h i i: j k l m n o o:

ø ø: p P r s t t<s u u: v x y y: z
French S a (@) d E ø j Z y Ẽ u ã k g E: t e ñ

i: P v s 4 œ̃ b a: z Õ w @ f i n O

œ m l p ö o

Table D.1: List of used phoneme models designated with IPA symbols.

D.2 Transcription-based Recognizer

Every word of the isolated word recognizer was modeled with a sequence
of phonemes according to a pronunciation dictionary. We have used only
one pronunciation per word since the systems which we compared the
recognizer with also used only one pronunciation per word.

1Phoneme model which is used for words with the canonical ending [ç]. This
phoneme model accounts for the very common speaking variant of Swiss speakers
who often pronounce this ending as [g].
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Test Data and Tasks

This appendix gives a detailed description of the experimental data
used in this thesis and the speaker subsets which were created from it
in Section E.1. The test tasks for isolated word recognition experiments
in various sections of the thesis are described in Section E.2.

E.1 Used Databases

E.1.1 Polyphone Database

The Swiss German and Swiss French Polyphone databases ([PSG],
[PSF]) were recorded in the German- and French-speaking part of
Switzerland, respectively. Both databases were recorded over various
telephones including a few mobile phones. We used recordings from
4000 speakers of the German database and from 3600 speakers of the
French database. Each speaker was recorded in a single session over a
single telephone.

The polyphone databases are available as one utterance per file
with orthographic annotations. The utterances have different content
types. Some contain single words, but most contain several words (e.g.
complete sentences, sequences of numbers or proper names and their
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spellings). The Swiss German database contains totally 130500 utter-
ances and the used part of the Swiss French database contains totally
167328 utterances.

The polyphone database was not originally designed to perform
tests which need several utterances of the same word spoken by
a single speaker. To build the utterance-based vocabularies for the
speaker-dependent and cross-speaker scenarios this was however re-
quired. Therefore only those speakers who had enough utterances of
at least ten words could be used for the tests in the speaker-dependent
and cross-speaker scenarios.

To train the abstract acoustic elements and to train the verifica-
tion multilayer perceptrons several utterances of the same word were
needed from the speakers of the training speaker-set. The number of
utterances available from each word depended very much on the word.
Some words (e.g. digits) were very frequent while from other words only
one utterance was available.

Since the word positions are not given in the polyphone databases
we used forced alignment to extract the words from the databases. This
may have led to a few not very precise word boundaries.

Data Sets

Several speaker subsets were formed from the whole speaker population
according to Table E.1. The first three speaker subsets of each language
were mutually disjoint and also the last three sets were mutually dis-
joint.

E.1.2 German Three-Digit Numbers Database

Signals containing 15 different natural numbers spoken in German were
recorded by our laboratory. All numbers had three digits (e.g. 398 -
dreihundertachtundneunzig). The recordings from the various speak-
ers were recorded over telephone line in several sessions. The speakers
had to use various telephones including mobile phones. The utterance
boundaries were manually corrected. The utterances had an average
length of about 1.5 seconds.
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German French
number of number ofpurpose name
speakers

name
speakers

training SG,poly,1 3000 SF,poly,1 2400
validation SG,poly,2 500 SF,poly,2 600

test SG,poly,3 500 SF,poly,3 600

training SG,poly,4 1500 SF,poly,4 1500
validation SG,poly,5 1500 SF,poly,5 1500

test SG,poly,6 1000 SF,poly,6 600

Table E.1: List with the names of the different speaker sets derived
from the polyphone database and the number of speakers in each set.

Data Sets

Several speaker sets were formed from all speakers of the German three-
digit numbers database. These sets are listed in Table E.2. The speaker
sets SG,digit,1, SG,digit,2 and SG,digit,3 were disjoint.

number of
purpose name

speakers
gender

training SG,digit,1 26 male
validation SG,digit,2 10 male

test SG,digit,3 13 male

test SG,digit,4 25 male & female

Table E.2: List with the names of the different speaker sets and the
number of speakers in each set for the three-digit numbers database.

E.2 Test Tasks for Isolated Word Recogni-

tion

For the test tasks described below either reference patterns (in the
case of a DTW-recognizer) or word models (in the case of a HMM-
recognizer) are necessary. For convenience reasons we denote both of
them word models in this section.
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We used speaker-dependent, cross-speaker and speaker-independent
scenarios both for German and French. This resulted in six main tasks.
Additionally there were two tasks for speaker-dependent and cross-
speaker scenarios with longer German words (three-digit numbers).

• German tasks: For the German tasks 835 vocabularies were
formed by randomly choosing ten words from a pool of mostly
short German words. For every vocabulary several words were
chosen as test words. The utterances from which the word mod-
els in the vocabulary were formed and the utterances used for
each test word were chosen according to the scenario as described
below:

– Task 1 – speaker-dependent: The word models of each vo-
cabulary were formed from utterances of one speaker. The
vocabularies were formed for 64 speakers of the SG,poly,3

speaker set. The test utterances were chosen from the same
speaker as the vocabulary utterances. Totally 7885 tests were
performed.

– Task 2 – cross-speaker: The vocabularies with the same word
models as in task 1 were used. Now the utterances for the
test words were however taken from other speakers than the
speaker whom the vocabulary utterances are from. Totally
23655 tests were performed.

– Task 3 – speaker-independent: The word models of each vo-
cabulary were formed from utterances of randomly chosen
speakers of the SG,poly,3 speaker set except from speakers of
the test utterances. The same test utterances as in task 2
were used. Therefore also here 23655 tests were performed.

• French tasks: For the French tasks 1882 vocabularies were formed
by randomly choosing ten words from a pool of mostly short
French words. For every vocabulary several words were chosen
as test words. The utterances from which the word models in the
vocabulary were formed and the utterances used for each test
word were chosen according to the scenario as described below:

– Task 4 – speaker-dependent: The word models of each vo-
cabulary were formed from utterances of one speaker. The
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vocabularies were formed for 465 speakers of the SF,poly,3

speaker set. The test utterances were chosen from the same
speaker as the vocabulary utterances. Totally 33371 tests
were performed.

– Task 5 – cross-speaker: The vocabularies with the same word
models as in task 4 were used. Now the utterances for the
test words were however taken from other speakers than the
speaker whom the vocabulary utterances are from. Totally
66742 tests were performed.

– Task 6 – speaker-independent: The word models of each vo-
cabulary were formed from utterances of randomly chosen
speakers of the SF,poly,3 speaker set except from speakers of
the test utterances. The same test utterances as in task 5
were used. Therefore also here 66742 tests were performed.

• German tasks with long words:

– Task 7 – speaker-dependent: Word recognition experiments
were performed for 25 speakers taken from the SG,digit,4

set of the three-digit numbers database. For every speaker
around three vocabularies were formed by randomly choos-
ing ten number words. Every vocabulary was tested with ap-
proximately 70 numbers spoken by the same speaker. This
resulted in a total of 5037 performed tests.

– Task 8 – cross-speaker: Word recognition experiments were
performed for 25 speakers taken from the SG,digit,4 set. For
every speaker four vocabularies were formed by randomly
choosing ten number words. Every vocabulary was tested
with approximately 110 number words spoken by each of the
other 24 speakers. This resulted in a total of 98440 performed
tests.

In order to provide an impression of the words occurring in the test
tasks we give random extracts from the word lists of all test tasks in
Table E.3.
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language tasks sample words

aber, auf, das, des, eine,

ende, ich, kann, lina, mit
German 1, 2, 3

nicht, null, raute, sechs, sie,

siebzehn, uhr, was, wiederholen, zurück

accent, anna, bien, cent, comme,

deux, espace, grave, inconnu, madame,
French 4, 5, 6

millions, nous, point, quoi, seize,

société, tiret, trait, vous, école

siebenhundertvierzehn,
German 7, 8

sechshundertsiebenundzwanzig

Table E.3: Sample words from all test tasks.
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