
ETH Library

Are travel surveys a good basis
for EV models? Validation of
simulated charging profiles against
empirical data

Journal Article

Author(s):
Pareschi, Giacomo ; Küng, Lukas ; Georges, Gil; Boulouchos, Konstantinos

Publication date:
2020-10-01

Permanent link:
https://doi.org/10.3929/ethz-b-000424593

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Applied Energy 275, https://doi.org/10.1016/j.apenergy.2020.115318

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-7678-1558
https://orcid.org/0000-0002-5262-4398
https://doi.org/10.3929/ethz-b-000424593
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.apenergy.2020.115318
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Are travel surveys a good basis for EV models? Validation of simulated
charging profiles against empirical data
Giacomo Pareschi⁎, Lukas Küng, Gil Georges, Konstantinos Boulouchos
Aerothermochemistry and Combustion Systems Laboratory, ETH Zürich, Sonneggstrasse 3, 8092 Zurich, Switzerland
Swiss Competence Center for Energy Research on Efficient Technologies and Systems for Mobility, Zurich, Switzerland

H I G H L I G H T S

• Current travel surveys can describe
the mobility behaviour of EVs.

• Plug-and-charge schemes cause a high
evening peak load at home.

• Charging profiles mostly depend on
charging power, efficiency and battery
size.

• Drivers’ decision to charge is similar
throughout different empirical con-
texts.

• Charging behaviour is stochastic and
dependant on EVs’ state of charge.
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A B S T R A C T

The impending uptake of electric vehicles (EV) in worldwide car fleets is urging stakeholders to develop models
that forecast impacts and risks of this transition. The most common modelling approaches rely on car movements
provided in household travel surveys (HTS), despite their large data bias towards internal combustion engine
vehicles. The scientific community has long wondered whether this characteristic of HTSs would undermine the
conclusions drawn for EV mobility. This work applies state-of-the-art modelling techniques to the Swiss national
HTS to conclusively prove, by means of validation, the reliability of these commonly used approaches. The cars
tracked in the survey are converted to EVs, either pure battery or plug-in hybrids, and their performance is
simulated over 4 consecutive days randomly sampled from the survey. EVs are allowed to charge at both re-
sidential and public locations at an adjustable charging power. Charging events are determined by a finely
calibrated plugging-in decision scheme that depends on the battery’s state of charge. The resulting charging
loads corroborate the validation, as these successfully compare with measurements obtained from several EV
field tests. In addition, the study includes a sensitivity analysis that highlights the importance of accurately
modelling various input parameters, especially EVs’ battery sizes and charging power. This work provides
evidence that conventional HTSs are an appropriate instrument for generating EV insights, yet it adds guidelines
to avoid modelling pitfalls and to maximise the simulation accuracy.
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1. Motivation

The battle against climate change is pressing, and countermeasures
must be deployed at a higher rate than ever before. Cutting CO2
emissions is one of necessary key mitigation strategies [1]. Road
transportation plays a vital role in this process since it accounts for 18%
of total energy-related CO2 emissions worldwide [2]. Different inter-
ventions — hybridisation, mode shift, autonomous driving — can
contribute in alleviating CO2 intensity of road transportation and only
an interplay between them is likely to achieve the desired target. A
major boost to achieve near-term climate objectives will come from
electric light-duty vehicles (EVs) [1,3]. Contrary to other examples, the
introduction of EVs is one of the few strategies which is judged on track
to meet the 2025 interim benchmarks that are likely to keep global
warming below 2° [3]. This progress is also confirmed by the sub-
stantial penetration of EV models in several developed countries [4].

As with every novelty, the introduction of EVs poses questions and
challenges to various stakeholders of society, from policy makers to
distribution system operators (DSO) and consumers. Particularly urgent
is the call for estimations of future charging profiles (CP), i.e. the hourly
electricity loads triggered by charging EVs. Their importance stems
from their pivotal role as energy interface between the mobility and
electricity sectors. In order to construct CPs, researchers have pursued
two paths:

• public trials [5–10], where scientists provide the participants with
actual EVs and charging stations (CS); researchers can then track
EVs, measure current flows and extract any other measurable in-
formation;
• simulation models [11,12], where scientists design a digital trans-
portation system that aims at emulating the real peer; researchers
then have easy access to all data that are captured by the model, but
the reliability of the simulations is always disputable.

Some studies employ a mixture of the two above procedures, for
instance by grounding a model on data extracted from an EV trial
[13–17]. The direct collection of information from users driving actual
EVs certainly ensures the reliability of the acquired data. Their re-
presentativity is, however, more doubtful as the trials are necessarily
limited in size, geography and demographics [8,9,18,19]. On the other
hand, models can be designed in order to represent an arbitrary sce-
nario, with customised demographics and geography. The model cap-
ability of capturing the real behaviour of EVs is, nevertheless, open to
question.

The goal of this paper is to prove the possibility of building a
methodology that takes the best of the two worlds, simulations and
empiricism. This is achieved in the archetypal scientific way: by
building a representative model with broad applications and validating
it through trial-specific field measurements. The main purpose of the
model is the construction of CPs, which will thus serve also as mean of
comparison in the validation.

In the two following sections we provide a deeper dive into the
topic, specifically:

• Section 1.1 details the types of models commonly used to describe
the movements of cars and explains the choice made in this study;
• Section 1.2 presents an overview of current research that employs
similar models to this study.

1.1. Types of EV models

A full overview of the existing models dealing with EVs usage is
provided in [20]; following the classification there introduced, the
model categories that better address the short-term interaction with the
charging infrastructure are the so-called “Activity-based models” (ABM)
and “Direct use of observed activity-travel schedules” (DUOATS). As

their names suggest, both types of models rely on an activity schedule,
which is assumed to be the fundamental principle behind the movement
of people. In these models, people drive their EVs from a destination to
another depending on their activities and they charge their batteries
whenever they stop at a location equipped with a charging station (CS).
CPs are thus the natural results of the interplay between the EV drivers’
routines and the available charging network.

The core difference between ABM and DUOATS is the flexibility in
building the activity-travel schedule: ABMs generate the schedule en-
dogenously while optimising for specific key indicators, such as costs or
travelling time; in contrast, DUOATS models employ an external ac-
tivity-travel schedule, previously derived and not adjustable by the
model. Typical activity-travel schedules used for DUOATS models are
household travel surveys (HTS), national inquiries about the movement
of people during one or multiple days. On one hand, HTSs usually
contain enough entries to make robust and representative conclusions
from the model; on the other hand, HTSs are performed on the general
population without filtering for EVs, and are mostly composed of con-
ventional cars. Therefore, HTSs may not reliably report the actual ac-
tivity-travel schedule of potential EV drivers, but this entirely depends
on future usage of EVs compared to current cars.

Yet, ABMs enjoy considerably more degrees of freedom and can
potentially account for any distortion, such as mode shift of long trips
or activities adjustments to accommodate longer charging. This flex-
ibility can however be obtained only through a rich model, with mul-
tiple parameters and levers that emulate people’s behaviour and the
decision process behind the allocation of activities and trips. While this
approach is in principle feasible and has been attempted [11,12], it
poses serious challenges to the modeller. Furthermore, the complexity
of such models introduces concerns in terms of reproducibility. On the
contrary, DUOATS models directly follow from the realised outcome of
people’s decision process and they implicitly enclose all the complexity
of human mobility behaviour. With the major drawback being that
conventional cars are used. While some studies observe that range an-
xiety may impact the driving routine of EV users [21–24], others find
this alteration not to be particularly significant, especially after longer
driving experience [25–28]. This study employs empirical validation to
conclusively prove that HTS-based DUOATS models can generate ac-
curate CPs.

1.2. Usage of DUOATS models in literature

Our efforts to prove the validity of DUOATS models derives also
from the remarkable success that they enjoy in literature. A typical case
of DUOATS is given in [29,30], where the authors gather travel in-
formation of 877 candidates through online surveys and derived CPs
based on different charging scenarios.

But the majority of DUOATS models relies on HTSs: Refs. [31,32]
build HTS-based CPs and compare the results for different socio-spatial
groups; while [33] uses the CPs to estimate the impact on the grid’s
substations. Refs. [34,35] provide more comparative analyses by
building CPs from different European HTSs and conclude that, although
some differences between countries exist, the biggest impact comes
from assumptions on charging opportunity and behaviour. These as-
pects are thoroughly investigated in the sensitivity analysis included in
this work.

Several researchers choose to describe the variable nature of private
mobility through a stochastic formulation of their models. Ref. [8]
derives CPs from the American HTS and then randomly samples some of
those CPs from a selected pool of drivers. But the majority of works
incorporates stochasticity by firstly deconstructing the HTS to its ele-
mentary variables - such as travelling times or mileage - and then re-
structuring the gathered information to obtain CPs. Refs. [14,36] ex-
tract univariate distributions of the necessary quantities (distance
driven and parking times) and sample from these individual charging
events. Refs. [37,38] recognise the importance of maintaining the
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interdependent structure linking those quantities and build charging
events by conditionally sampling the necessary variables. Refs. [39,40]
model the multivariate nature of mobility by employing copula func-
tions: Ref. [39] then performs a Monte Carlo simulation, while [40]
shows the effectiveness of using queueing theory to model CSs. Ref.
[41] preserves the interdependency between travelling times and trip
lengths by training artificial neural networks on the American HTS. The
trained model is then used by a local aggregator to forecast EV travel
behaviour and minimize the total cost of charging. Finally, some studies
use the disaggregated information of the HTS to build new randomness-
rich activity-travel schedules upon which they adopt conventional
DUOATS models: Ref. [42] employs a Naive Bayes model, while
[43–45] opt for Markov-chain simulations.

These last studies place a lot of emphasis on building a methodology
that can capture the stochastic behaviour of private mobility; some of
them also present a validation of such methodology against the original
HTS [13,40,42,43]. While this verification is important, there is evi-
dence that a big source of uncertainty concerning EVs’ mobility is the
charging behaviour of drivers [46]. However, most studies simplify this
feature by either imposing a constant number of recharges per day
(usually one [47]), or by assuming that EVs will be charged at every
possible opportunity [48]. A more elaborate approach is proposed in
[8,34], where the authors attempt to emulate charging decisions by
introducing a time-dependent charging probability. Similarly, Ref. [13]
uses the journey number of the day as proxy for the location of the
vehicle, hence of its probability to charge. Other studies follow the
recommendation of [46] to model the interaction between the EV
driver and the battery’s state of charge (SOC): Refs. [39,47,49,50] use
fixed thresholds of SOC below which the drivers always decide to
charge their EVs, while [43] introduces a SOC-dependent probability of
charging that follows a logistic function. Ref. [51] proposes an ad-
vanced charging decision scheme that combines some of the above
criteria with the cost of charging and the maximum rechargeable en-
ergy.

The present study assumes the availability of a conventional ac-
tivity-travel schedule: it can be a raw or post-processed HTS, the out-
come of a survey or a trial or an intermediate result of an ABM. The
driving behaviour is thus taken as is, and no trip generator is developed.
Rather, the focus of the modelling effort is on the inclusion of EVs’
characteristics in those fixed patterns from the technical perspective
(energy consumptions of EVs) to the behavioural one. Any model
aiming at describing EVs’ mobility should undergo a validation that
captures both the simulation of car movements and the modelling of
EVs’ characteristics: CPs are the ideal candidates for this task and are
accordingly chosen as exemplary goal of this work. However, we
showed that most studies solely validate the trips generation, hence
coming short of a comprehensive assessment. Very few works effec-
tively present a comparison between CPs measured in a public EV trial
and CPs built from a HTS. Ref. [14] compares CPs measured in a large
EV trial in the UK [5] with the CPs built either from raw data of the trial
itself or from the British HTS. The comparison predictably favours the
CPs built from the trial itself, but also the HTS performs well, for in-
stance by returning the same peak demand. However, the focus on the
trial of the study did not allow space for refined DUOATS modelling of
the HTS, and few adaptations would have improved the HTS’s score.
Researchers in [8] validate their DUOATS model from the American
HTS against a small demonstration project in Austin, Texas. The quality
of the comparison is remarkable although they employ normalised CPs
and thus cannot assess the peak demand accuracy. Finally, although no
HTS is employed, Ref. [13] compares the CPs obtained either by di-
rectly using data from an Irish EV trial [10] or by processing them with
a refined stochastic model.

1.3. Outline of this study

This study presents the first systematic and quantitative validation

of HTS-derived CPs, which are used as proxy for the performance of the
entire procedure. The lack of previous quantitative assessments does
not make comparisons with other works possible, but the new metrics
allow the realisation of a comprehensive sensitivity analysis of the re-
sults. The quantification of the errors allows to understand which
parameters impact the results the most and which should be paid at-
tention to. The sensitivity analysis highlights the crucial role of char-
ging behaviour hence supporting its accurate modelling. The model
construction and all analyses were carried out with Python 3.5.

The paper is structured as follows. Section 2 presents the con-
struction of the DUOATS model, from the cleaning of the HTS to the
simulation of EVs mobility. Chapter 3 contains the results of this paper,
including the validation of the methodology and the sensitivity analysis
of the most important parameters. Finally, Section 4 summarises the
most relevant findings and provides insights for future research. The
potential applications of the designed model can in principle be spread
out to include environmental and economic implications.

2. Methodology

This chapter is a step-by-step guide for the development of a CP-
tailored model from a raw HTS. This process is split in two parts:

• Section 2.1 introduces the HTS used in this work together with a few
preprocessing steps that should be considered before feeding a raw
HTS to a DUOATS model;
• Section 2.2 describes the DUOATS model used in this study, from
the technical assumption concerning EVs design to the modelling of
charging behaviour.

2.1. From HTS to usable activity-travel schedule

This study builds on the 2015 outcome of the Swiss HTS, the
Mikrozensus Mobilität und Verkehr (MZMV), carried out by the Swiss
Federal Statistical Office (FSO) every 5 years [52]. The survey collected
one day of travel information of 57,090 people, i.e. about 0.7% of the
Swiss population [53]. The size of MZMV and the inclusion of a thor-
ough weighting procedure allow the results to be representative for the
whole Swiss population and for several subgroups (e.g. for different age
groups or geographical areas). This HTS also fulfils most of the re-
quirements that [54] considers crucial for effective investigations of
EVs-infrastructure interaction. The only feature that MZMV lacks is the
reporting of multiple days of travel information. Section 2.2.3 presents
the specific strategy adopted to emulate multi-day mobility.

MZMV records include all relevant details for every single move-
ment, which is here defined as stage: places of origin and destination,
times of departure and arrival, mean of transport, purpose of the trip
and many others. Specifically, temporal information comes with 1 min
resolution, which is more than sufficient for the modelling of CPs.
However, some aspects of the survey do not align with the inputs
needed by a DUOATS model and we accordingly introduce the fol-
lowing preprocessing steps:

• conversion of the participants stages into car movements;
• attenuation of the human bias in the travelling times reported by the
respondents;
• categorisation of car locations by place functionality (e.g. home,
workplace, etc.).

2.1.1. From movement of people to movement of cars
MZMV, like many other HTSs, provides the daily movements of

people; the standard procedure to extract movements of cars is to link
together all and only the stages where the interviewed participant
drove the same car. While this is a good first approximation, it leaves
out any other movement where the car was driven by a person other
than the respondent. The best approach to include these additional
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stages is given by [55], where the authors use information about the
other driving-license-holders of the same household to sample new car
stages. Unfortunately, MZMV does not provide the same details as the
HTSs employed in [55] and their approach is not strictly replicable.

However, MZMV reports all the stages where the respondent was a
car passenger. If that car was also driven by the surveyed person on the
same day, these passenger stages are added to the overall car move-
ments of the day. Fig. 1 shows, on a logarithmic scale, the quasi-log-
normal distance distribution of daily car trips [56–58]. The inclusion of
passenger stages to the cars’ mileage slightly shifts the distribution to
the right, i.e. towards longer trips. Specifically, both the average and
median daily distances increase by 4%. The overall procedure returns
23,434 one-day car trips, with an average distance of 48.7 km. It is
important to highlight that these and all subsequent figures refer only
to the active cars, i.e. cars that were used at least once on the interview
day. For reference, the share of non-mobile cars on a given day is about
30% of the overall stock. A derivation of this estimate is provided in
Section 1 of the supplementary material (SM).

Algorithm 1
Shift of departure and arrival times.

1: for i in trips do
2: = tresolution GCD( )i depraw ,

3: for k in [60, 30, 15, 10, 5, 1] do
4: if =kresolution bmod 0raw then
5: = kresolution
6: exit for loop
7: end if
8: end for
9: = t tshift min( [1: end] [0: end 1])i dep i arrmax , ,

10: =shift min(shift , resolution/2)max max
11: sample X ~ ( 1, 1)
12: = Xshift truncate( ·shift )max
13: = +t t t t( , ) ( , ) shifti dep

new i arr
new

i dep i arr, , , ,

14: end for

2.1.2. Smoothening of HTS reported times
Most of the fields in HTSs are directly filled with the respondents’

answers. This is particularly the case for travelling times, which people
tended to report rounded to the hour, half hour and quarter hour. Only
few authors have acknowledged the problem and have proposed solu-
tions to offset this distortion [8,59,60]. This work employs Algorithm 1
to reduce the bias and realistically disperse departure and arrival times.
GCD computes the greatest common divisor and t t,i dep i arr, , are the

vectors of departure and arrival times for the ith trip. We start from the
assumption that every respondent had an inner time resolution and thus
reported travelling times rounded to that resolution (line 2 in Algorithm
1). The share of participants with a given time resolution is plotted with
× in Fig. 2. We separate departure from arrival times since the reported
arrival times come with much finer precision than departure times. The
likely reason for this is that respondents thought more in terms of trip
duration, hence adding the latter to the departure time to estimate the
arrival time. Overall, about 80% of respondents reported departure
times with a resolution of 5 min or coarser. Following our approach, we
can assume that the actual trips may have occurred at any moment
falling within the respondents’ time resolution around the reported
times. Therefore, more diversity can be introduced by randomly
shifting travelling times within their time resolution (lines 11, 12). We
can also reasonably assume that respondents tended to round only to 5,
10, 15, 30 and 60 min and we accordingly reduce the set of possible
resolutions (e.g. trips with apparent resolutions of 20 or 90 min are
assigned resolutions of 10 or 30 min respectively; lines 3 8). In order
to maintain the original logistic structure of the trips, all daily move-
ments of a trip are shifted by the same amount (line 13) and no shifted
stage should overlap with the non-shifted neighbouring stages (lines 9,
10). The resulting time resolutions of trips are depicted with • in Fig. 2.
Both distributions steadily improve, and arrival times exhibit time re-
solutions finer than 6 min for more than 80% of trips. This is crucially
important to obtain sparse parking times, hence smoother CPs.

2.1.3. Classification of cars locations
HTSs do not necessarily report place of origin and destination in the

format desired for simulating EVs. The final configuration of origins
and destinations depends on the specific purpose of the EV model. CPs
are usually presented, both when extracted from trials or built from
DUOATS models, in an aggregated fashion by location function. Typical
examples are CPs at private houses or at workplaces. MZMV does not
readily provide these types of locations, but it gives the purpose of each
stage. This information allows the construction of effective activity-
travel schedules, where car movements alternate with parking periods
at specific functional locations. Fig. 3 shows the result when all 23,434
car trips are converted into activity-travel schedules. The diagram de-
picts the parking locations of all active cars during an average day of
the year. Importantly, MZMV is also representative for single days of
the week, allowing to capture the typically different mobility beha-
viours between weekdays and weekends [10,17,61,62]. Some examples

Fig. 1. Probability distribution functions of daily distance driven by car. The
logarithmic scale on the x-axis makes the distributions look approximately
Gaussian given their quasi-log-normal natural shape.

Fig. 2. Probability mass function of the time resolutions used by respondents
while reporting travelling times. Time resolutions belonging to less than 1% of
respondents are not shown for clarity. Clear peaks at 1 and 5 min are visible for
both departure and arrival times.
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of car locations’ distributions on specific days of the week are presented
in Section 2 of SM.

The portion of actively mobile cars is depicted by the Road and
Highway shares and is almost always lower than 10%: EVs would thus
have, in principle, plenty of time to charge while parked somewhere.
The human bias in the reported departure times is still slightly visible in
the Road segment, but more aggressive shifting procedures could jeo-
pardize the original information; moreover, the CPs-relevant arrival
times exhibit adequately smooth behaviour.

Rush hour is reached at the end of the working schedule, between 5
p.m. and 6 p.m., and it is followed by a quick increase of vehicles
parked at Home: these concurrent events will trigger a considerable
demand for electricity at home CSs. The other major opportunity for EV
charging is at Work, where the share of vehicles parked in the mornings
and afternoons reaches 40% on working days (see Section 2 of SM).
However, the morning commute to work exhibits even more synchro-
nised behaviour than the afternoon one and it could trigger, when not
managed, an increasingly demanding load. The Public share clusters
together all undefined locations, while the Public Transport Station
portion represents the times when the driver transfers from car to
public transport. Finally, evening CSs at leisure sites like Food & Drink
and Sport Facility may represent interesting business models, but would
not dramatically impact the system.

The above steps convert the Swiss HTS into a well-designed activity-
travel schedule that can be employed in a DUOATS model to simulate
the behaviour of EVs.

2.2. EV model

The activity-travel schedule provides one day of travelling in-
formation of 23,434 conventional cars. The task of the EV model is to
return the CPs that those cars would produce if they were EVs. The
model is thus structured according to Fig. 4, with the activity-travel
schedule being converted to an EV-rich scenario where:

• the stock of active vehicles becomes massively electrified with
widespread adoption of EVs;
• several locations offer the possibility of charging the EVs.

The first feature is addressed by a set of assumptions regarding the
fleet composition in the activity-travel schedule. Thus far we have
discussed EVs without differentiating between battery electric vehicles
(BEV) and plug-in hybrid electric vehicles (PHEV). The reason for this is

that the first part of the methodology concerns the construction of a
database of trips and movements regardless of the powertrain.
However, the following chapters treat the operation of the vehicles, and
there the differences between BEVs and PHEVs play a crucial role.
Further details regarding the powertrain scenario and the EVs’ technical
characteristics are described in Section 2.2.1.

The second required input is a set of assumptions concerning
availabilities and power levels of CSs at different locations; further
details are provided in Section 2.2.2.

This framework allows the EV model to be considered as black box,
which for a given EV-rich scenario returns a full description of EVs
behaviour and CSs loads. Such a flexible and lean formulation allows
for agile validations against EV trials from different contexts and for
compact sensitivity analyses.

Charging costs are not included in the current model. As described
in Section 2.2.2, EV drivers are assumed to make charging decisions
based on CS availability and range sufficiency. The cost of charging
should be included in future specific works since it requires careful
calibration of the EV drivers’ elasticities and the monetization of range
anxiety.

The following chapters provide the functioning principles of the
DUOATS model:

• Section 2.2.1 details the powertrain scenario and the modelling of
EVs while driving;
• Section 2.2.2 deals with the charging scenario and EVs’ interaction
with CSs; this includes the modelling of the charging behaviour of
EV drivers;
• Section 2.2.3 explains how the EV model is run while taking into
account multi-day mobility.

2.2.1. Vehicles design and energy consumption
The powertrain scenario is represented by a portfolio of vehicle

segments with each share defined by:

• powertrain design, which can be ICEV, PHEV or BEV;
• nominal battery size expressed in kWh, if powertrain is BEV or
PHEV.

The useful energy content of batteries is assumed to be 80% of the
nominal value [63]. The SOC of EVs spans from 0% (empty) to 100%
(fully charged), where both figures refer to its useful capacity. The
designed powertrain scenario allows the simulation of mixed fleets with

Fig. 3. Car locations and activities during an average day of the year. Only cars which are used at least once during the day are included.
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multiple {powertrain, battery size} segments. However, the vehicles in
the same fleet segment are not equal. We adopt the “intervention”
concept from [63], where the status quo vehicles from MZMV undergo a
conversion of the powertrain without affecting the car body. This ap-
proach reflects the idea that a person would buy an EV equivalent to
their current car. This decision is also supported by statistical evidence
that heavier cars tend to drive further than lighter ones, as reported in
Section 3 of SM. In order to preserve this relation, each MZMV pair
{status quo car, trip} is never split apart in the model.

Before starting the simulation, we randomly assign a vehicle design
{powertrain, battery size} to each MZMV entry {status quo car, trip}.
The probability for a {status quo car, trip} pair to be assigned a {pow-
ertrain, battery size} segment is proportional to the segment’s share in
the powertrain scenario. The resulting powertrain mix of the MZMV
entries mirrors the input powertrain scenario. Further details on the
random assignment are provided in Section 4 of SM.

The new {status quo car, powertrain, battery size} vehicle is mod-
elled according to the design rules of [63]. Each car is characterised by
a kerb weight which is a function of the glider’s mass of the status quo
vehicle and of the newly installed powertrain:

= +m m mstatus quo
kerb glider powertrain

new

However, the vehicle’s energy consumption depends on the actual mass
of the vehicle, which includes the weight of the passengers aboard
during each stage of the trip:

= +m m m ·occupancyactual kerb passenger

The specific electricity consumption at the battery output [kWh/km] is
computed as in [63] starting from the computation of the wheel energy
demand on the Worldwide harmonised Light vehicle Test Cycle
(WLTC). This estimation of the energy demand is primarily influenced
by the actual vehicle’s weight mactual. The converters’ efficiencies are
then discounted by means of the empirically-derived Willans-line,
which depends solely one the powertrain technology [63]. Finally the
real-world energy factor 1.28 from [64] is applied to obtain the actual
electricity consumption on the road of BEVs and PHEVs in charge de-
pleting mode. Figs. 5 and 6 display the resulting energy consumptions

Fig. 4. General structure of the model used in this work. The activity-travel schedule is enriched with information regarding the stock of mobile vehicles and the
charging capabilities of different functional locations. The whole setup allows the simulation of EVs behaviour within the predetermined activity-travel schedule.
From the resulting EV movements a lot of information can be extracted, ranging from the electric share of PHEVs to the CPs triggered at different locations on
different days. The numbers are just provided as examples and can be completely adjusted in this model.

Fig. 5. Distribution of the specific electricity consumption at the battery output
of all MZMV vehicles when converted to BEVs with 40 kWh battery capacity.

Fig. 6. Distribution of the specific electricity consumption at the battery output
of all MZMV vehicles when converted to PHEVs with 13 kWh battery capacity.
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of the entire MZMV fleet for two illustrative powertrain scenarios: all
vehicles are BEVs with 40 kWh battery capacity or all are PHEVs with
13 kWh. Note that charging losses are not yet accounted for and all
values must be regarded as electricity consumption at the battery
output.

Two final remarks concerning the energy management of PHEVs
and BEVs are necessary. PHEVs can be used in either charge sustaining
mode — they run on the chemical fuel available on-board preserving
the battery’s SOC — or in charge depleting mode — they drain the
battery and directly use the electricity for propulsion. In this work,
PHEVs are assumed to always drive in charge depleting mode when
possible, i.e. for any >SOC 0% [65]. If the battery is depleted, PHEVs
continue driving in charge sustaining mode without constraints.

On the other hand, BEVs can solely be driven in charge depleting
mode as they lack an alternative on-board fuel. This means that BEVs
may run out of SOC during the simulation, hence failing to fulfil the
assigned daily trip. When this happens, the trip is considered non-
electrifiable and the car is replaced by its equivalent ICEV through a
new intervention. For the purpose of this study there is no need to
further detail the modelling of ICEVs.

2.2.2. Charging opportunities and behaviour
This section describes the handling of EVs whenever they reach

their destinations. For this task the second set of exogenous assump-
tions, namely the charging scenario, is relevant. This input provides the
following information for each type of functional place, i.e. for every
location listed in Fig. 3:

• the density of CSs, expressed as the probability of finding an avail-
able charging point (also called Electric Vehicle Supply Equipment -
EVSE) once the EV gets to a certain type of location. These prob-
abilities can range from 100% (where it is always possible to charge)
to 0% (where there are no CSs).
• the charging rate, i.e. nominal charging power (kW), of potential
EVSEs at each type of location. Theoretically, any type of location
may offer a variety of charging rates, but in order to keep the model
leaner, we assume the same charging power for all CSs at the same
location. This rate should also take into account the limitations of
the employed EVs, whose on-board charger may constitute the ac-
tual bottle-neck in the charging process.

When an EV parks somewhere, a first random number is sampled
from a uniform distribution (X ~ (0, 1)) to determine whether the
current location hosts an available CS ( <X CS density @ location). If
successful, the decision to charge is up to the driver. For this two cri-
teria are used:

• the stop must last long enough to make the charging seem sensible;
i.e. there is a minimum time threshold under which the driver would
not plug in the EV. This threshold conventionally ranges from 0 to
120 min [32,43,66] and is here set to 1 h.
• the decision to charge then depends on the SOC of the vehicle,
which is more likely with a more depleted battery. This work em-
ploys a stochastic method similar to [43]. For PHEVs, a random
number is sampled from a normal distribution (X µ~ ( , )) and is
compared to the SOC of the vehicle; if < XSOCPHEV then the driver
decides to charge. Similar decision process applies to BEVs although
the normal distribution is truncated on the lower tail so that fully
depleted BEVs are always charged. The difference between the two
cases is illustrated in Fig. 7.

The normal distribution parameters µ, are also exogenous inputs
to the EV model and have to be calibrated. Contrary to any previous
study, in Section 3.2 we provide a detailed procedure to derive these
parameters and results will show that EV drivers exhibit surprisingly

similar behaviour in rather different contexts.
Once the driver decides to plug in the EV, the car starts charging

immediately at the power rate of the CS and it stops either when it
leaves the place or when the battery is fully charged. This charging
mechanism lacks any form of smartness, but is consistent with most of
the charging data currently available [8,13,14,40,67]. However, if a
future study wants to introduce demand-side management mechanisms,
the proposed charging decision process may be regarded as a plugging-
in decision process, thus determining whether the EV is connected and
can participate in management scheme.

Charging losses are modelled according to the empirical Willans-
line correlation found by [63]. The energy ECS supplied by the CS re-
lates to the change in energy content of the battery through the fol-
lowing linear equation:

= +E [kWh] 1.1992· SOC[kWh] 0.1896CS

No constraints is assumed on the power supply side, neither from
generation nor from the grid, because any impact downstream of CPs is
beyond the scope of this paper. Moreover, the trials used for validation
always involve low levels of EV penetration, which seem not to re-
present a threat for existing distribution grids, even in uncontrolled
charging situations [33,44,68].

2.2.3. Multi-day mobility
In Section 2.2.1 we introduced the random assignment of a {pow-

ertrain, battery size} design to each {status quo car, trip} combination.
However, a common issue faced when modelling EV routines is the
initialisation of SOC in the morning. Most approaches include:

• EVs always start the day with a fully charged battery;
• EVs are assigned a random SOC which comes from measurements.

While the first approach is quite simplistic and assumes that all EVs
are charged every night, the second one is bound to the specific context
where measurements were taken. Moreover, these approaches do not
ensure energy conservation during the simulated day and the assumed
morning SOC may conflict with the designed charging scenario and
behaviour. The authors of [32] resolve this issue by imposing the same
SOC at the beginning and at the end of the day, but this strongly con-
strains the simulation.

Here we adopt the more flexible approach proposed by [13,39,42],

Fig. 7. With dashes, probability distribution functions (PDF) of sampled SOC
during the charging decision process. With continuous lines, the reverse of the
cumulative distribution functions, i.e. survival functions, which represent the
probability of charging of an EV reaching the CS with a certain SOC. The BEV
distribution on the left is truncated on the lower tail so that the survival
function starts from 1 and forces drivers to always charge a fully depleted BEV.
To the right, the survival function of PHEVs is non-truncated and starts from a
fraction of 1, allowing the possibility of not charging even when fully depleted.
The examples shown are computed for: SOC ~ (0.6, 0.3)BEV truncated between

+[0, ] and SOC ~ (0.6, 0.6)PHEV .
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where multiple consecutive days are simulated to obtain a periodic
boundary of SOC. Fig. 8 illustrates the overall procedure. On the first
simulation day all EVs start with a fully charged battery, but from the
second day they start with a random SOC derived from the final SOC
distribution of the previous day. Every day we also repeat the random
assignment of {powertrain, battery size} information to each {status quo
car, trip} entry introduced in Section 2.2.1. The reshuffling excludes
trips which were shown to be non-electrifiable and these trips are as-
signed a conventional ICEV for the following day. The results show that
after the third day, the simulation reaches convergence — defined as
observed periodicity of SOC and decreased rate of failing BEVs — and
the fourth simulation day is then used for evaluation and analyses.

3. Validation and sensitivity analysis

The built model enjoys many degrees of flexibility and can simulate
very different scenarios, either existing or artificial. In this work we
focus on validating the model by comparing its outputs to real-world
examples. This chapter provides both validation and sensitivity ana-
lyses in the following order:

• Section 3.1 introduces the real-world trials that form the basis of all
subsequent investigations;
• Section 3.2 continues the modelling of charging behaviour from
Section 2.2.2, using the trials to calibrate the behavioural para-
meters;
• Section 3.3 presents the qualitative comparison of the CPs from the
trials and the model;
• Section 3.4 provides the quantitative sensitivity analyses of the
model’s parameters.

3.1. EV trials

This study employs the following 4 public EV trials for the valida-
tion:

• The “My Electric Avenue” Project (UK, 2013–15) [5,14];
• The North East’s “Switch EV” electric vehicle trial (UK, 2010–15)
[6,69];
• “The EV Project” from Nashville region (US, 2011–13) [7];
• The “Pecan Street” Smart Grid Demonstration Project (US, 2011–13)
[8].

The My Electric Avenue and Pecan Street trials have been chosen
since they constitute the bases for the few validation attempts found in
literature [8,14]. On the other end, we include The EV Project and the
Switch EV trial because they report the results with a functional spatial
disaggregation that reflects the structure of the activity-travel schedule
(home, workplace, etc.). They thus form the basis for a finer and dis-
aggregated validation.

The original trials conditions are recreated in the simulation by
solely operating on the exogenous inputs, namely the charging and
powertrain scenarios. Table 1 summarises the original trial information
used to set up the simulation and the resulting parameters settings.
Nevertheless, the reader should bear in mind that all the trials represent
open systems, where tracked EVs may charge at untracked CSs and vice
versa. This means that our attempt of recreating the trials conditions
may still neglect relevant environmental characteristics. This lack of
control on the investigated system is one of the main reasons that dis-
courages researchers from pursuing validations such as the one pro-
posed here. We show that important conclusions can still be drawn even
when the impact of external unknown variables becomes noticeable.

All simulation settings other than the powertrain and charging
scenarios remain constant among different trials. However, one last
important input yet to be discussed is the parametrisation of charging
behaviour introduced in Section 2.2.2. The next section makes use of
the EV trials to derive the behavioural parameters empirically.

3.2. Calibration of charging behaviour

Another key contribution of this work is the development of a de-
tailed procedure to derive a SOC-dependent charging behaviour based
on real data. The same procedure can in principle apply to both BEVs
and PHEVs, but BEVs are first addressed since PHEVs require additional
considerations.

The behavioural model employed in this work is depicted in Fig. 7,
and assumes that the charging probability depends on the SOC upon
arrival at a charging location. This function can be derived with
Algorithm 2 and the graphical aid of Fig. 9. Provided we have access to
the probability distribution function (PDF) of SOC before a charging
event (line 1) and the PDF of SOC at any charging opportunity (line 2),
we can obtain the charging probability as the ratio of these two func-
tions (line 4). The ratio is then normalised to the peak (line 5) and set to
1 for all low SOCs (line 6) since the maximum charging probability for a
BEV is 100% and occurs at low SOCs. The resulting function resembles

Fig. 8. Work flow of the simulation. From left to right: the model is first initialised with all EVs equipped with a fully charged battery; then a mobility day is
simulated (Day 0) and the final SOCs are recorded. Overnight the powertrains are shuffled in order to assign to each {powertrain, battery size, SOC} triplet a new
{status quo car, trip} couple. Then a new mobility day (Day 1) is simulated. The procedure is repeated 2 more times and the mobility patterns recorded on the fourth
day (Day 3) are extracted for further analysis.
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an S curve, which can be parametrised by fitting the survival function of
a truncated normal distribution (lines 7, 8).

The procedure is short, but the two input PDFs require fully detailed
records of SOCs at every CS-equipped stop, with or without a sub-
sequent charge. While a simulation can provide this full insight, phy-
sical trials may lack some information. The majority of EV trials only
reports the PDF of SOC at the beginning of a charge [46,69,62,70]. The
closest examples in literature come from 2 Danish demonstrators car-
ried out in the framework of the Green eMotion project [71]. The report
on consumers’ use of EVs [72] publishes, for the demo regions DK1 and
DK2, both the PDFs of SOC before charge and the PDFs of SOC after trip
event, i.e. at any stop. The latter may differ from the PDF at any
charging opportunity thus affecting the estimation of the charging
threshold. In addition, demo region DK2 involves a captive fleet com-
posed by only 4 BEVs, while demo region DK1 employs 10 BEVs whose
use case is unknown. The resulting estimates of charging behaviour are
thus approximative and may not properly reflect the attitude of private

BEV users. The parameters obtained when applying Algorithm 2 to
these trials are indicated with in Fig. 10 and average

= =µ 0.69, 0.15.

Algorithm 2
Extraction of charging behaviour from characteristic distribution functions.

1: get empirical PDF of SOC before charge, c
2: get [empirical] PDF of SOC at charging opportunity (if unavailable, at any stop), s
3: smoothen c by fitting a normal PDF
4: get charging probability p = c s/
5: normalise =p p p/max( )
6: set p for < =SOC SOC 1pmax( )
7: fit p with survival function of truncated normal distribution
8: get µ, of resulting truncated normal distribution

Table 1
Configuration settings of EV trials.

Trial EV fleet Powertrain scenarioa

My Electric Avenue [14] 221 Nissan Leaf with 24 kWh battery 100% BEVs with 25 kWh battery
Switch EV [80] 15 Nissan Leaf with 24 kWh battery 43% BEVs with 25 kWh battery

20 Peugeot iOn with 16 kWh battery 57% BEVs with 18 kWh battery
9 other

The EV Project [81] 656 Nissan Leaf with 24 kWh battery 93.5% BEVs with 25 kWh battery
54 Chevrolet Volt with 16 kWh battery 6.5% PHEVs with 13 kWh battery

Pecan Street [8] 8 BEVs 30% BEVs with 25 kWh battery
25 PHEVs (primarily Chevrolet Volt) 70% PHEVs with 13 kWh battery

Trial charging outlets installed Charging scenariob

My Electric Avenue [14,62] 88 home charging outlets at 3.6 kW 100% CSs at home at 3.6 kW
13 work charging outlets at 3.6 kW 43% CSs at work at 3.6 kW

0% CSs anywhere else
Switch EV [67–69] 91 home charging outlets at 2 kW 100% CSs at home at 2 kW

268 public/work charging outlets at 2 kW 83% CSs anywhere else at 2 kW
8 public/work charging outlets at 50 kW

The EV Project [61,84,85] 596 home charging outlets at 3.76 kW 100% CSs at home at 3.76 kW
241 public charging outlets at 3.76 kW 11% CSs anywhere else at 3.76 kW

Pecan Street [8] monitored home charging outlets at 3.3 kW 100% CSs at home at 3.3 kW
limited work/public charging infrastructure 0% CSs anywhere else

a Input powertrain shares adjusted in order to obtain about the same shares as in the trial after elimination of failed BEVs during the four-day
simulation. An example is shown in Section 4 of SM.

b The percentages refer to the CS densities at each location and the sum may exceed 100%. The densities take into account the relative frequency of
different locations in the activity-travel schedule (for MZMV, home:work:non-home = 1:0.35:1.42) and are adjusted in order to obtain the same CS
shares as in the trial. For public CSs, we assume 2.58 EVSEs (i.e. charging outlets) per charging location/site [82,83].

Fig. 9. Relation between characteristic PDFs and charging behaviour. The
probability of charging at a given SOC (solid line) is the ratio between the times
the BEV is plugged in starting from that SOC (dashed line) and all the times the
BEV has a charging opportunity at that SOC (dotted line).

Fig. 10. Mean µ and standard deviation of the threshold SOC below which
drivers connect their BEVs to the CS: approximations used in previous studies
(×) and obtained from the trials through the methodology introduced in Section
3.2 ( , ). The weighted average of the trials thresholds is chosen as default
behaviour. ( ).
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Algorithm 3
Iterative approach to derive charging behaviour from simulations.

1: set = =µ 0.69, 0.15in in

2: for i in [1: N] do
3: run 4-days simulation with inputs µ ,in in
4: extract PDF of SOC at charging opportunity s
5: run Algorithm 2 to get µ ,out out
6: set = =µ µ ,in out in out
7: end for

To refine the result we make use of the trials introduced in the
previous section. These demonstrators tracked the SOC only before a
charge [62,69,70], but not at every charging opportunity. We accord-
ingly extract the latter from the simulations of those trials. Since the
model needs the behavioural parameters µ, as inputs, we initiate
them according to the Green eMotion estimates and then apply
Algorithm 2 iteratively. This procedure is summarised in Algorithm 3.

After the first three iterations, the behavioural parameters for each
trial start converging towards similar values. The resulting µ and for
every iteration of each trial are shown with in Fig. 10. The Pecan
Street trial does not provide information regarding the PDF of SOC
before charge and its charging behaviour cannot thus be estimated. The
three remaining trials exhibit lower charging thresholds than the Green
eMotion demonstrators (lower µ). The trials also predictably show more
variable behaviour (higher ) since they involve private mobility, in
contrast to the captive fleets used in DK2 and probably in DK1. Overall,
the 5 demonstrators exhibit a linear trend between µ and , where
lower mean thresholds correspond to more scattered behaviours. This
joint shift of µ and indicates that the trials present more similar
charging probabilities for loaded batteries than for depleted ones.
Section 5 of SM shows in detail that the S curves in Figs. 7 and 9 of the
different demonstrators look more alike at high SOCs. This pattern may
be due to the different attitudes of people towards range anxiety, atti-
tudes that emerge especially for lower SOCs. Moreover, BEVs are more
likely to stop with a high SOC (trend of the dotted line in Fig. 9): this
imbalance in the amount of information between low and high SOCs
can cause the higher spread of charging probabilities for low SOCs. This
empirical correlation between µ and is exploited in the sensitivity
analysis (Fig. 15).

Fig. 10 also includes examples of BEV charging behaviours used in
literature. All studies that employ a fixed charging threshold essentially
assume no behaviour variability, i.e. = 0. On the other hand, a purely
random charging threshold would entail + (out of scale in
Fig. 10). While the results of our methodology still manifest a little
volatility, these also prove that the introduced behavioural model can
capture the charging attitude of BEV drivers from different contexts and
that their behaviours converge towards very similar values. A weighted
average that considers the higher trustworthiness of the simulated EV
trials returns:

= =µ 0.6 0.2BEV BEV

These two values, depicted with in Fig. 10, are set as default charging
behaviour of BEVs for the upcoming simulations and validations of all
trials.

Charging behaviour of PHEVs can be estimated in a similar way, but
their hybrid operation introduces an additional degree of freedom.
Specifically, steps 5 and 6 of Algorithm 2 assume that a BEV driver
would always charge for depleted batteries; this does not hold true for
PHEV users, who can drive on liquid fuels after depletion of the battery.
In other words, while BEVs owners necessarily charge all the electricity
they consume, PHEVs drivers may indefinitely postpone charging while
relying on conventional propulsion. This additional degree of freedom
can be fixed by considering the utility factor (UF) of PHEVs or their
average number of recharges per day. However, the complexity of the
resulting procedure and the shortage of SOC distributions for PHEVs

motivate us to adopt the same behavioural parameters as BEVs, hence:

= =µ 0.6 0.2PHEV PHEV

It is important to remark that these parameters are not supported by
empirical evidence. They are acceptable in the current framework
mostly because the PHEVs employed in the trials have battery capa-
cities comparable with the BEVs used in the calibration of charging
behaviour (see Table 1).

3.3. Charging profiles and validation

This chapter presents the simulation results for the 4 EV trials ob-
tained with the default settings, i.e. the powertrain and charging sce-
narios introduced in Table 1, and the charging behaviour derived in the
previous section. For each trial we provide our CPs together with the
reference CPs observed in the field and, whenever possible, with other
simulated CPs from literature. In order to facilitate the comparison
between simulated and empirical CPs, these are presented in the same
units, i.e. in the way the reference CP was made available to the au-
thors. Unfortunately, the 4 EV demonstrators report their CPs in dif-
ferent units (e.g. in kW or dimensionless) meaning that comparisons
between trials cannot be confidently made. In the following validation
we show which reporting units are more suitable to assess numerical
and empirical CPs in order to provide a guideline for future similar
works. Finally, for each trial we include the CPs resulting from multiple
runs of our model so that the randomness built in the simulation can be
appreciated.

Fig. 11 shows the CPs for the My Electric Avenue demonstrator.
Both reference profiles come from [14] with the numerical CP obtained
through Gaussian mixture models (GMM). The reference profiles are
reported in absolute power demand [kW] per EV, but a deeper analysis
of the original study suggests that EVs not charging during a day are
neglected from the analysis. This comes from the absence of not-char-
ging EVs in Fig. 1 of [14] and from the information that monitored EVs
on average consumed 12.63 kWh/day, which translates to about
60 km/day, that is almost twice the average daily mileage of cars in
England [73]. Therefore, all CPs plotted in Fig. 11 represent the average
power demand for a charging EV, i.e. an EV that charges at least once
during the day. All CPs are restricted to working days (Monday–Friday),
but may originate at any location (in the default case, at home and
workplace).

The CPs resulting from the proposed methodology slightly over-
shoot the reference peak load, but they capture the general trend clo-
sely during the day. The accuracy of our profiles from the Swiss HTS is
notably comparable to the numerical CPs proposed by [14] which are
based on tracking data of the same EVs that generated the empirical
profiles. The local maximum around 1 p.m. is caused by Swiss residents

Fig. 11. CPs for the My Electric Avenue trial. The CPs represent the average
power demand on a weekday for an EV that charges at least once.
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returning home for lunch break or working part-time in the mornings
(see Fig. 3). This can be explained by the higher share of part-time
workers in Switzerland compared to most countries [74].

The stochasticity built in the model generates a multitude of slightly
different CPs, which are depicted with various shades of orange in
Fig. 11. The gradual transition from red to yellow in the evening peak
has opposite direction compared to the morning local maximum (~8
a.m.), revealing that charging more at work helps to relieve the peak
load at home (case of the red CP). The tendency of the colours actually
suggests that the density of work CS has been underestimated in our
simulations and this reflects the difficulty in translating the trials con-
ditions into the model. The consequent overestimation of the peak load
may impact the design of a local distribution grid with many EVs, but
only if the total electricity demand (including non-EV applications) is
also increased. However, the designs of each battery pack and charging
station are not affected as they are dimensioned according to the
nominal power exchanged while charging. This is the value reported in
Table 1 and is constant for every EV regardless of the average charging
power resulting from multiple EVs.

Fig. 12 presents the CPs for the Pecan Street project. Also for this
example we provide an empirical and a numerical reference CP, where
both profiles are extracted from [8]. All CPs consider only working days
and home chargers. The authors of [8] propose a validation based on
CPs normalised to the peak. The result is that all CPs follow a close
pattern and distinguishing accurate simulations from deficient ones
becomes a harder task. Our CPs exhibit a local maximum at noon,
which is also mildly shown by the numerical profile of [8], but fail to
capture the morning peak exhibited by both reference CPs. The em-
pirical profile especially manifests a sharp increase around 8 a.m.,
which is quite unexpected from home chargers and may be due to some
sort of control strategy. Such phenomena cannot be recreated by a
DUOATS model that implements plug-and-charge strategies. This small
mismatch is not relevant for the goal of this paper, which focuses on
unscheduled charging. But future works should consider potential
smart charging schemes when designing their models. Finally, the
variability of our stochastic CPs is also reduced by the normalisation
process.

Fig. 13 displays the CPs for the Switch EV trial for three different
charging locations: home, workplace and public spaces. The empirical
EV trials come from [67] and represent the charging distribution during
an average day, i.e. the probability that a car is being charged at any
hour. This means that all CPs are normalised to the area beneath the
curves. Since MZMV deals mostly with individual mobility, the em-
pirical CPs triggered by individual users of the Switch EV trial are
adopted for the validation (Figs. 6–8 in [67]).

The comparison shows that the presented model manages to re-
plicate all empirical CPs, capturing the specific charging features of

each location. Home charging manifests the usual evening peak load
already seen in My Electric Avenue and Pecan Street trials. Switch EV’s
peak is however smoother since the less synchronised weekend patterns
are also included. On the other hand, work charging shows the highest
relative peak load due to the high simultaneity characterising morning
commuters. Finally, public chargers exhibit rather steady behaviour
during all active hours. Overall, the CPs generated by the present model
slightly miss the reference peak loads, but the normalisation of the
profiles impedes further evaluations. Public CPs from the model man-
ifest the biggest gaps from the reference profile, especially during the
night (9 p.m.–5 a.m.), but the higher noise displayed also indicates the
larger uncertainty surrounding this estimate. In addition, starting from
11 p.m. the reference public CP displays a slow night decay which re-
sembles the domestic CP. This observation matches the findings in [67],
whose authors determined that some Switch EV participants have used
public CSs also for night charging.

Finally, Fig. 14 shows the CPs for The EV Project for two types of
locations, private homes and public spaces, and differentiating week-
days from weekends. The empirical CPs come from the 2013 summary
report on charging infrastructure of The EV Project [61] and more
specifically from the Nashville region. There CPs are reported in terms
of aggregated electricity demand through all charging units of the same
type. With the available number of charging units per charger type
(Table 1) the average empirical CP per charging unit could be derived.
Therefore, in the following validation both empirical and numerical CPs
are presented in terms of average power demand per charging unit, i.e.
EVSE.

The first observation is that public CSs are used more rarely than
domestic ones, and their average power demand is significantly smaller.
This is confirmed by the lower utilisation rate of public charging units
compared to residential ones reported in [61]. Secondly, while the si-
mulated CPs reflect the general trends of the reference profiles, these
also exhibit some differences. The peak loads at residential EVSEs are
particularly divergent, but the differences have opposite sign on
weekdays and weekends, signalling that these are not due to a cali-
bration error. Analysing the Swiss and American HTSs [75] reveals that
car drivers have opposite trends in the two countries: Swiss residents on
average drive shorter distances than Americans on weekdays, but
longer ones at weekends. This means that daily electricity demand of
Swiss EVs is lower (or higher) than American EVs on weekdays (or on
weekends). This fully explains the opposite shifts observed for domestic
CSs, but also reveals the importance of checking the comparability of
different data sources before attempting a validation. The investigations
in [34,35] endorse the comparability between European countries, but
the results of this study suggest that the same may not hold true for
combinations of more diverse regions. Thirdly, the numerically simu-
lated public CPs for weekdays nicely manifest the same three local
maxima as the reference CP, while the net scaling mismatch points to a
possible calibration error. As already mentioned, the adjustment of the
CS density in public spaces is particularly difficult for open systems like
EV trials. Finally, the simulated public CPs for the weekend accurately
match the empirical profile from The EV Project.

Overall, the validation is satisfactory as the general charging trends
in distinct locations and on different days are always well captured by
the model. Only small differences arise, but they can mostly be ex-
plained by the usage of diverse datasets and cumbersome reporting
units.

3.4. Sensitivity analysis

The previous chapter illustrates the good agreement between the
outputs of the proposed model and empirical CPs when the default
settings are used. The following sections reveal how the simulation
responds to changes in the parameters and how a departure from the
trial conditions impacts the performance of the model negatively.

Fig. 12. CPs for the Pecan Street trial. The CPs represent the normalised power
demand on a weekday for an EV charging at home.
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3.4.1. Metrics and nomenclature
Several measures are eligible to represent the effect of various input

settings, e.g. changes in peak power load or in total daily energy supply.
However, as the first study proposing a systematic sensitivity analysis,
we opt for the coefficient of determination R2, which describes the
predictive power of the model when compared to empirical results. R2

allows modellers to assess how close the numerical CPs follow the
empirical profile during the whole day while still penalising a potential
vertical mismatch in peak load. An examination of the predictive power
during the entire day addresses more features of the model, such as

charging behaviour or the car distribution among locations.
We perform two types of parametric analyses for each EV trial:

• a raw sensitivity analysis, where any quantitative input is adjusted
by ± 10%;
• a set of exploratory scenarios, where particularly uncertain or
evolving parameters are considerably modified.

The former helps to identify which parameters influence the output
the most, and the latter investigates quantities with a broader space of

Fig. 13. CPs for the Switch EV trial at three different locations. All profiles are normalised by total daily energy and they thus represent the probability of charging at
each hour. All CPs apply to an average day of the week.

Fig. 14. CPs for The EV Project. All profiles illustrate the average daily power supplied by a single EVSE (i.e. charging unit). Top plots refer to private home chargers,
while bottom ones to publicly accessible EVSEs (both at work or other locations). The left CPs apply to working days and the right ones to the weekend.
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variability. For instance, vehicles energy consumption is slowly and
measurably improving, but the density of public CSs is rarely well
known and is changing quickly in many countries [4].

The scenarios chosen for the parametric analysis of the SOC char-
ging threshold are shown in Fig. 15 and require specific commentary.
For the raw sensitivity the input parameters µ and are individually
adjusted by ± 10%. For the exploratory scenarios the linear behavioural
pattern observed in Fig. 10 is utilised. Specifically, we design an “em-
pirical behaviour” that fits the thresholds observed in the trials, and an
“alternative behaviour” opposed to it. Conceptually, the empirical be-
haviour assumes that charging at high SOCs is well understood (as
observed in the trials) and it spans the possible charging attitudes at low
SOCs. On the other hand, the alternative behaviour assumes good
agreement for low SOCs (that was not observed in the trials) and ex-
plores different charging reactions at high SOCs. For each trend we test
4 different points (1–4 with empirical behaviour, A–D with alternative
behaviour). Additionally, we analyse the case where EV drivers always
charge regardless of the SOC. The specific charging probabilities for all
these scenarios are presented in detail in Section 5 of SM.

Figs. 16 and 18 show the R2 results for both parametric analyses for
all 4 trials. The red bars and lines indicate the scores of the default
simulation settings, while all other colours refer to a change in a single
input setting at a time. The grey bars depict the R2 scores of previous
validation attempts available in literature. Since The EV Project and the
Switch EV demonstrator comprise CPs computed at different locations,
their final R2 coefficient is computed as a weighted average of the single
scores at each location. For the weighting, we used the number of
charging events per location detected during the trials [67,61].

3.4.2. Results of the sensitivity analysis
Fig. 16 presents the R2 results for the My Electric Avenue and The

EV Project trials as both are tested on CPs expressed in absolute power.
In both demonstrators the CPs produced with the default settings rank
among the best cases meaning that an uncalibrated setup of the simu-
lations already allows for a very accurate reproduction of the empirical
profiles. The raw sensitivities only marginally impact the quality of the
results, with charging rate and losses playing a greater role as they
directly impact the CPs without feeding anything back to the driving
pattern. The delicate role of charging rate and losses observed in this
study means that modellers must pay particular attention to these
parameters when the goal of their EV model is the derivation of CPs.

This also justifies the choice not to investigate further the sensitivities
of these parameters in the exploratory scenarios.

As expected, the exploratory scenarios heavily curtail the R2

achieved by the model, because they span a much wider parametric
space. The most significant impact is caused by variations in the pow-
ertrain fleet, as these changes drastically affect the total electricity
consumption of EVs. The reader should notice that all BEVs used in the
trials carry relatively small batteries (18–25 kWh) and can thus fulfil
only the shortest trips of the HTS; this effect is important as it captures
the likely use of the same BEVs in the real demonstrators. When re-
placing these BEVs with PHEVs with the same battery capacity, all
previously unfeasible trips become possible as the driver would just
switch to charge sustaining mode once the battery is drained. In other
words, all trips that were deemed unfeasible with BEVs are now per-
formed with PHEVs that finish the day with fully discharged batteries.
Therefore, each new trip added to the analysis entails a total electricity
consumption higher than the average trip already attainable by BEVs.
The average daily electricity consumption per EV thus increases to-
gether with the daily electricity to be supplied by EVSEs. This causes
longer and more frequent charges that negatively impact the R2 of The
EV Project. The same phenomenon is magnified in the My Electric
Avenue trial, where days without charges are excluded from the ana-
lysis. The higher electricity consumption that accumulates on every
driven day causes much longer charges on the few days the PHEV is
plugged in, extending the simulated CPs and penalising R2. This effect
can be appreciated in Fig. 17, where the blue CPs represent the case
where all cars are PHEVs. The same argument explains also the dete-
rioration of R2 when larger battery sizes are supplied to BEVs. The effect
in this case is even stronger as the larger, heavier, batteries also entail a
higher wheel energy demand.

Changing the density of work and public CSs also negatively impacts
the predictive power of the model since it adds charging patterns that
were absent in the trials. The EV Project case with no public CSs is the
only scenario with an improvement of the score. This is due to two
factors: firstly, the bad R2 scores of the public CPs are excluded from the
average, leaving it to the more accurate residential CPs. Secondly, the
lack of public CSs forces EV drivers to charge more often at home, in-
creasing the peak load especially during weekdays and reducing the gap
with the reference profile.

Behavioural variations affect the results for the two demonstrators
very differently. The major repercussion of behavioural tuning is a
change in charging frequency, but the average energy to be supplied over
time is only mildly impacted. The profiles reported for The EV Project
depict the average daily electricity to be provided by each EVSE and a
change in behaviour only lightly affects the overall magnitude of the CPs;
the impact of charging behaviour is in this case limited to sharpening or
shaving of peak loads. On the other hand, the profiles of My Electric
Avenue consider only days where the EV is charged and a change in
charging frequency causes a similar but opposite change in CPs magni-
tude. For instance, empirical behaviour 1 from Fig. 15 leads drivers to
charge their EVs any time the SOC goes below 90%, causing more fre-
quent and shorter charges. Both these effects are captured by the orange
CPs in Fig. 17. In My Electric Avenue, the scenarios implementing an
empirical behaviour expectedly show better alignment with the reference
profile than the alternative ones. Notably, cases 3 and 4 improve the R2

score compared to the default model, suggesting that the charging
threshold for My Electric Avenue should have been fixed at lower µ and
higher . Figs. 10 and 15 show that this is exactly the direction where the
empirical SOC thresholds from My Electric Avenue are located with re-
spect to the point chosen as default behaviour. This is particularly re-
markable considering that no information is exchanged between the two
investigations, i.e. no empirical distribution of SOC is used to compute
the numerical CPs, and no empirical CP is used to derive the SOC
thresholds. This good agreement between the two analyses is a strong
argument in favour of the methodology used to derive the charging
thresholds and the way they are included in the EV model.

Fig. 15. Mean µ and standard deviation of the charging thresholds tested in
this study: default case ( ), variations of the single parameters by ± 10% ( )
and exploratory scenarios (•). These scenarios are either based on the observed
behaviour (points 1–4 on the solid line) or on a hypothetical alternative be-
haviour antithetical to the former (points A–D on the dotted line). The “always
charge” scenario is also tested. The points’ labels link the sensitivities in Figs. 16
and 18 to the different behaviours. The background depicts the thresholds
observed in trials or used in literature introduced in Fig. 10. More details are
available in Section 5 of SM.
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The sensitivity analysis of the number of simulation days per run
simply confirms that four days are more than sufficient to reach con-
vergence, at least in terms of CPs. Finally, the employment of the ori-
ginal time series as reported in the HTS does not affect the general CPs
patterns and leaves R2 untouched. The impact is however appreciable at

smaller scale where CPs exhibit a serrated behaviour with a frequency
of 5 min. This is consistent with the probability mass distribution for
arrival times shown in Fig. 2: indeed the shift of stages helps to reduce
the number of trips reported with 5 min resolution. Although the
overall impact seems small, the reader should observe that the highest

Fig. 16. Sensitivity analyses for the simulations of My Electric Avenue and The EV Project trials. The bars use the coefficient of determination R2 to show the
closeness of the simulated CPs to the empirical ones from the trials. The R2 values shown for The EV Project are an average of the coefficients computed at each
location, weighted with the number of charging events. Note that in few cases the R2 score is negative.
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benefit from shifting stages is the spread of departure times which be-
comes of primary importance when charging schemes smarter than the
one here proposed are employed.

For the My Electric Avenue demonstrator Fig. 16 also reports the R2

score of the numerical CP proposed in [14] and depicted in Figs. 11 and
17. The profile performs better than any CP proposed by this study,
mostly because it does not overshoot the peak load. However, the
reader should note that the CP from [14] is computed with data ex-
tracted from the same My Electric Avenue trial used as reference, while
the present model employs the Swiss HTS as input. Most importantly,
the improvement of [14] with respect to the CP generated with default
settings is small when compared to other possible modelling impreci-
sions such as the ones investigated in the parametric analysis.

Fig. 18 reports R2 scores for Pecan Street and Switch EV projects
since all their CPs undergo some kind of normalisation. The peak load
normalisation applied to CPs from the Pecan Street demonstrator par-
ticularly helps any numerical CP to closely approach the empirical
profile, often resulting in R2 greater than 0.90. To appreciate the dif-
ferent R2 scores of the parametric analysis we thus magnify the x-axis
scale of the Pecan Street demonstrator in Fig. 18. The simulations in-
volving a change in the powertrain scenario are the only ones which
exhibit lower R2. As explained for the two previous trials, switching a
BEV with a PHEV or expanding the BEVs’ battery size both cause an
increase in daily electricity consumption. This affects the extension of
the CPs more than their peak load and the mismatch with the reference
profile is thus retained also after normalisation.

In the Pecan Street trial the CPs obtained with the default settings
are among the best performing numerical profiles, supporting the de-
sign of the model and its capability to reproduce the on-field trial
conditions accurately. The simulated CP from [8] achieves a higher R2

score, thanks mostly to its capability to capture the morning peak at 8
a.m.. As discussed in 3.3, a DUOATS model solely with home chargers is
not capable of reproducing the same peak without a smart charging
scheme.

The Switch EV trial exhibits a diversity in R2 results comparable to
Fig. 16, meaning that normalisation of CPs to the area does not level out
the profiles as much as the peak load normalisation. The highest sen-
sitivity is shown for changes in charging rate, charging losses and BEV
battery size, which reflects most of the observations made for Fig. 16.
Two additional comments are however necessary. Firstly, the simulated
public CPs of Switch EV are often the worst performing in terms of R2 as
is observable in Fig. 13. The relative flatness of the reference public CP
makes it an easy target for an horizontal fit. Since the coefficient of

determination R2 compares the goodness of the simulated profile to a
hypothetical horizontal fit, it becomes a stricter parameter when the
latter fits better the reference profile, such as in the case of public CP.
This means that a lot of the variance observed in the sensitivity analysis
is ascribable to changes in the R2 score of the simulated public CPs.
Secondly, the mismatches characterising home and work CPs are small
but with an opposite sign. This means that even important parameter
changes may affect the R2 results of the two profiles in opposite di-
rections, neutralising the overall impact on the metric. This is the case
for the variations in powertrain scenarios, which usually imply longer
average charges. When normalising to the area, these longer CPs also
manifest a lower peak; consequently, a better reproduction of the re-
ference work profile is offset by a worse performance of home CPs. An
example of this effect is presented in blue in Fig. 19 for the case with
only PHEVs.

The exploratory scenarios of the Switch EV demonstrator occa-
sionally perform better than the default case. The main outlier is the
scenario with no public or work CSs, but the main reason is the ex-
clusion of the poorly performing public CPs from the computation of
the overall R2. In other words, the R2 score plotted for this test indicates
the approximate R2 generally achieved by the numerical home CPs. A
second scenario that performs better than the default case is where the
minimum parking time for charging is increased to 4 h. This change
mostly affects stops at public spaces as these locations are more likely to
host short parking times. The variation of this parameter does not play
an important role in the other 3 trials because of the lower relevance of
public CPs in those demonstrators1. However, in Switch EV, the R2

performance of public CPs is a dominant factor of the overall score.
Increasing the minimum parking time for charging eliminates several
short charges smoothening the synthetic public CPs and reducing the
gap with the reference profile. This improvement strongly boosts the
overall R2 result for the scenario.

The last Switch EV scenario that performs better than the default
case is when charging behaviour is shifted to point C of Fig. 15: this
point lies on the alternative behaviour line and entails less likely
charges for high SOCs compared to default. This adjustment mostly
impacts stops during the day as EVs are always more likely to charge at
home (regardless of behaviour) and end up driving with more depleted
batteries in the afternoons than in the mornings. This means that public
and work CPs are mostly affected by the behavioural shift to point C,
with morning charges becoming less frequent. The orange profiles in
Fig. 19 illustrate these changes, with morning peaks of all three loca-
tions being reduced. The CP improvements at work and public places
are particularly responsible for the higher R2 achieved by this scenario.

All the other scenarios of the Switch EV trial perform similarly to or
worse than the default case, hence further validating the architecture of
the EV model.

3.4.3. Summary of the sensitivity analysis
The above examples demonstrate that the model responds logically

to changes in the input parameters although a priori the outcome is not
always intuitive. The sensitivity analysis shows also that, in few cases, a
careful adjustment of some parameters would allow to close the gap
with the empirical CPs. However, a more important conclusion is that
the uncalibrated model always ranks among the best test cases,
managing to capture all important patterns at any location on any day.
This work does not intend to promote the use of fine tuning to perfectly
match the experimental data; rather, it provides evidence that the
construction of a thought-out model that genuinely describes EVs’
driving behaviour is sufficient to replicate the CPs from different con-
texts accurately.

Fig. 17. Examples of My Electric Avenue CPs obtained with different settings.
In blue the case with all cars being PHEVs with the original battery size; in
orange the case with empirical behaviour 1 from Fig. 15, i.e. with more fre-
quent charging.

1 Note that public EVSEs in The EV Project account for recharges at both
workplaces and public spaces.
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4. Conclusions

This study demonstrates that an EV model constructed out of con-
ventional household travel surveys (HTS) can accurately reproduce
EVs’ driving and charging behaviours from different environments.
Policy makers or grid planners that have access to HTSs or other

reliable travel diaries may thus employ EV models of the kind proposed
to make sensible estimates of the expected electricity demand from EVs.
The eligibility of such approach is conclusively proved in this study
with the support of multiple empirical validations. Specifically, the
model presented in this work accurately reconstructs the charging loads
measured in four EV field tests, achieving an average coefficient of

Fig. 18. Sensitivity analyses for the simulations of Pecan Street and Switch EV trials. The bars use the coefficient of determination R2 to show the closeness of the
simulated CPs to the empirical ones. The R2 values shown for Switch EV are an average of the coefficients computed at each location, weighted with the number of
charging events. Note the different x-axis scale used for the Pecan Street demonstrator.
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determination R2 equal to 0.83.
The manuscript shows that no extensive restructuring of HTS raw

data is necessary to achieve good predictive power. The scientific
community should thus put less modelling effort in recreating driving
data as existing HTSs and other travel diaries usually provide suffi-
ciently accurate and abundant empirical information. However, there is
more uncertainty regarding the introduction of EVs and this study
provides an assessment of the relevance of different specific EV fea-
tures. The results indicate that the most sensitive parameters are
charging losses, charging rates and powertrain design (i.e. battery size
and possibility of driving on liquid fuels) since these all directly shape
the energy demand once the EV is plugged in.

Importantly, the simulations achieve the highest accuracy when run
with settings closely resembling the trails’ conditions. When the input
parameters are purposely perturbed, the average R2 score drops to 0.70.
This finding proves that the model accurately captures the dynamics of
the real system without requiring fine tuning.

A decisive feature expanded in this work is the modelling of char-
ging behaviour through a plugging-in decision process that depends on
the EV’s state of charge. This study introduces a calibration mechanism
which combines empirical data commonly available from EV trials with
the richer insights from simulations in order to generate realistic
charging behaviours. This approach shows that participants in the ex-
amined EV trials tended to plug in their pure battery EVs when the state
of charge fell below a normally distributed threshold with parameters:

= =µ 60% 20%BEV BEV

of the actual battery capacity.
These values differ considerably from previous estimates attempted

in literature. However, employing the calibrated charging threshold
markedly increases the simulations’ accuracy and predictive power.

4.1. Limitations of the study

In this study, the model is employed and validated under the fol-
lowing specific circumstances:

• cars are privately owned and individually used,
• EVs have relatively small battery sizes,
• EVs are charged through plug-and-charge schemes.

The first choice is motivated by the goal of endorsing HTSs, which
usually describe individual private mobility. However, the model in
principle can accommodate any travel diary and return the respective
charging loads. When HTSs are employed, the researcher should be
aware that the resulting charging demand will be more accurate for
private houses than public spaces, where types of mobility other than
private may interfere. More generally, in models relying on exogenous
travel diaries the outputs intrinsically depend on the driving behaviour
captured by those travel surveys. Caution is thus always necessary
when the inferred charging loads and the source travel diaries take
place in different locations or ages. However, there is evidence that
some countries and different time periods may share similar mobility
patterns [34,35,76].

The second and third choices are driven by the EV field tests em-
ployed for the validation. The small battery capacities are mainly due to
the typical car segments provided to participants in EV trials, which are
constrained by economical considerations. In addition, the EVs avail-
able in the market when the field tests were conducted had smaller
batteries on average. However, the field tests employed in this study are
chosen for their transparency and supply of detailed information, which
enable the thorough validation proposed here. The same reason ex-
plains the choice of EV trials with simple plug-and-charge schemes,
which are unequivocally defined and easier to replicate.

Future field tests and modelling studies should examine contexts
that exceed the three above conditions in order to generate insights
applicable to the wider range of current and future realities.

4.2. Outlook

Some difficulties encountered during the work provide re-
commendations for further studies in the area. Firstly, there is a need
for more standard reporting techniques from both EV trials [77] and

Fig. 19. Examples of Switch EV CPs obtained with different settings. In blue the case with all cars being PHEVs with the original battery size; in orange the case with
alternative behaviour C from Fig. 15, i.e. with less frequent charging for high SOC.
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numerical simulations. Charging loads are often published with dif-
ferent units, which make comparisons and analyses more cumbersome.
The authors recommend not using normalised charging profiles be-
cause, while easier to replicate, these do not allow assessment of ab-
solute peak load, which is a fundamental research question in the field.
Charging loads should always be reported in absolute power and with a
clear reference basis, e.g. charging demand [kW] per used EV.

Secondly, the scientific community should gather more knowledge
regarding day-to-day mobility. Any conventional or novel vehicle (from
EVs to fuel-cell cars) can cover ranges that go beyond the average daily
driven distance. These vehicles do not need to refuel every day, but the
energy demand triggered when that is the case depends heavily on the
vehicles usage on consecutive days. Only few surveys collect this kind
of information, such as the British HTS [78] for passenger cars or the
Swiss Gütertransporterhebung [79] for freight transport.

Finally, there is a need to address the shortage of validations in the
field of fleet EV modelling. There are many proposed models in lit-
erature, but very few undergo a thorough validation procedure. The
major obstacle is the difficulty in collecting the right type of empirical
data. Beyond the reporting problem described above, EV demonstrators
are intrinsically open systems with undefined borders. This complicates
the reproduction of the exact trial conditions and impedes the actua-
lisation of a thorough validation. This paper partially succeeds in va-
lidating a Swiss HTS-based model with empirical data from different
countries, but some observed discrepancies cannot be plainly attributed
to the model or to the trials replicas. Future works in the field should
stem from synergic collaborations between modellers and trial orga-
nisers where both parties have a concordant understanding of the
system boundaries and of the mobility patterns within.
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