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Dynamic adaptive partitioning for nonlinear time series
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S

We propose a dynamic adaptive partitioning scheme for nonparametric analysis of
stationary nonlinear time series. It yields estimates of the whole probability distribution
of the underlying process. We use information from past values to construct adaptive
partitioning in a dynamic fashion which is then different from the more common static
schemes in the regression set-up. The idea of dynamic partitioning is new. We make it
constructive by an approach based on quantisation of the data and adaptively modelling
partition cells with a parsimonious Markov chain. The methodology is formulated in
terms of a new model class, the so-called quantised variable length Markov chains. It is
a new extension of finite-valued variable length Markov chains to processes with values
in Rd. We discuss estimation, explore asymptotic properties of the new method and give
some numerical results which reflect the finite sample behaviour.

Some key words: Conditional heteroscedasticity; Context algorithm; Markov chain; Multivariate time series;
Phi-mixing; Prediction; Quantisation; Stationary process; Tree model.

1. I

Nonparametric methods which are able to adapt to local sparseness of the data are
often substantially better than non-adaptive procedures because of the curse of dimen-
sionality, and estimation of the mean as a function of predictor variables with adaptive
partitioning schemes has attracted much attention (Breiman et al., 1984; Friedman, 1991;
Gersho & Gray, 1992). Some of these schemes have been studied also in the case of
stationary time series (Lewis & Stevens, 1991; Nobel, 1997), but none of the schemes uses
the simple fact that, in the case of a time series, the partition cells themselves typically
have a dynamic characteristic. Consider a stationary real-valued pth-order Markov chain
Y
t

( tµZ) with state vector S
t−1=(Y

t−1 , . . . , Yt−p) being the first p lagged variables.
Adaptive partitioning typically uses models of the form

Epart (Yt |St−1)= ∑
J

j=1
c
j
I(S

t−1µR
j
), (1·1)

where {R
j
; j=1, . . . , J} is a partition of the state space Rp. This is the common model

in the regression set-up with independent errors. The various schemes differ by adaptively
producing different partitions. However, for the time series case we make use of the
following facts:

(1) Y
t
is the first component of the next state vector S

t
;

(2) the partition cells containing the state vector V
t−1=WJ

j=1R
j
I(S

t−1µR
j
) (tµZ ) form

a stochastic process with values in {R
j
; j=1, . . . , J}. Note that S

t−1µV
t−1 for all
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tµZ. Given V1 , . . . , Vt−1 , or Y1 , . . . , Yt−1 , we can learn about a future partition
cell V

t
.

Facts (1) and (2) say that we can learn partially about a future Y
t
via the future partition

cell V
t
from the partition cell process V1 , . . . , Vt−1 and the data Y1 , . . . , Yt−1 . This explains

the expression ‘dynamic adaptive partitioning’ in the title. The novel approach here is
additionally to model the partition cell process {V

t
}
t
, thus ‘making dependence our friend’

for adaptive partitioning. We propose quantisation and parsimonious Markov modelling.
Both can be described in terms of a new model class for stationary, ergodic time series
with values in Rd (d�1), the so-called quantised variable length Markov chains, which
are new extensions of Markov chains with variable length memory from finite spaces to
Rd-valued variables. The finite space case is known as ‘tree model’, ‘ model’, ‘finite-
memory source’ or ‘variable length Markov chain’; see Rissanen (1983), Weinberger,
Rissanen & Feder (1995) and Bühlmann & Wyner (1999). A main focus of the paper is
on estimation of the whole distribution of stochastic processes in the new class of Markov
chains, a much more general task than nonparametric estimation of conditional
expectations with , classification and regression tree, or , multivariate adaptive
regression splines method, for example.

Of particular importance is a robustness property of the new chains against model
misspecification. We argue in § 2·4 that every stationary process can be approximated by
a quantised variable length Markov chain and in §§ 3·2 and 3·5 that we are able to find
and fit an appropriate member of this class of chains. We provide a financial illustration.
Also of great interest in risk management of financial assets are measures such as con-
ditional variances, i.e. volatility, the conditional quantiles or the conditional expected
shortfall E(Y

t
|Yt∏c

t−1 ,Yt−1 , Yt−2 , . . . ) with c
t−1µR a quantile given the past up to time

t−1; see an unpublished technical report by A. McNeil and R. Frey from ETH Zürich.
The general aim is the knowledge of the conditional distribution given the past. Our
approach yields consistent estimators thereof, essentially requiring only stationarity of the
data. We analyse in § 4·2 some risk questions for daily returns of the BMW stock price.

2. T    M  

2·1. Introduction

Our general strategy for fitting a nonlinear time series model is to quantise the data
and then use an adaptively estimated parsimonious Markov model for the quantised
series. The issues of choosing both the amount of quantisation and a good model are
addressed in § 3·5.

We assume the data Y1 , . . . , Yn are an Rd-valued stationary time series. Denote by

q : Rd�X={0, 1, . . . , N−1} (2·1)

a quantiser of Rd into a categorical set X={0, 1, . . . , N−1}, inducing a partition

Rd= p
xµX

I
x
, I

x
] I

y
=B (xNy) (2·2)

with yµI
q(y)

for all yµRd.

2·2. Variable length Markov chains for categorical variables

Consider a stationary process {X
t
}
t

with values in a finite categorical space X=
{0, 1, . . . , N−1} as in (2·1). We denote by

xj
i
=x

j
, x
j−1 , . . . , xi (i< j, i, jµZ^ {−2, 2})
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a vector whose components are written in reverse order. First, we define variable length
Markov chains, which are related to tree models,  models and finite-memory sources;
see § 1 for references.

D 1. L et {X
t
}
t

be a stationary process with values X
t
µX. Denote by

c :X2�^2
m=0Xm a variable projection function which maps c : x0−2

.x0−l+1 , where l is
defined by

l=min{k; pr (X1=x1 |X0−2
=x0−2

)=pr (X1=x1 |X0−k+1=x0−k+1 ) for all x1µX},

where l¬0 corresponds to independence. T hen c(.) is called a context function and, for any
tµZ, c(xt−1−2

) is called the context for the variable x
t
.

The name context refers to the portion of the past that determines the probability for
the next outcome. By the projection structure of the context function c(.), the context
length l( . )=|c(.) | determines c( .) and vice versa. The definition of l implicitly reflects the
fact that the context length of a variable x

t
is l=|c(xt−1−2

) |= l(xt−1−2
), depending on the

history xt−1−2
.

D 2. L et {X
t
}
t
be a stationary process with values X

t
µX and corresponding

context function c(. ) as given in Definition 1. L et p be the smallest integer such that

|c(x0−2
) |= l(x0−2

)∏p

for all x0−2
µX2. T hen c(. ) is called a context function of order p, and, if p<2, {X

t
}
t
is

called a variable length Markov chain of order p.

We sometimes identify a variable length Markov chain {X
t
}
t
with its probability distri-

bution P
c
on XZ. Also, we often write

P
c
(xj
i
)=pr (Xj

i
=xj

i
), P

c
(x
j
|xj−1
i

)=pr (X
j
=x

j
|Xj−1

i
=xj−1

i
) (i< j )

for {X
t
}
t
~P

c
.

Clearly, a variable length Markov chain of order p is a Markov chain of order p, now
having a memory of variable length l. Since stationarity is required, a variable length
Markov chain is thus completely specified by its transition probabilities P

c
{x1 | c(x0−2

)},
for x1−2

µX2. Many context functions c(. ) yield a substantial reduction in the number of
parameters compared to a full Markov chain of the same order as the context function.
The class of variable length Markov chains contains many more models than the class of
full Markov chains, and it is in this sense richer. It generally allows a finer trade-off
between bias and variance, and typically yields a better strategy for dealing with the curse
of dimensionality.

A variable length Markov chain is a tree-structured model with a root node on top,
from which the branches grow downwards, so that every internal node has at most
N=|X | offspring. Then, each value of a context function c(. ) can be represented as a
branch, or terminal node, of such a tree. The context w=c(x0−2

) is represented by a
branch whose sub-branch on the top is determined by x0 , the next sub-branch by x−1
and so on, and the terminal sub-branch by x−l(x0

−2
)+1 . Note that such context trees do

not have to be complete, i.e. every internal node does not need to have exactly N=|X |
offspring.
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Example 1: X={0, 1}, p=3. The function,

c(x0−2
)=q0 if x0=0, x−1−2

arbitrary,

1, 0, 0 if x0=1, x−1=0, x−2=0, x−3−2
arbitrary,

1, 0, 1 if x0=1, x−1=0, x−2=1, x−3−2
arbitrary,

1, 1 if x0=1, x−1=1, x−2−2
arbitrary,

can be represented by the tree t=t
c
; see Fig. 1. A left-branching sub-branch represents

the symbol 0, and a right-branching sub-branch represents the symbol 1.

1

0

10

0

1

Fig. 1. Context tree t
c
for Example 1.

D 3. L et c(. ) be a context function of a variable length Markov chain of order
p. T he context tree t and terminal node context tree tT are defined as

t=t
c
={w; w=c(x0−2

), x0−2
µX2},

tT=tT
c
=qw; wµt

c
and wu1t

c
for all uµ p

2

m=1
Xmr .

Definition 3 says that only terminal nodes in the tree representation t are considered
as elements of the terminal node context tree tT . Clearly, we can reconstruct the context
function c(.) from t

c
or tT

c
. The context tree t

c
is nothing other than the minimal state

space of a variable length Markov chain with context function c( .). An internal node with
b<N=|X | offspring implicitly adds one complementary offspring, lumping the N−b
absent offspring together to a single new terminal node wnew which represents a single
state in t

c
.

2·3. Quantised variable length Markov chains for Rd-valued variables

Let q, X and I
x

be as in (2·1) and (2·2), respectively. Assume that
(i) {X

t
}
t
is an X-valued variable length Markov chain.

Given X
t
=x, define Y

t
independently of {Y

s
, X

s
; sNt} by

(ii) Y
t
~ f

x
(y) dy given X

t
=x with supp ( f

x
)kI

x
, for all xµX,

where f
x
( . ) is a d-dimensional density with respect to Lebesgue measure.
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D 4. T he process {Y
t
}
t
defined by assumptions (i ) and (ii ) is called a quantised

variable length Markov chain.

By assumption (ii) a quantised variable length Markov chain has the property that its
quantised values, with the correction quantiser q, form a variable length Markov chain,
that is {q(Y

t
)}
t
={X

t
}
t
is a variable length Markov chain. Also, a quantised variable length

Markov chain {Y
t
}
t
is a stationary Rd-valued Markov chain, generally of higher order,

with a memory induced by the underlying variable length Markov chain:

pr (Y
t
∏y |Y t−1−2

)= ∑
xµX

P
(−2,y]

f
x
(z) dz pr{X

t
=x | c(Xt−1−2

)}

=pr{Y
t
∏y |c(Xt−1−2

)} (yµRd, X
s
=q(Y

s
)),

where ‘∏’ is defined componentwise. However, the minimal state space of {Y
t
}
t
has specific

structure and is the same as for {X
t
}
t
, namely t

c
as given in Definition 3.

For the univariate quantised variable length Markov chain model, the quantiser
q : R�X={0, 1, . . . , N−1} in (2·1) and (2·2) is usually chosen in terms of disjoint
intervals in R; see formula (3·1). For the multivariate model, the quantiser is
q : Rd�X={0, 1, . . . , N−1}. General vector quantisation is less interpretable than scalar
quantisation, particularly in terms of individual series. We propose, but do not require,
scalar quantisation of different individual time series,

q : Rd�X, q(Y
t
)={q1(Y1,t ), . . . , qd (Yd,t )}, Y

t
= (Y

1,t
, . . . , Y

d,t
),

q
j
: R�X

j
={0, 1, . . . , N

j
} ( j=1, . . . , d), X=X1× . . .×X

d
,

(2·3)

with a product space X, labelled arbitrarily by 0, 1, . . . , N−1 with N=N1 . . . N
d
. The

flexibility of quantised variable length Markov chains also allows us to model multivariate
time series data with some real-valued and some categorical components.

2·4. Properties of quantised variable length Markov chains

The dynamic property of a quantised variable length Markov chain is given by the
variable length Markov chain model of the quantised series. Since the variables Y

t
given

{X
s
}
s

are independent and depend only on their quantised values X
t
, stationarity and

ergodicity of {Y
t
}
t
is inherited from {X

t
}
t
. Note that this statement is meant to be uncon-

ditional on {X
t
}
t
. A sufficient condition for ergodicity is then implied by a Doeblin-type

condition, and stationarity is already implicitly assumed by our Definitions 2 and 4.

Assumption 1. The underlying variable length Markov chain {X
t
}
t
~P

c
on XZ satisfies

min
xµX,wµt

c

P
c
(x |w)>0.

P 1. L et {Y
t
}
t

be a quantised variable length Markov chain as given in
Definition 4, satisfying Assumption 1. T hen {Y

t
}
t
is ergodic and uniformly mixing with mixing

coeYcients satisfying w(i )∏const×ri for all iµN, where 0<r<1.

This follows from known results for finite Markov chains (Doukhan, 1994, Ch. 2.4,
Th. 1).

The geometrical decay of the mixing coefficients is typical for fixed, finite-dimensional
parametric models or for semiparametric models with a finite dimensional parametric
part. However, this does not mean that only very short range phenomena could be
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modelled with quantised variable length Markov chains. Indeed, Theorem 1 below
discusses the breadth of the model class, which is weakly dense in the set of stationary,
Rd-valued processes. Denote by

p
t
1
,...,t

m

: (Rd)Z� (Rd)m, p
t
1
,...,t

m

(y)=y
t
1

, . . . , y
t
m

(t1 , . . . , tmµZ, mµN) (2·4)

the coordinate function and consequently by P 0p−1
t
1
,...,t

m

the m-dimensional distribution
of (Y

t
1

, . . . , Y
t
m

), where {Y
t
}
t

has distribution P on (Rd )Z. Moreover, let ‘[’ denote
weak convergence.

T 1. L et P be a stationary process on (Rd)Z (d�1). T hen there exists a sequence
(P
n
)
nµN

of ergodic, Rd-valued quantised variable length Markov chains, such that

P
n
0p−1

t
1
,...,t

m

[P 0 p−1
t
1
,...,t

m

(2·5)

as n�2, for all t1 , . . . , tmµZ, for all mµN.

A sketch of the proof is given in the Appendix. For smooth P, a coarse quantisation in
the quantised variable length Markov chain is expected to work well.

2·5. Prediction with quantised variable length Markov chains

Since a quantised variable length Markov chain specifies the whole probability distri-
bution of the process, any predictor can be computed in such a model. The general formula
for the m-step-ahead conditional density of Y

n+m given Y n−2
is

f
Y
n+m

|Yn
−2

(y)= ∑
xn+m
n+1

µXm

f
x
n+m

(y) ∑
m−1
j=0

P
c
{x

n+m−j | c(xn+m−j−1n+1 Xn−2
)}, (2·6)

where

xn+m−j−1
n+1 Xn−2

=x
n+m−j−1 , xn+m−j−2 , . . . , xn+1 , Xn

, X
n−1 , . . . , X−2

( j�1)

and xn+m−j−1
n+1 Xn−2

=Xn−2
for j=m−1. The quantised variable length Markov chain thus

models the conditional density as a function of finitely many of the past quantised values
Xn−2

rather than Y n−2
. As with any partitioning scheme, the predictor in (2·6) then ranges

over only a finite, although often large, number of different densities. When we specialise
to the optimal mean squared error m-step-ahead predictor in a quantised variable length
Markov chain, it is easy to see that, for a fixed function g : Rd�Rq (d, qµN ),

E{g(Y
n+m) |Y n−2

}=E{g(Y
n+m) |c(Xn−2

)}

= ∑
xn+m
n+1

µXm

E{g(Y
n+m ) |X

n+m=x
n+m}

× ∑
m−1
j=0

P
c
{x

n+m−j |c(xn+m−j−1n+1 Xn−2
)}. (2·7)

Again, this predictor takes values only in a finite, although often large, subset of Rq.
Clearly, by choosing appropriate functions g(. ), we obtain predictions of conditional
moments given the past. An example is the conditional variance, i.e. volatility, in financial
time series. With g(y)=y, formula (2·7) also describes the differences of the self-exciting
autoregressive threshold models,  (Tong, 1990, pp. 99–101), in which the thresholds
are determined by one lagged variable, corresponding to a partition of the real line R,
and autoregressions are used within the partition. With a quantised variable length
Markov chain, the partitions are given through all p lagged variables, where p is the order
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of the variable length Markov chain, and constants, which are mixtures of conditional
means, are used within a partition.

2·6. Interpretation as dynamic adaptive partitioning

We discuss now in more detail the issues (1) and (2) from § 1, for notational simplicity
only for R-valued processes. The coefficients c

j
in (1·1) are constants, depending only on

the index j of the partition element R
j
,

c
j
=E(Y

t
|S
t−1µR

j
)=E(Y

t
|V
t−1=R

j
)=m

p
(R
j
), m

p
:Bp�R, (2·8)

with Bp the Borel s-algebra of Rp. The fact that {V
t
}
t

is a stochastic process, where
information from the past could be nontrivial, is not used with such general static partition-
ing. It is not difficult to show that quantised variable length Markov chains induce a
dynamic partitioning; a partition model holds as in (1·1) with certain partition cells
R1 , . . . , RJ

, but the coefficients c
j
are now of the form

c
j
= ∑

v
t
µR

j

m1 (vt ) prVLMC(Vt=v
t
|V
t−1=R

j
),

m1(vt)=m1(v1,t)=E(Y
t
|Y
t
µv

1,t
), v

t
=v

1,t
× . . .×v

p,t
, m1 :B1�R,

(2·9)

with B1 the Borel s-algebra of R1 and prVLMC(Vt=v
t
|V
t−1=v

t−1 ) the probability induced
by the variable length Markov chain {X

t
}
t
; that is

prVLMC(Vt=v
t
|V
t−1=v

t−1)=pr (X
t
=x

t
| c(Xt−1

t−p )=w
j
),

with x
t
, w

j
such that q(y

t
)=x

t
for all y

t
µv

1,t
and c[{q(y

s
)}t−1
s=t−p]=w

j
for all yt−1

t−pµv
t−1 .

Dynamic partitioning essentially differs from static partitioning in the model for the
coefficients c

j
. As described by (2·9), our dynamic partitioning models {V

t
}
t
as a Markov

chain and uses a function m1( .) with domain B1, involving only a one-dimensional struc-
ture. This is in contrast to static partitioning as described in (2·8), where no dynamic
model for {V

t
}
t
is assumed and a function m

p
( . ) with p-dimensional domain Bp is used.

The dynamic structure of a quantised variable length Markov chain can be interpreted
in terms of a context tree, see Definition 3, and a one-dimensional simple nonparametric
structure for E(Y

t
|X

t
). Clearly, a dynamic adaptive partitioning scheme can be constructed

in many different ways. For instance, one might use a static scheme like  for the
partition cells R1 , . . . , RJ

, a full Markov chain of order 1 for the partition cell process
{V
t
}
t
and, as with quantised variable length Markov chains, a single nonparametric struc-

ture for the distribution of Y
t
given Y

t
µR

j
. This has the potential to be consistent for the

conditional expectation E(Y
t
|Y t−1−2

) but generally not for the whole distribution of the
underlying process.

3. T      M 

3·1. Choice of quantiser

We first have to find an appropriate quantiser q. In the univariate case, a practical
procedure for choosing q when N=|X |�2 is specified is given by the sample quantiles
FC−1( . ) of the data:

q@ (y)=q0 if −2<y∏FC−1(1/N),

x if FC−1(x/N)<y∏FC−1{(x+1)/N} (x=1, . . . , N−2),

N−1 if FC−1{(N−1)/N}<y<2.

(3·1)
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This yields an interval partition of R with equal numbers of observations per partition
cell. Specification of N is discussed in § 3·5. In the multivariate case, we could use a
quantiser as in (2·3), with q

j
estimated as in (3·1) in terms of the quantiles of the jth

individual series. The choice of an appropriate q or an appropriate size N of X could also
be given by the application.

3·2. Context Algorithm

Given data X1 , . . . , Xn
from a variable length Markov chain P

c
on XZ, and if we assume

that q is the correct quantiser, the aim is to find the underlying context function c( .) and
an estimate of P

c
. In the sequel we adopt the convention that quantities involving time

indices t1{1, . . . , n} equal zero or are irrelevant. Let

N(w)= ∑
n

t=1
I(Xt+|w|−1

t
=w) (wµX|w| ) (3·2)

denote the number of occurrences of the vector w in the sequence Xn
1
. Moreover, let

PC (w)=
N(w)

n
, PC (x |w)=

N(xw)

N(w)
, xw= (x|x| , . . . , x2 , x1 , w|w| , . . . , w2 , w1). (3·3)

The algorithm below constructs the estimated context tree t@ as the biggest context tree
with respect to the order ‘,’ defined in Step 1 below, such that

D
wu
= ∑

xµX

PC (x |wu) log APC (x |wu)

PC (x |w) BN(wu)�K

for all wuµt@T (uµX), where K=K
n
~C log(n) and C>2 |X |+4 is a cut-off to be chosen

by the user.

C A
Step 1. Given X-valued data X1 , . . . , Xn

, fit a maximal context tree. T hat is, search for
the context function cmax( .) with terminal node context tree representation tTmax , see
Definition 3, where tTmax is the biggest tree such that every element, or terminal node, in
tTmax has been observed at least twice in the data. T hus tTmax is such that wµtTmax implies
N(w)�2, and, for every tT , where wµtT implies N(w)�2, it holds that tT,tTmax . Here,
t1,t2 means that wµt1 implies wuµt2 for some uµ^2

m=0Xm (X0=B).
Set tT

(0)
=tTmax .

Step 2. Examine every element, i.e. terminal node, of tT
(0)

as follows; the order of examining
is irrelevant. L et c(. ) be the context function corresponding to tT

(0)
and let

wu=x0−l+1=c(x0−2
), u=x−l+1 , w=x0−l+2 ,

where wu is an element of tT
(0)

, which we compare with its pruned version w=x0−l+2 ; if
l=1, the pruned version is the empty branch, i.e. the root node.

Prune wu=x0−l+1 to w=x0−l+2 if

D
wu
= ∑

xµX

PC (x |wu) log qPC (x |wu)

PC (x |w) rN(wu)<K,

with K=K
n
~C log(n), C>2 |X |+4 and PC ( . | . ) as defined in (3·3). T he decision about

pruning for every terminal node in tT
(0)

yields a possibly smaller tree t
(1)
,tT

(0)
.

Construct the terminal node context tree tT
(1)

.
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Step 3. Repeat Step 2 with t
(i)

, tT
(i)

instead of t
(i−1) , tT

(i−1) for i=1, 2, . . . , until no more
pruning is possible. Denote this maximal pruned context tree, not necessarily of terminal
node type, by t@=t

c@
and its corresponding context function by c@( . ).

Step 4. Estimate the transition probabilities P
c
{x1 |c(x0−2

)} by PC {x1 | c@(x0−2
)}, where PC ( . | . )

is defined as in (3·3).

The pruning in the Context Algorithm can be viewed as a hierarchical backward selec-
tion with the D

wu
in Step 2 essentially a log-likelihood-ratio statistic; see Bühlmann &

Wyner (1999). Dependence on some values further back in this history is made weaker
by considering deep nodes in the tree in a hierarchical way as less relevant.

Consistent estimation of the true context function c(. ), that is the tree structured minimal
state space t

c
, is discussed in Weinberger et al. (1995) and Bühlmann & Wyner (1999).

Asymptotic normality of the transition probabilities nD[PC {x1 | c@(x0−2
)}−P(x1 |w)] for

w=c(x0−2
) follows by the consistency of c@( . ) and the mixing property in Proposition 1.

The Context Algorithm needs O{n log(n)} operations and is thus computationally fast.
The estimation of the minimal state space t

c
is done solely on the basis of the quantised

data X1 , . . . , Xn
. The question is if equivalence to fitting with Rd-valued data holds. Let

us assume the following.

Assumption 2. Estimation of the minimal state space t
c
of the quantised variable length

Markov chain, or of the underlying variable length Markov chain, is exclusively based
on possibly multiple use of the log-likelihood-ratio statistic

DC
t
c1
,t
c2

(Y n
1
)=log q f@

t
c1

(Y n
1
)

f@
t
c2

(Y n
1
)r ,

where t
c
1

, t
c
2

are context trees,

log{ f@
t
c1

(Y n
1
)}= ∑

n

t=p+1
log[ f@ {Y

t
|c
i
(Xt−1

t−p)}] (i=1, 2)

is the loglikelihood of an estimated quantised variable length Markov chain with given
c
i
( . ), induced by t

c
i

, and p is the maximal order of c1 ( . ) and c2( . ). For i=1, 2,

f@ {Y
t
|c
i
(Xt−1

t−p)}= f@
X
t

(Y
t
)PC {X

t
| c
i
(Xt−1

t−p)}
is an estimate in the quantised variable length Markov chain for f {Y

t
|c
i
(Xt−1

t−p )} with f@
x
( .)

consistent and PC ( . | . ) as in (3·3).

Assumption 2 is quite natural in model selection. If we neglect the minor effect of
different orders p for different t

c
i

’s, the Context Algorithm satisfies Assumption 2, because
D
wu

in Step 2 is essentially a log-likelihood-ratio statistic.

P 2. Assume that {Y
t
}
t

is a quantised variable length Markov chain with
minimal state space t

c
. T hen any estimate of t

c
satisfying Assumption 2 is based solely on

the quantised data X1 , . . . , Xn
.

A proof is given in the Appendix. Proposition 2 then justifies the use of the Context
Algorithm, which is only based on the quantised data, for estimation of the minimal state
space t

c
. This is in contrast to many static partitioning schemes such as , where the

predictors are used in a quantised form but the non-quantised response variables contrib-
ute to the estimation of a partition of the predictor space.
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3·3. Estimation of densities and cumulative probabilities

The cell densities { f
x
( . ); xµX} can be estimated by some smoothing technique, for

example with a kernel estimator

f@
x
(y)=

n−1h−dWn
t=1K{(y−Y

t
)/h}I(X

t
=x)

n−1N(x)
(yµRd ), (3·4)

with N(x) as in (3·2), K(.) a probability density function in Rd and h a bandwidth with
h=h(n)�0 and typically nhd+4�C, as n�2, for some constant 0<C<2; see for
example Silverman (1986, Ch. 4). Asymptotic normality of (nhd)D{ f@

x
(y)− f

x
(y)} for xµX

and y an interior point of I
x

follows by the mixing property in Proposition 1, if the
quantiser q is assumed known.

If the cumulative probabilities of the observations are of more interest, one can directly
use empirical distribution functions. We estimate pr (Y

t
µE) and pr (Y

t
µE |X

t
=x) for some

measurable set E by

est. pr (Y
t
µE)=n−1 ∑

n

t=1
I(Y

t
µE),

est. pr (Y
t
µE |X

t
=x)=

n−1Wn
t=1 I(YtµE)I(X

t
=x)

n−1N(x)
.

Asymptotic normality of

nD{est. pr (Y
t
µE)−pr (Y

t
µE)}, nD{est. pr (Y

t
µE |X

t
=x)−pr (Y

t
µE |X

t
=x)}

follows from the mixing property in Proposition 1, if q is assumed fixed.

3·4. Estimated predictors

The predictive density in (2·6) can be estimated by plugging in the density estimate
from (3·4) and the estimated context function and transition probabilities for {X

t
}
t
from

Steps 3 and 4 in the Context Algorithm in § 3·2. For the predictor in (2·7), we estimate
E{g(Y

t
) |X

t
=x} by g(Y )*

x
=N(x)−1Wn

t=1 g(Y
t
)I(X

t
=x) and use again the plug-in technique:

EC {g(Y
n+m) |Y n

1
}= ∑

xn+m
n+1

µXm

g(Y )*
x
n+m

a
m−1
j=0

PC {x
n+m−j |c@(xn+m−j−1n+1 Xn

1
)}. (3·5)

See formula (2·7) for a proper definition of xn+m−j−1
n+1 Xn

1
. This estimated predictor takes

values in a finite, but usually large, subset of Rq. Asymptotic normality of

nD[EC {g(Y
n+m) |Y n

1
=yn

1
}−E{g(Y

n+m) | s}],

where s=c[{q(y
t
)}n
t=1] is the state of the variable length Markov chain at time n, follows

by the consistency of c@( . ) and the mixing property in Proposition 1, if we assume m finite
and q known.

3·5. Model selection

We select a quantiser q and estimate a minimal state space t
c
, or equivalently a context

function c(. ), in a fully data-driven way. For simplicity and manageability we assume a
Gaussian component quasilikelihood structure which sets us in a parametric set-up,
although the original problem is of semi- or nonparametric nature.

We focus first on the univariate case. The loglikelihood function of a quantised variable
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length Markov chain, conditional on the first p observations, is

l(Y n
1
)= ∑

n

t=p+1
log{ f

X
t

(Y
t
)}+ ∑

n

t=p+1
log[P

c
{X

t
| c(Xt−1

t−p )}],
where p is the order of the underlying variable length Markov chain. Write

m
x
=E(Y

t
|X

t
=x), s2

x
=var(Y

t
|X

t
=x).

Assume f
x
(y) to be the density of a N(m

x
, s2
x
) random variable, although then supp ( f

x
)=

R. Consider the Gaussian component quasi-loglikelihood function

lquasi(h; Y n
1
)= ∑

n

t=p+1
log C(2ps2

X
t

)−D exp q− (Y
t
−m

X
t

)2
2s2

X
t

rD
+ ∑

n

t=p+1
log[P

c
{X

t
|c(Xt−1

t−p)}], (3·6)

where h=(m0 , . . . , m
N−1, p) with

p
wx
=pr{X

t
=x |c(Xt−1

t−p)=w} (wµt
c
, xµ{0, . . . , N−2}).

The maximum quasilikelihood estimator for c(.) known,

h@MQLE= argmin
h

{−lquasi(h; Y n
1
)}, (3·7)

provides the parameter values used for the estimated predictor in (3·5) with g(y)=y. For the
prediction problem we thus can restrict our attention to the quasilikelihood function in (3·6)
and the estimator h@MQLE in (3·7). The quasilikelihood function itself is not meant to describe
the whole underlying distribution of the observations but rather the characteristics of the
conditional expectation E(Y

t
|Y t−1

1
); see McCullagh & Nelder (1980, Ch. 9). In the parametric

case in which we find ourselves, a proper -type criterion is of the form

−2lquasi (h
@ ; Y n

1
)+2 dim (h).

In our case, dim (h )=N+|t
c
| (N−1) with N=|X |. If we replace s2

x
with

s@2
x
={N(x)−1}−1 ∑

n

t=1
(Y
t
−Y9x )2I(Xt

=x),

our model selection criterion then becomes

M2(q, c)=−2lquasi (h
@ ; Y n

1
)+2{N+|t

c
|(N−1)}

= ∑
n

t=p+1 q(Yt−Y9X
t

)2
s@2
X
t

+ log(2ps@2
X
t

)r−2 ∑
n

t=p+1
log[PC {X

t
| c(Xt−1

t−p)}]
+2{N+|t

c
| (N−1)},

where PC ( . | . ) is given in (3·3). The criterion thus employs a weighted quadratic loss for the
quantisation effect, the loglikelihood for the dynamic variable length Markov chain part
and a penalty. Note that the quantiser q enters implicitly. Theoretically we would search
for the quantiser q and the context function c(.)=c

q
( . ) which minimise M2(q, c). However,

the search over all context functions becomes very quickly computationally infeasible. A
remedy proposed in Bühlmann (1999), here applied to the dynamic variable length Markov
chain part of the criterion, is to search for an optimal cut-off parameter K in the Context



566 P B 

Algorithm; see Step 2 in § 3·2. Our proposal is to choose the quantiser q and the cut-off
parameter K which minimise

M2 (q, K )= ∑
n

t=p+1 q(Yt−Y9X
t

)2
s@2
X
t

+ log(2ps@ 2
X
t

)r
−2 ∑

n

t=p+1
log[PC {X

t
|c@
K
(Xt−1

t−p)}]+2{N+|t
c@
K

|(N−1)},

where c@
K

is the estimated context function for the X-valued variable length Markov chain,
depending on K, and PC ( . | . ) is as in (3·3). Note that, for given q, the search for an optimal
cut-off K is affected only by the term −2Wn

t=p+1 log[PC {X
t
| c@
K
(Xt−1

t−p )}], thus being exactly
the same as when tuning the context algorithm for a categorical valued variable length
Markov chain, studied in Bühlmann (1999). For the multivariate model, we choose q and
K to minimise.

M2
d
(q, K )= ∑

n

t=p+1
{(Y

t
−Y9X

t

)∞SC−1
X
t

(Y
t
−Y9X

t

)+d log(2p)+ log( |SC
X
t

|)}

−2 ∑
n

t=p+1
log[PC {X

t
|c@
K
(Xt−1

t−p)}]+2{N+|t
c@
K

| (N−1)},

where SC
x
={N(x)−1}−1Wn

t=1 (Yt−Y9x )(Yt−Y9 x)∞I(Xt
=x) and PC ( . | . ) is as in (3·3).

4. N 

4·1. Simulated data

We study first the predictive performance of our scheme for simulated univariate data
by considering the simple problem of one-step-ahead prediction of observations. The
sample size is denoted by n. We then evaluate an estimated one-step-ahead predictor for
the next L observations; we do not re-estimate the predictor, which is always based on
the first n observations. Accuracy is measured by

=L−1 ∑
n+L
t=n+1

(YC
t
−Y

t
)2,

with YC
t
=EC (Y

t
|Y t−1
1

) the predictor estimated on the Y1 , . . . , Yn and evaluated on Y t−1
1

, or
equivalently on Y t−1

t−p with p the dimension of the estimated state space. We always use
here L =1000. We compute the measure  of actual predictive performance for the predic-
tor in (3·5) with g(y)=y for various quantisers q and cut-off parameter K=x2

N−1;0·95/2,
N=|X |, which we have often found to be a reasonable value. In the examples, the quan-
tisers q=q@ are estimated from the data as in (3·1). Varying over q@ then results in varying
over N=|X |. We give the model selection measure M2 (q, K )=M2 (N) from § 3·5, by our
choice of q=q@ and K, as an estimate of predictive performance. We compare the quantised
variable length Markov chain scheme with the predictor from an  ( p) model with p
chosen by the minimum  criterion, with projection pursuit autoregression (Friedman
& Stuetzle, 1981) and with  (Friedman, 1991). The latter two methods are nonpara-
metric but try to deal with the curse of dimensionality in an intelligent way. We report
below parts of a larger simulation study.

We construct first a nonparametric  (2) model with an interaction term in the mean
function:

Y
t
={0·5+0·9 exp (−2·354Y 2

t−1)}Yt−1−{0·8−1·8 exp(−2·354Y 2
t−1)}Yt−2+Z

t
, (4·1)
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with Z
t
~N(0, 0·425) independently for all t, and Z

t
independent from {Y

s
; s<t}. The

model is specified so that var (Y
t
)j 1. Table 1 summarises the results for n=4000 and n=

5000. We abbreviate by ‘, N’ the quantised variable length Markov chain predictor
with quantiser as in (3·1) determined by N; ‘oracle’ is the predictor based on the true
model; ‘’ is the minimum  linear autoregressive predictor; ‘PPreg’ and  refer
to the projection pursuit and  predictors, respectively, reported with the empirically
best number of lagged variables. The number of terms in ‘PPreg’, chosen between 2 and
10, had very little effect. For  we used the algorithm from the library  in S-Plus,
available on the internet at ‘http//lib.stat.cmu.edu/S/mda’. Projection pursuit autoregres-
sion predictably does slightly better in this case where the true model is nonparametric
autoregressive with independent, identically distributed innovations. Here  is not
competitive.

Table 1. Performances for nonparametric (2) in (4·1)

Method Sample size Model dimension  M2 (q, K )

, N=24 4000 829 0·779 12381·3
, N=20 4000 932 0·700 12056·1

, N=16 4000 1126 0·558 11524·1
, N=12 4000 870 0·482 10953·9
, N=9 4000 489 0·474 10732·1

, N=6 4000 196 0·521 10833·6
 4000 10 0·842 —
PPreg, #( lags)=2 4000 — 0·433 —

, #( lags)=3 4000 — 0·782 —
Oracle — — 0·425 —

, N=9 500 89 0·805 1677·0

, N=7 500 109 0·650 1637·0
, N=6 500 81 0·584 1563·1
, N=5 500 57 0·592 1488·0

, N=4 500 40 0·601 1500·6
, N=3 500 27 0·646 1548·0

, quantised variable length Markov chain; , minimum  linear
autoregressive with mean correction; PPreg, projection pursuit on lagged

variables with 2 terms; ,  on lagged variables; oracle, true model.

Another nonparametric  (2) model is additive for the mean function in the lagged
variables but with conditional heteroscedastic errors:

Y
t
=0·863 sin (4·636Y

t−1)+0·431 cos (4·636Y
t−2)+ (0·023+0·5Y 2

t−1)DZt
, (4·2)

with Z
t
~N(0, 1) independently for all t, and Z

t
independent from {Y

s
; s<t}. Again, the

model is specified so that var (Y
t
)j 1. Table 2 summarises the results for n=4000; the

notation is as in Table 1. Projection pursuit autoregression has about the same perform-
ance as the quantised variable length Markov chain scheme, and  is slightly worse.

We consider also a bivariate model:

Y
1,t
=1·107 sin(3·629Y

1,t−1)+0·554 cos (3·598U
t−1)+ (0·038+0·200U2

t−1)DZ1,t
,

U
t
=1·107 sin (3·598U

t−1)+0·554 cos (3·629Y
1,t−1)+ (0·038+0·200Y 2

1,t−1)DZ2,t
,

Y
2,t
=4·721 q exp(U

t
)

1+exp (U
t
)
−0·5r ,
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Table 2. Performances for nonparametric (2) in
(4·2), n=4000

Method Model dimension  M2(q, K )

, N=24 599 0·666 9990·9
, N=20 761 0·653 10095·1

, N=16 796 0·642 9863·0
, N=12 639 0·640 10036·6
, N=9 321 0·671 10195·3

, N=6 201 0·806 11436·5
 2 0·999 —
PPreg, #( lags)=2 — 0·635 —

, #( lags)=4 — 0·669 —
Oracle — 0·523 —

, quantised variable length Markov chain; , mini-
mum  linear autoregressive with mean correction;

PPreg, projection pursuit on lagged variables with 2 terms;
,  on lagged variables; oracle, true model.

with {Z1,t}t , {Z
2,t

}
t
independent sequences, Z

1,t
~N(0, 1), Z

2,t
~N(0, 1) independently

for all t and Z
1,t

, Z
2,t

independent of {Y
1,s

, U
s
; s<t}. The series {U

t
}
t
is only auxiliary for

the definition of {Y
1,t

, Y
2,t

}
t
. Again, the model is specified so that var(Y

1,t
)j 1, var(Y

2,t
)j 1.

The results for n=4000 are given in Table 3. We abbreviate by ‘, (N1 , N2)’ the
quantised variable length Markov chain predictor with quantiser as in (2·5) with q

j
and

corresponding values N
j

( j=1, 2) as in (3·1) for the two individual series. We restrict
attention here to the case N1=N2 , which is not a necessity. Write


j
=1000−1 ∑

n+1000
t=n+1

(YC
j,t
−Y

j,t
)2 ( j=1, 2), tot=1+2 .

Using the best selected quantised variable length Markov chain instead of the linear 
scheme results in a big gain.

Table 3. Performances for bivariate model, n=4000

Method Model dimension (1 , 2 ) tot M2
2
(q, K )

, N1=N2=5 625 (0·594, 0·578) 1·172 21048·6
, N1=N2=4 271 (0·628, 0.596) 1·224 20740·7

, N1=N2=3 249 (0·960, 0·966) 1·962 24223·1
 6 (1·000, 0·996) 1·996 —

, quantised variable length Markov chain; , minimum  linear auto-
regressive with mean correction.

Other univariate models have also been studied. If the model is nonlinear, the quantised
variable length Markov chain scheme generally outperforms the  predictor. In the case
of  models, the loss of the quantised variable length Markov chain scheme relative to
the  predictor is small or moderate. In comparison to projection pursuit autoregression
and , the following may be concluded. If the model is nonparametric autoregressive
with independent, identically distributed innovations, projection pursuit has a slight
advantage and is the best, but  seems to have some difficulties with the non-additive
structure as in Table 1. If the model is nonparametric autoregressive with heteroscedastic
innovations, quantised variable length Markov chain and projection pursuit are similar;
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see Table 2. In this latter case with additive structure of the conditional mean, 
becomes competitive. If the model is not simply specified by conditional first and second
moments and independent, identically distributed innovations, there is some evidence that
the quantised variable length Markov chain scheme often improves upon the projection
pursuit or  predictor. Finally, the quantised variable length Markov chain is not
very sensitive to the specification of the size N of the space X, and the model selection
criterion M2(q, K ) works well.

4·2. Returns from the BMW stock price

The quantised variable length Markov chain scheme yields much more general results
than one-step-ahead prediction of observations, as we now illustrate. We consider daily
returns Y

t
= log(B

t
)− log(B

t−1 ) (t=1, . . . , n=1000), where B
t
denotes the BMW stock

price at time t. Figure 2 shows the data Y1 , . . . , Yn and the next nine future values
Y
n+1 , . . . , Yn+9 .

(a) Daily returns from BMW stock price

R
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u
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0·1

0·0

_0·1

09/12/85 9/9/86 9/6/87 9/3/88 9/12/88 9/9/89

Time (date)

(b) Nine consecutive future daily returns

R
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u
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Fig. 2. Daily returns from BMW stock price: (a) 1000 days’ data
from 9 December 1985 to 9 September 1989, (b) the nine consecu-

tive future daily returns.

The fitted model is with N=9 for the quantiser as in (3·1). Figures 3(a)–(f ) show the
one-step-ahead predicted densities f@

Y
t
|Yt−1
1

( . ) (t=n+1, n+5, . . . , n+9) from the fitted
model for six of the nine future days displayed in Fig. 2(b), and Fig. 3(g)–(i) displays the
following summary statistics of these predictive densities: the volatilities va@r (Y

t
|Y t−1
1

), the
skewnesses EC [{Y

t
−EC (Y

t
|Y t−1
1

)}3 |Y t−1
1

] and the expected shortfalls EC (Y
t
|Y
t
∏c

t−1 , Y t−1
1

),
with c

t−1 the estimated conditional 5% quantile of Y
t
given Y t−1

1
.

The predictive densities for t=n+2, n+3 and n+4 were very similar to those for t=
n+1 and n+5. The predictive densities are excellent exploratory forecasts for the extreme
behaviours of the future returns 6 and 7; the quantised variable length Markov chain
scheme is in this particular example able to predict both ‘changes in regime’, at future
days 6 and 8, although it has to be admitted that this prediction of ‘change in regime’
was not always so successful in other datasets. The volatilities and conditional expected
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Fig. 3: BMW stock price example. (a)–(f ) Predictive densities for six of the nine future days corresponding
to Fig. 2(b). (g)–(i) Summary statistics for all nine days, (g) volatility, (h) conditional skewness and

(i) conditional expected shortfall.

shortfall summary statistics reflect this forecasting behaviour in a more quantitative way,
with the conditional skewness deviating from zero only on a small scale. We point out
that the results here are, as fitted quantised variable length Markov chains, asymptotically
robust against model misspecification.
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A

Proofs

Sketch of proof of T heorem 1. The detailed proof can be found in a research report by
P. Bühlmann, which is available on the internet at ‘ftp://stat.ethz.ch/Research-Reports/
resrep84-Rev.ps.Z’. For notational simplicity we sketch the proof for the univariate case with
d=1. Let P be a stationary process on RZ.
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In Step 1 we show that P can be approximated by a sequence of discrete, stationary distributions
(P
k
)
kµN

with P
k

on JZ
k
, where J

k
is a finite space. This can be achieved by a partition of R into

intervals which get smaller as k�2, and defining P
k
as the probability, with respect to P, of falling

into such intervals.
In Step 2 we show that P

k
on JZ

k
can be approximated by a sequence of stationary, ergodic

Markov chains (P
k,l

)
lµN

on JZ
k
. Here P

k,l
can be constructed as a Markov chain of order p=

p
k,l
¬p

k
�2 (k�2 ). The construction can be based on a transition kernel, which is bounded

away from zero for every fixed k and l, and which is close to the corresponding conditional
probability with respect to P

k
.

In Step 3 we show that P
k,l

on JZ
k

can be approximated by a sequence (P
k,l,m

)
mµN

of ergodic
quantised variable length Markov chains with P

k,l,m
on RZ. The construction can be based on

{Y
t;k,l,m

}
t
={Z

t;k,l
}
t
+{e

t;m
}
t
~P

k,l,m
,

with {Z
t;k,l

}
t
~P

k,l
and e

t;m
~Un(−1/(2m), 1/(2m)) independently for all t. %

Proof of Proposition 2. We assume f@
X
t

(Y
t
)N0 since f@

x
( . ) is consistent. Observe that, by

Assumption 2,

log{PC
t
ci

(Y n
1
)}= ∑

n

t=p+1
log{ f@

X
t

(Y
t
)}+ ∑

n

t=p+1
log[PC {X

t
|c
i
(Xt−1

t−p)}] (i=1, 2).

Therefore,

DC
t
c1
,t
c2

(Y n
1
)= ∑

n

t=p+1
( log[PC {X

t
|c1 (Xt−1

t−p )}]− log[PC {X
t
|c2 (Xt−1

t−p )}]). %
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