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THE MEAN SQUARE ERROR OF PREDICTION
IN THE CHAIN LADDER RESERVING METHOD

(MACK AND MURPHY REVISITED)

BY

MARKUS BUCHWALDER, HANS BÜHLMANN, MICHAEL MERZ

AND MARIO V. WÜTHRICH

ABSTRACT

We revisit the famous Mack formula [2], which gives an estimate for the mean
square error of prediction MSEP of the chain ladder claims reserving method:
We define a time series model for the chain ladder method. In this time series
framework we give an approach for the estimation of the conditional MSEP.
It turns out that our approach leads to results that differ from the Mack for-
mula. But we also see that our derivation leads to the same formulas for the
MSEP estimate as the ones given in Murphy [4]. We discuss the differences and
similarities of these derivations.

1. MOTIVATION

In this article we revisit the famous Mack formula [2] to estimate the mean
square error of prediction MSEP of the chain ladder method. The chain lad-
der method has to be understood as an algorithm to estimate claims reserves
(under certain homogeneity assumptions). Mack [2] was the first who gave a
probabilistic background to the chain ladder method which allowed for the
derivation of MSEP estimates for the claims reserves. We formulate a time
series model for the chain ladder method. Within this time series framework
we discuss different approaches for the estimation of the MSEP (see Subsec-
tion 4.1.2). These different approaches contain conditional and unconditional
views of the problem. In the present work we concentrate on the conditional
view, i.e. we give formulas and estimates for the MSEP in the conditional
approach. Our (conditional) approach leads to the same MSEP estimates as
an other derivation given by Murphy [4] (in Subsection 4.2 we discuss and
compare our derivation to Murphy’s derivation). Moreover, we see that the
Mack formula [2] is a linear approximation to our result.

We want to emphasize that different approaches to the estimation of the MSEP
are acceptable, if they are correct in a mathematical sense. They describe the
problem from different angles (conditional or unconditional probability laws).
The expert in practice should decide which is the appropriate view for his problem.
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1.1. The development trapezoid

Our claims data have the following structure:

522 M. BUCHWALDER, H. BUHLMANN, M. MERZ AND M.V. WUTHRICH

In this trapezoid the variables

k, 1 ≤ k ≤ K, refer to accident years (rows)
j, 1 ≤ j ≤ J, refer to development years (columns).

Usually we have observations in DK := {Yk, j |1 ≤ k ≤ K and 1 ≤ j ≤ min{J,K –
k + 1}} and we need to estimate the distributions in DK

c . For K > J the set DK

yields a trapezoid and for K = J we get a triangle of the observations.

The entries Yk, j (as well as their partial sums Xk, j ) may be interpreted

a) on a paid claims basis,
b) on a occurred claims basis.

Henceforth,

: ,, ,k j k l
l

j

1

=
=

X Y! (1.1)
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denotes the cumulative payments of accident year k up to development period j,
or the claims incurred for accident year k reported up to reporting year j,
respectively.

THE MEAN SQUARE ERROR OF PREDICTION 523

Yk, j Xk, j

Interpretation a) Non-cumulative payments Cumulative payments
for accident year k for accident year k

in development year j up to development year j

Interpretation b) Change of incurred Incurred loss of
loss of accident year k accident year k up
in development year j to development year j

For our exposition we use in the sequel interpretation a). The reader can
easily translate into interpretation b).

Whereas Xk, j (1 ≤ j ≤ J ) refers to cumulative payments with ultimate loss Xk,J
for accident year k, it is sometimes useful to consider the incremental payments
in accounting years (diagonals):

: ,t k j

j J
k j t
1

1

=

# #
+ = +

Y Y! (sum over t-diagonal) (1.2)

stands then for the payments in the accounting year t (1 ≤ t ≤ K + J – 1).

The Problems:

We have observed DK, or all t-diagonals of Yt with 1 ≤ t ≤ K, respectively. Intui-
tively this means that we are at time K.

• Estimate the reserves Rk = Xk,J – Xk,K – k + 1 for all accident years k.

• Predict Yt for all future t-diagonals for K < t ≤ K + J – 1.

The estimation of the claims reserves Rk is the classical (actuarial) reserving
problem studied in every non-life insurance company. The prediction of Yt for
future diagonals yields the cashflow associated with the reserving problem,
which is especially helpful for economic considerations of the reserves and the
valuation portfolio constructions (see [1]).

Remarks 1.1.

• For each future t-diagonal we have to predict in formula (1.2) not only Yt but
each of its summands Yk, j with k + j = t + 1.

• This allows – by linearity – also the prediction of all missing Xk, j (k + j >
K + 1), in particular the ultimate Xk, J and the reserve Rk.

9130-06_Astin_36/2_10  06-12-2006  14:11  Pagina 523

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0515036100014628
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 20:41:11, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0515036100014628
https:/www.cambridge.org/core


Notation

• We use ˆ for both “prediction” and “estimation” to simplify the notation.
The interpretation of its meaning should be clear from the context.

• We use capital letters Yk, j (and Xk, j ) to denote both the random variable as
well as its realisations. The meaning of the symbol must be interpreted from
the context.

2. THE CHAIN LADDER RESERVING MODEL AND THE

CORRESPONDING CANONICAL MODEL

The chain ladder method is based on cumulative payments Xk, j . From the
cumulative estimates we can easily derive estimates for Yk, j , as we see below.

2.1. Chain ladder method

The algorithmic definition of the chain-ladder method reads as follows

1. There are constants fl (l = 1, …, J – 1) such that for all accident years k the
future cumulative payments Xk, j ( j > k*) are estimated by 

Xk, j := Xk, k* · fk* · fk*+ 1 · … · fj – 1, (2.1)

where k* = k*(k) = K – k + 1 is the last observation for accident year k on the
K-diagonal.

2. The chain ladder factors fl (age-to-age factors) are estimated by

: ,
,

l
l

k l
k

K l

1
1=

+

=

-

Sf
X!

(2.2)

where 

: ,l k l
k

K l

1

=
=

-

S X! . (2.3)

The actuarial literature often explains the chain ladder method (as above)
purely as a computational algorithm and leaves the question open which prob-
abilistic model would lead to this procedure.

It is Mack’s merit [2] that he was the first who gave an answer to this ques-
tion.

Remark. Formula (2.2) gives one possibility for the estimation of the chain
ladder factors fl . Of course there are other possibilities to estimate fl . We do
not further discuss these in this paper (see also Remarks 2.1).
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2.2. Mack’s conditions

(M1) Accident years k are independent.

(M2) The Xk, j ( j = 1, 2, …, J ) form a Markov chain for each k (1 ≤ k ≤ K ).

(M3) E [Xk, j |Xk, j – 1] = fj – 1 · Xk, j – 1.

It is quite natural (but not imperative) to add a condition about conditional
variances

(M4) Var[Xk, j |Xk, j – 1] = s2
j –1 · Xk, j – 1.

Remarks 2.1.

• One could also write 

(M4’)
j 1-

.Var
s

,

,
,

,k j

k j
k j

k j1
1

1
=

-
-

-

2

X
X

X X= G

Formula (M4’) is known as the Bühlmann-Straub condition in credibility the-
ory. One may therefore interpret Xk, j – 1 as (conditional) volume measure.

• Assumption (M4) is not imperative and could be generalized to other pow-
ers X g

k, j – 1 (see [3]). However, if we choose g = 1 as in (M4), then the estima-
tor fl (formula (2.2)) has minimal variance, given Sl (see [2] or [5]). If g ! 1
one uses other estimates for fl than (2.2).

• It is also worth to mention that the chain ladder estimate is only based on
the information in the upper triangle. Of course, in practice, we have addi-
tional (external) information. In this case our estimate should not only be
based on DK.

It is easy to check that under conditions (M1) - (M3) we have for j > k* (see
Mack [2]) 

E [Xk, j |DK ] = fk* · fk*+ 1 · … · fj –1 · Xk, k* = E [Xk, j |Xk, k*] ,

and (CL)

E [Xk, k* · fk* · … · fj –1 |Xk, k*] = E [Xk, j |Xk, k*].

This means that we have unbiased estimators for the conditional expectations.

2.3. The chain ladder consistent time series model

We choose here a different route. We specify a time series model which yields
the chain ladder method. This route seems very promising as it – besides allowing
to calculate means and variances – also defines how to simulate development
trapezoids (or triangles).

THE MEAN SQUARE ERROR OF PREDICTION 525
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Different accident years are independent, and for 1 ≤ j ≤ J and 0 ≤ k ≤ K we have 

Xk, j = fj – 1 · Xk, j – 1 + sj – 1 · ,k j 1-X · ek, j , (T1) 

with sj – 1 > 0 and ek, j independent with E [ek, j ] = 0 and E [e2
k, j ] = 1. (T2) 

Remarks 2.2

• This time series model coincides with the model studied in Murphy [4], Model IV
(weighted average development factor model). We discuss Murphy’s results
below.

• Xk,0 (1 ≤ k ≤ K ) can be interpreted as the (deterministic) premium Pk earned
for accident year k. In an enlarged trapezoid this allows the simulation of
the first year development figures.

• Theoretically, our process could have negative values for the cumulative pay-
ments Xk, j . To avoid this problem, we could reformulate the definition of ek, j

such that its distribution is conditionally, given Xk, j –1, centered with variance
1 and such that Xk, j is positive.

• The time series model is particulary useful for the derivation of the (condi-
tional) estimation error. It reflects the mechanism of generating sets of “other
possible” observations: Having an observation Xk, j –1, (T1) tells us how to
model/generate the chain-ladder factors fj –1 (see also (T1’) and (4.19), below).

It is easy to check that (T1) and (T2) imply again that the chain ladder predic-
tion formula (CL) holds. Also one sees that (T1) and (T2) imply Mack’s condi-
tions (M1)-(M4).

3. ESTIMATION OF MODEL PARAMETERS

3.1. Estimators for fj and s2
j

Our time series model specified by assumptions (T1) and (T2) has as parameters

f1, f2 , …, fJ – 1,
(3.1)

s 2
1 , s 2

2 , …, s2
J – 1,

which we need to estimate. To estimate the chain ladder factors fl – 1 we use the
standard formulae (2.2)-(2.3). The appropriate estimator for the variance s2

J – 1 is
given by (1 ≤ j ≤ J – 1)

j 1- j 1-: .s K j
1

,
,

,
k j

k

K j

k j

k j
1

1

1

1

2

$ $=
-

--

=

- +

-

2 fX X
X

! e o (3.2) 
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Remarks 3.1.

• Estimator (2.2) is minimum variance among linear estimators.

• Estimator (3.2) is minimum variance for normal ek, j .

• If we have enough data ( i.e. K > J ), we are able to estimate s2
J – 1 with (3.2),

otherwise there are several possibilities to estimate s2
J – 1 (see e.g. [2]).

3.2. Statistical meaning of the estimators ffj and ss 2
j

Generally speaking our model has quite an excessive number of parameters
(2J – 2) and our estimation resides on a quite small number of observations
J · ( K J

2
2 1$ - + ), in the “worst case” of the triangles J J

2
1$ +] g .

This seems to indicate that the traditional chain ladder does “overparame-
terize”. One obvious remedy is to put s2

l – 1 = s2 for all l . One might even look
for a “smoothing procedure” for the age-to-age factors e.g. a parametric curve
for the fj depending on fewer parameters. We would also like to mention that
the chain ladder method makes rather strong homogeneity assumptions across
all accident years. Practical data do often have outliers, trends, cycles, etc.
which need to be smoothed.

The statistical questions about overparameterization and about checking the
real data against the chain-ladder axioms go beyond the scope of this paper
and are not further pursuited here. We therefore address these challenges as
open problems to the reader.

4. MEAN SQUARE ERROR OF PREDICTION

At time t = K we have realization for the cumulative payments Xk, j given by the
upper trapezoid DK = {Xk, j |1 ≤ k ≤ K and 1 ≤ j ≤ min{J,K – k + 1}}. Moreover,
given DK, the chain ladder estimators 

Xk, j = Xk, k* · fk* · fk*+ 1 · … · fj – 1 (4.1)

THE MEAN SQUARE ERROR OF PREDICTION 527

TABLE 1

PARAMETERS VERSUS OBSERVATIONS FOR THE TRIANGLE

J Parameters Observations 

3 4 6
4 6 10
5 8 15
6 10 21
� � �

10 18 55
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denote the estimators of the future cumulative payments Xk, j (1 ≤ k ≤ K and
K – k + 1 < j ≤ J ). Formula (T1) implies for Xk, j with K – k + 1 < j ≤ J

E [Xk, j |DK ] = Xk, k* · fk* · fk*+ 1 · … · fj – 1. (4.2)

4.1. Prediction error for single accident years

As usual the prediction error of Xk, j can be decomposed into two parts: a) sto-
chastic error (process variance) and b) estimation error (c.f. Mack [2], Section 3):

, , ,

, ,

k j k j k j

k j k j

K K K

K

2 2

2
.

E E X E X

E X

,k j

process variance

estimation error

- = -

+ -

D D D

D

X

X

Xa `

a

k j

k

; 8:

8

E B D

B

1 2 34444444 4444444

1 2 344444 44444

(4.3)

The process variance Var(Xk, j |DK ) = E [(Xk, j – E [Xk, j |DK ])2|DK ] originates
from the stochastic movement of the process, whereas the estimation error
reflects the uncertainty in the estimation of the expectation (chain ladder para-
meters). We derive estimates for both the process variance and the estimation
error. For the estimates of the estimation error there are different approaches.
These are described in Subsection 4.1.2, below. The reader who wants to find
quickly the relevant formulae for the different errors should use Table 2 for the
corresponding numbers of formulae:

528 M. BUCHWALDER, H. BUHLMANN, M. MERZ AND M.V. WUTHRICH

TABLE 2

MEAN SQUARE ERROR OF PREDICTION FOR DIFFERENT CONSIDERATIONS

X Y 

Single accident years Result 4.1 Result 4.4 
Ultimate of aggregated accident years Result 4.2
Accounting years Result 4.3 Result 4.4

For the definition of the symbols G2
k, j and D2

k, j in this formulae see (4.8) and
(4.21) respectively.

4.1.1. (Conditional) Process variance

Using (4.2) we obtain for the (conditional) process variance in formula (4.3):
Choose 1 ≤ k ≤ K and K – k + 1 < j ≤ J
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E [(Xk, j – E [Xk, j |DK ])2|DK ] = E (X 2
k, j |DK) – X 2

k,K – k + 1 · f 2
K – k + 1 · … · f 2

j – 1. (4.4)

Moreover, using (T1) and (T2) we have 

E (X 2
k, j |DK) = f 2

j – 1 · E (X 2
k, j – 1 |DK) + s2

j – 1 · E (Xk, j – 1 · e 2
k, j |DK)

�
= f 2

j – 1 · f 2
j – 2 · … · f 2

K – k + 1 · X 2
k, K – k + 1

+ s2
j – 1 · fj – 2 · fj – 3 · … · fK – k + 1 · Xk, K – k + 1

(4.5)

+ f 2
j – 1 · s2

j – 2 · fj – 3 · … · fK – k + 1 · Xk, K – k + 1

+ … + f 2
j – 1 · f 2

j – 2 · … · f 2
K – k + 2 · s2

K – k + 1 · Xk, K – k + 1.

Hence, from (4.5) we obtain for the (conditional) process variance:

Var(Xk, j |DK) = E [(Xk, j – E [Xk, j |DK ] )2 |DK ]
(4.6)

= Xk, K – k + 1 · ml fs
l K k

j

m l

j

m
m K k

l
2

1

1
2

1

1

1

1

$ $
= - +

-

= +

-

= - +

-

f! ! !

Finally, using (CL) the (conditional) process variance can be rewritten in the form:

E [(Xk, j – E [Xk, j |DK ] )2 |DK ] = (E [Xk, j |DK ] )2 ·
,k l K l

l .
E X f

s

l K k

j

2

2

1

1

$= - +

-

D
!

7 A

(4.7)

Replacing E [Xk, j |DK ] , E [Xk, l |DK ] and the parameters s2
l , fl by their estima-

tors leads to the following estimator of the (conditional) process variance 

E [(Xk, j – E [Xk, j | DK ] )2 |DK ] := ,

,

k j

k l l

l

,k j

s
f

:

l K k

j

G

2

2

2

1

1

2

$
$= - +

-

=

X
X

!a k

1 2 34444444 4444444

(4.8)

G2
k, j can be rewritten in a recursive form:

G2
k, j = G2

k, j – 1 · f 2
j – 1 + s2

j – 1 · Xk, j – 1. (4.9)

Using (4.8), we obtain for the non-cumulative payments Yk, j the following esti-
mator of the (conditional) process variance 

E [(Yk, j – E [Yk, j | DK ] )2 |DK ] := G2
k, j + G2

k, j – 1 · (1 – 2 · fj – 1) (4.10)
= G2

k, j – 1 · ( fj – 1 – 1)2 + s2
j – 1 · Xk, j – 1.
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4.1.2. (Conditional) Estimation error

Using (4.1) and (4.2) leads to the following formula for the estimation error:

( Xk, j – E [Xk, j | DK ] )2 = X 2
k, K – k + 1 · ( fK – k + 1 · … · fj – 1 – fK – k + 1 · … · fj – 1)2

= X 2
k, K – k + 1 · l l l l .f f f2

l K k

j

l K k

j

l K k

j
2 2

1

1

1

1

1

1

$ $+ -
= - +

-

= - +

-

= - +

-

f%%%
J

L

K
K

N

P

O
O

(4.11)

The realizations of the estimators fK – k + 1, …, fj – 1 are known at time t = K, and
the “true” chain ladder factors fK – k + 1, …, fj – 1 are unknown (and have to be
estimated). In order to determine the (conditional) estimation error we need
to determine the volatilities of fj around its true values fj. These volatilities
measure the quality of the estimates fj. We determine the volatilities with the
help of resampled observations for fj. There are different approaches to resam-
ple our time series, conditional ones and unconditional ones. For j ! {1, …, J}
we define the s-fields

Bj = s({Xk, l ! DK | l ≤ j}). (4.12)

Hence, {Bj}j =1, …,J defines a filtration and fj is Bj +1-measurable for all j = 1, …,
J – 1. If we fix accident year k for the moment, then in order to determine the
volatility in the estimates we need to resample (see right-hand side of (4.11))

f 2
K – k + 1 · … · f 2

j – 1. (4.13)

Define the upper right corner of the observations DK (with respect to develop-
ment year K – k + 2)

DO
K = DK + {Xi, j ; j > K – k + 1, i ≥ 1} (4.14)

Approach 1 (Complete resampling in DO
K ). Calculate

E [ f 2
K – k + 1 · … · f 2

j – 1 | BK – k + 1]. (4.15)

This is the complete averaging over the multidimensional distribution after time
K – k + 1. The observed realizations in DO

K do not play any role in this conside-
ration. Therefore we call this the unconditional version.

Approach 2. Calculate

f 2
K – k + 1 · … · f 2

j – 2 · E [ f 2
j – 1 | Bj – 1] . (4.16)

The averaging is only partly done. In this approach one has also the possibil-
ity to choose the position at which the averaging should be done. This approach
is in some sense similar to the one used in Mack [2] (see also Section 4.2).
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Approach 3 (Conditional resampling in DO
K ).

E [ f 2
K – k + 1 |BK – k + 1] · E [ f 2

K – k + 2|BK – k + 2] · … · E [ f 2
j – 1 |B j – 1] . (4.17)

The averaging is only done over the conditional distributions. Thereby the
observed realizations in DO

K have a direct influence on the estimate since they
are used in the conditions. Therefore we call this the conditional version. From
a numerical point of view it is important to note that Approach 3 allows for
a multiplicative structure of the measure of volatility.

The question, which approach should be chosen, is not a mathematical
one. It depends on the circumstances of the questions which approach should
be used for a specific practical problem. Henceforth, only the practitioner can
choose the appropriate approach for his problems and questions.

In the present work we focus on Approach 3, the conditional version. Hence
(4.11) is estimated by (see also (4.20), below)

X 2
k, K – k + 1 · ll l .fE fB
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O
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We therefore resample the observations fK – k + 1, …, fj – 1, given the upper trape-
zoid DK (see Remarks 2.2). This means that for the determination of an estimator
for the conditional estimation error we have to take into account that, given
the upper trapezoid DK, the observation for fj could have been different from
the observed values fj. To regard this source of uncertainty, we generate for
1 ≤ j ≤ J and 0 ≤ k ≤ K, given DK, a set of “new” observations by the formula 

Zk, j = fj – 1 · Xk, j – 1 + sj – 1 · ,k j ,,k j1 $-X e (T1’) 

with sj – 1 > 0 and ek, j, ek, j independent and identically distributed (T2’) 

(cf. (T1) and (T2)). Observe that, given Xk, j – 1, Zk, j =
(d )

Xk, j .
From formula (T1’) and (2.2) we obtain the following representation for the

resampled estimates of the development factors 
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with

j 1- .S ,k j
k

K j

1
1

1

= -

=

- +

X!

Observe that, given Bj – 1, we have fj – 1 =
(d )

f DK
j – 1 .
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Unlike the observations {Xk, j |1 ≤ k ≤ K and 1 ≤ j ≤ min{J, K – k + 1}} the
observations {Zk, j |1 ≤ k ≤ K and 1 ≤ j ≤ min{J, K – k + 1}} and also the resam-

pled estimates f DK
0 , …, f DK

J – 1 are random variables given the upper trapezoid DK.
Furthermore the observations Xk, j and the random variables ek, j are uncondi-
tionally independent. From (4.19), (T2’) and (T2) we see that

1) the estimators f DK
0 , …, f DK

J – 1 are conditionally independent w.r.t. DK,

2) E [ f DK
j – 1 |DK ] = fj –1 for 1 ≤ j ≤ J and

3) E [( f DK
j – 1)2 |DK ] = f 2

j –1 +
j 1-

j 1-

s 2

S for 1 ≤ j ≤ J.

Hence in Approach 3 (using 1)-3) from above) we can explicitly calculate the
conditional estimation error, i.e. the right-hand side of (4.11) is estimated by
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Next, we replace the parameters s2
K – k + 1, …, s2

j – 1 and fK – k + 1, …, fj – 1 by their
estimators, and we obtain the following estimator for the (conditional) estima-
tion error
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(4.21)

D2
k, j can be rewritten in a recursive form:
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(4.22)
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Analogously we define for non-cumulative payments the following estimator:

Yk, j := Xk, j – Xk, j – 1. (4.23)

Hence the (conditional) estimation error is estimated by (in the 3rd step we use
(4.22)) 
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(4.24)

Remark: The (conditional) estimation error in the cumulative case and the
incremental case have exactly the same structure (compare 3rd line of (4.24)
with (4.22)).

4.2. Result and comparison to the Mack [2] formula and the result by Murphy [4]

From our results we obtain the following estimator for the (conditional) pre-
diction error of a single accident year (cf. (4.8) and (4.21)):

Result 4.1. (MSEP for single accident years) Under Assumptions (T1), (T2), (T1’),
(T2’) for the estimation of the process variance and the estimation error, respectively,
we have the following estimator for the (conditional) mean square prediction error
(4.3) of a single accident year
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(4.25)

The recursive form of the estimator of the prediction error is given by (cf. (4.9)
and (4.22)) 
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(4.26)

G 2
k, j – 1 and D2

k, j – 1 were defined in (4.8) and (4.21) respectively.

Comparison to the Mack formula [2].

Formula (4.25) looks very similar to the Mack formula [2]. But, at the first sight
surprisingly, the formula for the estimation error given in Mack [2] differs from
our formula (4.22). In [2] the recursive formula for D2

k, j only considers the fol-
lowing terms
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whereas we consider for the second term the following expression (cf. (4.22))
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The difference comes from the fact that Mack calculates the estimation error for
a version of Approach 2. Mack [2] sums up the following expressions (see [2],
p. 219)

E [ ( fK + 1 – k ··· fj – 1 · ( fj – fj ) · fj +1 ··· fJ – 1)
2 |B j ] =

(4.28)
f 2
K + 1 – k ··· f 2

j – 1 ·
j

j

s 2

S · f 2
j + 1 ··· f 2

J – 1,

for K + 1 – k ≤ j ≤ J – 1. Formula (4.28) is similar to Approach 2 (see (4.16)) if
we choose smartly the position j at which we want to average.

In fact, it can be shown that the Mack formula is a linear approximation
to our result:
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which is the Mack term for the estimation error (cf. [2], page 219).
In the practical examples that we have looked at the numerical differences

resulting from our formula presented in (4.22) and the Mack formula is rather
small (see Table 5).

Comparison to the result of Murphy [4].

We are grateful to one of the referees of our paper for having pointed out
that our numerical results for the ultimate losses coincide with those obtained
on the basis of the weighted average development (WAD) factor model in
Murphy [4], Model IV.

If one looks at this paper [4] one finds indeed that the WAD model coin-
cides with ours. It is also the chain ladder model stated in time series language.
To obtain the crucial recursive formula for the estimation error (Theorem 3 in
Appendix C of [4]) Murphy assumes independence of estimates of the chain
ladder factors. This assumption is inconsistent with the model assumptions.
One can easily see that chain ladder factors are uncorrelated (see Mack [2],
Theorem 2). But other direct calcuations show that the squares of chain ladder
estimates are negatively correlated.

The point is that Murphy by his assumptions gets a multiplicative structure
of the measure of volatility. In this paper we get the multiplicative structure
by the choice of Approach 3 for the measure of the (conditional) volatility of
the chain ladder estimate (see discussion in Section 4.1.2). Henceforth, since in
both estimates one uses a multiplicative structure it turns out that our recursive
estimate (4.22) is exactly the estimate presented in Theorem 3 of Murphy [4].

4.3. Aggregation of ultimate loss over different accident years

Consider two different accident years k < l. From our assumptions we know that
the ultimate losses Xk,J and Xl,J are independent. Nevertheless we have to be
careful if we aggregate Xk,J and Xl,J. The estimators are no longer independent
since they use the same observations for estimating the age-to-age factors fj.

E [(Xk,J + Xl,J – (Xk,J + Xl,J))2 |DK ]
(4.30)

= Var(Xk,J + Xl,J |DK) + (Xk,J + Xl,J – E [Xk,J + Xl,J |DK ])2.
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Using the independence of the different accident years, we obtain for the first
term

Var(Xk,J + Xl,J | DK) = Var(Xk,J | DK) + Var(Xl,J | DK), (4.31)

whereas for the second term we obtain

( Xk,J + Xl,J – E [Xk,J + Xl,J |DK ])2

= ( Xk,J – E [Xk,J |DK ])2 + ( Xl,J – E [Xl,J |DK ])2 (4.32)

+ 2 · ( Xk,J – E [Xk,J |DK ]) · ( Xl,J – E [Xl,J |DK ]).

Hence we have the following decomposition for the (conditional) prediction
error of the sum of two accident years

E [( Xk,J + Xl,J – (Xk,J + Xl,J))2|DK ]
= E [( Xk,J – Xk,J)

2 | DK ] + E [( Xl,J – Xl,J)2|DK ] (4.33)

+ 2 · ( Xk,J – E [Xk,J |DK ]) · ( Xl,J – E [Xl,J |DK ]).

In addition to the (conditional) mean square error of prediction of single accident
years, we need to determine the volatilities of fj for the cross-products terms,
which gives an additional term in the estimation errors for aggregated accident
years.

( Xk,J – E [Xk,J |DK ]) · ( Xl,J – E [Xl,J |DK ])
= Xk, K – k + 1 · ( fK – k + 1 · … · fJ – 1 – fK – k + 1 · … · fJ – 1) (4.34)

· Xl, K – l + 1 · ( fK – l + 1 · … · fJ – 1 – fK – l + 1 · … · fJ – 1).

As in (4.20) (Approach 3) this term is (conditionally) estimated by
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But then the estimation of the covariance term is straightforward from the
estimate of a single accident year.
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Result 4.2. (MSEP for aggregated accident years). Under Assumptions (T1),
(T2), (T1’),(T2’) for the estimation of the process variance and the estimation
error respectively, we have the following estimator for the (conditional) mean square
prediction error of the ultimate loss of aggregated accident years

(4.36)
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Remarks:

1) The last term (covariance terms) from the result above can be rewritten as
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where X 2
k,K – k + 1 · D2

k,J is the (conditional) estimation error of the single acci-
dent year k (see (4.21)). This may be helpful in the implementation since it
leads to matrix multiplications.

2) Note that in this section we have presented the aggregation of only two ulti-
mate losses Xk,J and Xl,J which leads to one covariance term. If we aggregate
over all accident years, of course, we obtain the sum over all covariance
terms l ! k.

4.4. Prediction error for accounting years

In the sequel Xt denotes the total of the cumulative payments originating from
all accident years up to accounting year t (1 ≤ t ≤ K + J – 1). Formally this
corresponds to the sum of the Xk, j over the t-diagonal 

: .,t k j
k j t 1

j J1

=
+ = +
# #

X X! (4.38) 

We are at time K, i.e. the total payments Xt are observed for t ≤ K. Conve-
niently, for accident year k we denote the last observation by Xk,k* with k + k* =
K + 1. We want to predict XK + t for 1 ≤ t ≤ J – 1 and the corresponding estimator
is given by 

: .,K k j
k j K

t
t 1

t j J1

=+

+ = + +
# #+

X X! (4.39) 
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Sometimes it is easier to write this sum as 

+ * *
*

., ,K k k
k K J

K

k k
k

J

t t
t

t

t

1 1

= =+

= + + -

+

=

-

X X X! ! (4.40)

The (conditional) prediction error of XK + t can be decomposed as follows (see
(4.3))

K

K K

K K

K K K

t t

t t t

+ +

+ + + .

E

EVar
process variance estimation error

2

2

-

= + -

D

D D

X

X X

X

X

a

^ a

k

h k

;

6

E

@
1 2 34444 4444 1 2 3444444 444444

(4.41)

Using (4.39), (4.40) and the independence of the accident years we obtain for
the process variance of XK + t

K KK t+ * .Var Var ,k k
k K J

K

t
t 1

= +

= + + -

D DX X!^ _h i (4.42)

Finally, using (4.8) we obtain as estimator for the (conditional) process variance
of XK + t

,k jK KK Kt t+ +

2
: .E E G

k j K t

2

1
j Jt 1

- =
+ = + +

# #+

D DX X !^ h69 @ C (4.43)

For the estimation error we proceed as in Subsection 4.1.2 (Approach 3). We
average

KK Kt t+ +E
2

- DX Xa k6 @

over the resampled chain ladder factors f DK
k* , …, f DK

k* + t – 1, given the upper trape-
zoid DK, to determine the (conditional) estimation error of XK + t. We define 

g DK
k*,t := f DK

k* · … f DK
k* + t – 1 and gk*,t := fk* · … · fk* + t – 1. (4.44)

Observe that

K KK Kt t+ +

k k k k

* *

* ... ... .

E E, ,

,

k k k k
k

J

k k
k

J

t t

t

t t

t

2

1

2

1 1
1

2

$ $ $ $

- = -
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+ +

=

-

+ - + -

=

-

*

* * * *
*

D DX

f f

X X

f fX

X!

!

a ae

ae

k ko

ko

6 7@ A

(4.45)
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Hence we calculate the average over the (conditionally) resampled observations
as follows 

K

K
,

l l

k k k k

l k k
k l

*

*

... ...

.g g
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E g g
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, , , , , ,
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t t t t
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1 1
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(4.46)

Next, we use D2
k,k*+ t (cf. (4.21)) and replace fk*, …, fl* – 1, fk*+ t, …, fl*+ t – 1 by their

estimators. Thus we obtain the following (conditional) estimator for the esti-
mation error:

(4.47)
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From our results (4.43) and (4.47) we obtain for the (conditional) prediction
error of a accounting year:

Result 4.3. (MSEP for accounting years, cumulative payments) For the estima-
tor of the (conditional) prediction error (4.41) we have 
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(4.48)

Analogously for the estimated non-cumulative payments in accounting year
K + t we have 

K t+ * * .Y , , ,k j
k j K

k k k k
k

J

t
t t

t

1
1

1
j Jt 1

= = -
+ = + +

+ + -
=

-

# #+

*

Y X X! ! a k (4.49)

The corresponding (conditional) prediction error can again be decomposed:

K K KK K K K Kt t t t t+ + + + +

2 .YE EVar
process variance estimation error

2 2
- = + -Y Y D D DY Ya ^ ak h k; 6E @

1 2 34444 4444 1 2 3444444 444444
(4.50)
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Using (4.49), (4.10) and the independence of the accident years we obtain for
the (conditional) process variance of YK + t the estimator 

, ,k j k j 1-

K KK Kt t+ +

: .

E E

G G 1 2 j
k j K t

2

2 2
1

1
j Jt 1

$ $
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Y Y D D

f!

^

aa

h

kk

69 @ C

(4.51)

Using (4.49) and (4.44) we get for the estimation error of YK + t (Approach 3) 
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(4.52)

As before, we obtain in addition to the terms of a single accident years the
covariance terms, which we need to calculated separately. If we proceed as in
(4.47) we obtain for the single covariance terms in (4.52) the following estimate
( l* > k*) 

Lk, l := Xk, l * · Xl, l * · [D2
l,k*+ t – D2

l,k*+ t – 1 · fk*+ t – 1] ·
l

m
m k t

t 2

= +

+ -

*

*

f% · ( fl *+ t – 1 – 1). (4.53)

So, if we collect all our terms, we obtain

Result 4.4 (MSEP for accounting years, incremental payments) For the (condi-
tional) prediction error (4.50) we have the estimator 
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(4.54)

where (see (4.10) and (4.24)) (MSEP for single accident year, incremental pay-
ments)
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5. EXAMPLE

We use the first run off triangle of cumulative payments given in Mack [2] (cf.
Table 1 in [2]).
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TABLE 3

RUN-OFF-TRIANGLE (CUMULATIVE PAYMENTS), SOURCE [2].

AY Development period j

k 1 2 3 4 5 6 7 8 9 10

1 357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463

2 352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085

3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315

4 310608 1418858 2195047 3757447 4029929 4381982 4588268

5 443160 1136350 2128333 2897821 3402672 3873311

6 396132 1333217 2180715 2985752 3691712

7 440832 1288463 2419861 3483130

8 359480 1421128 2864498

9 376686 1363294

10 344014

The estimators fj of the chain ladder factors (cf. Table 4) show, that the exam-
ple chosen is a relatively simple run off triangle.

TABLE 4

ESTIMATORS OF THE CHAIN LADDER FACTORS fj .

fj

1 2 3 4 5 6 7 8 9 

3.490607 1.747333 1.457413 1.173852 1.103824 1.086269 1.053874 1.076555 1.017725

For the estimation of s2
9 we use the formula given in [2], before Theorem 3.

Hence, using the estimators fj and s 2
j we find an estimate (and the correspon-

ding error) for the aggregate reserve of all accident years SkRk.
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In Table 5 the process standard deviation, (estimation error)1/2, MSPE and
standard error of prediction for the aggregated ultimate loss over (all) different
accident years are given. We see that the results from Mack’s formula and our
formula presented in (4.22) are nearly the same. But since the Mack formula
for the estimation error is a linear bound from below to our formula it is also
clear that our results are slightly higher compared to Mack’s results.

Other examples that we have examined (long and short term business)
confirm the findings in this example.
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TABLE 5

MSEP AND STANDARD ERROR OF PREDICTION FOR AGGREGATED ACCIDENT YEARS.

reserves Sk Rk process std.dev. .estim error MSEP pred. std. error

Mack 18’680’856 1’878’292 1’568’532 5’988’273’257’923 2’447’095
BBMW 18’680’856 1’878’292 1’569’349 5’990’835’395’887 2’447’618

difference 0 0 817 2’562’137’964 523
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