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Abstract
We establish the following two main results on order types of points in general position in the plane
(realizable simple planar order types, realizable uniform acyclic oriented matroids of rank 3):
(a) The number of extreme points in an n-point order type, chosen uniformly at random from all

such order types, is on average 4 + o(1). For labeled order types, this number has average
4− 8

n2−n+2 and variance at most 3.
(b) The (labeled) order types read off a set of n points sampled independently from the uniform

measure on a convex planar domain, smooth or polygonal, or from a Gaussian distribution are
concentrated, i.e., such sampling typically encounters only a vanishingly small fraction of all
order types of the given size.

Result (a) generalizes to arbitrary dimension d for labeled order types with the average number
of extreme points 2d + o(1) and constant variance. We also discuss to what extent our methods
generalize to the abstract setting of uniform acyclic oriented matroids. Moreover, our methods
allow to show the following relative of the Erdős-Szekeres theorem: for any fixed k, as n → ∞,
a proportion 1 − O(1/n) of the n-point simple order types contain a triangle enclosing a convex
k-chain over an edge.

For the unlabeled case in (a), we prove that for any antipodal, finite subset of the 2-dimensional
sphere, the group of orientation preserving bijections is cyclic, dihedral or one of A4, S4 or A5 (and
each case is possible). These are the finite subgroups of SO(3) and our proof follows the lines of
their characterization by Felix Klein.
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1 Introduction

Two finite subsets P and Q of the plane are said to have the same order type if there exists a
bijection f : P → Q that preserves orientations: for any three points p, q, r in P , r is to the
left (resp. to the right) of the line (pq) oriented from p to q if and only if f(r) is to the left
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49:2 Convex Hulls of Random Order Types

(resp. to the right) of the line (f(p)f(q)) oriented from f(p) to f(q). To have the same order
type is an equivalence relation, and an order type is an equivalence class for that relation.
For each n, properties that depend solely on orientations can be established for the infinitely
many n-point sets by proving it for (one representative of) each of the finitely many order
types of size n. This even allows proofs by automated case analysis, see for instance [2] for
an application to crossing numbers and asymptotic estimates on numbers of triangulations.
This notion was studied in discrete and computational geometry as a higher-dimensional
analogue of ordering on a line, but also as a geometric relative of oriented matroids, see e.g.,
[18, 26, 9, 13].

In this paper, we investigate the expected number of extreme points in a typical order
type. (Since the number of extreme points is the same for all representatives of an order
type, we speak of the number of extreme points of the order type; we do the same for every
notion independent of the choice of representative, e.g., the size.) Here we consider only
simple order types, i.e., with no three points on a line; by “typical” we mean an order type
chosen equiprobably among all simple order types of a given size n. As an illustration, for
n = 4, the only two simple order types are the convex quadrilateral and the triangle with
an interior point, so the quantity we are after is 4+3

2 = 7
2 . For n = 5, it is 5+4+3

3 = 4, see
Figure 1.

Figure 1 Left: The two simple 4-point order types. Right: The three simple 5-point order types.

1.1 Motivations
Let us say a word on our motivations.

Testing. We are interested in statistics of the uniform distribution on the space of order
types. Broadly speaking, this distribution is relevant whenever one wants to test a property
of finite point sets. Consider the two following examples:
(a) The largest point set in general position with no empty hexagon is known to have size

between 29 and 1716 [32, 16], and it is tempting to try and improve the lower bound by
testing order types of size 30 or so.

(b) The CGAL library [38] stresses the need, when implementing geometric algorithms, to
rely solely on predicates that depend on the input of the algorithm, so as to encapsulate
the numerical issues (critical for robustness [25]) into the correct evaluation of signs of
polynomials. Thus, the implementation of an algorithm that depends only on orientation
predicates can be assessed by running it on a realization of each possible order type.

In both cases, we want to avoid repeating the same order type, as this is redundant compu-
tation, and to be able in principle to reach every existing order type without uncontrolled
bias. The uniform distribution is natural to consider for that purpose.

Random polytopes. Counting extreme points relates to the study of face vectors of random
polytopes, a classical line of research in stochastic geometry initiated by Sylvester in 1865,
who asked for “the probability that 4 points in the plane are in convex position”. A standard
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model of random polytope Kn is the convex hull of n random points chosen uniformly and
independently in some fixed convex body K. In this setting, the number of extreme points,
i.e., the vertices of Kn, is well understood. Its average is asymptotically proportional to
n

d−1
d+1 + o

(
n

d−1
d+1

)
if K is smooth and to logd−1 n+ o

(
logd−1 n

)
if K is a polytope [34, 35]

(see [33, §2.2.2]), and up to multiplicative constant these are the two extremes [6, Theorems 1–
3]. There are also estimates on the variance, concentration inequalities, central limit theorems,
and large deviation inequalities. We refer the interested reader to the survey of Reitzner [33].

This model of random polytope naturally generalizes to arbitrary probability measures µ,
or even to the convex hull of random non-independent point sets such as determinantal
point processes. Much less is known in this direction, aside from the occasional extensively-
studied model such as Gaussian polytopes (see [33, §2.3]). In a sense, what we investigate is
the average number of extreme points in a random polytope for a combinatorially defined
probability distribution on point sets.

Exploration of order types. The space of order types is generally not well understood.
Already, its size is not known precisely, not even asymptotically. The most precise bounds
are given for labeled order types, which declare two point sequences P = (p1, p2, . . .) and
Q = (q1, q2, . . .) equivalent if the monotone map pi 7→ qi preserves orientations: there
are n4nφ(n) labeled order types, where 2−cn ≤ φ(n) ≤ 2c′n for some positive constants
c, c′ [19, 3]; factoring out the labelling is not immediate as the number of labeled order types
corresponding to a given unlabeled one depends on the symmetries of the latter. We show
that in the plane, every unlabeled order type corresponds to at least (n− 1)! (and clearly
at most n!) different labeled ones. Order types have been tabulated up to size 11 [1, 2], for
which they are already counted in billions.

Random sampling of order types is also quite unsatisfactory. First, the standard methods
in discrete random generation such as Boltzmann samplers are unlikely to work here, as they
require structural results (such as recursive decompositions) that usually make counting a
routine task. It is of course easy to produce a random order type by merely reading off the
order type of n random points; standard models include points chosen independently from
the uniform distribution in a square or a disk, from a Gaussian distribution, as well as points
obtained as a random 2-dimensional projection of a n-dimensional simplex1. There are no
results, however, on how well or badly distributed the order types of such random point
sets are. More generally, no random generation method is known to be both efficient (say,
taking polynomial time per sample) and with controlled bias. This sad state of affairs can
perhaps be explained by two fundamental issues: when working with order types symbolically
(say as orientation maps to {−1, 0, 1}, see Section 1.4 below), one has to work around the
NP-hardness (actually, ∃R-completeness) of membership testing [37, 29, 36]. When working
with explicit point sets, one has to account for the exponential growth of the worst-case
number of coordinate bits required to realize an order type of size n [20]. It turns out that
our bounds on the expected number of extreme points in an order type imply that several
standard models of random point sets typically explore only a vanishingly small fraction of
the space of order types (Theorem 3).

Order types with forbidden patterns. Given two order types ω and τ , we say that ω
contains τ if any point set that realizes ω contains a subset that realizes τ . (Of course this
needs only be checked for a single realization of ω.) By the Erdös-Szekeres theorem [14],

1 This is called the Goodman-Pollack model and is statistically equivalent to points chosen independently
from a Gaussian distribution [7, Theorem 1].

SoCG 2020



49:4 Convex Hulls of Random Order Types

almost all order types contain the order type of k points in convex position. Similarly,
Carathéodory’s theorem implies that almost all order types contain the order type of a
triangle with one interior point. Could it be that for any fixed order type τ , the number of
order types of size n that do not contain τ is vanishingly small as n→∞? This question
may seem quite bold given the limited number of observations, but it is also motivated by
an analogous phenomenon for permutations: the Marcus-Tardos theorem [27] asserts that
for every fixed permutation π, the number of size-n permutations that do not contain π is
at most exponential in n (see [27] for the definition of containment). We are not aware of
any result on such a Marcus-Tardos phenomenon for order types besides the two simple
cases mentioned above. It turns out that along the way, we prove some new results in this
direction as well (Theorem 4).

1.2 Results
Our first result is on labeled order types. Two affine point sequences (p1, p2, . . . , pn) and
(q1, q2, . . . , qn) are defined to be of the same labeled order type if the map pi 7→ qi preserves
orientations: for any indices 1 ≤ i, j, k ≤ n, pk is to the left (resp. to the right) of the line
(pipj) oriented from pi to pj if and only if qk is to the left (resp. to the right) of the line
(qiqj) oriented from qi to qj . The labeled order type of a point sequence is simple if no three
points of that sequence are aligned.

I Theorem 1. For n ≥ 3, the number of extreme points in a random simple labeled order
type chosen uniformly among the simple, labeled order types of size n in the plane has average
4− 8

n2−n+2 and variance at most 3.

A set of n points gives rise to n! point sequences, but different sequences may have the same
labeled order type. The exact number of labeled order types corresponding to a given order
type actually depends on the number of order-preserving bijections, that is symmetries, of
that order type. We show that the symmetries of a simple affine order type form a (possibly
trivial) cyclic group (Theorem 6) and we bound from above the number of simple affine order
types with many, but not too many, symmetries. We then prove a non-labeled analogue of
Theorem 1:

I Theorem 2. For n ≥ 3, the number of extreme points in a random simple order type chosen
uniformly among the simple order types of size n in the plane has average 4 +O

(
n−3/4+ε)

for any ε > 0.

Our proof of Theorem 1 extends to arbitrary dimension, but not our proof of Theorem 2. A
large part of our methods and results extend to abstract order types, that is uniform oriented
matroids, where lines are replaced by pseudo-line arrangements. In particular, Theorem 1
holds in the abstract setting with the same bound, also in arbitrary dimension. The proof of
Theorem 2 does not completely carry over to the abstract setting, but our methods yield an
analogue statement with a bound of 10 + o(1).

Theorems 1 and 2 are in sharp contrast with the Ω(logn), and possibly polynomially
many, extreme points in a uniform random sample of a convex planar domain. Theorems 1
and 2 can actually be used to turn concentration bounds on the number of extreme points in
a random point set into concentration results on the distribution of order types produced by
these random point sets.

We need some definitions. Let (L)OTaff
n denote the set of simple (labeled) affine order

types. For n ≥ 3, let µn be a probability measure on (L)OTaff
n . We say that the family

{µn}n≥3 exhibits concentration if for every n ≥ 3 there exists An ⊆ (L)OTaff
n such that
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µn(An) → 1 and |An|/|(L)OTaff
n | → 0. In plain English, families of measures that exhibit

concentration typically explore a vanishingly small fraction of the space of simple (labeled)
order types. Devillers et al. [12] conjectured that the order types of points sampled uniformly
and independently from a unit square exhibit concentration. We prove this conjecture
and more:

I Theorem 3. Let µ be a probability measure on R2 given by one of the following: (a) the
uniform distribution on a smooth compact convex set, (b) the uniform distribution on a
convex compact polygon, (c) a Gaussian distribution. The family of probabilities on (L)OTaff

n

defined by the (labeled) order type of n random points chosen independently from µ exhibits
concentration.

Since the random projection of the vertices of a regular n-dimensional simplex, the Goodman-
Pollack model, is distributed like a set of points sampled independently from a Gaussian
distribution [7] (see also [33, §2.3.1]), the distribution on random order types it produces in
the plane also exhibits concentration.

As we explain in the next paragraphs, we prove Theorems 1 and 2 by recasting affine
order types in a projective setting, where we study so-called projective order types. This
relation between affine and projective order types reveals more examples of order types
difficult to avoid.

I Theorem 4. For any integer k ≥ 2, the proportion of order types of size n that contain a
triangle and k points forming a convex chain over one edge is 1−O(1/n).

Our final result is a classification of the symmetry groups of simple projective order types: we
prove that they are exactly the finite subgroups of SO(3), the group of rotations (Theorem 7).

1.3 Approach
Our proof of Theorems 1 and 2 divides up the simple planar order types into their orbits
under the action of projective transforms, and averages the number of extreme points inside
each orbit. Let us illustrate this “action” we consider with the two order types of Figure 2.
Starting with the left hand-side convex pentagon, any projective transform R2 → R2 that
maps the dashed line to the line at infinity yields the triangle with two interior points on
the right. Following up with any other projective transform that sends the dotted line back
to infinity will turn the triangle with two interior points back into a convex pentagon. We
invite the reader to check that all three simple order types of size 5 (Figure 1) form a single
orbit under projective transforms.

∞ ∞

Figure 2 Two projectively equivalent planar order types.

Here is a simple example of how such projective transforms may help:

I Lemma 5. Let A be a finite planar point set in general position and t : R2 → R2 a
projective transform with the line sent to infinity disjoint from A, and splitting A. Then
there are at most 4 extreme vertices of A whose images are also extreme in t(A).

SoCG 2020



49:6 Convex Hulls of Random Order Types

Proof. Let ` be the line sent by t to infinity. The extreme points of t(A) are exactly the
images of the points of A that ` can touch by moving continuously without crossing over a
point of A. It is the union of two convex chains, on either side of `, and each chain contains
at most 2 points extreme in A. J

This essentially allows to match order types of size n so that in every pair, the size of the
convex hulls add up to at most n+ 4. Assuming one dealt with issues such as symmetries,
this could provide an upper bound of n/2 + 2 on the average number of extreme points in
a typical order type. We do not formalize this matching idea further, but recast it into a
projective that makes it easier to analyze the action of projective transforms on order types.

1.4 Setting and terminology
We take all our points on the origin-centered unit sphere S2 in R3, except for occasional
mentions of the origin 0. Two points p and q on the sphere are called antipodal, if q = −p. A
great circle is the intersection of the sphere with a plane containing 0, an open hemisphere
is a connected component of the sphere in the complement of a great circle, and a closed
hemisphere is the closure of an open one. A finite subset P of the sphere is a projective set if
p ∈ P ⇔ −p ∈ P . We call a finite set of points on the sphere an affine set if it is contained
in an open hemisphere. An affine set is in general position if no three points are coplanar
with 0; a projective set P is in general position if whenever three points in P are coplanar
with 0, two of them are antipodal.

'

'

'

Figure 3 A projective set of size 10 (left) containing the three simple affine order types of size 5.

The sign, χ(p, q, r), of a triple (p, q, r) of points on the sphere is the sign, −1, 0, or 1,
of the determinant of the matrix (p, q, r) ∈ R3×3. A bijection f : S → S′ between finite
subsets of the sphere is orientation preserving if χ(f(p), f(q), f(r)) = χ(p, q, r) for every
triple of points in S. Two affine (resp. projective) sets have the same affine (resp. projective)
order type if there exists an orientation preserving bijection between them. An affine (resp.
projective) order type is the equivalence class of all affine (resp. projective) sets that have
the same affine (resp. projective) order type. The definitions of labeled affine and projective
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are similar: the labeling determines the bijection that is required to preserve orientations. It
will sometimes be convenient to write a point sequence as A[λ], where A is the point set and
λ : A→ [n], n = |A|, the bijection specifying the ordering.

The plane R2 together with its orientation function can be mapped to any open hemisphere
of S2 together with χ. For example, for the open hemisphere S2 ∩ {z > 0} this can be done
by the map

(
x

y

)
7→ 1

x2 + y2 + 1

 x

y

1

 .

Hence, the planar order types discussed so far coincide with the affine order types and we, in
fact, prove Theorems 1 and 2 for (labeled) affine order types. We study affine order types as
subsets of projective point sets as shown in Figure 3; this inclusion requires some care and is
formalized in Section 3.

Let S be a finite subset of the sphere. A permutation of S is a bijection S → S and a
symmetry of S is an orientation preserving permutation of S. The symmetries of S form a
group, which we call the symmetry group of S. This group determines the relations between
labeled and non-labeled affine order types: two orderings A[λ] and A[µ] of a point set A
determine the same labeled order type if and only if µ−1 ◦ λ is a symmetry of A. A crucial
ingredient in our proof of Theorem 2 is a classification of the symmetry groups of the affine
and projective sets. Here it is for affine sets. (The definitions of convex layers and lonely
point are given in Section 2.3.)

I Theorem 6. The symmetry group of any affine set A in general position is isomorphic to
the cyclic group Zk for some k ∈ N that divides the size of every layer of A other than its
lonely point (if A has one). In particular, k divides |A| (if A has no lonely point) or |A| − 1
(if A has a lonely point, which can happen for k odd only).

For all values of k and n satisfying the conditions of Theorem 6, with the exception of
(k, n) = (2, 4), there exists an affine order type of size n with Zk as symmetry group (see
Figure 4).

Figure 4 Left: For any even n ≥ 6, there exists an affine set of n points with symmetry group Z2:
take two sufficiently flat convex chains of n/2 points each, facing each other (so-called double chain,
[31]). Center and Right: For any 3 ≤ k ≤ n where k divides n or for any odd k where k divides
n− 1, there exists an affine set of n points with symmetry group Zk: just pile up regular polygons
inscribed in concentric circles.

We also prove that the symmetry groups of projective sets are finite subgroups of SO(3).

I Theorem 7. The symmetry group of any projective set of 2n points in general position is
a finite subgroup of SO(3). In particular, it is one of the following groups: Z1 (trivial group),
Zm (cyclic group), Dm (dihedral, with m | n or m | n − 1), S4 (octahedral = cubical), A4
(tetrahedral), and A5 (icosahedral).

We give examples of projective point sets with symmetry groups of each of the types identified
in Theorem 7.

SoCG 2020



49:8 Convex Hulls of Random Order Types

Notation. Let us introduce or recall some notation. For n ≥ 3 we write LOTaff
n for the set

of simple labeled affine order types of size n, OTaff
n for the set of simple affine order types of

size n, and OTproj
n for the set of simple projective order types of size 2n. For an affine point

set A with affine order type ω, we write LOTaff
A = LOTaff

ω for the set of the labeled affine order
types of the orderings of A.

1.5 Related work
Studying planar order types through their projective analogues is not a new idea, and appears
for instance in the tabulation of planar order types of size 11 [2]. We are not aware, however,
of an earlier analysis of how this relation is affected by symmetries.

Perhaps our most direct predecessor is the work of Miyata [28] on the classification of
symmetry groups of oriented matroids. These structures coincide with abstract order types,
and the affine order types we consider are special (“realizable”) cases. Miyata classifies
the symmetries of abstract order types in dimension 1 and 2. Our proof of Theorem 6
extends to the abstract setting and offers a more direct alternative to Miyata’s proof [28, §6].
Also related is the O(nd) time algorithm of Aloupis et al. [4, Theorem 4.1] for computing
the automorphisms of an order type (what we will call the symmetry group of orientation
preserving permutations) for a set of n points in Rd.

Several recent works have studied order types of random point sets [10, 12, 15, 21, 39],
but they do not address the equiprobable distribution on n-point order types. The recent
work of Chiu et al. [11] comes closer, as they have looked at the average size of the jth level
in a random planar arrangement of n lines, chosen by fixing a projective line arrangement of
size n and equiprobably choosing a random cell to contain the south-pole. This is similar to
what we do, but let us stress that they do not take symmetries into account, so the actual
distribution on planar arrangements they consider is not equiprobable (not even among those
contained in the projective arrangement).

Order types with forbidden patterns were previously investigated in two directions. On
the one hand, the Erdős-Szekeres theorem was strengthened for order types with certain
forbidden patterns [30, 23, 24]. On the other hand, Han et al. [21] studied the patterns
contained in random samples. We are not aware of previous results on the number of order
types with a forbidden pattern.

Finally, let us point out that the study of random polytopes raises other questions close
to classical questions in discrete and computational geometry. The analysis through floating
bodies [6] of f -vectors of random polytopes obtained from convex bodies is close to the ε-net
theory for halfspaces (see also [22] and [5, §3.2]). In another direction, Blaschke proved that
the probability that 4 points chosen uniformly in a convex domain are in convex position
is minimized when the domain is a triangle; for arbitrary planar probability measures, this
merely asks for the limit as n → ∞ of the rectilinear crossing number of the complete
graph Kn.

1.6 Paper organization
Due to space limitation, we had to make some choices as to what to keep here. We decided
to present a self-contained proof of Theorem 1 as it already gives a taste of our methods.
This is essentially a prefix of the full version [17].

From here, Section 2 recalls some background material. Then, Section 3 clarifies the
relation between affine and projective order types, between their symmetry groups, and
between the affine subsets of a projective set and the cells of its dual arrangement. Section 4
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then proves Theorem 1 by relating the number of extreme points in a random affine order
type to the number of edges in a random cell of an arrangement of great circles, and by
analyzing such arrangements via double counting and the zone theorem.

2 Background

We recall here some notions in finite group theory and in discrete geometry on S2 (duality,
arrangements, convexity).

2.1 Groups
The elements of group theory we use deal with a subgroup G of the group of permutations
of a finite set X. The identity map, the neutral element in G, is denoted by id or idX . We
will study such a group G through its action on X or some set of subsets of X. The orbit
G(x) of x ∈ X is the image of x under G, ie. G(x) def= {g(x) | g ∈ G}. Any two elements
have disjoint or equal orbits, so the orbits partition X. The stabilizer of an element x ∈ X
is the set of permutations in G having x as a fixed point, ie. Gx def= {g ∈ G | g(x) = x}.
By the orbit-stabilizer theorem, |G| = |G(x)| · |Gx| for any x ∈ X. We write ' for group
isomorphism.

2.2 Duality and arrangements on S2

On the sphere, the dual of a point p is the great circle p∗ contained in the plane through 0
and orthogonal to the line 0p. For any finite subset S of the sphere, we write S∗ for the
arrangement of the family of great circles {p∗ | p ∈ S}.

Let P be a projective set of 2n points. Since antipodal points have the same dual great
circle, P ∗ is an arrangement of n great circles. Observe that P is in general position if and
only if no three great circles in P ∗ have a point in common. Any two great circles intersect in
two points, so P ∗ has 2

(
n
2
)
vertices. Every vertex is incident to four edges; the total number

of edges is therefore 4
(
n
2
)
. By Euler’s formula, P ∗ has 2

(
n
2
)

+ 2 faces of dimension 2, which
we call cells.

Let us recall that many combinatorial quantities on arrangements of great circles on S2

are essentially twice their analogues for arrangements of lines in R2. Indeed, starting with an
arrangement P ∗ of n great circles in general position, we can add another great circle C∞,
chosen so that P ∗ ∪ {C∞} is also in general position, and consider the two open hemispheres
bounded by C∞. Each open hemisphere can be mapped to R2 so that the half-circles of
P ∗ are turned into lines, and the two line arrangements are combinatorially equivalent by
antipodality. In this way, we can for instance obtain the following version of the zone theorem
from the bound given in [8] for the zone of a line in an arrangement of lines2:

I Theorem 8 (Zone Theorem). Let P ∗ be an arrangement of n great circles on S2 and let
p∗ ∈ P ∗. Let Z(p∗) denote the zone of p∗, i.e., the set of cells of the arrangement incident
to p∗. For a cell c, let |c| denote the number of edges incident to c. Then

∑
c∈Z(p∗) |c| ≤

19(n− 1)− 10.

2 [8] shows that the cells in the zone of a line h0 in an arrangement of n + 1 lines in the plane has
edge-complexity at most b19n/2c − 1. For translating this bound to the zone of a great circle in an
arrangement of n great circles on S2, (i) we replace n by n− 1, (ii) we double for the two sides of C∞,
and (iii) we subtract 8 for the edges that get merged along C∞ (note that the infinite edges on h0 get
merged and contribute 1 on each of their sides).

SoCG 2020
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2.3 Convexity on the sphere
A point p ∈ A is extreme in an affine set A if there exists a great circle C that strictly
separates p from A \ {p}; that is, p and A \ {p} lie on two different connected components of
S2 \ C. An ordered pair (p, q) ∈ A2 is a positive extreme edge of A if for any r ∈ A \ {p, q}
we have χ(p, q, r) = +1. Assuming general position, a point p ∈ A is extreme in A if and
only if there exists q ∈ A such that (p, q) is a positive extreme edge; in that case, the point q
is unique.

A CCW order of the extreme points of A is an order (p0, p1, . . . , ph−1) of its extreme
points such that for all i = 0, 1, . . . , h − 1, (pi, pi+1) is a positive extreme edge (indices
mod h). The convex hull of A is

conv(A) def= {r ∈ S2 | ∀ positive extreme edges (p, q), χ(p, q, r) ≥ 0}.

An affine set A is in convex position if every point is extreme in A. The (onion) layer sequence
of A is a sequence (A0, A1, . . . , A`) of subsets of A, partitioning A, where A0 is the set of
extreme points in A, and (A1, A2, . . . , A`) is the layer sequence of A \A0. The Ai’s are called
the layers of A. If the innermost layer A` consists of a sole point, then that point is called
lonely (there is one or no lonely point).

3 Hemisets: relating affine and projective order types

Any affine set A naturally defines a projective set A ∪ −A, which we call its projective
completion. Going in the other direction, consider a projective set P . Any affine set whose
projective completion is P must be the intersection of P with some open hemisphere. Remark,
however, that the converse is not always true: the set P = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)},
the vertices of the cross polytope, intersects some open hemispheres in a single point. This
reveals that for an open hemisphere to cut out an affine set that completes to P , it must
be bounded by a great circle that avoids P . We therefore define a hemiset of P as the
intersection of P with a closed hemisphere, and call a hemiset of P an affine hemiset if it is
contained in an open hemisphere. With these definitions, we have:

B Claim 9. A projective set P is the completion of an affine set A if and only if A is an
affine hemiset of P .

Notation. For a projective point set P with projective order type π, we write OTproj
P = OTproj

π

for the set of affine order types of the affine hemisets of P .
To understand how affine order types relate to projective order types, an important idea

is that the symmetries of a projective point set P act on the (affine) hemisets of P :

I Proposition 10. Let g : P → P ′ be an orientation preserving bijection between two
projective sets in general position. If |P | = |P ′| ≥ 6, then g maps hemisets of P to hemisets
of P ′ and affine hemisets of P to affine hemisets of P ′.

The proof of Proposition 10 starts by a simple observation of independent interest.

I Lemma 11. Let g : S → S′ be an orientation preserving bijection between two subsets of
the sphere. If S contains two antipodal points {p,−p} such that g(−p) 6= −g(p), then S is
contained in a great circle.

Proof. If g(−p) and g(p) are not antipodal, then they are on a unique great circle, which
must contain S, as for every r ∈ S we have 0 = χ(p,−p, g−1(r)) = χ (g(p), g(−p), r). J
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Proof of Proposition 10. Let B be a hemiset of P and E = B ∩ −B. By general position,
|B| is 4, 2 or it is 0 (in which case B is an affine hemiset). Since |P | ≥ 6 and P is in
general position, P is not contained in a great circle and g therefore preserves antipodality
by Lemma 11. In particular, if g preserves hemisets, it also preserves affine hemisets.

If |E| = 4, then there are two points p, q ∈ E such that B = {r ∈ P | χ(p, q, r) ≥ 0}.
Since g preserves orientations and is bijective, it comes that

g(B) = {r ∈ P | χ(g(p), g(q), r) ≥ 0} = P ∩ {s ∈ S2 | χ(g(p), g(q), s) ≥ 0},

and g(B) is also a hemiset.
So assume that |E| ≤ 2 and fix some closed hemisphere Σ such that B = Σ ∩ P and B

intersects the boundary of Σ into E. We extend B into a set B′′ with |B′′ ∩ −B′′| = 4 as
follows:

If |E| = 2, then we set B′ def= B, Σ′ def= Σ and {q,−q} def= E. Otherwise, we fix a point p on
the boundary of Σ, rotate Σ about 0p until we first touch a point q ∈ P \B (at the same
moment, −q ∈ B moves from the interior to the boundary of the rotating hemisphere); we
let Σ′ denote the resulting hemisphere and put B′ def= B ∪ {q} (note B′ ∩−B′ = {q,−q}).
We now rotate Σ′ about 0q until we first touch a point r ∈ P \B′; we put B′′ def= B′ ∪{r}.

Now, E′′ def= B′′ ∩ −B′′ = {q,−q, r,−r} and there exists a closed hemisphere Σ∗ such that
g(B′′) = P ∩ Σ∗ (by our previous analysis above for case |E| = 4). The boundary of Σ∗
intersects P in precisely g(E′′) = {g(−q), g(q), g(−r), g(r)}, and two adequate rotations kick
only g(r), then g(q) out, witnessing that g(B) is also a hemiset. J

Given a projective set P with symmetry group G and a hemiset B of P , we write GB for
the stabilizer of B in the action of G on hemisets of P . We also write G(B) for the orbit of
B in that action.

I Lemma 12. Let P be a projective set of 2n points, n ≥ 3, in general position and A an
affine hemiset of P .
(a) The symmetry group of A, as an affine set, is isomorphic to GA.
(b) An affine hemiset of P has the same affine order type as A if and only if it is in G(A).

Proof. Let F denote the symmetry group of A as an affine set. Since P = A ∪ −A, we
can extend any f ∈ F into a permutation f̂ of P by setting f̂(p) def= f(p) for p ∈ A and
f̂(p) def= −f(−p) for p /∈ A. Let F̂ def= {f̂ : f ∈ F}. Remark that F̂ is isomorphic to F since
for any two symmetries f1, f2 of A, we have f̂1 ◦ f2 = f̂1 ◦ f̂2. Moreover, any element g ∈ F̂
fixes A and, conversely, any symmetry g : P → P that fixes A writes g = ĝ|A. Then, F̂ = GA
and statement (a) follows.

For statement (b), consider an affine hemiset A′ of P with the same affine order type
as A. There exists an orientation preserving bijection f : A → A′. The extension f̂ of f
to P also preserves orientations, and is therefore in G. It follows that A′ ∈ g(A). The reverse
inclusion follows from the fact that every symmetry of G preserves orientations. J

With Lemma 12, the orbit-stabilizer theorem readily implies:

I Corollary 13. Let P be a projective set of 2n points, n ≥ 3, in general position and A
an affine hemiset of P . Let F and G denote the symmetry groups of A and P , respectively.
There are |G|/|F| affine hemisets of P with same affine order type as A.
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4 Analysis of labeled affine order types

Perhaps surprisingly, Corollary 13 is all we need to prove Theorem 1.

4.1 The two roles of affine symmetries
The number of symmetries of an affine order type determines both its number of labelings, and
how often it occurs among the hemisets of a projective completion of one of its realizations.
These two roles happen to balance each other out nicely:

I Proposition 14. Let P be a projective set of 2n points, n ≥ 3, in general position. Let R
be a random affine hemiset chosen uniformly among all affine hemisets of P . Let λ be a
random permutation R→ [n] chosen uniformly among all such permutations. The labeled
affine order type of R[λ] is uniformly distributed in

⋃
ω∈OTaff

P

LOTaff
ω .

Proof. Let N denote the number of affine hemisets of P . Let ω1, ω2, . . . , ωk denote the order
types of the affine hemisets of P , without repetition (that is, the ωi are pairwise distinct).
Let G denote the symmetry group of P and let Fi, 1 ≤ i ≤ k, denote the symmetry group
of ωi. Let ρ denote the affine order type of R. By Corollary 13, we have

P [ρ = ωi] = |G|/|Fi|
N

.

Next, the number of distinct labelings of the order type of an affine set A is n!/|F|, since
two labelings A[λ] and A[µ] of A have the same labeled order type if and only if µ−1 ◦ λ is a
symmetry of A. Let ρ denote the labeled affine order type of R[λ]. For any σ ∈ LOTaff

ωi
, we

have

P [ρ = σ | ρ = ωi] = |Fi|
n! .

Altogether, for any σ ∈
k⋃
i=1

LOTaff
ωi

, we have P [ρ = σ] = |G|
Nn! and the distribution is uniform

as we claimed. J

4.2 Hemisets and duality
The following dualization will make counting easy.

I Lemma 15. There is a bijection φ between the affine hemisets of a projective point set P
and the cells of the dual arrangement P ∗, such that a point p is extreme in an affine hemiset A
if and only if the great circle p∗ supports an edge of φ(A).

Proof. For any point p we write p+ for the hemisphere centered in p, that is the closed
hemisphere containing p and bounded by p∗. For any closed hemisphere H we write H+ for
its center, that is the point q with H = q+. Now, a point p is in a closed hemisphere H if
and only if the scalar product 〈p,H+〉 is nonnegative. Thus, p lies in H if and only if H+

lies in p+. It follows that two hemispheres H0 and H1 intersect P in the same hemiset if
and only if H+

0 and H+
1 lie in the same cell of P ∗. Moreover, as H+ moves in the cell the

hemisphere H also moves while enclosing the same set of points; the boundary of H touches
a point p if and only if H+ touches p∗. J
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For example, we now see that a projective set of 2n points, n ≥ 3, in general position
has 2

(
n
2
)

+ 2 distinct affine hemisets. Also, it should be clear from the final computations of
the proof of Proposition 14 that if that projective point set has symmetry group G, then it
supports

(
2
(
n
2
)

+ 2
)
n!
|G| distinct labeled affine order types.

4.3 Counting extreme points: expectation and variance
We can now prove Theorem 1 on the expectation and variance of the number of extreme
points in a random labeled affine order type.

I Lemma 16. Let P be a projective set of 2n points, n ≥ 3, in general position. If XP

denotes the number of extreme points in a labeled affine order type chosen uniformly among
those supported by P , then

E [XP ] = 4n(n− 1)
n(n− 1) + 2 = 4− 8

n2−n+2 and E
[
XP

2] ≤ 19n(n− 1)− 10n
n(n− 1) + 2 ≤ 19.

Proof. By Lemma 15, XP has the same distribution as the number of edges in a cell chosen
uniformly at random in P ∗. The arrangement P ∗ has 2

(
n
2
)

+ 2 cells and 4
(
n
2
)
edges. Since

every edge bounds exactly two cells, it comes that

E [XP ] =
8
(
n
2
)

2
(
n
2
)

+ 2
= 4n(n− 1)
n(n− 1) + 2 = 4− 8

n2−n+2 .

Moreover, the random variable XP
2 has the same distribution as the square of the number

of edges in a random cell chosen uniformly in P ∗. Let F2(P ∗) denote the set of cells of P ∗
and for c ∈ F2(P ∗) let |c| denote its number of edges. We thus have(

2
(
n

2

)
+ 2
)
E
[
XP

2] =
∑

c∈F2(P∗)

|c|2.

In the right-hand term, every edge e of P ∗ is counted |c1|+ |c2| times, where c1 and c2 are
its two adjacent cells. For any point p ∈ P , the contribution of the edges supported by p∗ to
that sum equals

∑
c∈Z(p∗) |c| ≤ 19(n− 1)− 10 (following notation and bound in Theorem 8).

Altogether,(
2
(
n

2

)
+ 2
)
E
[
XP

2] ≤ n(19(n− 1)− 10)

and E
[
XP

2] ≤ 19n(n− 1)− 10n
n(n− 1) + 2 ≤ 19. J

Here comes the announced proof.

Proof of Theorem 1. Let ρ be a simple labeled order type chosen uniformly at random in
LOTaff

n . Let Xn denote the number of extreme points in ρ, where ρ denotes the unlabeling
of ρ and let π be the projective completion of ρ. By Lemma 16, we have for any π′ ∈ OTproj

n

E [Xn | π = π′] = 4n(n− 1)
n(n− 1) + 2 and E

[
Xn

2 | π = π′
]
≤ 19n(n− 1)− 10n

n(n− 1) + 2 .

The formula of total probability therefore yields

E [Xn] = 4n(n− 1)
n(n− 1) + 2 and E

[
Xn

2] ≤ 19n(n− 1)− 10n
n(n− 1) + 2 .

From there, Var [Xn] = E
[
Xn

2] − E [Xn]2 ≤ 3. (A bound of 3 + o(1) is readily seen from
E [Xn] = 4 + o(1) and E

[
Xn

2] = 19 + o(1); the bound of 3 holds exploiting n ≥ 3.) J
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49:14 Convex Hulls of Random Order Types

As a consequence, we obtain for instance the following estimates.

I Corollary 17. The proportion of simple labeled affine n-point order types with h ≥ 6
vertices on the convex hull is at most 3/(h− 4)2.

Proof. By the Bienaymé-Chebyshev inequality, for any real t > 0 and any random variable X
with finite expected value and non-zero variance, we have

P
[
|X − E [X] | ≥ t

√
Var [X]

]
≤ 1
t2
.

Together with Theorem 1, this implies the statement. J
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