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Review

Introduction

Why do humans engage and invest in social interactions? 
How do brain circuits drive us to act in a cooperative or 
competitive manner? Throughout this review, we define 
social behavior as any modality of communication and/or 
interaction between two or more conspecifics (Crespi 
2001; Ebstein and others 2010). For this purpose, spe-
cies-typical signals such as body language, facial expres-
sions, or vocalizations act as mediators to build and 
maintain social bonding and social networks. However, 
social signals can display considerable variability across 
species, in part dictated by the individual’s ability to rec-
ognize, evaluate, and possibly react to them. In social sci-
ence the ability to infer what another conspecific is 
thinking, feeling or perceiving, is often referred to as 
“theory of mind” (Baron-Cohen and others 1985). In 
humans, research has shown that motivation to seek out 
social cues at an early age plays a key role in developing 
social skills such as theory of mind. Infants rapidly recog-
nize faces and display a visual preference for them 
(Walton and Bower 1993). Particularly attending to and 
responding to gaze are crucial for successful joint atten-
tion as well as social orienting and ultimately guide the 
development of social relationships (Baron-Cohen 2000; 

Williams and others 2001). Individuals who fail to extract 
and process social information as a result of impaired 
social motivation, might not experience social contact as 
positively reinforcing (rewarding) and are therefore less 
likely to pursue it in the future (Dawson and others 2002). 
These patterns are commonly observed in socially debili-
tating disorders like autism spectrum disorders (ASD) 
(Chevallier and others 2012), schizophrenia (Fulford and 
others 2018), and psychopathy (Lockwood 2016; Viding 
and McCrory 2019).

Humans are not the only species to display social 
seeking behaviors. Instead, several forms of sociality 
have evolved in non-human primates and rodents as well 
(Watson and Platt 2012). One hypothesis proposes that 
socal behavior, regardless of the nature of social signals, 
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is processed by a shared set of brain regions, which are 
activated upon the sensorimotor transformation of 
socially encoded information (the “social brain”) along 
with the tuning action of neuromodulators (O’Connell 
and Hofmann 2011, 2012). Despite increasing evidence, 
there is no consensus on a unified blueprint describing 
the brain systems that govern social behavior across spe-
cies. Instead general confusion and disagreement still 
exists on which classes of social behavior can be gener-
alized to other species and which are seemingly unique 
to humans (Kondrakiewicz and others 2018). Resolving 
these questions and thereby defining a common baseline 
for preclinical and clinical research promises a great 

advance in our understanding of social behavior and its 
regulation in health and disease.

In this review, we focus on social reward as a concep-
tual model of social behavior (Box 1). We first discuss its 
psychological and molecular basis as well as the extent to 
which these patterns are conserved across species. 
Drawing on recent studies, we present both correlational 
and causal evidence of network and circuital mechanisms 
that modulate social motivation in humans and in rodents. 
Finally, we aim to review the use of multimodal neuroim-
aging to understand socio-behavioral patterns on a net-
work level and discuss this approach as a way to bridge 
preclinical findings with clinical findings in humans.

Box 1.  Social Reward as a Conceptual Model of Social Behavior.

“Wanting”: “Wanting” or mesolimbic incentive salience is a form of motivation that is largely generated by the mesolimbic 
dopamine system. It is typically less linked to cognitive goals but rather triggered in pulses by reward cues or imagery about 
the reward. The intensity of the triggered “wanting” urge depends for one on the current state of the individual’s dopamine 
system and on the cue-reward association. This allows for state-dependent amplification of “wanting.” Particularly in stressful 
states this process can increase vulnerability to relapse in addiction or related disorders.
“Liking”: “Liking” comprises the actual pleasurable impact of reward consumption. Contrary to “wanting,” “liking” does not 
depend on dopamine and is mediated by small hedonic hotspots scattered throughout the brain. These hedonic hotspots can 
amplify “liking” responses if neurochemically stimulated and form a hedonic circuitry that may be shared by diverse pleasures.
Social Reward: Reward and its role for goal-directed behavior can generally be described in two dissociable psychological 
reward dimensions: “liking” and “wanting,” both of which are applicable to social signals. The “liking” component refers 
to the hedonic value of said signals, that is, perceiving social stimuli as rewarding. Social reward is mediated via activity in 
the mesolimbic network and is generally thought to be conserved across species. Social rewards include group affiliation, 
emotional support, as well as social status and salient identity.
Social Motivation: A social stimulus that is “liked” is then typically “wanted.” The “wanting” component refers to the 
incentive salience of the reward (i.e., social stimulus), which drives an incentive motivation to approach/seek and consume the 
reward. Social motivation constitutes an evolutionary adaptation to secure an individual’s ability to function in a collaborative 
environment.
Social Behavior: Social behavior comprises a range of behavioral outputs mediated by social reward and social motivation 
including social orienting, social seeking, and social maintaining. Not only are social signals prioritized by attention (social 
orienting) but are typically the preferred stimulus to attend to as well (social seeking). In an attempt to engage/interact with 
others (social interaction) over an extended period of time, an individual develops maintaining strategies enabling him to 
establish and enhance interpersonal relationships (social maintaining).
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What Is Social Reward?

What makes a social stimulus rewarding and which 
mechanisms drive seeking this sensation time and time 
again? To understand the concept of reward and its role 
for goal-directed behavior, Berridge and others (2009) 
described two dissociable psychological reward dimen-
sions: “liking” or the conscious experience of pleasure 
and “wanting” or the incentive motivation which pro-
motes approach/consumption of rewards. Any type of 
reward that elicits “liking” is then typically “wanted.” 
This general motivation system, which drives attention 
toward pleasant stimuli and avoidance of unpleasant/
stressful stimuli, varies in power and correlates with the 
individual’s reward responsiveness and level of per-
ceived reward value (Laricchiuta and Petrosini 2014). 
With regard to situations in which higher-order goals or 
social motives differ from initial desires (maybe unde-
sirable ones even), dissecting reward-processes into 
“liking” and “wanting” proves particularly useful in 
explaining reward-orientation: drug seeking, binge eat-
ing, or sexual desire being just a few examples where 
liking is no longer a synonym of wanting (Finlayson and 
others 2011; Krishnamurti and Loewenstein 2012; 
Robinson and Berridge 1993). The described behaviors 
describe a state of “wanting” that is largely (and subcon-
sciously) driven by the mesolimbic dopamine system. 
These may, however, conflict with the actual conscious 
goals and preferences of an individual, that is, “liking” 
(Mier and Kirsch 2017). In social psychology, prosocial 
behavior is assumed to have rewarding quality (“social 
reward”) based on the display of a strong motivation to 
seek social relationships, support and understanding 
(Eisenberg and others 2010). Notably—but beyond the 
scope of this review—, social behavior might also be 
susceptive to states where “liking” no longer reflects 
“wanting” if we think of social media addiction or the 
upkeep of abusive relationships. During the past decade, 
the questions of where and importantly, how the brain 
encodes reward during social behavior have met exten-
sive research efforts: data mostly from the field of cog-
nitive neuroscience suggest the notion of a “social 
brain” where a network of brain regions displays speci-
ficity toward assigning reward values to social signals 
(Frith 2007).

The “Social” Brain

In humans, the medial prefrontal cortex (PFC), the tem-
poroparietal junction (TPJ), subcortical structures, and 
the cerebellum can be considered social hub regions of 
the brain. Associated with social information processing, 
social cognition, and theory of mind, the functional 

interplay of these key nodes helps individuals adapt to and 
navigate the social world (Joiner and others 2017; Olsson 
and others 2020; Ruff and Fehr 2014; Wittmann and others 
2018). Here we will focus on the key human brain regions 
linked to both reward and social processing.

Medial Prefrontal Cortex.  The medial regions of the pre-
frontal cortex (mPFC) take on an important role in gating 
and mediating social behaviors within all levels of social 
cognition. The dorso-medial PFC (dmPFC), ventro-
medial PFC (vmPFC), and the anterior cingulate cortex 
(ACC) have been implicated in processes of social reward, 
punishment, and motivation (de Quervain and others 
2004; Fehr and Camerer 2007; Kohls and others 2013).

The dmPFC has often been implicated in social pro-
cessing, in particular “mentalizing” and theory of mind 
(Frith 1996) as well as integrating social information from 
other conspecifics (Martino and others 2017). Multiple 
studies showing increased activation of the dmPFC during 
joint attention tasks (shared focus of two or more individu-
als on an object/each other), as opposed to solo attention 
tasks (non-shared attention toward an object), have indi-
cated that these regions are concerned with aspects of 
moral decision making and cooperative behavior (Amodio 
and Frith 2006; Redcay and others 2013). The vmPFC 
(including the subgenual anterior cingulate cortex [sgACC] 
and medial orbito-frontal cortex [OFC]) has repeatedly 
been associated with the encoding of self-referenced 
rewards, choosing between rewarding options and positive 
explicit evaluation of others (Dang and others 2019; 
Rushworth and others 2011). However, it has also been 
implicated in social motivation and reward: vmPFC dam-
age due to stroke has been shown to result in social isola-
tion, apathy and decreased prosocial behavior in human 
patients (Barrash and others 2000). Interestingly, another 
subregion of the mPFC, the gyral surface of the anterior 
cingulate (ACCg), encodes reward-related information for 
other individuals (Apps and others 2012; Behrens and oth-
ers 2008; Lockwood and others 2015). This way the ACCg 
compares the expected and actual outcome of another per-
son’s decision, referred to as social prediction errors (Apps 
and others 2013; Apps and others 2015; Balsters and others 
2017; Hill and others 2016). The ACC, along with the orbi-
tofrontal and vmPFC, are generally thought to mediate the 
rewarding nature of cooperation, which could drive social 
motivation (Luo 2018). Anatomically, subregions of the 
mPFC are densely interconnected and further connected 
with several other hub-regions of the “social brain,” like 
the ventral striatum (VS)/nucleus accumbens (NAc), the 
ventral tegmental area (VTA), the amygdala, and cerebel-
lum (Ghashghaei and others 2007; Kelly and Strick 2003; 
Middleton and Strick 2000; Passingham and others 2002; 
Schmahmann 1991).
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Temporoparietal Junction.  The TPJ is considered a further 
key node within the ‘social brain’. It comprises the 
supramarginal gyrus, caudal parts of the superior tempo-
ral gyrus and dorso-rostral parts of the occipital gyrus and 
integrates input from lateral and posterior thalamus, as 
well as auditory, visual, limbic, and somatosensory areas 
(Decety and Lamm 2007; Mars and others 2012). As part 
of the mentalizing system, neuroimaging studies have 
implicated the TPJ with social cognition and theory of 
mind (Hooker and others 2010; Mars and others 2012; 
Young and others 2010). Specifically, the right TPJ is 
associated with understanding others’ mental states such 
as moral stances, thoughts, beliefs, and feelings (Frith 
and Frith 2006) and through its role in empathy process-
ing, it may encourage prosocial behavior: Zanon and oth-
ers (2014) investigated functional connectivity in brain 
networks of self-benefitting and altruistic participants 
during a life-threatening simulation. While the selfish 
individuals exhibited increased functional connectivity in 
the salience network, prosocial individuals presented 
with more integrated communication between the mPFC 
and the rTPJ. Interestingly, voxel-based morphometry 
(VBM) showed that gray matter volume in the rTPJ is 
strongly associated with an individual’s level of altruism 
(Morishima and others 2012). Anodal transcranial direct 
current stimulation (tDCS) of the rTPJ for 20 minutes 
prior to a perspective-taking task enhanced the ability to 
take the visual perspective of another, though mentaliz-
ing ability was surprisingly unaffected (Santiesteban and 
others 2012). A 2018 study by Blair-West and others 
used active anodal tDCS to the rTPJ in a social decision-
making task to potentially enhance prosocial decision 
making but failed to find a significant effect. Contrary to 
numerous neuroimaging studies demonstrating height-
ened rTPJ during social decision making (Guo and oth-
ers 2014; Halko and others 2009; Rilling and others 
2004; van den Bos and others 2014), this may reflect 
methodological considerations to using tDCS. Transcra-
nial magnetic stimulation (TMS) of the rTPJ, on the con-
trary, successfully modulated mentalizing and 
sociocognitive processes in a number of studies (Bardi 
and others 2017; Baumgartner and others 2014; Hill and 
others 2017; Jeurissen and others 2014; Kelly and others 
2014). Activation likelihood estimation (ALE) meta-
analyses on VBM studies suggested that the posterior 
part of the rTPJ takes on an exclusive role in the social 
domain (Krall and others 2015). Complemented by meta-
analytic connectivity mapping (MACM) and resting-state 
functional connectivity analysis, Krall and others (2015) 
found that the posterior rTPJ coactivates with typical 
ToM regions, while the anterior part shares connectivity 
patterns with the attentional network. Mars and others 
(2013) took the connectivity profile of the human TPJ to 

cortical areas and attempted to find relations to known 
homologues in the macaque temporal and parietal cortex. 
Their results suggested that macaque face processing 
areas and human mentalizing areas might share a similar 
evolutionary precursor.

Subcortical Structures
Basal ganglia.  Electrophysiology and connectivity 

of the VS suggests that it encodes a variety of reward 
dimensions, including those of hedonic and motivational 
value (Daniel and Pollmann 2014). The feeling of being 
understood, receiving positive feedback or even the mere 
prospect of receiving positive feedback, the display of 
smiling faces as well as verbal praise all correlate with 
increased activity within the VS (Kirsch and others 2003; 
Rademacher and others 2010). With its central position 
in the mesolimbic pathway, the VS likely encodes the 
rewarding nature of cooperative behavior and thereby 
gates the motivational value of acting prosocially, that 
is, helping others (Bhanji and Delgado 2014). The NAc, 
prominently included in the VS, is also situated ideally to 
play a key role in processes of different reward dimen-
sions, including those of a social nature (Meshi and oth-
ers 2013). Spreckelmeyer and others (2009) reported 
activation of the NAc during the anticipation of positive 
social feedback, similar to anticipation of non-social out-
comes like food (McClure and others 2007) or money 
(Knutson and others 2000). Kohls and others (2013) fur-
ther implicated coordinated activity of NAc in the pursuit 
of social reward as well as the avoidance of social pun-
ishment. An investigation of cortico-striatal connectivity 
in a large sample of individuals with ASD (N = 130 per 
group) found there were significant differences in striatal 
connectivity patterns (Balsters and others 2018). Spe-
cifically, individuals with ASD did not show age-related 
changes in connectivity between the NAc and amygdala, 
or NAc and the frontal pole. In addition, the anterior and 
posterior sections of the putamen displayed unique con-
nectivity patterns in typically developing individuals but 
not in ASD. This is particularly relevant in light of Pauli 
and others (2016) who suggested based on 5,809 human 
functional magnetic resonance imaging (fMRI) stud-
ies that activations in the anterior putamen are linked to 
social and language functions. Balsters and others (2018) 
suggest that the absence of unique connections to the 
anterior putamen could explain social and language defi-
cits seen in ASD.

Ventral tegmental area.  General acts without any 
direct beneficial outcome for oneself strengthen the 
assumption that pro-social behavior has an intrinsic 
motivational value: charitable behavior like donating 
and monetary pay-offs to charities activate the VTA 
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comparable to monetary rewards to oneself (Moll and 
others 2006). Situated on the floor of the midbrain, the 
VTA harbors the majority of dopaminergic cell bodies of 
the mesolimbic pathway, which is strongly implicated in 
the natural as well as drug reward circuitry of the brain 
(Russo and Nestler 2013). Using a norm adaptation para-
digm and an imaging approach tailored to detect activa-
tion within midbrain structures, Hétu and others (2017) 
suggested the substantia nigra (SN)/VTA complex and 
its dopamine system to be involved in social norm pro-
cessing. Other human imaging studies found activation 
of the SN/VTA complex to reflect salience of a stimulus 
predicting reward and novelty seeking behavior, which 
could both be pharmacologically manipulated with 
dopaminergic agents (Menon and others 2007; Riba and 
others 2008).

Amygdala.  In conjunction with the aforementioned 
areas of the mPFC, amygdaloid activity is further cen-
tral to handling the demands of complex social life. In 
fact, individual differences in amygdala volume predict 
variations in social network size and complexity (Bickart 
and others 2011). Based on its anatomical connections 
with almost every other brain region implicated in the 
“social brain” (as obtained from tract-tracing studies in 
non-human primates), it can be considered a hub within 
the “social brain” (Freese and Amaral 2009). Noninva-
sive functional neuroimaging studies have repeatedly 
indicated activation of the amygdala corresponds to com-
plex social judgments (e.g., trustworthiness of another 
individual) (Winston and others 2002) and a variety of 
social signals (Morris and others 1996; Morris and oth-
ers 1998). Adverse early-life experiences (e.g., moth-
erly maltreatment) negatively affect the development of 
the amygdala and increase the risk of developing social 
impairments (Alink and others 2012; Lansford and others 
2002; Ometto and others 2016), which typically precede 
adult-onset psychopathology (Mazza and others 2014). A 
recent study from Rausch and others (2018) showed sig-
nificant differences in the connectivity-based parcellation 
of the amygdala in ASD, including reduced connectivity 
with the vmPFC.

Cerebellum.  Despite being most appreciated for its role 
in sensorimotor control (Schmahmann 2004), ample 
evidence suggests cerebellar contribution in social 
behavior: functional neuroimaging studies find robust 
activation within the cerebellum associated with social 
cognition (Carta and others 2019; Moreno-Rius 2019; 
Van Overwalle and others 2015) and processing of 
primary emotions (Schmahmann and Caplan 2006). 
Overlaps between cerebellar activations for particular 

emotion categories (i.e., happiness, anger, disgust, fear, 
and sadness) imply the existence of shared neural net-
works across social and emotional dimensions (Bau-
mann and Mattingley 2012). Lesions or resections can 
elicit cognitive impairment and abnormal social behav-
ior (Schmahmann and Sherman 1998). Two key disor-
ders of social cognition (ASD and schizophrenia) have 
been linked to cerebellar abnormalities (Andreasen and 
others 2008; Courchesne and others 1988; Wang and 
others 2014). Resting-state fMRI in patients with anti-
social personality disorder (APD) revealed significantly 
reduced amplitude of low-frequency fluctuations in 
both the posterior cerebellar lobe (lobule Crus I) and 
OFC (Liu and others 2014).

Do Rodents Have Homologous 
“social” Brain Circuits?

Rodents like humans are socially engaged and show 
social behavior, though it presents in different forms. 
Depending on environmental contexts, rodents can dis-
play reciprocal interactions with conspecifics (Ben-Ami 
Bartal and others 2014), territorial aggression, mating 
via transmission, and interpretation of olfactory signa-
tures (Rennie and others 2013), emotional contagion 
(Atsak and others 2011; Han and others 2019) and 
communication via ultrasonic signaling repertoires 
(Sangiamo and others 2020; see Chen and Wong 2018 
for an extensive review). Therefore, rodent models are 
commonly used to investigate the neural correlates of 
both normal and abnormal social interaction. Preclinical 
research has already provided valuable insight into the 
cellular and neuromodulator mechanisms that fine-tune 
subregions of the “social brain.” Using behavioral test 
paradigms, which selectively probe for different dimen-
sions of social behavior such as emotional contagion or 
social and observational learning can then assess mani-
festation of the final behavioral output (Box 2). Recently, 
rapidly evolving cutting-edge neuromodulation tech-
nologies like opto- and pharmacogenetics (see Sternson 
and Roth 2014; Yizhar and others 2011 for extensive 
reviews) have enabled the manipulation of specific cell-
populations in a defined brain region, i.e. in a spatially 
and temporally controlled manner. These techniques 
allow for bottom-up research approaches, allowing us to 
go from cell to behavior, putting us in an ideal situation 
to investigate causality of brain-behavior interactions 
(see Fig. 1). Our understanding of complex behaviors, 
which are characterized by distinct internal states and 
switches thereof (Kaidanovich-Beilin and others 2011), 
can greatly improve using chemo- and optogenetic 
modulation.
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Box 2.  Social Behavior Tests in Rodents.

Reciprocal Social Interaction Test: The test assesses direct social interaction in rodents. It can extract naturalistic social 
behavior phenotypes of the “resident” to an “intruder/stimulus” subject by direct contact. A “resident” subject is habituated 
to a new, cage-sized, and bedded arena before an unfamiliar “intruder” is introduced. Commonly observed social behaviors 
include nose-to-nose or oral-to-oral contact, sniffing, following, pushing over, crawling under, and potentially aggression. 
Manual scoring and/or tracking software can be used to identify and quantify these specific social behaviors. Notably, the test 
does not allow to distinguish between, e.g., lack of social motivation and impaired social cognition in rodent models, making 
translatability to human socially debilitating disorders difficult.
Three-Chamber Sociability and Social Novelty Task: The test assesses cognition as per general sociability and social 
novelty interest in rodent models of health and disease. Based on two inclinations, i.e., preference toward spending time with 
another rodent and social novelty preference, this test can help identify rodents with sociability/social novelty deficits. In 
three testing sessions, mice are placed into a three-chambered box with openings between chambers. After habituation to an 
empty box, the sociability session follows: the “resident” mouse encounters an “intruder” mouse placed under a transparent 
cup and an empty transparent cup in separate chambers. In the social novelty session, the “resident” mouse then encounters 
the familiar “intruder” mouse placed under a transparent cup and a novel “intruder” mouse also placed under a transparent 
cup. Out-read parameters for sociability and social novelty preference are time spent sniffing each transparent cup, time 
spent in each chamber and number of entries into each chamber. This way deficits in social behavior of disease models can be 
quantified and pharmacological agents can be tested for their effect on social behavior.
Social Conditioned Place Preference (sCPP): This test is a form of Pavlovian conditioning and can be used to measure 
motivational effects of social encounters/experiences. For the acquisition of sCPP, the conditioning procedure is carried out in
an apparatus of two or more compartments. Both compartments can be discriminated by the subject via differently 
patterned/textured floors or walls. Testing comprises three stages: a habituation session on day one, training sessions on 
consecutive days and a sCPP test on the final day, all of the same session duration. During habituation the subject can freely 
explore all compartments to reduce novelty effects. A baseline preference toward either compartment is obtained by 
measuring and comparing the time spent in each compartment. For the conditioning sessions an unconditioned social stimulus 
(conspecific) is placed into one compartment. Throughout this phase the testing subject has access to this compartment 
only, which will result in association of this compartment with the social stimulus. During the sCPP test, the subject has 
unrestricted access to all compartments. As an out-read of preference, the time spent in both compartments is measured and 
compared with the baseline.
Ultrasonic Vocalization: Communication among rodents includes calls in the ultrasonic range. Shortly after birth pups start 
calling and elicit maternal licking, pup retrieval by the dam, and crouching behavior. Social communication under these terms 
can be measured by means of number, duration, frequency, and amplitude of calls. To investigate, e.g., pup communication, 
a single pup is placed into a Styrofoam chamber equipped with a microphone and recorded calls are analyzed with an 
appropriate program. The test can be repeated over the course of several days to record changes in communication. Rodents 
show a repertoire of ultrasonic vocalization which is increasingly as a readout of sociability given the caveats of behavioral 
social interaction tasks in general.

The Rodent “Social” Brain

Prefrontal Cortex.  Most theories on the functions of key 
“social” brain areas have been derived from studies in 
humans and non-human primates. Therefore, true value 
of translatability between human and rodent research can 
only be ensured once similarities or homologues of key 
“social” brain areas have been defined. Arguably, the 
most intense debate has focused on translatability of 
functions of the prefrontal cortical areas across species. 
Although many behaviors attributed to the PFC are 
thought to be unique to humans, it is commonly accepted 
that rodents are still a valuable model for understanding 
the functions of frontal areas emerging before evolution-
ary separation (Carlén 2017; Laubach and others 2018; 
Wallis 2007, 2011). Cumulative evidence suggests that 
the infralimbic (IL) region in rodents and area 25 in non-
human primates can be considered homologues (see 
Alexander and others 2019 for an extensive review; Hei-
lbronner and others 2016; Vogt and Paxinos 2014). 

Furthermore, prelimbic (PL) and cingulate areas (Cg) are 
believed to be homologues of areas 32 and 24, respec-
tively, in non-human primates (Aron and others 2004; 
Barbas and Pandya 1989; Bartra and others 2013; Bechara 
and others 2000). These homologies are further supported 
through lesion studies of the rodent PFC and its role in 
regulation of social reward processing. Findings of Cg 
involvement in social memory and interest as well as PL 
involvement in regulation of social investigation all point 
to the necessity of the rodent PFC in regulating social 
motivation (Avale and others 2011; Rudebeck and others 
2007). Optogenetic manipulation of inhibitory parvalbu-
min (PV) interneurons and excitatory pyramidal neurons 
in the mouse PFC disrupted social motivation during the 
three-chamber task of social preference: Shifting the bal-
ance toward excitation resulted in reduced attendance of 
the social compartment, while no effect was observed 
once the excitatory/inhibitory (E/I) balance was shifted 
toward inhibition. Simultaneous activation of excitatory 
pyramidal neurons and inhibitory PV interneurons in the 
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Figure 1.  Translational neuroimaging can bridge research of functional connectivity across species and levels of inquiry. Rodent 
models present an ideal system to test research hypotheses from bottom to top, that is, understanding neural processes from 
synapses to circuits to behavior. While efforts have been made to create a common ground for data acquisition (i.e., task design) 
and defining homologies in behavior, the shared biophysical principle of functional neuroimaging can ultimately provide insight 
to common and unique blueprints in brain activity patterns. With recent advances in rodent functional neuroimaging, the effect 
of different neural states is now accessible on a network level. The implementation of targeted manipulations (e.g., chemo-, 
optogenetics, genetic manipulation) further allows to causally explain changes in brain activity patterns, rather than correlational 
as in human research. This way, combining human and rodent neuroimaging research from top-to-bottom and bottom-to-top, 
respectively, we can systematically elucidate neurological underpinnings and their causal role within brain circuits of health and 
disease.

PFC, however, did not show an effect on social motiva-
tion in the three-chamber social task (Yizhar and others 
2011). How PV interneurons in the dmPFC exert long-
term impacts on social behavior has been elucidated via 
opto- and chemogenetic manipulation. Bicks and others 
(2020) discovered that brief optogenetic stimulation of 
dmPFC PV interneurons triggered active social approach 
to promote overall sociability. Chemogenetic activation 
of dmPFC PV interneurons, on the other hand, mitigated 
social deficits induced by juvenile isolation in adult mice. 
A recent study with multiplexed DREADD experiments 
bidirectionally modulated PFC activity to measure the 
effects on a behavioral and functional level (Benekareddy 
and others 2018): PFC hyperactivity suppressed the 

preference of social contact in a three-chamber social 
task and modulated activity in a subset of regions associ-
ated with emotional behavior. Bidirectional PFC modula-
tion further identified the lateral habenula to receive 
direct prefrontal inputs which upon activation or inhibi-
tion suppress or promote social preference, respectively. 
Other studies found that the behavioral capacities related 
to social reward motivation and self-reward value assign-
ment that have been attributed specifically to the human 
ventromedial prefrontal cortex (vmPFC), are localized to 
the rodent prelimbic (PL) and infralimbic (IL) areas 
(Bicks and others 2015). Anatomically, tracer studies 
show dense interconnections among subregions of the 
rodent mPFC, along with projections to the VS/NAc, the 
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VTA, and the amygdala (Gross and Canteras 2012; Vaz-
darjanova and others 2001). Human data have consis-
tently implicated the ACCg in reward motivation of 
others (Apps and others 2016) and linking social agents 
to particular stimuli (Lockwood and others 2018). In 
rodents a potentially homologous area has been located in 
the ACC: Electrophysiological recordings in the ACC 
Cg1/Cg2 region of freely moving rats revealed that a 
large proportion of neurons coded the net-value of com-
peting for a reward as long as competition with a conspe-
cific was required (Hillman and Bilkey 2012). Lesioning 
of these subregions resulted in disruption of both cost-
benefit decision making (Rudebeck and others 2006) as 
well as taking interest in other rats (Rudebeck and others 
2007). This would suggest sub-regions of the ACC to be 
particularly important in learning about the behaviour of 
conspecifics and the cost-benefit information about an 
animal’s own behavior (Apps and others 2016).

Subcortical Structures.  Similar to humans, the contribu-
tion of reward mediating subcortical areas like the VS/
NAc and the VTA further strengthen prosocial function-
ing in rodents (Gunaydin and others 2014; Kas and others 
2014).

Ventral striatum.  The rodent striatum, similar to the 
human striatum, is held as a general-purpose subcorti-
cal region which can translate social information into 
measures of social action and reward (Bariselli and oth-
ers 2016). In particular, the VS shows specific involve-
ment at the social level: Social isolation experiments in 
rats produced a “hypersensitive” VS, where events that 
would naturally trigger dopamine release resulted in an 
exaggerated effect possibly through increased expression 
levels of dopamine D2 receptors within the VS (Hall and 
others 1999; Howes and others 2000). Additionally, as 
part of the VS, NAc activity also proved to be relevant in 
processing of social reward (Walsh and others 2018) and 
in facilitating social behaviors (Kohls and others 2013).

Ventral tegmental area.  Increased activity within the 
VTA was found to be necessary to promote social explo-
ration (Gunaydin and others 2014). Mouse models with 
deficits in postnatal development of excitatory transmis-
sion onto VTA neurons display sociability deficits later 
on, which could be restored upon early administration 
of a pharmacologic modulator postnatally (Bariselli and 
others 2016). Lang and others (2019) examined male 
prairie voles’ brain response to infant-related odors and 
found female cues (i.e., female cohabitation) to enhance 
fos activity in the VTA on exposure to infant cues.

Amygdala.  Besides its role in fearful behaviors, lesion 
studies have causally linked the amygdala to social 

deficits (Daenen and others 2003). Optogenetic manip-
ulation of direct BLA-mPFC projections could bidirec-
tionally modulate social behavior and produce/mitigate 
anxiogenic effects (Felix-Ortiz and Tye 2014) Explo-
ration of resting-state fMRI data of an early-life stress 
mouse model focused on fronto-limbic connectivity 
compared with a control group and found amygdala-PFC 
hyperconnectivity, which highly correlated with anxiety-
like behavior (Johnson and others 2018).

Cerebellum.  Similar to the evolving trend in human 
research, cerebellar function has recently been put into 
context with social behavior in rodents as well. Carta and 
others (2019) demonstrated a direct regulatory role of 
monosynaptic connections onto VTA activity and thereby 
could regulate decision-making and emotional control: 
Optogenetic activation of the cerebello-VTA projections 
powerfully activated the reward circuitry. The authors 
additionally found increased activity of these projections 
upon exploration of conspecifics. Chemogenetic inhibi-
tion of Purkinje neurons (PN) within the Right Crus I 
(RCrusI) region of the cerebellum produced robust ASD-
related social, repetitive and restricted behaviors 
(Stoodely and others 2017). Stimulation of these neurons 
in a genetic mouse model of ASD rescued its social 
impairments, warranting the therapeutic potential of cer-
ebellar neuromodulation in ASD. Furthermore, chemoge-
netic perturbation of Crus I/II molecular layer interneurons 
in juvenile mice produced altered social preference 
throughout adult life (Badura and others 2018).

Overall, cumulative evidence points to a conserved 
set of brain regions involved in processing of and assign-
ing value to social information in rodent and human 
(see Fig. 2, Table 1; see Prounis and Ophir 2020 for a 
critical view on the social brain). These homologies set 
a first basis for translational research on social behavior 
in health and disease. However, social interaction 
involves cognitive and emotional processes that may 
not be “social” per se, which makes it difficult to control 
for during experiments. Ensuring adequate assessment 
of attention during short-term habituation, reward and 
saliency processing and appropriate levels of anxiety 
versus exploratory drive are just a few of the measures 
that must be taken to reduce false-positive reports on 
sociability. Nevertheless, by making use of our ability to 
target specific cell-populations in rodents, we are able to 
add another layer of complexity through the determina-
tion of their dedicated role in complex behaviors.

Comparable Neurotransmitters to Regulate 
Social Reward Value

Neuromodulators primarily act on slow acting receptors 
through which they regulate diverse neuronal populations 
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Figure 2.  Comparable social actuators in the human and rodent brain. Indicated here in sagittal are areas comprising the social 
brain and their interconnections as described in human and rodent research (numerical index). Human neuroimaging and rodent 
research using neuromodulation and electrophysiology has established relationships between various social behaviors and activity 
in specific neural circuits. Furthermore, the critical role of neurotransmitters and hormones like dopamine (indicated in blue) and 
oxytocin (indicated in purple) in gating/tuning social behavior within these circuits have been subject of investigation. While social 
hubs such as the VTA, VS/NAc, PVN, and amygdala have been established in both human and rodent, the role of the mPFC or 
the cerebellum are less defined. Notably, detailed circuit connectivities (dashed lines) and directionality of connections are still 
to be characterized with help of rodent models across different levels of inquiry. mPFC, medial prefrontal cortex; VS, ventral 
striatum; NAc, nucelus accumbens; PVN, paraventricular nucleus; VTA, ventral tegmental area. *Non-human primate tracer 
studies.

and modulate their response patterns to specific stimuli. 
In a social context, dopamine (DA) and oxytocin (OT) 
are repeatedly reported to be involved in information pro-
cessing and behavioral output in both rodents and humans 
(see Goodson 2013). In the mammalian brain, two adja-
cent midbrain regions, the VTA and substantia nigra pars 
compacta (SNc), comprise the majority of DA neurons. 
VTA-DA neurons are well known to project broadly 
throughout the brain, including the mPFC, NAc, and 
amygdala (Brischoux and others 2009; Budygin and oth-
ers 2012; Chaudhury and others 2013; Lammel and oth-
ers 2008). Early studies implicated strong phasic activity 
of DA neurons (“dopamine transients”) as a response to 
reward stimuli in rodents (Berridge and Robinson 1998; 
Schultz and others 1997). In vivo neurochemical methods 
revealed that phasic dopamine signals in the VS, possibly 
influenced by midbrain, amygdaloid and vmPFC inputs, 

correlated with reward-seeking behaviors (Robinson and 
others 2011). Optogenetic phasic activation of mouse 
VTA-DA neurons was found to drive behavioral condi-
tioning in a conditioned place preference task (Tsai and 
others 2009). Moreover, on phasic firing, DA terminals in 
the NAc appear to corelease glutamate, thereby activat-
ing fast ligand-gated ion channels and allowing transients 
to be truly time-locked to stimuli and reward (Stuber and 
others 2010; Tecuapetla and others 2010). While tracking 
subsecond DA fluctuations is not possible in humans, 
with recent studies implementing adaptations of fast-
scan cyclic voltammetry (FSCV) to measure neurotrans-
mitter changes in deep-brain structures (Kishida and 
others 2016; Kishida and others 2011), phasic DA sig-
nals are now commonly described as encoding of reward 
signals or the motivational component of reward (“want-
ing”) (Berridge and Robinson 2003). Genetic and 
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pharmacological studies in both humans and rodents have 
also proven a critical role of the DA system in social 
interaction: human carriers of the nine-repeat allele of 
DAT1, a DA transporter, were reported to show stronger 
social approach tendency, while increase of DA concen-
tration through a pharmacological agent improved learn-
ing about pro-social preferences of a partner (Eisenegger 
and others 2013; Noritake and others 2018). Additionally, 
human gender differences in social preferences were 
recently attributed for the dopaminergic reward system: 
pharmacological reduction of receptor-type specific 
actions of dopamine resulted in more selfish decisions 
during an interpersonal decision task in women while 
male participants exhibited an increase in prosocial deci-
sions (Soutschek and others 2017). In rodents, FSCV 
measurements demonstrated increased DA transient fre-
quency throughout the dorsal and ventral striatum on 
investigation of a novel conspecific (Robinson and others 
2002). More targeted recordings from the NAc revealed 
DA release when animals were orienting toward and 
experienced initial contact with the conspecific, which 
would cease or rather habituate on subsequent contact 
(Robinson and others 2011). Despite accumulating evi-
dence of DA’s critical role in the brain’s reward circuitry, 
a central question remains: what mechanism is tuning or 
rather gating VTA-DA neuron activity during social 
behavior? A first insight into the natural and causal circuit 
dynamics which underlie the modulation of social behav-
ior was given by Gunaydin and others (2014), who found 
that the dynamics of VTA to NAc projections are both 
encoding and predictive of social interaction in mice. 
This finding was supported by evidence that VTA-DA 
neurons are implicated in the mediation of motivated 
behavior via a top-down reinforcing circuit from the ante-
rior cortex, including the mPFC and orbitofrontal cortex, 
to lateral NAc (Beier and others 2015). Given the diver-
sity of connectivity patterns and the large number of 
downstream VTA targets, understanding what is happen-
ing upstream of VTA-DA neurons might help pinpoint 
connectivity patterns that contribute to modulation of 
reward and aversion.

Besides DA, the neuropeptide OT, which is synthe-
sized in the paraventricular nucleus (PVN) and supraoptic 
nucleus of the hypothalamus, has been often associated 
with social motivation in both humans and rodents (Lukas 
and others 2011). Initially proclaimed as a hormone 
strongly affected in social bonding, OT is now known to 
play a key role in several dimensions of social function-
ing, including fear responses, emotional memory, and 
social reward processing (Hu and others 2015; Knobloch 
and others 2012; Marlin and Froemke 2017). OT report-
edly modulates E/I balance in the auditory cortex of 
female mice in response to pup calls and thereby enables 
pup retrieval behavior (Marlin and others 2015). The 

neuropeptide also showed critical involvement in the 
development of all sensory cortices upon early sensory 
experience (Zheng and others 2014). In vivo OT injection 
together with increased sensory experience rescued effects 
of sensory deprivation by elevating excitatory synap-
tic transmission. Furthermore, OT receptor-expressing 
somatostatin (SST) interneurons within the mPFC show a 
differential response to OT in male vs female mice: in 
female mice these OT receptor (OTR) expressing neurons 
drive motivation to interact with male mice during estrus, 
while no changes in motivation were observed toward 
other females (Nakajima and others 2014). DREADD-
driven excitation of OTergic neurons in the PVN of a 
mouse model of ASD was able to rescue social behavior in 
the 3-chamber task as assessed with normalized social 
interest (Peñagarikano and others 2015). Wei and others 
(2015) further reported these neurons to convey informa-
tion about the rewarding properties of social interaction 
via cannabinoid-mediated signaling in the NAc (Wei and 
others 2015).

Since DA receptors are present on OT neurons and OT 
receptors can be detected in the VTA and SNc, a recipro-
cal modulation of both neuromodulator systems seems 
apparent (Baskerville and Douglas 2010; Grinevich and 
Stoop 2018). Consequently, the precise DAergic circuits 
which are involved in OT-sensitive behaviors should be 
questioned: How do DAergic and OTergic outputs guide 
social interactions? A recent study in mice reported a 
mechanistic link between VTA-projecting OT neuron 
activity in the PVN and social reward: OT release in the 
VTA enhanced the activity of reward-specific DA neu-
rons, which could possibly correlate with the reinforcing 
component of social interactions via increased DA release 
in the NAc (Hung and others 2017). Ex vivo electrophys-
iological recordings of mouse VTA-DA neurons further 
showed the diverse functions of OT, whereby it could 
enhance the salience of partner-directed versus explor-
atory behavior by increasing DA neuron activity in the 
VTA but downregulating it in the substantia nigra pars 
compacta (SNc) (Xiao and others 2017). Indeed, while 
VTA-DA neuron activity might enhance social interest, 
DA neuron activity in the SNc could presumably dampen 
contextually irrelevant exploratory behavior via control-
ling motor activity (Gunaydin and others 2014; Patel and 
others 2012). OT release in the VTA and SNc might 
therefore be a crucial factor in estimation and modulation 
of the salience of a social encounter or possible prosocial 
behaviors.

While in rodent studies evidence of OTergic modula-
tion of social reward processing accumulates, its role in 
human social behavior is less definite. Imaging studies 
report that upon social stimuli OT preferentially enhances 
connectivity of the brain’s reward processing system 
(Gordon and others 2016). Similar to animal literature, 
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Groppe and others (2013) described the VTA as the brain 
region where OT modulates the salience to socially rele-
vant cues via mesolimbic dopamine projections. More 
specifically, they observed intranasal OT application to 
increase the VTA BOLD (blood oxygen level dependent) 
response to socially rewarding and punishing cues in a 
social incentive delay fMRI task. OT was also reported to 
facilitate learning by giving feedback of both socially 
rewarding and punishing modalities (Gregory and others 
2015). Liu and others (2019) found intranasal OT appli-
cation to amplify social value representations within the 
amygdala (i.e., value of one’s own interest relative to 
interest of others), resulting in more prosocial behavior in 
more individualistic rather than social subjects. Quintana 
and others (2017) characterized the distribution of three 
genes involved in the OT signaling pathway across the 
brain and assessed associations between gene expression 
patterns and mental states via large-scale fMRI meta-
analysis. The expression maps of OXT (structural gene 
for oxytocin), OTR, and CD38 (central oxytocin secre-
tion) showed an increase in central, temporal, and olfac-
tory regions, which corresponded with motivation and 
emotion processing. Given its relevance in prosocial 
engagement, research on OT`s regulatory processes in 
disorders of social dysfunction like ASDs has gotten 
more and more attention. However, only few clinical 
studies have directly linked autism-like phenotype to 
problems in OT signaling: While clinical application of 
intranasal OT at a single dose promoted prosocial behav-
ior in high-functioning autism patients (Aoki and others 
2014; Anagnostou and others 2012; Andari and others 
2010), further doses of the agent failed to replicate these 
effects (Guastella and others 2015). At first glance, OT 
might appear to be just the missing agent to successful 
pharmacological treatment, however, consistent and 
reproducible data regarding its effects on regulation of 
social behavior are still missing (Miller 2013).

The sum of preclinical and clinical studies on the 
“social brain” and its neurotransmitter systems (see Fig. 2) 
have given great insights as to what is contributing to 
sociability, the value we assign to social interaction which 
ultimately motivates us to seek out social contact. Still, 
work on social reward in rodents has mostly focused on 
deciphering its molecular and neural basis and how it 
translates to behavior, while human research is limited to 
set the behavioral phenotype as a basis and investigate it 
on a network level. From a translational perspective the 
key macroscopic difference here becomes clear: in all 
these years of research we have yet to establish a “com-
mon language” between human and rodent studies, both 
in terms of neuroanatomy and behavior. Including the 
network-level characterization of circuit- and cell-specific 
stimulation in rodent models, that is, combining optoge-
netic of chemogenetic with the same neuroimaging 

readouts as in human studies might just be that connective 
which enables us to translate findings from rodent to 
human research, and vice versa.

Translational Neuroimaging: 
Bridging the Gap

Multimodal approaches that include optogenetics and/or 
chemogenetics with fMRI could provide the interface to 
enable proper communication between clinical and pre-
clinical research (Fig. 3). Today, optogenetics and che-
mogenetics allow the manipulation of virtually any 
chosen brain area or pathway and can model the neural 
dynamics observed in awake animals during a particular 
behavioral paradigm (Christie and others 2017; Lee 2012; 
Lee and others 2010; Rungta and others 2017). Measuring 
the whole-brain fMRI responses allows to parameterize 
the causal relationships between a specific input and the 
response of a distributed network of brain areas (Bernal-
Casas and others 2017), including those of downstream 
connected circuits (Lee 2012), and overcomes the need to 
design a task-paradigm during the scan. These define the 
opto-fMRI as a powerful tool suitable for testing the cir-
cuit hypothesis within the framework of social reward 
and social motivation in rodents, describe their effects at 
the network level, and used to explain the data from 
human literature. For example, Ferenczi and others 
(2016) were the first to demonstrate the utility of opto-
fMRI for testing a systemic hypothesis on reward pro-
cessing—adapted from human imaging data—and found 
the rat mPFC to exert top-down control over interactions 
among subcortical striatal regions which govern general 
reward-related responses (Ferenczi and others 2016). 
Lohani and others (2017) next embarked on VTA-DA 
neuron activation in rats and showed how this influences 
regional and global fMRI signals. Specifically, they 
found that phasic activation increased BOLD and cere-
bral blood volume (CBV)–weighted fMRI signals in lim-
bic regions innervated by the VTA, such as the NAc. It 
came as a surprise, however, that sparsely VTA-DAergic 
innervated regions of the basal ganglia (dorsal striatum, 
globus pallidus) also showed activation. Indeed, the most 
prominent fMRI signal increase came from the dorsal 
striatum, a region generally not associated with VTA-DA 
neurotransmission, which suggested a functional connec-
tion of meso- and non-limbic basal ganglia DA circuits 
(Lohani and others 2017).

Rodent and Human Circuit Homologues?

Given the similarity of activated networks to what is 
reported from human fMRI data, neuroimaging can be 
credited as a powerful translational tool that can be 
applied to examine homologies and differences between 
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Figure 3.  Multimodal measurement of neural dynamics in rodents. (A) Cutting-edge optical imaging techniques have enabled 
the detection of real-time activity of specified neural projections in socially interacting animals. A photometry setup enables 
optogenetic excitation and/or fluorescence emission recordings of targeted neuron through a single 400 μm fiber-optic 
implanted in ventral tegmental area (VTA). (Right) Viral targeting of GCaMP5 to VTA-DA neurons. (B) Photometry traces 
from mice expressing GCaMP5g in VTA during social behavior. (Red dashes) Interaction bouts. (Bottom) Zoom-in of gray box 
from above relating VTA-DA GCaMP signal and social interaction (colored boxes). (C) Example heatmaps (top) and peri-event 
plots (bottom) aligned to start of interaction for mice expressing GCaMP (left). (Heatmaps) Warmer colors indicate higher 
fluorescence signal; (peri-event plots) warmer colors represent earlier interaction bouts. (D) The combination of targeted 
neuronal modulation (e.g., chemogenetics, optogenetics) with fMRI brain-wide readout allows researchers to investigate the 
effects of acute neuromodulation not only in the targeted region(s) but also in downstream connected circuits; this may 
overcome a current limitation of single-cell and electrophysiological recordings, which assume a direct relationship between the 
manipulated brain area and behavioral changes. This approach proves to be particularly valuable in understanding how complex 
behaviors arise from cellular processes to connectional changes to inter-regional activity changes at the whole-brain level. 
Selective targeting of dopaminergic neuron is achieved using AAV5-DIO-channelrhodopsin2 viral delivery in the VTA of DAT-Cre 
mice. (E) General linear modeling (GLM) of stimulus-evoked activity followed by a mass univariate regression analysis produced 
voxelwise spatially resolved opto-fMRI activation maps. Representative distribution densities of statistic values from block-
stimulus-evoked activity analysis. Depicted are the 10 most strongly activated areas. Figures adapted from Gunaydin and others 
2014; Horea and others 2020 (in revision) with permission.
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species. But which are the brain networks that have been 
maintained through evolution in humans and rodents? 
Are reward and social motivation circuits among them? 
An answer to these outstanding questions is given by 
comparative functional neuroanatomy, a branch of neu-
roscience that studies the organizational level of the cen-
tral nervous systems from an evolutionary perspective 
and aims to identify which functions of the brain are con-
served or unique across species. However, only recent 
attempts have been made to study similarities and differ-
ences between rodents and primates in their neuroanat-
omy as well as in the physiology of their brain networks. 
In 2014, Stafford and colleagues used functional brain 
imaging to compare the topology of the “default mode 
network” (DMN)—a set of regions that have been linked 
to social cognition and understanding of others (Laird 
and others 2011; Li and others 2014; Mars and others 
2012)—in mice and humans in detail (Stafford and others 
2014). Their results show striking similarities in the way 
DMN is connected to the anterior cingular, retrosplenial, 
orbitofrontal, and parietal cortex. However, prefrontal 
components such as the posterior cingulate cortex (likely 
area 23) do not have a clear correlate in the mouse. In our 
recent study, we compared cortico-striatal connectivity 
profiles in mice, macaques, and humans with resting 
fMRI (Balsters and others 2019). These results suggest 
that connectivity models for both the nucleus accum-
bens—a hub for reward processing—and the cortico-stri-
atal motor circles (posterior/lateral putamen) have been 
preserved, making them reliable targets for comparing 
species. However, a large area of human (85%) and 
macaques (69%) striatum does not have a clear mouse 
homolog. These areas were located in the caudate nucleus 
and anterior putamen, overlapping the executive function 
and the social / linguistic regions of the striatum, and con-
nected to prefrontal-projecting cerebellar lobules and 
anterior prefrontal cortex, forming circuits that seem to 
be unique for non-human primates and humans. We 
attributed these differences to the expansion of the frontal 
cortex and parietal frontal lobes in humans. Taken 
together, these studies suggest that functional systems 
that relates to social cognition can be seen in mice, but 
they are often not present to the fullest extent as observed 
in primates. Further studies need to be carried out to 
refine the existence of similarities and differences 
between species in cycles that are relevant to specific 
aspects of behavior, including social behavior. We pro-
pose that this information is essential for assessing the 
human translation potential of circuit manipulation stud-
ies in rodents. Only if good agreement is observed can we 
guarantee that a particular process or behavior emerges 
from the same circuit, and therefore the theories devel-
oped in human studies can actually be used for rodent 
research—and vice versa.

Future Directions
The preclinical application of fMRI in combination with 
specific neural stimulation techniques is a foreseeable 
strategy for modeling, examining, and comparing the net-
work signatures of human behavior, including those that 
are related to reward processing and its manifestation in 
social behavior. This has the potential to answer funda-
mental questions about the origin and physiological mean-
ing of social behavior by integrating targeted and causally 
explainable manipulations of specific neurobiological 
pathways into the same fMRI design scheme as human 
studies. For example, it allows to assess whether the acti-
vation (or deactivation) of a particular structure, pathway, 
or modulatory system gives rise to similar network-level 
changes between rodents and humans. This overcomes the 
need to evaluate the similarity of results using complex 
and often not comparable behavioral assays. These obser-
vations form the basis of a new branch of neuroscience—
comparative functional neuroanatomy—and provide 
insights into the neural mechanism that are evolutionary 
preserved (or not) between species. As this is an emerging 
research field in its infancy, there are many unknowns that 
need to be addressed, starting from mechanistic insights 
linking fMRI biomarkers to neural signaling. With careful 
interpretation of obtained results, comparative functional 
neuroanatomy may greatly advance translatability of pre-
clinical studies in rodents toward humans.

Conclusion
Understanding the neural mechanisms conveying social 
functioning is key for the development of effective thera-
peutic interventions in socially debilitating disorders. 
Despite intensive research in a healthy and diseased state, 
it remains of question whether the observed activity pat-
terns are causative or a by-product of information pro-
cessing. As a complement to human studies, rodent 
studies can provide just that: Specific gene mutations can 
be created, molecular pathways can be targeted, and 
microcircuits can be manipulated, all while the observed 
effects can be causally explained. Using neuroimaging as 
an objective method of data readout and analysis is prov-
ing promising in understanding the brain functional basis 
of sociability as well as for monitoring the effectiveness 
of therapeutic interventions. Furthermore, these studies 
offer the possibility of studying network-level analogies 
between multiple species, filling the vital need to harmo-
nize the results on the mechanisms of the social brain 
measured in rodents with the theories on the functioning 
of the social brain established in humans.
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